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APPLICATION OF ULTRA-STABLE OSCILLATORS TO
ONE-WAY RANGING SYSTEMS

PART 1

1. INTRODUCTION

Great advances have been made in recent years in the field of ultra-
stable oscillators. Attainable stabilities, both '"long'" and "short term, ' have
been greatly enhanced at the same time that flexibility and reliability have been
improved, Pertinent examples of such ultra-stable oscillators are some
hydrogen-maser oscillators recently acquired and evaluated by GSFC, and

cesium beam primary standards available as commercial products.

The availability of these oscillators naturally raises the possibility of
utilizing them in the design of space-vehicle tracking systems, with the objec-
tives of improving system accuracy and/or greatly reducing system complexity,
One intriguing possibility is to turn away from coherent two-way tracking
techniques (involving transponders) in favor of the simpler but heretofore less
precise (noncoherent) one-way tracking techniques. This possibility is explored

below,

The objective of the study documented in Part I of this report, as de-
fined in the Task Statement, is:

Determine the feasibility of designing a one-way or passive

ranging system given the fact that a spacecraft oscillator is

highly stable and its frequency is well known. The analysis

should take into account all possible system errors such as

propagation anomalies, small drifts in system oscillators,

etc., and evaluate quantitatively expected system performance.

In Sec. 2 the basic techniques of trajectory measurement in a one-way
tracking system are described; then in Sec. 3 the effects of lack of coherence
between transmitter and receiver on system operation and accuracy are analyzed
and discussed. It is found that in many applications such as deep-space tracking,

coherent doppler demodulation is not attained because of the oscillator instability

incurred during the elapsed time between transmission and reception.

1
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Thus, one-way tracking suffers no disadvantage in this respect in comparison
with coherent two-way tracking, On the other hand, one-way trackingtechniques
are quite sensitive to geometric dilution of precision (GDOP). Sections 4 and 5
are devoted to the exploration of these geometrical problems. Conclusions as
to the feasibility of precision one-way tracking systems are drawn in Sec. 6,

and suggestions are offered concerning the development of such systems.

2
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2. ONE-WAY RANGING TECHNIQUES

It is possible to determine the trajectory of a vehicle by performing
measurements at ground sites on signals which originate at the vehicle., Since
transmissions from the ground sites to the vehicle are not required, this ranging

technique is called one~-way or passive ranging.

A possible one-way ranging technique is demonstrated with the aid of
Fig. 1. The vehicle is located at P at time t=0, and there are receiving sta-
tions at A, B, C, and D. Assume that the vehicle radiates a single event such

as an impulse at t=0, This is received at A at ta= ra/c, at B att, - ra/c, etc,,

b
where c is the speed of light, The absolute time of occurrence of the impulse

transmission is not known at the ground sites so the ranges, ra, r . , cannot

be determined directly. However, the differences in time of arrivt;l at the
ground sites can be determined exactly with the aid of a precise reference time
distribution system, The timing system provides synchronized clocks at each
b b et e
can be determined uniquely. Note that four stations produce three independent

of the ground sites., In this way the difference ranges, r -r

range differences. Each range difference defines a hyperboloid of revolution,

For example, the range difference r-r defines a hyperboloid with foci at A

b
and B, and the difference of distances of any point on the hyperboloid from the

foci is just r " Ty Thus, three surfaces of revolution are generated from the
range difference data obtained from four receiving stations, and these surfaces

intersect at P, which is the target position,

It is not reasonable to assume that the vehicle will transmit just one
impulse in a practical application of the one-way ranging technique, A periodic
waveform, such as a periodic pulse train, is more convenient. In fact, a pure

CW carrier can be used.

3
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Vehicle

R-2908
Fig. 1 One-Way Ranging Utilizing a Single Event.

When a periodic pulse train is transmitted, the range difference deter-
minations become ambiguous. As a result, the determination of target position
P, is ambiguous and some a priori knowledge of target position is necessary to
resolve the ambiguity, Similarly, a CW transmission produces highly ambiguous
data, For the case of pulsed signals, the ambiguity arises from the inability to
distinguish one pulse from another at the ground sites. Analogously, for CW
transmission, the ambiguity arises from the inability to distinguish one zero
crossing of the CW sine wave from another. The ambiguity thus produced is so

severe that resolution with the aid of a priori information is not practical,

A one-way ranging technique is available which employs additional
stations to combat this ambiguity problem. Consider the two-dimensional con-
figuration shown in Fig. 2. Although ra, - Tpy can only be determined ambigu-

ously, note that ra, - Tag can be determined unambiguously. This is the change

2
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Vehicle
Trajectory

R-2907

Fig.2 One-Way Ranging Utilizing Doppler Count
(two dimensional).

in range due to target motion observed at A by counting doppler cycles of the
CW sine wave, Similarly, the change in range observed at B, C, and D, can be
measured, With this data four equations can be written with four unknowns,
These are the coordinates of Ql and Qz. The technique is extended for applica-
tion in three dimensions by utilizing six stations. Clearly, this technique only

works with moving vehicles.

Other techniques are available which utilize one-way transmissions to
determine target position. For example, if the vehicle is in free-fall or orbit,
a great deal is then known about its trajectory. A priori advantage can be taken
of this extra information to either reduce the number of observations required
or to enhance the accuracy of the trajectory determination. Another example is
the use of multiple-tone modulation of the CW carrier to generate widely spaced

periodic events and thus greatly reduce the range ambiguity. The errors

5
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incurred with the four teéhniques mentioned above will be considered in the
following sections. But first, a two-way CW doppler system is considered in
Sec. 3 in order to demonstrate how oscillator instability can result in loss of
coherence, and thus eliminate the advantage of coherence expected in a two-way

system under certain conditions.
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3. DOPPLER MEASUREMENT ERROR DUE TO OSCILLATOR INSTABILITY*

In this section, the effect on doppler measurementaccuracy of oscilla-
tor instability is determined. Then, as an example, the doppler error due to
the instability of a cesium beam ultrastable oscillator in a monostatic system

is determined.

It is found that the short-term instability contributes more signifi-
cantly to the doppler error than the long-term instability. The validity of this
conclusion is a function of the noise bandwidth of the receiver. In the example
below, a noise bandwidth of 2 kHz is assumed. With noise bandwidths on this
order, the long-term stability enhancement of the cesium resonator has little
effect on the doppler error. Similar accuracy could be obtained using the
quartz oscillator only. The cesium beam resonator improves the stability of the
source when the averaging time is greater than100s. Thus its relative contribution

is important only when the noise bandwidth of the receiver is extremely narrow.

The system assumed for analysis below is monostatic. That is, a
stable reference is used to generate the transmitted signal. This signal is
transponded (without distortion) at the vehicle and returned to a receiver which
is contiguous with the transmitter. The same stable reference is used to de-
tect the doppler data. During the round trip, the short-term instability of the
stable reference causes it to shift frequency slightly. It is found that if the
round-trip time is short enough, the instability component on the returning
signal is correlated with the stable reference's instability component and, thus,
causes little error. On the other hand, if the round-trip time is long, the in-
stability component on the return is uncorrelated with the instability component
of the reference. In that case, a separate stable oscillator of the same quality
could be used to detect the doppler data at the receiver without any decrease

in doppler accuracy.

The material of this section is based on work performed under Contract
DA-31-124-ARO-D-393 with the U.S. Army White Sands Missile Range.

7
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It is concluded that a one-way doppler measurement will be as ac-

curate as a two-way doppler measurement provided that

1. the target is at long-range for a given data rate,

2. the long-term instability of the oscillators does
not contribute significant error (say, less than
the error due to uncertainty in the speed of
light), and

3. the receiver noise-bandwidth is greater than
100 Hz.

The error in doppler measurement due to oscillator instability is
derived and discussed below. The measurement under consideration is the
time required, At, for a given change in range, Ar; or, alternatively, the
change in range in a given time. In other words the determined parameter
is the average velocity during the measurement interval not the instantaneous

velocity .

3.1 Analytical Model

The system to be analyzed is shown in Fig. 3. The transmitted
carrier is generated by multiplying up the output of a 5 MHz stable source.
The signal received at the transponder is at the transmitting carrier fre-

quency, fo, plus one-way doppler, f The transponder output frequency is

k times its input frequency, where i(i is assumed that k=99/100 for the sake
of example. The received downlink signal is then approximately kfo + 2kfd.
This is mixed down to an IF by beating the received signal with a sample of
the transmitted carrier. The signal in the IF amplifier is at (1 - k) fo =100
MHz and is tracked by a PLL with noise bandwidth of approximately 2 kHz.
Finally, the offset frequency is removed (or partially removed) at the output
of the PLL and a filtered signal which contains the doppler data is sent to a

cycle counting measurement device. There, the number of cycles in a given

8
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Transmitter
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-—1 1

PLL

x 2000 Carrier
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Doppler + Offset
5 MHz +
Stable % 20 > CCYC Ite = Velocity
Source Oftset Doppler ounter
Si 1
R-2581 'gna Start' ?Srop
Averaging
Time

Fig.3 Analytical Model.

number of seconds or the number of seconds for a given number of cycles is

measured to determine the average velocity during the measurement interval,

There are many possible sources of error inherent to the measure-
ment technique just described, such as receiver noise, vehicle dynamics,
quantizing errors, etc. But, the only one considered here is caused by a slight
change of frequency (or phase) of the stable source during the round-trip time
to the transponder and back. If, for example, the stable frequency changes by
Af cycles during the transit time, the IF becomes 100 MHz + 2kfd + Of,
Obviously, such a change in frequency contributes directly to doppler error.

That is,the velocity error is given by

cof (1)
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This type of error generation should not be confused with the case in which the
transmitted frequency is constant but in error by Af Hz. Then the resulting

sk

velocity error is approximately

Av = v T (2)

Consider, for example, a Af of 1 Hz at X-band. The resulting velocity error
of the type described by Eq. (1) is 0.05 ft/sec. On the other hand, a constant
offset of 1 Hz at x-band yields an error given by Eq. (2) which is on the order
of v. 10“10 . Assuming a maximum velocity of, say, 35,000 ft/sec, the veloc-
ity error is 3.5 X 10-6 ft/sec. It is clear, then, that random changes in the
stable oscillator frequency during the round-trip time to the target are much
more important than constant offsets of the oscillator frequency. For this
reason, the short-term stability of the stable source must be examined care-

fully to determine its effect on doppler accuracy.

3.2 Analysis of Error

With reference to Fig. 3, the X-band output of the stable source has
a phase given by 27f t + $(t) at time t, where $(t) represents the phase fluc-
tuations due to oscillator instability. Furthermore, the phase of the received
signal at time t is given by 27kf (t -1) +ké(t-7). The round-trip time to the
target is denoted by T and it is a function of time, i.e., the target is moving.

The input phase to the IF amplifier is

2nf. .t

2mf t+ b(t) - 2rkf (t - 7) - kbt - 1)

il

27 - 100 MHz-t + 27k{_7 + o) - kb(t - 7) (3)

) Uncertainty in the speed of light, Ac, causes a similar error, i.e.,
Av = vAc/c.

10
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A short time, At, later the input phase has the form,

27rfif (t + At) = 27 - 100 MHz (t + At) + 27rkfO (1 + A7)

+o(t+At) -kb@E+ At - T - A7) (4)

where AT is the change in delay during the interval At caused by target motion.
The inputs to the cycle counter at times t and t + At are similar to the IF sig-
nals of Egs. (3)and @) except that the PLL narrows the noise bandwidth and the
100 MHz offset is removed. The cycle counter accumulates the phase of its
input signal over the interval At. That is, it is started at t and stopped at

t + At. Thus its contents at time t + At is just

Ad = 27rkfoA1-+b(t + At) - kb + At - T - A7)

- b(t) + kbt - 1) (5)

If the system is the type which determines the change in range in a given time,

then, the average velocity measured is

v - br_ _chd
m At 47rf0Atk

_ ch7 c ) i i i )
S oAt 4nf_htk [b(” B) - kb(t+ At - 7 - AT) - b(t)+k b (t —r)]

(6)
The first term on the right of Eq. (6) is exactly the desired output. The second
term on the right is the error in doppler measurement due to oscillator in-

stability. Since k ~ 1, the mean-square velocity error is approximated by

2 2 2
o = [#o“] ([ bleror) - ble+ae-7- an) - b+ pe-m] (1)

11
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Without any loss of generality, the time scale can be shifted in Eq. (7) to yield
a more symmetric form. Replacing tby t - A/2 + (T + AT)/2 in Eq. (7) results
in

2 _[_e T,
0'v 47rfoAt !

[ &8+ LEAT) g B THOTY (o 06 TH0TY y Bt 7-br
L.

2 2 2 2 2 2 2 2 /)
(8)
The second term in brackets of Eq. (8) is difficult to evaluate. The procedure
is as follows: First, the sum of.the phase functions in Eq. (8) 1is interpreted

as the result of a convolution of $(t) with some function, g(t). That is,

oo,
[4>(t-t1) (- ty) - dlt-ty) - 4>(t-t4)] =_foo4>(u) glt-wadu (9)
where
¢ o= Ot _LiA‘[’ t o= &t TH AT
1 2 2 2 2 2
_ At T+ AT _ At T - AT
t3= R S I

Assume, for the moment,that g(u) has the form shown in Fig.4a. Then, g(t-u)
has the form shown in Fig. 4b. The convolution of Eq. (9) can now be carried

out o0
J b gt -wau=- bt - o) + bt = 1)) +b(t+ 1) - dlt+u)  (10)

Equation (9), is valid when

At T+ AT At T + AT
= A = = - — 4+
Hp sy =33 Hy =1, =73 2
_ UM T+ AT e . _ _ A T - AT
Hg =" t3=-3 2 4” "%t T3 T3
12
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R-2582

Fig. 4b  g(t-u) as a Function of u.

The function, g(t), is plotted in Fig. 5. Equation (8) can now be expressed in

terms of $(t) and g(t) using Eq. (9) as follows

2 [ < ]2 foo bW glt - Wdu ] : (1 1.)
= X -
05 41rfoA1' [_w g

It is recognized that the right-hand term of Eq. (11) is the mean-square value of

the response of some linear system with impulse response g(t) to a stochastic

13
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Fig.5 g(t) as a Function of t.

input $(t). The autocorrelation of the linear system's response is given

by
1 T w w - .
R(T) = lim 5= [ dt [ du [ dv g gw) bt-wdt+T7 -v)
'r-¢oo ZTF -T — o0 -0

o0 00

=f duf dv g(u) g(v) RJ) (T -v+w (12)
- 00 - 00

Where R£ (T) is the autocorrelation of the frequency fluctuations, and the mean-

square of the response is R(0). The power spectral density of R(T) is

o0

S@ = [ Rime *Tar
-0

5} @ 1G] (13)

14
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where S 4) (w) is the power spectral density of ¢(t) and G(w) is the transform
of g(t). Transforming back into the time domain and remembering that R(0)

is the mean-square of the response,

=2L- f (w) |G(u)! do.) (14)
and, finally,
R(0) = - 3@ la@] %‘i - ]2
-L f @ |Gl dw-[j:oo () gt -1 du | (15)

So,
2 2r1 2
c L]
o_ = |77 ! 1952 S G d 16
° [4,,foAt] [27, [_ s} @Icw) o] (16)
By inspection of Fig. 5, the power spectrum of g(t) is
2
2_ {2 [ tiwar/2 At TN A oT T 7‘
[ G(w) | _1jw [e cosco(2 2) cosw(2+2+2>‘~ (17)

At this point itis recalled that the doppler data is filtered in a PLL. The
effect of the PLL is included by passing the linear system's response of

Eq. (10), through an additional filter with impulse response, h(t), andtransfer
function H(w). Thus G(w) is cascaded with H(w), the transfer function of the

PLL. Equation (16) becomes

2 . .
OE i |:41rfc At-] [E,l;f Si,(w)IG(w)IZIH(wHZdw-] (18)
(o] ) -0 ]

v

For simplicity, the characteristic of the PLL is approximated by an ideal

lowpass filter with cutoff at 2kHz. That is,

15
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v T

2 c 2 1 272000 . 9 -I
o_ =[m—0Tt} [—fo Sb(w) | G(w)] © dw (19)

The highest frequency of interest is w/27 = 2kHz. When the target is moving
at its assumed maximum velocity, 35,000 ft/sec, the maximum change in the

round-trip time during a measurement interval is given by

oar 2 Vmax®  2x3.5x10%x107]
AT = = =
max c c 9
10
= 7 usec (20)

where it is assumed that the maximum duration of a measurement interval,
At, is 0.1 sec. Then, the phase, wAT/2, in Eq.(17), is negligibly small

throughout the region of interest. Its highest value is

3 -6
WAT - 272 x10° x7x10 = 44 mrad 21)
2 2
Thus,
2 16 . 2 wAt . 2 wT
| G(w)|© ~ :5 sin® —= sin” 3 (22)

This means that the doppler error due to oscillator instability is essentially

independent of target velocity. Substituting Eq. (22), into Eq. (19), yields

o (23)

c [1 272000 2 wbt 2 wr /2
—‘;~1rfoAt

1
= S; (w) =5 sin sin” - dw
T -{) b w2 2 2
Using Eq. (23), the velocity error as a function of At and T can be found pro-
vided that the power spectral density of oscillator frequency fluctuations is
known. In the next section a high quality oscillator is investigated and its

associated Si) (w) is determined.

16
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3.3 Oscillator Frequency Fluctuations

The particular oscillator to be analyzed is similar to a Hewlett-
Packard 5060A Cesium Beam Frequency Standard. Table I shows those
specifications of the oscillator which are necessary to determine the power

density spectrum of its frequency fluctuations.

