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SUMMARY

The in-plane shear strength and the transverse stréngth in
-shear and in tension of composites comprised of elastic-brittle
fibers and an elastic perfectly plastic binder are evaluated quan-
titatively in terms of the matrix yield strength and volume fraction.
The results are in the form of bounds obtained by the application of
the theorems of limit analys;is of piasticitir.

1, INTRODUCTION

An important goal-in the study of the mechanics of composite
media is the determination of a theoretical relationship between the
strength of a uniaxial fibrogs compo.site and the mechanical properties
an_d geometry of its cdnstituents. A relationship o; this typé could be
utilized both in the definition of desirable improvements in cqnstituent

properties as well as in the assessment of the structural potential of

various composite materials,
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The tensile and compressive strength of fibréus composites
loaded parallel to the fibérs has been studied by Rosen[1] %, Trans-
“verse strength was studied by Hashin [ 2 ] using theorems of limit
.analysis of plasticity [3, 4]. Upper and lower bounds for limit loads
were obtained under certain geometrical restrictions - namely, for
those cases in which it is possible to put a plane through the fiber-
reinforced body under consideration without cutting through any fibers,
This prerequisite geometrical restriction is severe and it is the
purpose of the present paper to obtain bounds of the limit loads without

imposing this constraint.
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% Numbers in squére brackets refer to Bibliography at the end of this
paper.
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2. STATEMENT OF THE PROBLEM

The present analysié considers a composite body with uni-
directional circular reAinforcing fibers of various diameters embedded
in the matrix material, It is assumed that the fibers are elastic-
brittle and that the matrix is elastic-perfectly plastic and obeys the
von Mises' yield criterion. The body is subject to various simple
surface tractions and it is desired to find fhe limit load for each set
of surface tractions, This is defined as that load at which the defor-
mation of the body can increase without any increase in load. In the
present work, this load is defined as the failure load of the composite
body and it is estimated by. bounding it from above apd below by the
apPlicgtion of the methods of limit anaiysis of plasticity,

For convenience of analysis, tﬁe fiber -reinforced composite

body under investigation is chosen to be a cylindrical specimen with
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rectangular cross-section, The specimen i.s refe?red to an ortho-
gonal Cartesian coordinate system whose x;-axis is parallel to the
reinforcing fibers which extend from base to base of the specimen as
shown in Figure 1, Following Hashin and Rosen [5 ], the entire com-
posite specimen is considered as an assemblage of composite
cylinders. All fibers are surrounded entirely by concentric cylinders
of matrix material in such a way that they are nét overlapping, The
cylindér consisting of a fiber of radius r; and the outer matr-ix-shell
of radius Ty is called a composite cylinder, It is assumed that the
lateral surface of the specimen does not cut through any of the com-
p?site cylinders, The entire composite body is thus cor‘lside>red as an
a'ggregéte of the composite cylinders plus the remaining matrix~volume,
Thu‘s, ;f v, Vl and V2 denoté, respectively, the total volumes of .the_

specimen, the composite cylinders and the remaining matrix in the

specimen, the following obvious relation holds




V=V +V, , ‘ (1)

T
In general, B = 5 varies from one composite cylinder to
another in a specimen and V, # 0. An idealized type of assemblage

where _Bis the same for all composite cylinders (although the fibers

are of different diameters) and V2 = 0 is called a "'random array" [5].

3. LIMIT ANALYSIS OF THE COMPOSITE SPECIMEN

The von Mises' yield criterion which the matrix material is

assumed to obey has the following form¥* :

S:: S.. - (2)
1 1 ) :
3 <« :

2

where 8jj are components of the stress deviator and k is the yield

stress in simple shear for the matrix, Under the conditions of plane

*Henceforth, unless otherwise specified, i, j =1, 2, 3; summation

on repeated indices is implied,
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strain perpendicular to xl-axis, von Mises' yield criterion (2) reduces to

2 2

. 33)2+4'r L 4k

(r 23

22 (3)

where 7'22, 733, and ‘7'23 are components of the stress tensor in the
transverse plane,

For practical composite materials, the fiber modulus is much
higher than that of the matrix, Therefore, the fibers may be conéidered
to.be rigid,

