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FORE WORD 

The ballistic missile reference trajectory problem or the guidance 

and control problem for the maneuvering reentry vehicle in the case 

of advanced ballistic missiles all require the solution of the control 

problem for a time interval unknown beforehand, 

important and basic problem in many A i r  Force applications yet 

little has been done to date on the solution of the problem of devel- 

oping efficient algorithms for  the solution of this problem. 

report is concerned with the results of a study in this general area 

and contains a number of new interesting algorithms and techniques 

including the results of computational studies supporting all the0 - 

retical results. 

This is an 
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author. 

This document i s  subject to special export controls, and each transmittal to foreign 
governments or foreign nationals may be made only with prior approval of Ballistic 
Systems Division (BSOMS/STINFO), Norton AFB, California. 

ii 



TABLE OF CONTENTS 
Page 

LIST OF SYMBOLS 
LIST OF TABLES 
LIST OF FIGURES 

CHAPTER 1 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . .  
CHAPTER 2 

OPTIMAL CONTROL THEORY . . . . . . . . . . . . . . . . .  
2 . 1 Mathematical Formulation of the Optimal 

Control Problem . . . . . . . . . . . . . . . . . . . .  
2 . 2 Pontryagin' s Maximum Principle . . . . . . . . .  
2 . 3  Derivation of H = 0 Necessary Condition . . . .  

CHAPTER 3 

COMPUTATIONAL ALGORITHMS FOR SOLUTION OF 
THE FIXED TIME PROBLEM . . . . . . . . . . . . . . . . .  

3.1 The Two-Point Boundary Problem . . . . . . . .  
3.2  Sequential Optimization . . . . . . . . . . . . . . .  
3.3 Quasilinearization . . . . . . . . . . . . . . . . . . .  
3.4 Numerical Results . . . . . . . . . . . . . . . . . . .  
3 . 5 Bounded State Variable Problem . . . . . . . . .  

CHAPTER 4 

USE OF H = 0 NECESSARY CONDITION TO SOLVE THE 
VARIABLE TIME PROBLEM . . . . . . . . . . . . . . . . . .  

4 . 1 Computational Algorithm . . . . . . . . . . . . . . .  
4 . 2  Numerical Example . . . . . . . . . . . . . . . . . .  
4 . 3 Discussion of Numerical Results . . . . . . . . .  

V 

vi 
vii 

1 

4 

13 

13 

14 

19 

21 

29 

36 

36 

40 

43 

iii 



TABLE OF CONTENTS (Continued) 
Page 

CHAPTER 5 

SUFFICIENT CONDITIONS FOR A VARIABLE TIME 
LOCALMINIMUM . . . . . . . . . . . . . . . . . . . . . . . . . 

5. 1 Development of Sufficient Conditions. . , , . . , 

5 .  2 Computational Algorithm. . . . . . . . . . . . , . , 
5 .  3 Numerical Example . . . . . . , . . . . . . . . . . . 
5 . 4  Discussion of Results.  . . . . , . , , . . . , . , . . 

' 

4 8  

4 8  

50  

5 4  

56 

CHAPTER 6 

THE VARIABLE END POINT PROBLEM . , . . . . . . , . 6 4  

6 .  1 Theoretical Background . , . , . , . , . . . . . . . 6 4  

6 . 2  Computational Algorithm. . . . . . . . . , . . . . . 6 6  

6 . 3  Numerical Example , , . . . . . . . . . . . . . . , . 6 8  

6 . 4  Numerical Results.  . . . . . . . . , . . , . . . . . . 7 1  

6 .  5 Sufficient Conditions for a Local Minimum. . . 7 3  

6 . 6  Moving End Point Problem . . . . . . . . . . . , , 76  

CHAPTER 7 

SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 82 

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

APPENDIX I 

DERIVATION OF EQUATIONS FOR NUMERICAL 
EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

, 

APPENDIX I1 

DIGITAL COMPUTER,PROGRAM . . . . . . . . . . . . . . , 93 

iv 



LIST OF SYMBOLS 

X n -dimensional state variable vector 

n -dimensional adjoint vector 
- 
!4 

r -dimensional control vector 

(d/dt)  

initial condition on adjoint vector 

terminal condition on state variable vector 

time 

T final time 

12 1 1 %  1 n-dimensional vectors with components aH/i3@ 

a H /  axi, respectively 
i 

nxn matrices with elements a 2 H/axiW., 
1 2 a H/ax.ax respectively 

1 j ’  

nxn matrices with elements ax. / a x  afi. / ax  
1 j’ 1 j’ 

respectively 

nxn matrix with elements Y [YI i j  

t T  transpose of matrix, vector, respectively 
I 

superscripts refer to iteration number 

subscripts refer to  component number 

absolute value 

is an element of 

is a subset of 

V 



LIST OF TABLES 

Page 

4.3.1 S(T) and H vs.  T . . . . . . . . . . . . . . . . . . . . . . . .  45 

5.4 .  1 H, aH/BT, and a H/BT VS. T . . . . . . . . . . . . . . .  58 2 2 

v i  



LIST OF FIGURES 

Page 

3 . 4 . 1  

3 . 4 . 2  

3 . 5 . 1  

3 .  5 . 2  

3 . 5 . 3  

4 . 3 . 1  

4 . 3 . 2  

5 . 4 . 1  

5 . 4 . 2  

5 . 4 .  3 

6 . 4 .  1 

6 . 4 . 2  

Fixed Time Optimal Trajectories, Unbounded 
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Fixed Time Optimal Trajectories, Bounded 
Control . . . . . . . , . . . . . . . . . . . . . . . . . . . . 
Fixed Time Optimal Trajectories, Unbounded 
State Variables . . . , . , . . . . . . . . . . , . . . . . , 

Fixed Time Optimal Trajectories, Bounded 
State Variables , . , , . . . . . . . . . . . . . . , . . . . 
Optimal Trajectories Bounded Control and State 
Variable . . . . , . . . . . . . . . . . . . . . . . . . , . . 
Minimized Criterion Function and Hamiltonian 
vs .  Final Time . . . . . . . . . . . . , . . . . . . . . , , 

Variable Time Optimal Trajectories, Unbmnded 
Control . . . . . . . . . . . . . . . . . . . . . . , . , . . . 
H, aH/aT, and a H/BT vs. Final Time.  . , . . : , 

Variable Time Optimal Trajectories, Bounded 
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 2 

Variable Time Optimal Trajectories, Bounded 
State Variables . . . . . . . . . . . . , . . . . . . . . , . 
Minimized Criterion Function vs.  End Point. . , . 

Variable End Point Optimal Trajectories . . . . , , 

2 4  

2 8  

32  

33 

35 

44 

47 

57 

6 1  

6 2  

7 2  

7 4  

vii 



CHAPTER 1 

INTRODUCTION 

The basic function of the engineer is the design of systems 

which not only will perform a desired task, but wi l l  perform it in  

some optimum or "best" manner. 

problems, this design relies heavily on approximate methods and 

engineering intuition, since many problems a re  not formulated in a 

manner so that they are amenable to rigorous analysis. 

lems, however, do have a very precise mathematical formulation, 

and thus very rigorous mathematical techniques may be developed 

for solving them. Such is the problem of optimal control. 

In some types of engineering 

Some prob- 

The classical problem of optimal control involves the 

determination of a control which wi l l  transfer a given system de- 

scribed by a set of differential equations from one state to another 

in such a way that some performance criterion is minimized (or 

maximized). In such problems, the final time may be fixed or it 

may be variable. For  each fixed time, an optimal control may be 

determined which minimizes the given performance criterion. The 
variable time problem involves finding that final time for which the 

minimized performance criterion is minimal over all other final 

times. 

The mathematical theory for  the formulation of necessary 

conditions for the solution of optimal control problems is already 

well developed in the literature. 

ical calculus of variations to the more recently developed 

Pontryagin' s maximum p r i n ~ i p 1 e . l ~  The application of this theory 

to complex problems is extremely difficult and often analytical solu- 

tions a r e  impossible. 

This theory ranges from the class- 
6 
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With  the development of high speed digital computers, 

there has been considerable investigation into the development of 

computational algorithms f o r  the solution of the two -point boundary 

value problems resulting from the application of the general optimal 

control theory. Such techniques a s  quasilinearization, sequential 

optimization, steepest descent, and methods employing the second 

variation a re  well reported in the literature. 

10 
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3 

However, the criteria used to determine the optimum in 

such techniques as Pontryagin' s maximum principle a r e  merely 

necessary conditions rather than sufficient conditions. 

it is assumed that solutions obtained using such necessary conditions 

a r e  indeed optimum because if  one knows that a minimum (or maxi- 

mum) of the performance criterion exists, and that only one solution 

exists which satisfies the necessary conditions, then this solution 

must be the desired optimum. This assumption is generally valid 

for the fixed time problem when one is merely looking for a solution 

to a set of differential equations which satisfies given boundary con- 

ditions for a fixed time. 

additional necessary condition that the Hamiltonian H = 0 may be 

satisfied for many different final times, as will be demonstrated in 

the chapters to follow. 

In general 

However, in the variable time problem, the 

In most of the computational algorithms thus far developed 

for solving variable time problems, the time is varied continuously 

while the solutions of the differential equations a r e  being iterated 

toward the desired boundary values. 

variable time problem by considering a ser ies  of fixed time prob- 

lems, i. e . ,  by first determining the optimum and solving the bound- 

ary conditions f o r  a fixed time before varying the time to  get an 

improved optimum, one gets a better insight into the problems 

However, approaching the 
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involved in using the H = 0 necessary condition. This paper wi l l  

consider this approach to the variable time problem, and wi l l  develop 

computational techniques employing sufficient conditions for a local 

minimum for the variable time problem. 

Chapter 2 concerns a brief mathematical treatment of 

Pontryagin' s maximurn principle and a derivation of the H = 0 con- 

dition for variable time optimum. 

In Chapter 3,  two computational algorithms f o r  solving the 

fixed time problem, sequential optimization and quasilinea ri zation, 

a r e  described. A numerical example is given and computational 

results for each algorithm are  discussed. 

In Chapter 4 a computational algorithm is developed which 

extends the two algorighms discussed in Chapter 2 to the variable 

time problem. This algorithm employs only the H = 0 necessary 

condition and solves the variable time problem as a ser ies  of fixed 

time problems. 

Chapter 5 extends the method of Chapter 4 by adding suf- 

ficient conditions for a local minimum over all final t imes of the 

minimized performance criterion for various fixed final times. 

In Chapter 6 the variable end point problem is considered, 

and a computational algorithm employing the transversality condition, 

the standard necessary condition for a variable end point optimum, is 

developed. It is shown that in using this necessary condition one en- 

counters the same kind of problems a s  in using the H = 0 condition. 

Chapter 7 presents conclusions and recommendations for 

future work. 



CHAPTER 2 

OPTIMAL CONTROL THEORY 

2 .1  Mathematical Formulation of the Optimal Control Problem 

We a r e  given a system whose state is described by the n-  

dimensional vector differential equation : 

x = f (x,u) ( 2 . 1 . 1 )  - -  
where 

x - = x(t)  - is the n-dimensional phase coordinate vector 

- u = u(t)  - is the r-dimensional control vector 

( ’  ) represents differentiation with respect to the inde - 
pendent variable tim e. 

The state variable Equation (2.  1. 1) is subject to the bound- 

ary conditions : 

where the final time T may be a fixed quantity in  the given condi- 

tions or a variable in the optimization process. 

We a re  also given a performance criterion or cost func- 

tional of the form: 
T 

J(u) = 1 fo[x(t), u(t)]dt 
0 

(2. 1 . 2 )  

The functions fi(x, u), i = 0 ,  1, 2, . . , n, must be continuous 

and con- functions of the variables xl, x2, . . , ,xn  and u 1’ * * ’ , ur 

tinuously differentiable with respect to xl, x2, . . . , xn. 

The r -dimensional control vector u - (t) is constrained to 

lie in some subset U of the r-dimensional Euclidean space E r 

4 



(i. e . ,  u E U c  E ). The space U may be equal t o  the space Er ,  in 

which case the problem becomes the unbounded control problem, o r  

may be a proper subset of E 

bounded control problem, 

r - 

in which case the problem is the r '  

The optimal control problem is to  find the admissible 

control (u E U) which transfers the system from the given in i t id  

state to the given terminal state in such a way that the performance 

criterion is minimized ( o r  maximized), 

- 

2 . 2  Pontryagln' s Maximum Principle 

The methods of solving the optimal control problem to be 

used in this paper w i l l  be based upon the necessary conditions for an 

optimum given by Pontryagin, which will now be discussed here. 

In order to formulate the maximum principle, we must 

add to our original system a coordinate given by: 

thus giving a final n + 1 dimensional system 

xi = fi(x,u) i = 0, 1,2,  . . . n  ( 2 .  2 . 2 )  

We must also define a new n + 1 dimensional vector 

differential equation adjoint to our original system: 

We further define the Hamiltonian: 
n 

H(+,x,u) = f T *  rl/ = $ f (x,u) a a  - - 
CY=0 

( 2 . 2 .  3) 

(2 .  2 . 4 )  

It may easily be shown from ( 2 .  2 .  21, ( 2 .  2 .  3) and ( 2 .  2 . 4 )  

that : 
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ddJi aH - =  - -  
ax 

i dt 

Finally let us define: 

i = 0, 1,. . . n  

M(@, x) = max H(@, x, u) 
U€U 

i = 0, 1,.  . . n  

(2 .2 .5)  

( 2 .  2.6) 

(2 .  2.7) 

15 We a r e  now ready to state the maximum principle, 

Theorem: Let u( t ) ,  - 0 5 t 5 T, be an admissible control 

which transfers the state of the system (2 .  1. 1) from x - -  = x(0) to 

x - -  = x(T).  

that there exist a nonzero continuous vector function - @(t) defined 

by ( 2 .  2.  3) such that: 

In order that u( t )  - and x( t )  - be optimal, it is necessary 

1. For every t, 0 5 t 5 T, the function H(@, x, u) of the 

variable UEU attains i t s  maximum at the point 

u = u(t): 

2. @o(t) 5 0 M(@,x) = 0 

for all t .  

( 2 . 2 . 9 )  

This is the formulation of the maximum principle for 

variable T. If T is fixed, the condition H(@,x,u) = 0 is removed, 

but H must still be a constant. 