Table I
OSCILLATOR SPECIFICATIONS 1

1. Short Term Stability (Quartz Oscillator Effects)

Ave. Time rms. Fractional Freq. Deviation
1 ms 6 X 10-10
-10
10 ms 1.2 x 10
100 ms 1.5 x 10 11
1 sec 1.5 x 1011
10 sec 1.5 x10 11

Note 1: All data based on at least 100 samples.

Note 2: Figures quoted by the manufacturer are
worst case. Therefore, appropriate dataforthis
analysis are somewhat reduced, e.g., max. rms.
fractional frequency deviationforl ms averag-
ing time is 8 x10-10, the value used in the anal-
ysis below is 6 x 10710,

2. Long Term Stability (Associated with Cesium Beam Operation)
Ave, Time rms. Fractional Freq. Deviation

100 sec 1 x10°11

3. Oscillator Output Filter Bandwidth = 125 Hz.
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is composed
ut P

, and the quartz oscil-

The oscillator output power density spectrum S&)(w)o

ref
lator S ¢ (w) osC with appropriate filtering '~ as shown in Fig. 6. The ref-

of the power density of the cesium reference, SJ) (w)

Cesium 54’(“’)&? Lowpass
Reference Filter

Output
Bandpass |—* Sé,(w)ou.
Filter

Quartz S¢b(w)osc Highpass
Osc Filter

R-2584

Fig. 6 Equivalent Model of a Stable Source.

erence power density is assumed to be f1at3, i.e., Si’ (w) ref - Kr' The mean-

ef
square fractional frequency deviation of the reference resonator is approxi-

mated by3

00 . 2
(Af 2 1 i:l 2 sin wr/2 dw] (24)

—— r e - K
f 47r2f2 2r o T (mlz)z

when 7 is large, Substituting from Table I that Af/f = 1 X 10711 when r=100 sec,
it is found that Kr = 40 (rad/sec)2 per Hz when f = 10 GHz., This factor pre-
dominates in the expressions of Sci:v(w)out below the cross-over point of the high

and lowpass filters of Fig. 6, and down to dc.

18
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Immediately above the cross-over point the factor which predomi-
nates is associated with the '"flicker'" noise, Kf/ f, of the quartz oscillator.

Kf can be found from

2 2K

)~ 5 [ S an ()]

Q

where T = measurement interval. In particular, T/‘r, for the oscillator data
under examination here, is approximately 200. The appropriate value of the
fractional frequency stability to be substituted into Eq. (25) is less than or
equal to 1.5 X 10-11. This is the level where the rms frequency fluctuations
become independent of the averaging time, 7, and such a phenomenon can only
be caused by 1/f noise". Thus, it is found that Kf/wz 0.4/w for the oscillator

under consideration.

The 1/f contribution of the quartz oscillator is equal to the white

noise density of the reference at

w=— ==""=0.01 rad/ sec (26)

It is assumed, then, that the cross-over of the high and lowpass filters of

t
stant at 40 from w = 0 tow = 0.01 then decreases with value 0. 4/ above

Fig. 6 is in the vicinity of 0.01 rad/sec so that the combined Si) (w)ou is con-

w = 0. 01 until the next term becomes predominant.

Perturbation noise contributions to the frequency fluctuations of an
oscillator can generate the next important term but these are sometimes
masked by its 1/ { noisez. Anexamination of the short term stability data of
Table I shows that this is the case for this oscillator4, so the next term of
impozrtance comes from additive noise. This term has the form Sd; (w)OSC =
Kaw , and it predominates from the point where its contribution is equal to

the 1/ f noise contribution out to w = ©. Somewhere in this region the output
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bandpass filter has a roll-off. It is assumed that the lowpass equivalent of

2
this filter is

(1 257r)2

(125m)°2 +02

so that the output power density has the form

T =1msor 40f/f <1.2X 10-10 at 7 = 10 ms) it is found that Kaas 10_5.

The components in the power density spectrum of the frequency
fluctuations of the oscillator under consideration are summarized in Table I

below.

20

2
|H(w) |~ = (27)

2
. 2 2
S5 gue~ K —AEom (28)
(1257) +w
in this region. The mean-square fractional frequency deviation is given
2,3,5
by
A £y 2 1 r1 . 4 (1257)° 2 wr
(F)~ %zl %3 3 sin 5 ] (29)
47 f =00 T (1257) +w
Equation (29) can be approximated by
2 1257 0
Of 1 1 ¢ 2T 1 2 .2
(f>~ 23" l:ﬂf Ka g~ sin 3 dm+7r f Ka(1257r) s1an{2dw‘l
4w f o] T 1257 2
(wr/2)
(30)
Upon substitution into Eq.(30) of data from Table I (e.g.,Af/f= 6 X 10_10 at
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Table II

POWER DENSITY SPECTRUM OF FREQUENCY FLUCTUATIONS

9 .
o v (rad _ (rad) . -
ib(w) (sec) perHz FrequencyRange cec Physical Origin
40 0 £w<0.01 Cesium Resonator
Noise

0.4/w 0.01 sw<34.3 Frequency Drift of
the Quartz Oscilla-
tor

1075,,2 34.3 < < 1257 Additive Noise in
the Quartz Oscilla-
tor

1.5 12571 sw < w0 Additive Noise in
the Quartz Oscilla-
tor Outside the Out-
put Filter Bandwidth

Note: The values stated in the table assume an output at 10 GHz.
Power density at 5 MHz is the same except that the power
density scale should be divided by (10000/5)2

3.4 Doppler Error

The integral of Eq. (23) was computed using the power density data of
Table II. The results are plotted in Fig. 7. Consider the case when the

averaging time is short, say, 1 ms. . As range increases, the velocity
error increases. At a range of about 50 miles the error reaches its asymp-
totic value, approximately 0. 4 ft/sec. The round-trip time to the target is
just sufficient, at this range, to cause the frequency fluctuations of the returned
carrier to be uncorrelated with the transmitted carrier reference frequency
fluctuations. Thus, the difference betweentransmitted and received frequencies

is just +/2 times the rms frequency deviation for that averaging time. This is

21
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found using Table I to be 8.5 Hz atX-band. This corresponds to a monostatic
(one-way) velocity error of 0.425 ft/sec which is approximately the result ob-
tained. The same error would have been obtained if two independent, but sta-
tistically similar, oscillators had been used. In other words, the advantages
of monostatic operation, i.e., same oscillator reference for transmitter and
receiver, are partially lost when the delay to the target exceeds a certain

amount.

The results for averaging times, At = 10 ms and 100 ms, are similar
except for scale changes. In particular, for At=10 ms decorrelation is not
evident until the target is at a range of approximately 700 miles. Note that for
At =100 ms decorrelation occurs with ranges on the order of 1000 miles or
more. It should also be noted that the error due to instability with this par-
ticular oscillator at this averaging time is quite small regardless of round-trip

delay.

3.5 Summary

In this section it was shown that coherent detection of doppler data is
not necessary provided that the oscillators used in the system have adequate
long- and short-term stability, and that the vehicle is at sufficiently long range.
The error contours of Fig. 7 are applicable with a receiver of noise-bandwidth of
2 kHz. Narrower noise-bandwidths, such as may be appropriate for a deep
space tracking mission, result in smaller errors since the doppler error due
to instability is approximately proportional to the square root of the receiver

noise-bandwidth.
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4. ONE-WAY TRACKING WITH A CARRIER ONLY

As was mentioned briefly in Sec. 2, it is possible to determine
vehicle trajectories by observing a CW carrier signal emanating from the
vehicle providedthere are enough observing (ground) stations in the system.
This technique operates as follows: each station observes the change in
range, Or, over a time interval, 4t, by counting received doppler cycles
during the interval. The measured change in range at each station canthen
be expressed in terms ofthe particular station's position and the coordinates
of the trajectory at the start and end of the counting interval. For example,
if the ith station has coordinates (Xi’ Yi’zi) and the start point, Ql’ has
coordinates (xl, Yy zl) and the end point, Qz, has coordinates (xz, Yos 22) the

change in range is given by

2 2 2
- - + - + -
«le x)"+ (v, - ¥y (2, z;)
Six or more such equations can be written; one for each observing station.

These are then solved for the six unknown coordinates of the start and end

points.
In this section, this technique and variations of it are investigated.
An error analysis is performed and some general comments on errors are

included.

4.1 Statement of the Problem

We are concernedwith the problem of tracking a vehicle which car-

ries a highly stable oscillator capable of emitting a tone of known frequency.

25
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Our ground equipment consists only of several listening stations which record
the change in the phase of the tone from time t to time t+At. We assume that
we are given nominal positions of the vehicles at times t and t +At, and also that
the actual positions do not deviate far from the nominal ones. We wish to use
our measurements at each station to determine to a first-order approxima-
tion the deviation of the actual positions from the nominal ones. Clearly a
basic parameter of the system is the time change At over which we recordthe

change in phase. We shall assume that At is fixed.

4.2 Analysis for Two Points

With the given parameter At fixed we cannot hope to find out anything
about the motion of the vehicle at an instant of time, and we must talk always
in terms of averages over a time interval of length At. Within this limitation
we can say that the motion of the vehicle at time t is completely described by

the state vector

5,00 = (x(0h y(), 2(), v, (), v, (0, v () (31)

where (x(t), y(t), z(t)) is the position of the vehicle attime t and (vx(t), vy(t), vz(t))
is its average velocity over the time interval t to t+At. In the case where we
are making measurements of the phase change between just two points on the

vehicle's path a different state vector is convenient, namely

Sz(t) = (x(t), y(t), z(t), x(t+at), y(t+at), z(t+at)) (32)

where of course (x(t+A4t), y(t+A4t), z(t+4t)) is the vehicle's position at time
t+4t. That knowledge of one of these vectors is equivalent to knowledge of the

other is seén at once from the equations
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x(t+At) = x(t)+ vx(t) At l
y(ttat) = y(t)+ vy(t) At (33)
z(t+Aat) = z(t)+ vz(t) At J
and
o x(t+At) - x(t)
vx(t) = At
y+at) -yt) \
Vy(t) At (34)
_ z(t+At) - z(t)
vz(t) - At ‘

Suppose now that we have n listening stations located at the points
Pi = (Xi’ Yi’ Zi) i=1,2,...,n and m points QJ,= (xj, yj, zj) j=1,2,...m on the
vehicle's path through which the vehicle passes at times t, t+4At, ..., t{m-1) At
respectively. Denote the corresponding points on the nominal path by
Qj = (x.o, y.o, z.o), j=1,2,..., m. In this section we deal in a special way with
the particular case of m=2 and n=6. In alater section we shall develop a

theory for general m and n,

Let the change in the number of cycles on the counter at station Pi
be u, as the vehicle moves from Q1 to Q2, then the corresponding change
fi in the distance of the vehicle from Pi is given by

Cu.
f. = Au, = —=

n n (35)

where c, A, f are the velocity, wavelength and frequency respectively of the

tone. We can also express this distance in terms of the coordinates of the
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points involved

ey

2 2 2
£, = “/(j‘z'xi) Ty Yyt (zy-2)

1
e

2 2 2’
l-Xi) + (yl -Yi) + (Zl-Zi)

(36)

o
But since Q1 and Q2 are close to Qlo and Q2 we have a first-order approxi-

mation
= - - - + + +
6f, = -4 6% -m, by, -n,;, 62,4, 0%, m,, by, t 502, (37)

where bfi is the deviation in fi from the value it would have if the actual path
passed through Q1 and Qz, (le, 6y1, ézl) and (6x2, 6y2, 5z2) are the dif-
ferences in coordinates between the points Ql’ Ql0 and Q2, on respectively
and (/Li., m, , nij) are the direction cosines of the line joining Pi to Qc_).
Equation (37) holds for i=1,2,..., n, so using(36) to determine bfi we get a

system of n equations in six unknowns which may be written in the form

AU =V (38)

where

of. 0x
i

(39)

6f 5z
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and

-n ){/ ) m

117 ™M tig o 1

12° 12

A = 1 (40)

The least squares solution of (38) is given by

U= (aa)tav (41)

where A' is the transpose of the matrix A. This is a standard result and
it may be found in Scheffe 6. If n=6 and A is nonsingular, (41) reduces to the
simpler form

v - aty (42)

If instead of the state vector sz(t) we used the state vector sl(t)
we would again obtain a system of Eq. (38) where V is the same as before
but U, instead of being the deviation in the state vector s2(t), is the deviation

in sl(t) from its nominal value, thatis

6x1
6y1
bv

X

6Vy

v

Z
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and
4+ -m + , -n. . +n. ., : )
Lttty Myt My TRy T By 4yl my At ny At
1
t
1
1
A =
1
1
1
1
1
1
2+ - + n o+
&nl {'nz’ Mmooy Mhy T Mo Ln2M’ mnzAt’ rln2At
(44)
4.3 Error Analysis

In this section we shall calculate tpe variance of the least squares
solution (41) in terms of the variances of the known quantities Gfi, which we
assume are uncorrelated normally distributed random variables with equal
variances 02. Again from Scheffe6 it is a standard result that the covariance

matrix C of the solution (41) defined by
(C)ij = cov [ui, uj] (45)

is given by

c = a'a) ! o2 (46)

Thus, for example, the variance for the deviation axl and therefore also for

the coordinate Xy is just Cll' More generally the variance of the solution

for the point Q1 is C11+ 022+ C 33 and for Q2 it is C44+ C55+ C66' Thus
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the variance for finding the complete state vector s_ is simply

2
var [s ] = Tr C (47)

where the right-hand side is the trace of the matrix C.

If {xi} i=1,2, .. ,6 denote the eigenvalues of A'A we can rewrite
(47) as
var (s,] =02(—1——+XL+,,+ A (48)
xl 2 6

In the case n=6 we may express (48) in terms of the eigenvalues of
A rather than of A'A. Thus if {Ai} i=1,2, ... ,6 are these eigenvalues we

have

var [SZ] = 02( 1 + 1 + ..+ 1

) (49)

We should note carefully that the above error analysis takes no
account whatsoever of errors in the numerical computation of the solution (41),
but only of the effect of errors with a given distribution in the determination
of the deviations Gfi. Thus it is important to recall the gross errors which

usually arise in the numerical inversion of a nearly singular matrix.

4.4 Symmetrical Arrays and Singular Paths

Equations (41) and (46) above show that the core of the computation
is the inversion of the matrix A'A, and that in the special case n=6 we need
to invert only A. Thus it is vital to recognize situations in which A'A or A,
as the case may be, is singular or nearly so. This is due entirely to the
geometry of the station array and the relation of the vehicle's path to this
array. Many interesting results remain to be discovered in this area. We

give here one remarkable result mentioned in Holberg, Voss and Kampmeyer7.
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Suppose we have six stations in a plane,that is,n=6, and that the
projection of the line connecting Q, and Q2 onto the plane happens to pass through
the array in such a way that three of the stations are reflections in the path's

We assume that none of the stations

projection of the other three stations.

lie on the path's projection.

-n

Then the result is that the matrix A is singular,
This means that we have a whole plane of possible paths which give rise to
singular matrices, so that an array with such a property is very poor indeed.

The result is proved by noticing that the matrix' A must have the form

n

———ADVANCED COMMUNICATIONS
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117 My By | Tt My Pig
"ty ™M Mnin L My Byg
Lig TMyy Mg | Ttaz Moz Moz
A = ] (50)
i1 M3 Py3 Loz Moz Mg
15 ™15 M5 o5 Mag Tog
L1 My Mg Lo Mop Tog
the determinant of which is the same as the determinant of
0, -mll’ -n1 0, m21, n21
{’1’ 0, 0 1(,21, 0, O
0, -myq Mg 0, M,z nyq
0 0 0, 0 (51)
L13) 2 £23’ 3
0, -myg "Nyg 0, myg Nyg
&15, 0, 0 &25, 0, O
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The determinant of (51) is zero, which shows that A is singular.

It is also apparent that as the points Q1 and Q2 get closer together
the direction cosines of the lines to them from the points Pi become more
nearly equal, so that in general A'A has its first three columns nearly equal
to its second three columns and therefore it is nearly singular. Therefore
the errors in the numerical computation become predominant for sufficiently

small At.

We conjecture the following rule of thumb for relating the vehicle's
path and the geometry of the array. For a given path and a given number of
stations in a plane, a good array to determine this path is one which has all
the stations on a single line parallel to the path's projection, a bad array is

one which has the stations on a line perpendicular to this projection.

4.5 Analysis for m Points

Suppose we have n stations Pi and m points Qj on the vehicle's
path. Our analysis here will differ from the two point case, since we do not
want to single out any point Qj for special treatment in estimating the change
of range of the vehicle from the various stations Pi. We therefore introduce
the bias bi of station Pi for i= 1,2, ... , n. By this we mean (-bi) is the
range of Pi from some agreed upon initial point on the path. Then if the

counter reading at Pi is “ij when the vehicle is at Qj we have

g.

ij (52)

1l
F

1
-

where gij is the change in range when the vehicle moves from the unspecified
initial point to Qj' Expressing this now in terms of the bias and the coordi-

nates of Pi and Qj we have
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_ 2 o2, 2
gij = /(xj—Xi) + (yj Yi) +(zj Zi) + bi (53)

Assuming we are given a nominal path of the vehicle and that the deviations

from it are not large we have a first-order approximation to (53) namely

= + + +
Ggij Gbi Lij bxj mij Gyj nijazj (54)

which holds for i=1, ..., n, j=1, ..., m. Thus using (53) to determine

Ggij we may write (54) as a system of nm equations

AU =V (55)
in the n+ 3m unknowns {6b1, ce 5bn} and {ij, éyj, 6zj} i=1, ..., m.
In (55) we have
1 1
1 1
6bn 6gn1
le Gglz
éyl !
621 6gn2
U = —— , V = (56)
1 1
1 )
1 1
! t
bxm 6gm
1
Gym
sz Ggmn
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and
I A1 0 0
I 0 A2 0
1 1 1 1
A = 1 1 ' . 1 (57)
Hf 1 1 '
1 1 1 1
I 0 0 A
m
where
Ly ™My Ty
A = - - - (58)
J
‘nj Ty M

is a nx 3 matrix and I is the nxn identity matrix. The least squares solu-
tion of (55) has the same form as (41) and in the special case that A is a
square matrix it has the form (42). The error analysis also yields a result
of the form (46). Because of the special form of A in (57), it is easy to show
that the inversion of A'A and of A itself involves the inversion of matrices

of order n at most.

