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CHAPTER 1
INTRODUCTION

1.1 Optimal Control Theory

In recent years, control systems theory has been largely
concerned with problems of optimization. Most of this effort has
dealt with systems described by ordinary differential equations and
termed lumped parameter systems. More recently, considerable
interest has emerged in the optimization of systems described by
partial differential equations and termed distributed parameter sys-
tems. Still another class of optimization problems deals with static
optimization or systems described by algebraic equations. This dis-
sertation will treat the distributed parameter systems problem as an
(approximately) equivalent problem for lumped parameter or static

systems.

The particular problem considered is one of choosing a con-
trol variable(s) such that a given functional of independent, depen-
dent, and/or control variables is maximized or minimized. This is
to be accomplished while satisfying certain equality and/or inequality
constraints called side conditions. Problems of this type involving
differential equations can be handled by a number of methods;
namely, the calculus of Variations? Pontryagin's maximum principlef3

’

Bellman's dynamic pJf'olcgramming,7 functional analysis, 7 and grad-

ient methods.34’ 35

Recently Dantzig19 has treated the optimization of
linear dynamic systems by a generalized linear program. Certain of

the above methods are also applicable to static system optimization.

Several authors have detailed the relationship between some
of these methods. In particular, Dr‘eyfus21 has derived many of the

theorems of the calculus of variations using dynamic programming,



and Hestene528 has demonstrated the relationship between the
calculus of variations, the maximum principle, and dynamic pro-

gramming.

Perhaps the greatest effort has been expended in solving
linear problems with quadric cost functionals because these lend
themselves nicely to analytical results. However, in many situa-
tions these properties do not adequately represent the physical situ-
ation and one is forced to deal with nonlinear systems which may be
of high order and with complicated criterion functions. Since such
problems are not amenable to analytical solutions, much research
has been done on the computational aspects of obtaining numerical
results. For example, the necessary conditions for optimality
arising from the calculus of variations (or other) treatment give rise
to various two point boundary value problems. These problems are
of higher order than the original state equations and have initial
values specified for some equations and final values specified for
other (or the same) equations. Because of the nature of this prob-
lem, iterative methods are generally required for its solution.
Particular techniques are (1) quasilinearization30 which iterates on
the solution trajectories, (2) Newton-Raphsor%0 (a second variational
technique) which iterates on certain initial conditions, and (3) gradi-
ent34 or steepest descent which iterates on the control variable.

The method of quasilinearization was used extensively in this inves-

tigation.

1.2 Distributed Parameter Systems

The pioneering work in optimal control theory for dis-
tributed parameter systems was done by Butkovskii and Lerner15 in
1960 and Butkovskii has been a constant contributor since that

. 16, 17 . .
time, The approach taken in much of this work is based on




extending Pontryagin's maximum principle. In this country,
Wang64’ 65 has developed the necessary conditions for the optimal
control of distributed parameter systems using the formalism of
dynamic programming. Wang also discusses stability, controlla-
bility, observability, approximation methods, and instrumentation.

2 7
Other investigators are Brogan,11 Egorov, 2 Sakawa5 and Axelbandi1

each of whom treats certain classes of problems by various methods.

For all of the theoretical work reported, computational re-
sults have been notably absent. Brogan11 gives results for the
linear one-dimensional diffusion equation with distributed control
and Sakawa56 treats a similar problem with boundary control. One
of the reasons for the sparse number of examples is undoubtedly the
computational difficulty involved in solving these problems. In fact,
Wang64 raises the question of the relative merit in discretizing the
necessary conditions for optimality versus discretizing the original
system partial differential equation since some approximation is
generally required in obtaining a solution. The latter approach is
taken in this dissertation by reducing partial differential equations to
ordinary differential equations through spatial discretization. It is
hoped that this approach will lead to numerical solutions for a

broader class of problems than would otherwise be attained.

As mentioned above, two types of problems arise in the
optimization of distributed parameter systems; namely, (1) dis-
tributed control and (2) boundary control. In the former case the
control is distributed over the entire spatial domain, and in the
latter, it is distributed only over the boundary domain. It is note-
worthy that in most physical situations, true distributed controls
are not present. This fact gives additional impetus to the discrete

model approach. Some examples of distributed parameter systems



are continuous furnaces, electrical power transmission systems,

and re-entry vehicles with ablative surfaces.64

1.3 Multilevel Control

The term multilevel control implies the decomposition of
a (large) system into smaller (independent) subsystems and the co-
ordination of these subsystem solutions by a "superior' controller
which operates on several or all of the subsystems. The subsystem
controllers might be called first-level, their "superiors, ' second-
level, etc. This nomenclature is part of a general theory introduced
by Mesarovic48 for treating multilevel, multigoal systems where
the term multigoal implies that the subsystems may have different
goals or objective functions. Many papers have elaborated these
concepts (see for instance the bibliography in Reference 49). The
work reported here will refer to a two level, N goal system. As used
to date, the term multilevel control has been used in connection
with optimization problems and refers to an off-line type of control.
A better term might be multilevel optimization; however, the for-

mer terminology is retained here.

In its present context, the idea of decomposition for solving
optimal control problems seems to have originated with Dantzig and
Wolfe20 who, in 1960, adopted this procedure for solving large
T

linear programming problems." More recent work at Case Institute

of Technology has considerably extended the theory of multilevel

38
TElements of decomposition are also present in Kron's ~ method of
"tearing' and Bellman's’ dynamic programming for network
analysis and optimization respectively.




control. Lasdonll:1 treats the steady state optimization of nonlinear
systems and shows, using the Kuhn—Tucker39 theory, that a certain
saddle-value problem results, and Macko45 has extended these re-
sults to dynamic nonlinear systems. TzaLkaLhaLr:aL59 treats linear
dynamic systems in a somewhat different way using features in-
herent in the system linearity. Recently Bauman6 has extended
some of the above results to trajectory decomposition and has given
some computational examples. References 41 and 45 provide the
main background for the work reported here and they will be

reviewed briefly in Chapter 2.

The multilevel control problem can also be approached
from the point of view of mathematical programming. Dan‘czig19
and sztraiyaS3 have reported results in this area. The interesting
question of duality also arises and is discussed by Pearson.sz’ 23
Kulikowski40 formulates a number of linear multilevel control
problems using the theory of M. Krein1 and also treats the related
question of optimal aggregation. The latter question arises partic-
ularly in certain problems in operations research. Finally,
Lefkowitz43 discusses a multilevel approach to control system

design and delineates four levels of control; namely, regulation,

optimization, adaptation, and self-organization.

1.4 Scope of the Dissertation

Some of the objectives of this research are as follows:

1. To formulate distributed parameter systems in the con-
text of multilevel control by spatial discretization.
2. To determine a decomposition approach which will tend

to minimize coupling constraints between subsystems.




3. To determine the relative merits of various second-
level controllers in handling the high dimensionality
resulting from the spatial discretization.

4. To demonstrate the applicability of this approach to a
wide class of problems including nonlinear problems
and problems having irregular and/or higher order
(greater than 1) spatial domains.

5. To solve a representative number of example problems

using the multilevel approach.

This dissertation is intended to present the results of this
research. The purpose of Chapter 1 is to lay a framework for the
three major ideas with which the dissertation is concerned; namely,
optimal control theory, distributed parameter systems, and multi-
level control. A further purpose is to outline the goals of the re-

search and to preview the subsequent material in the dissertation.

Chapter 2 describes some theoretical aspects of multilevel
control and fixes the terminology to be used throughout the
remainder of the dissertation. Much of this material was developed

at Case Institute of Technology, Cleveland, Ohio.

Chapter 3 defines the classes of optimal control problems
which can be attacked by a multilevel approach. A fairly general
semidiscrete model is developed. The necessary conditions for the
special case of a nonlinear diffusion equation with quadratic cost

functional are then developed in order to fix ideas.

Chapter 4 discusses the pros and cons of using multilevel
techniques for solving the problem proposed here and briefly treats
some controllability questions. Also presented is a critique on
various second-level controllers along with some miscellaneous

topics such as state inequality constraints and time discretization.




Chapter 5 formulates a number of example problems using

the ideas of multilevel control.

Chapter 6 presents numerical results for several of the
examples formulated in Chapter 5. A brief description of the com-
puter program and the method of quasilinearization used in obtaining

subsystem solutions is also contained here.

Chapter 7 presents the conclusions reached in this research

and details some areas where further study would be fruitful.



CHAPTER 2
MULTILEVEL CONTROL THEORY

2.1 Introduction

This chapter will review some multilevel control tech-
niques for the optimization of nonlinear static and dynamic systems.
Particular emphasis will be placed on the convergence properties of
various forms of second-level controllers including a Gauss-Seidel

type controller introduced here.

The theory of multilevel control has two significant features
in solving an optimal control problem; namely, (1) a conceptual
simplification for large systems and (2) a possible reduction in the
computational burden involved in computing optimal controls. The
first advantage is achieved by treating an nth order system as N

independent subsystems of order nj where

N

n=Y o

j=1
The subsystem independence is attained by relaxing one (or more)
of the necessary conditions for optimality and then satisfying this
condition with a second-level controller. This technique of solution
requires an iteration between levels of control and thus no guarentee
of computational time reduction can be made. However, in theory

the reduced subsystem size may permit the solution of problems not

otherwise possible.

2.2 Dynamic Systems

Consider the dynamic optimization problem of minimizing

the functional t

1
J(M) = S F(U, M, t)dt (2. 1)
O




subject to the side constraints given by

U = G(U,M,t); U(0) = U_ (2.2)
R(U,M,t) 2 0 (2.3)
v () =0 (2. 4)
(Ut t,) =0 (2. 5)

where
= n dimensional state vector
m dimensional control vector

= scalar function of class C2

Q1 2 c
It

= vector function of dimension n with components
of class C2
R = vector function of dimension r with components
of class C2
y = vector function of dimension q(n) with components

of class C2

In order to employ multilevel techniques, the system
((2. 1)-(2. 5)) is decomposed by partitioning the state vector U into
N subvectors Ul’ N UN. In order to attain independent subsys-
tems, a pseudo-control vector Sj is substituted for variables Ui’
Mi (i #j) (or functions thereof) appearing in the jth subsystem.
Assuming that (2.1), (2.3), and (2. 5) are naturally separable into

subsystems, the optimization problem can be restated as minimizing

N ot
JM) = ) F.(U,, M., t)dt (2. 6)
T1 % T

T

This assumption can be relaxed (see References 6 and 45) but this
would not add to the present discussion.




with side constraints

U.= G.(U,,M_,S_,t); U(0)=U, 2.7
A I A R J( ) jo (2.7)
R(U,M_,t)Z 0 2. 8)
I R (
v ty) =0 (2. 9)
w(Uj(tl),t1> = 0 (2. 10)
and coupling constraints
6.(U.,,M_,t) =8, i#j 2.11
J( i M ; (i=3j) ( )
j=1,...,N.

where
Oi= vector function of dimension hi with

2
components of class C
The elements of Gi in (2. 11) represent inputs to subsystems other

than the ith. A convenient notation for (2. 11) is
6.(U,M,_,t) =8 (2.12)
J 3 ]

A representative subsystem is shown schematically in Figure 2. 1,

The Hamiltonian corresponding to ((2. 6)-2. 12)) can now be

written as:
T

N
= T T(, _ o .2
H 321 Fjﬂj GJ,+PJ- (Gj S)+i§1uij (Rij gij { (2.13)

where XA, p., u N are appropriate Lagrange multipliers of dimension

nj, hj’ and 1 respectively and are assumed to exist. The scalars

Eij correspond to the slack variables of Valentine.60 The canonical

?

Euler equations 4 immediately yield the necessary conditions

ij= H, (2.14)
i
xj = - Hy (2. 15)

10
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=0 )
HM. (2. 16)
J
u..R,. =0 i=1, , T (2.17)
13 1] J
H =0 (2.18)
P
]
H =0 2.19
S. ( )
J
j=1,...,N

The transversality, Erdmann, Clebsch, and Weierstrass necessary

conditions are likewise easily determined.6’ 45

To realize the benefit from a reduction in dimensionality
will require necessary conditions for the satisfaction of (2.14)-(2.19))
which are dependent on individual subsystems only. Since this is not
possible for all of ((2. 14)-(2. 19)), one or more of these conditions
can be relaxed within the (first-level) subsystems and satisfied by a
second-level control. The second-level variables are treated as
parameters at the first-level. The multilevel approach is to guess
these parameters and solve all first-level subsystems. The subsys-
tem results are of course nonoptimal for the overall problem. These
first-level results are then transferred to the second level where
new parameter values are determined. These values are then passed
to the first-level subsystems and the entire process repeated until

all necessary conditions are satisfied simultaneously.

Defining the Hamiltonian for the jth subsystem as
r.

i

T . . T, 2
H.= F+x; G + .(9.-8 + ..(R..—E.. (2. 20)
JJJJpJJ)ig’lulJl ij

12




T

and treating the Sj(j:l, ...,N) as parameters' yields the following

first-level necessary conditions

U, = (H,
j J)A.
J
A= -(H)
] j U,
J
(Hj)M.= 0 (2. 21)
J
.R.. =0 i=1, T,
Hi57 1 j
(H')p =0
A
j=1,...,N

The condition remaining to be satisfied by a second-level control is
(2.19). This method is termed "'feasible' since the coupling con-
straints (2. 12) are always satisfied by each subsystem. At any point
in the -iteration, the solution, while nonoptimal, does represent the

actual overall system.

In order to put (2. 13) in a form suitable for the determina-
tion of (2, 19), rearrange the set of terms {pT Sj |j=1, cees N} into the
form (pj)T Sj (j=1,...,N). The second-leveljnecessary condition is
now

H.). - =0 j=1,...,N (2. 22)

where the pJ are treated as parameters by the second-level controller.

One method of satisfying (2. 22) is by a gradient controller of the form

TThe s! (j=1,...N) are thereby parameters also since

PRI K

13



ds.(t, o) i
- a((Hj)Sj- o) (2. 23)

where o represents iteration time and a is a scalar to be determined.

It can be shown45 that if J is to be maximized, a>0; and if J is to be
minimized, a < 0. Furthermore (2. 23) will converge to the desired
solution (2. 22) if S,(t, 0) is suitably chosen. One restriction of this
method is that eacli subsystem must have at least as many degrees of
freedom (controls) as the number of coupling constraints (2. 12) added

to it.

Some added difficulty may be encountered in obtaining the
subsystem solution when Bj is a function of Uj only. In this case
the coupling constraint is essentially a state equality constraint along
the entire path and must therefore be differentiated until the control

. ... 8,13 . s
appears explicitly. The corresponding necessary conditions are

different than (2. 21) and are generally more difficult to solve.

h
Redefining the Hamiltonian for the jt subsystem as
r.

