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ABSTRACT

This work is concerned with finding an efficient computational
scheme for the solution to general optimal control problems with
terminal constraints. It is initially assumed that the control variables
are unbounded. The results are later extended to include a class of
problems with bounded controls.

Previous work on problems of this type may be classified into two
groups, methods which seek iterative solutions to the Euler-Lagrange
equations and those which iteratively improve initial guesses for
control functions. The solution presented is of the second type.

The approach begins by showing how the control problem may be
converted intc a sequence of simpler control problems which admit
analytic solutions. These simplified problems, which have linear
dynamics and quadratic performance criteria, are studied in detail and
optimal feedback control laws are obtained for them. In addition, tests
which are sufficient to show the optimality of the resulting control
are given. This study is closely connected with the theory of the
second variation in the calculus of variations.

The final solution, in the form of a computational technique, is
found by combining the method for generating a sequence of simplified
control problems and their solution together with a method for auto-
matically adjusting several parameters necessary to insure convergence.
The resulting algorithm requires very little computational heuristics
in actual machine calculations. Since the method is second order,

convergence is considerably improved over the usual gradient techniques.

Former difficulties with other methods including small regions of



convergence and difficulties associated with conjugate points in the
local accessory problem have been eliminated. The control law is
generated in the form of a time function plus a linear time varying
state variable feedback and may be used in a neighboring extremal
guidance control scheme. Furthermore, tests are performed which are
sufficient to show that the resulting control is optimal.

Several numerical examples are included to illustrate the appli-

cation of the method in actual problem solution.
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I. INTRODUCTICN

A. MOTIVATION FOR THE STUDY OF THIS PROBLEM

The principal goal for the research effort presented here is the
development of an efficien£ practical scheme for numerically solving
optimal control problems. Although the modern approach to optimal
control was begun a decade ago by a group of Russian mathematicians
lead by L. S. Pontryagin [1956], [1962], its applications have been
largely limited to simple problems which have analytic solutions. This
situation was beginning to change when Breakwell [1959] proposed a
computational scheme for numerically solving an optimal control problem
with the aid of a computer. Since Breakwell's initial efforts, several
other investigators have dealt with the problem of efficiently generating
numerical solutions to problems of this nature.

In order to illustrate a typical problem which requires numerical
solution, consider the following example. Suppose it is required to put
a payload into orbit around the earth with a suitable boost vehicle.
The direction of the vehicle is to be controlled by adjusting the
direction of thrust of the engine. For a fixed engine design, how may
the thrust direction be programmed so as to maximize the final altitude
in orbit?

This problem is typical of optimal controcl problems. It‘requires
the determination of a function of time, the control variable (the
thrust direction), so that some functional is extremized {the final
altitude), and that certain constraints are met. (The payload is

placed in orbit.)



At this point, the problem presented may be interpreted as an
optimal control problem with no analytic solution in the general case.
The need for & solution to this problem other than as an academic
exercise still requires demonstration. Perhaps the most important
reason for the generation of numerical answers is to study the nature
of optimal solutions. We may then use these solutions as guidelines for
the design philosophy used for engineering solutions. Another important
value of the numerical results might be to act as a standard to judge
the performance of some suboptimal scheme which has been designed with
hardware implementation in mind. The most obvious application of
numerical solutions is to act as the actual control scheme for a vehicle.
In practice, this idea is not too useful since the usual solutions are
open loop. That is, the solutions generated only solve one example of
a simplified model of the physical system with a fixed set of initial
conditions and terminal constraints. The more desirable solution uses
some measure of the system's state as feedback so that the control
program may be altered to provide optimal performance for the calculated
example and near optimal results for slightly different situations. By
this technique, it is possible to construct a suboptimal control system
which is similar to the more conventional linear feedback control system
designed by classical methods. The construction of numerical controls
which are of the form u(t) = ct(t) x(t) + cn+l(t)* which are optimal
for the given problem and demonstrate neaf optimal’performance for

similar problems is also considered in this study.

*
For notation, we let u,c,x be vector or column matrices. ¢! is the
transpose of the matrix c.




B. SURVEY OF PREVIOUS WORK

In order to put the present work in its proper perspective, a brief
history of related research will be given. Although the field is rela-
tively new, the widespread use of computers in control research,
particularly in relation to aerospace problems, has accelerated the work
so that many different computational techniques are now available. It
is not the intention to cover all of the related work here, but to try
to include the most significant ideas without discussing each method
in detail.

The usual methods for solving variational problems in the Calculus
of Variations lead to the reduction of the problem to one involving a
set of differential equations. This set of differential equations may
not be solved in a straightforward manner because the boundary conditions
are specified on the boundary of some region R. In optimal control
problems, R is usually an interval of values for the independent
variable so that its boundary consists of two points. For such a problem,
the set of differential equations and its boundary conditions are commonly

called the Two-Point Boundary Value Problem, (TPBVP). The difficulties

in solving the set of differential equations have led to a search for

variational methods of a different kind, known as direct methods, which

circumvent the problems associated with the differential equation solu-
tion. These methods, which are discussed in most modern books on the
Calculus of Variations,* are based on finding a sequence of functions

which give successively smaller values to the functional to be minimized.

*
cf., Gelfand and Fomin [1963], Chapter 8.



Two of the classical direct methods are the Ritz method and the method
of finite differences.

Following the distinction given in the Calculus of Variations,
literature on computational techniques normally divides methods into two

types, the direct methods and the indirect methods. Methods based on

finding solutions to the derived TPBVP are generally referred to as
indirect, and methods which directly construct minimizing sequences for
the functional to be minimized are called direct. This dichotomization
is often confusing, for frequently a method seems to have some of the
characteristics of both techniques. For example, two-point boundary
value problems of the kind normally associated with indirect methods are
commonly encountered in second-order direct methods and furthermore
construction of minimizing sequences, a technique that distinguishes
direct methods, is often employed in solving the TPBVP in the indirect
methods.

The basis for the indirect method involves finding the unknown
boundary values at one point so that the resulting solution to a set
of differential equations, the Euler-Lagrange equations, will satisfy
the required boundary conditions at a second point. By regarding the
boundary values at the second point as functions of the unknown boundary
conditions at the first point, the problem becomes one of finding the

x . . . which make several functions of

values of the variables Xl, o

these variables fl(xl, XE""’Xj)""’fk(Xl’ Xpy e

.,xj) take on
specified values. The approach used by Breakwell [1959] was to evaluate

the functions fl, fg,...,f for several selected perturbed values of

k
the variables Xq5 xg,...,xj, to fit a suitable polynomial approximation

to each of the functions using the measured points, and to adjust the

N




variables xl,xg,...,xj based on the polynomial approximation to the
nonlinear functions. This technique essentially uses a form of
numerical differentiation by means of finite differences. Other methods
have been developed in which the required derivatives are computed
analytically, thus hopefully avoiding the errors inherent in numerical
differentiation. Although these methods differ in the details, they
all effectively linearize the TPBVP, solve the linearized version by
various techniques, and use the solution to adjust the boundary condi-
tions for the nonlinear TPBVP. Some examples of this type of approach
are found in Breakwell, Speyer, and Bryson [1963], Jazwinski [1964], and
Payne [1965]. The chief characteristic of these methods is rapid
convergence if they converge at all. The requirement of relatively
good initial values of the parameters to be adjusted to insure conver-
gence has led to the development of guides for choosing good initial
guesses. These methods have been highly successful when the user is
fairly resourceful in generating good initializing boundary values.

Direct methods are normally distinguished by the characteristic of
not requiring good starting values to insure that an improved path may
be found. The first methods, such as the Ritz method, attempt to
minimize the functional by expressing the trajectory or the control, as
an expansion in terms of a weighted sum of a suitable set of functions
and finding the minimizing set of coefficients. Methods of this type
have not been too popular in application to optimal control problems
primarily due to the difficulties in finding a suitable set of basis
functions and in determining the number of terms in the expansicn to
use except by experimentation. A second type of direct method is

Bellman's dynamic programming [Bellman 19571, which is an efficient



sequential search scheme for determining optimal paths. The technigue

of dynamic programming is sufficiently different from the other methods
so that further detailed discussion is beyond the intended scope of

this study. Dynamic programming has the advantage of being simplified
by state space and control constraints, of having the ability to include
nonanalytic system descriptions, such as tabular data, and of generating
entire families of optimal trajectories for problems with different
initial and boundary conditions. Its primary disadvantage is the require-
ment for an excessive amount of computer memory, thus limiting its appli-
cation to problems with a small number of state variables. Larson [196h]
has presented a method for reducing the required memory for problems

with a continuous independent variable which has the effect of increasing
the range of problems for which computation by means of dynamic program-
ming is feasible.

A significantly different type of direct method, known as the gradient
method, was developed by Kelly [1960] and later by Bryson and Denham
[1962]. The gradient methods have the ability to generate successively
improved trajectories even with very poor starting values. However, they
tend to converge slowly, particularly in the final stages of the iteration,
and require the selection and subsequent adjustment of several convergence
parameters. Several investigators have presented schemes for improving
the convergence rate and for avoiding the selection of the somewhat
arbitrary convergence parameters. (See, for example, Brown [1964],
Rosenbaum [1963], and Stancil [1964].) Initial studies.by Sinnott [1966]
have indicated that the method of conjugate gradients in a function space
shows considerable promise as a gradient-type method with improved speed

of convergence.




The gradient method is essentially a first-order method since it is
based on finding the first-order effects of the control on the functional
to be minimized and the terminal constraints. In an attempt to accelerate
the convergence of the gradient method, second- and higher-order direct
methods were investigated by Merriam [1964]1, [1965]. Merriam's parameter
expansion technique was developed for this purpose. A scheme with similar
results was later given by Kelly, Kopp, and Moyer [1964]. Due to the
similarity of the results obtained by Kelly, Kopp, and Moyer and the theory
of the second variation in the Calculus of Variations, the direct second-
order methods are often called methods based on second variations. These
methods achieve the goal of improved rates of convergence at the expense
of losing several of the desirable features of the gradient method. The
primary difficulty is the necessity of again initializing the program with
fairly good guesses of the control law. Also, Merriam's method provided
no means for meeting the specified terminal conditions exactly. Merriam
[1964] and Kelly, Kopp, and Moyer suggest that a gradient type method
be employed until the convergence begins to slow and then be changed to
a second-order method to accelerate the convergence. McReynolds and
Bryson [1965] give a direct second-order method which includes a feedback
solution to a linear TPBVP which must be solved as a part of the method.

Another type of method for computing optimal controls, known by
various names as quasilinearization, differential approximation, or a
generalized Newton-Raphson method, is, strictly speaking, an indirect
method. However, it is considerably different from the other indirect
methods. Conventional indirect methods solve the TPBVP by iteratively
adjusting the unspecified boundary conditions. By quasilinearization,

a set of functions is iteratively adjusted by solving a sequence of

linear TPRVP's so that they converge to a solution of the nonlinear

—~J



TPBVP. A comparison of quasilinearization with some inefficient versions
of the gradient and second variations techniques may be found in Kopp
and McGill [1964] with numerical results in Moyer and Pinkham [196L].
Van Dine [1965] has combined quasilinearization with a finite dif-
ference scheme for eliminating the instability problems in solving the
necessary linear TPBVP's. An application of Van Dine's technique to
an aerospace control problem is found in Van Dine, Fimple, and
Edelbaum [1965]. McGill [1965] has used penalty functions to extend
the method of quasilinearization to problems with state inequality
constraints. Kenneth [1965] has used a technique due to Valentine
[1937] to include bounded control in a computing method based on
quasilinearization. Although the general technique has very rapid
convergence, it still has a limited region of convergence and reguires

sufficiently good initializing functions.

C. OUTLINE OF RESULTS

Merriam's work was the starting point for the research reported
here. The result has been the development of a numerical method of the
direct type which has the following characteristics:

1. The region of convergence is effectively as large as that of

the usual gradient approach.

2. The convergence rate corresponds to that of gradien£ methods
with feedback correction initially and to the rapid second-
order methods as the minimum is approached.

3. Although a set of initial convergence type parameters must be

specified as in the gradient methods, these parameters are




automatically adjusted by the program. A poor guess does not
prevent convergence, but only slows it initially.

k. Adequate tests are performed without additional computation
which are sufficient to show that the solution must be a
minimizing curve. (Sufficiency test in the Calculus of
Variations.)

5. The linear time-varying feedback coefficients for the so-called
neighboring extremal control scheme are available without
further calculations.

6. Terminal constraints are met "exactly," without the use of
penalty functions.

The material to be presented is divided into eight chapters.
Following the introduction in the first chapter and the problem state-
ment and introductory material in the second chapter, the third chapter
outlines, from a general point of view, the basic concepts involved in
computing constrained and unconstrained extrema. Chapter IV uses the
results of Chapter III to convert the computational problem into a
sequence of linear control problems which have quadratic loss functionals.
A feedback control solution to the linear plant, quadratic loss, control
problem with general linear terminal conditions which guarantee that the
solution obtained is optimal is also included. In Chapter VI, all of
the previous results are combined to obtain the computational method.
Several numerical examples are given in the following chapter as a
demonstration of the value of the method in actual problem solution.
Following the conclusions in Chapter VIII, a number of appendices are
given as supplementary material which include a sample computer problem
listing, some additional numerical details for the examples given in

9



Chapter VII, and a derivation of some useful properties of fundamental

matrices for the Euler-Lagrange equations which are used in Chapter V.

10




II. STATEMENT OF THE PROBLEM

This chapter contains definitions of the notation to be used through-
out this werk and a precise statement of the mathematical contrel problem
to be considered. In the last section, a number of special cases are

enumerated for special study.

A. SYSTEM DESCRIPTION

The usual description of the system to be controlled is given by

the vector differential equation
x(t) = £lx(t), u(t)] (2.1)

where x(t) is an (n X l) real vector of time functions hereafter
called the state vector, u(t) is an (m X 1) vector of functions
called the control, f(-,-) is an (n X l) vector valued function of
its arguments, and t 1is the independent variable usually identified
with time.¥

Althoﬁgh any dynamical system may be described by an equation of
the type (2.1), it is perhaps necessary to note that for a general nth

order differential equation, this is not the case. For example, 1f the

differential equation is given by

G(YJ 3.’J y)---)y(n): ‘1) =0 | (2-2)

where the y's are scalar time functions, there may not be an

*
Problems in which the function f depends explicitly on the independent
“variable, t, may be considered by adding an additional state variable

X4 which satisfies X 41 = 1, Xn+l(o) = to'

11



equivalent representation of the form (2.1). However, if (2.2) has a

(n)

solution for y as

Vs Vseeosy , ul (2.3)

then there is no difficulty. It will be assumed that any system to be
studied has a representation as in (2.1) which is called a state space
representation.

The vector function u may contain a set of system parameters as
well as a vector valued time function. For example, one control variable
might be the staging time for a multistage rocket. By consideration of
this more general class of controls, a wider range of problems may be

studied without loss of generality.

B. PROBLEM STATEMENT

The control problem may now be stated as follows:

Control Problem: For the system described by (2.1) and the set of initial

conditions

x(t ) = x (specified) (2.4)

find a vector control function u € U, the class of admissible control
functions, such that at some time tf > to the scalar payoff function

@[x(tf)] is minimized and the (g X 1) vector terminal constraints

Yx(t,)1 =0 : (2.5)

are satisfied.
Given in this form, the control problem is identical to the problem
of Mayer in the classical Calculus of Variations with a differential

12




subsidiary condition (the differential eguation (2.1)). It is well
known that problems in which the payoff function is of the Lagrange

form

t
. L

J = S‘ 2(x, u) do (2.6)
t

0

may be converted to the Mayer problem by defining an additional state

variable x which satisfies
n+l

= ﬁ(X: u) (2-7)

The payoff becomes
o[x(tp)] = x . (t,) (2.8)

In a similar manner, mixed problems of the Bolza form

t

f
J = S £(x, u) do + ¢[x(tf)] (2.9)

t
o]

may be written in the Mayer form without the integral cost function.

In order to insure that the solution to the problem may actually
by computed, it is necessary to redefine the problem slightly. The
actual question to be answered is "How may an optimal control be cal-
culated?" For further practical reasons, only direct methods will be
considered. This reasoning leads to a reformulation ss follows: given

a nominal control function u(t) (and the corresponding trajectory),

13



corriruet a new control which is "better" in sowe serse. A more precise

gtatenent 1s given as the Computatioral Control Problei:.

Computational Control Problem: For the syster described by (2.1) and <ie

initial conditions (2.3), let xo(t), t € [to, t.] be the solution or

£
. . . . o) .
trajectory for a given nominal control furction u (t). Find a vector

control u(t) € U, the class of admissible control functions, suci. *ha-

eitrer the change in payoff AP obeys

Ly = olx(t%)] - @[xo(tf)] <0 (2.10)
and the “erminal constraint functions satisfy iwi[x(té)]l = € ir
|wi[xo(tf)]] <e, or, ifr |Wi[xo(tf)]] <€, 1is not satisfied, then

oy (e 1] < Ty, (e ) 11 1= 1,2,.005000 (2.11)
fer ¢ uitably determired error bounds on the constraintes Si’ i L, ..

The terminal time t¥ for the new trajectory x(t), (obtained by solv-
ing (2.1) with initial conditions (2.3) and control u(t)) is determi:.

Z1om the stopping condition

v Ix{t

. 1 ealx(tx)] =0 (z.2)

C. SPECIAL CASES

Altrough the problem statement given in the lact sectiorn may be
solved in general, there are several special cases which have the
advantage of easier solutions. These simplifications may be made for
more restrictive types of boundary conditions specified by the functions
v Ix(t)], 1=1,2,...,q.