The numerical experiments of Holberg, Voss and Kampmeyer'7 indi-
cate that the variance of the solution for a given point is reduced if this point
is one of several being determined rather than one of a pair. We stress that
this is of course for fixed At. We have not determined in the above how the
error changes if we subdivide the intervals determined by At and take readings

at the additional points.
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It is of interest to note that the only two cases where the system (57)
has the same number of equations as unknowns are m=2, n=6 and m= 4,
n=4, The system is underdetermined in the cases m=1, n=1; m= 2,
lsn<5; m=3, 1<n<4 and m=24, 1<n<3. In all other cases the system

is overdetermined.

4.6 The Free-Fall Case

If the vehicle is moving in the gravitational field and there is no other
force influencing its motion, then it is possible in some cases to find the solu-
tions (41), (42) and (46) rather easily. To do this we must make use of the
observation by Potter in Bat’t;in8 that if the matrix A'A is of even order,
it is essentially a symplectic matrix and therefore its inverse can be found
by a simple rearrangement of its elements. We say that a matrix Q of even

order is symplectic if

QJIQ =7 (59)

0 I
J= < (60)
-1 0

and I is an identity matrix. It is easily verified that

where

J = -I (61)
and hence that

Q! - 5@ (62)

The importance of this result lies in its applicability to vehicles in orbit, and
therefore it is useful for problems of guidance of vehicles and for terrestrial

navigation systems of the Transit type.
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4.7 Summary

The quality of the trajectory determination obtained with the carrier-
only technique is highly dependent on the geometric relationship between the
vehicle trajectory and the ground-station locations. In some cases, the error
in start or end point determination can be as low of 2 or 3 times the measure-
ment error of the changes in range observed at each site. On the other hand,
it is possible for the trajectory determination equations to ''blow up" yielding
infinite errors. One way to avoid this difficulty is to add more stations at
suitable locations. Another way is to use some inherent properties of the
trajectory, if any, to provide additional information. Such a technique can
be applied with free-fall vehicles. It was also found that the trajectory de-

termination computation is considerably simplified in the free-fall case.
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5. ONE-WAY RANGING WITH RANGE-TONES

The one-way ranging method described in Sec. 4 offers several advan-
tages;, namely, the hardware required for implementation of this technique is
not complex and target position can be determined unambiguously. On the other
hand, it cannot produce accurate tracking data in real-time (unless initialization
data is supplied by other means). Accurate tracking data is available only after
the vehicle moves such that the target-station configuration changes substan-
tially, In fact, it can be generalized that the accuracy of tracking data obtained

using doppler-only data is highly sensitive to the tracking geometry.

It is possible to augment the tracking characteristics of the doppler-
only one-way ranging system by adding ranging tones to the vehicle-borne
transmitter output. The range-tones are phase modulated onto the transmitted
carrier and can be used to provide range-difference data. As describedin Sec. 2,
this data is ambiguous. But, note that sufficiently accurate target position data
can be derived from the doppler -only measurement to resolve the ambiguities.
Similarly, the data derived from the range-tones can be used to improve the
doppler-only measurement because the range-tone data is available in real-time,
Thus, the data obtained with these two techniques, doppler-only and range-tone,

are complementary to each other,

The range-tones can be modulated onto the CW carrier without signifi-
cant reduction of carrier power if the deviation of the modulation is small. Thus,
there is no important deterioration of the doppler-only portion of the system due
to the addition of range-tones. The addition of range-tones does, however,

increase system complexity.

The advantages gained by adding range-tones must be weighed against
the cost of the system required to process the range-tones to extract data. The

vehicle -borne transmitter must be modified to include a range-tone generator
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and modulator. This modification is not difficult technically, but any increase
in complexity of the vehicle-borne part of the system is serious enough to
warrant complete justification. In addition, the ground-based receiving stations
must be equipped with range-tone demodulators and phasemeters. Finally, each
ground station must be supplied with a synchronous timing signal. The preci-
sion required of the timing signal depends on the specified ranging accuracy of
the system. For example, if the system is required to measure position to
within 1000 ft., a timing reference with accuracy of at least 1 4s is necessary.
This can be obtained by synchronizing a stable local reference to a standard
timing signal such as WWV or LORAN-C. On the other hand, if position data is
to be obtained with accuracy of 10 ft,, a special stabilized baseline timing sys-
tem must be used. This latter system is costly, especially if the baseline

lengths are long.
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6. CONCLUSIONS

The long-term stability of presently available ultrastable oscillators
is such that frequency uncertainty (long-term) can now contribute less to dop-
pler error than the uncertainty in the speed of light. This is the basis for
justifying the use of these devices in one-way tracking systems. The effect of
short-term instability has been examined in detail. It is found that the doppler
error due to short-term instability can be reduced by coherent demodulation
using the reference for transmission and reception. However, this reduction is
obtainable only for vehicles withsufficiently small range. For most long-range
targets, coherent detection is unnecessary. Furthermore, the error due to

short-term instability of the ultrastable source is small.

A method for determining vehicle trajectories from doppler data
observed at several ground sites is presented. This technique can yield high
quality trajectory data provided the geometric relationship between trajectory
and ground sites is suitable. A method for augmenting the capability of this
technique is described which requires the addition of sinusoidal PM ranging
tones to the carrier transmitted from the vehicle. This modification also
requires a considerable increase in overall system and data processing com-
plexity. However, this modification allows for one-way tracking with geome-

tries which preclude the use of carrier-only operation.

The detailed design of a suitable one-way tracking system is strongly
dependent on the particular tracking requirements and vehicle dynamics. But,
in general, itcanbe seenthatone-waytracking canbe implemented successfully
for deep-space tracking missions, especiallywith free-fall vehicles. Further-
more, the usefulness of thistechnique in a global navigation system has already
been demonstrated. This application has a great deal of potential, considering

the present state-of-the-art.
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PART II

FLUCTUATION SPECTRA OF ULTRASTABLE OSCILLATORS:
MEASUREMENT AND ESTIMATION

1. INTRODUCTION

The increased accuracies and precisions demanded of space and ground-
support systems have led to the need for ultrastable signal sources. The charac-
terization of the stability of such sources has been the subject of much recent

research,

A characterization in terms of the power spectrum of phase or frequency
fluctuations has been found highly useful and meaningfull'-s. This offers a direct
link between oscillator behavior and the performance of the system incorporating]
the oscillator. Further, it enables the identification and evaluation of the insta-

bility mechanisms within an oscillator,

This report is principally concerned with the measurement of the
fluctuation spectra of ultrastable oscillators. The objective of the study docu-
mented in Part II of this report, as defined in the Task Statement, is:

Development of a measurement technique for determining in

the frequency domain the phase fluctuation spectrum of highly

stable oscillators. The major area of interest is that part of

the spectrum from 107° Hz to 105 Hz. This task will not

include hardware development but will consider the best way

to use available equipment to produce the desired results.

The measurement of oscillator fluctuation spectra involves two distinct
steps. First, there is the extraction of the phase or frequency fluctuations from

the oscillation signal; and then there is the measurement or estimation of the

corresponding power spectra from the extracted fluctuations.

While these two steps are indeed distinct both logically and experimen-

tally, nevertheless the spectral-estimation techniques to be utilized dictate the
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manner of extraction and presentation of the fluctuations. Consequently, we
begin in Sec. 2 by considering the general spectral-estimation techniques capable
of achieving the task requirements in order to determine the methods of extrac-

tion and presentation of the oscillator fluctuations that must be used.

Several fluctuation-extraction techniques are currently available, some
(described in Sec. 2.1) are utilized inthe laboratories of GSFC, and another6 was
developed by ADCOM, Inc. Section 2 includes specific recommendations on the
use of some of these techniques to extract the fluctuations of ultrastable oscilla-
tors. We find it necessary to obtain sequences of samples of the fluctuations,
utilizing several observation periods and sampling rates. The samples must be
suitably recorded for presentation to a digital computer programmed to esti-

mate the spectra.

Mathematical techniques for spectral estimation are presented in detail
in Secs. 3 and 4. The estimation of spectra of random processes from finite
observations is a very young science. The earliest exposition of the subject 7 is
less than eight years old. We have drawn in Secs. 3 and 4 on the results of very
recent researchs—l,lsome of which is not widely available. Consequently, we
have found it necessary to compile, in Sec. 3, an exposition of the theoretical

foundations of spectral estimation.

The foundations compiled in Sec, 3 lead to the practical computational
procedures detailed in Sec. 4. The most useful procedure for our purposes is
presented and discussed in Secs. 4.1 —4,3. Sections 4.4 — 4.7 are concerned with
the estimation of discrete (i.e., periodic) components which may be embedded
in the spectra. Section 4.8 outlines a useful procedure applicable to a special
class of fluctuations (autoregressive time series). Conclusions and recommen-

dations on the use of these procedures are drawn in Sec. 5.
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2. EXTRACTION OF OSCILLATOR FLUCTUATIONS

2.1 Available Fluctuation Extraction Techniques

Several techniques are currently utilized in the laboratories of GSFC
to extract oscillator fluctuations. We begin by reviewing these techniques in

order to determine their usefulness for the task at hand.

Since all oscillator fluctuations are only relative with respect to
another oscillation, any extraction system must utilize two oscillators, one of
which acting as reference. Providing that the statistical independence of all
oscillator fluctuations are assured, two-at-a-time measurements upon three
oscillators are sufficient to determine the fluctuation spectrum of each. Of
course, if it is known beforehand that the spectral density of the reference

oscillator fluctuations are negligible in comparison with that of the oscillator

under test, at least in the spectral region of interest, then the desired spectrum

can be obtained from one measurement,

Figure 1 depicts the configuration of the error-multiplication system

common to the available GSFC extraction techniques. (The frequencies

Test S5MHz t e 9200 MHz
Oscillotor

20MHz
+1840e¢

Error Af+1840¢
Multiplier

Reference] SMHz
Oscillotor 9180 MHz

HP1500
Synthesizer 20 MHz~-Af

R-3070

Fig.1 Error Multiplication and Synthesis System.
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in Fig. 1 are offered only as examples.) The frequency fluctuation, denoted by
€, is magnified by a large factor (1840) and emerges on a low frequency output
oscillation Af (typically 100 kHz), This error multiplication enhances the

sensgitivity to small fluctuations of the fluctuation extraction techniques.

Figure 2 illustrates three different fluctuation-extraction instrumenta-
tions that can follow the error multiplier, Each technique has inherent advan-

tages and limitations that determine its usefulness for the present purposes.

The cycle-counting technique (also called period-counting) shown in
Fig. 2(a) was utilized primarily to determine "fractional frequency instability. "
The output of the error multiplier is first divided for convenience then intro-
duced as a triggering signal to a gate in the counter. The gate opens at one
zero-crossing, passing the high-frequency external clock signal (obtained from
the reference oscillator via the synthesizer) which is "accumulated" or counted
in the counter register. After an integral number of periods of the error-
multiplier output, the gate is closed and the total count read. As the period of
the external clock signal is chosen a simple decimal fraction of a second,
say 0.1 ps, the counter will display the total number of 0.1 s that equals the
integral number of the input periods. We denote the length of time the gate
is open by 7. Usually several consecutive measurements of length 1 are made,
and the resulting data reduced to yield the average value and the mean-square
deviation of the accumulated periods. The rms value of the deviation divided
by the average of the period accumulated in a time 7 is denoted by I(r). It
can readily be shown that this normalized rms deviation of period is essentially

equal to the normalized rms deviation of frequency for highly stable oscillators,

For the present purposes, the cycle-counting technique may be utilized

to yield directly a measure of frequency fluctuations. The least significant
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Fig.2 Three Fluctuation Extraction Techniques.
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digits of the counter readout are directly proportional to frequency fluctuation
Ad, the proportionality factor being readily determined by initial calibration.

The conditions for the validity of this statement are:

a, the oscillator is highly stable, and

b. the reciprocal of the counting duration 7
is much greater than the extent of the region
of interest in the spectrum of the frequency
fluctuations.

The cycle counter should be operated without averaging, i.e., each
count should appear separately at the output. The output is then a sequence of
samples of the frequency deviations A(i), which must be digitally recorded (e. g.,
on punched-paper tape) for subsequent processing. A question arises as to the
uniformity of the sampling intervals. Since the gate time 7 varies (slightly)
according to the oscillator fluctuations, and since most counters have a fixed
dead time between gate closing after one count and gate opening for the next
count (typical dead time is 100 ms) it follows that the sampling intervals are
not uniform. However, as long as the oscillator is highly stable, the sampling

intervals are almost exactly uniform, and should introduce negligible inaccuracy

in the measured spectrum.

A simple way exists for avoiding this slight sampling nonuniformity,
namely to utilize the counter in the frequency (vs period) count mode. In this
case the + N scaler shown in Fig. 2(a) is removed and Af is chosen high enough
for good resolution, The counter gate is controlled by the external clock input
thereby ensuring uniform sampling, and the number of cycles of the error
multiplier output are counted. Again, the least significant digits of the counter
are directly proportional to the frequency fluctuation A(i’, and may be digitally
recorded for subsequent processing., The only limitation for the validity of this
measurement is that 1/7 must be much greater than the extent of the region of
interest in the spectrum of the frequency fluctuations. Furthermore, the

sampling intervals are now exactly uniform.

48
ADVANCED COMMUNICATIONS * RESEARCH AND DEVELOPMENT




ADCom

A limitation of the cycle-counting technique is imposed by the counter
dead time which places a lower limit on sampling period. For example, a
counter with dead time of 100 ms cannot sample as fast as 10 samples per
second. Such a sampling rate would not be suitable for fluctuations containing
significant spectral components above 5 Hz, otherwise spectral folding (or
aliasing) will occur., We shall return to this aliasing problem a little further
on, We simply point out here that a long dead time can readily be reduced by
appropriate circuit modifications in the counter, since the counter speed is
fundamentally restricted only by the counter recovery time which is much

shorter than the dead time,

The phase-detector technique shown in Fig. 2(b) is direct and simple.
It yields an analog waveform proportional to the phase fluctuation A provided
it does not exceed *7 radians., This waveform may be recorded directly or
it may be sampled and digitally recorded for subsequent processing. The
limitations of this technique are:
a. The output waveform suffers large discontinuities
as A¢ goes through + 7 radians. This can be
remedied in subsequent processing, however, by

identifying the direction of the discontinuities and
accumulating multiples of » radians.

b. The phase detector is sensitive to incidental AM
at its input, especially when A$ approaches 7
radians. This AM-to-PM susceptibility may be
reduced by introducing an amplitude limiter
before the phase detector.

The phase-locked loop technique shown in Fig, 2(c) utilizes the VCO
essentially as another phase reference. It is well known that the output of such
a loop is a high-passed version of the phase fluctuations A plus the phase
fluctuations of the VCO itself., The high-pass cutoff frequency is essentially
the loop bandwidth, Since loop bandwidths narrower than 1 Hz are difficult to
implement, this technique is not suitable for extraction of slow phase

fluctuations.
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Satisfactory results have been obtained with this technique in conjunc-
tion with an automatic spectrum analyzer, down to about 15 Hz. The internal
VCO fluctuations in this spectral region are apparently small compared with
the measured maser fluctuations. A simple way to check this is to use an
identical VCO, with its control terminals shorted, as the input to the loop. The
measured spectral density is then simply twice that of each VCO, and should
be found to be negligible compared to the fluctuation spectra measured with the
oscillator, By utilizing narrow loop bandwidths and low-frequency automatic
spectrum analyzers, it should be possible to obtain spectral measurements

down to about 3 Hz.

Finally, it is important to recognize that any fluctuation extraction
technique introduces some internal fluctuations of its own. These are best
characterized by the residual fluctuation spectra measured with the extraction
system operating in common mode, i,e,, with a single stable oscillator used
both as reference and as input to be measured, No satisfactory measurements
of the residual spectra of the three techniques are presently available, so that
it is impossible to tell the relative merits of the techniques beyond the limita-

tions discussed above.

2.2 Spectral-Estimation Considerations

In this section we consider some general properties of the spectral-
estimation techniques capable of achieving the present task requirements in
order to determine the methods of extraction and presentation of the oscillator
fluctuations that must be used.

Automatic spectrum analyzers can accommodate the high two or three
orders of magnitude of the desired spectrum (10° or 10! to 10° Hz). Below

this range (below 101 Hz, say) we must resort to computational techniques

utilizing suitable records of the fluctuations. These computations would have
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to be performed on the only available and practical tool, namely the digital

computer. Thus the fluctuations must be suitably sampled and quantized before

presentation to the computer. This raises several questions:

How long must the sampled record be?
How rapidly must the fluctuations be sampled ?
c. Which fluctuation-extraction technique is suitable
for the purpose?
The first question is related to the spectral resolution obtainable from
a finite record. A well-established result is (see Ref. 7, p. 147) that it is im-
possible to resolve two spectral components closer than 1/T Hz apart from a
record of duration T. Since it is desired to extract the spectrum down to 10-5
Hz, we must resolve any component at that frequency from one at zero fre-

quency. We find that the corresponding duration of the record must be greater

than 28 hours!