J
T T T 2
H.= F+X G.+p,. 6.-(p’) " S.+ ..(R..—S.. 2,24
JJJJPJJPJiélulJllJ (.29
where the subsystem criterion function is now

1 .
T = g F.+p.Te.-<pJ)Ts.]dt 2. 25)
RV I B I j

and treating the pj (j=1,...,N) (and therefore p‘]) as parameters,

yields the following first-level necessary conditions

14



15

Yo (H;i) A

I (HJ)UJ

(HJ.)M -0 (2. 26)
J

“inij =0 i=1, 'Ij

(Hj)S, =
]

i=1,...,N

The condition remaining to be satisfied by a second-level control is
now (2.18). This method is termed ''nonfeasible' since the coupling
constraints are not satisfied during the course of the iteration but

only when the second level has converged.

The second-level necessary conditions can now be stated
from (2. 20) as

<9J.-sJ =0 (2. 27)

i=1,...,N
where the S’ are now treated as parameters. Again using the grad-
ient controller at the second level yields
dp.(t, o) .
4 . - J)
= a(ej S (2. 28)
j=1,...,N

45 that at the optimum a saddle value

In this case, it can be shown
results between (2. 26) and (2.27). Thus when J(M) is to be maxi-
mized, a <0; and when J(M) is to be minimized, a> 0. Conver-
gence of (2.28) to (2. 27) is guaranteed if the~pj (t,0) are suitably
chosen, and if each subsystem is formulated such that it has at least

a local minimum with respect to both Mj and Sj' The latter condi-

tion is quite restrictive. To circumvent this difficulty, Bauman




has proposed an alternative procedure for satisfying (2. 27) using the

second-variational techniques introduced by Breakwell.10

An alternative to these methods is to assign both (2. 18) and
(2. 19) to the second-level controller. In this case both P and Sj
are treated as parameters in the subsystem and the second-level
necessary conditions are given by (2. 22) and (2. 27). Takahara59
has proposed this method for linear dynamic systems in which all
subsystems are solved before determining new parameter values
(pj, Sj) at the second level. A variation of this approach as suggested
here is to determine and use new values of the parameters pj and
S. as soon as the required first-level data is available. This ap-
pi'oach is analogous to the Gauss-Seidel technique61 for solving
linear algebraic equations and as such will be termed the Gauss-
Seidel second-level controller. It is of interest to examine the con-
ditions under which convergence is guaranteed by this method. This
question has not been completely answered; however, some results
are available. For static systems (for which the Gauss-Seidel itera-

tive procedure is intended),SO’ 61

the solution U to the linear system
of equations

AU+ F =M (2. 29)
converges for any initial guess U° if all the eigenvalues of a matrix

C have modulus less than unity where

A = n x n matrix

F,U,M = n vectors

C --Aa

A = lower triangular part of A

A = upper friangular part of A (above

diagonal)

16



This condition can be shown to hold whenever A is Hermitian, posi-
tive definite.50 Varga62 has shown that the A matrix resulting from

the discretization of the elliptic partial differential equation
- (Kl(xl, xz)le)Xl- <K2(x1, X2)Ux2 >X2+ o(xl, Xy) = m(xl, x2)

X ,%X.¢e82 (2.30)

u(x ,x2) = f(x %9 b

1:X2)
>0,0z2 0

1

K1> 0, K2

is real, symmetric, with positive diagonal entries and nonpositive
off-diagonal entries. Moreover, if the vector of boundary mesh
points F is written separately as in (2. 29), A is irreducibly diag-

T

onally dominant so that A is positive definite." Hence the state
equation of the form (2. 29) resulting from the discretization of
elliptic partial differential equations will converge by the Gauss-
Seidel method for given M and ¥. The optimization problem, how-
ever is to solve an augmented system of equations consisting of

(2. 29) plus the stationarity condition on the control M, and the state

variables U (assuming no inequality constraints). For the case of a

guadratic criterion function, this augmented system has the form

A'Z =B (2.31)
where
ZT =[U, A], a 2n dimensional vector
A = Lagrange multiplier, n vector
Al = 2n x 2n matrix
B = 2n dimensional vector
T

An identical result holds for the negative of the A matrix arising
from the parabolic equations discussed in Chapter 3.



However, A' is no longer necessarily symmetric and therefore no
longer positive definite although it may still contain some other
properties of A; namely, real with positive diagonal entries and non-
positive off-diagonal entries. Thus convergence is not guaranteed
for (2.31). The fact that the Gauss-Seidel procedure as proposed for
multilevel control utilizes subsystems composed of aggregated ele-
ments of U (rather than single elements) is not expected to change

the convergence properties given above.

Antosiewicz gives a convergence criterion for the iterative

solution of nonlinear static systems of the form

Z =£(Z) (2.32)
where f is a vector function defined over a normed linear space
Rn and satisfying Lipschitz conditions with respect to Z. The nota-
tion corresponds to the augmented system (2. 31) obtained for linear
systems. Namely, the set of equations

PARRNEITAS (2.33)

will converge to the solution of (2. 32) for z° suitably chosen if

L] <1 (2.34)
where L is the matrix of Lipschitz constants. Naturally, conver-

gence depends upon the norm chosen.

Kolmogorov36 gives a convergence criterion for infinite
dimensional function spaces based on the principle of contraction
mapping. Consider the set of differential equations

z £(Z, 1) (2.35)

Zit ) = Z
o o

. . . n+l
where f is a continuous vector function on the space R and

satisfies a Lipschitz condition with respect to Z , namely,

18



If(Zl,t)—fi(Zz,t)IS L max Izil— zlzl ; 1<i<n (2. 36)

In the above zT = [zl, e zn] and M is considered as a parameter.
ILetting T be the integral operator arising from (2. 35), the set of

iterative equations

k+1
25 - ok (2.37)
will converge to the solution of (2. 35) if
Lit-t )< 1 (2. 38)

and z° is suitably chosen.

Takahara59 has shown a sufficient convergence condition for
the iterative solution of linear dynamic systems using decomposition
and a second-level controller analogous to the Jacobi rnethod66 of
solving discrete representations of elliptic partial differential equa-

.’.

tions.' This result, based on (2. 38) requires that the norm of a com-
plex function of inverse Laplace transforms be less than unity. In

most cases this criterion is too complex to be of any practical value.

Various sufficiency conditions relating to the convergence of
the Gauss-Seidel second-level controller have been reviewed above.
That these conditions (in particular (2. 38)) are overly restrictive
when applied to the augmented system of equations arising in linear
dynamic optimization problems is shown by example in Appendix A.
In practice, the Gauss-Seidel second-level controller was found to
have excellent convergence properties when applied to both linear
and nonlinear problems of the type arising from semidiscrete approx-
imations to parabolic partial differential equations. These conver-

gence properties are further discussed in Chapters 4 and 6.

T

The Gauss-Seidel method for treating these problems is known to
converge exactly twice as fast as the Jacobi method.

19



2.3 Static Systems

Consider the static optimization (minimization) problem

given below

min F(U, M) (2.39)
M
such that
G(U,M) =0 (2. 40)
and R(U,M)Z O (2. 41)
where = state vector in E"

n

. m
control vector in E

) 2
scalar function in C

n vector of functions in C2

1

u
M
F
G
R

r vector of functions in C2

H

In order to treat ((2. 39)-(2.41)) by multilevel techniques,
it is again necessary to formulate independent subsystems by sub-
stituting pseudo-control variables S, for all variables (or functions)
entering the jth subsystem from otlfer subsystems. Assuming that
(2.39) and (2. 41) can be written in separable form, the above opti-

mization problem can be stated as

N
min ) F.(U,M,) (2. 42)
Y PP DR
i
such that
G,(U,M,S) =0 (2. 43)
AN H
R.(U,M,)z 0 (2. 44)
h

with the coupling constraints

(U, M.) =S, i # j 2. 45
GJ(UJ )75 i=]) ( )

where Oj is a vector function of dimension hj having elements which

are inputs to other subsystems. A convenient notation for (2. 45) is

20



6.(U.,M) =8 (2. 46)
R

The Lagrangian L associated with ((2. 42)-(2. 46)) can be

writiten as
r.
N , J
T T j 2
L= F+A. G.+p. (9.—8 + .. R..-%’..) (2. 47)
jgl J 1 1 pJ J ) iz;lulil 1] 1

where )Lj, pj’“ij are Lagrange multipliers of appropriate dimension
and the Eij are slack variables. The necessary conditions for a

minimum are

L. =L =L _=L_,=L =0 (2. 48)

j=1,...,N

The remaining development of multilevel control for static
systems is analogous to the discussion in Section 2. 2 and will there-
fore not be given here. For a detailed discussion see References

6,12,41, and 42.
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CHAPTER 3

DISCRETIZATION AND DECOMPOSITION OF
DISTRIBUTED PARAMETER SYSTEMS

3.1 Introduction

The optimal control of distributed parameter systems has
in recent years received considerable attention as a subject for
research. The pioneering work in the field has been done by

Bu1:kowski1 5,16

and Wang65 beginning in 1960. These researchers
have extended the theory of optimal control to include distributed
fields by using Pontryagin' s maximum principle and Bellman's
dynamic programming respectively. However, this theory is still
incomplete and the computational problems severe. Perhaps for
these reasons the only applications which have appeared in the litera-
ture treat linear partial differential equations in one space dimension

and with some form of quadratic cost functional.ll’ o6

In solving these problems some form of approximation must
inevitably be made. In the rare cases where a closed form solution
is possible, it takes the form of an infinite series. Otherwise, the
(numerical) determination of certain Green's functions and the solu-

tion of a two-point boundary value problem is required.

The approach proposed for this dissertation is to treat a
lumped approximation in the spatial domain of the distributed param-
eter system. Although this approach admits the application of a
larger body of control theory, several questions arise; namely,(1) How
can boundary conditions and particularly boundary control be treated,
and (2) Can computational techniques be devised to handle the (in
general) large number of interacting differential equations required

to obtain a sufficiently accurate approximation to the distributed
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system? If these two questions can be answered satisfactorily, the
present class of optimal control problems for distributed parameter
systems which can be treated effectively can be considerably
enlarged. These questions and the important related question con-
cerning the convergence of the solution of the approximate system to

the distributed system will be treated in this chapter.

3.2 Problem Statement

The optimal control problem for the case of distributed con-

trol considered here is to minimize the functional

5]
J(m) = SI_ u(X,t,), X, t)d2+ g P (u(X,t), m(X,t))dt d2 (3.1)

subject to the scalar partial differential equation side constraint

yu (X, t) _ S
W = g(u(X, t), m(X, t), X, t) XeS2, tz to (3.2)

with boundary conditions

2(X, Hu(X, +8(X, ) L&D gx 4 XeS ,tzt (3.3)
yn b o
and initial conditions
= Q
u(X, to) uO(X) Xe (3.4

In (3.3), n indicates a direction normal to the boundary. The control

m(X, t) may also be required to satisfy inequality constraints of the

form

R(u(x, 1), m(X, 1), X, t)Z 0 XeRtzt (3. 5)
and terminal constraints of the form

wo(tl) =0

wlux, t ),X)=o X e (3. 6)




In the above equations the following symbols are defined

u(X,t) = u(xl, Xogs oo X t), a scalar state variable

m(X, t) = m(xl’ Xgsoves X t), a scalar control variable

2 = a given finite (connected) region in Euclidean
n-space and Qb is the boundary of

67 = spatially varying differential operator on u (up to
second order) which may include parameters which
are functions of u, m,X, ort

Q = closure of

Po’ P1 = real—vallued functions of class C2 on t and piece-
wise C on

o, B,f = real-valued functions, piecewise C1 on Qb and
C2 on t which satisfy
alX,t) 2 0 Xe Qb
B(X,t)= 0 t = to
a(X,t) + B(X,1)> 0 (3.7)

R = a vector-valued function of dimension r with
components R, which are of class C2 on t and
and piecewiselC1 on £

1/ = a vector-valued function of dimension q with com-

2
ponents (//i which are of class C on t and piece-
wise C° on
It is assumed that the functions R and ¢ are consistent with the

boundary conditions in (3. 3).

Consideration of a scalar state variable u excludes the
class of problems defined by hyberbolic and biharmonic partial dif-
ferential equations. The reason for their exclusion will be discussed
in a later section. Note that the first of Equations (3.6) restricts

attention to the class of problems having a fixed terminal time.
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The optimal control problem for the case of boundary con-
trol (control variables contained only in boundary conditions) is not
easily treated in the generality shown above. In this case consider

the following criterion functional

t
1
J(0) =§ § P (uex. 1, %, t) dtds2 (3. 8)
Q
t
subject to the partial differential side constraints

au(x . @ ( (X, 1), X, t) XeQt2t (3.9)

and boundary and initial conditions given by (3. 3) and (3. 4). The

inequality constraints become

R (£(X, 1), X, 1) Xe®, t2t (3. 10)

b,
and the terminal conditions are given by (3.6). Cases where the
boundary control f appears explicitly in the criterion functional, can
also be treated if the spatial integration of f is taken only over the

boundary domain. Several such examples are given in Chapter 5.

3.3 A Semidiscrete Approximation

The optimal control problems posed above can be solved by
the theory of Chapter 2 if suitable approximations can be found. The
approach taken here is to discretize the spatial variables by defining

a vector

. . . . T
X, = (11(Ax1), (A%, L(ax), 1n(Axn) (3.11)

which in effect places a grid on the region 2. Here the elements of

is= .s ij’ ceas in]N are intergers defined by

11,12,..
(x.) - (x.) .

. j max jmin _ o
i Ar i




Denoting the set of points defined by (3.11) by # and following
Young66 and Varga62 the following terms can be defined: mesh
point-a point in # ; interior mesh point-a point in #M §2; boundary
mesh point-a point in # M Qb; exterior mesh point-a point not be-
longing to # N §2; regular point-a point belonging to # M §2 and such
that all adjacent points also belong to # M Q; irregular point-a point

belonging to # which is not a regular point.

Young64 shows for the case =0 (see (3. 3)) that irregular
mesh points may be treated as regular mesh points by defining a
boundary (pseudo) mesh point at the intersection of the boundary and
tht{% line segment connecting the irregular point with each exterior

point. (See Figure 3.1.) These points can be denoted by

(o oy
Xi = 11(Ax1), 12(Ax2), e 1n(Axn)
where
1
Ax. = e, Ax, j=1,...,n
J J ]
and
0<e =1

J
Thus when ej =1, (j

1,...,n) the point is a regular mesh point.

Varga62 treats the case > 0 for a symmetric linear
operator gby approximating the boundary by line segments connect-
ing boundary (pseudo) mesh points and using the identity

du =u cos 6 +u sin 6 (3.12)
on = Y

to obtain the required approximation ( 6 = angle between the linear
boundary approximation and the positive X, axis). It is easily seen
that a nonsymmetric operator 6) can be treated if the boundary is

composed of orthogonal line segments, i.e., sin 26 = 0. The
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following development then requires either (a) 8=0,b) sin 26 =0,or c)
@symmetric with respect to all X i=1,..., nj; for simplicity con-

sider the case B=0.