A condition on @ (t) may be determined. From (2 .  2 . 9 )  

we know that @ (t) 5 0. Since x does not appear explicitly in the 

fi(x, u), we see from ( 2 .  2.4) and (2. 2.6) that Ic/o' 0 and thus Q0= 

constant. Furthermore, since @o is the term which multiplies 

0 

0 0 
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x 0’ which is the derivative of the quantity to be minimized, ~o may 
be of arbitrary magnitude, since multiplying a function to be mini- 

mized by a constant does not affect the minimization problem. 

f o r  convenience we may take: 

Thus 

= - 1 (2 .2 ,  10) 

2. 3 Derivation of H = 0 Necessary Condition 

Since we are  considering the variable time problem, it 

will  be instructive to go through the derivation of the H = 0 condition 

in order to determine the implications of i t s  being a necessary 

rather than a sufficient condition. 

(2 .  2. 1): 

Let u s  consider the performance criterion given by 

T 
P 

J(u,  T, X) = 3 f [x(t), u(t)ldt 
0 

0 

where X = x(T)  - is the terminal state of the system, Let us define 

S(T, X) = J(U, T, X) (2 .  3. 1) 

where u is the optimal control which minimizes J for the given T 

and X. 

Let us consider the difference 6s between S for a given 

T and X and S evaluated for some T + 6T: 

6s = S(T + 6T, X) - S(T, X) 
T + 6 T  T 

= 1 
T 

f (x+6x, ;+Gu)dt -1 f (x,u)dt 
0 0 

0 

T + 6 T  =l f (x+6x, u +  6u)dt 
0 

T T +I [f (x+ 6x, u + 6u) - fo(x,u) dt 
o o  1 (2. 3. 2) 



8 

It should be noted that in varying the final time T by 6T, it is 

necessarytovary _x(t) and u( t )  - by 6x(t)  - and 6u(t)  - respec- 

tively over the whole length of the trajectory in order to hold the 

final state X constant. 

If we expand fo(x + 6 x, u + 6 u) in a Taylor Series about 

x and u - , and neglect second and higher order terms,  we obtain - 

6u ] dt ( 2 .  3 ,  3) 6s = fo(x, u) l6T +l - 6xi+ au 0 
C Y C Y  

af 
0 

af 

axi 

T 

CY t =T 

where the indices i and CY vary over n and r, respectively. 

Let us first consider the unbounded control case; we w i l l  

then show how the development may easily be extended to the bounded 

control case. 

From the maximum principle, we know that for an opti- 

mum, the Hamiltonian: 

where rc/ = - 1 has been substituted, must be a maximum over u. 

If we assume that an optimum u exists and that it is unique, this 

maximum occurs at: 

0 

C Y =  1 , 2 , . , , . r  

but 

( 2 .  3.4) 

o r  

(2 .  3 . 5 )  
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0 

CY 

af 

au If we substitue ( 2 . 3 .  5) for - into ( 2 .  3 .  3), we obtain: 

6s = fo(x,u) I 6T 
t =T 

+ f  0 
0 ( 2 .  3 . 6 )  

af 

ax. 1 CY 
CY i 1 

We now examine the perturbations about our given state 

variable equations & - -  = f (x, u): 

( 2 ,  3 .7 )  d % ( E +  6 x )  - = f ( x + 6 x ,  - u +  au) 

Again expanding in a Taylor Series and neglecting second 

and higher order terms:  

6x. = f.(x+bx, u+6u) - f .(x,u) 
J J  J 

af  af 

ax. 
j 6u 

CY 
= c  ""xi+c, 

i 1 C Y C Y  

( 2 .  3.  8) 

where j ranges over n. 
a fi 

If we solve (2 .  3 .  8) fo r  au 6u and substitute it into 
CY 

C Y ( Y  

( 2 .  3 .6)  we obtain: 

6s = fo(xJu) I 6T 
t =T 

But, from (2 .  2 .7 ) :  

( 2 .  3. 10) 
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Substituting into (2.  2. 9) 

T 

t=T 
(2. 3. 11) 

By our problem formulation, the 6x,(O) = 0. Let - J(t) 
'+1 

be the optimum trajectory for final time T and 2 - (t) be the 

optimum trajectory for the final time T + 6T. 

problem formulation : 

Again, by our 

(2 .  3 .  12) j+l  
- j - x (T) = x (T+6T)  = X 

But, to a first order approximation: 

. j + l  
"'(T) + x (T) 6T j + l  

- x (T+6T)  = x  - - (2. 3. 13) 

Thus: 

or 

xj+'(T) - - x - (T) = - - xj+'(T) 6T = 6x(T) - (2. 3. 14) j 

Therefore, substituting 6x = - f.(x,G) 6T into (2.  3. ll), i 1 

we obtain: 

Dividing by 6T and letting 6T + 0: 

(2.  3. 15) 

(2. 3. 16) 
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16 This development applies only to unbounded control, by 

virtue of our use of (2.  3. 5). However, i f  our control is bounded, 

(2.  3. 5) does not apply during that portion of the optimum trajectory 

for  which the control is bounded. Aiso, during this portion of the 

trajectory, 6u = 0. Thus, (2.  3 .6 )  becomes: 
CY 

Also, (2.  3. 8) becomes: 

or 
af. 

If we multiply (2.  3. 18) by I)i and sum over i : 

af. 

( 2 .  3. 17) 

( 2 .  3. 18) 

(2.3.19) 

We can add (2 .  3. 18) to (2 .  3. 17) without changing the value 

of (2.  3. 17) in which case ( 2 .  3. 17) becomes equivalent to ( 2 .  3 .9 )  for 

the unbounded case, from whence the derivation of ( 2 . 3 .  16) for 

bounded control proceeds exactly as for the unbounded case, 

Equation (2.  3 .  16)  is, of course, the Hamiltonian-Jacobi 

equation from the Calculus of Variations. However, its relation to 

Pontryaginf s necessary condition for a variable t ime optimum has 

never been properly explored. 

If we consider a graph of S(T, X) vs. T for fixed X ,  that 

i s ,  i f  we consider a graph of the values of the minimum performance 
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criterion for each fixed time T plotted as a function of T , the 

Hamiltonian H is the negative of the derivative with respect to T 

of this curve. Thus the condition H = 0 for a minimum of S(T, X) 

is a necessary condition in the same sense that the condition that the 

derivative of a general function be zero is a necessary condition for 

the minimum of that function. However, the condition H = 0 will  

thus also hold for a local maximum of the function S(T, X), and any 

computational algorithm employing only the H = 0 condition for 

variable time optimum can yield such a local maximurn i f  it eldsts. 

In the chapters to follow, an example wi l l  be given in  which both a 

local minimum and a local maximum of S(T, X) do indeed exist (in 

fact, for which several such local maxima o r  minima exist). 



CHAPTER 3 

COMPUTATIONAL ALGORITHMS FOR SOLUTION 
OF FIXED TIME PROBLEMS 

3 .  1 The Two -Point Boundary Problem 

There is no particularly great mathematical sophistication 

required in writing out the various mathematical expressions called 

fo r  in the application of the maximum principle to a given problem; 

even in problems of great complexity, deriving the expressions for 

the adjoint equations, the Hamiltonian, and the optimal control pro  - 
gram requires only basic calculus. However, the solution of the 

resulting differential equations, even for very simple problems, is 

often impossible analytically. Furthermore, due to the fact that the 

boundary conditions on the differential equations a re  not given for all 

the equations at the same time instant, (i. e . ,  the classical two point 

boundary value problem), computational solution on digital computers 

is not straight forward. 

The application of the maximum principle to the given n 

state variable equations results in a final set of 2 n differential equa - 
tions to be solved, with the n state variable equations coupled to the 

n adjoint equations through the optimal control program, However, 

the 2n boundary conditions a r e  all given on the state variable equa- 

tions (n at the initial state and n at the terminal state). Thus, in 

order to computationally determine the complete solution to the n 

equations, an iterative technique proceeding from some initial guess 

of the solution to the final solution is needed. 

Such iterative techniques for solution of the two-point 

boundary value problems fall into two general classes: those which 

start  with initial estimates on the adjoint boundary values and iterate 

until all boundary conditions on the state variable equations a re  

13 
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satisfied, and those which start with initial estimates on the entire 

trajectories which satisfy all the boundary conditions but do not 

necessarily satisfy the 2n differential equations, and iterate until 

all the given differential equations a re  satisfied. 

In this paper, sequential optimization wi l l  be considered 

a s  an example of the former and quasilinearization a s  an example 

of the latter. 

previously been extended to the variable time problem for the 

These two methods a re  chosen because they have not 

general case, 

3 . 2  Sequential Opt imi zation 

This technique8 solves the optimal control problem for a 

system of nonlinear differential equations by transforming the prob - 
lem into a sequence of problems consisting of linear differential 

equations. 

will briefly outline a standard technique for i t s  solution later in the 

paper. 

it self. 

The linear problem is an easier one to solve, and we 

First we shall consider the sequential optimization technique 

Let u s  first write the first order perturbation equations 

for our given set of nonlinear equations - -  x = f (x, u) = {aH/a$} : 

( 3 . 2 . 1 )  

2 
j’ 

is an nxn matrix with elements A..(t) = a H/arLiax 

nxr matrix with elements B..(t) = a /Ha$iau 
1J 
2 

j’ 
and 

13 
Sx , Sx and du are  column vectors of order n, n, and r ,  respec- 

t ively . 
- - - 

Similarly let us write first order perturbation equations 

for our adjoint system $ - = - {aH/ax}: 
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L -1 ‘ - J  
2 is an nxr matrix with elements a H/ax. au , and 

1 j  
2 i 2 la H/axa@ is an nxn matrix with elements a H/axi a$i. 

Finally, let us write the second order perturbation equation 

for  H(@, x, u) : 

where in  writing ( 3 .  2. 3) we made use of the fact that the order of 

taking partial derivatives is interchangeable for H ( ~ ,  x, u) continuous 

with continuous derivatives, e .  g . ,  a H/a$. ax.= a H/ax. and 

that a H/a$ = 0 since H is linear in  $. Also the matrix symbolism 

used is analogous to that used in (3.  2 .  1) and (3 .  2 .  2) .  

2 2 
1 1  J 2 2 

Applying the maximum principle to  our new Hamiltonian 

6H, i .  e . ,  setting abH/a6u = 0 and solving for 6u: 

6u = - - opt (3 .2 .4 )  

Note that {aH/au} = 0 i f  the u employed is optimal for 

the nonlinear problem. 

We want (3,  2 .  1) and ( 3 .  2. 2) to be adjoint to each other, 

and that 6H be the Hamiltonian for them, i .e . ,  that: 
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e 

and 
T 

6H = 6~ - 6X - - 6f 0 . 

(3 .2 .5)  

(3. 2.6) 

If we drop the first two t e rms  of (3. 2.3) for AH, the re -  

sult ing equation : 

6H = 6uT(g1+  - au f (5. - ax 

auax 
T + 2 6 u  T a  [&I 6$+26u - 

satisfies ( 3 .  2. 5). In order for ( 3 .  

according to the following: 

T T /  

6J = 1 6 f  0 dt = -1 (dyT 
0 0 

2.6) to hold, we must define 6f 0 

(3. 2. 8) 

In rewriting 6H according to (3. 2.7),  since the two t e rms  

dropped did not contain 6u, (3. 2.  4) still holds for 6uopt. 

Equations (3. 2. l), (3. 2 .  2), (3. 2.41, (3. 2. 7) and (3.  2. 8) 

represent a complete formulation for an optimal control problem for  

the linear equations (3 .2 ,  l), 

Now let us  return to the general nonlinear problem. Let 

us assume that we have applied the maximum principle to our non- 

linear - -  x = f (x, u) and obtained an optimal control program u = u(x,$). 

We now need only solve the two-point boundary problem. 
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If we knew the initial conditions on the adjoint equations 

g(O), we could integrate the equations on a digital computer to obtain 

the optimal trajectory. Let us make a first estimate Xo for I)(O),  - and 

integrate our state variable and adjoint equations to obtain the t r a -  

jectory - xO(t). Since our - x0 was not exactly equal to $(o), - xO(T) # 

- x (T), the desired terminal state variable condition. 

- 

Let us assume we have a method of solving the linear 

problem given by ( 3 .  2. l), ( 3 .  2 .  2) ,  ( 3 .  2 .  41, (3 .  2.  7)  and ( 3 .  2.  8). Let 

us solve this problem for boundary conditions 6x(O) = 0 and 6x(T) = 

6xo(T). - 
6@O(O) = A X o .  

problem be given by: 

- - 
This solution will also produce a trajectory 6I)'(t) - with 

Now let a new estimate on our $(O) for the nonlinear - - 

( 3 . 2 .  10) 
1 - x = xo - + 6X0 - 

Our new iteration on the nonlinear equations will  have an 

e r r o r  in terminal conditions 6x1 (T) which is less  than the original 

e r r o r .  

a r e  a s  close a s  desired to the given terminal conditions. 

- 
We can continue this process until the terminal conditions 

It should be noted that according to the degree of non- 

linearity of the problem and the closeness of the estimate of @(O) - to 

the correct value, it may not always be possible to apply the entire 

error bx(T) - to the linear problem. That is, it might be necessary 

to take: 

( 3 .  2.  11) n 
6~ (T) = E x(T)  - xn(T) - (- 

where 0 < E 5 1, 

The above described technique constitutes the sequential 

optimization method, In the course of describing the method, a 
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subsidiary linear problem was introduced. 

solution of the linear vector equation: 

This problem involves 

subject to  

luils Mi(t) i = 1 , 2 , .  , . , m  

The performance criterion to be optimized is a quadratic form: 

( 3 .  2. 13)  

A gradient technique for solving this subsidiary problem is 

described in Reference 8. 

principle to determine the control program, and let - Ak be the l t h  

estimate of the initial adjoint condition, then the ( k +  l)th is given by: 

In this technique, i f  we use the maximum 

( 3 .  2.  14) 

k where Q(T) = x(T) - (T), [PI is an m a  matrix with elements 

P. .= a@./axiIt=,, and I< is the distance along the gradient to  be 

moved. 
13 J 

The a@. /ax. a r e  obtained by integrating the equations: 
3 1  

( 3 .  2 .  15) 



19 

where [arC//ah] and [ g] a r e  nxn matrices with elements a$. /ax. 
1 3  

and ayi/aX respectively. The initial conditions a r e  ax /ax.= 0 

for  all i, j ;  a@i/ax = 0 for i f j ;  and arC/./ah = 1 for  i = j .  The H 
j J  i J  

j 1 j  
and y a re  the usual Hamiltonian and adjoint variables f o r  the state 

variable equation (3. 2. 12) .  It should be noted that, in order to 

simplify (3. 2. 15), u = u(x, rC/) has been substituted into H=H(rC/, x, u) 

to make H = H(@, x) , thus eliminating te rms  such a s  [ eu] [ &- ] in 

(3. 2. 15). 

2 

A method for choosing K, the distance along the gradient 

t o  be moved, in an optimal manner t o  minimize the number of steps 

required fo r  convergence is given in Reference 8. Powell 's accel- 

eration method, which is also described in Reference 8, was used 

to obtain rapid convergence. 