Question (b) is related to the spectrum folding (or aliasing) phenome-
non mentioned earlier. When an analog waveform is uniformly sampled every
At seconds, the spectrum of the samples can be shown to be related to that of
the analog waveform in the manner illustrated in Fig. 3 (see Ref. 7, p. 31 and

p. 117 for a proof and full discussion). The ""Nyquist frequency' around whose

+m

- - ——

N frequency

A B c D
3y afy s

=

Before Folding

Exploded | Ploa .

View | g >——

R-3072 0

Fig. 3 Spectrum Folding or Aliasing.
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multiples folding occurs is fN = ElA—t’ and the value of the spectrum of the
sampled waveform is the sum of the values of the spectrum of the original
waveform at the dotted frequencies. Clearly, if the original analog waveform
contained significant components at frequencies above the Nyquist frequency,
then the spectrum estimated from the sampled replica of the waveform will
not be a good estimate of the spectrum of the original waveform. Stated in a

different way, the sampling must be rapid enough so that the significant part

of the spectrum lies below the Nyquist frequency.

Now, if the original spectrum contains significant components up to
1 kHz, the sampling period must be 1/2 ms. Combining this figure with the
28 -hour required duration,we have a staggering amount of input data that must
be processed by the computer. To avoid this problem, we recommend breaking
the spectrum into three overlapping regions, and then recording data and per-
forming computations for each region individually. The proposed regions are
listed below, along with the corresponding minimum record lengths and maxi-

mum sampling intervals.

Region From To Min T Max Ot
. -1 2
High 10 Hz 10 Hz 10 sec 5 ms
. -3 o
Medium 10 10 1000 sec 0.5 sec
-5 -2
Low 10 10 28 hours 50 secs

In taking data for each region, it is intended that the fluctuations be
lowpass filtered prior to sampling in order to avoid aliasing problems, with the
filter cutoff frequency placed below the upper end of the region. We shall re-

turn to the matter of filtering a little further on.
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regions. Furthermore, since the long dead time (100 ms) causes aliasing
about a Nyquist frequency of 5 Hz, we must ensure beforehand that the spectral
content above this frequency is small compared with that below it. Otherwise,
the dead time must be reduced. To obtain data for lower regions, the digital-

filtering technique presented in the following section must be used.

A word about recording of the samples is in order here. For accuracy
reasons, it is best to use digital recording, i.e., after quantization. Punched-
paper tape is very suitable for this purpose, at least for the low and medium
regions. The high region requires 200 recorded samples per second, which
may be too fast for punched tape. Magnetic tape can be used in this case.
Analog recording (magnetic or strip chart) should be used only as a last resort,
because of the quantization and synchronization problems upon replay, as well

as the possible inaccuracies.

2.3 Digital Filtering

Powerful techniques for lowpass filtering of sampled waveforms by
digital means are availablelz. They have the advantages of arbitrary cutoff fre-
quency unrestricted by component size as in analog filters, almost flat ampli-
tude and perfectly flat phase responses in the passband, and extremely sharp
cutoff rate in the hundreds of dBs per octave. We shall not attempt here an
exposition of the theory behind these techniques, but simply indicate the computa-

tional procedures involved.

Basically, a discrete version of the convolution integral is implemented

on the computer, according to the formula

m sinw idt

_ co
y(not) = 2
1=-Im CcO

X <(1.1+i) At) (2.1)
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The input data x (nAt) are the samples obtained with a short enough /& that no
significant aliasing occurs. The filtering function sin wcoi At/wcoi At corre-
sponds to the impulse response of the ideal lowpass filter with cutoff frequency
@ The summation in Eq.(2.1)is over (2 m) terms rather than an infinite num-
ber, so that the resulting filtering will be only an approximation to the ideal, the
quality of the approximation being determined by the number of terms (2 m).
Generally, agood approximation of ideal filtering is obtained if several''lobes"
of the sin wcoi ot/ wcoi At are included in the summation. If we include three
lobes, the corresponding m can be found to be 37/ wCOAt. Other filtering func-
tions are availab1e7, €. g. using Chebyshev polynomials, and some of these
reduce the amount of computations required. The lowpass-filtered samples

y (nAt) obtained by digital filtering need not, of course, be as finely sampled as
the original samples x(nAt). In fact, since the cutoff frequency is © .o’ the
samples need only be spaced by 1/ 47rwco seconds. Thus, it is necessary to
compute y (ndt) at widely spaced values on n, the increments of n being given

by W/wco Ot.

Let us illustrate the above discussion by a typical example. Suppose
that the fluctuations were filtered by an analog filter cutting off at 1 Hz. Samples
were obtained at At = 0.5 secs for use in estimating the medium spectral region.
It is desired to digitally filter these samples to accommodate the low region, so
that W5 27 X 10-2 rad/sec. To include three lobes of the filtering function we
must use m = 31r/u>Co Ot ~ 300,i.e., 600 input samples are fed into the computer
to compute each value of y(nAt). The increments of n should be w/wcoAtzIOO,
i.e., y (nAt) need be computed only for n = 0,100, 200, etc. The computational
procedure would then be to apply Eq. (2.1) to the first 600 samples to obtain
y(0), then shift 100 samples by dropping the first 100 and inserting a new 100

samples to compute y (100 At), and so on. Inner product programs, such as the
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one presented in Séc. 4.1 below, may be used to facilitate the implementation
of Eq.(2.1). Data must be taken for a period of at least 28 hours in order to
obtain spectral resolution down to 10-5 Hz. Thus, the input data consists of
at least 2 X 105 samples obtained at 0.5 sec intervals. If a small digital com-
puter is available, it is possible to avoid recording this long string of data by
using the computer in an on-line configuration, and only recording the output

consisting of at least 2 X 103 samples.
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3. THEORETICAL FOUNDATIONS OF SPECTRAL ESTIMATION

3.1 Introduction

In Sec. 2 of this report samples { X (t), t = At, 2At,...N'At} of the time
series{X(t), t in T} were obtained where X(t) is any one of a number of ob-
servables of significance in the study of highly stable oscillators. For example
X(t) may be the phase or frequency of the oscillator at time t, or the fluctua-
tions of the frequency about the nominal frequency or of the phase about the
nominal ramp, or more probably some multiple of the phase or frequency
difference between two oscillators. Questions concerning the choice of ob-
servables to be measured, the appropriate instrumentation for these measure-
ments, the length of the samples and the sampling rate were considered there.
In Sec. 3 we shall be concerned principally with the extraction, from a sample
{X(t), t = bt, 2bt,...,N'st}, of an estimate of the spectral density function
if the process has a continuous spectrum, or of the spectral density function
and the signal power and frequency ifthe process has a mixed spectrum. Sections
3.1 - 3.11 provide a general theoretical introduction to the problem. Section
4 is more practical. The reader who simply wants to know how to process the
sample time series should concentrate on Secs. 4.1, 4.3, and 4.8. The choice
of various parameters in the computations is discussed in Sec. 4.2 and the ad-
ditional procedures needed for the case of mixed spectra may be found in

Secs. 4.4- 4.7. We make liberal use of Refs. 8-11 in Secs. 3 and 4.

3.2 The General Structure of Time Series

A time seriesis a family{ X(t), t in T} ofrandom variables X(t) where
the parameter t is interpreted as real time. If the set T is the real line then
X(-) is called a random function, if T={ 0, +At, +2At,...} or T={At, 2At, ...}

then X (*) is called a random sequence. Continuous (discrete) parameter
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processes are those for which the random variables are functions (sequences).
In practice we have a continuous or discrete sample of length N'of the time
series X(t). The general problem is to infer the statistical characteristics of
X(t) from this sample. In order to do this we assume one or other model for
X(t) and we use our observations to fit the model in the best possible way. We
shall treat both the continuous and discrete parameter cases simultaneously,
and whenever the equations for the cases differ we write the equation for the

continuous case above and its discrete analogue below.
A common model for X(t) is
X(t) = m(t) + Y(t) | (3.1)

where m(t) represents a mean function, signal or trend which is assumed to

be nonrandom and Y(t) is a fluctuation or noise function which is stochastic.

Furthermoreit is assumed that there is a fixed number q of known functions

g, (t),... gq(t) such that m(t) may be written as a linear combination

m(t) = C g () +... + ngq(t) (3.2)

For example, we may have

. ok
gk(t) = gin (wkt + bk) or gk(t) t (3.3)
The constants Ck’ @ and bk (k=1,2,...,q9) have to be estimated from the
sample. Also it is assumed that
E[Y(t)] =0 (3.4)
for all t, and that Y(t) has finite second moments, i.e.,
2
E|Y®)|" <o (3.5)

for all t. Some notion of stationarity is required for the validity of our analysis
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so we assume Y(t) is covariance (i.e., weakly or wide sense) stationary, that

is E[ Y(t) Y(t +v)]is independent oft and depends only on v. The autocovariance

function R(v) can then be defined by
cov [Y(t), Y(t +v)] forv 20
ROV = R( - V) forv<o0 (3.6)
The domain of definition of R(v) which we shall denote by V is given by
V={v, -® cv<wo} (3.7)
in the continuous parameter case, and by
V={v,v=0, £At, +25, ...} (3.8)
in the discrete parameter case. From (3.4) it is clear that
m(t) = E[ X(t)] (3.9)
and that
cov[Y(t), Y(t + V)] = E[ Y(t) Y(t+Vv}] = cov[ X(t), X(t+v)] (3.10)

It should be noted that the process X(t) may have a trend mf(t) which depends

on t and still be covariance stationary according to our definition.

Assuming R(+) is continuous at v = 0,in the continuous (discrete)

parameter case Khintchine (Wold) showed that

RV = [ eV dF(w) (3.11)
Q

where
0={w, -9 <cwc»} (3.12)

in the continuous parameter case, and
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Q ={w, -7/bt <ws< 7/At} (3.13)

in the discrete parameter case. In both cases the spectral distributionfunction

F(w) is a nondecreasing bounded function defined for all w in . Now in general

F(w) has the following form

F©) = F @) + F_ (@) +F_ () | (3.14)

The function Fac(w) is absolutely continuous and is the integral of a nonnegative

function f(w) called the spectral density function of the time series

dFaC(w) = f(w) dw (3.15)
The function Fd(w) is a step function

F (=) J(w, 3.16
d()w/.—’s“) (J) ( )

J

where J(w), the spectral jump function, is given by

J(w) = F(w+ 0) - F(w-0) (3.17)

Finally Fsc(w) is a singular continuous function which we shall assume is always

zero. We therefore have

. f(w') dw' .18
J<w3>+f (@') (3.18)

- 00

F) = ),
w,. <

J

w

where the summation is over all frequencies “’j such that wj < w and J(wj),\o
and it is assumed that in any finite interval of the real line there are only a finite
number of points w for which J(w) > 0. Also f(w) is assumed to be continuous
everywhere except for a finite number of points where it has finite left- and right-

handlimits. If (3.18) holds with these conditions we say that the time series has
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a mixed spectrum; if the spectral jump function vanishes for all @ we say it

has a continuous spectrum; if the spectral density function vanishes everywhere

it has a discrete spectrum.

J(w) accounts for all lines in the spectrum, that is the components in
the spectrum due to signals m(t) of given frequency and power, f(w) represents the
background noise Y(t). Atzero frequency both J(0) and f(0) may be nonzero. If
J(0) # 0 there is a signal of zero frequency, that is a dc component, present.
One of the reasons for separating the signal and noise components is because

(3. 5) implies that
RY(v) ~0 as v=® (3.19)

which cannot be fulfilled for a single sinewave since the autocovariance func-

tion of Ck cos (wk

0 < 4)k < 27, is given by

t+ bk), where ‘bk is distributed uniformly over the interval

1 2
3 Ck cos vwk (3.20)

which does not satisfy (3.19).

Before concluding this section we must point out a very important
property of R(v) and f(w). These functions form a Fourier transform pair,

and since it can be proved from (3.6) that R(v) is a positive definite func-

tion, that is

n M=
n R

P - =
¢, cj R(vi vj) 0 (3.21)

i=14=1

for any complex vectors { Cyreren ck} of arbitrary length k and any points

v in the set {0, +At, £2At,...} with the equality sign holding only

seee, V
1 "k
for zero vectors, it follows from a theorem of Bochner that the spectral den-
sity function f(w) is nonnegative
flw) 20 (3.22)

for all w in Q.
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3.3 Important Special Cases

For discrete-parameter time series with a mixed spectrum whose
spectral density function satisfies

[ log £(w) dw > - (3.23)
e}

it may be shown that the process can be written in the form

_ itw 00
X(t) = ) A e + ), C_,n-s) (3.24)
k : s
k s'=0
for suitable sequences of frequencies {wk}, constants {Cs,} and uncorrelated
random variables {Ak} and {n (- )} . This structure includes as special cases

the scheme of moving averages and the scheme of hidden periodicities cor-

responding to the vanishing of the first and second summations respectively.

Another important structure for a time series arises if it satisfies

an autoregressive scheme of order p

o

a_, X(t - s) = €(t) (3.25)

s'=0

where the a's are constants and €(t) is a white noise process. It may be shown

that the spectral density function of such a process is

f(w) = (3.26)

where Te is the variance of the €(t). An example of such a process is the

random walk which satisfies
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X(t) - X(t-1) = €(t) (3.27)

with

2
o
€

f(w) = (3.28)

21r[(1 - cos w)z + sinzw:I

Autoregressive schemes always correspond to processes with an absolutely

continuous spectrum.

3.4 Regression Analysis and Spectral Analysis

We wish to describe two possible approaches to estimating the signal

component m(t) and the noise component Y(t) of (3.1).

First: we determine the trend m(t) directly from the sample series
by choosing the unknown constants in the linear combination (3. 2) to give a
least squares fit to the sample series. The linear combination arrived at in

this way is taken to be an estimate mN(t) of the true trend m(t). The deter-

mination of mN(t) in this manner is known as regression analysis and it is
a well-known procedure. To complete the analysis we approximately detrend
the sample series X(t) by subtracting out the estimated trend mN(t) and we

are ready to carry out a spectral analysis of the residual series which we

assume is now free of trends, in other words, its spectrum is continuous.
This analysis produces then an estimate of the true spectral density function

f(w).

The other approach referred to above is to carry out a spectral anal-

ysis of the sample series as if it were free of trends. Doing this produces

what we call the truncated spectral estimate, We then use methods, which

are developed below, for separating the signal and noise components in the
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truncated spectral estimate. Of course, if the time series has a continuous
spectrum the truncated spectral estimate will itselfbe an estimate of the true spec-

tral density function. This is the approach we shall adopt for our analysis. It has

the great advantage that it requires less a priori knowledge about the signal

than is required for the preliminary regression analysis in the first approach.

Before we make any estimate we must define what we mean by a good

estimate, and this is done in the next section.

3.5 Figures of Merit for Estimates

We shall consider only figures of merit based on the mean-square
error of the estimate from the true value. Suppose f(«) is the function we are
interested in estimating by means of an estimate fN(w) formed from a sample
{X(t), t = At, 2At, ..., N'At} of the time series. (The same considerations
will hold for functions other than the spectral density function.) The mean-

square error of fN(w) is defined to be

2
E | f(w) - fN(w)I (3.29)

This expression clearly depends on the point w. It is easily shown that it may

be written as the sum of two terms
E|f(u>) - f (w)|2= va ‘—f (w):l+ Ibiasi-f (w):ﬂz (3.30)
N "N LN .

where the variance and bias are defined by

var [f (@) ] = E £ (@) - Efg)]? (3.31)
bias iLfN (w):l = E[fN(w)]-f(w) (3.32)
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Thus a good estimate in the mean-square sense will minimize the
effects of variance and bias on the error at all points w. It will be found that

unbiased estimates (where the bias is zero at all points) are not always the

best and that it is better to divide the error up into the two types. The dif-
ficulty of having the error depend on the point of evaluation w may be removed

by taking other criteria such as the mean-square integrated error

2
J Bl - @] do (3.33)
Q

or the mean-square maximum error

2
E sup|f (@) - f(w)| (3.34)
w N
both of which are independent of w. Of course

2 . 2
[ EIfN(w)- f(w)] © dw =fvar l:fN(w):ldw+f |bias [fN(w)]| dw
Q Q Q
(3.35)
and an upperbound for (3. 34) is given by

__ ‘ 2 .
\/E sup IfN(w)- f(u>)|2 < «/gj sup |fN(w) - EfN(w)| + sup |bias [fN (w):]l (3.36)

The mean-square and mean-square integrated errors are the most
easily handled mathematically; however the most useful criterion for our
purposes is the mean-square maximum error since this automatically gives us

satisfactory confidence bands for good spectral density estimates. This follows

from the Chebyshev-typeinequality

1 2
P[sup |1y - 1)]> e]s? B sup |f(e) - £0)] (3.37)
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since a good estimate in the mean-square maximum error sense means that

the right-hand side is a small multiple of 1/€2.

3.6 Covariance and Spectral Averages

The dual concepts of covariance andspectral averages are important
because the finite length of our sample makes it unrealistic to attempt to esti-
mate the true autocovariance or spectral density function at a point. Rather,
we shall obtain estimates of these quantities which are averages of the true

quantities over a domain which depends on the length of the sample.