Since the operator Gis at most second order, it can be ap-

proximated as follows

Q(u(xi_, 1), m(X, 1), X, t) - (3. 13)

G, (a0 my @, tuy @y @, “.iﬂn“))

1 =2

where Ik= {;‘_i_ = 0 except for the kth element which = 1}, i ranges
over all'regular points, and the functions Gi are assumed to be real
valued and of class C2. Applying the definition (3.11) to Equations
(3. 1) to (3. 6) for the case of distributed control results in the fol-

lowing set of equations for the discretized system:
1
- 1 )
J(m,) ~_Z P (ui(tl),t1>AS2 J.'Z 5 P . (0 ®), m(t),t)dt a2 (3.14)
T 1€ - l1e Q2 to - - -

— g

ie?
where AQ = Ax, - AX_...' Ax
1 2 n
'1'i = truncation error at Xi
du } B

i
= Gi (ui(t), m_i.(t), t, uiil

5 ®u, (t),...,u_iﬂn(t)) tv, o (3.15)

1 2

X.efl, t= ¢
i o)

where Vi = truncation error at X,
i

ai(t)u_i'(t) = f_i(t) Xie Qb, t= to (3.16)
u;(to) = uOi Xi_e 19 (3.17)
> e >
R, (o (1), my (o), t)_ 0 X eQ, 12t (3.18)
Y (t) =0
(3.19)
‘l/i u_i_(tl) =0 X.i.EQ
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Minimizing (3. 14) is equivalent to minimizing

J(m,) t1
AQi =ieZQ {Poi_<uj_(t1)’ t1)+5; Pl_i_ <ui(t)’ mi(t), t) dt + Ti}

o

((t)t) g P u(t)m(t)t)dt-f'r;

It is easily seen that the side constraints (3. 16) and (3. 18) completely

(3.20)

specify m, on the boundary. Thus if Ri= 0, mi is determined by

£, (t)
, t),t) = . €S2 .
R (t) m, ( ), Xf b (3.21)
and if Ri> 0 a necessary condition for a minimum of (3. 20) is that
aP1i fi(t)
i i
aPli 44
where = is the Frechet derivative  of P, at m,
om, 1i i

i = =

Thus the optimal value of m, is completely determined on the

boundary and the criterion function can be written as

I (m)— { ( ), tl) 31 P, (ul(t), m_i_(t),t>dt+'ri (3. 23)

It is not intended that T should enter into the optimization, but only
that it can be determined to evaluate the worth of the approximation.
Note that only in (3. 15) do cross coupling terms between spatial mesh
points appear and they appear there in a very special way. The argu-
ments in (3. 15) corresponding to boundary points can be evaluated

using (3. 16).

The system of Equations (3. 15), (3. 17) to (3. 19), (3. 23) is

now in a form quite suitable for decomposition and multilevel



solution as seen in Chapter 2. However, further treatment in the
general notation considered here is unwieldy and contributes little to
the development. Hence further consideration of the decomposition

method is postponed until Section 3. 4 where an important special

caseof a nonlinear parabolic partial differential equation is discussed.

Applying the definition (3. 11) to (3. 8) by (3. 10) for the case
of boundary control results in the following set of equations for the

discretized system:

J(£.) t
—2=) g P (u (t) t)dt+-r (3. 24
ASE 15 Vit i '
ieq (% =
(0]
dul(t)
at G, (u ). t, 4 11(t)’u-i-i12(t)’““’uij;1 (t))+v.
154 1 (3. 25)
X.eQ, t= t
\ i o}
> X P
Ri(fi_(t), t) 0 €n .tz 0 (3. 26)

The boundary condition (3. 16) can be used to get the control as an
explicit argument in (3. 25). In general the optlmal control f may
not be unique unless it is assumed (as does Wang ) that the boundary

control function does not vary along the boundary.

3.4 Discretization and Decomposition-a Special Case

Consider the minimization of the functional

[m(x t)] S § § {q(X)( (X)-u(X, t))2+c(X)m (X, t) [ dt dx

(3.27)
subject to the nonlinear partlal differential equation side constraints

VuX, 1) = K. (X, 0, )Vou + K. (X, u, hV2 1 - o(X,)u +b(X, Hm (X, t) (3. 28)
t 1 Xl 2 x2
where

K> 0, K> 0, 02 0, X =[xx ]T

0=xy= =1, 0=x9=1,t, is fixed (3. 28a)
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with boundary conditions
u(X, t) = £(X,t) Xe Qb’ t= to (3. 29)
and initial conditions

u(X, 0) = uo(X) (3. 30)

Equations (3. 27) to (3. 30) represent a fairly general class
of problems which can be treated by decomposition. (Inequality con-
straints can be handled equally well using a technique due to
Valen’cine60 but are omitted here for clarity of presentation. Inequal-
ities are considered in Chapter 5.) Variants of (3. 27) which have
appeared in the literature are (a) ¢ = 0, minimum deviation from a
desired trajectory; (b) u(X,t) = u(X,tl), minimum terminal error;
(c)q =0, u(X,tl) = ul(X), minimum effort with fixed terminal condi-
tions; (d),(e), m(X,t) = 0 Xe ), m(X,t) = f(X,t) (XEQb), boundary

control corresponding to(a) and (b).

To handle (3. 28) in its more general form
n
AR (K-<X: u, thu ) - o(X, thu +b(X, t)m(X, t) (3.31)
t j=1 01 X,/ %,

s X ]T

10Xy (3.31a)

Ki>0,0§0, X =[x

is straightforward but cumbersome. In fact, a general treatment of

the nonlinearity is impossible and K K2 will be specialized to

1’
linear functions once their effect upon the decomposition is made

clear.

Using the usual approximation66 of the second partial deriva-

tive, the discrete form of (3. 28) is
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du, (t)
1] IR - -2 ] +
a2 [ 2K 5572550 0359y Klij(ui+1,j+ui-1,j)
(3.32)
- +b,.m. + v,
+K21j<ui,j-l-1 ui,j—l) 1;|m13 vlJ
where

STTh Kl(uij’ Xy t)
Koi4* K2(uij'Xij’ t)
% G(Xij’ t)

h

Ax1 = sz

For the case of a linear system, the semidiscrete equation (3. 32)

can be shown to be consistent with and to converge to the correspond-
ing partial differential equation (3. 28) for h sufficiently small. The
definition of these terms, along with this proof for the case of a linear
system of the form (3. 31) having one space dimension, is given in

Appendix B.

Define a natural ordering of interior mesh points over the
square region 2 as the sequence of mesh points taken from left to

right and bottom to top. Then a vector U having the natural order-

ing is
T
U = (ul,u2,...,uk,uk+1, .,u2k,...,uk2) (3.33)
where
1
k = ' 1

and A, the matrix of coefficients, for (3.32) is of the general form
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~71

i-1°

r—-

where

Note that the elements of each row of A, say the iJCh

el__1 0
-a, e
i i
e,
i+1 ai+1
1
h2

% ()
LZ- (K21>

h

only u, (as well as Xi and t).

Defining a vector

T
F = <fl’f2""fi""’f7)

2
+ 2 h )
(2Klj K21+ Gi

33

are functions of

composed of all boundary mesh points taken in the natural ordering,

(3. 32) can be written

Ut) = AU, 1) U{) + BOIM() + G(U, t) F(t) + V(t) (3.35)
U(0) = Uo



where
A = kzxk2 matrix of form (3. 34)
B = k2x k2 diagonal matrix with elements bi
2 .
G = k xvy matrix

M = k2 vector with elements mi

The general element of the truncation error vector can be determined

from a Taylor Series expansion as

V.= - =N h2 K .V4 u,+K .V4 u
i 12 i x,. 1 21 x_. 1
1i 21

Having determined this expression for evaluating the truncation

error, V(t) will not be considered further.

By using the natural ordering defined above the criterion

function (3.37) can be discretized as

2 t
LS 2 1 2
Jl[mi(t)] = z h SI [qi (udi_ ui(t))z-f- c,m; (t)] dt t7s (3.37)
i=1 t
o
The truncation error Ti can be evaluated as
3 t [api 8P,
T.=h S\ —1 )+ = (t)]dt (3.38)
i to axl sz i

where Pi is the expression in brackets in (3.37). In order to eval-
uate T and v, as the computation progresses, the derivative terms

must be suitably approximated.

Since no coupling or nonlinear terms appear in (3. 37) this

equation may be written in more compact notation as

1 t T
J[M]=——2J1[M(t)]=§ [(Ud—U)TQ(Ud—U)+M CM |dt (3.39)

h t
o
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where Ud’ U, and M are vectors of dimension k2 and @, C are

2
k" x k  diagonal matrices.

In order to minimize (3. 39) subject to (3. 35), some decom-
position technique seems warranted, especially for large values of
k. Various system decompositions will now be discussed with re-
gard to the application of three of the second-level controllers pre-

sented in Chapter 2; namely, feasible, nonfeasible and Gauss-Seidel.

Decomposition merely involves partitioning the state vector
U in some convenient way and then introducing pseudo-control vec-
tors S to achieve subsystem independence. It is obviously desirable
to make use of any ''natural decomposition" which the system may
afford by a careful examination of the A matrix. For definiteness in
discussion, the A matrix is shown explicitly in Figure 3. 2 for the
case k=4. One convenient decomposition is to consider each row
of the region 2 as a subsystem. The subsystem matrices Aj are
then given by the block diagonal matrices in Figure 3. 2 and the coup-
ling constraints by the diagonals di' If subsystems of this form are
too large to be conveniently handled, a further partitioning can be
made as shown by the dotted lines in Figure 3. 2. In this case, the
coupling constraints are more unwieldy, as will be shown The
choice of an optimum subsystem size may depend on many factors for
instance, (a) form of the A matrix, (b) accuracy desired, (c) com-
puter capacity and speed (d) availability of programs capable of han-
dling certain size problems. It should be noted that for problems
having only one space dimension di equals zero and the A matrix

T

is of tridiagonal form' (all zeros except the main diagonal and the

2
TGelfand 4 calls this type of matrix a Jacobi matrix.
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two adjacent diagonals). Correspondingly, if the problem has three
space dimensions, the A matrix contains four symmetrically spaced

diagonals in addition to the tridiagonal band.

First consider the decomposition first mentioned above in
which each subsystem corresponds to a row in the region 2. This

partitioning of U yields

T T .. T T T
U -[Ul,Uz,. ,UJ., ,UN] (3. 40)
where
T ( . .
U'=\u_ ,u , ,u .=(j-1)k+1, q. =3k
i p.” p.tl q.) P (-1 97
j i
Then
U=A(U,t)U+B.MA+D. (U,t)S+G (U, 1)F. (3.41)
 J A R RS s N % N AT T I RO
U.(0)=U .
J( ) o}

where D, lD,'D,], a kx 2k matrix
1j A

S pseudo-control vector of dimension 2k

]

D. =kxk diagonal matrix with elements (d s e e end )
J PJ- qj

Because of the form of Dlj , (3.41) can be written equivalently

U = A (U,t)U.+B.M.+D.(U,, )S*sH+G.(U_, t)F.
J J ] J J ] J ] J J J ] J
(3.42)

U.(0) = U .
J 0]

o

where S = k-dimensional vector, the upper half of Sj

— €

S. = k-dimensional vector, the lower half of Sj

Cnd
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The coupling constraint required by this decomposition is

T [.T T

The set of constraints (3. 43) can also be written

U—S

b (3. 44)
u
Uj B Sj+1
From (3. 39) the subsystem criterion function becomes
1 T T
J.(M)) =§ [(U .‘U.) (U ,.-U)+M,; C. M, |dt (3. 45)
A VA aj™V3) Y07V My My
)
where N
J(M) = ) J.(M,)
=1

In the event that cross coupling terms entered into the criterion func-
tion, pseudo-controls could be introduced there also to maintain sub-

system independence.

By adding (3. 44) with vector Lagrange multipliers pJ_,l/j

of dimension k, the Hamiltonian becomes
N N
T T
H = H. = (U .~U.) .(U ~U. )+ M, C. M
21 ] 21 a5/ §5\Pa; J) AN

+A(AU+BM+D S+GF)+T<US ) (3. 46)
R e s R j-1

i < ;,+1)l

where 1

<
"
92]
]
wn
i
o

PI"VN" 17N
In its present form (3. 46) is suitable for solution only with a Gauss-

Seidel second-level controller. The feasible method is excluded




since 2k interconnecting constraints were added to each subsystem
(except 1 and n) when only k degrees of freedom were available.
In order to insure convergence of the nonfeasible controller, at
least local subsystem minima must exist. A necessary condition
(the Clebsch condition) for this is that a certain Hessian matrix be

non-negative definite, i.e.,

2
HTVS Hj Iz o (3. 47)
J
for every IT= ¢
where E'.T = M'.r, Sr.r
J I ]

Equation (3. 47) is clearly not satisfied since S, appears linearly in
(3.46). In addition, the latter condition leads tJo singular subsystem
control in Sj which considerably complicates the solution of the
necessary conditions (see Reference 6). However, both of these
drawbacks can be overcome by adding coupling constraints in which
each term is squared. With this modification, the nonfeasible con-

troller can be used and will be discussed subsequently.

For the Gauss-Seidel second-level controller, the necessary

conditions to be satisfied by the first-level control are

. O,
U,=
i oX,
T
. 0H,
A= —lan (3. 48)
9H,
"y
oM.

J

Assuming (3. 28) is linear, (3.48) would become
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U=avu-LtBciBTr +D. 5 +G F,
i i 27 0 il Wl i

i T (3. 49)
A =2 .(U ~U. )-AT X-p.-v.
j QJ dj J) iR

with boundary conditions

U.(0) = U,
J() Jo

Aj(tl) =0

The necessary conditions to be satisfied by the second-level control
/

are
aHj ) 8Hj oH
9p. Ov. 9S,
Pj j j

In order for Sj to appear explicitly in the coupling constraint of

(3. 46), subscripts can be rearranged, i.e.,

T (0y18y) oy (0,,8))
Vj—l Uj-l Sj + pj+l Uj+1 Sj (3.51)
Equations (3. 50) can then be written

1 T

U.-S, ., =0 =D, A

i %51 Py~ Fi-1%-1 (3.52)
u T

Uj _Sjﬂ =0 vj -Dj+1>tj+1

or in more useful form

_.u T
S. = U. =D, X
i j-1 P i-17j-1
1 T
sj = Uj+1 v = Dj+1)\j+1 (3.53)

The operation of the Gauss-Seidel controller is as follows:

1. Guess S:},I/j (j=1,...,N)and set j=0
2. Setj=j+1
3. Solve subsystem j for Uj’ )\j
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u T
4., Substitute S, =U., p. =D A,
i1 5 P T
5. Is j=N?
No - Go to 2

Yes - Are (3.52) satisfied to the desired accuracy for

j=1,...,N?
No - Goto 7
Yes - Stop
6. Substitute S% =U,v. =Dr.r>n.
j-1 RIS b S

7. Set j=j-1
8. Solve subsystem j for Uj’ Aj
9. Is j=17
No - Goto 6
Yes - Go to 2
This controller has been found to have excellent convergence prop-
erties for both linear and nonlinear problems as will be shown in

Chapter 6.