The upper and lower bound theoréms of limit analysis of plasticity

will be used to obtain upper and lower bounds of the limit load, Readers

. are referred to [3, 4] for proofs of the theorems,
F) Jd

The surface fractions ai:piied to the entire boundary surface S of
the specimen can be described generally by the following relations:

T5(8) = 755 » (4)

where Ti(S) are components of the surface tractions; Tij are components

of the stress tensor and n, are components of the unit outward normal

to S,
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The following cases of surface loadings are considered:

-

Case 1, The surface tractions in (4) are such that Tij has the following

form:
0 T 0
Tij - 12 (5)
1'12 0 0
0 0 0

where le is a constant. This amounts to a uniform shear stress 7)2

applied on the boundary of the specimen as depicted diagramatically
in Figure 2 in the X x2 plane,

According to the lo;rver bound theorem, a lower bound of the
limit load for the surface tractions Ti (S) is thaf load for which a

statically admissible stress field exists in the body under consideration,

In this case, a uniform stress field

VI 0
Tij =

T, 0 0

0 o )

-is chosen as a statically admissible stress field where T, is such that
(2) is nowhere violated in the matrix. Then it can easily be shown that

the lower bound of the limit load of 7, is given by:
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(£)e-x e

For upper bound construction, a kinematically admissible
velocity field is chosen as follows:
(a) In the region of the composite specimen not occupied by
the composite cylinders,
u1=0, uy %%, u3 =0 (7)

where ‘yl is any real number.
(b) In any composite cylinder, the velocity field y is the elastic
displacement —solution to the displacement boundary value problem
with boundary conditions (7;) prescribed. - Thig result is obtained
from Appendi_x 2 of [5] vsizit.h the modification that the fibrous core
is rigid,

For this velocity field, an upper bound of the limit load TiZL can be

obtained from the following expression:

1\ [ F(éi)av
(le).U‘ v__"

V’}’l




where F(éi,) , to be integrated over the entire volume of the
J
specimen, is the dissipatibn density function calculated from
this kinematically admissible velocity field. For the general case

where composite cylinders have different B's, this yields:

L) N _ (i) 1 2w 4 2
T \' 1 v 1 R |f1+B; + 2 B,
(12 U _1__1_ + z C‘[___ S S 4( L ) _}_cosededR](S)

k v Vi=l W(I-Biz) Bi o R4 RZ

where VS) is the total volume of the ith compbsite cylinder;

r
. . f - .th . . -
Bi is the ratio . for the i composite cylinder and N is the total

b
number of composite cylinders in the specimen.

In particular, for the case where all composite cylinders have

the same B, (8) reduces to simple form

()
12/0 _1+v (L -1 : (9)
* ot

where

1
\'
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1 27 '

1 b 2

and Il= — R (H ik 2 ——2— cos § d0drR  (10)
T(1-8°) B o R R

Further, in the case of the '""random array'" (V2= 0) , the fiber-volume

2
fraction of the composite specimen, ve = P~ and (9) becomes

(TI;)U = Il (11)

k
The integral I1 in (10) is integrated numerically for different B's.

The result is shown in Figure 3 where (TI;)U in (11) is plotted as a function

2 k
<v v, =

Notice particularly in Figure 3,

£70 %
and
lim (T L) l
12/u = 4
v .41 T

From the above r_esult, 1t is concluded that pnder the type of surface
tractions described by (4) and (5), the strength of the matrix can be in-
creased at.most by about 27% due to fiber-rein.forcement.

Another kir}ematically admissible velocity field can be constructed‘

" to obtain an upper bod\nd (TI;-I)U- if the detailed geometry of array of

fibers in a specimen is known. Construct a surface whose generator is
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parallel to X - axis in such a way that the surface does not cut through
any fibers. This can always be done due to the geometry of the com-
posite specimen under coﬁsideration. A typical 'cut" is shown in Figure
4. The kinematically admissible velocity field is defined by a co'nstant

velocity y in the positive x -direction of the portion of the speciraen to

1
the right of the '"cut'' relative to the rest of the specimen.
An application of the upper bound theorem gives

(‘r L) '83 ,
12 /g = ' 4 (12)
k 3

where L3 is the linear dimension of the specimen in x3-direction and 143
is the total length of the curve which is the trace of the '"cut" in the