To form a spectral average we start with a well behaved function A(w)
(for example an infinitely differentiable function of compact support or a simple
function) defined on 2 the domain of definition of f(w). Then instead of the
function f(w), which we have agreed it is unreasonable to expect to estimate,
we consider T_ the generalized function or distribution (in the sense of Laurent

f
Schwarz) corresponding to the function f. The spectral average generated by

the function A(w) is then defined to be the effect of T_on A(-). Thus we have

f
TAA) = [ A f(w) dw (3.38)
Q
For example if we take
l 1 forw < wo
A(w) =
l 0 for w < @ (3.39)

then Tf(A) = Fac (wo) the spectral distribution function evaluated at W On the
other hand we may take A(w) to be sharply peaked at @ and small elsewhere
in which case Tf(A) is looked on as the nearest we can get to assigning a

value at wjtothe generalized function T, or inotherwords to finding f(wo).

f’
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Since f(w) and R(v) form a Fourier transform pair we have

) = 5= [ e "VORM av (3.40)
v
Using this in (3. 38) we obtain
[ A f(@)do = [ a(v) R(v) dv (3.41)
Q \

where a(v) is the Fourier transform of A(w)

a(v) = -217; f e iV(‘)A(w) dw (3.42)
Q

which we shall call a covariance window. But the right-hand side of (3. 41) is

the distribution TR applied to the function a(v), so that every spectral average

may also be regarded as a covariance average

Ty(A) = Tg(a) (3.43)

having their corresponding windows related through (3.42). From (3. 43) it is
seen at once that there will be inherent limitations on our ability to obtain
simultaneously satisfactory estimates of f(-) and R(-) at a point in their re-
spective domains. For example in the extreme case where A(w) = § (w - wo)

we have a(v) = e “1V% so that while Tf (A) = f(wo), the value of f at wy,we have
TR (a) = fV e V%% R(v) dv which in no way approximates the value of R at

-ivw
a point. In fact TR (a) is not an observable since e © is not a function of
compact support, so that we can never obtain f(-) at a point in practice using

covariance averages. However, we do hope to approximate the value of f(-)

at a point “ by means of covariance averages with a(-) chosen in such a way
that A(-) is sharply spiked at w - This produces then a spectral average of

f() over a narrowband of frequencies centered about v .
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An important measure of the shape of a spectral window A(-) (the
same considerations hold for covariance windows) is its bandwidth B (A) defined
by

A(w) dw
sup | A(w)]

w

B(A) = (3.44)

The bandwidth is thus simply the width of a window of height equal to the maxi-

mum height of the window A (-) and of equal area.

3.7 Consistency, Bias and Variance of Estimates

For simplicity we confine ourselves to estimates fN(w) of the spectral
density function f(w) formed from the sample {X(t), t = At,...,Nt} of the
process {X(t), tin T} . Except in simple cases no expressions have been found
for the bias and variance of estimates of the type we are interested in. How-
ever, simple expressions are known for the asymptotic form of these quantities

which will now be defined. By asymptotic we mean in the limit as N =%, where

N = N'At.

An estimate fN(w) of f(w) is said to be consistent in quadratic mean if

lim E|fN(w) - f(w)lz =0 (3.45)
N—bOO

It is asymptotically unbiased if

éi_r.r; (E £() - f(w)) - 0 (3.46)

It is easily shown that a consistent estimate is asymptotically unbiased.

We may be interested in the rate of convergence in (3. 45) and (3. 46),

and this leads us to the following definitions. We say an estimate is consistent
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200 . 2
of order N~ with asymptotic variance g~ if

2a 2 2
i E|f_- =
lim N | £ EfN| o (3.47)

and asymptotically unbiased of order Na with asymptotic bias 8 if

lim N (E £ ) - 1)) = B (3. 48)
N-—
3.8 Window Generating Functions and Estimates of the Autocovariance

and Spectral Density Functions

A window generating function is a functionk(x) satisfying the following

conditions:

(i) k(x) is bounded

(i)  k(0) = 1
(i)  k(x) = k(-x)
(iv) k(x) = 0 for |x| >1 (3. 49)

Such functions will be useful in forming our estimates of the spectral density
function. However, first of all we form our estimate of the autocovariance

function.

As our estimate of the autocovariance function we shall always take

the sample autocovariance function defined by

Nl _V'
S ) X X(t) for v in{ 0, bt, ..., (N'-1)08)
t=1
RN(V)= RN(-V) for vin{ - At,..., - (N' - I)At}
0 otherwise. (3.50)

A possible estimate of the spectral density function is the sample spectral den-

sity function or periodogram defined by
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f (w,P,N) = — R _(v) e (3.51)
N 2n V'=Z';N'+l N

Inverting (3. 51) we obtain
_ ivw
Ry = f e " (e, P,N) dw (3.52)

and it is easily shown that (3. 51) may be written in the more familiar form

o 2
f(wPN)-————IZ X(t) e 21|

T (3.53)

where t runs over { At,...,N! At} . However it is well known that (3.51) is not a

consistent estimate of the spectral density function.

By means of window generating functions we shall generate estimates
of the spectral density function which are consistent. We first choose a

truncation point M = V, which is of course a multiple of At, and we define the

truncated spectral estimate by

w

(e VM) =22 Y k(R () e (3. 54)

27 Lt M

in which the summation is chopped off for all |v|>Mbecause of the properties

of k(+). We shall now show that this is a spectral average of the periodogram.

We define the central spectral window as

KL O,M) == Yk (—ﬁ) e 1VA (3. 55)

which of course we can invert to obtain a formula for k (—Y—) as follows:

M
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v\ _ iva
k(37) = / KO0, M eV ax (3.56)
A
where A is the same set as £, that is
A={\, -a/ntsxsa/at) (3.57)

in the case we are especially interested in. We note that K(A, 0, M) has a

single peak at A = 0 while K(A, w, M) defined as
KO, o, M) = 1/2 [K( +©,0, M*KQ\ - «, 0, M) (3.58)
has peaks at A = £ w. Condition (ii) of (3. 49) guarantees that

[ K\, w, M) dx=1 (3.59)
A

It is now easily verified that

fg(. K. M) = fAK(x, ©, M) f (A, P,N) dx (3.60)

so that our truncated spectral estimate is a spectral average of the period-
ogram viewed through the spectral window K (A, » , M) which satisfies (3. 59)

and looks like

$ KX, w, M)

A AN

[}

€

+

€
yﬁ
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We next investigate various quantities associated with windows. For
a central spectral window we define the peak height to be K (0, 0, M) which is
given from (3. 55) by

M'
=& ¥
KO, 0.3 = 5 _LM' k(%) (3.61)

which we shall show later is approximately proportional to M. We call the

constant of proportionality K the peak height factor so that

K(0,0,M)= KM (3.62)

In fact a theorem below shows that

-(p +1)

K(0,0,M)=KM+ O (M ) (3.63)

where p is anon-negative integer depending on the smoothness of the covariance

window generator k(-) and

1
K=51- f k(x) dx (3.64)
T 9

The bandwidth B of a central spectral window is defined to be

, 0, M)dXx
f_AK()\ )

B= ko, 0w (3.69)
and from (3.59) and (3. 62) this is given by
B = _1_ (3.66)
KM )

so that for a fixed window with varying truncation point the bandwidths of the
estimates are approximately inversely proportional to their truncation points.
We now look at an asymptotic formula for the variance of our estimate if it is

used to obtain an estimate of the spectral density function of a normal noise

72
ADVANCED COMMUNICATIONS + RESEARCH AND DEVELOPMENT




ADcom

process with zero spectral jump function. The result (3.67) which we now quote
follows from Theorem 5, and (3. 68) follows from Theorem 3 below. For

0 < w < 7/ At we have, for large N

var[t (e, K, M)] = %I[ 200 K2 (A, ©, M) dA (3.67)
A
M 2, .2
R f_w k“ (x) dx (3.68)

and the same holds true for @ = 0 or w = x/At if we multiply the right-hand
sides by a factor of 2. Thus for a normal noise process with fixed window
and varying truncation point we see from (3. 68) that the variance of our
estimate is approximately proportional to the truncation point M. From

this we can take the product of the variance and the bandwidth of the estimate

and obtain approximately

[* o]

2
2 Lo K6 ax

N = (3.69)

This expression is independent of the truncation point M and we define the
part of it which depends on the window to be the variance-bandwidth factor

VBW(" ) thus

o0
2 K2 (x) dx

VBW (k) = (3.70)

o0

[ ook(x) dx
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For some time series, such as those with a mixed spectrum, we can-
not find a true spectral demsity function f(w). However, we may always

obtain an expected spectral estimate defined as

)
£, K, M) = lim E [f (0, KM (3.71)

If X(*) is a stationary process we then have from (3. 71) and Theorem 5

fo, K, M) = [ () KO\, @ ,M)dX (3.72)
A

which is a spectral average of the true spectral density function through

the window K(A, w, M). For completeness we define the spectral window

generator to be the Fourier transform of the covariance window generator

1 ® -ikx
K\ = 5= [ kx) e dx (3.73)
- 00
so of course we also have
® ixA
k(x) = [ K\ e dx (3.74)

-00

We wish to find out how K(XA) and K(X, , M) are related. This follows from

a formula due to Poisson. The result is

K(x, 0,M) ¥ MK (M) (3.75)
. . -(1+a) s
or more precisely, provided K(w) = 0 (w ) for some positive &, we have
w ) L]
KO, 0,M = ), MK (Mier22L) (3.76)
j: - 00 Ot
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3.9 Parzen's Kernel, Tukey's Kernel and the Periodogram

We now define two frequently used k(-) due to Parzen and Tukey, and
we explain what is meant by the periodogram. We list also the values of sev-

eral quantities associated with these kernels and the periodogram.

First, Parzen's kernel is defined by

2(1-|x|)3 - (1 -2|xl)3 for |x| =< 1/2
k(x) = 2(1-|x|)3 for 1/2< |x| <1 (3.77)

0 for |x| >1

Its spectral window generator is

‘ 4
3 (sin)\/4)
KQ) = a7 /4 (3.78)
Its peak height factor is
K = 3/87 (3.79)
and its central spectral window is
. 4
I 34t (sm M')\At/4) \
K@Q,0, M) = (3.80
87rM3 At/ 4
The integral
o 2 151
J© 1700 ax = 55 = 0.539 (3.81)
had® o]
and the variance-bandwidth factor is given by
1517 _
VBW(k) = 105 4.52 (3.82)
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Parzen's kernel has two advantages over Tukey's, namely it always
gives rise to nonnegative estimates of the spectral density function of the
process, and its variance bandwidth factor is almost 5% smaller. To see

this we write down Tukey's kernel which is given by

%(1+cos TX) for | x| < 1
k(x) =
0 for |x|>1 (3.83)
for which
2
1 T . sinA
KQ) = Py 5 o X (3.84)
T - A
M

K = o7 (3.85)

. 1 . 1 i . 1 T
2 sin (M'+2) At sin (M'+ ) —=)at sin (M'+Z)(A- =) At

At 2 2"V M 2" M

K(x, 0, M) = Py X + 1 + 1

sin 5 At sin 5()\+ /M)At sin 50\- 7 /M) At

(3.86)
0 .2
‘[ k°(x) dx = 3/4 (3.87)
-0
and

VBW(k) = 4r (3.88)

Finally we must define the periodogram which is the estimate which arises

from the particularly simple kernel

1 for |x|< 1
k(x) = (3.89)
0 otherwise
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Corresponding to this, which is sometimes known as Bartlett's or Dirichlet's

kernel, we have

Ka) - + ok (3.90)
A
1
K = s 0.318 (3.91)
4, sin(M'+ -;—)AAt
K@A,0,M) = o7 M 1 (3.92)
g sin = A At
2
o0 2
| K" ax = 2 (3.93)
-0
and
VBW(k) = 27 = 6.28 (3.94)
3.10 Theorems on Estimates and Windows for Stationary Time Series

We pause to define what we mean by a smooth covariance window

generator k(-). We say k(.) is p-derivable on [a, b] if

(1) at each point of [a, b] the first p derivatives exist, and the first
p +3 one-sided derivatives k(x4 and k(x -) exist and are bounded;

(p+1)

(2) there is at least one point of (a, b) at which g (x) does not

exist;

(3) at all but a finite set of points Zin (a, b) the first p +3 derivatives
of k(-) exist and are bounded and integrable.

The set Z is called the break point set. k(-) is said to be truncated p-derivable

on [a,b] if, when we extend k(-) by making it zero outside this interval, for
every positive € k(-) is p-derivable on [a-€, b+€] and Z is the break point

L , 0, l, 1} and it

set in (a-€, b+€). For Parzen's kernel p=2, Z = {-1, -5 5
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is truncated 2-derivable. Tukey's kernel has p=1, Z = {-1,1} and it is trun-

cated 1-derivable.

We have the following theorem about spectral averages of a smooth

spectral density function f(w) for any stationary time series.

Theorem 1. Given any spectral density function f(w) with bounded derivatives

up to the nth, and given any truncated p-derivable covariance window generator

k(+), then

[ 0 KO 0,0 k= k(0 1) - — 1" ') +—2 kK0 P+
A 2!'M 4'M
+ RM (3.95)
where the remainder
oM ™ if n<p+1
= .96
RM ot 1) (3.96)
o(Mm™'P logeM)if nz p+1

Before stating the next theorem we need two more definitions. The

characteristic exponent r of a covariance window generator is defined to

be the largest number r such that

(3.97)

exists, and is finite and nonzero. k[r] is called the characteristic coefficient.

Another way of stating (3.97) is that in a neighborhood of the origin

k(x) = 1-k5 [x|T + 06 (3.98)

78
ADVANCED COMMUNICATIONS + RESEARCH AND DEVELOPMENT




2
For Parzen's and Tukey's kernel r=2, and k[r] =6 and % (= 2.46) respectively.
We are now in a position to state another theorem of a similar kind
to Theorem 1. Itis

Theorem 2. Given (1) a covariance window generator k(-), bounded on[-1,17

and zero elsewhere; (2) a discrete-time stationary time series with spectral

density function f(w) on © and autocovariance function R(v) satisfying

Z Iv] IR < o (3.99)
'= —0

v

then [r]

[r]
[ 0K w. W & = £ - LTl oL (3.100)

T
A M M

where the qth generalized spectral derivative is defined as

w -
sl - -2’3—; ) vl R(vie (3.101)

We now turn to a theorem about a more complicated expression than

the spectral average of (3.95) and (3.100). We first define for two truncation

points Mi s Mj the mean truncation point as

M,. = /M.M, (3.102)

< 1 (3.103)
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In the statement of the theorem we drop the subscripts and write simply M

and u.

Theorem 3. Given (1) positive integers Mi and Mj with y held constant; (2) a

truncated p-derivable covariance window generator k(:); (3) a spectral density

function f(A) with derivatives through the fourth existing and continuous on A;

then if p= 1 we have for the integral

L= 4n [ £700 KO w,M) K&, 0,M)d (3.104)
A

the approximations

1 T 1
—_ << <K - o =
(@) for © A M

1= M%) [* k) kp) dz e M) @) @ @] K () k' (w2 a2

M "
o3y o P, (3.105)
(b) for 0< w s 0(1—) (in fact for 0 < w << ﬂ——L)
M At M
I = Mfz(w) r“ k(p-lz) k(uz) (1 +cos 2Mwz) dz
.
a1 1" 1 ! o, -1 '
+ M () () () (Q)]J k(u “2)k (uz)dz
S u
1
+ M_l fw) £ (w) (’“ k'(u—lz)k'(uz)cos 2Mwz dz
w .,-u‘
+ o3y + oY)y (3.106)
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(c) for OS-A”T—wSO(—-)

I-= Mfz(w) [‘“ k(y_l) k(uz) (1+cos 2M(er—t-w) z) dz

J

P

bm T ) £ @) ) ey [B K'(u 2 k' (u2) dz
-

M) £'(w) at
T-whAt

j“ k'@ 2) k' (uz)cos 2M (- - ©) zdz
"W

o3y +o i PHY, (3.107)

Note that for Parzen's kernel the remainder is of course O(M-B) and for
Tukey's it is O(M—z). In case (b) if f(w) does not vary much near the origin
we can simplify (3.106) by expanding f(w) about the origin to obtain the

simpler result
= M2 +o? £10) £'(0] [* kiu™'2) k(ua)(1 +cos M wz) dz
M4

M 00) T k' (L2 K (u2)(1+ cos 2Mwz) dz+oM y+om P

W

)

(3.108)

In case (c) we expand about 7/At and in (3.108) we replace 0 by 7/At and
w by /At - w.
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3.11 Theorems on Estimates for Normal Time Series

The first two theorems are about the noise process only. We state
first a theorem about the limiting value as T— o of the expectation of a trun-
cated spectral estimate and of the covariance of two such estimates. Note
that all the following theorems are true only if the noise process is a normal

process.

Theorem 4. Suppose Y(t), t= At,...,N'Atis a sample from a discrete param-

eter normal, zero-mean, stationary, ergodic time series with absolutely

summable autocovariance function R(v) and spectral density function f (») on

2. Then for fixed v and w

lim E[RN(V)] = R(v) (3.109)
N—00

and

0
l\%i_.moo N cov [RN(V), RN(W)] = >_, [R(s+v) R(s+w) + R(s+v) R(s- w)]

= 47 J COS VA COS WA fz()\) dr (3.110)
A

We have a similar theorem for the truncated spectral estimate rather than the

estimate of the autocovariance function.