The Tirst simplification occurs when the stopping condi-ion

1k




Q[x(t.)] is of the form

f

-b) =0 (2.12)

qux(tf)] = Q[X(tf)J = (tf

for a specified constant b. With this restriction the problem is
known as a Fixed Final Time¥* problem. Actually this special form for
the stopping condition does‘not eliminate much of the formal difficulty
except for some tedious algebra. However, the Free Final Time problem
leads to programming complications in the actual computation. This is
due to the necessity of storing time functions on the time interval

[to, t_.]. That is, the time functions are stored in the form of a

f
sequence of k sample points f(ti), for 1 = 1,2,...,k. If the
storage points are not uniformly spaced, it is necessary to store the
set of storage times {ti}. A considerable saving both in machine and
programming time can be obtained by assuming that the number of points
stored, k, and the set of storage times [ti} remain fixed from one
iteration to the next. Of course, many problems of interest have the
final time specified. Other problems may be converted to fixed
interval problems by a change of the independent variable. For these
reasons, the assumption of a fixed interval will usually be made for
convenience with an indication of the modification for the more general
case.

Several other problem simplifications can occur depending on the

nature of the constraints Wi[x(tf)], i=1,2,...,g-1. In order to

*Although time is assumed to be the independent variable in the differential
equation, of course this is not necessary. With this understanding, the
independent variable will be called time to agree with common usage in
the literature.

15



discuss these simplifications, it is necessary to consider the tangent

plane to the constraint = O given by

n

E: Swi[x(tf)]

S Dxy = 0, i=1,...,9-1 (2.14)
J=1
Before discussing the simplifications, since summations of the form
in (2.14) will appear frequently here and in later chapters, it is
expedient to introduce a more compact notation at this point. The use

of the usual matrix notation allows (2.14) to be written as
AAx = 0O (2.15)

Unfortunately, the notation for what the matrix A means in
this case is not completely standard. The system adopted here will be
th

to write the matrix A with aij representing the element of the i

row and jth column as

v, = [aij] = |7 (2.16)

This method has the distinct advantage of being the shortest
possible without loss of too much of the important information. It has
the disadvantage of being not completely standard and requiring more
knowledge on the part of the reader. The chief point to remember is
that Wx represents a matrix in which the ith row is the collection
of partial derivatives of the ith row of the vector V.

Another frequently required expression is the matrixyof second
partial derivatives of a scalar quantity. These are the matrices whose

elements are given by

16




1

bij = 5;;5§; (2.17)
i = 1,2,...,nT (rows)
J = 1,2,...,nc (columns)

where f 1is a scalar function of the vectors x (nr X 1) and

v (nC X 1). The abbreviated notation for this matrix is

B = fxy (2.18)

It follows from this definition that

B! = fyn (2.19)

Now that the simplified notation has been introduced, the several
special types of boundary conditions will be discussed. These special
cases are distinguished by the dimension of the subspace described by
the tangent plane to the terminal manifold W[x(tf)] = 0. We assume the

subspace

T : {AXWX[X(tf)] Ax = 0) (2.20)

has dimension «r.

If r = n, the problem has a free endpoint. This situation provides

the most straightforward solution. Since the methods of solution in this
case are simplified, often problems with end constraints are converted

to approximate free endpoint problems by the following technique. We
define a new cost functional @n[x(tf)] related to the ofiginal cost

@[x(tf)} and the terminal constraint vector w[x(tf)] by

o [x(t.)] = olx(t

n

1+ M x(t)]) (2.21)

17



where g(+) is a suitable penalty function of its vector argument and M

is a positive number. In order for g(-) to be suitable, it should be
a positive function which vanishes only when W[x(tf)] = 0. 1In practice,
this technique involves a careful choice of the form of the function

g(+) and, more important, of the relative weighting given to errors in
the end constraints as compared to changes in the original cost functional
$[x(tf)]. If the value of the constant M 1is sufficiently large, the
vector which minimizes @n will be close to the vector which minimigzes
¢ and satisfies the constraints, ¥ = O. Unfortunately, very large
values of M often lead to numerical difficulties in the computer solu-
tion and some compromise must be made. A complete study of the relative
merits of the penalty function and exact methods for handling constraints
is yet to be carried out. The exact method was chosen to be used in
Chapter IV primarily to eliminate another arbitrary choice, that of the
penalty function.

The second case, T = 0, is called the fixed endpoint problem.

The most common example of this case is the problem in which all of the
terminal states are required to have specified values. It will turn
out that the fixed endpoint problem has sufficient structure so that a
simplified computational scheme may be used as compared to the general
case.

The third case is the most general one. When O <r <n, the

problem has partially specified end conditions. Actually the solution

in this case includes the first two cases. It is never used for free
or fixed erdpoint problems since the computations for those cases

require fewer equations.

18
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D. CONTROL AND STATE SPACE CONSTRAINTS

For some problems, the set of admissible controls U, is closed.

An example might be a rocket in which the control variable is the thrust

level. Because the thrust level has a physical upper bound wo U 1is

the set of all functions u defined on the interval [to, t_] for

£

which lu] = u - In general the set U will depend on time and the

state x(t). Problems of this type are said to have Control Variable

Constraints and demand special consideration.

Another type of constraint is obtained when there are physical
limitations on the values of the state vector. To avoid an unrealistic
solution to a rocket trajectory problem, we might require the solution
to have positive altitude. Otherwise, the optimal solution might require
an initial dive below the surface of the earth.. This type of constraint

may be given in the form of r inequalities of the form

si[x(t), u(t), t] =0 i =1,...,T (2.22)

When these relations may be solved for the control u in terms of the
state and time, they reduce to control variable constraints. Otherwise,

the problem is said to have State Space Constraints.

The penalty function approach may also be applied to control
variable constraints as well as to state space constraints. The only
modification of the idea previously discussed is the addition of integral-

type penalty functions to the cost of the form

L

kiS gl{si[x(g)) U.(’G), 0]} do (

t
o

o

no

(@A
~—r
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The function gl(-) is chosen to be very large if any of the si's are
positive. A similar integral penalty function for bounded controls may
be used. The penalty function given by

t

f
S lu(o) [ ao (2.24)

t
o}

will cause Ju(t)| =1 for k large.

While the penalty function technique still may have its computational
difficulties for this type of problem, it has increased attractiveness
due to the additional complications of the "exact' method.

It is often possible to eliminate constraints by a clever change of
variables. In problems for which |u| < 1, the control variable u may

be replaced by the unbounded variable v by the transformation
u = sin (v) (2.25)

If the optimal u is "bang-bang" (i.e., the control is always on the
boundary), it may perhaps be described by a time function switching
between limits. The new unconstrained "control variable' may be

defined as the set of numbers which specify the switching times.
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IITI. DIRECT METHODS OF SOLUTION

The Computational Control Problem posed in the last chapter is by
no means the only possible
problem solution will be developed in this chapter which will illustrate
other approaches to the problem of computing optimal controls. The
main part of this chapter will discuss the direct method for solving con-

strained and unconstrained minimization problems in a fairly general

framework.

A. COMPARISON OF DIRECT AND INDIRECT FORMULATIONS

In order to compare the direct and indirect methods, it will first
be instructive to consider a simple example. Suppose the minimum of a
scalar function f(x) depending on the vector x € Rn is desired. A

necessary condition at the minimum is the set of n nonlinear equations

f (x) =0 (3.1)

It is usually rare that the set of equations (3.1) admits an easy
solution. One might now propose some iterative technique for solving
this set of equations. This is the indirect method for problem solution
since the minimization is indirectly done through the solution to a set of
nonlinear simultaneous equations. The usual iterative methods used to

solve equations like (5.1) involve finding a relation

which satisfies

(2.3)

)| <

f (x

X n+l £ (X )

X
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where the last equation represents a component by component inequality.

Thus the indirect method typically converts a given minimization problem

to a related but different minimization problem. The solution to the

original problem is obtained indirectly by solving the related problem.
One might suspect that if a technique is available for generating

a minimizing sequence [xi} for the components of |fx(xn)], a

similar technique could be used to minimize the original function fx)

directly. This leads to the direct problem formulation.

By the direct method, a relationship of the form

b'e = h(x_ ) (3.4)
is used recursively to construct the minimizing seguence {xn} so that

£x_ ) <f(xn) (3.5)

n+l

In the control problem, the corresponding set of necessary
conditions to (3.1) were given by L. S. Pontryagin [1956], [1962].
Pontryagin's Minimum Principle,* which gives the control law u(t) in
terms of the solution to a nonlinear two point boundary value problem,

may be stated as follows.

Pontryagin's Minimum Principle

For the control problem, there exists a vector valued function k(t),
not identically zero, and a set of numbers, Yo = 0 and the vector v,
not all vanishing, which satisfy for t € {to, tf]

n State Equations x = Hi(%, X, u)

*

Pontryagin stated his result as a Maximum Principle but it is common
practice now to use the Minimum Form in the conditions. Only a change
in sign is involved in the equations.
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n Adjoint Equations A = - Hi(%, X, u)
n Initial Conditions x(0) = X4
g Terminal Constraints V[x(t.)] =0

n Adjoint Boundary Conditions %'(tf) = v [x(t

0'x £
m Control Equations u = min_l{H(%, X, u)] (3.6)
uelU
Where the Hamiltonian H(A, x, u) = A'(t) £(x, u) (3.7)

. LN S . , e
The notation min is used to denote a function weU which minimizes

uel
H. If the final time tf is not fixed, there is an additional relation
- 4 oyl _
HINt )y x(tp ) ult )] = voelx(t) ] - vivix(t,)] =0 . (3.8)

Also, 1if f(x, u) 1is discontinuous at a set of points t = ti to be

chosen in an optimal Ffashion,then

H(A, x, u)‘ _ = H(A, x, u)' +
t. t

1 i

The set of relations (3.6), (3.7), and (3.8) are necessary for a
solution to the optimal control problem.

In order to construct an indirect computational scheme from this
set of necessary conditions, several assumptions will be made for
simplicity. First, assuming v, £ 0%, take vy = 1 without loss of
generality. Next assume it 1s possible to find an explicit solution

of the control equation which gives u(t) = u[x(t), A(t)]}. Sub-

stituting this equation into the adjoint and state equations reduces

*
When v # 0 the problem is said to be normal.
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the necessary conditions to a set of 2n differential equations. As a
final assumption, suppose the gq terminal constraints and n adjoint
boundary conditions can be solved to specify the terminal values of n

of the variables A(t.), x(tf). Call the n specified terminal

f
variables y and the n remaining terminal variables z.
By integrating the state and adjoint equations backwards it is

possible to compute the initial state x(0) which is a function of the

unknown terminal variables z. That is
x(0) = g(z) (3.9)

The computational problem is now solved by specifying a method for
finding the vector =z so that the initial conditions x(0) match the
specified initial conditions X The usual techniques involve defining
a scalar error function which measures the distance between X(O) and
Xy The problem then becomes a finite dimensional minimization problem
of this error in n variables. Thus again the indirect method has
converted the original minimization problem to another related
minimization problem.

One obvious advantage of this approach is the large reduction in
dimension. The original minimization problem required searching an
infinite dimensional function space as compared with the auxiliary
minimization problem in which the dimension of the parameter space
is equal to the number of state variables. In addition to the conceptual
advantage of this method, the theory for finite dimensional minimization
is quite well developed and can be applied. Programs for this type of

solution are relatively easy to write around a general purpose differen-

tial equation solving routine. Since the bulk of the calculation is
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differential equation solution with little storage and logic needed,
iterative analog or small hybrid-analog-digital computers may be used
to implement the method.

At this point it is reasonable to question the value of the direct
methods. Perhaps the primary consideration is one of convergence. The
indirect methods require good guesses of the vector gz i1n order to
insure convergence. These guesses are frequently difficult to obtain
from prior physical knowledge of the problem. On the other hand, the
direct methods require an initial choice of the control function u(t)
which is usually obtainable from experience with the physical problem.
When compared with the indirect methods, there are relatively no
convergence difficulties in the direct methods due to bad initialization.
A further practical matter concerns the value of the computational
results. Since each iteration in a direct method improves the initial
guess and generates a "better" trajectory, intermediate results are
useful even if the process has not yet converged. Since the indirect
methods only integrate extremals (i.e., solutions to the Euler-Lagrange
equations), the results of each iteration do not give much useful
information until the boundary conditions are almost met.

Probably the most severe difficulty with the indirect method is
the numerical inaccuracies encountered when integrating the Euler-
Lagrange equations. It may be shown (see for example Kipiniak [1961])
that in the case of linear equations with constant coefficients, the
Euler-Lagrange equations have a set of characteristic roots which have
the following property. If @ + if 1is a root, (i.e., there is a

) o+iB )t . ,
homogeneous solution of the form e( _16) ), then -Q+if 1is also a
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root. When these equations are integrated either forward or backwards,
for each damped stable mode, there 1s a corresponding unstable mode.
For large time intervals these problems are extremely sensitive to
small changes in the initial conditions and some form of double
precision calculation may be required. Other investigators have noted
difficulties with the indirect method for problems involving highly
dissipative systems [Bryson, 1966]. However, for plants which are
lightly damped, the two point boundary value problem is only slightly
unsteble. The difficulties with highly damped problems do not occur
with the direct methods. This is because the system and adjoint
equations are integrated separately in their "natural" directions.
That is to say that the state equations are integrated forward and the
adjoint equations are integrated backwards so that the linearized
equations have the same set of eigenfunctions. The stability then

depends only on the stability of the plant.

B. GRADIENT TYPE METHODS

In the remaining sections of this chapter, the discussion will be
quite general so that it will be possible to connect the techniques used
in functional minimization in an infinite dimensional space to those
used in ordinary function minimization in En. The abstraction will
actually simplify the statements to be made in most cases and the results
will admit a wider interpretation. As a suitable reference for the
mathematics used here, see Luenberger [1965], Lusternik and Sobolev (19611,
or Kantorovich [1964].

In the following, let H be a Hilbert space with inner product

<x, y> where x € H, y € H. The norm of an element x € H will be
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denoted by

| x [[ =v<x x> (3.10)

Consider the following problem which is related to the most simple
form of the computational control problem. Given a point X, € H and

a functional f(x) : H-E find a point x € H so that

l)

A1(x x) = f(x) - f(xo) <0 ‘ (3.11)

Assume that there is a linear functional of ©&x = x - X depend-
ing on x_, denoted by @(xo, 8x) which allows Af(xo, x) to be

written as

af(x, x) = ¢(x, 8x) + of|[ex]|)

for arbitrary points x  and 8x. The function o(HSxH) (read "little
o of ©&x") depends on x_  and satisfies

o(|lex|])

=1~ "0 as ox|| - © (3.12)

Then, by definition, the functional f(x) has a strong or Frechet
differential @(xo, 8x) at the point X
If the Frechet differential exists, it is equivalent to the Gateau
or weak differential Df(xo, 8x) which is defined by the relation
f(xo + €dx) - f(xo)

Df(xo, 8x) = lim - (3.13)
€0

The Frechet differential is usually called the (first) variation of
the functional f(x) in books on the Calculus of Variations. The form

(3.13) is not always equivalent to the Frechet differential, but as
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previously noted they are equal when the Frechet differential exists

and is more useful for computation in most cases. In the following, the

Trechet differential will be referred to as the first variation or

variation of f(x) and will be denoted by 6f(xo, Sx) or simply B8f.
Since ©f is a linear functional on a Hilbert space, it may be

uniquely represented by the inner product of an element y € H and dx.

Therefore (3.11) becomes

Af(x s x) = <y, dx > + o(|]ex]|) (3.14)

The function 1y, which will frequently be written as fX, is known
as the gradient of f at Xo

The fundamental basis for ncnlinear minimization by gradient

techniques is given in the following proposition.

Proposition 3.1

There exists a constant C > 0 such that if <y, ®dx> is minimized
over all Bx € H with [Bx[|= ¢ S c_ then Af < 0. Furthermore the minimum
occurs for ©®x = - cy/HyH.

Proof: Any ©&x ¢ H may be written as ®x = Qy + z with <y, z» = 0.

2

Then <7y, dx > = aHyH2 and Gg”yﬂg + Hz”2 . Ir <y, x> 1is

i}

minimized, @ is as small as possible which implies 2z = O. Then a? =

CE/HYHg and Bx = - ﬂiﬂ y. For amy c >0 we have Af = (b&x, - ﬂ%ﬂ 8x) +

o(|lsx|]) = - llyll ||gx|| + o(|lex||). By the @efinition of o(|lpx||) there is
a constant c >0 rfor which |o(|lex||)| < |lx|| [ly]] if |Px|| = c. There-
fore Af <O.

The iterative technique usually referred to as steepest descent for

unconstrained minimization of the functional f may now be stated as
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x(n+l) = x(n) - ky(x(n)) (3.15)

where k < O is the scalar step size. As before, the function y(x<n))
is the gradient of tie functional f at the point x(n). By Proposition
3.1, the method has step by step convergence. That is, for the proper

choice of the scalar constant k, the inequality

)y C ey 2 as ), <)y <o (5.16)

is satisfied.

This method is a gradient method since the change in x 1is along
the gradient. There are several schemes for computing the constant k
in this equation. Perhaps the simplest heuristic technique is the half-
ing and doubling method. To start the method, an initial step is made.
If (3.16) is satisfied, the cost functional is decreased and the step is
successful. In this case, k is doubled for the next iteration. If
(3.16) is not satisfied, k is halved and another step is made from the
original point. Of course, there are many variations of this technique
for experimentally determining k.

A different method is obtained by assuming the functional f 1is

quadratic in x. That is, f may be written as
f(x) =<y, x >+ 1/2 <Qx, x > (3.17)

where @ is a self-adjoint linear operator from H to H. ‘With this
model for f(x), it is possible to pick the best k to minimize AN
(i.e., maximize lAfI).