X, Xy plane.
Therefore, it is possible to construct an infinite number of

different cuts to obt;in d-iffe.rent kinematically admissible velocity fields.,

Thé lowest upper bound (T12L> y can be obtained from (12) by choosing

the cut with the smallest »5:3 . This scheme is possible if the arrangement

of fibers is know_n. For example, inthe case of a '"square array' of

fibgrs .in a specimen shown in FigureVS, it is always possible to choose a

cut such that /‘«3 = L3 without cutting through any fibers regé.rc_lless of

.fiber volume fractions of the specimen., Then <TII£>U coincides with
(TI;J )L which is k. Therefore, in the case of"'square array', under the

type of surface tractions considered, the presence of fiber-reinforcement

does not help strengthening the matrix.
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A more general situation exists in which the detailed geometry
of the arrangement of fibers is not known but it is possible to obtain an

upper bound for Tl;" by an application of (12). However, due to the fact

that thé detailed geometry is unknown, the upper bound obtained may not
b-e the lowest for any given fiber-volume fraction. The geometry treated
is that of circular fibers of different diameters embedded in an arbitrary
manner in a matrix material to fofm a uni-directional fibrous composite

cylindrical specimen of rectangular cross section as shown in x plane

273
in Fig, 6. For any X, in the specimen, a ''cut" can be constructed as

shown in Fig. 6. Thus, ’A3 (in (12) ) associated with the "cut" is a function

of Xye More explici'tly,

= 4 -
.A3 3+(F1) /c,f

where Lf is the total length of the straight line segments within the fibers

that a '"cut'" at x, bypasses (as represented by dotted line segments in

Fig. 6). FLf is the total minimum arc length of the 'cut' to replace Lf

. in order to avoid cutting the fibers. Obviously both ’Lf and F are functions

of xz,' and

1 =F=

R

Therefore, we seek the minimum value of. '&f’ defined by ( )Lf) min Th_en_
the associated ;43, denoted xig » can be bounded from above in the following A

manner:
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Ag = L3+(%r—-l)(&f)min.

Further, since v, is the mean volume fraction,

f

AL min, < V¢

ts

Combining the last two inequalities, we have
° < 1 T - Vf
.,&3 3 [1 + (2 1) | ]

Then by (12), we obtain an upper bound for ‘Ii; .

\T i
T = —_—_ -
12 | 1+(2 1) vf

k

The upper bound obtained above is a linear function of the fiber-

volume fraction Ve (0=v_< 1) for arbitrary arrangement of fibers in the

f
matrix,

Case 2. Under the conditions of plane strain, the surface tractions in (4)

are such that Tij has the following form:

0 0o 0 .
T.. = ) - (13)
ij 0 0 T23 .

0 T23

where'TZ3 is a constant.

This amounts to uniform shear stresses applied on the lateral

D3

boundary of the specimen as depicted diagramatically in Fig, 7.
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For lower bound construction, a uniform stress field

0o o0 0
T.. =
ij 0 0 To
o 7 O
0

~

is chosen as a statically admissible stress field where To is such that
(3) is nowhere violated in the matrix, Then it follows that the lower bound

for the limit load

LY =«x | (1)
(723 )L

wiﬁch is again indeéendent of fiber volume fraction as shown in Figure 8.

It can be shown from the definition of a statically admissible stress
field that k is the highest possible lower bound for TZI; tﬁat can be obtained,
Indeed, consider a most general s»tatically admissible stress field T* in
equilibrium with the boundary traction. As T, increases monotonically,

23

* l : L
Tij will also increase monotonically. The highest lower bound (’53 I, for
TZ;J is the value of T, at which at some point of the matrix region in the
specimen, the von Mise_s' yield ciriterion (3) is about to be violated., If the
point is on the boundary of the specimen, then from (3) it is clear that

T2 ) =k K¥itisinth imen, then (T~ k. Therefore, i

23‘ L . it 1s in the specimen, then b3 L-< . erefore, in
the case where no fibers are cut by the lateral boundary surface of the

) specimen, which is cc‘anistent with the composite~cylinder-assemblage

model statéd in Section 2, (TZI;)L cannot be higher than k. In cases where
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lateral boundary surface consists of both fibers and matrix, a higher
(Tzl:;‘)L might be obtained by gonsidering the surface tractions being

applied non-uniformly on the boundary. However, guantitative results
haye not yet been obtained.