To satisfy (3. 47) for the nonfeasible second-level controller,

the Hamiltonian (3. 46) can be written

N N | T T
H=) Ho=), ‘(Udj-Uj) Q (Udj-Uj>+Mj cM,

j=1 j=1

+ AT(A.U.+B.M.+D S.4G.F. )+ ulsu.- (s% 5 st
I A ER T D § I B 3733 -1/ 7375-1
T . u \T- _.u

+ U. v.U.-(S. ) V.S, 3. 54)
i3 it/ il (

where 53' = diagonal kxk matrix with elements

(o5

J



ﬂj = diagonal k xk matrix with elements

and p1=vN=0,S=S =0
Rearranging (3. 54) in a form suitable for the nonfeasible method Hj

becomes

T T T u .1
H.= (U ~U. .(U ~U, )J+M,C. M. +X; (A.U.+B.M.+D.(S.+S.)+G.F.
] dj J)QJ dj J) i3] 111 11 ) JJ)

T ,_ INT _ 1 U, - u
+ UL (G.45.-(s7) 5, si-sV ). _s! (3. 55)
ih J(J) Pi+175 3 Vi-17;

The first-level necessary conditions are

oH, 9H,
U =1 —d -9
i - 8u, M.,
j j
_ 9H, dH,
A = - —J—an _iasj = 0 (3. 56)

Assuming (3. 28) is linear, the top row of equations in
(3. 56) result in exactly the first equation of (3. 49). The lower right
equation in (3. 56) yields

u 1 (- -1 _T

S.=—' v, D. X, =2:---:N

i 2 Mj-1 i )

1 1 (. 1 _T< .

s; =3 (pjﬂ) L T (3. 57)

where the inverses exist since 173. and p. are of full rank. Taken

together (3. 56) can then be written
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U=AU.-
i i) 2 i

) T
A = 2Q. (U ~U.)-A Xx-2
] QJ dj J) il

with boundary conditions

0.+v.
(5,

Hec. 8 b (0. )
i ivii-l

)u

J

U.(0) = U,
J Jo
are
oH oH
YR A
i J
where
0 0
— = diag. |m—
0 0
i | “Pp
8 A . 9
oy, - dieg |5,
J L P.

J

)tj(tl) =0

(3.58)

The necessary conditions to be satisfied by the second-level control

(3.59)

In this method (3. 59) is satisfied using a gradient controller defined

by
dpj=a BH _ _
do 1 8p; 1
dvj=a 8H=a
do "2 8v. 2
j
a,> 0

where I is the identity matrix and o denotes iteration time.

U, 0.
3l

U. U,
| 1)

T

T

a

1
j-1

>
9 0

(s

u u YT
S <Sj+1) ]

1
j-1

’

:

Y]

of the squaring of the constraints, (3.59) is satisfied by either

u=s =g%
] j+l jt+1
- - . u
or Uj' Sj—l Sj+1

I
(3.60)

I
Because
(3.61)
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and hence this controller may converge to a false solution as shown

by Ba\urnan.6 The choice of the scalars a, and a, greatly affects

1
the rate of convergence; however, the lack of a completely general
procedure for making this choice constitues one of the disadvantages

of the method.

The necessary condition (3. 47) for the existence of local
subsystem minima results in

< -
p =0 PE Py G

< =
v, =0 k pj_l,...,q._ (3.62)

k j-1
However, if the equality in (3. 62) holds for any element, the corre-
sponding coupling constraint would not be satisfied over that period
of time. Hence strict inequality must hold and (3. 62) becomes

< i = -
p;(t) <0 YE P Y4

yk(t)<0 k =p._

ETRRETE (3.63)

In the case where a different subsystem decomposition is
performed (e.g., each row of $2 may contain many subsystems) or
where the spatial region §2 is of higher or lower dimension, the
above results remain valid. A systematic procedure for writing
general coupling constraints can be stated but, although precise, the
notation is somewhat cumbersome. For example, consider the mesh
points 6 and 7 of Figure 3.2 to be a subsystem, say the jth. The
subsystem matrix Aj is then the block diagonal matrix containing
a, and 3. The matrix Dlj in (3. 41) is obtained by consecutively
writing all elements appearing in a horizontal band through Aj
where the ordering is from left to right and Aj is exgluded. For
this example

6 6 6

D, =
1j 6 d70 e70 d,,

d 0 e 0 d 0 -
(3. 64)
7
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The A. matrix has dimension njx nj and D1j has dimension njxrnj

where mj is also the dimension of Sj'
Defining a vector S as an ordered set of inputs to all sub-
systems which are outputs from the jth subsystem, the coupling con-

straint in (3. 46) can be written

or (6. - (3. 65)
J JJ
where pJ, = mj vector Lagrange multiplier
ej = m, X n, matrix
s =

mj vector

The matrix Gj is obtained by scanning a vertical band
through Aj from top to bottom and consecutively writing 1's where-

ever a nonzero element appears (excluding Aj)' For this example

1 0]
0 1
6. = 1.0 (3. 66)
J 0 1
1 0
0 1
L .

Note that GJ, has elements in the same position as D'II:]” This is a

consequence of the symmetry of A. Defining

ENT
S, = [s.l,s",z,...,s,J]
. J J o) J
the vector S? for this example would be

SJ- s2 53 s2 s2 52 53 '
T 1Ti-27 Ti-27 Ti-1 T+l T 42’ Tj+2 (3.68)

(3.67)
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Upon rearranging in the form - (p‘] )TS; s the p’ vector becomes by

symmetry T

i_| .2 3 2 2 2 3

PE P20 Pi-22 Pi-10 Pyerr Pys2r Pyp2 (3. 69)
Once mastered, this notation permits a mechanistic approach toward
decomposition regardless of the problem size. Of course some
special attention must be given if the spatial region is non-rectangu-
lar since in this case the A matrix is generally nonsymmetric. This

notation will be further employed in describing the examples in

Chapter 5.

The above discussion has considered coupling constraints
which are one to one, i.e., each element Sij of S. corresponds to

one and only one state element, say u Now consider the case

K
where (3. 41) is written

U, = A (U, t)U +B.M_+S.+G (U_, t)F, (3.70)
J J ] N N R B J

U.(0) = U .
J() o

and the coupling constraints become
S, =D,(U.,t)<U. +U, ) 3.71
iodd -1 7yl ( )

There are now only k coupling constraints; however, these are now
coupled as seen in (3.71). For the nonlinear problem posed, this
coupling constraint cannot be handled by any of the three controllers
previously mentioned. If the problem were linear, only the Gauss-
Seidel controller could be employed; however, no advantage is gained
over its previous application. Takahara59 employs coupling con-
straints of the form (3. 71) in solving linear problems. Note that the
feasible method is not excluded because of the number of coupling
constraints as it was previously, but because the right hand side of

(3. 71) contains variables from more than one subsystem.
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3.5 Elliptic, Hyberbolic, and Biharmonic Equations

Parabolic partial differential equations constitute an impor-
tant class of equations governing transient physical» phenomena. In
preceding sections, the distributed parameter systems considered
were of this class. This distinction was clearly made in defining the
scalar equation (3. 2). However, many types of physical phenomena
are described by other types of partial differential equations and it
is of interest to examine the optimization of these systems by decom-

position and multilevel techniques.

In particular, elliptic partial differential equations describe
the steady-state behavior of those systems whose transient states
are described by parabolic equations. Thus the question of steady-
state optimization arises. In terms of a general notation following

from Section 3. 2, such a problem could be posed as minimizing the

functional
J(m) = § P (u(x), mx), X ) a2 (3.72)
2
subject to the scalar partial differential equation side constraint
G(u(x), m(x),X ) = 0 X 9 (3.73)
with boundary conditions
a(X)u(x)+px) 28 - x) X €@, (3. 74

and possibly inequality constraints

R(u(X), m(X),X)Z 0 XeQ (3.75)

The problem (3. 72) to (3. 75) corresponds to the case of dis-
tributed control as described earlier. Elliptic equations with control
only on the boundary can be formulated in a similar way. The most

familiar elliptic equations corresponding to these two problems are
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of course Poisson's equation and Laplace's equation respectively.

By discretizing (3. 72) to (3. 75) over the spatial domain §2, the re-
sulting equations are in the form considered by Lasdon41 and dis-
cussed in Chapter 2. Although of considerable interest, steady-
state problems are not considered further in this dissertation. It is
interesting to note that elliptic equations do not fit into the mathemat-
ical machinery developed for determining exact optimal solutions

because they are not well-posed as discussed by Brogan.11

Optimization problems for the class of distributed param-
eter systems described by hyperbolic and biharmonic partial differ-
ential equations are not readily treated by the methods presented in
this dissertation. The reason stems from the fact that successful
decomposition requires independent subsystems with as few coupling
constraints as possible. In fact the success achieved in applying
this method to distributed parameter systems is largely due to the
strongly diagonal nature of the A matrix shown above. In the case
of hyperbolic and biharmonic equations exactly the opposite is true;
in fact, all elements appear off of the main diagonal. To illustrate,

consider the simplest hyperbolic equation
vZu=kviu (3. 76)
t X

which when written in normal form is

v [v =k%0 Vil [u
tly v, o ||v (3.77)

The A matrix is now composed entirely of cross coupling terms with
no entries on the main diagonal. Similarly for the biharmonic equa-~

tion
Vzu = - kV4u (3.78)
t b4




which in normal form is

L T

which suffers from the same difficulties.

(3.79)
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CHAPTER 4

VARIATIONS OF THE OPTIMAL CONTROL PROBLEM
FOR DISTRIBUTED PARAMETER SYSTEMS AND
THEIR EFFECT ON MULTILEVEL CONTROL

4.1 Variations in Problem Statement

The multiplicity of possible control problems that can be
conceived for distributed parameter systems is many orders of mag-
nitude greater than for lumped parameter systems. The reason
stems from the higher dimensionality introduced by considering spa-
tial as well as time dependent variables. This higher dimensionality
leads to: (a) boundary control, which has no direct equivalent for
lumped parameter systems, (b) greater flexibility in specifying
admissible controls, (c) greater flexibility in specifying terminal and
inequality constraints, (d) a wider choice of meaningful criterion
functions. However, it was shown in Chapter 3 that a lumped param-
eter approximation can be formulated for any of these problems. In
particular, by discretizing the spatial variations, an n dimensional
set of ordinary differential equations is attained. Obviously n in-
creases as the desired accuracy of approximation increases and
approaches infinity in the limit. This type of approximation is im-
portant because it admits a much larger body of theory with which to
attack the problem. In particular, only a few optimal control prob-
lems in distributed parameter systems currently admit to analytical
solutions while for their lumped counterparts only a few do not. Of
course, care must be taken to interpret the lumped solutions as ap-
proximations to the exact solution only when that approximation is
valid. A case where it is not valid will be discussed subsequently.

The main problem in this discussion then seems to be how to extend
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present optimization techniques to handle the large systems of equa-
tions arising in this application. One possible solution is by multi-

level control,

In the case of the distributed control problem, the approxi-
mation yields a single control for each mesh point with the only cross
coupling terms arising from the approximations of spatial partial
derivatives. The fact that no such partial derivatives appear in the
criterion functional yields an independent functional for each mesh
point, a convenient outcome. Moreover, the approximation of the in-
tegral over the spatial domain always yields a summable criterion
functional for the integrated problem as required for the application

of multilevel control.

In order to treat a large number of coupling constraints
some convenient notation and a systematic procedure are essential.
In general no such luxury is available when treating nonlinear equa-
tions. However, in most distributed parameter systems having
physical significance, the nonlinearity appears only in a subsystem
and not in the coupling constraints when treated as a lumped approxi-
mation. Thus the aspects of the fairly general nonlinear system
(3. 69) given for treating the coupling constraints systematically,
(opposed to subsystem optimization) could be treated by the vector-
matrix notation developed therein. The general scheme (3. 64) to
(3. 69) is given for treating the coupling constraints systematically,

while somewhat cumbersome, has proven useful in practice.

As mentioned above, the problem of boundary control has no
analog in lumped parameter systems. A few problems of this type
have been attacked using the extended definition of an operator.ll’ 23

With this technique, the optimal control problem for the system
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% = @ lei (4.1)
ox
u(x,0) =0
with boundary control £(t) related by
u(0,t) =0 u(l, t) = £(t) (4. 2)
is written as
%tli = aa—2%+a 5 (x-1)E(t) (4. 3)
9x
u(x,0) =0
with homogeneous boundary conditions
u(0,t) =0 u(l,t) =0 (4. 4)
where
&' = Ed; 5

Apparently the generality of problems which can be treated in this
manner is severely limited. Although this method readily yields the
optimal form f(t) of the boundary control in terms of the adjoint

variables, numerical results are not easily obtained especially when

t

the control is constrained. The only numerical results for this prob
lem known to the author are given by Sakawa56 (constrained) and
Brogan11 (unconstrained) and the latter's numerical efforts were un-
successful. By considering the discrete approximation to the bound-
ary control problem, a larger class of problems can be formulated
than by the extended operator technique. However, care must be
taken to assure that the lumped system yields an optimal solution
which indeed approximates the actual necessary conditions for the
distributed parameter system. In Chapter 5, examples are formu-

lated in which this is, and is not, true.

Some of the difficulties involved in obtaining solutions to the

boundary control problem may be intimately connected with the

22
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concept of controllability of distributed parameter systems. The
notion of controllability was first introduced by Kalman31 for linear
finite dimensional dynamical systems. These ideas have been ex-
tended by Wang64 for distributed parameter systems. Gilbert25 has
defined controllability for n dimensional linear systems in terms of
the system's structural decomposition. Gilbert's definition may be
shown to be equivalent to Kalman's, at least for the case of constant

coefficient linear systems having distinct eigenvalues.

Various qualifying adjectives often appear with definitions
of controllability, for example, null-6, completely-null-é, etc.

Consider the definition of complete controllability on [to, t a state

1
u(X, to)er‘ (2) (e.g., a Hilbert space) is said to be completely con-
trollable on [to, tl] if there exists an admissible control function
which will transfer u(X, to) to any desired final state ud(X, tl)el"(Q)
in a finite time tl. It is easily shown that under certain conditions
the discrete approximation will always be completely controllable on
[to, tl_] while the actual distributed parameter system may not be.
For example, consider the discrete approximation of a one (space)
dimensional constant coefficient distributed parameter system

U=AU+M (4. 5)
where A =n x n tridiagonal symmetric matrix and assume that
A has distinct eigenvalues. Defining normal coordinates

U =pY

(4. 5) can be written

it

. -1 -1

Y=p ApY +p M (4. 6)
and Gilbert's controllability criterion requires that p_l have no
zero rows. The columns of p are the eigenvectors of A. Because

A is tridiagonal and the desired eigenvectors are to be non-trivial,



it appears that each eigenvector must contain no zero element. Since
A is real and symmetric, p is orthogona123and

1T
p =p

Thus pT not only contains no zero rows but indeed no zero elements.
Hence, the semidiscrete distributed control problem is controllable
and the boundary control problem likewise. Suppose however that
the desired final state contained a finite discontinuity in ud(X, tl).
Then, from physical reasoning, it is clear that no control exists
which could attain the desired final state in the distributed parameter
system; however, such is not the case in the approximate system as
seen above. Although this example is rather extreme, it serves to
illustrate that care must be taken in the formation and interpretation

of the semidiscrete approximations.