By the method of steepest descent

x(n+l) = x(n) - kp(n) (3.18)
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(n) (n)

where p is the gradient at the point x which is given by

(y + Qx(n)). The constant k is chosen to minimize Af and is given
by
& <y, >
k = k = —& B2 (3.19)

<Qp, p >

In practice an easier approach for some problems is to determine k
by measuring Af for two values in addition to the point k =0 from
the previous iteration. Since if f 1is quadratic in x, Af 1is quadratic
in k, and these three points may be used to fit a parabola in k and
hence determine i.

Most of the problems of interest have constraints and therefore
require some modification of the unconstrained gradient technique. Before
formulating the nonlinear theorem for the problem with constraints corre -
sponding to Proposition 3.1, we shall consider the necessary conditions
for the functional f(x) to be an extremum with the set of constraints
gi(x) =0 for i =1,...,q9.

Suppose f and g; are continuously differentiable in a neighbor-
hood of the point x = X Further assume that the constraints are
linearly independent. That is, the gradients of the functionals g are
linearly independent functions not all vanishing. An equivalent state-
ment is that the equation < gi,x(xo)’ h>=&, i=1,...,4 has a

solution h € H for arbitrary ai or that the q X q Gram matrix A

given by

[a,.] = [ < 8. X(X ), g, (x ) >]

1d o JdsX O
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be nonsingular.*

In the uncénstrained problem, the necessary condition for an extremum
was that the gradient of f ~vanish. For the unconstrained problcm, the
exiremum is achieved if it is not possible to increase the cost while
moving along the constraint. This is equivalent to requiring the component
of the gradient of the cost functional f in the tangent manifold of the
constraint g(x) = 0 to be zero at the point x = X The tangent
manifold is the set of all elements h € H which satisfy
< gi,x(xo)’ h>=0 i=1,...,q. The tangent manifold is a subspace
of H and will be designated by T.

The gradient of f may be written uniquely as fX =u + v with
weT and Vv € S, the orthogonal complement of T. In this represen-
tation, u is the projection of fX onto the tangent manifold T.

Taking the inner product of fx with gj < gives
J

< f . > <u R >+ < v . > =<V . >
x’ gJ,X ) gJ,X s gJ,X P) gJ,X

1,...,q9 (3.20)

o
I

since u € T. By assumption the gj . are linearly independent and
b4

thereby form a basis for S. v may be written as

q

= a .
i=1

*
This assumption for the control problem is related to the idea of con-

“trollability for the linearized problem in the sense of Kalman [Kalman,
Ho, Narendra, 1963]. It is also related to normality in the classical
calculus of variations as noted by Breakwell and Ho [1965]. The matrix
[a,.] may also be recognized as the matrix IIw in Bryson and Denham

iJ
(1962].
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Using (3.20) and (3.21) we may solve for v as

a g
v=ﬁr_‘[<g ) 8 St <r, e >g (3.22)
i,x” Tj,x x’ Ti,x Jyx )

The necessary condition follows immediately

q 4a
-1
= - < < = .
u fx Z Z [ gy y’ gj,x >] fX, gi,x>gj,X 0 (3.23)
J=1 i=1

If we note that the term

g

< i i = 1,2,...
Z [ gi)x, gj)x >] < fX) gi:X > . 1,2, 'q
i=1

represents a vector Aj, we can write (3.25) in the familiar form

4
f_ - ANg, =0
X }: JgJ)X
J=1
or

f -ANg =0 (3.24)

which is the well-known Lagrange multiplier rule where g = 0 is
taken as a vector constraint.

A useful physical interpretation for the Lagrange multipliers may
be obtained by considering a problem with slightly perturbed constraints.
The modified problem consists of finding an extremum for f(x) with the

constraints
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gi(x) -e; =0, i=1,2,...,q, (3.25)

If x solves the problem with ei = 0, then there is a solution to
for any €, suitably small by the linear independence of the
constraints. Therefore, there is a solution, X, + h, to the con-
strained minimization of f(x) with the constrainf (3.2&). The corre-

sponding change in the minimum value of f(x) is

fuo+wn -fuo)=<g3%),h>+oﬂmﬂy (3.26)

By the differentiability of the constraint,

g, (x  + h) - gi(xo) = < g,

1,x(xo)’ n >+ o(|nl) (3.27)

Application of the multiplier rule to the original problem shows that

there is a set of multipliers %i, not all zero which satisfy

q
f (xo) —Z{j neg. (x ) =0. (3.28)

X i®i,x "o
i=1

By multiplying (3.27) by %i, summing over i, and subtracting the

result from (3.26), one obtains

1 O

q
f(x_ +h) - £f(x ) =) Aleg(x) + n) - g.(x)]
0 o ;Z; 7

a - . | _
+<[r_(x,) - }: Aigi’x(xo)1, B> + o |lnll) (3.29)
i=1
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From the original assumptions that gi(xo) =0 and gi(xo +h) - e, =0

together with (3.28), the last equation may be written as

q
£(x +n) - 2(x) =z Ae, + o)) (3.30)

i=1

Equation (3.30) is the basis for the sensitivity coefficient inter-
pretation of the Lagrange multipliers. In other words, this result says
that the constrained extreme value of f(x) changes to first order by

an amount %jej when the jth constraint is changed by a small amount

In the following chapter, constraints which are differential
equations will be considered. In this case, the constraint g(x) may

be of the form
. 2\ .
g(x) =% + (1 -x7) x+x =0(t)

so that the range of g 1s no longer simply a set of numbers, but it
may be an entire time function. In the book by Liusternik and Sobolev
[1961], the multiplier rule is extended to handle more general problems
of this nature. This theorem will prove useful in future developments
s0 that it will be stated here. For the proof, the reader is referred
Liusternik and Sobolev [1961].

Preliminary to the theorem, a few additional definitions are
necessary. Let the constraint function g(x) be defined on a Banach
space B with range in a Banach space C, g(x) e C, x ; B. f(x)
is a functional defined on B. Again assume that the constraints are

linearly independent or that the range of the operator defined by the
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gradient of g, gx, is the whole space C. Both g and f are assumed
continuously differentiable in a neighborhood of X In the theorem,

let C* denote the dual (or conjugate) space of C.

Proposition 3.2

Ifr f(x) has an extremum with g(x) =0 at the point x = X
then there is a linear functional L defined on C, L € C¥, such that

the functional
F(x) = £(x) - Llg(x)]

has a local minimum at x = Xo’ i.e., the Frechet differential of F(x),

¢(x, h) satisfies

@(xo, h) = 0 for all h e B.

The extension of this theorem to problems with inequality constraints

g(x) > 0 has been studied as a generalization of the Kuhn-Tucker theorem
by Hurwicz [1958]. Lack [1965] discusses the application of this theorem
in deriving necessary conditions for the control problem. The Pontryagin
Maximum Principle stated in Chapter II is actually another form of a
Lagrange multiplier rule with inequality constraints (bounded control).

| There are several versions of the gradient technique for computing
constrained extrema for the control problem. In the absence of constraints,
the solution is obtained by choosing ©Su to minimize the linear part of
the change, A® , in the cost, plus an added quadratic functional chosen
to restrict the step size. A constrained problem may be treated by
requiring the change, Bdu, in the control to be chosen so as to satisfy

specified changes, ®¥, 1in the constraints to first order in addition
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to minimizing the linear part of A® plus a quadratic term as in the
uncoristrained case. The following lemma gives one method for constructing
the solution to the problem of minimizing a linear plus a quadratic
functional with a linear equality constraint. The idea of the lemma is

to first find the shortest (minimum norm) solution which satisfies the
constraints and then to optimize in the tangent manifold so that the
optimization process does not effect the constraints. The solution con-
veniently separates into two parts, the part necessary to meet the

constraints, and the part which minimizes the cost.

Lemma 3.1 The solution to the problem of finding an element x € H
which minimizes < a, x >+ 1/2 W<x, x> with <b, x > =& where

a, b e H and W and & are scalars, is given by

where % 1is the minimum norm solution to <b, x >=C& and P 1is a

projection operator onto the nullspace of b, 1i.e.,

1. <b, Px >=0 for every x € H

2. Pd =4 for every d which satisfies <b, d >=0

Proof: By the multiplier rule, the optimum x 1is given in terms of a

constant A as X = - l/W(a - A\b). Since < Db, x >= &, then
<b,a>-ADb,b>=-W or A= (<b, a>+W)/<b, b> so0 that
_ X <b, & - Ob
x = - (a <b,b>b) <b, b >

Since the minimum norm solution, %, to <Db, x >=0Q is Ob/<b, b >,
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the proof is completed by showing Pa = (a - <b, a > b/< b, b >). To
show property 1, <b, Px >=<b, (x=b<b, x ><b, b >)>=<Db, x > -
<%b, x > = 0. Propcrty 2 follows from Pd - (d - <b, d >b/<b, b >) =4d
since < b, 4 > = 0.

The solution x constructed in the lemma may be used to solve the
nonlinear constrained minimization problem by a gradient technique. The

basis for this approach is given in the following theoremn.

Proposition 3.3

There exists a set of positive numbers W, k, and €5 i=1,2,...q,
such that if h 1s an element in H which minimizes < fX(xo), h >+

iw <h, h > with <g (x ), h>=-k gi(xo) then if Igi(x )| > €

2 i,x"© o i
then ]gi(xo+ n)| < lgi(xo)l otherwise [gi(xo +h)| < e, and

£(x +1) < f(x0>.

Proof: See Appendix A.

By comparison of the results of the last theorem with the goal as
defined in the statement of the Computational Control Problem in
Chapter II, it may be seen that the problem is solved by specifying a
method for finding the constants W, k, and ei. In effect, k
controls the amount of improvement desired in the constraint g, ei
sets a tolerance limit on the accuracy in meeting the contraints and
W controls the step size. In order to maximize the convergence rate,

it is desirable to pick l/W} k, and €i as large as possible without

violating the requirements of Proposition 3.3. The method used for

finding suitable values for W, k, and € is discussed in Chapter VI.

Other versions of the construction of the element h in Proposition

3.3 may be used. One technique suggests calling for certain improvements,
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Sgi, in each of the g;'s and Of in f. The element h is then

chosen so that it is the minimum norm solution to the set of equations

< gi,x(xo)’ h >= 6gi

(3.31)
< fx(xo), h > = &f

where Bgi and O&f are again selected suitably small so that the
requirements of Proposition 3.3 are satisfied. By the multiplier rule, the

optimal h must furnish an extreme value for

q
< .
<h, h >+ E: %i < g1y’ h>+A <f,h> (3.32)

i=1

8f. The construction used in

where %O is chosen so that < fx’ h >

Proposition 3.3 requires h to furnish an extreme value for

q
1/2W<h,h>+Zv.<g, ,h>+<f ,h >
i i,x x
ya |
or

d
2v
i 2
+ —_ + £ <« 3.33
<h, h > Ej T <&,y h>+5<f, h > ( )
i=1

so0 that the methods are equivalent with the identifications
-——1-27\:].-, i =l,2,...,n ‘ (3.3)4')

and

Y (3.35)
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Tr tre recond approach, the specification of ®f determines A and
o]

heres W, Howsver, tre method in the theorem requires the direct
Speniil lon o W,
Ial

METHODS

Lovcording to the nultiplier rule given in the last section, the

constraired winimization of f(x) with gi(x) = 0 may be reduced to

the provlern of finding the unconstrained minimum of an auxilliary
furcticnel F(x,A) defined by
Plon) - olx) + Alelx)
. . , - - ! . . .
woers Do oocerieroe the sum ZAigi\x) is written as %'g(x) with

e npriowrlote gefinition of N and g as vectors. It may be easily
shoun that a form of constrained gradient technique is obtained by apply-

7 gradient method (first order) to F(x,A). In this

d-crder method is used to minimize F(x,\), thus
ol i o osecond-order method which includes constraints.
Tn oths o unconstrained gradient method, f(x) was minimized in a
tay by Step hion by choosing the change in x, h, to minimize the

o

-~ part of flx + h) with the constraint that the step size be

n2ll enough so that the higher order terms were negligible. In the
soond worder wetiod, the functional to be minimized with the constraint
ey = e is
f{x +n) - flx) =<f_, h >+ 1o f h, h >+ O(Hh“gj
) ) X 2 XX
irnowrnich  f iz 2 linear self adjoint operator from H to H. The
KX

Ul
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17t g

h=-1[f +vI
XX X

where I is the identity operator and v/2 is the Lagrange multiplier
associated with the constraint HhH = ¢. Ordinarily, v would be
determined in terms of ¢ from the constraint. An equivalent procedure
would be to pick Vv, instead of ¢, arbitrarily, and to minimize the

expression

1 1

This method is formalized in the following theorem.

Proposition 3.4

There exists a constant v sufficiently large such that if

1 1
i - < .
<fx,h>+2<fXXh,h>+2v h, h > (3.36)

is minimized over all h € H, then

f(xo +h) - f(xo) <0 .

Furthermore, the minimum occurs for

h=-[f +v1]'1f
XX X

Proof: See Appendix A.

A constrained minimization technique may be constructed by applying
the above method to the functional F(x,A) as defined in the first
part of this section. Expanding F(x,\) to second order as a function

of x and A gives

o)




=

F(x + h, A+ ®\) = F(x, A) + < Foh >+ SA'g(x) + = < F b, b >
' 2
+®\' <g,h >+ o(|lnl|*)
The condition for F(x + h, A + ®\) - F(x, A) to be an extremum for h

and B\ to second order is for h to furnish an extremum for F

considered as a function of h alone and for

g,(x) = - < 8, 0>

which is the condition for the constraints to be met to first order.

This idea leads to the following theorem.

Proposition 3.5

There exists a constant v sufficiently large and a set of

constraint tolerances ei, i=1,2,...,q such that if

1 1
< = < + =y <
Fx’ h >+ 5 Fxx h, h > > v h, h >

is minimized over all h ¢ H, with
F(x, A) = £(x) + N'g(x)
and

gi(xo) = - < gi’x(xo), h >

then if e, (x,)] > ¢, lg, (x, + B)| < lgg(x )| or it [g (x )] <<,
lgi(xo + h)l <e, and f(xo +h) < f(xo).

Proof: See Appendix A.
The results given have been only concerned with step by step con-

vergence and do not include a consideration of the rate of convergence.
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The second order method may be intuitively expected to converge faster
than the gradient since it uses more information about the local behavior
of the nonlinear functionals f and g.. Kantorovitch [1964] gives

scme results concerning bounds on the convergence rate in the uncon-
strained case in terms of bounds on the Operator fxx' The resulting
bounds have 1little use in practical computing schemes due to the
difficulty in estimating a tight bound on fXX and because actual
results may be considerably better than the theoretical bounds. For
these reasons, only an experimental investigation of the relative con-

vergence rates has been considered in this report.
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IV. A DIRECT METHOD BASED ON SECOND VARIATIONS

In the last chapter, the iterative constrained extremum problem
was set up and solved in a general manner from an abstract point of
view. The chief result was to reduce the complex nonlinear problem
to a sequence of less difficult problems. The purpose of the present
chapter is to apply these general results to our specific control
problem. This will lead to the formulation of an easier control problem
which can be handled analytically. The discussion of the resulting

auxiliary problem is the topic of the following chapter, Chapter V.

A, DERIVATION OF THE METHOD

In order to avoid too many of the details of the general case, we
shall first consider a more specialized problem. More specifically, we
shall assume that the functions f(x, u), W[x(tf)], ¢[x(tf)] all have
continuous first and second partial derivatives and that the state or
control variable constraints have been taken care of by suitably
smooth penalty functions. Further, we assume that the final time, tf,
is fixed.

In order to apply the Lagrange multiplier technique developed in
the last chapter to the problem of minimizing ¢[x(tf)] with w[x(tf)] =0
and % = f(x, u), suitable linear functionals to appénd the constraints
must be constructed. The usual end constraint function w[x(tf)] has
its range in Eq and hence the dual space is also Eq' We may then
write the appropriate linear functional of ¥ as required by the theorem

as an inner product of an element of the dual space, represented by the

vector W € Eq’ and V. This may be written as (w, W) where ( B )

L3



denotes the inner product in Eq or in the more conventional vector

notation w'y. The constraint X - f(x, u) =0 may be handled by

rnoting that its range is a set of n-dimensional time functions defined

on [to, tf] with the inner product

t

f
x,(0) y,(0) do
§O 2{: 5 o] yl o) da

<X,y >

i=1

be

¢t C—)

x'(o) y(o) do .
A general linear functional defined on this space may be written as

t
. T
£(x) =S A (o) x(o) do
+

O

where k(t) is another n-vector time function defined on [to, t_].%

f
The control problem (as stated in Chapter II, Section B) is

equivalent to finding the minimum of a new functional defined in the
Lagrange multiplier rule. This functional may be written with the aid

of the appropriate linear functionals defined above as

b

F(x, u, A\, v) = ¢{X(tf)] - V'W[X<tf)] + S A(f - x)do (“-l)

t
o]

The definition of the function spaces has been made intentionally
"vague at this point to avoid unnecessary difficulties regarding the
closure of the space. We shall tacitly assume that there is an
appropriate Hilbert space which describes the functions of interest.

v




—

It is convenient to define the Hamiltonian function again as in (3.7)

as H = AN(t) f(x, u). The functional F may then be written sas

tf
F(x, w A v) = [x(t,)] - viylx(e,)] + S (H - M%) do . (4.2)

t
o]

In order to apply the results of the last chapter, it is necessary
to compute several first and second Frechet differentials of the payoff
¢ and the constraints. However, we will not use this exact approach
but use an equivalent one. By the multiplier rule, we seek the minimum
of the new unconstrained functional F. By expanding F in a'Taylor
series in all of its variables to second order and finding the extremum
of the result, we not only compute the required differentials, but the
results in the last chapter are rederived for this specific problem.