For upper bound constrﬁction, the same principle as used in Case
l.is used here. A kinematically admissible velocity ‘field is chosen
as follows:

(a) In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders,
Y

A |
2- 2 T3 W77 % | (15)

where Y2 is any real number,

.(b) In any composite cylinder, the velocity field u (X29X3 ) is the

elastic displacement solution to the displacement boundary value

}

problem with displacement boundary conditions (15) prescribed as
~ formulated in Appendix 1 of [ 5 Jwith an additional condition that the

fibrous core is rigid and the binder shell is incompressible.

For the case where B is the same for all composite cylinders, an -

application of the upper bound theorem gives an upper boundQ‘ZI;)U as a

function of Band vyt

230 =1+ v (1, - ) (16)

k
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where
L= j f R @B, R) + Y(B, R) cos 6 dodR (17)
11(15)
énd \
4 2 -2 2
g™ B 4 2 2.2
= 4 .2 3 .2 -—] [(4B+B+1)+3BR] :
(B, R) = R4 [(B +B+1)'E(B +1)R2 + - 18)

| 621 [ (aghss?
¥Y(B,R) = zs [(a p82ay -2 (pBn & ] [_(48 +E 41 +3Bsz]
R”

In the case of '"random array', (16) reduces to

1 L
(E3)U (19)
—— Y= IZ
k
In Fig., 8 (TL> _
g- ©» . 23/U in (19) is plotted as a function of Ve which shows that
k
lim ( L |
T \23/u=1
f k
and
lim ( L)
o0, \23/u=e
i -k

From the above result, it is seen that the upper and lower bounds for

the limit load 721; are much farther apart than those for 7'1]2"' in Case 1.

Therefore, it is possible that the transverse shear strength of the specimen

could be increased substantially by fiber-reinforcement. Further effort

should be made to get closer bounds in order to have a better estimate of the

limit load.
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Case 3. Under the conditions of plane strain, the surface tractions in

(4) are such that Tij has the following form:

T.. 0 O

Tij = U (20)
0 oo 0
0 0o O

where Tll and TZZ are constants. This amounts to uniform tensile stress

1'22 appli‘ed on the lateral boundary of the specimen as depicted diagrama-

tically in Fig. 9 in the x,%, plane. The tractions equivalent to uniform

tensile stress on the terminal sections are used to maintain the conditions
of plane strain.
Using the same principle, the lower bound for the limit load is

L =
(% ), -2

For upper bound construction, a kinematically admissible velocity
field is chosen which is obtained from the one constructed in Case 2 through

~an orthogonal transformation such that

t

u =<

i i
ith -
b [0 0 o
£ =
4 S 1 .
\[2_\]7
o L L
7




I

where uf are velocity components used in Case 2 referred to an
J

]
x -system. Then, after some manipulation, it turns out that

AT L
(722>U _.2(T23>U (21

‘where (ngJ)U is given in Case 2,

The selection of the velocity field is not unique and it remains to
be determined if a lower upper bound can be found by choosing another
admissible field.‘ Although this uncertainty cannot be removed until
the bounds are shown to be the best possible bounds for the geometry
considered, it is of interest to note an additional resuit. Hashin [6 ]
has suggested a velocity field w_iti'lin the composite cylinders of the form:

q = _Y_Z_ f(r) cols.ZG
T 2

|

-5 ki
ug = 5= Q(r):si.nz )

A
H .
A
g

For ((r) assumed as a cubic in r, numerical results show that this

field yields a higher upper bound than that defined by Egs. (19) and (21),
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-

Case 4, Under the conditions of plane strain, the surface tractions

in (4) are such that Tij has the following form:

T 0 0

11 (22)
T.. = 0 T. 0 .
ij 22 (TZZ # 1'33)

0 0 T33

where the non-vanishing components of stresses are all constants., This
amounts to uniform biaxial uniform tensile stresses T22 and T33 applied on

the lateral boundary of the specimen, under the conditions of plane

strain, as depicted diagramatically in Fig. 10,

For definiteness, assume T 2> T.

> 33° Then. following the ideas used

in Case 3, it can be shown that

L LY _
(Tzz )L - (733 )L = 2k
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{.L L\ _.(.L
and (TZZ)U - (733)U - 2(T23)U

where(’rzlg) U can be obtained from Case 2.