10 3. 3 Qua silineari zat ion 

Assume a s  in  the previous section that we have applied the 

maximum principle to  obtain the optimal control program and thus 

have only the two-point boundary value problem to solve. We thus 

have a 2n-dimensiond system of differential equations of the form: 

( 3 .  3. 1) 

where y , y, and f a r e  2n-dimensional vectors. Again, we have 

substituted u = u(x,$) in k = f(x,u) to give g = - f(x,rC/) in order to 

allow our state variable and adjoint equations t o  be formulated a s  in  

(3. 3. 1). 

- -  - 

- -  

The 2n -boundary conditions a re  given by: 

(3. 3 .2)  

This corresponds to our standard two -point boundary value problem 
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with x.(t) corresponding to y.(t) for  i = 1, 2 , .  . . n and r) ( t) 

corresponding to y.(t) for  i = n + 1, n + 2, . . . , 2n. 
1 1 i -n 

1 

Let us assume that we have made an initial estimate of 

y(t) - which satisfies the boundary conditions ( 3 .  3 .  2) but does not 

necessarily satisfy ( 3 .  3.  1). 

wi l l  finally result in x(t) which does satisfy ( 3 .  3. 1). 

We desire a n  iterative procedure which 

Consider the 2n -dimensional set of l inear differential 

equations : 

2n af.  n+l .n+l = 
Y i  2 (yj - y ~ )  + f.(yn) i = 1 , 2 , .  . .2n  aYj 1 -  

( 3 .  3 .  3) 
j =1 

af.  
j a Y  4 

n 1 where the y , f(yn) and __ a r e  from the previous (initial) es t i -  

-n+l  n+l mate and y and y a r e  the improved estimates. If we have a 

method of solving the linear problem given by ( 3 .  3 .  3):  
i i 

( 3 .  3 . 4 )  

n we wi l l  eventually i terate to a solution y (t) which comes a s  close 

a s  desired t o  satisfying ( 3 .  3 .  1) at all points along the trajectory and 

thus as close a s  possible to the desired solution y( t ) .  

- 

The linear problem may be solved as follows. Generate by 

numerical integration n solutions to the homogeneous equations 
.n+l n+ 1 2 = [W)I y using n sets  of initial conditions with zeros for 

every y.(O) except the y 

that is ,  n sets  of initial conditions of the form: 

j = 1, 2 , .  . . n, which is equal to one, ni-j' - 1  

i y ( 0 )  = o , o ,  0 , .  . . 0,  yn+j= 1, 0 , .  . . o  n+l I (3 .  3. 5) 

Denote these solutions by z (t), z (t), . . . z (t). -1 -2 -n 
particular solution z (t) by integrating ( 3 .  3 . 4 )  with initial conditions 

y ( 0 )  = xl(0), x2(0), . . .xn(0), k 

t ra ry .  The desired solution y - (t) of ( 3 .  3 .  4) is given by: 

Also  generate a 

-P i 1' 2 '  n i 1 

-P 
k . . k where the k. a re  arbi-  

n+ 1 
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n+l  
y (t) = c1 z,(t) f c z (t) + --- + c z (t) + 2 (t) 

2 -2 n -n -P 
( 3 .  3 .6)  

. C a r e  constants which need to be determined. 2’ * n where the C1, C 

If we set: 

n+ 1 
y (T) = C1 zl(T) + C2z2(T) + ---C z (TI + z (T) 

n -n -P - 
( 3 . 3 . 7 )  

we have n equations in n unknowns C C 

solved for the C.. 

problem ( 3 .  3 .  3). 

. .C, whichmaybe 1’ 2’ 
This completes the method of solving the linear 

1 

Therefore, we have outlined a complete method of solving 

the two-point boundary value problem given by ( 3 .  3 .  1) and ( 3 .  3 . 2 ) ,  

which constitues the quasilinearization technique. Note that in this 

technique the boundary conditions a re  always satisfied while we 

iterate to a solution which satisfies the given differential equations, 

as opposed to the sequentid optimization technique in which we 

iterate on 

satisfied, 

3 . 4  

the initial conditions until the boundary conditions a re  all 

Numerical Results 

p r e ceding 

The problem solved using the techniques outlined in the 

sections consisted of the system of equations given by: 

x = x  1 2  

x = ( 1  - x  2 ) x  - x  -tu 
2 1 2  1 

with boundary conditions: 

x (T) = -0.97 1 X1(O) = 1 . 0  

( 3 . 4 .  1) 

( 3 . 4 .  2) 
X2(O) = 0 . 0  X2(T) = -0 .96  

with fixed final time T = 5.0  seconds. 
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The performance criterion to be minimized was: 
T 

J(U) = 1 (XI + xi  + u2) dt 
0 

( 3 . 4 .  3)  

The Hamiltonian for the system is thus given by: 

H =  $ 1 2  x +rb 2 [(l - X I )  x 2 -  xl+ .] 
( 3 . 4 . 4 )  

2 2 2  
1 2  

- x  - x  - u  

If we set aH/au = 0 and solve for u, we obtain: 

( 3 .  4 .  5) 

If we have bounds on u of the form: 

U I u 5 u  ( 3 .  4 . 6 )  

given by ( 3 .  5. 6 )  is outside the 

min max 

we can see from ( 3 . 4 . 4 )  that i f  u 

bounds on u, then the Hamiltonian is maximized for  admissible u 

“2/2’  Uopt= Urnax, if u is at its constraint. That is ,  i f  u max 

opt 

and i f  $ s u  U = u  
2 / 2  min’ opt min’ 

The adjoint equations a r e  given by: 

aH 

1 1 + $2 $!I = - -  = 2 x x $ ! I  + 2 x  
1 2 2  1 ax 

2 aH c, = - ax 2 = -$p2 (1 - x l )  + 2x2 

( 3 . 4 . 7 )  

Other expressions which must be derived for the application of 

quasilinearization and sequential optimization a re  given in Appendix 

I. 

We have now reduced the problem to the two-point bound- 

ary problem and we can employ sequential optimization and quasi- 

linearization to solve this problem. 
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Both these techniques were programmed on the IBM 7094 

computer. The problem was solved first for the unbounded case, 

and the resulting optimal trajectories a r e  shown in Figure 3.4.1. 

Of course, both techniques yielded the same solution. 

Sequential optimization required three and a half minutes 

of computer time to solve the problem, compared to 32 seconds 

required for qua silineari zat i on. 

The quasilinearization trajectories were accurate to four 

decimal places all along the trajectories (that is, the last two iter - 
ations were identical to four places) and the sequential optimization 

trajectories were iterated to within 1% of the desired terminal 

conditions. 

The main cause of the greater time required by sequen- 

tial optimization was the difficulty in  making initial estimates on the 

initial conditions on the adjoint variables. 

available, the most reasonable initial estimates to use were 

A; = A i  = 0. 

of the state variable trajectories at T = 5 seconds were very far  

from the desired values, and thus  the linearization approximation 

did not hold and convergence could not be achieved (unless only a 

very small fraction of the error  was applied at each iteration). This 

problem was solved by halting the integration at some final time less  

than 5 seconds when the state variables had diverged from the de- 

sired endpoints by a prescribed amount, applying sequential opti- 

niation to drive the trajectories closer to the desired endpoints, and 

then allowing the final time to be extended a little more until the 

trajectories again began to diverge too much, and proceeding in this 

manner until the final time reached the desired T = 5 seconds. The 

criterion used to  halt the integration was: 

With no other information 

However, using these initial estimates, the endpoints 
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( 3 . 4 . 7 )  

That is, if  the difference between the current value of the state 

variables and the desired endpoint exceeded some constant M times 

the difference between the initial state variable condition and the 

endpoints, integration was halted at that time TI and TI was 

used a s  the final time until the expression on the left of (3. 5. 7) was  

less than the expression on the right, at which time integration was 

allowed to proceed. M must be greater than one, o r  else integra- 

tion will  halt at t = 0. For the given problem, it w a s  found that an 

M just greater than one, say 1 .05 ,  was a good choice. Using this 

technique, sequential optimization would eventually converge using 

any arbitrary initial guess - Xo, and thus trial and e r r o r  guesses of 

Xo - 
convergence were not necessary. However, even using this tech- 

nique, the entire e r r o r  in terminal conditions could not be applied 

to  the linear problem, and a step size constraint E = . 7  had to be 

applied a s  in Equation ( 3 .  2. 11). 

to get a trajectory close enough to the desired trajectory to allow 

In the quasilinearization technique, initial estimates were 

made on the entire trajectories xo(t) - and @O(t), - and thus it was 

possible to insure that the initial guesses were not too fa r  from the 

desired trajectories. - xo(t) was chosen to be a straight line be- 

tween - x(0) and x(T), - while $O(t) - was chosen to be identically 

zero for all t .  Proceeding from these initial estimates, quasi- 

linearization converged readily to the desired solution. Also,  in 

quasilinearization, there was no need to apply a step size constraint, 

i. e . ,  the entire correction was applied at each iteration. 

Sequential optimization required 6 iterations in the main 

program for the final time to reach the desired value of 5 seconds, 

and 5 more iterations to reach the desired endpoint, while quasi - 
linearization required only 5 total iterations in the main program. 
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Iterations in the main programs refer  to iterations on the nonlinear 

equations; each iteration in the main program requires several 

iterations in the program for  solving the linear problem. 

gram for solving the linear problem Will hereafter be referred to 

a s  the subroutine, 

linearization requires only three integrations of the linearized 

equations, while each entrance into the subroutine for sequential 

optimization may require many more iterations, each one requiring 

the integration of many equations in addition to the given linearized 

equations. 

The pro-  

Each entrance into the subroutine f o r  quasi- 

In considering the relative efficiency of the two methods, 

it is difficult to decide what constitutes equivalent initial estimates 

and an equivalent error criterion. F o r  example, quasilinearization 

requires initial estimates on the entire trajectories, while sequen- 

tial optimization requires only initial estimates on the initial adjoint 

conditions. Also,  the e r ror  criterion for halting iterations for 

quasilinearization requires that the entire trajectories (for all time) 

satisfy the given differential equations within a given error ,  while 

the e r ro r  criterion for sequential optimization requires only that 

the terminal conditions be satisfied within a given er ror .  In making 

the respective initial estimates, it is felt that for both techniques, a 

reasonable first guess was made which did not rely on extra infor- 

mation such as  initial tr ial  and e r ro r  runs, and thus these guesses 

give reasonable indication of the relative difficulty of convergence 

fo r  the general problem. 

difficult to determine what represents an equivalent set of e r ro r  

values for the two methods, but that chosen for sequential optimiza- 

tion would appear to be looser than that chosen for  quasilinearization. 

Thus quasilinearization appears to be clearly the more efficient 

technique for this problem, and probably for  the general problem. 

In setting e r ro r  criterion, it is more 
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The problem given by ( 3 . 4 .  l), ( 3 . 4 . 2 )  and (3 .  4. 3) was 

also solved for  bounded control, with the admissible control being 

given by IuI 5 0. 8. 

In extending the two t ech icpes  to  Somdec! control, no 

particular difficulty was encountered. In sequential optimization, 

in writing linearized equations and other expressions required by 

the technique, t e rms  resulting from partial derivatives with respect 

to  u had to  be set equal to zero when u reached its bounds. In 

quasilinearization, again, the terms in the linearized equations 

which resulted from u being a function of $ and x were  set equal 

to zero when u reached its bounds. 
- - 

1 3  

Figure 3 . 4 .  2 shows the resulting optimal trajectories for 

the bounded control problem. Quasilinearization again solved the 

problem readily, in the same number of iterations as for the un- 

bounded problem. However, considerable convergence problems 

were encountered in sequential optimization. Convergence could 

not be obtained for the bounded problem starting from arbitrary 

guesses on the initial adjoint conditions. 

obtained by first  solving the unbounded problem starting from 

arbitrary first  guesses and then applying the control bounds to the 

resulting unbounded optimal trajectories, and using this as the first 

guess for the bounded problem, and from here convergence pro- 

ceeded fairly readily. 

smaller for  the bounded problem, and because of the tendency of the 

state variable trajectories to diverge from the desired trajectory 

for arbitrary initial adjoint condition guesses, and the impossibility 

of reducing the constant M in ( 3 .  5.7) below 1, the convergence 

problems resulted. 

more proficient method for the bounded problem also. 

Results could only be 

Apparently the region of convergence is 

Quasilinearization thus appears to  be a much 
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3.5 Bounded State Variable Problem 

A futher variation of the optimal control problem is that 

in which the state variables a re  constrained to l ie  in some region. 

The constra-hts a re  generally giver, in the fo-rm: 

where C is a vector function of dimension up to that of the state 

variable vector x .  - 
the form: 

The most simple type of constraint would be of 

x.(t) 5 ci 
1 '  

(3 .  5. 2)  
i = 1,2 ,  ---m < n 

for all t, where the C. a r e  constants and n is the dimension of x. - 1 

According to Pontryagin, for the bounded state variable 

problem given by (3. 5. l), the optimal solution consists of segments 

for which C(x, t)  < 0, during which the optimal solution satisfies the 

maximum principle, and segments for which C(x, t) = 0, for which 

the controller is determined so  as  to satisfy C(x,t) = 0.  Since 

C(x,t) does not necessarily contain u(t) explicitly, it might be 

necessary t o  differentiate C with respect to t, and since C(x, t )=  0, 

then dC/dt = 0. Thus: 

(3 .  5 .  3) 

- w i l l  generally contain u(t) explicitly, and thus we can solve 

( 3 .  5. 3) for u(t). 

F o r  the special case given by (3. 5.2), (3 .  5. 3) becomes: 

x = o  - (3. 5.4) 

that is, i f  a given state variable x.(t) reaches i t s  constraint, we 

start  computing u(t) so that xi(t) = 0, so that x.(t) holds at its 

constraint. When k.(t) f o r  u(t) computed by the maximum 

1 

1 

1 



30 

principle changes sign s o  that xi(t) will  move off its constraint, we 

again use this u(t). 

5 This technique presents no particular problem in apply- 

ing it to sequential optimization. One need only integrate the given 

equations until an x.(t) reaches its constraint, and then change the 

optimal control program to that giving C(x, t) = 0, and of course 

changing all the other equations involved in the technique in which 

this change would be reflected. The integration is continued until 

the region in which C(x, t) < 0 is reached, at which point the con- 

troller and the differential equations a r e  again changed. Also, one 

must continuously compute bounds on 6 - x(t), which a re  the differ - 
ences between the values of the state variables at a given t ime and 

their respective constraints, for use in the linear subroutine to 

insure that the next iteration - x + dx - l i es  within the constraints. 