By considering problems where the criterion function is to
minimize the norm of some terminal error, the question of control-
ability can be avoided. This type of criterion function seems to pre-
vail in the literature when boundary controls are employed. A no-
table exception is the example by Brogan11 cited above where

reasonable results were not obtained.

4,2 Multilevel Control Considerations

The multilevel control techniques discussed here are not of
universal applicability. In this section various advantages and limi-
tations of several second-level controllers will be pointed out, partic-
ularly as they relate to the solution of problems arising from partial
differential equations. In addition, there are three basic limitations
of the multilevel technique which are implied in Chapter 3 by (3. 5)
and (3.6); namely, that (1) inequality and (2) terminal constraints

are separable between subsystems and (3) that the terminal time is
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fixed. Seemingly, the first two restrictions might be removed by
further decomposition (a topic for future research). However, the
limitation of fixed terminal time seems inescapable since, without

it, each subsystem could satisfy its terminal conditions at a different

time and thus confound the second-level controller.

As pointed out earlier, the nonfeasible gradient controller
requires unique subsystem minima with respect to Mj and Sj as a
sufficient condition for convergence. This requirement with respect
to Mj is expected and is usually accounted for in the problem defini-
tion (e. g., by minimizing a convex function). However, the require-
ment of local minima with respect to Sj , i.e,, arbitrary state
variables, is extreme and is often not satisfied. Indeed there may
be physical reasons why the stationary points with respect to S. are
maxima or saddle points. One reason for the latter requiremeJnt is
to enable the correct sign to be chosen for the constant a; (3. 60)

where
(k+1) (k) 2 i, 2\(k)
. = + ai(ui -(s) )

i p; (4.7)

and k is the iteration number. Because of the saddle value proper-
ties arising in the nonfeasible gradient method, it can be showns’ 45
that a, is positive if local subsystem minima occur and negative if
local maxima occur. In this as in all gradient techniques, the con-
vergence depends rather heavily on the magnitude of a (step size).
Unfortunately nothing more than a few general guidelines are available
for choosing these Values14 and experience must be heavily relied
upon. In case a scattering of maxima and minima occurred in various
subsystems, it would seem possible to make an exploration over both

signs of ai and to choose the one which minimizes J(M). However,

this approach would quickly become unwieldy as the number of



coupling constraints increased beyond one. A relaxation of the local
minima condition can be obtained by using the Newton-Raphson type
second-level controller derived by Bauman.6 However, this con-
troller involves considerably more computation and requires the non-
singularity of certain matrices to insure its convergence. It is note-
worthy that for most problems the sufficiency conditions for conver-
gence in each of these methods cannot be guaranteed apriori because
of difficulty in evaluating the conditions. An additional requirement
for convergence of the nonfeasible gradient controller is that the
initial guess po of the Lagrange multipliers be sufficiently close to
the optimum value p* which satisfies the coupling constraint. How-
ever, one has no physical intuition regarding Lagrange multipliers
and hence this choice is often difficult to make. In particular the
nonfeasible method was attempted for the minimum effort problem
where the system was described by the one-dimensional diffusion
equation. Two four-dimensional subsystems were employed which
resulted in two coupling constraints. The dominant roots corre-
sponding to the state variables which appeared in the coupling con-

straints were described by the characteristic equation

s2+ £(psh) = 0 (4. 8)
where h = Ax is a parameter. For negative values of p (as required
by (3.63)) between zero and some minimumvalue, pmin(h)’ the roots
of (4.8) were real and the response was monotonic as expected. How-
ever, for values of p less than pmin(h) the roots were imaginary and
the response was oscillatory, an unacceptable result for the diffusion
equation. Note that pmin(h) depends explicitly on h and therefore
changes with the number of mesh points employed. Acceptable con-
vergence was never obtained for this simple example and the non-

feasible gradient controller is therefore not considered acceptable for

this application.
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In deriving the feasible gradient controller, the coupling
constraints are attached to each subsystem and are actually satisfied
by the first-level necessary conditions (2. 21). According to Mackof]t5
the only limiting condition in applying this second-level controller is
that each subsystem have at least as many degrees of freedom as the
number of coupling constraints attached to it. It is easily seen that
this restriction cannot be satisfied for the partial differential equa-
tion application discussed here, except possibly for systems having
only one space dimension. Consider a one dimensional system
having distributed control and no inequality constraints. Let the

space domain be broken into n internal mesh points and N subsys-

tems where the jth subsystem has dimension nj and

N
n = E n, (4. 9)
=1 !

For the distributed control problem, the jth subsystem has n, con-
trols and therefore nj degrees of freedom. Naturally if activJe
inequality constraints are present, nJ. is reduced appropriately.
Using the decomposition (partitioning) shown in Chapter 3, it is clear
that the total number of coupling constraints is 2(N-1) where a gen-
eral subsystem contains at most 2 such constraints. Hence the
requirement for using a feasible second-level controller in this case
is that

njz 2 (4. 10)

For a system having two space dimensions and again using the de-
composition shown in Chapter 3, any subsystem, say the jth, has

at most 2(l+nj) coupling constraints and nj degrees of freedom.
Similarly for 3 space dimensions, the number of coupling constraints

in the jth subsystem is given by 2(1+ 2nj). Hence the feasible method
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cannot be used for partial differential equations having more than one
space dimension when the decomposition is as stated. Further, it

is considered unlikely that any other form of decomposition will
greatly alter this conclusion. Because of this lack of generality, and
because of the added difficulty, discussed in Chapter 2, in solving the
necessary conditions since the control does not appear explicitly in
the coupling constraint, the feasible gradient controller is not recom-
mended for these applications to distributed parameter systems. It
should be noted, however, that, when applicable, this controller re-
quires initial guesses of coupled state variables only. This is a
considerable advantage since one can usually estimate these variables

from physical considerations.

The Gauss-Seidel type second-level controller is extremely
simple and does not suffer from the chief difficulties of the gradient
techniques; namely, choosing the magnitude and sign of the step size
a.. Various sufficiency conditions for the convergence of general
iterative techniques and the Gauss-Seidel method in particular were
discussed in Chapter 2 and were found to be rather restrictive when
applied to linear dynamic systems. In practice, however, the con-
vergence of the Gauss-Seidel second-level controller was extremely
good; in fact the convergence of this method was not the limiting
factor on any of the problems attempted. However, one potential
limitation arises from the fact that the spectral radius for the static
Gauss-Seidel procedure is inversely proportional to the square of
Ax, the spatial discritization inter‘\_ralf56 Thus as Ax is decreased,
the convergence becomes slower. This phenomena was also observed

with the Gauss-Seidel second-level controller and is reported in

Section 6. 3.
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It is conjectured that additional improvement in the conver-
gence rate could be obtained by employing the obvious generalization
of the successive overrelaxation scheme for solving the discrete
systems of equations arising from elleptic partial differential equa-
tions. It is known that this method speeds convergence over the

Gauss-Seidel method for solving similar problems.66

In order to use multilevel techniques on the boundary con-
trol problem posed earlier further restrictions are required. Since
in this case there is no longer a control at each mesh point, it is
quite possible that a subsystem may arise which contains no control
variable. The feasible gradient controller is thus immediately elim-
inated. The nonfeasible gradient controller can be used if the coup-
ling constraint is altered to satisfy the necessary conditions (3. 47)
for local subsystem minima. The Gauss-Seidel technique can be
used only if the state terminal conditions are free. Since no control
is present, the two-point boundary value problem could otherwise not
be solved. In this case, however, the state variables can be inte-
grated forward and the adjoint variables integrated backward. This
example is one of the few where the Gauss-Seidel controller is not
always applicable. This problem with the state terminal conditions

free is further considered in Chapters 5 and 6.

Recently, optimal control problems involving inequality con-
straints which are functions of the state variables only have received

813,21 In such problems it has been shown8’13

considerable attention.
that the adjoint variables possess discontinuities at points where
they enter onto and/or exit from the constraint boundary. The
numerical evaluation of this discontinuity usually involves consider-

able effort. An alternative approach to problems of this type which



yields approximate results when on the constraint boundary is the

4,3
penalty function approach discussed by Kellyg3 >

In treating a distributed parameter system having a state
inequality of the form

umin(X) SulX,t) = umax(X) Xe 1:: (2) (4. 7)

by decomposition, it is especially convenient to consider the inequal-
ity constrained variables u(Xi, t)(Xi € I“C(Q)) as pseudo-control vari-
ables. The problem can now be handled by the (simpler) theory
applying to inequality constrained control variables. Since the adjoint
variables are known to be continuous when the inequality constraints
contain control variables explictly, the treatment of state inequal-
ities as pseudo-controls is not expected to yield exact results; in
particular, discontinuous adjoint variables. This is also the case for
the penalty function approach and the two methods are indeed similar.
A comparison of the two methods is given in Chapter 5 where a par-

ticular example is formulated and solved.

The possibility of discretizing the time variable in addition
to the space variables has not yet been mentioned. The resulting
set of algebraic equations, albeit very large, can then be treated as
a static system. If the system and the criterion function are linear,
the technique of linear programming can be applied along with its
own decomposition theory as developed by Dantzig.20 If either the
system or the criterion function or both are nonlinear, the static
optimization method discussed earlier can be applied. An example
of this theory applied to a simple linear dynamic system discretized
in time is given by Lasdon.42 Bauman6 discusses the time decompo-
sition of an optimal trajectory problem containing discontinuities

along the trajectory; however, in this case, the independent time
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segments are treated continuously. Although a time discretization
may be feasible for distributed parameter systems having a short
time domain, no particular advantage is anticipated and hence this

method will not be pursued further.

One of the potential arguments for employing decomposition
and multilevel control is that each subsystem can be solved by a
technique which is best suited to it. Particularly in the case of linear
subsystems, it may be possible to write the optimal solution in closed
formlg,,and then just perform the integration rather than solving a
two-point boundary value problem during each iteration. For non-
linear subsystems, an iterative procedure for solving the two-point
boundary value problem is inevitable; possible methods include
(a) the gradient technique which iterates on the control, (b) the
Newton-Raphson techniqueB8 which iterates on the adjoint initial con-
ditions, and (c) quasilinearization30 which iterates on the state and
adjoint solutions themselves. In any case, when large problems
having many subsystems are involved, it is important that the sub-
systems converge readily from arbitrary initial guesses since other-
wise it is necessary to interrupt the iteration between the subsystems
and the second-level control. When this occurs it is inconvenient to
resume at the point where the cyclic process was interrupted. The
convergence of the subsystems for any of the methods mentioned
above depends on the initial guesses and the degree of the subsystem

nonlinearity.

For the computational work done here, quasilinearization
was used for solving all subsystems. In all cases the initial guesses
were linear and satisfied the boundary conditions for the state vari-
ables and were zero for the adjoint variables. No convergence dif-

ficulties were encountered in either linear or mildly nonlinear
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problems when sufficient accuracy in the integration process could
be maintained. This point is discussed further in Chapter 6. Quasi-
linearization has the disadvantages of requiring more storage than
some of the other methods and of being rather inflexible toward

changes in the integration step size.




CHAPTER 5
FORMULATION OF SOME EXAMPLE PROBLEMS

5.1 Introduction

In this chapter some examples of optimal control problems
will be formulated using multilevel techniques. Selected problems
from this group have been solved numerically and these results are
presented in Chapter 6. In Section 5. 4 a problem involving inequal-
ity constraints on the state variables is formulated and compared
with the penalty function approach. In Section 5.5 the optimal control
law for several boundary control problems is formulated analytically
and these results are compared with those obtained from solving the
lumped parameter approximation. In these examples the subsystems

will be formulated in terms of fourth-order systems.

5,2 Minimum Effort, Fixed End, Linear Problems

Consider the minimization of
Lorty
J(m) = g S‘ m (x, t)dt, dx (5.1)
o Yo

subject to a side constraint given by the one-dimensional diffusion

equation (with a forcing function m)

dubet)_ 2 b0t i,y (5. 2)
ox 2
ox
with boundary conditions
u(0,t) = u(l,t) =0 (5. 3)
and initial conditions
u{x, 0) = uo(x) (5. 4)
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It is desired to attain the terminal condition

u(x,tl) = ul(X) (5. 5)
at a given time tl .
The semidiscrete approximation to this problem written in

the decomposed subsystem form given by (3. 41) and (3. 43) can be

stated as minimizing

N
J(M
3 (v = —A(——)= > MY (t) M, (t) dt (5. 6)
X j=1 J J
subject to the side constraints
U. =AU +M +D.S, (5.7)
J J ] J 3]
U.(0) =U . (5.8
J o] )
Uj(tl) = Ulj (5.9)
j=1L...,N

Making the (arbitrary) choice of fourth-order subsystems for con-

venience, the Aj and Dj matrices can be defined explicitly as

2 1 o0 o]
A:k 1 _2 1 0 k:%
J 0 1 -2 1 n
0o 0 1 -2 h = Ax
L B
1 0] (0] 1]
p-k |0 © D, =k 0 D" k 0
J 0 0 0 0
_0 1_ Ll_ LO_




Consider the use of a nonfeasible second-level controller

where each term of the coupling constraints is squared in order to sat-

isfy (3.47). The coupling constraints can then be written as

T - AT - i
e.U.) U - (s) gl=0 (5. 10)
<J i/ Pi%ii P
G=1,...,N)
where {1 0 0 O] pjl 0
6. = 5 =
0 0 0 1 9
] i, 5
6.=[0 0 0 1]
1
6 =01 0 0 0]

The first-level necessary conditions follow from a development simi-

lar to ((BL 54)-(3. 58)) and can be written

where
and -
-2 1 0
1 -2 1
0 1 -2

Z,
j

Z

J 1
2p.
-—4L 0 o0 o
Kk
0 0 0 0
0 0 0 0
2p2

B.Z, i=1,...,N (5.11)
J ]
[U.,A.T
J ]
SIS R .
2 20
2p,
j-1 h
0 -2~a 0 0
h
0 0 g 0
0 0 0 *k___h_)
21 2a0
Pi+1
2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2
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1 1 . 2 1
Forij=1, p.=0 and p, ,=o;and for j=N, p. =0 and p. ., =%, Note
i 2 °i-1 J 2 Pit1
that Bj is a time-varying matrix. The boundary conditions for
(5. 11) are
z9(0) = U (0) = U _,
J J 0]

u (5.12)
Z (t,)=U.(t,)=U .
J t i1 1]
The necessary conditions ((3. 59)-(3. 60)) to be satisfied by the
second-level controller are then
dp.1 1 2 9 2
= - > .
——J—do a, [(uj ) (Sj_1> ] a, 0 (5. 13a)
dp,2 4 2 1 2 :
—1 - - >
e a, [(uj ) <Sj+1> ] a, 0 (5. 13b)

where for j=1, (5.13a) disappears and for j=N, (5. 13b) disappears.

1 2
As in (3. 60), pj and pj are required to be negative.