Theorem 5. Suppose Y(t), t=At,..., N'At is a sample from a discrete param-

eter, normal, zero-mean, stationary, ergodic time series with absolutely

summable autocovariance function R(v). If the spectral density function of

this series defined on Q is f(w), then for every function and parameter fixed

except N
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lim E[fy(w, K, M)] = j’f(A)K(A,w,M)dx (3.111)
N — o0 'A

and

lim N cov [fN(wa, Kl’ Mi)’ fN(w

i Ky M)

B

2
= 47 f (A)K (A-:w ’M.)K ().,(D
J/'\ 1 o 1 2

Combining (3.111) and (3.95) or (3.100) we have asymptotic estimates for the

» M) dA (3.112)
8 1

bias of the truncated spectral estimate.

Corollary 5. If in addition to the conditions of Theorem 5 we assume that

B JVR2(\m < 0, then as N ~» o we have
v

) 2 -
N cov [RN(V),RN(W)W = 47TJ cos vA cos wxf Q)d\ + O(N 1) (3.113)
A
We now state some theorems for processes with mixed spectra
analogous to Theorems 4 and 5. The first two will be about processes with
a signal having a single harmonic component, the following two will generalize

these results to signals having a finite member of such terms.

Theorem 6. Suppose we are given a sample of N' observations from the time

series X(t) = C cos (tw_ +¢) + Y(t) t=4At,...,N At where

(i) C, « and$ are fixed, W # 0 or 7/At
S

(ii) Y(t) is a stationary, ergodic, normal, zero-mean time series with auto-

o0
covariance function R(v), suchthat 3 |vR(v)|<® and spectral density

v'=-0
function f{w) on §.
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Then for fixed v and w, as N-w

E[RN(V)] = % c? cos vw_ + R(v) + O(N_l) (3.114)

and

N cov [RN(V), RN(W)] = 47 cos Ve cos wwSCZf(wSH 47rj cos vA cos wAfZ(\)d\
A

+ o(N'l) (3.115)

Theorem 7. If the conditions on X(t) are the same as in Theorem 6, then as

N —w

C? Ko, oM + [ KO, wM) 1) ak + 0(N ) (3.116)

A

E(f(w,K, M] =

[NV

and

N =
cov [fN(wa,Kl, Mi)’ fN(w K., Mj)] 47rK1(ws, ooa,Mi) Kz(ws, w

2
g% ’Mj) C f(ws)

B

2 -1
+ar [ K O MO K 0L e M) Q) d + 0N (3.117)

‘A
We now extend Theorems 6 and 7 to the case of many sinewaves in noise. We
include in these results the special case of a constant (i. e., zero frequency)

term, and an on-off (i. e., frequencyilt-) term. The generalization of Theorem 6

is

Theorem 8. Suppose we are given a sample of N'observations from the time

q
series X(t) = T CJ cosj@j +¢.) +Y(1) t= At, ..., N'Atwhere
- - J

=0
(i) Cj__w_j and gbj are fixed with C._2 0, 0=« <w.... <wq-1 <wq= T n
éozo,jq: 0 or 7.
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(ii)  Y(t) is a stationary, ergodic, zero-mean, normal time series with auto-

¢ 0]
covariance function R(v), such that T |vR(v)| < » and spectral density
v'= ~00

function f(w) on Q.

Then for fixed integers v and w, as N -«

2 1 & v 2 -1
= + = +(- + +0(N
EfR (] =C "+ = Z €. cos Ve, (-1) C, R(v)+0(N ") (3.118)
=1
and
g-1
2 2
N cov[R (v), R _(w)] = 87 C “f(o)+4r Z cos vw, cos ww, C. f(w.)
N N o J I ] J
j=1

+ (—1)V+W 8w qu f(i{;) +47TI COS VA COS W) fz()\)d,)\ +0(N_1)

(3.119)
and the generalization of Theorem 7 is
Theorem 9. Suppose X(t) is as in Theorem 8. Then as N- w
q-1
2 1 2
E[f (K, M)] = K(0,6,M) C_° + E K(w,0,M) C,
=1
4 2 -1
HKG @) C [ KO, o.M I dh +0(N ) (3.120)

A

and

_ 2
N cov[fN(wa,Kl, Mi), fN(wB,K , MJ_)] = 87rK1(0,wa, Mi)KZ(O,w ’Mj) CO £(0)

2 8
q-1
+
47 ? K (00 M) Kyl o
k=1

T s
+ ¢ — am—
87 [xl(At,wa,Mi) KZ(At ,w

2
;S'Mj) Ck f(wk)

2., T
M) C "f(—
B i Cq Gt
2 -1
X ywoa M) +0
+4w£\(K1(A,wa.M1)K2()\ wgMIET0) A+ N
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4. COMPUTATIONAL PROCEDURES FOR SPECTRAL ESTIMATION

4.1 Computation of the Truncated Spectral Estimate

We are given a sample {X(t), t=At, ..., N'At} . We compute the
truncated spectral estimate as follows:
Step 1

Choose a truncation point M, where M is an integer-valued function

of N, such that M /N is in the order of 0.1

Step 2
1
For each v in {0, At, 2At, ... , M At} compute the sample auto-
covariance function RN(V) where
-V
R (v) = = 'ZX“’ X(t+v) (4.1)
t=1

Do this by the procedure given in Fig. 4 for computing inner products.

Step 3

Choose three numbers Ml’ M2, M3

and carry out the remaining steps for each value Mi’ i=1,2,3.

such that 0<M1<M2<M3 = M <N

Step 4

Choose a number Q, where Q is to be the number of subintervals
into which we wish to divide the interval [0, 7/At] on which the truncated

spectral estimate is defined.

Step 5
For w = 0, —— 27 o, = compute the truncated spectral
’ QAt’ QAt’ ' At
estimate Mi'
ol K, M) = £ Z;(Ml) Ry(v) et Ve (4.2)
v=-M, *
i
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2 PROCEDURE COVARTANCE(NsMsL1sL29X{) $ RI(ISR2(}sCI()+CT()9sD1+D2+4D318

2 COMMENT THIS PROCEDURE COMPUTES THE AUTO AND CROSS CORRELATION FUNC-
TIONSs RI(TIVeR2(ID»CI(I) AND CT(I)y FOR l31429eeeoM¥le THE FUNCTION.
AT LAG 2ERO IS STORED AT I=1, THE FUNCTION AT LAG M IS STORED AT
1=aM+1, THE TIMF SERIES ARE OF EQUAL LENGTH N AND BOTH ARE STORED IN
THE ARRAY Y()s ONE BEGINNING AT L1, THE OTHER AT L2. THE AUTO-CORR
FUNCTIONS ARE NORMALIZED 7O HAVE A VALUE 1 AT THE ORIGIN AND THE
CROSS CORRELATIONS ARE ALSO CONSISTENTLY NORMALIZED. THE NORMAL~-
IZING FACTORS ARE D14D02 AND D3s THE FUNCTIONS ARE ADDED INTO THE
ARRAYS R1()sR2()CIt) AND CT{) TO ALLOW POOLING OF COVARIANCESs SUMs

INPROD(K,LoN»A(1oBI()) 1S AN EXTERNAL FUNCTION EQUIVALENT TO
*SUM=0e0, FOR I=(0y1sN=-1)9s SUMaSUM+A(K+1)eB(L+I)*
BEGIN

INTEGER leeesJeessKooesbLooesMososNeoe $
D1 = INPROD(LYIsL1oNgX()sX())S
D2 = INPRODIL2sL2syNsX()sX({))S$
D3 = SQRYTI(D1,D2) b
FOR KK = (1s1eM+1) §
BEGIN
RI(KK)=RI(KK)+INPROD(LIyL1+KK=1,N=-KK+1sX()sX())/D1$%
R2(KK)=2R2(KK)+INPROD (L2 4L 2+KK=1yN=KK+1sX{()oX())/D23
CI(KK)=Cl (KK)+INPROD(L] L24KK=1 ,N=KK+1,X()yX())/D3S
CT(KK)=CT(KK)+INPROD (L2 4L1+KK~1N=KK+1,yX()oX())/D3S
END 8

MWMONRNMNNMNNONRNON VNN DN DN

RETURN END §

Fig. 4 Procedure Covariance (from Ref. 9).
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For purposes of computation we rewrite (4.2) in the form
M 1
f o K, M) = 25 [2R (0 + z cos v k RN(V) (4.3)
:..M'
The kernel k(-) will be Parzen's, Tukey's or Bartlett's kernel which are
defined by Eqgs. (3.77), (3.83) and (3.89) respectively of Sec. 3.9. The
computation is carried out by means of the procedure given in Fig. 5 for

computing finite Fourier transforms.

Step 6
Plot log f_(w, K, M,) against log_w for w=0, —— 2 z
e N i e QAt " QAt T 7T At

and interpolate linearly or otherwise between these points.

4.2 Discussion of the Computation
Step 1

Large sample statistical theory for normal noise processes implies

that, for 0 <w <, Eq.(3.68) becomes

At ’
Mi © 2
var[logefN(w, K, Mi)] =X f k™ (x) dx (4.4)
-00
with the added factor of 2 for w=0 or Kf From (4.4) we thus get
1/2
|1og fylo, Ks M,) - log f(w)l < 2( f°° k2(x) d:% = A (4.5)

and this gives us upper and lower bounds, that is a confidence band, on the

percentage error of the truncated spectral estimate since (4.5) implies

fN(w, K, Mi) - f(w)
f(w)

< eA-l (4.6)

e T-1¢x
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The following table shows that only for M/N < -1 is this error of reasonable

size:
M.
—ﬁi e | eP1
0.05 -0.3 0.4
0.10 -0.4 0.6
0.20 -0.5 0.9
0.40 -0.6 1.5

therefore we should choose Mi no greater than 10% of N. We might now be
tempted to choose M very much smaller than this to reduce the above variance
and percentage error of the estimate, however, the smaller Mi becomes the
larger is the bias of the estimate, which may be seen in the asymptotic case
for normal processes by combining Eqs. (3.111)and(3.95) or (3.100) to show that
the bias defined in(3.32) varies 1/M,. The best choice of M, to balance the
bias and variance contributions to the mean-square error(3.29)isa diffi-
cult problem. The result of this discussion then is that we must choose
Mi to be of the order of 107% of N (up to40%, say), since values greater (lower)

than this would increase the variance (bias) by an unreasonable amount.

Step 2

The choice of M in Step 1 greatly reduces the amount of computation
necessary at this step since we need to compute RN(V) at a maximum of 0.4 N’
instead of N' points. For each of these computations we call on an external
procedure for computing inner products. A good example is the''procedure
covariance' given in Fig. 4, and another efficient method is due to Stockham

of MIT.
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We now discuss some of the properties of R.N(v) as opposed to other

estimates of the autocovariance function. It is easily verified that

N4

E[Ry ()] - (1 - Tv)R(V) (4.7)

so that its bias is given by
bias [R(v)] = = (4.8)
[RN ] N '

which is nonzero. However it is obviously asymptotically unbiased since

lim bias [ (v)] =0 (4.9)

N~—o0 RN .

Also RN(V) is a positive definite function, meaning that for any k, any set of

complete numbers ci and any set of real numbers viin {0, £ At, £ 2At, . . }
i=1,2,..., kK we have
k k
T, - >
Z‘ Z c; cj R_N(vi VJ.) 0 (4.10)
i=1 j=1

This may be verified from the fact that

= 7
RN(O), RN(At), RN(ZAt), C s e
RN(At), RN(O), RN(At) s e s
2 K} F) 2 . 2 . E] = ) *
RN( At) RN(At) RN(O) CcC (4.11)
L . K} . F] . E] . 3 . ) -t
where
[X(at), X281, XGBat) . . ., . 5 0
0, X(5t), X(2at) , ., .,
1 0, 0o, Xty . .o, .,
_JW (4.12)
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The above matrices are of the singly infinite Toeplitz type. The true auto-
covariance function is a positive definite function as we remarked in(3.21) so
that it seems a good idea to use estimates, like the sample autocovariance
function, which have this property. We now show that the commonly used

unbiased estimate ,
N'-V'!

* 1.
Rg(¥) = ), X() X(t+v) (4.13)
t'=1
is not positive definite. This follows at once by taking k=3; c1=1, c2=0,
c At Vg =2At, v_=3At and X(At)=1, X(2At)—0 X(3At)-1 Then

3 3
R (0)= 2/3 R (At) 0, R (2At) 1/3 while R. (0) 2/3, R (At)=0, R (2At) 1

so that
3 3

—

3
igjjzlc C. RN(v—v =% Z

— * o2
L T, Cj R.N(vi - Vj) =-3 (4.14)

T~ Jeo

1

Parzen remarks, however, that even RN(V) does not give a good estimate of
R(v) since it does not damp out to zero for large v (s N). Nevertheless, its
appropriately modified finite Fourier transform, in other words the truncated
spectral estimate, does give a reasonable estimate of the spectral density

function.

We remark that the computation time for the sample autocovariance

1
function in Step 2 is proportional to M X N'.

Step 3

Since we cannot specify the best value of M to minimize the sum of
the errors due to bias and variance, and since later we wish to deal with cases
where we have not only a continuous but also a discrete spectrum, we find it
best in practice to compute the truncated spectral estimate for several values
of the truncation point. Suitable values are obtained by taking }VI'1 to be an

! ! 1 1 t
even integer between 0.05 N and 0.1 N, M2 = 2M1 and M3 = 2M2. Then we

have
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M

1
0.05<— < 0.
N 0.1

MZ
A<= < 0.
0.1 N 0.2

M3
0.2 <T < 0.4 (4.15)

In graphing fN(w, K, Mi) it is useful to rllvcl);c'e that
At \4
f 0,K, = y —
( Y ) 2m 1 = k<Mi

vV =-M.,
i

)RNW) (4.16)

which is a monotonic function of Mi’ hence graphs for different values of Mi

can easily be distinguished by observing their heights at the origin.

It may happen that our estimates contain spurious cycles. These can
be identified by applying them to the constant time series X(t) = 1 or more
generally to other standard series with known spectral density function. If
the estimate produces peaks other than the spike at the origin, we should be
suspicious of such a peak if it occurs when our estimate is applied to a time

series with unknown spectral density function.

Step 4
The choice of Q depends on the method of interpolation that we use to
join up the computed points on the graph of 1ogefN(w,K, Mi)' A sampling
theorem tells us that if the tru.ncation point is Mi then fN(w, K, Mi) can be
recovered from its value at Mi equally spaced points. However, this cannot
necessarily be accomplished by linear interpolation so that rather than taking
Q= M + 1 points and usmg a more complicated interpolation procedure we
prefer to take Q= 2M or 4M In practice with the three values of M chosen
above, we take Q approx1mate1y equal to the greatest of these, and we make
sure that if there are any physically distinguished frequencies present then Q
is chosen so that these are multiples of the grid spacing Q—Z—t . The reason why

Q is chosen no larger is given in the discussion of Step 6.
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Step 5

The computation time for the truncated spectral estimate of Step 5 is
found to be proportional to Q - M'. The calculation is carried out by the pro-
cedure (see Fig.5) for evaluating finite Fourier transforms due to Goertzel,
which is quoted by Parzen under the name 'procedure transform'. Other ef-

ficient methods are due to Cooley and Tukey, and also to Stockham of MIT.

Since the spectral density function is always positive it is possibly
desirable that we should try to choose a k(-) which gives rise always to positive
estimates. It can be shown that Parzen's kernel has this property, whilst
Tukey's does not. Note that in order for an estimate to be of positive type it
is necessary and sufficient that the corresponding spectral window be positive,
that is for all A we have

K(A,0,M) 20 (4.17)

Another advantage of Parzen's kernel over that of Tukey's is that
both its variance and bandwidth-variance factor are smaller. This may be

seen by combining Eqs.(3.68), (3.82) and (3.88) for fixed M and N.

Step 6

Herewe discuss questions about folding and resolution. A fundamen-
tal notion is that of the Nyquist or folding frequency which occurs if our sample
series is really a sample from a continuous stochastic process. The truncated
spectral estimate is a periodic function, with period 27 /At, which, however,
is an even function so that its value in [0, 7/At] will determine it completely.
To get an estimate of the true spectral density function which of course is
aperiodic we take the estimate to be equal to the truncated spectral estimate
in [0, 7/At] and zero elsewhere. The effect of this periodicity is to make

frequencies differing by multiples of 2x /At indistinguishable and the net result
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2 PROCEDURE TRANSFORMIM N sW() sRLUIIRECIoROU)JR2IISFI{IoF21)19COL)Is0QULY)S
2 BEGIN

2 COMMENT THIS PROCEDURE COMPUTES N+l POINTS OF TWO ESTIMATED SPECTRAL
DENSITY FUNCTIONS AND OF THE CO-SPECTRUM AND GUADRATURE-SPECTRUM

AND RO() WHICH ARE THE EVEN AND ODD PARTS OF THE CROSS-CORRELATION

ING KERNAL USE(D S W), THE SINES AND COSINES NEEDELD AKE COMPUTED
RECURSIVELYe REFERENCES 1+ )HAMMINGsRewW.s 'NUMERICAL METHODS FOR
SCILNTISTS AND ENGINEERS ' yMCGRAW-HILL 1962+PAGES T1=-74 %
INTEGER Jooes Jooer Keaot Looes Meoes Neoo ¢
Pl » 3,14]15927 8 PIV =» 031830989 ¢

C = NS Cl » C3 = D1 = COS(P1/C)
Da = C2 = SIN(PI/CHS D6 = 2.C1 ¢
Pla0s5.R1(1) ¢ P220esbeRE(]) ¢ Pa=0ebeR2(1) ¥
FOR Is(2sloMel) o
BEGIN
A= w(il) s
P1=PIeR1I(TIAS P2aP2+RE( ]V 4A% PasPueR2U1)eAS
END ¢
Fl1il) = Pl,PIV ¢ F2(1) = P4L,PIV
COt1) = P2.,PIV 3 QUil) = 0.0 %
FOR | = (14s1eN)S
BEGIN

V1l = Ul2 = Ul3 = yUle » Y21 = Y22 s U23 = U224 = 0.0 3
FOR J = (M+]l4=1492)%
BEGIN
A s WiY) &
Ud]l = D6eU21-Ul1+R1(J)eA $
Ud2 = D6.U22-Ul2+RE(JI.A S
Ul D6.U23=Ul3+ROIJ}IA §
Uulae D6eU20=UL6+R2(J)eA $
Ul u2l ¢ U2l = U3l §
uls U2l s uz23 = Y3z s
END
F101+1) ={D)4U2]1 = Ull + R1(11e0e%)ePliV §
COtlI+ ) -(DL.UZ? = Ul2 ¢« RE(1)404%)PIV $
QU(I+Y) = D6e,U23.PlV $
F2¢(1+]1) =({D]1eU24 = Ulb + R2(1)1eCe5)ePIV §
D1 = CleC3-C2.04 3 D& = D&eCleC3.C2 8
(3 = D1 s D6 = 2.01 %
END 3
RETURN END S

Vi2 = V22 ¢ U22 = ulz2 s
Ul s U246 % U264 = Ude S

LI T I

NWNNNNNNNNNRNNNYNNNNNRNNRNNNNNNRNNMNNRNRORNNN RN NN NN

Fig. 5 Procedure Transform (from Ref.9)
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is to fold over the true spectrum onto the interval [0, #/At] in the way
described in Sec.2. Thus we must either choose At so small that the true
spectral density function is also zero outside this interval or prefilter the data,

as we did in Sec.2, to remove these high frequency sections.