For convenience, the expansion will be done in two parts. First,

the function defined by

olx(t.), vl = olx(t )] - vivlx(t,)] (4.3)
will be expanded. To second order, ¢ is:
1
cp[x(tf) + 8x., v+ 8v] =@ + ¢ Bx, - Bv'y + 1/2 Bx 9, B,

- vty bx, + o ex 7)) + ol llsv]®) (4.4)
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H
- 2
+ v'da + 1/2 dx @ Bx. - v (v, 0x, - da) + o(HSfo ) +

+ o(HSv“g) + o(H&aHE) (4.4)

where all of the functions on the right are evaluated at the nominal
point x(tf), v and SXf, dv denote changes from the nominal
point.

The technique for expanding the integral remaining in (4.2) is
well known in classical calculus of variations and involves integration

by parts. The result is

t
f
S [H(x + 8%, u + duy, A + OA) - (N + BA)'(x + 8%)] do
b S
QO

t

el
4

S [(B - A'%) + (HX +A) Bx + (H% - x')o\] do
t

o
tf
+ S [(H,) du + & (K, 8x + H, du - ox)ldo
Y ,
o
t H H Ox
- £ XX xu
+ 1/2 S (&x'8u') do
t H H du
o ux uu

- N (p)Bx, + A (e )Bx(t) + o(lIexlP) + ollBul®) + ofllBAI®)
(k.5)

The nominal trajectory x(t) 1is chosen to satisfy x = f£(x, u)

which requires
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X = Hi . (L.5)
The adjoint veriables A may be chosen to satisfy the usual
adjoint equation

A=-H . (4.7)

The change in x, 8x satisfies the linear perturbation equation

dx = fXBX + fuau = Hxxﬁx + H%uSu (4.8)

and the boundary condition taken when x(to) is specified

5x(t ) = 0 . (4.9)

ANt.) =o! . (4.10)

Given v and x(tf), (4.10) with (4.7) may be used to define A.
Equation (4.10) may also be used to compute v if x(tf) and k(tf)
are known provided x(tf) and A(tf) are such that a solution for v
exists.

Normally the numerical procedure calls for a full correction to

¥ so we teake wxbxf = - y. For a partial collection &Y, the term
-yt (¥ + bexf) in (4.4) becomes -dv'(¥y + ). Teking the definitions

in (4.6) through (4.10) into account gives

AF =F(x + 8x, u + du, A+ 8\, v + 8v) - F(x, u, A, v)
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tf
— t t
= y'oy + 1/2 SXfQXXSXf + S Hu6u do

t
o
t H H Ox
f XX XU
+1/2 S (ax'du') do
t H H du
o ux uu
| 2
+ o({lul|7) - (k.11)

The error term is written in terms of ©®u alone since the other
quantities BA, dv, ®}, and Ox are related to ©du by a bounded
linear operator.

As shown in the last chapter, the Computational Control Problem

”~

is solved by finding ©du to extremize J given by

te
= _ 1 1
J = v'ey + 1/2 B, CPXXBXf+S H 8u do
t
o]
t H H ox
f XX xu
+ 1/2 S (5x'du') do
t H H du
(0] ux uu
t
f
+1/2 S du'W Bu do (4.12)
t
(@]

for W chosen so that HWH is suitably large. The weighting W 1is
usually taken as a constant diagonal matrix c¢I with ¢ > 0 (c < O)

"~
if J 1is to be minimized (maximized).
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The Computational Control Problem is then solved by finding ©u
which extremizes (4.12) while satisfying certain constraints. The
perturbed control ©u and the perturbed state vector ©8x are related
by the perturbation equation (4L.8). The boundary conditions to be

satisfied are

6x(to) =0, wx[x(tf)] ox(t_) = oy (4.13)

f

where &y 1s usually specified as -y 1in an effort to

completely satisfy the terminal constraints. This subproblem has been
studied in detail in the theory of optimal control and is generally
called the linear quadratic loss problem. Before turning to tﬁe
analytic solution of this problem, some of the assumptions made in the

first part of this section will be removed.

B. EXTENSION TO BANG-BANG OPTIMAL CONTROL

There is a class of optimal control problems with bounded control,
known as "Bang-Bang' problems, in which the Hamiltonian function assumes
its extreme values for the control on the boundary. In these problems,
the control may often be described in a simplified manner. For example,
the control bound might be lu(t)ls 1. In this case, assuming the
control is always +1 or -1, the control function may be described
by its initial value and the sequence of switching times. By this
technique, knowledge of the form of the optimal control from the
Minimum Principle may be used to redefine the control variable so that
the new "control," namely the initial control and the switching times,

is possibly finite dimensional. Another valuable advantage of this
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scheme is the fact that the new control mey be considered to be uncon-
strained, thereby simplifying the computational effort.

In this section it will be assumed that all of the original
"controls" consisted either of variable points of discontinuity of f,
(staging times), or discontinuous controls which have been appropriately
removed by a change of variables. As before, the investigation begins
by expanding (4.2) in two parts. Equation (4.%) is still valid so that
it is only necessary to compute the effect of a change in the points of
discontinuity of £ at t = ti, i=12,...,k. It will become clear
in the following derivation that it is sufficient to study only a single
discontinuity at ti without loss of generality. The expansion equivalent
to (4.5) is obtained by a consideration of the difference of the integral
of H - A'x on the perturbed path as compared to the original path which

may be written as

tl+5ti tf
g MIE (x + 8%) - % - 8%] do + S A (x + 6x) - % - 8%] do
tO tlfati
1 e
- S AN £(x) - xldo - S AMIeT(x) - %] ao (4.14)
t t
0 1

where f  and f+ denote the respective functional forms for f to the
left and to the right of the discontinuity, and the shift Bti has been

taken positive. By adding and subtracting the integral

t,+0t,
i1

S Aret do
t

i
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the sum of the integrals in (4.14) becomes

t t
i f
S NI (x + 8x) - £ (x) - %] ao + S %’[f+(x + B5x%)
tO ti
1. +8t, t.+0%,
. . i i . i 774 _
M (k) - 8k do-g 7\'6xdo+g A (x + 8x)
t, t.
i i
+
- {x + 8x)] do . (k.15)

Ifr Sti is negative, then by adding and subtracting the integral
T,
l —
S A'f do
t.+0t.
i i

equation (4.15) is again obtained.
Prior to evaluating (M.lB), it will be convenient to define a type

of forward difference operator Si by

5, le(t)] = glt; ) - a(t]) (4.16)

i i

In addition to the obvious linearity property of @i, the following

product rule will prove useful

1]

f(ti)ﬂi[g(t)] + Si[f(t)]g(t;)

8, [£(t)e(t)]

il

1

£(57)8; Le(t)] + 8, [£(¢) Ja(t]) | (4.27)

For convenience, the subscript 1 on the operator @i will be omitted
where only one discontinuity is under consideration.
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This difference operator may be used to write the perturbation
equation corresponding to (M.8) in a simple form. In this case, ©0x

satisfies the differential equation

5% = fXBX, 8x(0) = O, ¢X5x(tf) = By (4.18)

except at the points of discontinuity t = ti. The discontinuity in

®x 1is obtained by extrapolation of the effect of the change in ti

to the time of the o0ld discontinuity in £ at ti. The idea is

illustrated in Fig. 4.1 where the effect of a negative shift Sti in
th

the switching time on the J state variable y is shown. The actual

difference between the trajectories is

(n+1)
y

(n)

FIG. 4.1 EFFECT OF A NEGATIVE SHIFT IN THE SWITCHING TIME
continuous. The effect may be taken into account by considering Bx
to be discontinuous by

8(sx) = - 8(£)6t, - &(r ox)ot, - %@(f)atf (4.19)

Returning to the evaluation of the integrals in (M.lS), the third

integral may be evaluated either by a careful limiting process or
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by interpreting &x as a gymbelic derd
Y g

+
tj
(x

- 3 ASx do = - [A(tf) + At.)] 8(ex) (4.20)

L.

1

The fourth integral in (h.lS) may be evaluated by a Taylor series
expansion to obtain
t,+0t,
1 i

S A (x + &x) - f+(x + 8x)] do

t.
1

t * a d t = (L oo
= - A (ti)[&(f) + @(Lx6x)] Bt - 3 EE[A @(f)]‘t:taie 8] (b.,21)

* + -
where ti = ti if Bti >0 and ti if Sti < 0. The last term may

be simplified by carrying out the differentiation to show that

%: a(e)]] « = N(tjh@(ﬂ (4.22)
v £=t
i
So that (4.21) becomes
t +8t,
-t + - + *
S ' A ET(x + 8x) - £ (x + 8x)] do = - A'(t,)8(3x) (4.23)
t. ' ' ~
1

The first two integrals in (4.15) may be treated as in the last

section by integrating the term - A'dx by parts. After the integration

Tror a description of symbolic differentiation of discontinuous furctions
‘see, for example, Friedman [1956], chapter 3.
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and the subsequent elimination of terms[by requiring A to satisfy the

adjoint equation (h.?) on the intervals [to, t;), (t;, t.], and

£
to satisfy the boundary conditions (4.10)], the remaining part of the

first two integrals is

L

sx'E_Bxdo + S(A)ex(t]) + %'(t;)£(6x) : (L .24)

o=
Gt -

The expression for the change, AP, 1in the payoff ¢, may be
obtained to second order by combining (4.20), (4.23), and (L.24) with

the remaining terms of (4.4). The result is

b

1 1
&p = =By (Y+D =5x! = 1
v (+dy) + 26Xf wxxéxf + 3 3 Bx HXXSXdG
t

e}

+ @(A‘)Sx(ti) + %’(t;)@(éx) - A’(ti)&(&x)
B} %[K'(t;) + () 18(ex) (k.25)

If A¢ is to be stationary with respect to arbitrary changes
in éx(t;), then the coefficient 8(N) of 6x(t£) must vanish. The

adjoint variable A(t) is therefore chosen continuous and (4.25) becomes

Ff

_ 1 i 1 i 1 _ Al
AP = V'Y + 26Xf @XXSXf f 5 S Bx Hxxﬁxdc 8(dx) . (4.26)

t
o]

The accessory problem may now be formulated. The control, in this
case Sti, i=1,2,...%x, is to be found which minimizes the cost
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k

T _ g/t = ! -jﬁh ¥ 'H N

§ - -but(ysb)r 5 Bx) o Sx, 45 | Ex'H Exdo +211{$.(H)6t-
t i

89}
—J
S

b . ]
+ 8, (H Bx)éti + % K'ﬁi(f)atz +

D X
. W, 5t7) (L.
1 X 1

PO
[

with the constraint that 0x satisfies the differential equation

8% = f_Bx, 8x(0) = 0, WXSX(tf) = 8 (L.28)

except at the points t =t_, where ©0x is discontinuous. The amount

1
of discontinuity is
1 : 2
= - - -= L
98(8x) ﬁ(f)ati m(fxax)ati 5 @(f)&tl (l.29)

This completes the corresponding subproblem specification for
problems which have a bang-bang optimal control law. Although the
method of steepest descent for such problems will not be discussed
further here, it is clear that the technique presented for evaluating
the functional gradient may be used to apply the method of Bryson and
Denham [1962] to such problems. This idea has been successfully used
in a different form by Vachino [1966] and Hales [1966] in developing
a steepest descent algorithm epplicable when some of the controls are

of the on-off type.

C. PROBLEMS WITH CONTROL PARAMETERS

Often it is desired to optimize a system with respect to a set of
plant parameters. For example, in a rocket steering problem, a control

parameter might be the time at which staging occurs. In this case, the
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right-hand side of the system equation x = f£(x, u, ts) is discontinuous
wilh respect to the staging time ts. The method devéloped in the lagst
section may then be applied. Suppose that the mass of the vehicle and
the initial orientation are also to be determined in an optimal manner.
The right-hand side of the differential equation may be continuously
differentiable with respect to some of the parameters, as the mass. This
ig actually a special case of the control function u(t) as discussed
in Section A. The specialization of the results of Section A to paran-
eters of this type is the first topic of this section. The second
topic is the optimization of initial conditions such as trie w nown
initial orientetion of the rocket.

The system equation will be written as x = f[x(t), @] where «
is a p X 1 vector of parameters to be determined. The function
flx(t), @] 1is taken as twice continuously differentiable on t € [to, ir]
for any x(t).

Assuming O does not depend on time, the results of Section A are
modified by replacing gu(t) with 8 and taking &x outside of the

integrals. Equation (4.12) becomes

t

f
- ! _]; ! . 1
AF = -Bv' (Yy+BY)+ 5 oxpp  Bxo + Hy + 8x'H , do | 80
' t
(o]
1 ..tf 1 .tf
= t = ! + I .30
+236xHXX6xdo+26Ot S (Hy, + W) dofsa . ( )
t t
Q @]

The only additional change needed is in the perturbation equation
which becomes
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5% = £.8x + £.,5¢ (4.31)

with boundary conditions given by (4.13). This completes the modifications
necessary to include control parameters of this type in the theory.

In Section A, the initial conditions were assumed given and therefore
6X(to) =0 as in (4.9). If some of the components of x(to) are not
specified, the corresponding components of 5X(to) = 6xo aré not zero.

In this case AF in equation (4.11) will have an added term —KéSXO-

Since AF is linear in 6xo, a gradient technique for adjusting
6xo is suggested. This is done by the usual method of adding a term
guadratic in Sxo of the form 1/2 SXéVSXO to AF . The positive

definite matrix V 1is then adjusted for convergence.

D. PROBLEMS WITH FREE FINAL TIME

If the final time is not specified, the derivation of Section A no
longer holds. The final state will now vary due to a change in the value
of the state at time t = t§n) and due to a change in the final time.

That is, the total change in the terminal state dxf is given by

X(n+l)(t(n+l))

-
£

dxf =

n)(tﬁn)) _ x(n+l)(t§n)) - x(n)(t§n))
+ [ k(n+l)(t§n)) _ k(n)(t§n)) " k(n)(t§n))](t§n+l) _ tén))

v/e ) L lrhey ol e

+

+

of | £ L {2y - (4.32)

The usual more compact form is
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: . . 2
dx, = Bx, + kBt + Bk Bt + 1/2 %.(8t,)° + ... (4.33)

which is more convenient but less illuminating. The substitution of
dx, from this expression for dx, in (4.4) gives the correct expansion

of @ when the final time is not specified.

Ap = Bv' (¥ - a) + V'O - Bv'(wxdxf - &)
+ o dx, 1/2 dxf @ dx, + ... . (L4.34)

The other effect of a change in the final time is to generate some
additional terms in the expansion of the integral in (4.5). Evaluating
the effect of a change in the upper limit of integration leads to

tf+6tf
S [H(x + 8x, u + du, N+ 8A) - (A + 8A)'(k% + 8%)] do
e .

(L.35)

where [ ] denotes the integrand of the first integral. The
t

integral [ L ] do may now be expanded as before. It will be

t
0

convenient to use the equations (4.6-4.10) to simplify the result

together with the relation

oy = ¥ dx, . ' (4.36)

After some manipulation, (4.34) and (4.35) may be combined to give
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AF = {(4.11) with 8x, replaced by dx,) + Hot,

. .2 s . L0
+ - 1 + - 1] 4
+ H Bx, Bt + H dudt, ABX Bt 1/2 H 06ty 1/2 Ak Bty
- 1/2 AR 55 + P 5% .5t + 1/2 @ ¥ 5t°
£FoEf x £ T X ff
= {(k.11) with 8x, replaced by dxf} + HBtf
+ H du. dt. + 1/2 H G5tS + H x5t + 1/2 H xtS . (L.37)
u £ f u f x £ f X g

The Computational Control Problem may now be solved by finding the
solution to the following accessory problem. We must find a control ©u

and a time Stf which gives an extreme value for

N el 2
_ 1 t .
J =-8v' (y+8y) + 1/2 dxg ¢ dx. + HBudt, + 1/2 H 08t + Hot,

t t
5 f _ f
. N .
+ Hx6xf6tf +1/2 HXXStf + S H 8u do 1/2 S Su'Wdu do
t t
o o
t H H ox
1 T XX XU
+ E'S (8x'du') do (4.38)
t H H du
o ux uu
while satisfying the constraints
8x = £ ®x + f du
b'e u
8x(0) = 0 5y = dx_ . (4.329)
X f
t=tf

The matrix W is again suitably chosen for convergence as in

Section A.
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V. THE SOLUTION OF THE AUXILIARY PROBLEM

The central result of the previous chapters was to reduce the
Computational Control Problem to a sequence of simplified problems.
These simplified problems are similar to the auxiliary or accessory
problems studied in the calculus of variations and the name will be
retained here. A feedback solution for three special cases of the
accessory problem will be obtained, followed by a discussion of

‘conditions sufficient to insure a true extremum.

A, PROBLEM STATEMENT

Rather than follow along with the notation of the last chépter, a
simpiified problem formulation is used here--the identification of
terms correspording to the actual auxiliary problem will be made in a
iater chapter. With the new notation, this chapter is self contained.

The system equations to be considered are
4 = Bg + Dw (5.1)

where the usual state variable x and control variable u have been
replaced by g and w to avoid confusion with the state and control
variables for the original problem. The variables q and W were
written ©&x and ®u in the previous chapter. In this formulation,

g is nXx1l, B is nXmn, w is mX 1, and D is nXm. B and
D are not necessarily constant.

The problem is to extremize the cost criterion given by

t t R s q
1l £ 1 £ 1,1
J=54q (tf)QBq(tf) + S e'w 4o + 5 S (q'w') dc (5.2)
to to S Q2 A
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with the constraint (5.1) and the boundary conditions

q(t ) =0 . (5.3)

The matrix A is a r X n constant matrix which is full rank. The

matrices R(n Xn), Q. (m X m), Qs(n X n), S(m X n) and the n X 1

o
vector e may depend on time. Without loss of éenerality, R, Qg’
and Q3 are assumed symmetric.