Treating the same problem, but using the Gauss-Seidel

second-level controller, the coupling constraints can be written

pT(B.U.-SJ)=O G=1,...,N) (5. 14)
i N
where T"[l 2

% ”j"’j]

and Gj is the same as in (5. 10). The necessary conditions to be
solved at the first level now follow from ((3. 48)-(3. 49)) and can be
written

Z =B.Z +P. G=1,...,N) (5. 15)
ioTiTi

where Z. = [U.,k.]T
J )] ]




-1

) -1 0 0
2 1 0 0 = 0
i -2 1 0 o X o o
- 2k
L 2 1 o0 o X o
0 - 2k
0 1 -2 0 0 0o X
0 2k
B =k
! o 0 0 0 2 -1 0 0
o 0o o 0 -1 2 -1 o0
o 0 0 0 o -1 2 -1
o 0 0 0o 0o 0 -1 2 |
T

1 2
p = [ks!, 0,0,k8%, - pr, 0,0, - o
J J J J J

Note that Pj is a vector whose elements are parameters in (3. 15)
since both Sj and pj are determined by the Gauss-Seidel second-

level controller. In this case Bj is a constant matrix.

The second-level necessary conditions (3. 50) can then be

written explicitly as

sj1 = u;_l pjl = k ?L;_l (5. 16)
2ol 2k,
where si = pi = 0 and s; = p; =0. The Gauss-Seidel procedure
detailed in Chapter 3 is shown schematically in Figure 5.1 for three
subsystems. The only initial guesses required are for si, pf, sg,

and pg.



GAUSS-SEIDEL PROCEDURE FOR N=3
FIGURE 5.1
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5.3 A Nonlinear Problem

Consider the minimum effort problem of Section 5. 2 with

a side constraint given by the nonlinear diffusion equation

5%u(x, 1)
ox

du(x, t)

5t = gulx, t)

+ m(x, t) (5. 17)

with boundary, initial, and terminal conditions given by ((5. 3)-(5. 5)).
The semidiscrete approximation of (5. 17) written in terms of fourth-
order subsystems is then (suppressing the j subscript for notational

convenience)

2
u1 = k<-2u1+u1u2)+ kuls1 + m1

o
|

2-k(u1u 2u +u u2)

3 —k(uzu -2u +u ug)

u4—k(u3u -2u4)+ku S.+m

(5.18)

ol
!

4
with boundary conditions given by ((5. 8)-(5. 9)). The necessary

condition
oH.
B
oM.
J
is satisfied by
1
M, = - - A, (5.19)
i 2]

as was the case in (5. 15). Writing the coupling constraint as (5. 14),
the final first-level necessary condition
) oH,
X, = - =L
J aUJ.

becomes (again suppressing the j subscript)
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A, = k[(4u1-u2+sl)xl-u2x2] - b,
Az =k[-ulkl+(4u2—ul ~u3)A2 —uS?LB]
. (5. 20)
7\3=k[—u2k2+(4u3-u2-u4)k3 —u4)L4]
X, =k [-u3x3+(4u4—u3-s2)x4] - Py
Equations ((5. 18)-(5. 20)) can be written in the form
Z. =B(Z.)Z.+C.(Z,)P. (5.21)
J J 1 1 J 1 ]

where Zj and Pj are defined in (5. 15) and B. and Cj are determined
from ((5. 18) - (5. 20)). Using the Gauss-Seidel controller, the second-

level necessary conditions yield values for the parameter vector

Pj; namely,
s.1=u‘.1 p.1=kuL.1 X%
il J j-173-1 (5. 22)
2 1 2 1 1
1 %+1 py =k M

1. 1_ 2
where sl—pl—O and sN—pN

ary value problem given by ((5. 18)-(5. 20)) cannot be solved in

= 0. The subsystem two-point bound-

closed form as was the case with linear subsystems. The iterative
method of quasilinearization (described in Chapter 6) was used to
solve this problem. Note that although the subsystem necessary con-
ditions for this problem are considerably more complex than in the
linear case, the second-level necessary conditions are only slightly
different. Hence one expects the convergence properties of the
Gauss-Seidel controller to be similar for linear and mildly non-
linear problems. For this example no degradation in the convergence

rate was observed.
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5.4 A State Inequality Constrained Problem

Consider the minimum effort problem of Section 5. 2 subject

to the state inequality constraint

u;?. c(t) (5. 23)

where c(t) is a known function of time. The second-level necessary

conditions (5. 16) require that

uj = Sj+1 (5. 24)
and hence (5. 23) can be written
1
>
st z cft) (5. 25)

The inequality (5. 25) is now on a (pseudo) control variable of sub-
system (jo+1) and can thus be conveniently handled by the method due
to Valentine.GO Consider the constrained pseudo-control to be in the
kth subsystem. Decomposing and using a Gauss-Seidel second-level
controller, the Hamiltonian can be written

N
H = YIMMM (AU M +DS) + p. <9U SJ)
i i iV

v (8% gL s, - o) (5. 26)

where Blrf =[1000] and & is a real slack variable. Note that

(5. 25) has been converted to an equality constraint such that (5. 25)
is satisfied when & is real. The first-level necessary conditions

for subsystem k now yield



U =AkUk+M +D. S

k k "kk
: T T
Mo T AN % P
M, =- ] A (5.27)
k™ 27k '
2 T
€ = Bk Sk c
2vE = 0
The second-level necessary conditions are given by
T k _
Dk)_k-p -BkV—O (5. 28a)
6,U, -S* =0 (5. 28b)
k k ) '

The Clebsch necessary concli’tion9 required that v2 0. If v =0,

(5. 25) is satisfied by strict inequality and the solution proceeds as
in Section 5.2. However, if € =0 (v > 0) , (5. 25) is satisfied by
equality and (5. 28a) requires the determination of v . This can be
accomplished by using a gradient method to determine v when on the

boundary. The variation of H with respect to v is, from (5. 26)
SH = (c -gTs )51/ (5. 29)
k "k

45 s
By Macko's ~ saddle value proof, it is seen that minimizing J(M)
with respect to M corresponds to maximizing H(v, p, M, S) with

respect to v (and p). Hence 3v in (5. 29) can be chosen as
5v=a(c—BTS) a>o0 (5.30)
k 'k

Since BE Sk does not equal uﬁ_l until the second level has con-

verged, it is convenient to write (5. 30) as

- 4 >
v = a(c U a>0 (5.31)
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The gradient controller is then defined by

dv

dv _ _ 4 )
oy a(c W a>0 (5.32)

Solving (5. 32) for v and substituting into (5. 28a) yields for the first
k
element of p
m (i)
k 2 o 1 < 4 ) (0)
- - —— - - >
p1 pk-l 5 ).k Z a uk-l +v a>0 (5.33)
Ax i=1
where (i) is the iteration index for the second-level controller and
m is the ""current' iteration. By using (5.33) one iteration on v
is obtained during one iteration through the second-level controller.

Substituting (5. 33) into the appropriate equation in (5. 21) gives

m (i)
: o 3 4 1] ( 4 ) (0)
A =— |- +2 - |+ Z alc-u +v
k-1 sz [)\k 1 Ak—l k =1 k-1 (5. 34)
. . . 34
In solving this problem by the penalty function approach

a new state variable P is defined by

2
. 4 . 4
P=Kc-uk_1 if uk_1
. . 4
= f
P=0 i uk
P{©0) =0

(5. 35)

where K is an arbitrary constant. The inequality (5. 23) will be
satisfied along the entire path only if P(tl) = 0. Using this approach
the adjoint equation corresponding to (5. 34) follows from a straight-
forward application of the maximum principle54 as
i§_1=—3§ -h§_1+2)\§_1+)ﬁ] - 2KAP(c-ui_1) (5. 36)
AX ‘
where )LP is the constant adjoint variable corresponding to (5. 35)

4
and must be determined iteratively by trying to drive P(tl) to zero. 6
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In general either (5. 34) or (5. 36) will bring ui_l

to the boundary but will not attain it exactly. This is easily seen

arbitrarily close

from these equations since the error term {c-u ) is zero when

k-1
going onto or off of the boundary, and thus the discontinuities in

(0)

8
)‘léi-l indicated by the general theory are not obtained (assuming v

contains no impulse function).

5.5 Some Boundary Control Problems

As was remarked earlier, some care must be exercised in
the formulation and solution of boundary control problems by semi-
discrete techniques. Examples are presented in this section for
which the optimal boundary control function either differs or remains
unchanged when the discretization is performed on the original sys-

tem equation or on the necessary conditions for optimality.

Consider the problem of minimizing the functional

1 t
J(m) = go Ju g0 - u(x,tl)]zdx +c v(ol £2(t) dt (5.37)

subject to the side constraints

2
du _ 9 u
ar = @ X2 (5. 38)

0
with boundary conditions
u(o,t) = 0 u(l, t) = £(t) (5.39)

and initial conditions

ul{x, 0) = uo(x) (5. 40)

In (5.37), ud(x) is a given function. Reformulating in semidiscrete

form ((3. 24)-(3. 25)) and decomposing yields

N
Jx(M) _ I 5

J.(M,) (5. 41)
3 i
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where T
J.=|U, -U{t,))]” U,.-U.\t,) (5. 42)
j dj ] 1] dj j 1
j=1, , N-1
and
t
Jo=lu. ~v_a)T|u. -u @) +9§1f2(t)dt
N dN N1 dN N'1 h N
(5. 43)
The side constraints become
U.=AU.+DS. (5. 44)
J 3] JJ
j=1, sN-1
U.(0) = U _,
J 0]
and j=1,...,N-1
UN=ANUN+DNSN+BNf (5. 45)
UN(O) - UoN
T
where BN =[0 0 0 k]
2
and k =a/h

Note that (5.42) and the first terms in (5. 43) depend on values of
U(tl) only. The necessary conditions are obtained in this case from
the Mayer formulation‘9 of the optimization problem. Equation

(5. 43) can be written as

- . T _'
JN(tl) = [UdN UN(tl) UdN UN(tl)] + d;(tl) (5. 46)
where ) c 2
¢ = Ef (t) (5.47)
$(0) =0

iéh a )
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The Hamiltonian then becomes
N-1 .
m=Y Ia v +Ds)+ e (ou, -sl)
= R R B RS I I
T T( N
+ A (A U+ DSt By ) +oy (6,0~ S )

where all matrices are as defined in (5. 7) and (5. 10). Application of

C
+K¢‘ﬁ

the Mayer theory then yields the first-level necessary conditions

(5. 44), (5.45), (5.47) and

. T T .
A.=-A XA -0, p. i=1,...,N A =0 (5. 49)
] it ) $
~h -0 4
e _ -
b7 2¢ NKN 2ch )‘N (5.50)
with terminal conditions
BJj(tl)
)® 2 (Udj ut)) 51 (5. 51)
i=1,...,N

The second-level necessary conditions are (using the Gauss-Seidel

controller) the same as (5. 16),

For comparison the necessary conditions were also
determined by discretizing the necessary conditions determined from
an analytical approach. This approach uses the extended definition
of an operator as discussed by Friedrnan23 and applied by Brogan.11

The criterion functional is given by
1 9 t 9
J(m) =§ g[ud—u(x,tl)] +6(x-1)cS‘ f (t)dté dx (5.52)
o o

and the side constraint is written with homogeneous boundary con-

ditions as




2
—g—tli = a—a—‘zlma'(x-l) £(t) (5. 53)
ox
u(x, 0) = uo(x)
u(0,t) =u(,t) =0

Then the Hamiltonian

! 2 T 82 '
H=§ §(x-1)cf (t)+A (a-—-% taé (x—l)f(t))l dx (5. 54)
(o} 0x
is minimized over f by requiring
1 1
§ {25(x-1)cf+aa(x-l)x(x,t)}dx=o (5. 55)

o

or using the appropriate iden’ci’cy23

_a dx(l,t)
f(t) = e dx (5. 56)
The adjoint system is
2
A _ 9 A
5 - ) (5.57)
9x

also having homogeneous boundary conditions and a final (time) value
of
A, t,) = —2<ud(x)—u(x,tl)) (5. 58)
Discretizing (5. 56) yields
=2 -
f(t) = 5ch AMl-h,t) (5. 59)

a result identical to (5. 50). To avoid approximating the doublet
function in (5. 53), the nonhomogeneous form ((5. 38)-(5. 39)) can be
used. The semidiscrete form of the analytical solution is easily seen

to be identical to that obtained previously ((5. 44)-(5. 51)).

In most cases, however, slightly different expressions for

the optimal control law are obtained from these two approaches.




Consider for example the problem discussed above ((5. 37)-(5. 38))

but with boundary conditions given by

ou(l, t
u(0,t) = 0 _a_‘?_( ) £(t) - u(l, t) (5. 60)
x
Discretizing (5. 60) along with (5. 38) yields in one place of (5. 45)
= i) (p+uy)
UN = ANUN+DNSN +BN (1+h hf+uN (5.61)
UN(O) } UNo

The corresponding control law is given by

-
f= 2C(1+h) l1\1 (5. 62)
and the adjoint equation is
41 .3 (1+2h> 4
)LN— k[ )N+ T+h XN] 4 (5.63)

4 4 4
Anity) = - 2<udN' uN(tl))

The analytical formulation of this problem requires the

minimization of (5. 52) subject to the side constraint

au 82
8 st D) [i) - u, b (5. 64)
ot 2
0x
having homogeneous boundary conditions

du(l, t) _

o 0 (5. 65)

u(0,t) = 0

Writing the Hamiltonian as before requires for a minimum that
1
g |2 66D et tanree e[ dx = 0 (5. 66)
o)

or __a
f(t) = e A1, t) (5.867)




The adjoint system is now the same as (5. 57) but with boundary con-

ditions given by

Mo,y =0 22LY (5. 68)
ox
Discretizing (5. 67) and (5. 68) yields
- _ o _
f(t) = % A(1-h, t) (5.69)

a result different from (5. 62). The adjoint equation using this

approach, also differs from (5.63) and is given by

i; - [—A§I+A§] (5. 70)
agp) = -2(iy-ute))

All other equations resulting from the different approaches are ident-

ical (except (5. 61) which differs by the amount that f differs).

Consider finally the boundary control problem of minimizing

t 1
J(m)=§1{§ [ud(x,t)—u(x,t)]zdx+cf2(t) dt (5. 71)
[0} (o]

subject to side constraints given by ((5. 38)-(5. 40)). The first-level
necessary conditions for this problem are identical to ((5. 44)-(5. 50))

except that the adjoint system is given by

X = - 2(U.-U .)+Ar.rk.+0r.rp. (5.72)
j i dj I R I
Aj(t1)=o j=1,...,N

The second-level necessary conditions are again given by (5. 16).

Other problems could be considered such as the minimum
terminal error problem ((5. 37) with ¢ = 0) with inequality constrained

control. The semidiscrete solution to this problem yields the
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expected bang-bang result which agrees with the analytical formula-
tion. Alternatively the problem of (5.37) could be treated but with
inequality constrained control. The solution to these problems is
similar to the result obtained with distributed control and these
problems are formulated in the next section. Obviously many other

types of problems are possible.