In Sec.2 it was also shown that the effect of finite data length is to
blur the spectrum in an equivalent way to looking at it through a spectral
window of bandwidth proportional to 1/N which for fixed ratio M/N is pro-
portional to 1/M. Hence it is pointless to look for resolution in an interval
smaller than this, so that it would be pointless to choose Q larger than O(M').
Note that the bandwidth of the truncated spectral estimate is also proportional
to 1/M, so that it is automatically of the right order. The discussion of Step 4

gavea lower bound for the choice of Q.

The reason for preferring the scale logew instead of w is because it
magnifies the low frequency part which we are particularly interested in.
Plotting logefN(w, K, M) instead of fN(w, K, M) is advantageous because we have
asymptotic confidence bands for this estimate in the case of normal noise as

was noted in (4.6) in the discussion of Step 1.

4.3 Correlation Analysis

It may be preferred to compute estimates of the correlation function
and its Fourier transform rather than the covariance function and the spectral

density function, In this case the procedure is as follows.

Step 1

Choose a truncation point M which is an integer-valued function of

N such that M/N is in the order of 0.1.

Step 2
1
For each v in {0, At,. .., M At} compute N'x R(v) where R_N(v) is the

sample autocovariance function
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N -v

R =5 ) X(0) X(1+v) (4.18)
t'=1

Do this by the subroutine given in Fig. 4 for computing inner products.

Step 3
1
For v in{O, At,. . ., M At} compute the sample autocorrelation

function PN (v) where

RN(V)

N =R @

(4.19)

Step 4

Choose three numbers 0 <M1 <M2 <M3 = M <N and carry out the

remaining steps for each Mi’ i=1, 2, 3.

Step 5

Choose a number @, where Q is the number of subintervals into which

we divide the interval [0, 7/At].

Step 6
For w=0, 7/QAt, 27/QAt, ..., m/At compute the truncated normal-
ized spectral estimate ¢ (w, K, M, ) where
M .
At T v -iwv
= — k -
byl K, M) = 2 'Z | (M_)pN(v) e (4.20)
v =-M,
i
which can also be written in the form
M.
i
1 v
bl KoM = 25w § cos vek (5 oy (4.21)
v'=-M,
i
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Step 7

Plot 1oge¢N(w, K, Mi) against 1ogew for w=0, 7/QAt,..., /At and

interpolate linearly or otherwise between these points.

Discussion: the same considerations apply to the above computation
as did to the autocovariance approach. The autocorrelation approach may be
viewed as a normalized version of the autocovariance approach. It is equiva-
lent to replacing the sample series {X(t), t=A4t,..., N'At} by the sample
series

x(t) , t=At,. .., NAt

[}, 1xw]?
t=1

and then carrying out the éalculations for the autocovariance approach on this

normalized series. In a sense the vector which represents this realization of

the process has unit length,

4.4 Finding the Noise and Signal Components from the Truncated Spectral

Estimate

We must first assume that we know the frequencies of the signal
components. In another paragraph we shall show how to estimate these from

our estimate if we do not know them a priori.

We concentrate now on the case of a single sine wave of frequency W
in noise with the additional assumption that W is no nearer to 0 or 7/At than
the bandwidth of the widest spectral window in use. In other words

1 T 1
> = — - >> — .
“s>” M ’ At “sTTM (4.22)

The subsequent theory will as before deal only with normal processes.

Under these conditions we look at the truncated spectral estimate at
the signal frequency W From Theorem 7 using Theorems 1 and 2 we easily

obtain
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2

E [fN(mS,K, M)] = i KC°M + f(ws)+O(M_2) (4.23)

and similarly from Theorem 7 and Theorem 3(a) we obtain
2 2.2
+
N cov fN(wS,K, Mi)' fN(wS,K, MJ)l 7M., ij KC™f(w ) M., JI f (w )'*'O(M J) (4.24)
We now use (4.23) to separate the signal and noise components. We
look on this as an equation in which the estimates are a linear function of the

truncation point with an error term. Thus the estimates will lie about a

regression line with slope i KC2 and intercept on the fN - axis given by
f(ws), where K=§% for Parzen's kernel and K =2L_” for Tukey's kernel. Hence

by finding this regression line we can determine C~ and f(ws) at once. The
problem of fitting a regression line with correlated variables is well known

and we merely outline its solution here. Suppose we have m spectral esti-

mates corresponding to the truncation points M 1 <M2 e < Mm' Write
fN(wS’ I:<: Ml)
fN = : (4.25)
fN(wS, K, Mm)
M1 1
Mo 71 @ (4.26)
M_ 1
m

From (4.24) we obtain the approximate covariance matrix z of the estimates

fN which has (i, j)th element approximately given by

Z =X N M2K2C2f(w)+N
5 At ij

1a ki £2 (o) (4.27)

Then from (4.23) we have approximately
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2

[ ] M, i—KC (4.28)
f(ws)

from which it follows that the best linear qnbiased estimates for C2 and f(ws)

are given by

1
= KC
4 N , ,\__,—1 -1 . T—l
o) MLOL MLO] MLOA fN (4.29)
Nws
with covariance matrix
0 -1 -1
[MLOZ Ml’ol (4.30)

A nasty complication is that through z the expression (4.29) for the estimates
Cl\ZI and fN(wS) depend on the true values C2 and f(ws) of these quantities. This
means that (4.29) must be solved iteratively. Suitable starting values for the

iteration are C;=O and fN(ws) = 1in Z,the latest estimates of these quantities

are then used at each subsequent step.

We remark that even if we use a kernel which will produce a non-
negative estimate fN(ws, K, N), there is no guarantee that the estimates CN and
fN(ws) will be non-negative, We should note that we might also consider
a direct least squares or Gauss Markov estimate of the signal. However, the
method proposed above, even though it requires considerably more computa-
tion, is applicable even if the signal frequency is not precisely known or if it
is a spectral peak of very narrow bandwidth rather than a spectral line. In
addition the variance of our method is asymptotically equal to that of these

alternative estimates.
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If there is no signal present our regression line should have zero
slope as is seen from (4.23), and this test may be used in deciding if we have
chosen suitable truncation points for our estimates, If there is more than one
sine waveinthe signal, and these have frequencies between 0 and n/At sepa-
rated according to the conditions

1 1
- >> = - >> =
“s7 %177 M Yst17 %M (4.31)

then exactly the same equations apply for the determination of w, as in the
single sine wave case, in other words the signals at frequencies other than wg
have a negligible effect on the estimates at W Of course, we can always
choose an estimate with a sufficiently narrow bandwidth to satisfy (4.31), but

only at the expense of increased variance or length of sample.

For the constant term at zero frequency with

wg >> —1\1-& (4.32)

we obtain

E [£y(0 K, )] - KC? M + £(0) + O(M™?) (4.33)
instead of (4.23), and in place of (4.24) we have

N cov f (0,K, M, ) f (0,K, M. )] Mi K2C2 f(0)+2M, JI f (0)+O(M i ) (4.34)

Similarly for the on-off term of frequency =/At with

T 1
— - 5 e
At wq-l M (4.35)
we obtain
2
E[f At,K M)] chM +f( ) +OM” ) (4.36)
Ncov[f LK, M), £, 5K, M)] M2K2c2f(")+zM 1. f (—)+O(M 1
N At’ N At’ ij iji
(4.37)
101

(——ADVANCED COMMUNICATIONS * RESEARCH AND DEVELOPMENT——



ADcom

which are of the same form as (4.23) and (4.24). Of course, the regression
procedure is the same in all these cases as in the case of a single sine wave
with the change of a few constants in the equations. The simplicity of the
method rests on the fact that the part of the spectral estimate due to the signal

increases linearly with M, while the noise component is independent of M.

When a component due to a signal is very strong or very close in
frequency to another component,the approximations in the proof of Theorem 9
will not be valid, In these instances we may either look more carefully at the
arguments leading to (4.23) and (4.24), in which case we can develop regression
methods depending simultaneously on the quantities of interest at both fre-

quencies, or we can use the techniques of super-resolution in Hextlo.
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4.5 Estimates of the Derivatives of the Noise Spectral Density Function

When the frequencies of the signal components are unknown it is
necessary for us to estimate the derivatives of the quantities we have been
considering. We assume we are dealing with a discrete parameter stdationary

time series whose autocovariance function satisfies

Y VPR < (4.38)
Vo

for some positive integer p. For all integers q, 0<q< p, the qth spectral

derivative is

f(q) (-i) 7 At 1) At

o0
(w) = Z v R(v)e (4.39)

=~

and the qth generalized spectral derivative is defined to be

[e 0]
£l () = 7A— Y v IR(v) e % (4.40)
V = =00

Similarly the qtlrl generalized spectral derivatives of the truncated spectral

estimate and of the spectral window are defined as

M
q -iv
fN[q]( K, M) = A; z [vl k(l\l,[')RN(v)e @ (4.41)
v'=-M'
and
M '

Kt 10\ w, M) = % Z |v|qk(ﬁ) cos vo & 1P (4.42)

t

v'=-M

We quote theorems for these derivatives which are analogous to Theorems 7

and 9.
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Theorem 10 Given N' observations of the time series

X(t) = Ccosfw_t + ) + Y(t), t = At,...,NAt, where (i) C, v, and é

arefixedwith W # 0 or m/At. (ii) Y(t) is a stationary and ergodic normal time

series having zero mean, autocovariance function R(v), v = 0,At, 2At,... for

which Ele (v)| < % and spectral density function f(w) on [_E A—ﬁt] Then
\Y

for fixed nonnegative integers r and s, as N~ ®

[‘r’(w ko = L kDo m 4 [ kP, mma vonh) )
A

and
(r) (S) 4r_(r) (s) 2
N cov[fN (@ K M), £ wg K, M )] —K (wa,w M, )K" (w wgs s Mj)c fo)
47 (r) (s) 2 -1
+ o fAK (wa,x,Mi)K (wB,A.MJ)f M)A\ + (N ) (4.44)

and similar results hold for generalized speciral derivatives on both sides of

these equations.

If instead of a single sine wave the signal has q components, we have

as we should expect

Theorem 11 Given N' observations of the time series

X(t) = i C cos(w t +d> Y+ Y({), t = At, 2At,. ..,NAt, where (i) the
3j=0
C., w. and ¢. are fixed with C. 2 0 andQ = <w,; < ... <Ww <w =7/At,
=i’ =] b, j 2o—==1 q-1>"q

4)0 = O,Qq = 0 or m. (ii) Y(t) is a stationary, ergodic, normal time series

having zero mean, autocovariance function R(v), v = 0,At, 2At,... such that
% 'vR(v)l<oo and spectral density function f(w) on |- A—”t , BTLt . Then for
v'=-o00

fixed nonnegative integers r and s, as N- «
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(r) (s) _ 87 (r) (s) 2
N CO\{fN (wa, K, Mi)’ (w B, K, M ) T K (wa, 0, Mi)K (wB, 0, MJ.)C0 £(0)

— » M, ; )C flw,)
At 2 k Bk

gr ..(r) (s) K 2 ..,
it K (w At,M)K (BAt’Mj)qu(At)

a7 r) (s) 2 -1
" _&K (wa,x,Mi)K (wﬁ,)\,Mj)f(A)d)t+0(N ) (4.46)

and similar results hold for generalized spectral derivatives on both sides of
these equations. Using these results we may derive the following analogues

of Eqs. (4.23) and (4.24): provided pz 2 (p = 2 for Parzen, p = 1 for Tukey')
E[fg)(ws,x, M)] - -2k 1 o) 1 ) + o P "1)1ogeM) (4.47)

and provided p 2 1

NCOV{( )u) > K, M, ), (2)( > K, M. )] M K(2)K(2)C2f( )

5 (2) 2
i *J

+ M1 % ) + o D) (4.48)
s ij

where in each case we have assumed that

1 T 1
ws>>— and ——w >> —

M At M
and where K(z) is the peak curvature factor of the window defined as
(2) _ 1 1 2
K = o _fl x“ k(x) dx (4.49)
and
2 4 -1
1 )(P,K) = f“' x k(g x) k(px) dx (4.50)
o
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and
1P, M, K - 1P, LK) (4.51)
i ij
(2) = 1 1 i - l ) 1
K 397 for Parzen's kernel :a.nd(67r 3 for Tukey's.

2 1
We can now estimate C and f (ws) by regression techniques similar
to those of Sec. 4.4, The resuliing best linear unbiased estimates for C2

and f"(ws) are given by

1_4(2) .2 -1
-=K'"'C -1 -1
4 N ( (2,2>) ! ( (2,2)) (2)
y '[M3,0 L M3,0] Ms,0 L N
£ (w )
N's (4.52)
with covariance matrix
eayt 17
' 2,2 )
[MS,O(Z MB,O] (4.53)
where
" 3
M1 1
Mg o = < : . (4.54)
3
9 Mm 1
: : : (2,2) _ .
and we have the approximate covariance matrix Z with
Z(z 2 i kPP e ) oMy 1ty (4.55)

1
Through 2(2’2) the estimates fN (ws) and Clz\I are functions of the true values

of C2 and f(ws), which may be supplied approximately from the regression in
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Sec. 4.4, We see then that we have two estimates for C2 and we should
test whether the difference between them is statistically significant taking

into account the correlation between them. If the difference is significant

we must reexamine the model we have taken for the time series and also the
various approximations we have made. If the difference is not significant we
cancombine the regressions of (4.23) and (4.47) and solve them simultaneously
thus obtaining an estimate of the signal component, the noise component and
the second derivative of the noise component. To do this we need an expres-
sion for the covariance of a spectral estimate and a second derivative esti-

mate. This isobtained easily from Theorem 10 and we do not go into details.

To obtain a result of the same kind as (4.47) for the firstderivative in
the case of the simple mixed spectrum model we again use Theorem 10 to

obtain the expression

- -2
E[f(l)(w ,K,M)] -tP0 )+ cfom™) + o9 (4.56)
N "s s 2
hence we have that approximately the first derivative of the noise spectral
density is equal to the expected value of the first derivative of the truncated

spectral estimate. The covariance of two estimates is given by

3 (1)

(1)( ,K,M.)] M
§* it

Ncov[( )w JKo M, ), (p K)f (w )+O(M ) (4.57)

By the usual regression analysis on (4.56) and (4.57) we obtain the best linear

1
unbiased estimate for f (ws) as

' @)= | (“‘1’”)—1M _lm' (7“’1’)_15 ) (4.58)
fN(ws) 1Mo Z/ o o\~ N“s ’
with variance
-1 -1
! (1,1)
[MO(Z ) Mo] (4.59)
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where M0 is a column vector of ones. For the full mixed spectrum model the
results are the same provided Wy is not too near Wg_q OF @ 4y~ For the
special frequencies «_ =0 and ©q " 7/ At (4.47) becomes

(4.60)
(4.55) becomes

2(2 52) _ 87TN ME 6 (2) (2) 5 (2) 2()
ij

ij K C f(o) + 2N MJ
(4.61)

(4.56) is unaltered. For wq = 7/ At the results are the same with CO replaced

by Cq and the frequency o by 7/At.

4.6 Estimates of the Signal Frequency

Consider the simple mixed spectrum model

X(t) = Ccos(w_t + ) + Y(t) t = At, 2At, ..., NAt (4.62)
The expected spectral estimate is

flw, K, M) = %:' z cos Vwk(*;z) R(v) (4.63)

Suppose that the derivative of the noise spectral density function at a signal
frequency mp is known to have value D (for example D =0), then because of
(4.56) this will be approximately equal to the derivative of (4.63). Thus our

s
estimate w_ of w_ will be the solution of

p P M

At . sk X-
D=-5- 'Z \'r sin ve k(g7 R(v) (4.64)
v =-M

the variance of which is given by

var [w | =o' M%) (4.65)
P
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which decreases rapidly as the bandwidth of the spectral window decreases.
This suggests we should use an estimate with the least bandwidth of any, namely

the periodogram. We solve (4.64) as before and instead of (4.65) we obtain

o 8 -4.2 % -4
Var[wp] ~ 3C f (wp)N (4.66)

If the derivative of the noise spectral density is not known at the signal
frequency, there are methods for estimating both of these quantities simultane-

ously, however, we do not go into the matter here. It depends essentially on
(1)
N

all the curves should intersect in the point (ws’

(w,K,M,) i=1,2,...,m against w, then

(4.56) which shows that if we graph f i
(1)
e ).