1 

Quasilinearization also presents no problem in the use of 

this technique. For example, for constraints of the form given by 

( 3 .  5.2), one need only set the appropriate fi(x , un) = 0 when xi (t) 

reaches i ts  constraint. Furthermore, we do not need to worry 

about checking xn(t) to determine when x. (t) moves off i t s  con- 

straint, since x, ( t)  always satisfies the given terminal conditions 

and thus must move off its constraint, Thus quasilinearization 

automatically iterates xi (t) until fi(x , u ) = 0 when x. ( t)  1 C 

and thus until x. (t) = C. in  this region. In the case of sequential 

Optimization, once x.(t) reaches i ts  constraint, and we start  

computing u(t) so that x.(t) = 0, x.(t) will  not come off its 

constraint unless we use the special check on x .(t) = f . (x ,  u) with 

u computed by the maximum principle to tell when to  change the 

program for u(t) again. 

n n 

n 
1 1 

n 
1 

n n n  n 
i' 1 n 

1 1 

1 

1 1 

1 1 
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The technique described above was  applied to quasilinear - 
ization so that in succeeding chapters we may demonstrate that the 

techniques developed for solving the variable t ime problem work for  

the bo-mded state vari2bl.e problem. We will  consider the simple 

case of constraints of the form ( 3 .  5.2). Since we cannot apply con- 

straints of the form (3. 5.2) to the trajectories with the terminal 

conditions used in Figure 3.4.1 (since the extreme of both curves 

a r e  at the initial or final times), we will use terminal conditions of 

xl(T) = x2(T) = - 0.05. 

optimal trajectories a r e  given in  Figure 3. 5. 1. (It was originally 

intended to use these terminal conditions for  all the variable time 

studies. However, S(T,X) does not vary as much as a function of 

T for these conditions a s  the ones of Figure 3.4.1, and thus the 

maxima and minima of S(T,X) a re  not as clearly shown. Thus it 

was  necessary to use different terminal conditions for the variable 

t ime studies with unbounded state variables and those with bounded 

state variables. ) 

The resulting unbounded state variable 

The bounds used for the given example a re :  

- 0 . 4  5 x (t) (3. 5. 5) 
2 

The optimal trajectories for these bounds a r e  given in Figure 3. 5.2. 

The unbounded trajectories of Figure 3.5.1 required 5 iterations for  

convergence, while those of Figure 3. 5 . 2  require 11. 

.introduction of state variable constraints slows convergence con- 

siderably, 

Thus the 

During the period when the state variable is at its 

constraint, the control must be variable in order to hold the state 

variable at i ts  constraint. 

bounded state variable and bounded control, the state variable and 

control cannot be at their constraints at the same time. However, 

Thus i f  we consider a problem with both 
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from Figure 3 . 5 . 2  we see that the control is at its higher values 

during the period when the state variable is at its constraint. 

Therefore, bounds on the control of lu(t)ls 0. 8 and bounds on the 

state variable of - 0. 35 5 x (t) were applied simultaneously to see 

if the given techniques could handle this problem. 

optimal trajectories a r e  shown in Figure 3. 5. 3. 

required 15 iterations fo r  convergence, somewhat longer than was 

required fo r  the bounded state variable alone. 

2 
The resulting 

These trajectories 
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CHAPTER 4 

Since we want to  consider the variable time problem more 

or l ess  separately from the other aspects of the optimal control 

problem in order to  judge the validity of using only the H = 0 condi- 

tion, we a r e  going t o  derive an algorithm which solves a ser ies  of 

fixed time problems, iterating on the final time T until the H = 0 

condition is satisfied. 

problem for an initial guess on T, compute an increment on T, 6T, 

such that when the fixed time problem for new final time T + 6T is 

solved, a Hamiltonian closer to  zero wi l l  result, and through r e -  

peated iterations finally arrive at the T for which H = 0. 

This algorithm will solve the fixed time 

If we take our first solution for which the terminal condi- 

tions are  satisfied at time T, and let the time vary by an amount 

6T, this will produce an e r ro r  in terminal conditions which is given 

36 

. 

USE OF H = 0 NECESSARY CONDITION TO SOLVE 
THE VARIABLE TIME PROBLEM 

4.1 Computational Algorithm 

All methods of solving the variable time problem devel- 

oped to  this time use only the H = 0 necessary condition and 

assume the resulting solution is the only one and thus the desired 

optimum. One standard method14 is to iterate on the final t ime T 

and n-1 of the n initial adjoint conditions (n total variables) until 

the n terminal state variable conditions a re  satisfied, and at each 

iteration use the H = 0 condition to determine the nth initial 

adjoint condition, In this manner, the H = 0 condition is always 

satisfied, and when the boundary conditions a r e  finally reached, the 

resulting solution is a possible solution of the variable time problem. 

However, in this process, the optimum solution at only one final 

time T is obtained. 
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to a first order of approximation by: 

6x(T) = k ( T )  - 6T (4.1.1) L 

If we want to resolve the two-point boundary problem for 

the new T n+l = T ~ +  S T ~ ,  we wiil have to  vaiy our iriitial adjoint 

condition by some vector 6X. 

a 6X to correct the terminal conditions which will also make the 

Hamiltonian equal t o  zero. Since the Hamiltonian is constant, we 

need only require that it be ze ro  at the initial conditions. 

The question is what 6T will require - 
- 

In the previous chapter, we derived a set of differential 

equations for variables of the form ax.(t)/aA which gives the 

effect on the value of the state variable x. at time t of a variation 

in initial adjoint condition $.(O) of 6X . If  we integrate these 

differential equations to  time T, and let [Y] represent the matrix 

of elements Y = ax. /ax. I t = T, then a variation in initial adjoint 

1 j J  

1 

J j 

i j  1 J  
conditions 6X will  produce, to 

change in the value of the state 
- 

6_x(T) = [Y] 6X - 

a first order of approximation, a 

variables at time t = T given by: 

(4.  1. 2) 

However, since the variation in x(T)  due to a variation 

in final time of 6T is given by (4. 1. l), we want to vary $(O) by 

6X to counteract this variation, that is ,  choose 6X so that: 

- 
- 

- - 

(4. 1. 3) 

Substituting (4. 1. 3) into (4 .  1. 2) and solving for 6X, we - 
obtain: 

-1 
6~ - = - [Y] X ( T )  - 6~ (4. 1.4) 

The Hamiltonian at t = 0 is given by: 

(4.1. 5) 
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(4. 1.6) 

- f o ( g O ) ,  + 6Xn)= - 0 

If we substitute Equation (4. 1.4) in (4. 1.6), we obtain a 

single equation in a single unknown 6T, which may be solved f o r  

6T. 

originally or were determined in solving the problem for the 

previous T. 

That is ,  [Y], k(T), $n(0), and x(0) - a r e  all either known 

If we then apply the 6X - given by (4. 1.4) for the 6T 

(0) = - $n(0) + 6Xn - t o  the system 
n+l determined as  above and apply - @ 

of equations, we will find that the Hamiltonian is exactly equal to 

zero. However, when we integrate the system of equations, we 

will  find that the terminal values a re  slightly off. This is due to 

the fact that 6x(T) - is not given exactly by (4. 1. l), and even i f  it 

were, the 6X - given by (4.1.4) would not exactly compensate for the 

6x(T) - in one step. Thus we must again apply the fixed time algo- 

rithm to exactly solve the two-point boundary problem for the new 

Tn+' = T 4- 6T. This will result in a - I/I 

n+l exactly equal to - @ 
n+ 1 not be exactly zero. However, the fi (0)' determined by the 

will be close enough to ~ " + ' ( O )  n+l fixed time algorithm for the T 
n that the Hamiltonian will be closer to zero than it was for the T . 

Thus, this process can be repeated until the T is found which does 

result in H = 0, o r  at least a s  close to zero as we please. 

n n+l 
(0)' which is not 

(0) = - @n(0) + 6X - and thus the Hamiltonian will 
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It should be noted that (4. 1.6) may be solved analytically 

only if  the system of equations is linear in the control variable and 

the performance criterion is no more than quadratic in the control 

variabie, in which case (4. 1. 6) wil l  be quadratic in 6X - and thus in 

6T. If this is not the case, we must write H as a second order 

Taylor s e r  i e s expansion : 

2 
+ - 4- 6x [a] a 6x - +6u - [;2] aH 6u+26X - - T a H  [&I 6x - (4. 1.7) 1 

n+l n where 6x = x - x , etc. If we evaluate (4. 1.7)  at t = 0, 6x(O) = 0, 

6u(O) = - I 6X, and all the matrices at x = x(0) and r+b(O)=+ (0), - a+ t=o - - -  - - 
(4.1.7) becomes a second order equation in 6X and thus in  6T 

which may be solved for 6T. 

- - -  - 
au n 

- 

The resulting equation w i l l  be of the form: 

a6T  + b 6 T + c = O  2 
(4. 1. 8) 

2 
If b - 4ac < 0, (4. 1.7) has no real solution, and we must take the 

6T whichminimizes H, i . e . , :  

2 a b T + b = O  ' (4. 1.9)  

o r  

(4 .1 .10)  
b 

2a 
6T = - -  

2 If b - 4ac > 0, (4. 1 .7)  has two real  solutions and we must 

use the smaller 6T, which more closely satisfies the approxima- 

tions made in deriving the algorithm. 
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This gives u s  a complete algorithm for iterating on T 

until the Hamiltonian is driven to zero. 

consider a numerical example. 

4.2 Numerical Example 

The following section will 

In this section we will discuss the application 

method developed in the previous section to the problem 

of the 

described 

in the last chapter and solved for  the fixed time case using both 

quasilinearization and sequencial optimization, 

that the variable time optimization method described in the previous 

chapter may be applied in exactly the same manner to both quasi- 

linearization and sequential optimization, and in fact to any fixed 

time optimization technique which uses the adjoint equations and 

Hamiltonian described by ( 2 .  2 ,  3) and ( 2 .  2. 4) respectively. 

It should be noted 

From Equation (4. 1.4), for a two-dimensional problem: 

( 4 . 2 .  1) 

where the x.(T) and ax /ah.  a r e  available in computer storage 
1 i J  

after solving the fixed time problem by either sequential optimiza- 

tion or quasilinearization. The differential equations used for 

' 

determining ax./ah. a r e  given in Appendix I. R1 and R a r e  
1 1  2 

given by : 
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R1 - - 
- lX2laX2 

r 

xl(T) - ax2/ax11 i2 (T)  
t =T t =T 

1 

(4 .2 .  2) 

The Hamiltonian for our  example, from (3 .4 .4 )  , with 

u = $ / 2  substituted for unbounded control, is given by: 2 

- x  2 2 2  - x  -$,I4 
1 2  

(4 .2 .  3) 

Since H($,x) is constant for all t, we need only insure that our 

H($ + a$, x) = 0 at t = 0. Substituting the initial conditions 

(4 .2 .  3) 

Therefore 

(4 .2 .4 )  X2 
2 2 (x2 -2 )  = /4  - h - 1 + 6X2/4 + ~ 

2 2 2 

2 
= H(X) + 6X2/4 + 7 6X2 

where H(X) and X2 a r e  also available in computer storage after 

solution of the fixed time problem. Thus, substituting 6X = R 2  6T 

from (4 .2 .  1); and setting H(X + 6x1 = H(6T) = 0: 
2 
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R2  6 T  + H(X) = 0 4 - 6 T  2 + -  @ 2 -  2, 
4 2 (4. 2. 5) 

This equation may be solved for 6T, and thus T + 6T is 

If (4. 2. 5) has no real  our new estimate for the optimal final time. 

solution, we use the 6T that minimizes (4.2. 5) according to  

(4.1. 10). 

In applying sequential optimization for the new fixed final 

time T + 6T, we use a s  initial estimates on $(O): - 
n 

= X1 + R1 6T 
(4. 2.6) 

n 
2 = X + R 2 6 T  

Using these estimates, the new fixed time problem will be solved 

more rapidly than the original fixed time problem, for which arbi-  

t ra ry  initial estimates of X o  = 0 were used. - 
In quasilinearization, i f  b T  > 0, the optimal - x(t) and 

$(t) - for  the previous T a re  used as  initial estimates for  the new 

T + 6T f o r  0 5 t 5 T, and x(t) - = - x(T) and $(t) = I,~(T) a re  used a s  

initial estimates for T 5 t 5 T + b T .  If T < 0, the same initial 

estimates on - x(t) and $(t) - given in section (3. 4) for the first 

fixed time a re  used. 

F o r  bounded control, i f  the control for the fixed time 

case is at its bound at t = 0, H(X + 6X) of (4.2.4) becomes: 

H(X + 6X) = H(X) - 6 X 2 ( 1  - U) 

(4. 2.7) 
= H(X) - R2(1-u)6T 

and we use 

(4. 2. 8) 



4 3  

4. 3 Discussion of Numerical Results 

Figure 4. 3 . 1  and Table 4. 3 . 1  give the values of the 

Hamiltonian and the minimized performance criterion, S(T), for 

various values of fixed final time for unbounded control. 

seen from the figure and table, the Hamiltonian goes through zero 

at T E 2.6  seconds, at which time S(T) goes through a minimum. 

This point is the desired variable time optimum. However, the 

Hamiltonian also goes through zero at T E 6 .  1 seconds, at which 

time S(T) attains a local maximum. Again, at T = 9. 3 seconds, 

H = 0. According t o  the table, S(T) is not a local minimum at this 

point, but this is due t o  accumulated integration e r ro r s  for large 

TI s and the fact that S(T) is only varying in  the fourth decimal 

place. S(T) should be a local minimum here (although a greater 

minimum than that attained at T = 2 . 6  seconds). For  higher TI s, 

H would probably continue to oscillate with decreasingly small 

amplitudes about H = 0, and S(T) would continue to achieve 

relative maxima and minima, but with increasingly small difference 

between them. 