It is well known that the condition Q2 > 0 1is necessary for this
problem. If Q2 < 0 on some interval, J may be made arbitrarily small
by a control w which is a large amplitude sinusoid. If the frequency
of this added control is high enough, the state will not be changed so
that the boundary conditions are also unchanged. This situation is
clearly not allowed since the necessary condition for a minimum, that
the part of the payoff J which may be controlled be positive definite,
is viclated. A stronger condition is assumed here, Q2 > 0, which is
known as the Strengthened Legendre Condition.

It may not be possible to find a control which generates a trajectory
x(t) which satisfies (5.3). To avoid this possible difficulty, it will
be assumed that it is possible to reach all points which satisfy
Aq(tf) =a for any a. This is equivalent to requiring the system to
be output controllable in the sense that, for any desired output VY,
there is a control w which produces a trajectory q(t) for which

Aq(tf) = y. This condition is not as strong as complete controllability

which is usually given for this problem.

61



The problem may be simplified by completing the square on the

quadratic form inside the integral in (5.2). That is
q'Rq + g'S'w + w'Sq + w‘ng

may be written as
a'[R - 5'¢7°8] g + (' +a's'Q7) Qv + a57sa) -

This fact may be used to redefine the problem slightly and obtain

a more convenient form. Define

v =W + QélSq

-1
_oqt
R S Q2 S

O
)
1l

F =B - DQélS

[0j¢}
1l

- S'Qéle
Egquation (5.1) becomes

q = Fq + Dv (5.4)
Equation (5.2) may now be written

“e

T=1/eat(t) aga(t,) ¢\ le'v + g'al do

t
o)

tr

+1/2 S [q'qu + v'ng] do (5.5)

t
0
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The necessary conditions given in (5.6) may now be directly applied.
We define the Hamiltonian in terms of the n X 1 vector function p(t)

as
H=p'Fq +p'Dv+e'v+glag+1l/2q'Qa+l/2viay (5.6)
The optimal control, v¥*, which minimizes # 1is found to be

v = - '[e + D'p] (5.7)

The equations usually referred to as the Euler-Lagrange equations

are found from (5.6)

I.J = - H 2 (5-8)

where we substitute (5.7) for v. This leads to 2n linear nonhomo-

geneous equation
§ = Fq - Da;'D'p - DajTe
P=-Qa-Fp-g. (5.9)
The boundary conditions are given in (5.3) and the added conditicn

p(t.) = Qga(t,) - A'w (5.10)

where W 1is an r X 1 constant vector of Lagrange multipliers (corre-

sponding to ®v of the last chapter).
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The set of equations (5.3), (5.9) and (S.lO) give the solution to
the problem in terms of a two-point boundary value problem, that is, a
differential equation with boundary conditions specified at two points,
t = to and t = tf. If such a solution exists, the optimal control
given in (5.7) may be computed as a time function. However, a more
useful form for the optimal control is in a feedback form. That is,
the control v*(t) should be given as a function of the present state
q(t). This feedback control should have the property that it gives
the optimal control for any initial condition so that it is self com-
pensating for errors in the initial conditions. This feature of the
feedback control is not shared by the "open loop" control which is
optimal only for the given initial conditions.

A feedback control law of this type may be achieved if it is
possible to find a relation giving p(t) as a function of a(t). The
question of the existence of such a relationship which gives a unique
p(t) for each q(t) for every t ¢ [to, tf) is still open even if
the two-point boundary value problem has a solution. This is an important
point which will be discussed further in the latter part of this chapter
where it will be shown that the existence of a unique feedback control
is both necessary and sufficient to insure that the conditions in (3.6)
and the Strengthened Legendre Condition give a true minimum to J.

As an initial step in solving the two-point boundary value problem,
the general solution to the linear differential equation will be studied.
This general solution may be written as

= o(t, T) + (5.11)
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where o(t, 1) is a fundamental matrix* solution to (5.9) and

is & particular solution with q(7) = p(t) = O.

Teking L =%, and T =t in‘(5.ll) gives 2n equations in the
variables q(to), p(to), q(tf), and p(tf). If the total set of
on+1n +n +r equations (5.11), (5.10), and (5.3) may be solved for
the bL4n + r varisbles q(to), p(to), q(tf), p(tf) and K, the two-point
boundary valte problem is solved.

The solution for a feedback control, often called the synthesis
problem, remains to be solved. If t 1s replaced by tf and T 1is
replaced by t in (5.11), the resulting equation may possibly be solved
with equation (5.10) and the first equation in (5.3) to eliminate W,
p(tf), and q(tf). This would produce a relation between p(t) and

g(t) of the general form
M'U(t) p(t) = N'(t) q(t) + b(t) (5.12)

where M(t) and N(t) are n X n matrices and b(t) isannXx1

vector.

This formal procedure which has been described requires the calculation

of @(tf, t) or 2n linearly independent solutions to (5.9). In the

*It will be assumed that the reader is familiar with this and other
elementary properties of differential equations. For an excellent
trestment of the subject, see Chapter IIT of the book by Coddington
and Levinson [1955].
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following sections simplified methods will be derived which involve at
most n solutions to (5.9). The motivation for these derivations is
a search for a relation of the form given in (5.12).

Having obtained a relation of the form (5.12), the feedback control
is found by solving for p(t) in terms of q(t) and substituting the
result into the control eguation (5.7). Although it will always be
possible to find such a relation (5.12), the solution for a unique p(t)
in terms of q(t) may not exist. As previously mentioned, this

question will be discussed in the later sections of this chapter.

B. CASE I - PROBLEMS WITH FREE END CONDITIONS

The results for problems with free end conditions are quite well
known. In this case, a simpler form of (5.12) is obtained in the
following. The approach used here will be to assume a special form for
(5.12) with undetermined coefficients and to then find coefficients
which satisfy the required conditions (5.9), (5.10), and (5.3). For this

case A =0 so that the boundary conditions at t = tf become

q(tf) ~ free

p(t.) = Q. - (5.13)

Assume that there is a nonsingular transformation P(t) which

relates p(t) to q(t) by
p=Pg +0D. ' (5.14)

The boundary conditions in (5.13) may be satisfied for all qp if
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=

snd

The additional regquirement is that p and g satisfy the Euler-
Lagrange equations (5.9). If (5.14) is differentiated with respect to

time and (5.9) and (5.14) are used to eliminate the variables p, p and

¢, the result is

(P + PF + F'P + Q - PIQélD'P) q=b+g+F'b - PDQélD'b . (5.17)

Since this relation must hold for all q(t), P and b satisfy the

Jifferential equations

- P =+PF +F'P + Q - PDQélD'P (5.18a)

1

(- 7' + PDQélD’) b -g . (5.18b)

Since (5.18a) is symmetric and P(t.) given by (5.15) is also

f

symmetric, the matrix P(t) is symmetric.

The optimal control is given by

-1 -1
* o 1 -
v Q2 D'Pg Q2 (

D'b + e) (5.192a)

or

Wk = - Qél(D'Pq + Sq + D'b + e) (5.190)

provided that the solution to (5.18a)exists in the interval from t to
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te+ FEquation (5.18a)is a matrix Riccati equation which has the property
known as finite escape time. That is, the solutions on finite time
intervals may become unbounded. If P becomes unbounded for any

t € (to, t.), (5.19) no longer gives the optimal control. In fact

f
it will be shown later that if the P matrix defined here is not
bounded, then not only are there difficulties in obtaining the solution

by this method, but any solution to the Euler equations obtained by

other means does not minimize J.

C. CASE II - FIXED ENDPOINT PROBLEMS

Problems with completely specified end conditions, often called
terminal control problems, have not been studied as actively as the free
endpoint problem. Perhaps the reason for this neglect is that the
optimal feedback control is not physically realizable. Due to the
somewhat artifical requirement that the end conditions be met exactly,
the feedback gains increase without bound to compensate for possible
terminal errors as the final time is approached. In practice the optimal
control is approximated with arbitrarily small error by bounded feedback
gains. These difficulties do not influence the mathematical solution
which is somewhat similar to the free endpoint solution.

The form for (5.12) assumed here is
¢g=Rp +b. (5.20)

Again this assumption is verified by finding the matrix R and the
vector b such that the boundary conditions (q(tf) specified) and

the Euler-Lagrange equations (5.9) hold.
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Following Section B, we differentiate (5.20) and use (5.9) and

to eliminate ¢, 4, and p. The result is

(R - RQ,R - RF' + DR D' - FR) p = b - RQ,b + Rg - DA e (5
which must hold for arbitrary p(t). It follows that
- 1 'll
R = RF' + FR + RQ;R - DQ,"D (5
and
b=(F +RQ,)b+Rg - D 1. (5.:
1 % 2

Since q(tf) is specified, (5.20) must hold at t = t, for

no
ft

~—

.22)

arbitrary gq. This may be satisfied by the choice of boundary conditions

for R and b as

) =a(t.) - (5.24)

By the symmetry of (5.22) if R 1is symmetric, R is symmetric.

Therefore, the solution R(t) with the symmetric boundary condition

R(t.) = O will also be symmetric.

f
The feedback optimal control law is

-1

1
(q—b)—QQe

-1 -
* = - D'R
v Q2

or

w¥ = - Qél[Sq + e + D'R'l(q - b)l (5.25)
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which has the property that the coefficient of (g - b) gets arbitrarily
large near t =t, since R(tf) is singular there. As t - tf,b(t) -
q(tf) so that a large control is called for if q(t) is not approaching
a(ty)-

The equation for R is again of the Riccati type which may exhibit
finite escape time. Provided that R is bounded, the solution obtained

for the assumed relation (5.20) holds. Also R must be nonsingular

except at t =t, in order for (5.25) to hold.

D. CASE III - GENERAL LINEAR END CONSTRAINTS

At the beginning of this chapter, the boundary conditions were

given in (5.3) as

) = a . (5.26)

In the past two sections, special results were obtained when the rank of
A was either O or n. The general case, to be discussed now, deals
with O < Rark A < n. The relation assumed to exist between g(t) and

p(t) 1is given in (5.18),

M'(t) p(t) = N'(t) q(t) + b(t) . (5.27)

As before, the differential equations are obtained by differentiation
of (5.27) and substitution of the Euler-Lagrange equations to eliminate

p(t) and §(t). The result is

(Ml - M'F' + NIDQélD|> p = <1.\]'l + N'F + M'Ql) a

+ (B - N'DQéle - Mg) . (5.28)
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Note that (5.27) cannct be used to eliminate either p(t) or q(t) as

bet'ore unless M(t) or (%) is nonsingular for t e [to, Lf] In
fect, if (t) is nonsingular, (5.27) may be written

p = [(M')'l(N’)] q + (M')‘lb (5.29)
which reduces to Case I with the identification

P(t) = DM (£)1 7w (e) . (5.30)

By the same reasoning, if N(t) is nonsingular, (5.27) may be solved

for q(t) and the resulting identification with Case IT is

R(t) = [N'(t)] M (2) . (5.31)

In the general case, N(t) and M(t) may both be singular some-
where in the time interval of interest so that a simplified form for
(5.27) is not possible. A sufficient condition for (5.28) to hold for
all p(t) and g(t) is that the coefficients of p(t) and q(t)

vanish. Therefore, the vector b(t) satisfies
; 1 \_l 1 4
b = N'Dy, e + Mg . (5.32)

The equations for M' and N' obtained by setting the coefficients
p(t) and qg(t) equal to zero may be written in a convenient

partitioned matrix form:
. -1
/ M F -DQ2 D' M

\ i @, -F N . (5.33)
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This set of equations is immediately recognized as the homogeneous part
of the Euler-Lagrange equations (5.9).

The remaining task is to find a suitable set of boundary conditions
for M, N, and b. A more involved procedure is necessary in this case

)

since the boundary conditions do not specify either p(tf) or q(tf

completely. The set of conditions on p(tf) and q(tf) is

p{t.) = Qgalt,) - Aln (5.24)

W
5
jor)

Aq\tf) =a . (5.35)

In the following, it will be shown that there are n linearly independent
vectors [q'(tf) p'(tf)]' which satisfy (5.34) and (5.35) for arbitrerily
selected p  and that this set of vectors may be used to construct

boundary conditions for M and N.

Theorem 5.1 If the following assumptions hold

Al. A dis full ranrk T =n
A2, The r X 1 vector a € range of A

A3. Q5 = P'QSP where P 1is a projection operator onto the

nullspace of A,

then there are n linearly indevendent solutions [q'(tf) p'(tf)]'
for arbitrary u. ‘
The assumptions Al and A2 have been used throughout this work.
A3 assures that the terminal cost is appropriate in that only the uncon-
strained part of the terminal state contributes to the cost. The first
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ctep in 2 corstructive Troof Iz to Tind all of the vectors q(tf) vhich

coticfy (5.35). The rimher of lirearly independent solutiorns q(t )

]

(5.55) is n - g, the dimension of the nullspace of A. Taking n =
tg. (5.34) may be used with the rn - g solution to (5.35) to find n
iiresriy independent vectcrs [q'(t€) p'(tf)]’ which satisfy both

successively setting ' - (1,0,...), (0,1,0,...), etc. in 5.3k with

(5.34) and (5.35). A zet of r additional vectors may be generated by

q(tf) taken from the set of n - g solutionsto (5.35). These vectors

span an r dimensional space since rank A' = r. By A3, qu(tf) is

+he nullspace of A which is perpendicular to A'p for all u. Thero-

fore, the 1r additional vectors do not lie in the space spanned by thre

first n - r vectors. This completes the construction of n Ilinearly

“ndependent solutions [q'(tf) p'(tf)]' to (5.34) and (5.35).

In the following, this set of solutions to the boundary conditions

(5.3L), (5.35) with a = O will be used to define the n X n matrices

M(tf) and N(tf) as follows

M(to) = lag(t,) a,(tn), g (t,)]

(5.26)

N(t.) = [py(t.) py(t.)s - op (t0)]

th linearly independent soluticn.

THhere 1 1 | .
where [qi(tf) pi(tf)] is the i
These matrices have been named M(tf) and N(tf) in anticipation of
the proof that they will provide suitable boundary conditions for the

matrices M(t) and N(t) previously discussed. Preliminary to this

proof, some interesting properties of M and N will be obtainred.
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Property 1  M'(t,) N(tf) = N'(tf) M(tf)

Proof: Any ¢ which satisfies (5.35) with a = 0 and (5.34) may be
written uniquely as MCl, for Cl an n X 1 vector. The corresponding
p is Ngl. From (5.35) AMQl =0 for all Cl or M@l ¢ nullspace
of A. From (5.34) p - Qzq = (N - QSM) §2 is in the range of A' whicl

is perpendicular to the nullspace of A. Hence,

g (W - QM) &y = §1[M'N - MiQM] £, = 0

1 2

for all Cl and §2. It follows that M'(tf) N(tf) is symmetric.
Another useful property of the matrices M(t) and N(t) may be

proved with the aid of several properties of the transition or fundamental

matrix for the Euler-Lagrange equations. These properties are derived

in Appendix D. They enable one to show that the symmetry property o

M'(t) N(t) for t = t, holds for all t < ..

Property 2 M'(t) N(t) = N'(t) M(t) for all t <t, if
1 — t
M (tf) N(tf) =N (tf) M(tf).
The algebraic proof of Property 2 is also given in Appendix D.
Using the matrices M(t) and N(t) any solution to the nonhomo-
geneous Euler-Lagrange equations(5.9) may be written as

a(t) M(t) qp(t)

= £ +
p(t) N(t) pp(t)

(5.37)

where [qﬁ(t) pé(t)]' is a particular solution. The boundary conditions
for [qé(t) pﬁ(t)]' can be given, for example, by the minimum norm

solution to
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and

With the parameter €, (5.37) describes the well-known n-parameter family
of extremals emanating rrom the terminal manifold.

Premultiplying (5.37) by [N'(t) - M'(t)] gives
N'(t) g(t) - M'(2) p(t) = [N'(t) M(t) - M (t) m(t)] ¢

+ [N'(t) qp(t) - M' (%) pp(t)l. (5.38)

Since N‘(t) M(t) is symmetric, the coefficient of { is zero. The

result establishes the following main theorem.

Theorem 5.2 Any solution of the Euler-Lagrange equations (5.9) which

satistfies the boundery conditions at t = tf given by (5.5) satisfies
M'(t) p(t) = N'(t) q(t) + b(t) (5.29)
Where 2n X n matrix [M'(t) N'(t)]' satisfies
M(t) F —DQélD' M(t)

(5.40)
N(t) -, P! w(t)

with the boundary conditions (5.36), and the n X 1 vector b(t) solves
e t -1 1. L
b(t) = N DRTe + Mg (5.41)

with the boundary conditions
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b(tf) = -N'(tf)A'(AA')'la . (5.42)
Tiie unly part of this theorem which has not been previously derived
is the boundary conditions on b(tf). They are obtained from (5.38) by
identifying M'(t) pp(t) - N' (%) qp(t) with b(t) and substituting
— t . ! = ! = . i
t . The term M (tf) pp(tf) M (tf) Q5qp(tf) O Dby assumption A3.
Tt is clear that the matrices M(t), N(t), and the vector ©b(t)
in (5.39) are not unique. For example, (5.39) still holds if M, N, and
b are each multiplied by a nonsingular possibly time-varying matrix.
Furthermore, the general boundary conditions specified by (5.35) do not

give unique values to M(t.) and N(tf). For numerical calculstions,

f

it is necessary to describe a specific set of initial conditions for

M(tf) and N(tf) which are easy to obtain. For this purpose, M(tf)

and N(tf) will be taken as the partitioned matrices

~—r
1!

[B 0] (5.43)

and

It
©
td
.

(5.44)

The columns of the (n - r) X n matrix B form a basis for the null-
space of A. If it is necessary to compute B numerically, it may be
obtained by finding the (n - r) eigenvectors with zero eignevalues for
the n X n symmetric matrix A'A. In typical problems, this procedure
is often unnecessary because the nullspace of A may be determined by
inspection.