5.6 Some Problems Involving Control Inequality Constraints

Consider the distributed control problem of minimizing

1 t1
J(m) = g (ud(X) - u(x, t1)>2 +c S‘ mz(x, t) dt}dx (5. 73)
(o) §)
subject to the side constraints ((5. 2)-(5. 4)) and
mo(x) < m(x,t) rno(x) (5. 74)

Decomposing in the standard way, the criterion functional (5. 73)

becomes
N

t
J(M) _ T gl T
LAV o -U -U. M M. dt 5.7
3 jgl“vdj j(tl)] [Udj J(tl)] re )My, } (5.75)

and the inequality constraints (5. 74) yield

(M, -M )= 0
] 0]
(5.76)

(M - M) = 0
J J
Using Valen’cinesa0 technique, the inequalities (5. 76) can be changed to
equality constraints and appended to the Hamiltonian which is then

given by

T

H = cM.TM.ﬂ,T(A.U.+D.S.+M.)+pT(e.M.—SJ> (5.77)
TR A T R R RO N B

u'MZ

|

=11 |
T - o T -

- oy 1, o, (7 - ) o 7, |
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where

yj = n:j dimensional diagonal matrix of Lagrange multipliers

Minimizing (5. 77) with respect to Mj gives
M, =1 cI+17.)_1 17.(M(.)+M .)—A.
i 2 i iV 0j j

and the Clebsch condition requires that each element (vj) of vj be

(5.78)

greater than or equal to zero. Two conditions can therefore arise:

(1) Vj =0 and
1

mj= - Z_CAJ (5.79)
or (2) VJ. > 0 and
m. =m . if A > -2cm
J 0] J
m, =m’® if A <-2cm° (5. 80)
J J J J

j=1:"':N;i=1,-..,n

where the element subscript i has been suppressed for notational
convenience. Equations (5. 79) and (5. 80) follow immediately from
(5.78). The remaining necessary conditions follow from the earlier

results of this chapter,

An alternative problem would require the minimization of

(5.73) with ¢ =0 and side constraints given by ((5. 2)-(5. 4)) and

Im@, t)] = m°x) (5.81)

The Hamiltonian for this problem becomes

N T T .
H=) {1 (AU+DS+M)+ p. (G.U.—SJ> (5. 82)
= U A A A A R R T A

where the inequality constraint

I | = m° (5. 83)
j j




must be satisfied elementwise. The minimization of H to M, then
yields

o)
m, = -, sgn A, 5. 84
i 3 g ; ( )

j=L1L...,N; i=1,...,nj

where the element subscript i has again been suppressed for nota-

tional convenience.
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CHAPTER 6
NUMERICAL PROCEDURES AND RESULTS

6.1 Subsystem Optimization

One of the advantages of the multilevel approach to optimi-
zation is that the various subsystem optimizations can proceed using
different techniques. For example, linear subsystems could be

solved in closed form,18 while nonlinear subsystems would require
10, 33,58

3

iterative methods such as second-variational techniques

. 4 2y . . : 3 2 3
gradient methods3 or quasﬂmearlzatlon?o 47,51 However, in order
to provide the generality required to solve a number of linear and

T

each subsystem in all computational examples considered here.

nonlinear examples, the method of quasilinearization' was used for

Quasilinearization is an iterative technique which satisfies
the boundary conditions and the maximum principle (along a given
trajectory) exactly and iterates until the system differential (state
and adjoint) equations are satisfied. Convergence of this method
depends upon the initial guesses of the state and adjoint solution
trajectories and, when obtained, the convergence is quadratic. o1

Consider the two-point boundary value problem given by

y = f(y, t) (6. 1a)

P = n
yi(O) =Yoi ° yi(tl) =¥y 0 b g (6. 1b)
where y is an n vector of state and adjoint equations with boundary
conditions on (say) the state variables. The quasilinearization solu-

tion proceeds for the kth iteration by solving the linearized systems

TSeveral subroutines were already available from the work of
Paine?’
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K
k t 1
Mgy ,t)+(g-};) (2 5%) (6. 2)

Zk+1(0)= yk(O)

and K
ckt+l Q_f__) k+1
Y 5y Y (6.3)
Ykﬂ(O) -1
where
k+1 k+1 k+1 k+l
N =z +Y la (6. 4)
y® = initial (guessed) solution which satisties
(6. 1b)
of _ .
—— = nxn matrix
oy
Y = nxn matrix
o = n dimensional constant vector

The terminal boundary conditions are always satisfied for (6. 2) by

choosing ak+1 such that

n
k+1 k+l k+l1 n
.= N i= e n e 05
Yy = % (t1)+ ZYIJ. a i=1, - (6. 5)
j=2 +1
373

As the iteration proceeds the solution to (6. 2) converges to the solu-
tion of (6.1). As a check on the numerical accuracy and to conserve
rapid-access storage, it is convenient to determine yk+1(t) by re-
integrating (6. 2) with initial conditions yk+1 (0). If the final values

yli{+1(t1) compare favorably with the desired final values Y1i

n
i=1,... ,—2-), then numerical accuracy has been preserved. Note
that quasilinearization requires considerable storage along the

. k
entire trajectory (e. g, Y , f(yk,t), fy (yk, t)) which may become




inconvenient for large problems. In these cases, other techniques

should be investigated.

For the numerical work considered here, the state vector
was of fourth order. The number of equations integrated in the first
pass of quasilinearization was 40 (8 in (6. 2) and 32 in (6. 3)) and in
the second pass 9 (8 in (6. 2) plus the criterion functional). The
method of integration used in all cases was the modified predictor-

corrector scheme due to Hamming,26 This method is known to be

computationally stableT in the scalar case if5
.65
At < —— (6.6)
£ |
Yy

Hamming states that this method may become relatively unstable as
fy becomes very large. No analogous results for systems of dif-
ferential equations are known to the author. However, from the
numerical work done here it is clear that some relation of the gen-
eral form of (6. 6) must exist. In particular since the factor a/(Ax)2
is present in all tridiagonal terms of the matrix ij, it was necessary
to reduce At as the spatial increment Ax was refined in order to
preserve the integration accuracy. Another drawback of this method
is that it is not self-starting. In this work the iterative technique
given by Ralston55 was used as a starting procedure. On the advan-
tageous side, the Hamming method is a fifth order method (trunca-
tion error proportional to the fifth derivative of the solution) and is
relatively fast, requiring only two evaluations of the derivative for
each step in the integration. In addition, the truncation error is

easily determined.

TStability implies of <0. If of < 0, the analogous concept is rela-

tive stability9® O oy
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6.2 The Computer Program

The computer program consists of the ten subroutines listed
below:

Second-level controller
Quasilinearization

L . k af \¢
Derivative evaluation, f(y ,t), a—y—)
Hamming forward integration
Derivative evaluation, =z
Control function calculation
Matrix inversion
Calculate subsystem Hamiltonian and write results
Calculate total Hamiltonian and spatial truncation errors
Plot results

O W o ~IO0 U s~ W DN

—

The general interconnection of these subroutines is indicated in
Figures 6.1 and 6. 2. The numbers inside certain boxes indicate the

presence of the corresponding subroutines numbered above.

Two additional subroutines corresponding to 4 and 5 for a
Hamming forward-backward integration were required for the
boundary control problems. In this case no two-point boundary value
problem existed for subsystems having no control variable. For
these subsystems, the state variables were integrated forward and
the adjoints variables backward. The flowchart in Figure 6. 2 must
be suitably altered for such problems.

6.3 Minimum Effort, Fixed End, Linear Examples with
Distributed Control

The example to be discussed in this section was formulated
in Section 5. 2 using both a nonfeasible and a Gauss-Seidel type
second-level controller. In this example the following numerical

values were used
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DIMENSION

READ DATA

INITIALIZE
WRITE DATA

'

SUBS =1

"

CALL QUASI
2
SUBS = UPDATE

SUBS + 1 COUPLING
CONSTRAINTS

LAST

SUBSYSTEM
?

SECOND-LEVEL CONTROLLER PROGRAM
FIGURE 6.1



DIMENSION
INITIALIZE
READ DATA
WRITE DATA

(]

o]

EVALUATE f(yk, t),

€3] ,
[ ]

CALL HAMMING
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1=1
a2 ,0033
(6.7)
t1=5
At = 0.1

This value of o corresponds to the thermal diffusity of steel in units
of ft.2 per minute in the case where the problem is thought to be one
of heat conduction. This problem is similar to one treated by

Brogan1 1 and was so chosen in order to check the reasonableness of

the results.

As mentioned previously, no acceptable resultis were
obtained using the nonfeasible controller. The primary reason for

this is discussed below. Two fourth-order subsystems were con-

sidered and the initial guesses of p? (t) and p; (t) were taken as -0.1.

Suceeding values were determined using (5.13). In order to assure

2 1
that Py and Py remained negative, their values were compared with

2
became positive. An integration problem arose as portions of

zero and the step size al,a in (5. 13)) was halved each time p;

p; approached zero since then the coefficients of Bj in (5. 11) in-
creased significantly. In order to maintain stability of the Hamming
integration method, At would have to be decreased prohibitively as
indicated in Section 6. 1. Since the maximum magnitudes encountered
in the time varying Bj matrix are not known apriori, it is difficult to
prespecify the time increment for any integration technique using a
fixed step size. Perhaps variable step size integration methods could
be used advantageously here, although it is felt that the time required

would still be prohibitive.

The above problem is not encountered with the Gauss-Seidel

second-level controller since the Bj matrix in (5. 15) is not time
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varying and At , once determined, remains constant. The problem
of Section 5.2 was solved by this method considering both two and

three fourth-order subsystems. The spatial increment Ax is given

by
Ax = 1

1 (6. 8)

D+

where N
D= Z n,
j=1
In (6.8) D is the total dimension of the state vector. Hence for two
fourth-order subsystems, D=8, Ax=0.111, and for three such sub-

systems, D=12 and Ax = 0.077. The initial guesses required by

the Gauss-Seidel controller were taken as

2

= 50
1
2

= -0.1
py =70

for the two subsystem case and

82=82
1 2
2 2
pl-pz—-O.l

50

for the three subsystem case.

The initial and final space distribution for the state variables
were respectively the triangle and double humped curves shown in
Figure 6.3. Several intermediate state trajectories and the corre-
sponding controls for the two subsystem case are also shown on
Figure 6.3. These same trajectories are shown as functions of time
in Figure 6.4. The initial guesses and final values of the coupling

constraints are given in Figure 6. 5. The behavior of the

Hamiltonian function as the iteration proceeded is shown in Figure 6.6.

For this problem the constancy of the Hamiltonian served as a good
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check on the programming accuracy. Note that the total Hamailtonian
is constant at -543. 33 after 5 iterations, but that the subsystem

Hamiltonians, H1 and Hz,are not constant. This is to be expected

since the subsystem solutions are not optimal when taken separately.

In order to evaluate the speed of convergence of the Gauss-

Seidel second-level controller, the following norms are defined
51
4 1 4 1 }
yo {laf-sh] + hext-pll} at

b1 2 12
lle, Il =‘S; {|“2'31 [+ By - o) }dt

where the absolute values are on the coupling constraints (5. 16) after

e, 11,
(6.9)

th
the i iteration. For the two subsystem problem, (6.9) behaved

as follows

teration @) |ley lleg 1l
3 3
1 .176x 10 .320x10
5 .213x 102 . 253 %102
3 .92 .10x10
4 31x1071 .37x1071
5 14x1072 L 17x1072

The subsystem optimization by quasilinearization converged
rapidly whenever the time increment At was sufficiently small to
insure integration accuracy. In each case the initial guesses for the
state trajectories were linear curves satisfying the boundary condi-
tions and the initial guesses for the adjoints were zero. The quasi-

linearization convergence rate was monitored by the norm .

[Ell; = max

max () -y, L (1) (6.10)
i=1,...,8 t Ile i,3-1 |

95



where j is the iteration number and i ranges over the four state and
four adjoint solution trajectories. For a typical pass through the

first-level control, (6. 10) is evaluated as

Subsystem 1 Subsystem 2

Iteration (j) |l 11, =1l
1 . 786x 102 . 42x 102
2 .133x10 .584x10
3 . 91x107° .13x 1074

The control functions and state variable response from the
solution of this symmetric example using three subsystems are
shown in Figure 6.7. The corresponding initial guesses and final
coupling constraints are given in Figure 6. 8. The second-level con-

vergence for this case using (6. 9) is given by

Iteration (i) Direction Hel ! Ii ||e2 l li ||e3 l li
1 forward .161x103 .291){103 .337:><103
2 backward  .601x10°  .160%10°
3 forward .704x10% . 752x102
4 backward .622x%10 .187x10
5 forward .755x10 .808x10
6 backward . 582 . 239
7 forward . 711 . 857
8 backward  .114 . 676x1071
9 forward .132

It is interesting to note that the first and third subsystems converge
monotonically while the second does not. However, the second sub-

system does converge monotonically for all forward passes and all
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backward passes taken separately. The convergence rate is seen to
be slower for the three subsystem problem than for the equivalent
two subsystem problem due to the decrease in Ax. This point was

mentioned in Chapter 4.

An example of a minimum effort, fixed end, linear problem
was also solved using nonsymmetric initial and final spatial distri-
butions for two subsystems. These distributions, along with inter-
mediate trajectories and corresponding controls, are given in
Figure 6.9. The initial guesses and final coupling constraints are
shown in Figure 6.10. The second-level convergence for this ex-
ample was similar to the symmetric two subsystem results given
above.

6.4 Minimum Effort, Fixed End, Nonlinear Example with
Distributed Control

The nonlinear problem formulated in Section 5.3 was solved
using the numerical values in (6. 7). Because of the nonlinearity,
the elements of the matrix fy are now proportional to the state
variables which are of such a magnitude as to require a considerable
reduction in At to preserve the integration accuracy. However, in
this example, computation time can be saved by rescaling the state

variables with a substitution

w = au 0<ax<1 (6.11)
By choosing a = .01, the value of At used for the previous examples
was sufficiently small to maintain integration accuracy. The con-
trols and state variable response for this example are shown in
Figure 6. 11, where the initial and final space distributions are the

symmetric ones used in Section 6. 3. In this figure, the results have
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been scaled back up for comparison with previous examples. Most
noteworthy is the fact that the control magnitude increases appre-

ciably.

The convergence of the second-level Gauss-Seidel controller
in this example was comparable to the linear example of Section 6. 3.
This is not surprising since the mode of operation of the second-
level controller is not affected by the nonlinearities even though the
coupling constraint (5. 22) is slightly more complex than (5. 16). The
convergence of the subsystems by quasilinearization as measured by

(6. 10) for a typical pass through the first level is given below:

Subsystem 1 Subsystem 2

Iteration (j) HEH ; HEH j
1 . 55 .39
-1 -1
2 .25x10 .53x10
3 . 86x10 2 L 94x10°2
4 19x 1072 31x10 2
-3 -2
5 .53x%10 .10x10
6 37x10°°

As expected, the subsystems converged somewhat slower than in

the corresponding linear case.