A s  can be 

Any technique for solving the variable time problem which 

uses only the H = 0 criterion could arrive at any of the various 

H = 0 points, some being local malrima. 

technique outlined in preceding sections, i f  the initial guess on T 

was less  than 3 . 4  seconds (the point where H achieves i t s  first 

extremum), the variable time solution obtained will be the correct 

one of T = 2 . 6  seconds. However, i f  the initial guess on T is 

greater than 3 . 4  seconds (but less than seven seconds) the solution 

obtained will be the local maximum at T r 6 . 1  seconds. This 

demonstrates the contention made earlier in this paper that all those 

methods given in the literature for solving the variable time problem 

For  example, using the 
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T (sec) 

2.0 
2.2 
2 . 4  
2 .6  
2.8 
3.0 
3.2 
3 . 4  
3. 6 
3. 8 
4 . 0  
4 .2  
4.4 
4. 6 
4. 8 
5 .0  
5.2 
5 .4  
5. 6 
5. 8 
6 . 0  
6 . 2  
6 . 4  
6. 6 
6. 8 
7 .0  
7 .2  
7 . 4  
7. 6 
7. 8 
8. 0 
8. 2 
8. 4 
8. 6 
8. 8 
9 .0  
9.2 
9 . 4  
9.6 
9. 8 

10.0 

TABLE 4 . 3 . 1  

H 

2.8466 
1 .3928 
0.5522 
0.0569 

-0. 2338 
-0.3974 
-0.4792 
-0. 5067 
-0.49 81  
-0.4659 
-0.4194 
-0.3654 
-0. 3088 
-0. 2533 
-0. 2013 
-0.1544 
-0. 11 34 
-0.07 86 
-0.0498 
-0.0269 
-0.0090 
0 .0041 
0.0135 
0 .0195 
0.0229 
0.0243 
0 .0240 
0.0227 
0.0207 
0 .0184  
0.0156 
0.0131 
0 .0104  
0.0080 
0.0059 
0.0025 
0.0010 

-0. 0004 
-0. 0013 
-0.0019 
-0. 0033 

S(T) 

4.0320 
3.6217 
3.4347 
3. 3780 
3.3981 
3.4627 
3. 5512 
3.6502 
3.7510 
3. 8475 
3.9360 
4.0144 
4.0816 
4.1376 
4.1828 
4 . 2 1 8 1  
4.2447 
4. 2636 
4. 2762 
4. 2837 
4 .2871  
4 .2874 
4.2855 
4. 2821 
4. 2777 
4. 2729 
4. 2679 
4 .2631  
4. 2587 
4. 2547 
4.2512 
4.2482 
4.2458 
4.2439 
4.2423 
4.2358 
4.2350 
4.2345 
4 .2343 
4.2343 
4. 2339 
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which use only the H = 0 condition a r e  inadequate for the general 

problem. 

Using sequential optimization, and starting at T = 3,  2 

seconds, the variable time algorithm arrived at the solution T = 2 . 6  

seconds after iterating through T = 2 . 0  and 2 . 4  seconds (or  three 

total iterations on T). The variable time optimal trajectories for 

T = 2 . 6  seconds a re  shown in Figure 4. 3 . 2 .  

overshot the desired T because the initial guess of T = 3 . 2  was 

near the extremum of H where H was varying slowly with respect 

to T, and thus the method computed a 6T to drive H to zero 

which was too large. 

regions where aH/aT E 0, an upper bound should be placed on the 

allowed 6T (say, 6T max = T / 3 ) .  

The first iteration 

Thus, in order to  make the technique work in 

The total computer time required by sequential optimi- 

zation to solve the problem starting from T = 3. 2 seconds was four 

minutes. Starting from the same T, quasilinearization solved the 

problem in one minute. Note that the relative efficiency of quasi- 

linearization over sequential optimization has decreased somewhat 

from what it was for the fixed time problem (from about 7 to 1 to 

about 4 to 1). This is due to the fact that the main inefficiency in 

sequential optimization is in making initial guesses on r&(O), - and 

such guesses only have to be arbitrary fo r  the first iteration on T; 

thereafter, the technique provides a reasonable good first guess on 

$ ( O )  for each succeeding iteration on T. 
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CHAPTER 5 

SUFFICIENT CONDITIONS FOR A VARIABLE 
TIME LOCAL MINIMUM 

5.1  Development of Sufficient Conditions 

In the preceding chapter we showed that the H = 0 condition 

for a variable time optimum can sometimes lead to an incorrect 

solution. That is, computational algorighms based only upon the 

H = 0 condition can result in a solution which is a local maximum of 
as S(T) with respect to T a s  well a s  a local minimum, since H= -- 
aT * 

In the standard minimization problem, a sufficient condition for a 

local minimum is that the second derivative of the function to be 

minimized be greater than zero. Since H = -- 
this sufficient condition is given by: 

for our problem as 
aT ’ 

2 2 aH 
aT a s / a T  = - -  > o  

o r  (5. 1.1) 

E < O  
aT 

Since the Hamiltonian is constant with time for  the solu- 

tion for a given final time T, aH/aT will be the same regardless of 

at what time it is evaluated. For convenience we will evaluate it at 

time t = 0. 

Since 

If we evaluate aH/aT at t = 0, ax 

I& 
3T = 0 

(5.1.2) 

since the 
initial condition is constant, and(%\ = 1 au(x, fi) I = [&] 

aT aT 

(where the term [E] 1 I = 0 since I&\ = 0) .  
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Thus: 

(5.1. 3) 

where @ = X has been substitvlted since we a r e  evaluating at t = 0. 
From (4. 1.4) 

6X - = - [Y]-' - H(T) 6T 

o r  
6X -1 - = - [ Y ]  k(T) 6T - 

l im 6X = [ % I  
6T- 0 

Therefor e 

(5.1.4) 

(5. 1.5) 

(5. 1.6) 

Substituting (5 .  1. 6 )  into (5. 1. 3) 

In (5.1.7) all the variables on the right side of the equa- 

tion may easily be evaluated f o r  an optimal solution for variable 

final time obtained using the method of the previous chapter which 

uses only the H = 0 necessary condition. If - < 0, we have a 

local minimum; i f  e > 0 we have a local maximum. 

aH 
aT 

aT 

In the next section, we will develop a computational 

algorithm which will drive the solution t o  a point where - < 0 if 
aH the first variable time solution obtained has - > 0. It should be aT 

noted that i f  a problem is such that S(T) has more than one local 

maximum and local minimum, such a method will not insure that 

the solution arrived at wi l l  be the local minimum with the least 

magnitude, only that it will be a local minimum and not a local max- 

imum. 

aH 
aT 
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5 . 2  Computational Algorithm 

Through the method of Chapter 4 we arrived at an 

approximation for H as  a function of 6T which contains up to 

second order terms in ST, 

H = 0. We chose the 6T which had the smaller magnitude, since 

the approximations a re  more accurate for  this 6T, and i f  H is 

zero at only one T in  the actual problem, the method will converge 

to that T. However, i f  for the given problem there is more than 

one T for which H = 0, the method will converge to  the closest T 

according to the approximations in the method. (The method might 

converge to  a T which is slightly farther from the first  estimate 

on T than is some other T for which H = 0. For example, in the 

numerical example of the last chapter, when the initial estimate of 

T w a s  chosen to be four seconds, the method converged to the 

solution at T = 6 .  1 seconds, instead of the closer one at T = 2.  6 

seconds. Apparently, in the approximation for H as a function of 

6T, the solution on the right looked closer than the one on the left, 

that is, the positive 6T which solved I3 = 0 was smaller than the 

negative one, even though T = 2.6 was actually closer than T = 6 .  1 

was to T = 4). 

and thus has two solutions for which 

aH 
aT If the first estimate on T is such that - < 0, the solution 

finally arrived at by the method of the previous chapter might still  
aH 

be such that - > 0, due to the facts mentioned in the previous para- aT 
graph and the fact that the extremum of H vs. T might not be 

symmetrically located between the two points where H = 0 on each 
aH side. However, i f  our first  estimate on T is such that - > 0, and aT 

we develop a method for driving T fa r  enough into the region where 
aH - < 0, the method wi l l  converge to a point where aT aT 
relative minimum. 

< 0, i. e. , a 
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If we can compute a H/aT 

which direction to vary T to make aH/aT < 0 i f  aH/aT > 0 for 

in some way, we then know 

our first estimate. That is, we can take: 

( 5 . 2 .  1) 

where the value of % depends upon how f a r  into the BH/BT < 0 

region it is desired to drive T to insure convergence to a point 

where aH/aT < 0 (KT should be at least two). 

If, after applying the 6T given by ( 5 . 2 .  l), the aH/aT is 

still greater than zero due to inaccuracies in the approximations, o r  

i f  the T is not driven far  enough into the region where aH/aT < 0 

to  insure convergence in that region and the solution returns to  the 

aH/aT > 0 region, may be increased and ( 5 . 2 .  1) reapplied. 

2 2 We now must derive a method of computing a H/aT . 
KT 

Equation ( 5 .  1 . 3 )  gives aH/aT as  a function of x, u, A, and 

{ax/aTt. Let: 
- - -  

aH = G(x, - -  u, &, &*) ( 5 . 2 . 2 )  aT 

where X' = {aA/aT}. 

Then 

( 5 . 2 . 3 )  
a x  - a"x where again terms involving ax/aT are  zero and - - - aT aT2 - 

If we can compute 
2 2 computing a H/aT , First ,  

second order terms 

2 
, we have a complete method of 

laT7 we must rewr i te  (4. 1. 3) including 

1 2 - X(T) 6T 2 -  ( 5 . 2 . 4 )  
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where X(T) - may easily be computed from the given equations. 

Also, we must expand the elements Y..  = ax./ah. of [Y] to include 

f i r s t  order effects of 6T, that is, let [ Y  +Y 6T] be the nxn matrix 
1J 1 J  

ax. 

dt ax 
j j 

a re  x 6T.  The -- d i  
of elements Y. .+ Y . .  6" = axi/ahj+ dt ax d i  ax. 

11 11 

used in the computer program to determ.ine the ax. / ax  
available in  computer storage; expressions for the ax. / a x .  a r e  

given in ( 3 .  2. 15). 

and thus a r e  
1 j  

dt 1 

Thus, we may rewrite (4. 1.4) with second order te rms  in 

6T included: 

(5 .2 .  5) 

The inverse matrix [ Y  +Y 6T]  is equal to the t rans  - 

posed matrix of cofactors of [Y + Y  6T] divided by i t s  determinant. 

The cofactors of [Y +Y 6T] will have term.s involving 6T to the 

power n-1 if the matrix is of order n. Since we are  only interest-  

ed in expanding 6X - to second order te rms  in 6T, we can neglect 

those terms in [ Y  +Y6T] 

ternis in  [ Y + Y 6T] 

[Z + Z 6T] 

te rms  of higher order than 6T truncated. In evaluating the deter-  
n 

minant of [ Y  + Y 6T] , we arr ive at terms of order a s  high as 6T . 
Again, we can truncate terms of order higher than one. 

d + d 6T be the truncated expression for the determinant. Thus 

-1 of order higher than one (since all 
-1 a re  multiplied by 6T in (5 .  2 .  5) . Let 

be the transposed matrix of cofactors of [ Y  +YST] with 

Let 

1 2  
-1 [Z+Z6T] [ Y + Y 6 T ]  E dl+ d2 6T (5. 2.6) 

to a first order approximation. Let us  expand l / (d l+  d 6T) and 2 
again neglect terms of higher order than one 

6T 
1 d2 

E - - -  - 1 

d 1 +d2dT dl d; 
(5. 2.7) 
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(5. 2. 8) 

N - [zl 
dl 
’[- dl d2 

Z] 6T 

* 
2 where again te rms  involving 6T were truncated. Substituting 

(5.2.8) into ( 5 . 2 .  5) and truncating te rms  of higher order than 6T 2 

However, we also have, to second order approximation 

The ref ore 

(5.2.10) 

( 5 . 2 .  11) 

Also ,  181 = - 
$(TI which is the same a s  the expression in 

(5. 1 . G ) .  

Therefore, (5. 2 .  11) with (5. 1 . 6 )  and (5. 2. 3) give us  a 
2 2 method of computing B H/BT . While many approximations were 

made in deriving this method, we do not need a really exact value 

for  a H/BT but just  one which is accurate enough to use (5.2.  1) 

to drive T into a region where BH/BT < 0, for which this method 

should be sufficiently accurate. The following section will  consider 

the application of this method to the same numerical example studied 

2 2 

in previous chapters. 
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From (4.2.  3), we have that, at t = 0 

Thus 

From (4. 2. 1) and (5.  1.6), 

- = R2 aT 

(5. 3. 1) 

( 5 . 3 . 2 )  

(5 .3 .3)  

where R is defined in (4. 2. 2).  2 

Differentiating (5. 3. 2) again with respect to T 

(5 .  3 .4)  
aT2 aT2 

2 2 -1 
In computing a A2/aT , we first  wr i te  [ Y  +YbT] for a 

two -dimensional system - 1  

1 ax 
- 

2 ax 
- 

~~ L 

(5 .3 .5 )  

The transpose of the cofactors of [Y + Y b T ]  is T given by 

[ Z + Z b T ]  = 
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Thus 

Zij = - Yij zij = - Y..  
Ll 

for  i f j 

zll= y22 zl l= y22 

z22= y l l  z 2 2 =  Y l l  

Also  

det[Y +Y 6T] = f x l  - + -  d (axl) - 6T ) t x 2  - + -  d (a,) - 6T) 
ax 1 dt axl ax2 dt ax2 

- -  t x 2  + -  d (""2) - 
axl dt ax, 

(5. 3.7) 

( 5 .  3. 8) 

Therefore, multiplying out (5. 3 .  8) and identifying te rms  involving 

6To and 6T , we obtain d and d of (5.2.71, (5. 2. 8) and (5. 2. 9): 
1 

1 2 

1 ax 
0 -  

2 
ax  

2 
ax 1 ax 

1 ax, d = - e . - -  

ax2 ax2 

d = -  ax 1 * -  d (""2)+ - - ax2 0 -  d ("1) - 
2 axl dt ax2 ax2 dt ax, (5 .3 .9)  

- -  gfxl) - - -  ::: e -  d (""2) - 
dt ax2 dt a x ,  

Equations (5. 3.7) and ( 5 .  3 .  9) give us  the expressions 
2 

necessary to evaluate a2A,/aT by (5.2.11). Thus we have derived 
2 2 L I  

all the expressions necessary to calculate BH/BT and a H/BT to 

apply the method developed in  5. 1 and 5. 2.  

If the control is at its bound at t = 0, H(X) at t = 0 

becomes : 

H(X) = - X (1 - U) - 1 2 
Thus 

(5.3.10) 



aH - = ( u  - 1) - aT aT (5.3. 11) 
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a”x2 
= (u - 1) 2 - a2H 

aT2 aT 
( 5 . 3 .  12)  

2 2 where the ax /aT and a A2/aT a r e  given by the same expres- 
2 

sions as for the unbounded case. 

5 .4  

a2H/aT2 

Discussion of Results 

Figure 5.4. 1 and Table 5.4. 1 show H, BH/BT and 

computed from the methods outlined ear l ier  in the chapter 

a s  a function of T. A s  can be seen from these, the values of aH/BT 

a re  fairly accurate, i. e. , they a re  the same as those that would be 

obtained by differentiating the H vs. T curve. This was to be 

expected, since the approximations made in making first  order 

approximations for 6x - and aX/BT become exact a s  6T approaches 

zero. 