4.7 Narrowband Signals in Noise

We shall now consider time series satisfying the following model

q
X(t) = ), Z(1) + () (4.67)

=1
where Y(t) is a noise process of the type considered above and the Zj(-) are
mutually independent processes, which are also independent of the Y(-) series.

Then

R(v) = i R.(v) +R_(v) v =0,At,... (4.68)
=1 °

and provided Ro(-) and the R (-) are all absolutely summable, we have
J

q
fw) = ), () + @) (4.69)
=1
The ZJ.(-) series replace the pure sine wavesignals and are considered to be

slightly distorted (in amplitude and phase) sine wave signals whose spectra have

pronounced peaks at the central frequencies wj.

109
L——ADVANCED COMMUNICATIONS ¢ RESEARCH AND DEVELOPMENT




ADcoy

For simplicity we carry out our analysis for the simple narrowband

signal model
X(t) = Z(t) + Y(t) (4.70)

where Z(-) has central frequency o We shall assume further that
R_(v) = £ C®h(v) cos v (4.71)
SV =3 v)c s .

where h(o) =1 and h(v) is an even, slowly varying, integrable, nonnegative
definite function. Note: h(v) =1 corresponds to a pure sine wave signal. The
more slowly h(v) - 0 as v— ©, the narrower will be the bandwidth of the
narrowband signal. Since h(v) is a weight factor for the autocovariance (4.71)
we can define the bandwidth of the signal by analogy with the bandwidth of a

spectral window by making h(v) correspond to k(ﬁ). Thus

B_ = —Li (4.72)

S At o8]
E—Z h(v)

Using the truncated spectral estimate { (w , K, M) we wish to find estimates of

f (w ), %Cz and BS. By analysis of the type we have so often used before, we
arrive at the expression
At 2 Z‘ v
= — =) +
E[fN(wS,K, M)] a7 C h(v) k() fo(ws) (4.73)
v'=-M'
proVided Kl/l_ Ko, << A_”t - ﬁ . When M is sufficiently small h(M) is almost

unity so that (4.73) is approximately

4

Elf K, M ~ At .2 v 4.74
N kM) =gt ) KD+l (4.74)
M
~lgce?M4t ) (4.75)
4 o s :
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. 2
from which estimates of %C and fo(ws) by the regression methods of previous

paragraphs. Here BS is much smaller than B so that the narrowband signal
looks like a pure sine wave. On the other hand, if there are sufficiently large
values of M so that k(ﬁ) is almost unity while h(v) is small (4.73) becomes
approximately

2
_ At 2 ~1cC
E[fN(ws, K, M)] = 37 C Eh(v)+fo(ws) 1 _BS +f0(ws) (4.76)

v's o
from which we may estimate BS since we already have estimates of -;—Cz and
fo(ws). However, as M increases so does the variance of the estimates
fN(wS,K, M) so that these estimates of Bs must be regarded with caution. This
occurs because in this case B is much smaller than Bs so that we are essen-

tially estimating the spectral density function at the signal frequency.

4.8 Stagewise Autoregressive Estimation
The idea behind this is to attempt to find constants Ayseeesa, for
some integer p, such that Eq. (3.25) holds. That is
X(t) = i a X(t - 8) + €(t) (4.77)

s'=1

where €(t) is a white noise process. We do this by a stagewise procedure,
picking the constant at each step which reduces the variance of the estimate
by the greatest amount. The time series need not satisfy an expression of
the form (4.77) and we may find in that case that our procedure does not
terminate. However, if it does terminate, from Eq. (3.26) we obtain at
once an analytic formula for the spectral density function f(w), and thus an
approximation to the spectral density function of the process X(:). Having
determined the coefficients ajseees ap we must check to see if the residual

series

111




ADcom

X(t) - i as' X(t - s) (4.78)
s'=1

is in fact approximately a white noise process. To do this we must carry out

a spectral analysis of it.

Our stagewise procedure will be given below. It is based on the fact

that if X(-) satisfies (4.77) for each t in {At,...,NAt} thenthe a,..., 2,
satisfy the normal equations

i R(v - 8) ag = R(v), vi=1,...,p (4.79)

s'=1
In practice we cannot find R(v) but only the consistent estimate RN(V).
However, the solutions Braeees ap of the estimated normal equations

p

- - 1 =
Z R (v -s)a R (), vi=1,...,p (4.80)

s'=1

are consistent estimates of the solutions of (4.79). In order to keep the compu-
tations within practical bounds we shall assume that we do not seek models with

p greater than 50.

The steps of our computation are as follows. First we compute the

estimated autocorrelation function

RN(V)
pN(v) R (o) (4.81)
N
for v = At,...,pAt and we form the stiatistic
2 i 2

v'=1
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If pf is essentially zero we go no farther since this means X(t) is approxi-
mately independent of X(t - s), s' =1,...,p. On the other hand, if pf is

different from zero, we choose s, such that

1
2 2
pN(Sl) = max {pN(v), 1=v's p} (4.83)
and we form
X, () =a  X(t-s) (4.84)
1 1

for all t in {(s'1 +1)At, ..., NAt}, where a is the solution of the estimated

normal equation

R(o) asll = R(Sl) (4.85)

Next we calculate the estimated autocorrelation function le(v) of X, (t) for
1

v' = At,...,pAt, and we form the statistic

P
2 2
Py = Z PN (v) (4.86)
vi=1 1

v')és'1

2
If Py is not significantly different from zero we halt. At this point we have the

approximate representation

X(t) =a_, X(t - s,) + e(t) (4.87)
s1 1

where €(t) has to be analyzed to see if it is approximately awhite noise process.

However, if p; is significant, proceed to the second step. We choose 52

such that

plz\I (52) = max{plz\I (v),1svtsp, v' # s'l} (4.88)
1 1
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Note that the as

approximate representation

and so on.
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, in (4.89) is not the same as in (4.84).

X(t) = as'1 X(t - Sl) ta, X(t - SZ) + €(t)
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X (t) =a_, X(t-s)t+ta_, X(t-s,)) (4.89)
sls2 s:1 Sy 2
where as, s as' are solutions of the normal equations
2
+ - =
R(o) a R(s1 sz) aS|2 R(sl)
(4.90)
- -+ =
R(s, sl) a, R(o) a, R(s2)

2

This gives us the

(4.91)
2

A program which carries out this procedure is given in Fig. 6.
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PROCEDURE SELECTL R{)s Ko L SCOF(IsINI()y NC )3 SEGIN

COMMENT THIS PROCEDURE COMPUTES THE BEST FITTING AUTO-REGRESSIVE
COEFFICIENTS FOR A TIME SERIFC wITH SAMPLF CORRELATION FUNCTION R{)
OF TRUNCATION POINT Ko L IS THE LENGTH OF THE TIME SERIESs USED FOR
CCMPUTING DEGREFS OF FREECOM, THE NC SIGNIFICANT COEFFICIENTS
ARE RFTURNED IN COF() wITH THEIR INDICFS IN IN()e REFERENCES 1)
EFROYMSON WMy As s tMULTIPILE REGRESSTON AMALYSTIS', IN "MATHEMATICAL
METHODS FOR DIGITAL COMPUTERS'EDITED BY RALSTONsAe AND WILFsHeSes
WILEY, 1962 §

GLOBAL Aly) $

INTEGER Teees Jooes Feeoy Loeoesr Mooes Noese $

ARRAY CB(72) $

ARRAY CHI2(52) =(6463y 94213 11¢3y 1243, 1541y 16689 18654 200ls 21070
23629 24oTy 26029 2767y 291y 3046y 30Ny 33,4, 348y 36629 3766
38.90 ‘00.3. ‘0]06' ‘03.0. 4443y 454K 4740 ‘09.30 49.6. 5069, 5?.20
5345 5‘0.8' 560‘,. 5703' 58.6. 5999 61e2, 62.“9 63.7. 65000 6602'
6T7e59 6847y TNa0s T1e2y 72eby 7347y ThaeQy 7629 TTely 7846 ) 3

TOL = (001 ¢ N = K+1 % F2 = €4635 % KP =0 %
COMMENT PLACING THF COVARIANCE FUNCTIOM IN THE MATRIX $
FOR I=(1s1sN) $

BEGIN
Allsl) = 1.0 $
FAR J=(le1sl=1)F A(leJ} = A(Js]l) = R(l=JU+1})%
FND $
FIVEss
F1 = CHI2IK - KkP V & PHI = L - ¥xP =1 ¢ RTOT = 0.0 %

VMIN = 2#30 ¢ VMAX = (.0 % NMIN = NMAX = 0 §
FOR 1=(1419K) % IF (A(CTIsI) GIR TOL 1%
BEGIN
V 2 (A(TsN)IJAINSTIIZALTWI) 3
IF V GTR Q0.0 $ RTOT=RTOT+V $ COMMENT I NOT IN MODEL $
ETTHFER IF (V LSS 0,0) % COMMENTY T IS IN MODEL $
REGIN
CRB(I}=A(1sN) $
IF (ABS(V) LSS ARS(VMIN) )% (VMIN= VS NMIN= 8% )%

FND 8
OR IF (V GTR VMAX)S (VMAX= V$ NMAX=]% CB(]l,= N,N%)%
OTHERWISE $ CR(I)Y = D.0 %
ENDS

EITHER 17 ABSIVMIN) LSS F24A(NN)/PHI % (K1=NMIN ¢ KP=KP=13 )%
OR IF RTOT GTR Fle(A(NyN)/PHI)S (Kl = NMAX & KP=KP+] % )%
OTHFRWISES GO TO ALM §
COMMENT WE COMPUTE THE Nfw MATRIXe. IF K1 = NMIN THEN WE ARE DELETING A
VARIABLE. IF K1 = NMAX WF ARF ADDING A VARIABLFe IN FITHER CASE THF
COMPUTATIONS ARE THE SAMEF $
PIVOT = 160/ A(K1WKl) &

FOR JU=z(1s19N)S A(KTsJ) = A(K14J)ePIVOT $ COMMENT CHANGE PIVOTROWS
FORP Ix(1,1sN)§ IF | NFO K1 8
BEGIN

TEMP = A(l,K1)$
FCR J3{1s1aNIS AllsJ)s A(lsJ)l= TEMPJA(K]1yJ)S
A{ToX1)a=-TEMP,PIVOT $
ENDS
A(Klokl) = PIVOT $
GO TN FIVE $
AlLMeo
NC =n $
FOR I=(Ke=191)%
IF (CB(I) NEQ 0,0)3% (NC=NC+1% COF(NCI=CBI(])S ININC)=K-1+1%)8%
IF NC GTR 20 & NC = 20 %
RETURN END §

NNNNNNNOMRNNMRNAONRONONRNNNRNNOMNNRNRORNNRNONN NI IONNNNNNIMNANN N ONN NN IR NN N NN R A

Fig.6 Procedure Select for Stagewise Autoregression (from Ref. 9).
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5. CONCLUSIONS AND RECOMMENDATIONS

We have presented in detail various techniques for the extraction
of oscillator fluctuations, and for the estimation of the fluctuation spectra
from the extracted fluctuations. The choice of techniques to be used for the
study of a particular oscillator depends on the properties of the fluctuation
spectrum and the limitations of the various extraction techniques. Adequate
information on these two factors is not available at this time, hence it is not
possible to recommend a single complete procedure that would reduce the
problem of spectral measurement of oscillator fluctuations to routine opera-

tions.

It is clear that the next logical step in a continuing effort in this
area would be to judiciously utilize some of the techniques presented here to
determine the limitations of the extraction techniques and the properties of
some fluctuation spectra, and then modify the procedures to utilize the new
information. It is possible to recommend a complete test program to achieve
this purpose, as follows. Use the phase-locked loop technique (Fig. 2¢c )with
an automatic spectrum analyzer to cbtain the fluctuation spectrum of the oscil -
lator under test down to about 10 Hz. Also, measure the residual fluctuation
spectrum with the loop in common mode, as explained in Sec. 2.1 above to
ensure that the internal VCO fluctuations are sufficiently small. Then, use
the phase-detector technique (Fig. 2b) to extract the phase fluctuations for the

high and medium regions.

For the high region, use an analog filter on the output with a cutoff
frequency at about 50 Hz and a roll-off in excess of 12 dB/octave. Sample
and quantize the output every 5 ms, and record the samples on punched-paper

tape (if the recorder is fast enough) or on magnetic tape. Take several records,
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each 10,000 samples or 50 seconds long. For the medium region, use an
analog filter on the phase-detector output with a cutoff frequency at about

0.5 Hz and roll-off in excess of 12 dB/octave. Sample and quantize the
output every 0.5 second, and record the samples on punched-paper tape. Take
several records, each 10,000 samples or 5, 000 seconds long. In the initial
experiments, it is best to postpone taking data for the low region in order to
avoid the added complexity of digital filtering. Also, take similar data for
the residual fluctuations with phase detector operating in common mode, to

ensure that the internal fluctuations are sufficiently small.

Next, use the computational procedure given inSec.4.1 to estimate
the spectra in each region for each record. Use the Parzen Kernel (Eq.(3.77))
in the computations of Step 5. The Cooley-Tukey method for implementing
Eq. (4.2) on the computer should be considered, since this method is presently
available in the form of standard subroutines for some computers. Experi-
ment with the computational parameters M, N, Q and observe the choice yielding
most consistent estimates. In particular, choose M/N = 0.1, 0.2, 0.3 and
0.4, and Q/N = 0.4. Similar records should yield close estimates. Further-
more, the estimates in the overlapping decade between two adjacent regions

' in the

should agree closely. Look for hidden periodicities (i.e.,''signals,'
language of Secs. 3 and 4). If any are suspected, then the more elaborate
techniques of Secs. 4. 4-4. 7 may be used to estimate their frequencies and

magnitudes.

118
ADVANCED COMMUNICATIONS ¢ RESEARCH AND DEVELOPMENT——




A%OM

NOTATION FOR PART II

X(-)

s,t time variables

At time between samples

s', t! integers s'= Est_ , th= Etg

N duration of sample

N' integer N' = N/At

T domain of X(-)

m(-) trend or signal

Y(*) noise time series with zero mean

gk( *) components in m(-)

q number of components in m(-)

Ck,wk,«i)k amplitude, frequency, phase of £.()
R(*) autocovariance function of X(-) (and Y(:.))
p(+) autocorrelation function of X(-) (and Y(-))
v variable in domain of R(*) and p(-)

v! integers v' = v/At

\% domain of R(*) and p(-)

F() spectral distribution function of X(*) (and Y(-))

spectral density function of X(:) (and Y(*))
normalized spectral density function of X(-) (and Y(-))
spectral jump function of X(-)

variable in domain of F(-), £(.), $(-) and J(-)
autoregressive coefficient

order of autoregressive scheme

white noise process
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Mi truncation point in domain of R(-) and p(-)

Mi' integer Ml' = Mi/At

E or E[-] expectation operator

var [ ] variance operator

cov [ ] covariance operator

mN( ) estimate of m(-) based on sample of duration N
fN(-) estimate of f(-) based on sample of duration N
¢N( *) estimate of §(+) based on sample of duration N

f.(.,.,.) truncated spectral estimate based on sample of duration N

¢N( .».,.) normalized truncated spectral estimate based on sample of duration

N
RN( -) estimate of R(:) based on sample of duration N
Ri‘\‘l(-) unbiased estimate of R(-) based on sample of duration N
pN(-) unbiased estimate of p(-) based on sample of duration N
Q number of subdivisions of Q
A(-) spectral window
a(+) covariance window
Tf generalized function corresponding to f
Bg(-) bandwidth
k(-) window generating function

K(.,.,.) spectral window

A variable in domain of K(., ., .)

A domain of K(.,.,.)

K peak height factor

VBW(-) variance -bandwidth factor

r characteristic exponent

k (r1(-) characteristic coefficient

£ldl(.) generalized spectral qth derivative
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”ij truncation ratio
Mij mean truncation point
f(.,.,.) expected spectral estimate
z approximate covariance matrix, 3.. element of T

1,1) N(1,1) (1,1)
Z}( approximate covariance matrix, L..” "elementof &’
2(2’ 2) approximate covariance matrix, E(f],’ 2) element of 2(2’ 2)
flgqj(. , -, .) generalized spectral qth derivative of truncated spectral estimate

[a] . th . .
K"*(.,.,.) generalized spectral q derivative of spectral window

(r) th s :
fN (.,.,.)r  derivative of truncated spectral estimate

h

K(r)( ca e s rt derivative of spectral window
m number of spectral estimates
K(z) peak curvature factor
I..

1)

(1) (1)
Iij 7,0 integrals

(2)

L., (.., T, .,s)

MO m X 1 vector of ones
X .
Ml, 0 m X 2 matrix
D value of derivative of noise spectral density

ZJ.(-), Z(.-) narrowband signals

Rj(') autocovariance of ZJ.(')
Ro( :) autocovariance of Y(-) in presence of narrowband signal
fj( -) spectral density function of Zj( *)

21
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fo(') spectral density function of Y(*) in presence of narrowband signal
ﬁs bandwidth of narrowband signal
p?,pi autoregressive statistics
XS ( : ):
1 first- or second-order autoregressive models
Xs s ()
172
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