The optimal control is found from (5.29) and (5.7) as
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vk o= - Qe+ o () Mg+ )]

80 that the original control variable w* is

w¥ l(

i

- q5Te + 1) Mg + b) + 8q] (5.45)

. SUFFICIENCY CONDITTONS

In the last thiee sections, solutions to the necessary conditions
for the optimal control problem posed in the first part of this chapter
were obtained. The purpose of this section is to determine when these
solutions to the necessary conditions are in fact optimal, that is, when
they furnish a minimum value for the cost function and meet terminal
constraints. It will turn out that this question is related to the
existence of solutions to some of the matrix differential eguations which
wag assumed in the last three sections.

In the following, it will be necessary to make several assumptions:

Al, A2, and A3 as in theorem 5.1

Ak, Q2 > 0, +the strengthened Legendre Condition

A5. The system is completely controllable on any sub-
1.

As previously mentioned, condition A5 may be relaxed somewhat.

interval of [to, tf

Hewever, the strong condition A5 will be used here.
In Section D, it was shown that the n-parameter family of sclutions
to the Euler-Lagrange eqguations (5.9) and the boundary conditions (5.5&)

and (5.35) may be written as

q(t) M(t) qp(t)

: o L)
p(t) n(t) Pp( )



The solutions ¢(t) are known as extremals. If there is a unigue
extremal passing through every point of a region R & En’ the region

R ig said to be covered by a field of extremals. Two extremals

which have corresponding parameters Cl and Cg arbitrarily close are
said to be neighboring extremals because a measure of their separation

[ql(t) - qe(t)]’[ql(t) - qg(t)] is bounded by KHQl - QEH for some

K <0, where |M(t)|| <K for all t belonging to a finite interval.

If at some time t%* +two neighboring extremals cross, the point

ql(t*) = q2(t*) cannot belong to the region R which is covered by a

field containing ql(t). This situation is made more precise in the

definition of a conjugate point.

Definition If two neighboring extremals ql(t) and qg(t) cross at
t = t*%, i.e., ql(t*) = qg(t*), then the extremal ql(t) (or q (%))

ig said to have a conjugate point at t = t¥*.

If there are two vectors Cl’ §2 which satisfy, for 1 = 1,2
qi(t) = M(t) Qi + qp(t) and for which ql(t*) = qg(t*) then there 1is
a conjugate point at t = t¥*¥. In such a case, M(t*) must be singular
and any € of the form Cl + Qo will also produce an extremal passing
through q(t¥) = ql(t*) ir M(t*) go = 0. This shows that there are
an infinite ﬁumber of extremals passing through a conjugate point and

leads to the following equivalent definition:

TThe exact definition of a conjugate point is not completely standardized
in the literature. The situation is further confused by definitions
which include stutements as "the point t = t¥ 1s conjugate to the poin.
t = t,." since there are three points to contend with, the "point" t = i¥
the "point" q(t*), and the "conjugate point." The above definition
only mentions one point as such. This definition will be connected to
other possible definitions in the following pages.
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Alternate Definition If det M(t) =0 for t =1t¥ < tf, then there

is a conjugate puint at t = t¥*.

The relationship between the matrix M(t) and the solutions to the
Riccati equation P(t) (Case I, Section B) and R(t) (Case II, Section
c) given in (5.30) and (5.51) may be used to connect the idea of conjugate
points to the existence of solutions to the differential equations (5.18)
and (5.22). The results, stated in the form of two lemmas, may also

be used as possible conjugate point definitions.

Lemma 1 For the free endpoint problem (Case I), the matrix Riccati

equation

P -PF +F'P + Q, - PDQélD'P

with P(tf) = QB’ has a solution on [to, tf] if and only if there are

no conjugate points in [to, tf].

Proof': For the free endpoint problem, the appropriate boundary conditions
for M(t) and N(t) are M(tf) = I, N(tf) = Q. Since det M(tf) £0

by the continuity of the solution to the differential equation for M(t),
tlere is an interval (e, tf] over which det M(t) # 0. By direct

l(t) satisfy the same

L

substitution P(t) and [M'(t)]'l N'(t) = N(t) M~

differential equations. Since also P(tf) = Qg = N(tf) M tf),

P(t) = N(t) M'l(t) on (e, t.] Dby the uniqueness of the solution to the

f
differential equations. In order for P(t) to become unbounded, then
M(t) must be singular since N(t) satisfies a linear hoﬁogeneous differ-
ential equation and cannot become unbounded in finite time. Conversely,
if there is a conjugate point, det M(t) - 0 and hence P(t) becomes

unbounded.
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Lemma 2 For the fixed endpoint problem (Case II), the matrix Riccati

equation

R = RF' + FR + R R - DQélD'

with R(tf) = 0, has 2 nonsingular solution on [to, t if and only

)
if there are no conjugate points in the interval [to, tf).

Proof: If R is nonsingular on [to, tf) then by direct substitution
it may be shown that R_l(t) satisfies the same differential equation
as P(t). If R’l(tl) = P(tl) at some t =t., then R'l(t) = P(t)
for all t € [to, tf). P(t) is bounded since R(t) is nonsingular,
hence there are no cénjugate points in [to, tf). Now it is assumed

that there are no conjugate points in [to, t Then M(t) is non-

f)'
singular and N(t) M_l(t) = P(t) 1is bounded. ‘Therefore R(t) is
nonsingular.

The construction of a feedback optimal control in Sections B, C, and
D required that either P(t), R_l(t), or M'l(t) exist for t ¢ [to, tf)
for each of the three cases. It is clear that if there are no conjugate
points, then it is possible to construct a unique feedback control. In
fact, it can be shown that if there is a conjugate point along an
extremal, no optimal feedback control law exists.

If it can be determined that a solution to the necessary conditions

has no conjugate points, then the following theorem may be used to

establish optimality.

Theorem 5.3: If a solution [q(t), p(t)] to the Euler-Lagrange

equations exists which satisfies the boundary conditions and
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1. Al, A2, and A3 of Theorem 5.1
2. AL and A5 of this section

3. There are no conjugate points in [to, tf)

then [qg(t), p(t)] furnishes a minimum for the cost functional J.
Proof: Assume there is another control u = —QélD'p + Bu, du # 0,

which results in a trajectory a which satisfies the boundary conditions.
The difference trajectory, 8q = a - g, 1is a solution to 83 =F &g +

D du. The difference in the cost on the original trajectory, g, and

on the trajectory a is

t
i
2AT = S [a'Q;8q + 83'Q;q + 8g'Q,8q - p'Ddu
t
O
- du'D'p + 6u’Q26u]dc (5.46)

The expression for J may be written in a more convenient form

by adding the integral

b

| S5 (@ v ea'a(t))eglo - 0 (5.47)
t

O

where A(t) is an arbitrary n X n matrix. Since Sq(to) = Sq(tf) = 0,
the integral in (5.47) is equal to zero. Carrying out the indicated
differentiation and substituting the differential equations for &g and

p, the results are

br

{ (-a@;50 + probu + 8a’A(t)0 D'q - 8q'FA’ ()8q]do

to (continued)
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b . .
+ S {q'DQ2 D'A'(t)dq + 8q'A(t)dg - dq'A(t)Fdq}do . (5.48)
2 .

e}

3ince there are no conjugate points in [to, tf), the matrix
Riccati equation has a solution there by Lemma 1. If A(t) = P(t), a

solution to the Riccati equation, then (5.48) becomes

t
£ -1 ) -1
g (-aQ,8q + 8g'PD'Q,"Dbq - 8q'PDQ,"D'q - q'Da, D'FPag

t
o

- 8qQ,8q + p'Dbujdo . (5.49)

Adding (5.49) to (5.46),

& 1 1 -1
2AT = S {5q'PD'Q2 Ddg - Sq'PDQ,2 D'gq - qDQg D'Pdq

t
o]

+ bu'Qbu)do (5.50)

which may be written

°f 1 -1 1
AT = S (8u + Q DP6q)'Q2 (du + Qs DPdq)do = O . (5.51)

£ :
@)

The above expression is non-negative since Q2 is nonsingular. If
the equality holds, then BJu = —QélDqu so that 8&g must satisfy =
linear homogeneous differential equation. Since Sq(to) =0, ®q(t) =0.

Therefore for any control u # —Q;lD'p, AT > 0.
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In the paper by Breakwell and Ho [1965], it is shown that the
conjugate point condition is also necessary for the control problem.
That is, if an extremal is also a minimizing trajectory, then there must
be no conjugate points in [to, tf). This result is well known for the
classical Bolza problem (see Bliss [1946] Chapter 9, or Gelfand and
Fomin [1963] Chapter 5). In fact, for problems which are normal (in
the sense of Bliss) and for which the Hamiltonian has a unique minimizing
function u(t) for each t (called nonsingular in the control literature),
then the control u(t) may be eliminated and the results of the classical
calculus of variations may be applied to the control problem.

By the foregoing, computational methods based on second variations

which do not test for conjugate points cannot be guaranteed to succeed.

On the other hand, any method which generates a feedback control
similar to the one developed in this chapter automatically tests for

conjugate points.
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VI. THE COMPUTATIONAL METHOD

In Chapter III, the so-called Computational Control Problem,
that of finding a "better" control, was reduced to one of examining
the expanded version of the cost functional to gquadratic terms.
Chapter IV showed how this expansion could be carried out for several
special problems of interest and further reduced the problem to one of
studying a special form of control problem, the linear quadratic loss
problem. The next chapter, V, was concerned with finding optimal
feedback controls for general linear plant quadratic loss problems.
The purpose of the present chapter is to combine all of these previous
results into a useful computational algorithm. The properties of the
solutions and some of the details of the programs developed by the
author for machine solution will be discussed in the last sections of

this chapter.

A. OUTLINE OF THE COMPUTATIONAL TECHNIQUE

For the purpose of presenting an introductory overall picture of the
type of calculations necessary, a simplified flow diagram of the procedure
is given in Fig. 6.1. After describing how the procedure is carried out,
the justification for the method will be given. In the first problem to
be discussed, it will be assumed that the final time tf is specified,
general end conditions are given (Case III of Chapter V), the initial
conditions on the state x{o) = x, are given, the functions ¢[x(tf)],

w[x(tf)] and f(x, u) are twice continuously differentiable in all of

their arguments, and that an unconstrained control function u(t) is
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(@ Initialize u' “(t) by a choice of c.(t) i =1,...,n+l

1

x('l)(t), W for t ¢ [t te]

Set t' =t

C) Simulate System by forward integration of the state equations

1
from <t to tf

Y

(3 During (2), store x(t) and wu(t) as needed in and @

®

Evaluate
results and
bad run branch finished
good run
Tighten constraint Reduce constraint
on control space on control space Output Results
step size step size

!

(@) Store present x(t) and u(t) [

as nominal. Exit \
Compute M(tf), N(tf), b(tf), and x4

%(tf)

Y

Integrate sensitivity functions ?\(t) and the accessory problem
variables M(t), N(t), and b(t) from ty to t'. The time t'
is the maximum of the time of the first conjugate point in the
accessory problem, the time where Huu + W changes sign, and to.

@ During the backwards integration , compute and store the
control law cl(t), Ce(t)""’cn+l(t and the sensitivity

functions A(t) as needed in (2).

|

(::;Go back to step ()A::>

FIG. 6.1 SIMPLIFIED FLOW CHART FOR COMPUTING OPTIMAL CONTROLS
USING SECOND VARIATIONS
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to be found which gives an extreme value to the payoff ¢[x(t
)1,

To start the computation, it is necessary to guess an initial

f)] while

satisfying the terminal constraints W[x(tf
control u(o)(t) (see (D in Fig. 6.1). This guess may be given as a
function of time only or as a function of time plus a possibly time-
varying linear combination of the states as feedback. That is, the user
starts the program with values for the time functions ci(t)
i=1,...,n+tl. The nominal trajectory 1s then computed from the control

law

u(t) = eq(t) x (8) + e (8) x,(t) + oo+ e (2) x (2) +c (%)
(6.1)
and the state equation
x = f(x, u), x(0) = x (6.2)

Of course, the convergence is improved by a fortunately good initial
guess of the control. However, step by step improvement may be obtained
with very poor initial guesses, and good starting controls, which are
required by other numerical methods, are not necessary to insure
convergence.

For the first iteration, it is necessary to guess starting values
for the g X 1 wvector of Lagrange multipliers v. The choice of good
numerical values is aided by the physical interpretation of the v's as
sensitivities as in Chapter III. For this problem, the ith component
of v, Vi’ is the sensitivity of the extreme value obtained for the

)] .th

payoff >¢[X(tf due to a small change in the value of the 1
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component of W[x(tf)]. In other weris, the extreme value of ¢[x(tf)]
will change by the amount viei when Wi[x(tf)] is changed by ei.

At the end of each simulation of the system in step Qg), the results
are evaluated by comparing the values for the payoff and the terminal
constraints with the values from the previous iteration. If the payoff
did not improve while the constraints remained within tolerances or if
the constraint errors did not decrease and were too large, it is con-
cluded that the change in control was too great. Therefore, the con-

straint on the step size given by

be
Buj = S Bu'Wou dt < ¢ (6.3)

t
o]

is made tighter for the next iteration. On the other hand, if the payoff
and the constraints are both improved or remain unchanged, the iteration
is considered successful. If the number of successful iterations is
equal to the maximum number specified by the user as input data, or if
the method has converged as indicated by no change in either the payoff
or the constraints with ”6u“ effectively unconstrained, the program
outputs all of the results necessary for properly restarting the program
and reads in the data for a new problem. At the end of a successful
iteration which does not cause an exit, the states and the control are
stored as the new nominal and the constraint on (|duj 1is reduced for
the next iteration.

The purpose of the backwards integration is to solve the accessory

problem discussed in Chapter V and to find the sensitivity functions
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A(t). Tne solution to the backwards integration is used to generate a
correction to the control u and to the terminal constraint sensitiv-
ities v.

The equations for the backwards integration are obtained by iden-
tifying the solution to the general problem found in Chapter V, Sectiorn A,
with the linear quadratic loss problem derived in Chapter IV. This

correspondence is

Az = @, ()
Q2 - huu W
@ «H -H (H +wim
1 XX XU uu ux
-1
F «f -f (H + W) "H
X uuu ux
e « H'
u
—lx
& - xu( uu + W) Hu
D «f°f
u
A«Ilfx
a « oV
P <« BA
q <« Ox
v « du - (H + W)—lH ox . (6.4)
uu ux

With these appropriate substitutions the equations for the backwards

integration and boundary conditions are obtained from the last chapter.
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The boundary condition on A(t) at t = te 1is given by

NG

) = ol lx(tp)] - v Ix(e )] v (6.5)

f

Consequently, both x(tf) and v must be updated before finding the

new value of A(t ). At first, it may seem reasonable to try to find

f
SR(tf) from the relation

) (6.6)

f bl

1 - 1
M (tf) sx(tf) = N'(t_) 6x(tf) + bt
where M(t), N(t), and b(t) are from the previous iteration and

n+1)(t

Then the new %( ) is calculated

f

n+l)(t

x( ) = A(n)(tf) + 6x(tf) . (6.7)

f

However, this is not possible since M(tf) is singular at t = tf. In
fact since M'(tf) w; = 0, (6.7) cannot even by used to find O®v by
taking OA = @XXSX - Wéﬁv. As an alternative to solving (6.6) for

it may be solved at several points t = t_, - €,

8A(t) at t =1t £

£
tf - 2¢, tf - 3¢ near t = tf and the result extrapolated to the end.
This method has also met with little success in practice probably due
to the difficulty of solving (6.6) when M(t) is almost singular.

More reliable results have been obtained by solving for 8A(t) at some

time t = t' where M(t) has become suitably well conditioned. The

result is then extrapolated to t = tf by integrating the differential

JrThe superscript on x(n)(tf) is used to denote the values of x(tf)

from the nth iteration.
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equation for ®A(t) which is obtained from (5.9) with the substitutions

(6.4) as

8N = [-f' +H (W + H )'lf'] S5A
X Xu uu u

-1,
+ qu(w f Huu) . (6.8)

where the partials of f and H are evaluated along the nth

trajectory.

In order to insure that the resulting A(t satisfies (6.5), it

y

+ 5x(tf) - ¢;[x(n+l)(tf)]

which is perpendicular to w;. That is, after computing Bk(tf) from

is necessary to remove the part of K(n)(tf)

+
(6.8), v(n 1) is found as the least square solution to

TACARICR) L)) )y AP ) - ene)

The solution is

V(n+l)
. X X

S b1y el - Mgy - BM(e)] (6.9)

The boundary conditions on A(t) at t = tf may then be determined
from (6.5).

The equations for -M(tf), N(tf) and b(tf) are obtained by
translating (5.42) and (5.43) with the "dictionary," (6.4). The

results are

M(t.) = [B 0]
(continued)

90




\_,,
il

-N’(tf) [wxwéj'l wg&w . (6.10)

The columns of the n X n - g matrix B are the n - q linearly
independent vectors which are perpendicular to the rows of wx. The
determination of B thas been discussed in the last section of
Chapter V. Normally Q5 = @xx’ but in some cases it may require some
modification which is discussed later in this section.

From equations (5.40) and (5.41) together with (6.4), the

differential equations for M(t), N(t), and b(t) are obtained as

-1 -1,
M [fx B fu(w * Huu) Hux] [_fu(Huu * W) fu] \ M
- - "l "l 1 1 T
N [H (H +w)"H -H J[H (W+H ) ' -r7f'] N
X uu ux XX Xu uu u X
(6.11)
and
; -1 1 -1 1
b=Nf (H +W) H -MH (H +W) ~H . (6.12)
u uu u Xu ul u

On the next iteration, the new control is obtained by adding the
correction ©®u to the old control u(t). The expression for ©Ou, which

corresponds to w of Chaepter V, is found by combining (5.45) and (6.4).