2 However, the computed values for a H/aT2 a re  not 

exact, as can be seen by comparing the computed values with the 

correct values, shown by the dashed curve in Figure 5.4.1, obtained 

by differentiating the aH/BT vs. T curve. This e r ro r  is due to the 

method used in Equation (5.2. 5) in representing the first  order 

variation in the [ ax/ax] matrix a s  a function of 6T. This method 

used a first order approximation for the value of [ ax/ax] 

final time T + 6T. However, in actuality, the effective value of 

[ax/ax] is somewhere between i t s  value at final time T and time 

T + 6T. If i ts  value at final time T had been used, the first order 

variation in [ ax/aA] with d T  would have been completely lost, 

thus making second order te rms  in 6T in ( 5 . 2 . 9 )  inaccurate. A 

compromise would be to use a value of [ ax/aA] 

-1 

-1 at the 

-1 

-1 

-1 evaluated at some 
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TABLE 5 . 4 . 1  

T 
sec. 

2 . 0  
2 . 2  
2 . 4  
2 . 6  
2. 8 
3 . 0  
3 . 2  
3 . 4  
3. 6 
3. 8 
4 .0  
4 . 2  
4 . 4  
4 . 6  
4. 8 
5 . 0  
5 . 2  
5 . 4  
5.  6 
5. 8 
6 . 0  
6 . 2  
6 . 4  
6 .6  
6 . 8  
7 . 0  
7 . 2  
7 . 4  
7 .6  
7 . 8  
8 . 0  
8. 2 
8 .4  
8. 6 
8. 8 
9 . 0  
9 . 2  
9 . 4  
9.  6 
9. 8 

1 0 . 0  

H 

2 .847  
1 . 3 9 3  
0.552 
0 .057  

- 0 .234  
- 0.397 
- 0.479 
- 0.507 
- 0 .4981  
- 0.466 
- 0.419 
- 0. 365 
- 0. 309 
- 0 . 2 5 3  
- 0 .201  
- 0 .154  
- 0.  113 
- 0.079 
- 0. 050 
- 0.027 
- 0.009 

0 .004  
0 .014  
0.020 
0 .023  
0 .024  
0 .024  
0 .023  
0 . 0 2 1  
0 .018  
0.016 
0 .013  
0 .010  
0 .008  
0.0059 
0.0025 
0.0010 

- 0.0004 
- 0.0013 
- 0.0019 
- 0.0033 

a H / a T  

- 9 . 5 3  
- 5 . 4 4  
- 3.19  
- 1.88 
- 1 . 0 9  
- 0 .585  
- 0.255 
- 0.036 

0 . 1 1 1  
0 .203  
0. 256 
0 .280  
0 .283  
0 .270  
0 .248  
0 .220  
0.190 
0.159 
0 .129  
0.102 
0 .077  
0.056 
0 .038  
0 .023  
0.012 
0 .0025 

- 0.0041 
- 0.0086 
- 0 .0115  
- 0.0130 
- 0.0134 
- 0.0131 
- 0.0123 
- 0 .0111  
- 0.0097 
- 0.0083 
- 0.0069 
- 0.0055 
- 0.0043 
- 0.0032 
- 0.0023 

a 2 H l a T 2  

32. 0 
18. 5 
1 1 . 5  
7 . 5 7  
5. 29 
3. 87 
2 .91  
2 .22  
1. 69 
1 . 2 7  
0 .917  
0.629 
0 .385  
0 .208  
0 .063  

- 0 .045  
- 0 . 1 2 1  
- 0 . 1 7 1  
- 0.200 
- 0 . 2 1 1  
- 0 .210  
- 0.200 
- 0 .183  
- 0. 162 
- 0. 140 
- 0.117 
- 0 . 0 9 5 ,  
- 0 .075  
- 0. 057 
- 0.041 
- 0.028 
- 0.017 
- 0.0087 
- 0.0022 

0.0026 
0.0059 
0.0080 
0.0091 
0 .0094 
0.0092 
0.0086 
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6 T  
2 

final time between T and T + d T ,  say T + -, in which case 
1 d  [ax/aA + - -(ax/aA)] would be used. 
2 dt 

However, this proved to be 

no more accurate than using the value at T + 6T. In fact, for some 
2 values of T, iij2x/2~ w a s  more acc-nate when l a x / a ~ ]  was eval- 

uated at a final time fairly close to  T + 6T, and sometimes the 
2 2 value closer to T gave a more accurate B H/BT . However, for 

-1 the most part, the original method used evaluating [ B x / a A ]  at 

T + 6T gave a a H/aT more consistently of the same general 2 2 

shape a s  the actual curve, and thus was used in the final computer 

results.  F o r  any initial guess on T, the method did indeed converge 
2 2 to a point at which i3 H / B T  < 0, i. e . ,  a local minimum of S(T). 

With an initial estimate of T = 4.6 seconds, the method 

converged to T = 2 . 6  seconds in steps of T = 4.6, 3. 05, 2.  2, 2.45, 

and 2 . 6  seconds, with K = 2. 0 used for this run. The first  i t e ra -  

tion, a s  expected, drove T into the region where aH/aT < 0, 

and from there the method converged to the local minimum at 

T = 2 . 6  seconds. 

criterion used, any initial estimate of T greater than 3.4 seconds 

would converge to the local maximum of S(T) at  T = 6 .  1 seconds. 

T 

In the method of Chapter 4, with only the H = 0 

When an initial estimate of T = 5. 2 seconds was used, 
2 (after a H/aT2 changes sign) the method converged to T = 9 .  3 

seconds in steps of 5.2, 7 . 8 ,  9.0, and 9.  3 seconds. When only the 

H = 0 condition was used, the solution at T = 6 .  1 seconds w a s  

arrived at starting from T = 5.2 seconds. 

seconds is a local minimum of S(T) (although Table 5. 4. 1 does not 

show this, due to integration errors) ,  but not the least local mini- 

mum, which is at T = 2 . 6  seconds. 

The solution at T = 9 .  3 

Fo r  the bounded control case, it was found that the most 

efficient way of solving the variable time problem was first to solve 
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it f o r  unbounded control and use the optimal final time T for 

unbounded control for  the first estimate on T for the variable 

time optimal bounded problem. A s  can be seen from Figure 4. 3 .2 ,  

the maximum value the control attains for the variable time optimal 

T = 2 . 6  seconds is about 0 . 7 .  Thus, i f  we were to start  with an 

initial estimate of T = 5 seconds for the bounded case, and applied 

bounds of f 0.  8 a s  was the case in  Figure 3.4.2, although the opti- 

mal control for the initial estimate of T is bounded, the final vari-  

able time solution at T = 2 . 6  seconds is unbounded. 

bounds a s  st 0.5  to obtain a bounded control for T = 2 . 6  seconds, but 

apply these bounds to an initial estimate of T = 5 seconds, the con- 

trol is almost totally bounded, and convergence is difficult, How- 

ever, i f  we first solve the unbounded problem, we will  avoid having 

to solve the bounded problem in areas  of T where the optimal solu- 

tion is almost totally bounded, where convergence is less  efficient. 

If we take the 

If the bounded problem is solved in this manner, with 

bounds of f 0. 5, we obtain the variable time optimal solution at 

T = 2.  525 seconds shown in Figure 5 .4 .2 .  

though the control is well bounded, the variable time optimal T is 

not too far from the value of T = 2 . 6  seconds f o r  the unbounded case. 

A s  can be seen, even 

F o r  the bounded state variable problem, the extension t o  

variable time was straightforward, requiring merely the addition of 

the technique of section 3 . 5  to the methods of this and the preceeding 

chapters. 

occurred at T = 3.45 seconds, and the resulting optimal trajectories 

a r e  shown in Figure 5.4.2.  

Fo r  the bound - 0 . 4  5 x (t) , the variable time optimum 
2 

In making the extension of the bounded state variable and 

bounded control problems to variable time, the only possible source 

of difficulty in using the variable time techniques of Chapters 4 and 
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5 was that in using Equation (4.1.4) to obtain the change in initial 

adjoint condition 6X a s  a function of 6T, no allowance was made 

for the fact that this 6X - might produce a 6x(t) - or Su(t) - which 

exceeds the constraints. However, (4. 1.4) is only a first order 

approximation, anyway, and neglecting this effect did not produce 

enough additional inaccuracy to prevent convergence. 

- 



6. 1 

CHAPTER 6 

THE VARIABLE END POINT PROBLEM 

The or et i c a1 Background 

In the first five chapters we considered optimization 

problems for which the terminal condition x(T) - was some fixed 

constant vector {x,(t), x (TI, . . . x (T)} in the n-dimensional 

Euclidean space En. We will now consider problems in which the 

terminal vector - x(T) is merely constrained to l ie  in some (n-k)- 

dimensional manifold M of En. 

set  of all points x = {x 

the k equations 

2 n 

Such a manifold is defined a s  the 

x - 1’ 2’ n . . . , x } which satisfy simultaneously 

h ( x  x . . .  , x )  = O  1 1’ 2’ n 

and where the vectors 

grad h 1 (x), grad h2(x), . . . . . grad \(x) 

a r e  linearly independent, where 

(6 .  1. 1) 

(6 .  1. 2)  

(6 .  1. 3) 

15 Pontryagin gives a necessary condition for the optimal 

control for the problem given by ( 2 .  1. 1) and (2.  1. 21, with fixed 

initial conditions and terminal condition constrained by x(T) - E M .  

Let V be the tangent plane to the manifold M at a given point x. - 
This tangent plane has dimension (n -k). 

necessary condition for  this problem, known a s  the transversality 

condition, is that for x(t) - to be optimal, the terminal adjoint vector 

+(T) must be orthogonal to every vector - 0 E V, i. e .  , 

The desired additional 

64 
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, 

T yj ( T ) . 6 = 0  

for all 8 E V. - 

(6.  1.4) 

Since V is (n-k) -dimensional, (6 .  1 .4)  yields (n-k) inde - 
pendent relationships, which, along with the k equations (6 .  1. l), 

give sufficient relationships to solve the problem. 

We will now show the equivalence between this condition 

and the condition that the first variational of S(T,X) given by 

( 2 .  3 .  1) with respect to X = x(T), is zero, i. e. ,  - -  

6s = /go 6 5  = 0 ( 6 . 1 .  5) 

where the 6X must be consistent with the constraints (6.  1. 1). 

First let u s  write 
- 

6s = S(T, X + 6X) - S(T, X) 

T T (6 .  1 . 6 )  

= 1 f o  ( x f  dx, u + 6u)dt - f (x, u)dt 
0 S O  0 

Note that (6 .  1. 6)  is equivalent to the second integral in (2 .  3. 2) .  

Thus, i f  we proceed as we did in going from ( 2 .  3. 2) to ( 2 .  3. ll), we 

arrive at a result similar to ( 2 .  3. 11) (minus the first t e rm with 6T) 

n T 
6s = c @. 6x I 

1 i t=O i=l  
(6 .  1 . 7 )  

However, in (2 .  3 .  11) the 6x. arose from the variation 6T, while 

here it is due to the 6X, - and, in fact, here 6x - = 6X. - Thus, letting 
1 

T 
6s = - @ (T) 6X - (6 .  1. 8) 

However, we have stated that 6X must be consistent with - 
( 6 .  1. l), i. e . ,  that, to a first  order of approximation 
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6 X = O  ax 1 - 
T 

6 X = O  (6. 1. 9) 

I 
I '  

ahi ah. ahi ahi 1 - 
ax, ax2 axrl 

where = 1- - , . . .  

But the vectors ah. ax are directed along the normals 

- 
{ 1 1  I 

to  the respective curves h.(x) = 0, and thus the 6X satisfying 

(6.1.9)  are  tangent to the respective curves h.(x) = 0. Thus the 6X - 
satisfying all of (6 .  1. 9)  a r e  tangent to all the curves h.(x) = 0, and 

thus to the manifold M. Thus the bX - in ( 6 .  1. 8) a r e  equivalent to  

the 8 in ( 6 .  1 , 4 )  (when 6X - goes to zero so that ( 6 .  1 .9 )  become 

exact), demonstrating the equivalence between the transversality 

condition ( 6 .  1 .4 )  and the condition 6s = 0 of (6.  1. 5). Thus, the 

transversality condition for  variable end point optimum, like the 

H = 0 condition f o r  variable time optimum, is a necessary condition 

which holds for a variable end point maximum of S(T, X) a s  well as 

a minimum of S(T, X). Thus, in using this necessary condition, we 

run into the same problems a s  we did in using the H = 0 condition. 

Before commenting further on this, let us develop a computational 

algorithm using the transversality condition. 

1 

1 

1 

6 . 2  Computational Algorithm 

We want to s tar t  with an initial estimate of X - satisfying 

(6 .  1. 11, solve the fixed end point problem using the methods of 

Chapter 3, and then obtain a new estimate - X + 6X - so as to drive 

the condition (6.  1.4) to zero. 
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We know that (6.  1.4) gives US r = n-k independent equa - 

tions in the 2n variables xlJ x2.. . x 
the r equations be given by 

I , ~ ~ ( T ) ,  r,h2(T), . . . lLn(T). Let n' 

1 

M1(xJ $(TI) = 0 

Mr(X, $03 ) = 0 

Let u s  assume that our jth estimate yields 

We want to compute 6X j+' s o  that - 

(6.  2. 1) 

(6 .  2 .2)  

( 6 .  2. 3) 

at least to a first order  of approximation. Since X j and $(T) a r e  - 
known from the previous trajectory, we have 2n unknowns 

6X1' 6X2,. . . ,  6Xn, 6$'1(T), 6$'2(T), . . . . . 6$',(T). 