Case 5, The surface tractions in (4) are such that Tij has the following

form:
0 T, 0
LT I S 23
= 12 22 (23)
0o 0 0

where the constant stress components le and 7’22 are related in the

following way:

1'12 = o 722 (24)

with @ 20. This amounts to a proportional loading of combined uniform
shear stress le and uniform tensile stresses T,, On the boundary surface of
! .

the specimen as depicted diagramatically in Figure 1l in the x plane.

1 %2
Since both 7'12 and T22 are assumed finite, it is obvious that

a@= 0 corresponds to the case where only uniform tensile stresses T, are
present, On the other hand, 0¢— »corresponds to the case where the

specimen is subject -only to uniform shear stresses le .

Lower bounds for 12]; and TI;J can be obtained easily:

(‘TL) \ 1 . |
22/ = —m (25)

— —————e o e

N
3




L
and (le )L - o

for

For upper bound construction, a kinematically admissible velocity
field y 1is chosen to be a linear combination of the two kinematically

admissible fields used in Case 1 and Case 3 with

Y1 = W Y2 (26)
Equation (26) relates Y1 and Y2 which appears in (7) and (15),

respectively.

Then an application of the upper bound theorem gives, for the case

of constant P throughout the specimen., '
L) P 2
;
k 5+ aw
where
1 1 2m _
I, = —— R |3 (w,p,R)+ 2% (w, B R)cosO+ 5, (P,R)cos 2 § d&IR
3 2.3 1 2 3
T(l-p ) . . .
p o
4 2 2 2
. v 4 2 2 2.2
3. (w, Py R)= 4] 2 [(ﬁ 4 -2 (554 2 ] + [3 82R%- (48%+ B4 1)
1 ' R4 Lo e RZ —

+ wz (l-bz) 1+ P

R4
2, 2.4 .2
%, (w,8,R) =2 w (-5 ?

2
R
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and

-

™~

[\

' : 2] 4 2
?.(B,R) = 8—B— [(54+ Bz+ 1) - 3 (52+ 1) E_][3 BZRZ _ (4P 4B+ 1?
> R 2 RZ 2

In the case of "random array", (27) reduces to

()
22/u =

I
3
k l + 0w (28)
2
Since w in (26) is arbitrary, the lowest upper bound among the
class of upper bounds in (28), will be obtained by minimizing the right
hand side of (28) with respect to w. Thus,
L _ . k1
(TZZ> gy = min 3
’t w } 2 +aw
2
and (29)
( L) = min, ko I3
T
12 /U {w} _2!_+ 0w

will be chosen as the upper bounds for Tzlé and sz » respectively,

- 3 - 3 L ‘ L
Numerical calculation is performed to obtain (TZZ )U and (712 )U

from (29) for different values of Pand o . it is interesting to note that
in the numerical calculation, for any given B, @ which minimizes _tl'-xe_
right hand side of equation (29) is a monotonic increasing function of &
but - W# o {except when «= 0, then w = &= 0), The results are
summarized in Figure 12 in which BZ= 0.8 is the highest fiber volume
fraction shown. The dotted curve represents (25) which gives the lower

L .
bound for 7 andT for any b.
22 12

]



CONCLUSIONS

Bounds on the lif.nit loads of uniaxial fibrous composites subjected
to in-plane shear and transverse plane shear and extension stresses have
been obtained. These results emphasize the strong influence of matrix
properties upon composite strength. Interaction curves for the case of
combined in-plane shear and transverse extension stresses were also
obtained. This is a state of stress which has an important influence upon
the strength of many composite laminates.

Further effort is indicated to obtain closer bounds on the limit
load for certain cages. Further effort is also indicated f;)r the development

of composites utilizing matrix materials of higher strength.
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FIG. 1. COMPOSITE SPECIMEN
( FIBERS IN Xl DIRECTION)
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FIG. 4. - FIBERS IN X1 DIRECTION.



FIG, 5. - "SQUARE ARRAY"
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FIG. 6 - A TYPICAL CUT AT X 2



FIG. 7. - TRANSVERSE SHEAR
(FIBERS PERPENDICULAR TO X2 X3 PLANE)
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