Su = (K + W) N[E' ¢ E 8x + £1(M') T(N'ex +b)] . (6.13)
uu u uXx u '

The new control becomes
n+l
u

(continued)



S, w0 HE, o+ o)) ) (6.14)
which may be written in the form

un+l(t) _ Cl(t)xl(t) fcg(t)xg(ﬂ ... fcn(t)xn(t) cn+l(t)

(6.15)

with the definitions

(e0peme,)" = ~(Fy, + W)+ £ () ) (6.16)
and

O I e O S Y (D R I LV

(6.17)

The partial derivatives of H and f are again to be evaluated
along the nominal (old) trajectory. This is obvious if the c's are
evaluated and stored during the backward integration since the new
trajectory is not yet available. However, some confusion might arise
if the c's were calculated during the forward integration which may
also be done although it requires more storage.

The reverse time integration is continued until to is reached,
or the determinant of Huu + W changes sign, or the determinant of M
changes sign, whichever occurs first. If to is not reached, the
starting time for the next forward integration, t', is set slightly
to the right of the exit time in the backward integration. The test of
thesign of the determinant of Huu + W insures that one of the assumptions
made in Chapter V, the Strengthened Legendre Condition, is satisfied on

the interval (t' + e, t.] if € is at least one numerical integration
J

f
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step size. This test reguires no additional program effort since the
inverse of Huu + W 1is already required. The test on the determinant
of M checks for no conjugate points in (t', tf), a necessary con-
dition for the control computed in (6.15) to be optimal for the
accessory problem. This test is also almost automatic since the
determinant of M is computed in the calculations necessary for find-
ing ¢y, 1= 1,...,n+l from (6.16) and (6.17).

Having computed the new control law by the coefficients

e (t), i =1,..n+l,t € [t' +¢, t

5 f]’ the resulting control is evaluated

by returning to step (:) in Fig. 6.1 and integrating forward from t = £t
The initial conditions for the states at t' are obtained from the
stored values of the last trajectory x<n)(t) at t =t'. The process
is then continued until the result of the teét at (E) produces an exit

to (5.

Due to the near singularity of M‘(t) which prevented an accurate
determination of ©®A(t) from (6.6) for t near t,, there are corre-
sponding problems in computing the feedback coefficients 01,02,...,cn(t)
as the terminal time is approached. Further difficultiles are caused by
the very large feedback gains which lead to instabilities in the numerical
integration of the state equations. Good results have been obtained by

changing to a type of open-loop corrections in an interval [7, t.]. It

f

is convenient to take the interval [7, tf] the same as the interval
chosen for the integration_'of the differential equation for 8A(t) in

determining Sk(tf). The open-loop control correctionis then computed from

du = -(H  + W)-I[HL + Hux(x(n+l) - x(n)) + f{l&\(t)]
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In order to show the validity of the technique, it is only necessary
to collect together some of the previous results and verify that the
computational methnd satisfies the necessary assumptions.

The Computational Control Problem was reduced, in Chapter III, to
a consideration of the erpansion of the functional F(x, u, A\, v) to
second-order terms only. By taking ”6u“ and HSwH sufficiently small,
the quantities HBXH, HSKH, and H&vH' are also small so that the
higher-order terms in the expansion may bebneglected. This condition is
insured in the program by increasing HWH, which is equivalent to
tightening the constraint on HSu“, until a particular iteration is
successful.

The next assumption, in Chapter III, concerned normality. In
assuming normality, v, % O; therefore it was set equal to unity. This
operation may be viewed in another way as the result of dividing ea:h
Vi through by v, 89 that as an abnormal solution is approached each
of the vi's (wvhich are actually vi/vo) become very large. The
effect will be to produce a control which concentrates on the end cori-
straints and ignores the payoff. No experience of applying this com-
putational method to problems which are abnormal is available at this
time. However, the relative sizes of the vi's i=1,...,n as the
extremum is approached give a crude numerical test for abnormality.

The final step in the proof that the computational scheme as
described has step by step convergence is to show that the solution to
the accessory problem actually furnishes a minimizing cur&e. This may
be done by showing that each member of the get of sufficient conditions
in Theorem 5.3 is satisfied. These conditions for the problem under

consideration here are
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Al'. WX is full rank g < n

2! There is a vector ©&x which satisfies wxéx = By
P Y\ B ko] s L EIE]
A3' Py = f!(¢xx) P where P is a projection onto the nullspace
of
qIX

Ak, (H +W) >0
uu

A5'., The system in the accessory problem is completely controllable

on any subinterval of [t', tf]

1.

A6'. There are no conjugate points in [t', tf

If the problem has been properly formulated and %(t) is an optimal
trajectory, Wx[%(tf>] will have full rank. Otherwise, one or more of
the constraints is redundant and has no effect on the problem solution.
However, Wx[x(tf)] may not be full rank if x(tf) is not optimal even

if the constraints are linearly independent for x(tf) = %(t ). Since

f
the program requires the inversion of wak’ a test for the rank of wx
is automatically made. Although it is unlikely that wa; will ever
appear singular in practice due to the inevitable numerical errors in the
inversion, this situation can be remedied by temporarily dropping the
redundant constraints. This can be accomplished in principle by extract-
ing a basis for the range of WX and using this in place of WX. If

one column of WX is 2 multiple of another, it may simply be removed.

As a last resort, a Gram-Schmidt procedure (see e.g., Shilov [1961]
Chapter 8) might be used to reduce WX to a matrix of full rank. Of
course, 1t may be possible to determine from the functional form of

Wx[x(tf)] that it is full rank for all x(t_.) and avoid the test all

f

together. In any event it is possible to redefine the problem so that
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wx[x(tf)] is full rank and hopefully this will not be necessary. Al'
is therefore satisfied.

AP!' is then automatically satisfied if the original (unmodified)
WX was full rank. If it wac necessary to construct a basis for wx as
given above, &y must perhaps also be modified so that it is in the
range of the new wx. This can be done if necessary since oy 1is
specified independently by the user although it is usually taken egual
to - V.

Conditions A3' and A4' may be satisfied by construction. If
A3' does not hold, Py Y be replaced by P'@XX P in the accessory
problem so that then A3' will be satisfied. For any bounded Huu’
there is a W suitably large which satisfies JUR

AS5' and A6' are forced to hold by the choice of t'. The
program determines t' - ¢ as the maximum of the time where the detler-
minant of M (or P or R 1in cases I and II) changes sign, the time
when the determinant of Huu + W changes sign, and the initial time
to for the original problem. Thus on the interval over which the
accessory problem is solved, Huu +W >0 and det(M) # 0. These

additional conditions are sufficient to show that A5' and A6' hold.

B. EXTENSION TO OTHER TYPES OF PROBLEMS

The computational method of the last section may be modified so that
it is applicable to the several different types of problems as discussed
in Chapters IV and V. Second-order techniques for handling problems
with free endpoints, completely specified endpoints, free terminal time,

control parameters, and variable switching times will now be considered.
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The only reason for deriving special methods for problems with
free end conditions (Case I) or completely specified end conditions
(Case II) is to obtain more efficient computation since the general case
still applies. The saving in computation is guite substantial particu-
larly in the free endpoint case. The general case requires the inte-
gration of the differential equations for M, N, and b, a total
of 2n2 + n equations, and the inversion of an n X n matrix at
every 1integraticn step. In comparison, Case II requires the integration
of 1/2 n(n + l) + n equations and an n X n matrix inversion at each
integration step. Case I is even easier to compute as it requires
1/2 n(n + 1) +n equations to be integrated and no matrix inversions
are needed invcomputing the control.

The equations for Case I and Case II may be obtained by reinter-
preting the results given in Chapter V with the aid of (6.4). The
results are summarizea in Fig. 6.2. In addition to computiﬁg P and
b (or R and b) and their boundary conditions, the test for conjugate
points, the calculation of 6A(tf), and the calculation of ©du must
also be chanéed for Case I or Case II. The conjugate point test is made
by checking for a change in the sign of the determinant of M, or R,
or by checking to see if the norm of P Dbecomes too large. In Case I,
there is no need to compute SK(tf) since %(tf) is known to be equal
to zero. For Case II 6K(t) at some point t' near tf may be
obtained by solving R(t) 82(t) = dx(t) + b(t) and extrapolating the
result to t = tf by solving the differeﬁtialrequation for Sk(t) as
before. The method for finding 8u in each case is given in Fig. 6.2.

It is natural to gquestion why problems with end constraints (Cases II

and III) appear to be so much more difficult in terms of computation than

97



problems with unspecified end conditions (Case I). In the last chapter,

M, N, R, and P were shown to be related by
. -1, -1
M (£)]"N'(t) =R ~(t) = P(t) . (6.18)

This relationship is the key to the difficulty. For problems of Case Il

R(t is singular, and for problems of Case III M(tf) is singular so

f)
that there is no suitable boundary condition for P(t) at t = t, in

either case. However, at any other time t', which is not a conjugate
point, P(t') may be found if either M and N or R is known.

Accordingly, at such a point P(t') and b(t') of Case I may be found

from R(t') and b(t') = bII(t') for Case II by

p(t') = R(t")

B(t') = R (%') by (t,) (6.19)
Similarly, the varisbles of Case I and Case III are related by

1 1 1 -1 1 1
P(t') = [M'(t")] ' (t")
(6.20)
b(t') = M (£)] oy (87)

11T

In order to avoid the added computations in Case II and III, in

use (6.19) or (6.20)

principle one would pick t' very near to tf,
to find P(t') and b(t'), and then work the problem over the remain-
ing interval from t' Tback to to as 1f it were Case I._ In practice
t' should be determined far enough away from t =t so that R(t")

[or M'(t')] %becomes well conditioned enabling accurate numerical

results in (6.19) or (6.20). The advantage of this modification for a
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Definitions

Case I

Case II

Case III

FIG. 6.2

X ul ux
_ -1 1
Q= fu(Huu + W) fu
S=H_ -H (H + w) ™t H
XX uu ux
c=-f(H +w) g
u uu u
_]_ '
d=H (H +w)™H
uu u

B isany nXn -gq full rank solution to WXB =0

(Free Endpoint) ©&A = P®x + b

P = -F'P - PF - S + PQP

b = -(F' -PQ) b +4d - Pe

P(t) =9, b(t.) = 0

Bu = -(H_ + W)_lIH& +H Bx + 1 (Pbx + b))

(Fixed Endpoint) RSA = 8x + b

R = FR + RF' + RSR - Q
b =(F+RS) b +c - R4
R(tf) = 0, b(tf) = - ax(tf)
S -1
Su = -(H +W) 7[H' +H 8x + f'R™(6x + b)]
uu u ux u

(General) M'SA = N'8x + b

M = FM - QN

N = -SM - F'N
b = M'q - N'c
M(t.) = [B O]
N(tf) = [@XXB W;]

()= [0 BY']

Bu = -(H  + w)'l[H' +H Bx + f'(M')"l(Nax +b)]
uu Ll‘ ux .\l

SUMMARY OF RESULTS FOR THE ACCESSORY PROBLEM
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Case III problem with four state variablesis that 18 first-order
differential eguations are solved from t' to to as compared to 4O
first-order differential equations and the inversion of a L X 4 matrix
at each integration step.

An additional simplification occurs when the problem 1s in the
Mayer form. In this case, it may be easily demonstrated by differentiation
and substitution of the equations for M, X, and 5, that the expression

M'(t) A(t) + b(t) 1is constant so that

M'(t) AMt) + p(t) = M'(t.) Mtf) +b(t.) . (6.21)

f £

There is therefore no need to integrate the equations for the n com-
ponents of b(t) in this case since b(t) may be determined from M(t)
and A(t) from (6.21).

The extension of the computing method to problems with free
terminal time requires considering the terms involving Stf in (u.hl).

The part of 3 which depends on Stf is

2

. . . L
(1/2 x P K + 1/2 HO + 1/2 HXX) 8%, + (5 + x'g %

+ Hu6u + Hx6u) &t

where the terms in parenthesis are evaluated on the nth iteration at

(n)

t = tf

The quadratic form is extremized by setting

' .
(x wxxx + HuSu + HXBX + H)

= ] O - O 3
(x ¢ KX +HO+ Hxx7

*
Stf

(6.22)

so that on the (n + ]_)SJC iteration the final time, which cannot be

+
, the new final time (01 5o given by

Lo (W)
computed until t = tf >
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- *
ts =t ot 5% - | (6.23)

+1
If ot¥ > 0O so that the new interval [to, t(n )] is larger than before,

f
- 4 ( + \
Su is set equal to zero on (tén), t%n l)]. For any Ot%, Su is
computed in the normal manner over the interval [to, t§n)]. Some dif-

ficulties may arise if (6.22) specifies a very large Stf since a
constraint HSuH, which will reduce 6u(tf) and BX(tf), does not change
the other terms. Consequently, it may be necessary to restrict 6tf by
an artifical bound if 6t% from (6.22) is very large.

Problems with control parameters, although formulated in a similar
manner to the problems with continuous control functions (c.f.; Chapter
IV Sections A and (), must be solved in a gquite different manner. The
reason for the difference is that since the parameters are constants,
they cannot be adjusted along the trajectory as functions of &x. This
eliminates the usual feedback approach which has been used for the other
problems considered earlier. Following Section C of Chapter IV, &x is

chosen so that the cost functional

t
f
3 = - ! H 1 0
J 6v(5¢+\1f)+1/26xfcpxxsxf+ g H, * 8x'H _do | &
O
t
2 £
+1/2 S Bx'H _8x do + 1/2 sat S (Hyy + W) do | & (6.24)
JCO tO

is minimized while satisfying the constraints

8% = £ dx + £ 81 (6.25)
X (04
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and

8x(0) = 0 wXSX(tf) =3y - (6.26)

The solution for this problem is quite straightforward. First,
equation (6.25) is solved m times with the m X 1 control vector B
set equal to (1, 0,...,0)", (0, 1, 0,...,0)', etc. That is, the n X m

matrix solution X(t) is found for the equation

X(t) = £ x(t) + £K, X(0) =0 (6.27)

where k.. = 0, ..
ij i

By linearity, any solution to (6.25) for a particular BQ is
Bdx = XdX (6.28)

so that X is the sensitivity of the solution to changes in &. After
eliminating ®x from (6.24) with (6.28) and (6.26), the problem, which
is now strictly algebraic, becomes one of finding the constant vector &

which minimizes the quadratic form

J

Il

-8y (v + BY) + 1/2 8Q'Qda + a'd (6.29)

where
t

f
Q = X'(tf)@xxx(tf) + S [x'(t) HXXX(t) + Hyy * W] do
h _ .

(6.30)

o]
I
[
-
—
o
B
jas)
g
>3
-
=
ot
Q

102




At the same time 3 must satisfy the linear equation

BSQ = WXX(tf) B = BY . (6.31)

By the methods of Chapter III, the optimal & may be computed in

terms of the projection operator P = [B'(BB')_l

B - I] which projects
any m X 1 vector onto the nullspace of B. The minimizing vector

80 is given by

80 = B'(BB) T oy + Py (6.32)
where the m X 1 vector y 1is the minimum norm solution to

P'QPy = -P'a .

The adjustment of the terminal constraint sensitivities remains to
be found. With the interpretation of ®v as the sensitivity of the
optimal cost to changes in the constraints, -dv' is the coefficient of
&y in the second two terms of J from (6.29) with (6.32) substituted

for 8X. This results in
ov = -(BB')'lB(QPy +a) (6.33)

which completes the set of equations necessary to optimize sequentially
a set of control parameters C.

The last special pfoblem to be discussed concerns optimization with
respect to the points of discontinuity of f(x, tl, t2,...,tk). This 1is
probably the most important one of the special extensions discussed as
it includes the very interesting bang-bang control problems by a trans-
formation of variables. Following Section B of Chapter IV, the acces-

sory problem requires the minimization of
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t
f
Tyt 1 1
J= 6v(¢+6¢}+l/28xf¢xx6xf+lﬂ2g (8x'H_8x) do

t
o

k

s 2 2
+ZE: { @i(H)ﬁti + Si(HXSX)éti + 1/2x'si(f)5ti + 1/2wi6ti }. (6.34)
i=1 '

The variation in the state, ©0x, satisfies the differential

equation and the boundary conditions
Bdx = fXSX
8x(0) = 0
¢x8x(tf) = &Y (6.35)

on the intervals t € [to, tl), (tl, t2),...,(tk, tf]. ®x 1is discon-

tinuous at t = ti. The amount of discontinuity is

8,(6x) = - 8,(£) o, - 8(r Bx)8E, - 1/2@(%)5t§ . (6.36)

Since ©x does not satisfy a differential equation (6.35) on the
whole interval [to, tf}, the former derivation for the sensitivity
functions is no longer valid. The differential equation constraint (6.35)

may be taken into account in the usual manner by appending the follow-

ing identically zero term to (6.34),

t 4 tf
C = S 5A‘(fx5x - ®x) do + S oo, + g 5A'(fxex - B%) do = O.
+ +
s T % (6.37)
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The integration by parts involves no tricks since all of the "bad points"”
t = ti are not interior points in intervals of integration. A typical

term results in

i+l t1+l . ti+l
S BA'(f Bx - dx) do = S 8x'(£'8A + 8A) do - Bx'8BA
X X
+ + +
t, t. t,
1 1 1
(6.38)
Summing terms,
k Y1 . L
= ZZ; S 8x'(£'8A\ + 8A) do - ax'gx’ zg: @ ox! 5A . (6.39)
+ X
i . i=1
1

The last sum may be combined with (6.56) which gives the discontinuity

in 8 at t = ti. A representative term becomes

8, (8x'8N) = ax'(t_j_:) smjf) - B (t]) BA(t])

ax’ (£])8, [82(¢)] - aA'(tZ)@i[f(x, Wl st . (6.40)

Equations (6.39) and (6.40) may be combined with (6.34) to obtain

A__ 1 1 _ 1
J =-8v' (Y+8y) + 1/2 Bx1._ B, &x oM,

t
f .
+ g [1/2 &x'H__8x + &x'(£'®N + BA)] do
XX X

t
o

(continued)
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k k
- j{; 5x'(t;)@i[8x(t) - H;Bti] 4—}:[£H(H) + 6K’(ti)@if(x, u)}&ti
i=1 '

i=

k
+ 1/22[‘[wi + x'(ti)@i(f) - 2Hx(t;)ﬂ&f(x, u)](ati)2 . (6.41)
- ia

Following the usual calculus of variations argument, the necessary
condition for an extremum requires that 8 = 0. In taking the variation
of 3, variations in 6Xf, BX(t;), bti, and 6x(t) are written as
62xf, 52x(t;), 62ti, and 62x(t), corresponding to second variations
in the variables of the original problem, Xpo x(t;), ti, and’ x(t).