We know from Chapter 4 that a change in the terminal point 

6X requires a change in initial adjoint vector 6 X  given approxi- 

mately by (4. 1. 2) 
- - 

6X = [Y] 6X - - 
where Y = axi axj t=T. Thus 

i j  I '  
6 X  = [Y] 6X - -_ (6 .  2. 4) 

In a manner similar to (4. 1. 21, we can wr i te  that a given 

6 X  - will produce a change W(T) - in $(TI - given approximately by 

61C/(T) = [Wl 6 X  

where W. = a$'i/aXj I t  =T 

ax. a X  

(6 .  2. 5) - 

where the a$. ax. a r e  obtained, like the 
11 J l j  

from the sensitivity function Equations ( 3 .  2 .  15). 
11 j J  
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I 

Therefore, substituting (6.2.4) in ( 6 . 2 .  5) 

%(TI = [ W ]  [ Y ] - l  6X - (6 .  2 .  6) 

Substituting ( 6 . 2 .  6)  into ( 6 . 2 .  3) for  6 rCI(T), - we reduce the number of 

unknowns in ( 6 . 2 .  3) from 2n to n. Also, the k Equations (6 .  1 . 9 )  

can be used to eliminate k of the 6Xi1 s, thus reducing the number 

of unknowns in ( 6 . 2 .  3) to  r = n-k, which is equal to the number of 

equations. Thus ( 6 . 2 .  3) can be solved for  (n-k) of the n 6X,l s, - 
1 

giving (n-k) of the desired X!+' = X. j + 6Xi. The k Equations 
1 1 

(6 .  1. 1) can then be solved fo r  the remaining k X?+l1 s, thus insuring 

that Xjtl - EM. Although, due to the first order aLproximations made, 
jtl the m (X, $(T)) will not exactly equal zero, they will be closer to 
i 

zero than the previous mj  (X,$(T)) , and thus eventually the method 

will converge so  that the m (X,rCI(T)) a r e  a s  close to zero a s  we 

please. 

numerical example, 

i 

i 
This technique will be illustrated in  the next section by a 

6.  3 Numerical Example 

We will use the same numerical example a s  in previous 

chapters, except that here we will consider the problem in which the 

terminal condition is constrained by 

x 2 + x 2 = o . 5  
1 2  ( 6 .  3. 1) 

That is, among all controls which transfer the system of Equations 

(3.4. 1) from the initial point (x 1' 2 
circle given by (6.  3 .  l), we want to find the one which minimizes the 

performance criterion given by (3.  4. 3). Thus, ( 6 .  3. 1) corresponds 

to ( 6 .  1. l), with k = 1. 

final time T, and then proceed on to the variable time, variable end 

x ) = ( 1 , O )  to some point on the 

We will first solve the problem for fixed 

point problem. 
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! -  
I 

For the circle given by (6 .  3. l), the slope of the line 

x ) is equal to x /x 1' 2 2 1' drawn from the origin to a given point (x 

the slope of the perpendicular t o  this line, which is also tangent to 

the circle, is ecpa? to  -x /x 

at the given point is given by (1, -x  /x  ), o r  alternately, by( -x 

and 

Thus the vector tangent to the circle 

1 2  2' 1 

1 2 '  
x ), 

From the transversality condition, we know that for u(t) 

to  be optimal $ - = ($ , i,b 

the final time t = T, that is ,  

must be perpendicular to this tangent at 1 2  

(6.  3 .2)  

Thus, we have n - k = 2 - 1 = 1 additional equation, which, along 

with (6. 3. l), is sufficient to  solve the problem. 

If we start with some initial estimate of the terminal con- 

ditions (Xl, X ) consistent with (6 .  3.  1) and solve the fixed end point 

problem, (6 .  3 .2)  will be equal to some value probably not equal to 

zero. We want to perturb X - by some 6X - to get some ?+'= - 3 - 
+ 6X - so that (6 .  3. 2) is equal to  zero to a first order of approxima- 

tion. Thus, we want 

2 

n 

+ 6$ )(X + 6X2)+(i,b2+ 6$2)(x1+ ax,) = 0 
-(+1 2 2 

From ( 6 . 2 . 6 )  we know that 

(6.  3. 3) 

(6 .  3. 4) 

where, i f  we multiply out the matrices 
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" 1  ax 

" 1  ax  

(6 .  3 .  5) 

ax w2  ax 
1 + -  ax, 1 0 -  ax2 a'2)/det 1 I 

where 

1 ax 
0 -  

2 
ax 2 ax 

0 -  - _ _  ax 
ax  detl-  I = - 

Also, from (6 .  3 .  1) and ( 6 .  1. 9), to a first order of approx- 

imation, we have 

x1 6X1 + X  6X = 0 ( 6 .  3. 5) 

Solving (6 .  3 .  5) for 6X1, substituting into ( 6 .  3 .  3) and 

2 2 

2 (6.  3 .  4), and then substituting ( 6 .  3 . 4 )  into ( 6 .  3 .  3) for &+b1 and 6' 

we obtain 

- %+K1l 

+ (@2+ 

i 6x1 - K12 

. K 2 1  bX -2 
x2 K22 6x 

x1 

x2 
- -  

(Xl+ \ 

(6 .  3. 6)  

= o  

Collecting te rms  involving b X  and constants, and ne- 1 
2 
1 glecting terms involving 6X since they a r e  inaccurate anyway, we 

have an equation of the form 

A 6 X + B = O  (6 .  3 
1 7) 
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where 

I -  

I -  

A = $ x1 - - X 2  (.,,-K 12 x2 x1)+r,b2+Xlk21-% x1 K,,) 

x2 

(6. 3. 8) 

€3 = - x21c/1+x1@2 
Thus 

6x1= - B / A  

Also, we have 

6x1 

(6. 3. 9) 

(6 .  3. 10) 

However, we cannot use both of these 6X since then 
i' 

(6 .  3. 1) would not be satisfied exactly for 2" - = Xn - + 6X. - Thus, i f  

we take the smaller of the 6XiJ and let = Xn + 6X. for that i, 
n+l  and then solve (6.  3. 1) for the other X , we will have our new i 

estimate of X - satisfying (6 .3 .  1). We continue with this proce- 

dure until the transversality condition is a s  close to  zero as we 

desire. 

1 1 1 

n+l 

6 .  4 Numerical Results 

Figure 6.4. 1 gives a polar graph of the minimized 

criterion function S = S(T,X) as  a function of the end point X - for 

a fixed final time T = 5 seconds. On this graph, S is plotted on 

lines radially outward from the origin with the S for a given - X 

being plotted on the radial line through the given point on the 
2 2  
1 2  1 2  x + x = 0.  5 circle in the x - x plane. The points on the circle 

where the transversality condition is zero a r e  indicated by the radial 

lines marked TC = 0. A s  can be seen from this graph, there is a 

point where the transversality condition is zero in each of the four 

quadrants, with two points corresponding to local maxima and two 

to local minima. The local maxima occur in the second and fourth 
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quadrants at X = ( -  0.64, 0. 30) and (0 .62 ,  - 0.35)  with S = 3.51 and 

3. 85, respectively. 

quadrants at X = (0. 19, 0.68) and ( -  0. 38, - 0.60)  with S = 3.08 

and 3.14, respectively. Which of these extrema is obtained depends 

upon the first estimate of X used. Initial estimates were used at 

the intersection of the circle with the 45' line in each of the four 

quadrants, i. e . ,  at X = (5 0.50, k 0.50), and in each case the 

method converged to the extremum in the corresponding quadrant, 

e. g . ,  an initial estimate of (+ 0.5, + 0. 5) converged to the extremum 

at (0.  19, 0.68). 

X = (0. 19, 0.68). 

- 
The local minima occur in the first and third 

- 

- 

- 

Figure 6 . 4 . 2  shows the optimal trajectory at 

- 
To solve the variable time, variable end point problem, 

one can either first solve the variable end point problem for a given 

T, then solve the variable time problem for the resulting X, and 

then resolve the variable end point problem for the new T, and 

continue until both the transversality condition and Hamiltonian a r e  

a s  close a s  desired to zero, or solve the variable time problem 

first for a given X, then solve the variable end point problem, etc. 

The former procedure was followed here. 

and X - = (0.5,O. 5), the method converged to a local minimum at 

T = 5. 2 5  seconds and X = (0.21, 0.68), with S = 3.08. 

T = 4 seconds and X = ( -  0.5,  - 0. 5), the method converged to a 

local minimum at T = 1. 15 seconds and X - = (0. 56, - 0.44), with 

S = 1 . 6 4 .  

when we have both a variable time and variable end point problem, 

and the solution we obtain is highly dependent on the choice of initial 

guesses. 

- 

- 
Starting at T = 5 seconds 

Starting at - 
- 

Thus, the problem of multiple extrema is compounded 

6. 5 Sufficient Conditions f o r  a Local Minimum 

If S(T,X) is at an extremum with respect to X, a suffi- 

cient condition f o r  the extremum to be a minimum is that the second 
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2 variation 6 S of S with respect to X be greater than zero. If 
2 

6s = {aS/i3X}T 6X - = 0, then the condition 6 S > 0 is given by 

2 T 2  
6 s = 6X - [ a  S/8X2]6X - > 0 (6 .  5. 1) 

2 2 2 
where [ a  S / a X  ] is an nXn matrix with elements 8 S/aXi 8X In 

j' 
(6 .  5. l), all the perturbations 6X must be consistent with the con- i 
straints on X, i. e.  , must satisfy Equations ( 6 .  1. 9 ) .  Since (6 .  1. 9)  

give u s  k relations between the 6X we may use (6 .  1 . 9 )  to elimi- i' 
nate k of the 6X. in (6 .5 .1)  and thus we can reduce (6.5. 1) to a 

relation consisting of (n -IC) -dimensional vectors and a (n -k)X(n -k) 

matrix. 

resulting (n -k)X(n -k) matrix is positive definite. 

- 

1 

Condition ( 6 .  5. 1) is thus equivalent to the condition that the 

We now need a method of computing the 8S/8Xi ax 
j' 

Comparing (6.  1. 5) and ( 6 . 1 .  81, we see that 

Therefore 

We also know that 

Comparing (6 .  5.4) with (6.2.61, we see that [%)I = [W] [Y] -1 

(6 .  5. 2)  

(6 .  5 .  3) 

(6 .  5. 4) 

(6 .  5. 5) 

where the [W] and [Y] a r e  defined a s  in (6 .2 .6  ). Thus this gives 
us all the information we need to compute 6 z S and thus to apply the 

sufficient condition (6 .  5. 1). 

Let u s  illustrate this technique by applying it to  our 

numerical example. From (6 .5 .  5) 
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where the 

i, j = 1, 2 (6 .  5.6) 

K. a r e  defined in (6.  3. 5). Thus for our two-dimensional 
1j 

problem, ( 6 . 5 . 1 )  becomes 

(6 .  5. 7) 

or  

K 6X1 2 -k 6X1 6X2 (K12+ Kzl) + K 2 2  6x22 > 0 11 

But, from the constraint Equation (6.  3. 5 )  

- x2 
6x2 

6X1 - - -  
x1 

Thus (6.5.  8) becomes 
2 12) “11-x, x2 (K21+K12) +K22]  6x:>o 

(6 .  5. 8) 

(6. 5.  9) 

(6.  5. 10) 

Thus the sufficient condition for a local minimum is that 

(6 .  5. 11) 

However, as was the case for the similar sufficient condi- 

tion derived in Chapter 5 for variable time minimum, this condition 

will not insure that we have an absolute minimum, only that we have 

a local minimum. 

the minima of the first  and third quadrants of Figure ( 6 . 4 .  1). 

Thus this condition will not distinguish between 

6 . 6  Moving End Point Problem 

In this section we will  consider the class of problems in 

which end point is moving a s  a function of time. An example of this 
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problem is that of reaching a point fixed on the surface of the 

rotating earth. 

problem, since the end point is varying, nor is it a variable time, 

variable end point problem similar to that considered earlier in 

this chapter in which the variations in final time and end point were 

independent and the H = 0 condition and the transversality condition 

could both be satisfied simultaneously. For the moving end point 

problem, we must derive a single necessary condition containing 

both the variations due final time and end point. The first order 

variation in S(T, X) for a variation in both T and X is given by 

This problem is neither a simple variable time 

- 

(6.6.  1) 

since H = - B S / B T .  The end point X depends explicitly on the final 

time T. Let u s  represent this dependence by X = X(T). (Note that 

X(T) is a vector which is a function of T rather than a vector eval- 

uated at t = T). Therefore, the variation 6X is given by 

- 
- 

- 
- 

where {dX/dT} is an n-dimensional vector with components 

dX.(T)/dT. Substituting (6 .6 .  2) into (6. 6. 1) 
1 

Dividing by 6 T  and letting 6T - 0 

(6 .6.  2 )  

(6 .6.  3) 

(6. 6.4) 
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The desired necessary condition for the moving end point 

problem is thus given by 

(6. 6.  5) 

To  derive a computational algorithm employing this condi - 
tion, we follow a procedure similar to that used in  section 4. 1. 

calculate an estimate of H at final time T + 6T the same way as 

we did in  Equation (4. 5.6), except that 6X - = - [Y]  

is used in place of (4. 1.41, since the desired change in terminal 

conditions is given by - (X(T) - - {dx/dT})GT instead of -x - (T) 6T a s  

in (4. 1. 3 ) .  

at T + 6T is given by 

We 

-1 
(g(T) - {dX/dT})6T 

The relationship for the second te rm of (6.  6 .  5) evaluated 

(6 .  6.  6) 

2 2 where [ a S /ax ] and {as /ax} a re  the same a s  given in (6 .5 .2)  and 

( 6 .  5. 31, respectively. Combining this relationship with that for  the 

estimate of H at T + 6T, and setting it equal to zero as in (6 .  6 .  51, 

we get an equation which can be solved for  the single unknown AT, 

which will drive (6.  6. 5) closer to zero. 

process wi l l  result in driving ( 6 . 6 .  5) as close to zero as we please. 

Repeated application of this 

We will apply this technique to  the same problem consid- 

ered throughout this paper, with the initial condition - x(0) = (1, O ) ,  
2 2  
1 2  

and the terminal condition moving around the circle x + x = 0. 5 



at a constant counterclockwise angular velocity starting 

(0.  5, 0). Thus the terminal condition X(T) is given by 

at the point 

(6.6.7) 

where w is the constant angular velocity. 

The various derivatives of X(T) with respect to  T 

needed in ( 6 . 6 . 6 )  a r e  given by 

d2X1 

dT2 

d2X2 

dT2 

1 '- 0.5 w X2(T) 

0 . 5  w X1(T) 

2 - 0.5 w 

2 - - 
- 0 . 5 w  

(6.6. 8) 

2 2 The {aS/aX} and [ a  S/aX ] a r e  the same a s  those given 

in section 6 .  5 

a2s [2]= L K 1  

(6. 6. 9) 

where the K. a r e  defined in  (6.  3. 5) .  
1j 

If we let the equation for (6.  6. 5) evaluated at T + bT be 

given by A bT + B 6T + C = 0, the values of A, B, and C for our 

numerical example a r e  given by 

2 
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A = -  - (Rk)”, [ . 5 w  X 2 ( T I T  

.5 w X1(T) 4 

2 - . 5 ~  X1(T) 

I - .5 w X2(T) 

. 5 w  X1(T) (6.  6. 10) 

- . 5 w  X2(T)  - . 5 w  X2(T) 

+ 1 .5,,,,,$ ~~~~~~ [ . 5 w X 1 ( T 4  

- . 5  w X2(T) 

where R’ i s  the same a s  that given in ( 4 . 2 . 2 )  with x (T) and 2 1 
2 (T) being replaced by Xl(T)+O. 5w x2(T) and k (T) - 0. 5w x (T), 2 2 1 
respectively. 

time T for the previous iteration and are  available in computer 

storage. Thus the equation A 6T2 + B 6T + C = 0 can be solved for 

6T. 