6.5 Minimum Effort, State Inequality Constrained Example

The minimum effort problem described in Section 6.3 was

also solved for two subsystems with the state inequality constraint

uzl1 < cft) (6.12)

This problem was formulated in Section 5.4. The boundary c(t) was

taken as an ellipse



c-2) | (t-b) _

d2 e2 1 (6.13)
where
a=d-=40
b =21 At
e =12 At

This boundary is plotted in Figure 6. 12 along with the associated
state and adjoint coupling constraints. As expected, the adjoint cou-
pling constraint is not satisfied when the state variable is on (or
near) the boundary. The Gauss-Seidel second-level controller was
used to solve this problem except that aleng the boundary, a gradient
technique was usedzto determine pf(t) as discussed in Section 5. 4.
Improvements in Py and the coupling constraints were made simul-
taneously at each iteration. Eight iterations were required to obtain
the results shown in Figure 6.12. The step size (a) in (5. 32) was
taken as 0. 95. The convergence of the first-level controllers by
quasilinearization was similar to the corresponding linear example

in Section 6. 3.

The remaining two coupling constraints are shown in Figure
6. 13 along with the control associated with the constrained state
variable. It is this control alone as a function of A‘f which acts in
subsystem one to drive u;l toward the boundary. Of course klll in
turn depends upon p? which is determined iteratively at the second
level by (5.32). The remaining control variables and state responses
were similar to those in Figure 6. 3 for the unconstrained case.
Figure 6.13 also shows the total Hamiltonian which is constant over
both subarcs on which the state variable u;1 is unconstrained, but
changes drastically when the state is forced (nearly) onto the con-

straint boundary.
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6.6 Minimum Error Plus Effort Example Using Boundary Control

The boundary control problem posed in Section 5.5 was
solved using the criterion functional given by (5. 71) for minimizing
the error from some desired trajectory along the entire (time) path
plus the control effort. The desired trajectory ud(x, t) was taken
to be identically zero and the triangular initial distribution used
previously was employed. Solutions were determined for a variety
of values of the weighting factor ¢ and several terminal times. The
terminal states and the corresponding boundary control functions for
these cases are given in Figure 6. 14. The terminal error is seen
to be reduced by decreasing the weighting on the control effort (and
thereby increasing the absolute magnitude of the control), or by in-
creasing the final time. The latter effect seems to be the more
prominent in this example. Consider, for instance, a long thin rod
being heated (or cooled) at one end only. The only way for a
desired temperature profile to be attained is by heat conduction along
the length of the rod and this rate of conduction is limited by the dif-
fusivity « . Thus the desired trajectory can only be reached by in-
creasing either the final time, the absolute magnitude of the control,
or both. The relative effect of these measures depends on the magni-

tude of « .

Since the final states are free in this example, the final
values of the boundary control are always zero. Furthermore, the
large negative values of the control drive the state variable nearest

the controlled boundary negative over a portion of the time interval.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDA TIONS
FOR FURTHER STUDY
The (approximate) solution of optimal control problems
involving partial differential equations is studied by discretizing the
space domain and considering the resultant set of ordinary differen-
tial equations. This approach is certainly not new. However,
earlier efforts along this path have been hampered by fhe difficulties
involved in solving the optimal control problem for the very large
sets of interacting ordinary differential equations which arise as the
discretization interval is decreased. This dissertation suggests the
use of multilevel control techniques to overcome this computational

difficulty.

The major conclusion stemming from this research is that
the multilevel approach does appear feasible in solving the optimal
control problem for certainclasses of distributed parameter systems;
namely, linear and nonlinear parabolic or elliptic equations. The
convergence properties of the second-level controller are of para-
mount importance in accomplishing this task. Of the three types of
second-level controllers discussed here (feasible, nonfeasible, and
Gauss-Seidel), the only one considered suitable in this application is
the Gauss-Seidel controller. It is extremely simple and was found
to have good convergence properties for this type of problem. In
particular, the systems of semidiscrete equations may become very
large and the number of subsystems likewise. By its very nature,
the performance of the Gauss-Seidel controller does not seem to be
degraded by increasing the number of subsystems as long as the

"

discretization interval (Ax) is not 'too small. The reason for the

109



110

good convergence properties observed for this controller is largely

the tridiagonal (Jacob124) form of the Aj matrix.

This method of solution appears particularly attractive for
obtaining a "rough cut" for problems which will require extensive
further study. However, the multilevel form of solution can also be
used to obtain more accurate results at the expense of considerable
use of computer time. One restriction on the improved accuracy
which can be attained is the amount of fast-access computer memory
available. One significant advantage of this approach is that it may
permit the solution of problems not otherwise possible. In particular,
analytical results are very difficult to achieve for problems which
are (1) nonlinear, (2) time and/or space varying, or (3) of space
dimension greater than one. However, all of these complications
can be handled in the framework of the multilevel solution described

here.

It should be noted that these optimistic results are not uni-
versal for multilevel control techniques. In particular, Bauman6
states that decomposition and multilevel control should be used only
on systems having ''one or two coupling equations between sub-

systems. "

This recommendation is based on computational experi-
ence with a number of fairly simple and low-order systems. It is
felt that the satisfactory results reported in this dissertation for
higher-order systems are due mainly to the type of problem and its

formulation as well as the type of second-level controller employed.

Several areas stand out as fruitful for further research. In
particular more work should be done towards obtaining necessary as
well as sufficient conditions for the convergence of the Gauss-Seidel

(and other) controllers. Other types of second-level controllers with
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improved convergence properties would also be worthwhile. One
possibility stems from various n-step methods such as the conjugate

27,29
gradient method.

As pointed out earlier, the number of optimal control prob-
lems which can be formulated for distributed parameter systems is
very large. As always, more computational experience is war-
ranted. Of particular interest would be (1) larger problems having
more subsystems, (2) highly nonlinear problems, (3) problems hav-
ing higher space dimension than one, (4) boundary control problems.

Many interesting questions in the last area remain to be resolved.

The steady state optimization problem resulting from dis-
cretizing elliptic partial differential equations was briefly treated
here but no computational experience was obtained. Some effort
could seemingly be directed toward both the theoretical and computa-

tional aspects of this problem.
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APPENDIX A
AN EXAMPLE OF SUFFICIENT CONVERGENCE CONDITIONS
FOR THE GAUSS-SEIDEL CONTROLLER

Consider the homogeneous linear differential equation

Z =AZ 2(0) = Z (A.1)

where
zT = [u, 2

. . 24 .
and A is a Jacobi type = matrix of constants. The sufficient con-
vergence criterion given by Kolmogorov36 requires that (A.1)
satisfy a Lipschitz condition with respect to Z given by (2.36). The

Lipschitz constant L. of (2.36) can be determined as follows:

n
Ifi(zl)_fi(zz)l =j};1 a5 (sz - le) (A.2)
& 2 1
sjgl 2y, (25 21) | (a.3)

By the Hoélder inequality36 (A.3) is

3 2 1
sj‘él lainzj zj| (A. 4)

IA

= max ‘Izjz— lel 01

Y e |
j<n a,, (A.5)
| ‘j=1 ij

To find the value of L which is sufficiently large to satisfy (2. 36) for

all i, choose

n
L=m§.x2|a i=1,...,n (A. 6)

i j=1 ijl

As a specific example, consider the minimum effort prob-
lem discussed in Sections 5. 2 and 6.3. Using the formulation for a

Gauss-Seidel type second-level controller yields
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-
n

k[11|+1-z|+11|] + |-0. 5] k= —2 (A.7)
(Ax)
4k + 0.5

For the two subsystem case k = 0. 268, and for the three subsystem
case k = 0.557. For these two cases, L =1.572 and L = 2.728
respectively. According to the sufficiency condition (2. 38) repeated
here for convenience

L(’t1 -to) <1

or for two subsystems (taking to= 0)

1
< =
tl 1 572 0.635 (A. 8)
and for three subsystems
1
t1< 5 798 - 0.367 (A.9)
However, these examples were solved using tl = 5 and the Gauss-

Seidel controller converged very rapidly as shown in Section 6. 3.
The two subsystem example was also solved using tl = 10 with

equally good results.

Thus (as expected) the sufficient conditions are seen to be
quite conservative for the Lipschitz constant determined above.
What is really needed are necessary conditions for convergence.

The determination of such conditions is a topic for future research.
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APPENDIX B

CONSISTENCY AND CONVERGENCE OF THE SEMIDISCRETE
APPROXIMATION OF A LINEAR PARABOLIC
PARTIAL DIFFERENTIAL EQUATION

Consider the linear one-dimensional parabolic partial dif-

ferential equation given by

L [u(x, t)] 4 u - afx,t) uXX- 2b(x, t) ux+ clx,t)u = d(x, t)

t
where (B.

a(x,t)> 0 (B.
A solution of (B. 1) is uniquely determined over the semi-infinite
strip
R:|0sx=L;tz 0 (B.

by specifying appropriate initial and boundary conditions; say

u(x, 0) = f(x) 0=<x=L
u(0, 1) = g_(t) t> 0 (B.
u(lL, t) = gl(t) t>0

Define a grid on the x domain by

Rh:[xj=jh, j=0,...,J+1 (B.
where .- L
R
and let
u.= ufx.,t)
J
d=d(x.,t)
J
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Using the semidiscrete approximation defined by

(x.,t) = L (V -V )
%Y ™ 2n a7 V-1
~ L ( : )
uxx(xj,t)~ h2 vj+1 2Vj+vj_1 (B. 6)
du. dv,
u et = g T g

where vj = V(Xj, t) is the solution to the ordinary differential equa-

tions obtained by substituting (B. 6) into (B. 1), yields for (B. 1)

dv
& ]
= - -2v. + - ) . - V.
Lj [v(xj,t)] at )Laj(t) Vj+1 VJ_ VJ._I] h)ub.](t)[vﬁ_1 VJ_I]
+c.(t)v, =d.(t) (B.7)
J J J

where 1

)L=——2

h

The initial and boundary conditions become

vj(0)=f(xj) 0<j=<J+1
vo(t) =g, (t) t>0 (B. 8)

VJ+1(t) = gl(t) t>0

32
Using a natural extension of the definition given by Keller,
the semidiscrete approximation (B. 7) is said to be consistent with
(B. 1) if

lim [L[u(x, 1 - L.[ux, t)]] =0 (B. 9)
h -0 J

This condition insures that the equations (B. 7) actually do approxi-
mate the partial differential equation (B.1). By employing Taylor's
formula, the derivative terms appearing in the difference in (B. 9)

can be written
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2
u (x;, 1) 2n \ +1—u‘j—l)= % l—lxxx -
1 h® 2)
uxx(xj,t) - -;5 (uj+1- 2uj+ uj_1> 17 ™ T (B. 10)
du,
ut(xj,t) - Ftl =0
where the bar indicates that the derivatives are evaluated at appro-
priate intermediate values, and 'r(l) and 7(2) are the truncation

errors for the respective approximations, Thus

@ (1)_ 2
L[u(xj,t)] L, [u(xj,t)] = a7 -2b W7 =0 (B.11)

Assuming that the derivatives of u and the coefficients a and b are
bounded, the right hand side of (B. 11) goes to zero as h goes to zero

and consistency is proved.

Again extending a definition of Keller, the ordinary differ-
ential equations (B. 7) are said to be convergent if their solution
satisfies

lim |u(x,,t) - v.(t)] =0 (B.12)
h—0 J J

Convergence insures, at least for a sufficiently fine mesh, that the
solution of (B. 7) is a ''close'’ approximation to the solution of (B. 1).
Before proving that (B. 7) is convergent, it is necessary to prove the

following lemma.
Lemma
On every net Rh satisfying

2xa(x,t) +c(x,t1)= 0 (B.13)
a(x,t) - h| b(x, t)|->. 0
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the solution Vj (t) of the ordinary differential equation (B. 7) and (B. 8)
is bounded by

Vi) = max[—g— s B] CcC>0 (B.14a)
< max [G,(F+l—g—|)e+lclt] C<0 (B.14b)
< max [G, (Dt + F)] C=0 (B.14c)

where

V() 2 max Ivj(t)| (B.15a)

]
c & max [|go(t)| , lgl(t)|] (B.15b)
c 2 min  C(x;) (B.15¢)
Js
F 2 max fj(xj) (B.15d)
]

D 2 max ld(xj,t)l (B.15¢)

it

B(t)2 max [F G(t)] (B.15f)

Proof
Rearranging (B. 7) gives
dv,

_J sy @ra+c)v, = (a+hb)v, . +(a-hrb)v,  +d.(t) (B.16)
dt il j it il j I e S

By (B. 14), all coefficients in (B. 16) are positive; so taking absolute

values and employing (Bl5a) and (B. 15e) yields

db.|

I+ @ra+c)v.]s da+hab )V + (a, - hAb )V + D
dt i1 ] j ] j

= (ZAaj)V(t) +D (B.17)

If V occurs on the boundary, i.e., at j =0 or j=J+1, (B. 15b)
gives

Vit) =G (B. 18)
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Otherwise the maximum occurs at some interior point, say

Vit) = ]vml (B.19)

where m#0, J+1

Then taking (B. 17) at the point j = m and using (B. 15a) again yields

dv
dt

Finally, employing (B. 15c), (B. 15d), (B. 15f), and (B. 18) gives

+ cj(t) v=D (B.20)

V(t)Zmax[g, B] cC<o0
max |G, <F+——1?— e+|c|‘C C<o0

c|
max [G, (Dt + F)] C=0

and the proof is complete.

Returning to the proof of consistency, define an error at

each mesh point as

e.(t) 2 v.(t) - u(x.,t) (B.21)
J J J

Then from (B. 1) and (B. 7)

= - 2
L, Iv(xj,t)] LluGs,t)] = ) - dex, 1) £ 0 (B.22)
or
L - - =
j[v(xj,t)] L, [u(xj,t)] + L, [u(xj,t)] L[u(xj,t)l 0 (B.23)
and by the linearity of operators
L. jv.(t) - 1) - " = .
J[vJ(t) uj(t)] + (Lj(uJ t) L(uJ t)) 0 (B.24)
Define the truncation error Tj as
a _
7 & Llutc,v) - Lfatx,0) (B.25)

and substitute (B. 25) and (B. 21) into (B. 24) yielding
L, [e.(t)] = 7.(t) B.26
It J ( )
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Thus the error satisfies a set of ordinary differential equations of

the form (B. 7) if dj is replaced by 'rj .

From (B. 4), (B.8), and (B. 21), the error vanishes initially
and on the boundary. Thus if the net spacing satisfies (B. 13)

|ej(t)| Sé ?,atx I'rj(t)l C>0
1 +ch
=g e r;a)atx lTj(t)l C <0 (B.27)
<t m’atx "rj(t)l C=0

Since for finite t, the coefficient above is bounded regard-
less of net spacing, (B.27) implies (B. 12) provided the truncation
factor approaches zero as the net is refined. However, from the

proof of consistency

le(t)l - O(h?)

and the convergence proof is complete.
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