All  the other te rms  in ( 6 .  6. 10) a r e  evaluated at final 

The value of w used was such a s  to require 20 seconds 

for  the end point to move completely around the circle, i. e . ,  

w = 27r/20. Starting from an initial estimate of T = three seconds, 

the method converged in three iterations to a local minimum at 

T = 4.75 seconds, 

from T = 6 . 5  seconds, the method converged in two iterations to a 

local maximum at T = 8 . 4  seconds, X - = ( -  0.438,  0 .  241), with 

S = 3. 271. 

3 iterations to a local minimum at T = 1 3 .  5 seconds, X - = (  -0. 216, 

- 0. 451), with S = 2. 992. 

difference between the two local minima. 

X - = (0 .036,  0 .499) ,  with S = 2.975. Starting 

Starting from T = 1 2  seconds, the method converged in 

Note that in this case, there is very little 

It is likely that S would 

, 



continue to go through local maxima and minima as T continues to 

increase, 

Sufficient conditions for  a local minimum may be devel- 

oped by differentiating (6.6.4) with respect to T 

(6 .6 .  11) 

A relationship for dH/dt may be obtained from (5. 1.7) by replacing 

X(T) - by Z(T) -{dX/dT} 

Al l  other expressions in ( 6 . 6 .  11) have already been evaluated. 

sufficient condition for a local minimum then is that d S/dT > 0. 

The 
2 2 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

Two techniques have been given for solving the fixed time 

optimal control problem, sequential optimization and quasilinear - 
ization. Quasilinearization proved to be the superior method in all 

respects for the problem considered, both from the point of view of 

efficiency of computer time and the methods' convergence proper - 

ties. Convergence problems are  encountered in sequential optimi - 

zation for  the bounded control case, while in quasilinearization such 

problems do not occur, except when the solution approaches the 

totally bounded case (bang-bang control). For this case, the time 

at which the control switches from one bound to the other becomes 

critical, but this problem can be overcome by using a method which 

decreases the integration interval in the region of the switching time. 

A second variation of the sequential optimization tech- 

nique exists (Reference 8) but was not considered here. 

ation starts with an initial estimate on the entire control program 

u(t) and uses the 6u(t) obtained in solving the linear problem for an 

improved estimate. 

u(t) = 0 can be used, which does not allow the trajectories to di-  

verge from the desired terminal conditions quite a s  much a s  when 

arbitrary estimates on initial adjoint conditions a re  used. 

method iterating u(t) is more efficient from the point of view of 

computer time than the one iterationing on $ ( O ) .  

the fixed time problem with T = 5 . 0  seconds in approximately two 

minutes of computer time, compared to 3.5 minutes for the latter 

method and a half minute for quasilinearization. However, when 

estimates on u(t) a r e  used, adjoint differential equations a re  not 

used, and thus one cannot evaluate the Hamiltonian and solution of 

This var i -  

In this variation, an initial estimate on u(t) of 

Thus, the 

The former solves 

82 
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b 

4 

the variable time problem becomes difficult. Furthermore, quasi - 
linearization is preferable to either variation of sequential optimiza - 
tion, anyway. 

This paper has cieariy demonstrated that methods fo r  

solution of the variable time problem which employ only the H = 0 

condition a r e  inadequate for the general problem. Such methods can 

yield a solution which is a local maximum of S(T), i f  one exists, a s  

well a s  a local minimum. A method of generating BH/BT and 
2 2 2 2 3 3 

8 H/BT (equal to - a S/BT and - a S/BT , respectively) has been 

developed which w i l l  insure that the solution arrived at will at least 

be a local minimum, although not necessarily the least local mini- 

mum, i f  more than one exist. It is questionable whether it is pos- 

sible to develop a technique which, when in  the neighborhood of a 

local minimum, can tell whether another local minimum exists. 

In any problem in which both a local minimum and a local 

maximum exist, there must exist a second local minimum (which 

might occur at T = m).  Thus, the techniques developed in this paper 

will  not completely solve any problem which w a s  not capable of being 

solved by some technique in the literature. That is, if  there is only 

a local minimum, the H = 0 condition is sufficient; i f  there is a local 

minimum and a local maximum, there a r e  two local minima, and 

we still have no way of insuring we obtain the least local minimum. 

However, we have developed a technique which widens the region of 

initial estimate on T from which we wil l  converge to the desired 

absolute minimum and we have insured the attainment of at least a 

local minimum and not a local maximum. Also, by starting at a 

couple of widely differing initial estimates on T, we can quickly 
2 2 

determine the rough shape of the S(T), H, B H / B T ,  and a H/BT 

curves, and thus we can see if the possibility of more than one local 

minimum exists. If more than one does exist, we must by trial  and 
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e r ro r  test enough regions of initial estimate on T to insure that we 

do finally have a solution which is an absolute minimum. 

Similar problems were also shown to  exist in using the 

transversality condition, which is also merely a necessary condition, 

to solve the variable end point problem. 

There a re  still many areas  related to the subjects covered 

First of in this paper which require further study and development. 

all, of course, is the need for a technique which will automatically 

find the absolute minimum of S(T, X) with respect to both T and X, 

when several local minima exist, but a s  was stated above, this 

possibility doesn' t look too promising. Also, a really thorough 

study into the relative efficiency of all  the various optimization tech- 

niques, i. e. , quasilinearization, sequential optimization, steepest 

descent, dynamic programming, etc. , applied to a wide range of 

problems is greatly needed. Generally, an investigator will  apply a 

technique to  a given problem, and state the results for that technique 

and for that problem, and thus we really have no feel for which of 

the many techniques is most appropriate for  a given class of prob- 

lems. (This investigator did make such a comparison for two tech- 

niques applied to the same problem, but a comparison of more 

techniques fo r  a greater variety of problems is needed). Similarly, 

a study i s  needed into the relative efficiency of the various methods 

fo r  solving the variable time problem, for  example techniques 

which vary the final time T every iteration and thus only arr ive at 

an optimal trajectory for the optimal T, compared to  the technique 

developed in this paper, which solves the fixed time problem for 

each T before proceeding on to  a new estimate of T. Although 

intuitively one might guess that the former is more efficient, it is 

likely that in varying T continuously each iteration, convergence is 

slowed considerably in solving the two point boundary problem, while 
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when solving the problem first for  the initial estimate of T and 

then obtaining an improved estimate of T, the solution of the first 

two-point boundary problem is probably much more rapid, and after 

obtaining the soiution to the two-point boundary problem for  the first 

T, solution for the succeeding values of T proceed much more 

rapidly than for the first T, due to  the fact that we have a better 

f irst  estimate for  the new solution. 

which approach would be more efficient. 

Thus it is the really not clear 

While a wealth of techniques already exist f o r  solving the 

optimal control problem, new, more efficient techniques a re  con- 

stantly being developed, and more efforts in this direction, are, of 

course, needed. Also, the development of more efficient computer 

programming techniques would be helpful. Finally, a constant 

attempt to broaden the scope of application of these techniques to 

actual problems in the real  world, i. e . ,  problems relating to 

economic and social systems as well as to physical systems, rather 

than abstract mathematical problems, is also needed, an area which 

is too often neglected. 
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APPENDIX I 

DERIVATION OF EQUATIONS FOR NUMERICAL EXAMPLE 

In this section of the Appendix, some of the more complex 

equations which were not developed in  the body of the paper which 

are needed to apply the techniques developed in this paper to the 

given numerical example will be developed. 

For  the sequential optimization technique, application of 

(3.  2. 1) and (3. 2. 2) to (3.4. 1) and (3.4.7) respectively yields the 

linearized perturbation equations 

6 2  = 6x 2 1 

62 = (1 - x;) 6x2- (2x1 xz+ 1 Ax1+ w 2 / 2  
2 ) 

6&1 = 2 ( 2 2 )  x $ + 1 6x1+ 2x 1 2  7 )  dx 2 + ( 1 + 2x1x2) 6 ~ ,  (I. 1) 

6 i 2  = 2x $ 6x -k 2 6x - 6$ - (1 - x i )  6fi2 
1 2  1 2 1 

where 6u = 6fi / 2  has been substituted since u = 7 )  /2 .  When the 
2 2 

control u is at i t s  bounds, the last t e rm on the right of the second 

of Equations (I. 1) is set equal to zero. 

We must also derive equations equivalent to (3.  2. 15) for the 

linearized Equations (I. 1) with 6x and 67) of (I. 1) equivalent t o  

y and 7 )  in ( 3 . 2 .  15) respectively and 6H given by (3. 2 . 7 )  equivalent 

to H in (3.  2. 15). To simplify this derivation, we observe that in 

(3. 2. 15) we have assumed that the optimal control program 

u = u(x,fi) has been substituted into H making H a function only of 

x and 7 ) .  If we do the same in ( 3 . 2 .  7), and observe that - = 0 

when u is not at i t s  bounds and 6u = 0 i f  u is at i t s  bounds, 

making the first  t e rm in (3.2.7)  always zero, we may rewrite 

( 3 . 2 . 7 )  a s  

aH 
a U  

88  
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If we  apply (3. 2. 15) to (I. 21, with the equivalence noted in 

the preceding paragraph, we obtain 
. - .  

(I. 3) 

Thus, we see that the coefficients in the Equations (3. 2. 15) 

for the linearized equations a re  the same as they would be for the - 
arC/ and - = - ax ax original nonlinear equations. That is, - = - 

abx ax 
ax ax 

This is an expected result, since ( 3 .  2.  15) a r e  simply sensitivity 

function equations for changes in rC/ and x due to changes in A, and 

an incremental change in X would have an incremental change in @ 

and x which is equivalent to an incremental change in 6$ and 6x. 

Applying (I. 3) to (I. l), we obtain 

(I. 4) 
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a 6x2 

axi + 2 -  

i = 1 , 2  
a w l  a w2 

- -  - (1 -x ; )  ax. 
1 

ax. 
1 

It should be noted that the coefficients of t e rms  in (I. 4) are 

also the same a s  those in (I. 1). This is obvious from the similarity 

of coefficients in Equations (I. 3) and (3. 2. 1) and (3. 2. 2), after we 

have made the necessary substitution of u = u(x,$) in (3. 2. 1) and 

(3.  2. 2) and made the necessary changes in partial differentation. 

That is, if we make unit changes in  initial conditions on the l inear- 

ized perturbation equations, they a r e  equivalent to sensitivity func - 
tion equations. 

For the quasilinearization technique, we must determine the 

partial derivatives af /ay. in ( 3 .  3.  3). However, since y.= x. and 
i l  1 1  - 

f . =  aH/ax i ,  i = 1,. . . , n ;  and y.=$. 

then 

and 
1 1 1-n f .  = - aH/a@i -nJ i =n+ l ,  . 

1 

af .  a2H 
- 1 -  -- j , i  = 1, 2 , .  . . n  
aYj ax*ax 1 j  (I. 5) 

i = l , 2 , . . . n ;  j = n + l ,  n + 2  , . . .  2n af i -  a2H - -  
aYj  axiwj-n 

2n 
j 
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However, again, these coefficients a r e  equivalent to those in  

(3. 2.  15) and (3.2. 1) and (3 .2 .  2), (with appropriate changes for the 

substitution u = u($, x) made). 

example, (3. 3.4) is given by (I. 1) with yi 

- f.(y ) = Sx. for  i = 1, 2 , .  . . n, and y Y i  1 1 i 

Thus, for the given numerical 
n+l n - y. = SX. and 

1 1 n+l and n+l n - y r  = 

S;n+1- f.(yn) = ,$ for  i = n+l, n+2,. . .2n. However, although the 
1 1 i -n 

equations for sequential optimization and quasilinearization a r e  the 

same, they a r e  used in an entirely different manner, the former 

iterating on the initial adjoint conditions and the la t ter  iterating on 

the entire trajectory while holding boundary conditions constant. 

In employing the variable time techniques of Chapters 4 and ~.~ 

and - a@ However, a s  d ax d a@ ax 
ax * 

5, we need t o  compute ax , ax , 
d aSx d as$ a6x 

mentioned earlier, these a r e  identical to - - 
and - in (I. 3) .  

d t a x  ’ dt ax’ ax ’ 
Also  fo r  the variable time algorithm we need ax  

X(T). These may be determined by straightforward differentation of 

(3.4. 1) 
p = x  

1 2  

x = (1 - x;) x2 -  (2x1x2+ 1) XI+ $2 5 
2 

(I. 6) 

where the last  term in the second equation is zero when u is at i t s  

bounds. 

For the bounded state variable problem, when x (t) is at i t s  2 
con st raint 

u(t) = - (1 - x;) x + x  

) *, = 2 x  + 2u(l + 2x1x2 

2 1  

1 

$2 = - x  + 2 x  + 2 u  x 1 2 (:: -1)  (1.7) 
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ax w1 
i = 1 , 2  2 + 2 - - -  1 

= 4ux - 
ax 

1 axi ax. axi 
1 

Other equations a re  the same as for  the unbounded state 

variable case. 



APPENDIX 11 

On the following two pages a r e  given flow charts for the 

computer programs for the sequential optimization and quasilinear - 
ization techniques, respectively, f o r  the variable time problem. 

The techniques were programmed in FORTRAN IV computer lan- 

guage for the IBM 7094 computer at UCLA. The integration sub- 

routine was developed in Reference 8 and made use of Gill' s 

method. 7 

The differential equations were all programmed into a 

separate subroutine called DERIV which was called from the inte- 

gration subroutine. Also a subroutine CNTRL was called from the 

integration subroutine to determine at what time T to halt the 

integration. 

special provision for halting the integration when the trajectories 

diverge too far  from the desired end points to allow convergence of 

the method from arbitrary first guesses on initial adjoint conditions) 

Thus the integration subroutine was general and could be used with- 

out change for  any given problem. 

(For  sequential optimization CNTRL thus contains the 

For  sequential optimization the general subroutine developed 

in Reference 8 for  solving the linearized problem was used. 

9 3  
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COMPUTER PROGRAM BLOCK DIAGRAM 
SEQUENTIAL OPTIMIZATION 
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1 
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INTEGRATE HOMOGENEOUS LINEARIZED 
EQUATIONS WITH APPROPRIATE WITIAL 
CONDITIONS, (0.0.1,O) AND (O,O, 0, 1) 
FOR GIVEN NUMERICAL EXAMPLE 

- 
+ 

INTEGRATE NON-HOMOGENEOUS 
LINEARIZED EQUATIONS WITH .C- 

COMPUTER PROGRAM BLOCK DIAGRAM 
QUASILINEARIZATION 

HOMOGENEOUS 
LINEARIZED 
EQUATIONS 

NON -HOMOGENEOUS 
LINEARIZED 
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READ INPUT DATA 
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