The result is

~ 2 2 tf2 .
- — ! - t !
8 = ® ¢ =5 xf(@XXBXf axf) + g 57x (HXXSX + fxak + 8\) do
t
(e}
k k
_—‘2:" _ oyt
245 b (ti)ﬁi[sx(t) HXSti]-+ }:[si(n)
i=l i=1
l+ 14" 1 t .
+ BA (ti)Sif(x, u) + dx (ti)siﬂx + A (ti)ﬁi(f)ati
+ 2
+ Wt - 2Hx(ti)$if(x, u) 6ti]8 t, (6.42)

If &J = O for arbitrary variations in x(t) and ti, the

.. 2 2 2 - 2 .
coefficients of d Xps 5°x(t), ® x(ti), and © ti must all vanish.
This leads to the necessary conditions for the accessory problem. The
adjoint variable 8A(t) for the accessory problem is chosen to satisfy

the differential equation
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8A = - I8N - H ox (6.43)
X XX

except at the points ti, i=1, 2,...,k. At each of the points ti,
atationarity with respect to Sx(t;) requires SA(t) to be chosen so
that the quantity sA(t) + H;Bti is continuous or that ©&A(t) is

possibly discontinuous according to

8OMt) = £,HBL, (6.44)

Equations (6.43), (6.44) and the end condition

BA(t,.) = wxxéx(tf) (6.45)

completely specify the accessory adjoint variable 8K(t).

The remaining term in (6.42) is set equal to zero if

- [y o+ N(8)8(F) - 2E (£1)9,7(x, u)] 8%,

=+ Bx' (£ H! ¢ SH + ak'(t;)sif(x, ) (6.46)

which specifies the optimal shifts in the switching times if the
coefficient of 5%i is not zero. Equation (6.46) may be written in

terms of Sk(t;) instead of SR(tI) by the use of (6.4t4) to obtain
. + - ~
(-At(t,)8, (0)- W, + [HX(ti) + Hx(ti)]ﬁif(x, u)} ot

= §.H + A (% )sif(x, u) + SX'(t;)SiH; . ) (6.47)

i
In order to achieve the goal of a feedback control, ®A must be

eliminated from the expression for Bti. As before, a relationship
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enabling ©®A to be found from 5x 1is desired. Having motivated the
method in the previous chapter, a strictly algebraic approach will now

be used. A relastion between ©Ox and 8N of the form
M'(t) 8A(t) = N'(t) 8x(t) + D (6.48)

is assumed to hold except at the points ti. By differentiation of
(6.48) and the substitution of (6.35) and (6.43), it may be shown that

(6.48) will hold for all t #t,; t St =t if M and N satisfy

M £ 0 M

N H_ -f N
XX X

On the interval (tk, tf], the previous theory applies so that the
set of boundary conditions for M, N, and b in (6.10) are also

appropriate here. They are

M(t,) = (B O]
N(tn) = [@;B V]
o(t,) = - W (e )by 17V (6.50)

with the definitions of B and Q5 as given in Section A of this

chapter.

Since the Fuler-Lagrange equations are homogeneous, the differential
equation for b is B - 0. b 1is therefore constant over each of the
intervals [to, tl), (tl, t2),...,(tk, tf].

It is reasonable to expect M, N, and b to be discontinuous at

t = ti since ©®x and BA are not continuous there. A relationship
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between the possible discontinuities in M, N, and b and the discon-

tinuities in ®x and B\, which may be obtained from (6.48), is

= 9, [N (£)] Bx(t]) + N'(tz) 5, [ox(£)1 + 9, [b(¢)] . (6.51)

The idea to be used in finding SiM, ﬁiN, and Sib ;from (6.51) is
similar to the method used to obtain the differential equations for M,
N, and b in Chapter V. If, by suitable manipulations, (6.51) may
be written in a form A(t,) &x(t]) + B(t,) 8A(t]) + C(t;) = O witn
A(t), B(t), and C(t) not depending on ®x or ©&A, then a sufficient
condition for the equality to hold for arbitrary SX(t;) and SA(t;)
is that A(ti) = B(ti) = c(ti) = 0.

The terms in (6.51) involving SiBA and &iBX may be eliminated

by substituting (6.44) and the first-order part of (6.36) to obtain

B.M (¢) BK(tI) - 9.1 (8) Bx(t]) - 8;b(t)
= [-M'(t]) §.H! - N'(ti) 8.7] Bt . (6.52)

By picking W, large enough, the coefficient of B%i in (6.46) is

nonzero so that B%i may be found by dividing through by its coefficient.

The substitution of B%i obtained in this way into (6.52) and the sub-

sequent collection of terms gives

! t - 1 1 + 1 +
(M () + o [M'(t]) SH - N (t;) 9,£]1 D;T") NCH

= (8 (t) - o (M (6]) B - N'(t)) 5] ST ox(t])
(continued)
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1 - 1 ! +
+ 8,0 - aisiH[M (ti) S - N (ti) @if] (6.53)
where

Loy =-w, - N (v,) 8 (F) + om (1) 8,F . (6.54)

Ny F
A sufficient condition for (6.53) to hold for all aA(ti) and
6x(t£) is that each of the terms in braces is zero. This leads to

the conditions for the discontinuity in N,

1 = 1 H +

9. N = ai[M (ti) &iHX - N (ti) sif] 8. H (6.55)

and M
- . + .
QiM(t) = - aiﬂif[ﬁinM(ti) - Qif N(ti)] (6.56)

and b

- . + 5
Bo =+ ai[miHXM(ti) - 8T N(ti)]siH . (6.57)

The last three relations, together with the differential equations
(6.49) and the boundary conditions (6.50), make it possible to compute
the quantities M(t), N(t), and b(t) by backward integration. In the
forward integration, the shift in the switching times ti is computed
at each point t = ti from (6.&6). A feedback form of correction may
be obtained from (6.47) if SK(t;) is found in terms of 6x(t;) by
the use of equation (6.48). Then the optimal shift in the switching
times becomes
6%i= Bi[ﬂiH + b'M'l@if] + 6i[$i(f')(M’)-l(N') + @in](x(n+l)- X(n))'t—t’

’ : ‘ ]

(6.58)
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where
/6, = [H (+]) + 8 (£])18,2 - W, - M (¢,)8,(F) .

If S%i as computed from (6.58) turns out to be negative, indicating
that the nominal switch is too late, the correct new trajectory could be
computed by backing up to the point t = ti + S%i and restarting the
integration. An easier scheme for computation would be to allow x to
be discontinuous by the discontinuity in ©&x given in (6.36), which has
an effect approximating the effect of the shifted switching time,
independent of the sign of S%i. For the next iteration, the times

could be changed according to

t:(Ln+l)

(n) ~
“ty )+ 8L . (6.59)

The adjustment of the v's may be carried out as before by
integrating the accessory adjoint, (6.43), over a small interval
] after initializing with B®A(t') as found from (6.48).

1
[t ’ tf

C. PROPERTIES OF THE SOLUTION

The computational method has been shown to construct a sequence of
successi&ely better controls. In this section, several of the properties
taken on by the solution as the sequence of controls converges will be
discovered.

By the convergence of the control sequence, it is implied that

du - 0 or

Bu = (5 + W)—l[HaX6X ¥ f&(M')_l(N'Sx +x)] -0 (6.60)
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where¥
k = M'(tf) A(tf) + b(tf) . (6.61)

The original non-feedback form of Eq. (6.60) is

-1
du = -(Huu + W) [Huxﬁx f HuA6A + H&] (6.62)

which may be recovered from (6.66) by using the relations

k = M'(t) At) + b(t) (6.63)
and
M'(t) 8A(t) = W' (t) dx(t) + b(t) . (6.64)
The gradient of the Hamiltonian, H , evaluated along the (n + 1)5¢
trajectory may be expressed as
() _ o) fH\(;) () (),
N Hé;)[%(n+l) _almy Hﬁi) {u(n+l) e
+ olsxi) + o [sA|F) + of[lsu)®)
so that if &u~0, W~ 0, and H_ # 0 then (6.62) implies
H£n+l) ~0. (6.65)

ry v
Equations(6.61) and (6.63) hold for the Mayer problem only. It is
assumed that the problem has been put into the Mayer form.
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If &u — 0 then ©x — 0 also and therefore &}y = O. The solution
will thercfore satiefy the constraint W[x(tf)] = 0.

Tt has been previously shown that the method continues to generate
successively better controls until no further progress is made. By the
foregoing, it may be concluded that when du — 0, the solution satisfies
all of the necessary conditions given in the Minimum Principle since
the only conditions not originally satisfied by the construction of the
computational technique were Hu =0 and w[x(tf)] = 0.

Throughout this study the linear quadratic loss problem solved in
Chapter V has been called the "accessory" problem. To be more exact,
this problem should be perhaps called the "pseudo accessory' problem to
distinguish it from the accessory problem discussed in texts on the
Calculus of Variastions. The distinction is that the accessory problem
arises when considering second variations about an extremal and that the
"pseudo accessory' problem is obtained by studying second variations
about any nominal trajectory. Since the method gives a solution which
approaches a solution to the necessary conditions, the pseudo accessory
problem approaches the true accessory problem. The eqguations for the
true accessory problem are obtained from the equations in Fig. 6.2 by
setting Hu = 0, 6xf =0, W=20, and &y = 0. Since ¢, d, and
b(tf) are now zero in Fig. 6.2, b satisfies a homogeneous linear
differential equation with zero terminal conditions and is therefore
identically zero. The resulting equations for the accessory problem
are summarized in Fig. 6.3. In the remainder of this secfion, the
nominal trajectory will be assumed to satisfy all of the necessary

conditions so that the eguations in Fig. 6.3 describe the corresponding
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I

Definitions F=f -f HH

u uu ux
- ~loy
Q u uufu
S=H -H -t
XX XU Uuu ux

b is any n X n - g full rank solution to

v.B =0
Case I (Free Endpoint) ©®A = Pbx
P = -F'P - PF - S + PQP
P(tf) - q)xx
-1 .
du = -H (H & + £'P x)
uu ux ) u
Case IT (Fixed Endpoint) R®A = dx
R - FR + RF' + RSR - Q
R(tf) =0
su = -H S(H &% + £'R Tex)
uu ux u
Case IIT (General) M'dA = N'dx
M = FM - QN
N = -SM - F'N
M(t,) = [B O]
—_ 11
su = -H'l[H Sx + f'(M')'lN'ax]
uu ux ) u

FIG. 6.3 SUMMARY OF RESULTS FOR THE ACCESSORY PROBLEM WHEN
THE NOMINAL TRAJECTORY IS AN EXTREMAL
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accessory problem. At convergence, the solution to the accessory
problem has two very important uses which are now to be presented.

Onc of the disadvantages in the application of optimal control to
real problems is that a complete knowledge of the system equations and
the initial conditions is required in order to generate a numerical
answer. If some of the variables in the problem description are
slightly in error, the numerical control is no longer optimal. Therefore,
several methods have been devised for on line correction of the control
when it is applied so that the resultant control is improved. These
methods attempt to generate a new extremal from the old extremal in the
event that the prescribed control u(t) causes the trajectory to drift
off of the originally computed optimal trajector due to unpredicted
errors in the system equations, unforeseen extremal. disturbances, or
initial conditions. The Lambda-Matrix control scheme used by Bryson
and Denham [1961] and the method of Rosenbaum [1963] are examples of
this type of control correction. The same idea is called Neighboring
Extremal Control in the paper by Breakwell, Bryson, and Speyer [1963].
In the following, it will be shown that the Neighboring Extremal Control
Law is obtained as an automatic byproduct of the computational method
based on second variations without additional calcﬁlations.

Optimal paths, or extremals, are constructed so that the cost does
not change to first order for small changes in the control u(t) or the
state x(t). Therefore, optimization schemes in the neighborhood of an
extremal must consider second-order terms. In the neighboring optimal
control scheme ®u is chosen to optimize the second-order terms in the

expansion of the functional ¢ - v'¥ while maintaining W[X(tf)] = 0
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to first order. This is precisely the way in which the control was chosen
in the computational method. In fact, since the correction to the
control u was found as a function of ®x Dby eliminating ©&A, the

coefficients cl(t), Cg(t))""c (t), ¢ ..(t), computed with each

n n+l

iteration, give the correct neighboring extremal control law as

u(t) = cl(t) xl(t) bl cn(t) xn(t) + cn+l(t)

This control is optimal along extremals and has an error of order
higher than Hx(t) - y(t)” along a nonoptimal trajectory-y(t) which

is in the neighborhood of an optimal trajectory x(t).

The accessory problem solution may be used to obtain another useful

result, testing the conjugate point condition for the solution. In an
earlier chapter, the absence of conjugate points was given as one of the
sufficient conditions guaranteeing that the extremal was actually a
minimizing curve for the pseudo accessory problem. There are similar
results for the nonlinear problem which are given in the following

theorem.

Theorem 6.1
If there exists a pair of vectors [x(t), Mt)] which satisfies
the necessary conditions given in (3.6) and (3.7) (Pontryagin's
Minimum Principle) and
1. H_  is nonsingular for all t ¢ [to, tf] (Strengthened
Legendre Condition)
2. There is an optimal ®u for the accessory problem with the

boundery condition V¥ 8x = a for arbitrary a (output

controllability)
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3. There are no conjugate points in [to, t_.] then the trajectory

f
x(t) is optimal in the sense that it provides a weak relative

extremum for the payoff @[x(tf)] while satisfying the

constraints W[x(tf)] = 0.

For a proof of this theorem, stated in a different form, see Bliss
[1949], Chapter IV.* Condition 2 replaces Bliss' assumption of normal
extremals. Since the sccessory problem is gquadratic, it is its own
accessory problem, so that Condition 3 of the theorem may be interpreted
as pertaining to conjugate points for the accessory problem or for the
original nonlinear problem.

Since the conditions of Theorem 6.1 are also necessary for the
computational method based on second variations to converge on the interval
in [to, tf] in the sense that ©&u - O, %(tf) - a finite value, and
HW” - 0, it may be concluded that the numerical solution must furnish

a local extremum for the payoff @[x(tf)} while satisfying the con-

straints W[x(tf)] = 0.

D. SUGGESTIONS FOR CODING

Comments concerning the mechanics of programming are usually not
found in the literature on computational methods probably either because
the authors did not perform the actual programming or because subjects

of this nature do not make interesting reading for a general audience.

*
Bliss' conjugate system Uik(x), Vik<x) (k = l,...,n) of solutions to

the accessory equations corrésponds to the matrices M(t)' and N(t) in
in this report.
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This section is included because the author was the programmer and
some of the ideas may save the prospective programmer a great deal of
wasted effort before he discovers the same thing for himself.

Some of the initial programs were written in FORTRAN II for the
IBM 1620 and 7090. Later programs were written in a special form of
ATGOL for the 7090, called SUBALGOL*, which is a compiler language
developed at Stanford University. for reference, a sample listing of
a SUBALGOL program is included in Appendix B. The sample program was
used to obtain some of the numerical results given in Section D of
the next chapter. Due to the way in which the language 1is constructed,
readers with no prior experience with SUBALGOL, who are familiar with
another compiler language, should experience little difficulty in
reading the program. The sample program 1s strictly ad hoc, written for
the purpose of investigating some of the properties of the method in

obtaining numerical examples for a specific example. Because of this,

it is suggested that the reader write his own program, using the listing
to answer occasional questions rather than as a model program.

The heart of the program is the integration of differential equations
so that it is worthwhile to devote some careful thqught to the selection
of the method to be used. Since most available library routines do not
make provisions for some of the options desirable in this program such

as storing the variables at prescribed intervals, testing several

*This language was derived from the Burroughs Algebraic Compiler
"(BALGOL), originally developed for the Burroughs 220 machine. SUBALGOL
is the mnemonic name for Stanford University's version of the

Burroughs Algebraic Compiller.
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possible conditions for possible exits at each integration step, inte-
grating backwards without changing variables, and integrating equations
which depend on functions stored in tabular form, it is tempting to write
a special differential equation solver incorporating the desired special
features. This procedure, which was followed in the numerical work
reported in the next chapter, is not recommended without first seriously
considering modifying, if necessary, existing package routines for
differential equation solution available at most computation facilities.
The final version of the program used for the test of the method,
entitled ADDUMS in the listing, is actually reasonably standard except
for the features of backwards integration (the initial value of the
independent variable is larger than the final) and the provisions for
keeping track of the running index on the stored variables, which 1is,
although convenient and efficient, really not necessary. In fact, most
of the special features needed may be included as a part of the sub-
routine which furnishes the derivative of the dependent variable
(Procedures BVDP and FVDP in the listing) since these programs must be
written anyway. The type of numerical integration method used, based on
the previous reasoning, is probably best determined by what is available.
Procedure ADDUMS uses a fourth-order Runge-Kutta méthod for starting a
fourth-order Adams -Bashforth predictor-corrector method as given in
Hamming [1962]. Although a program using a fourth-order Runge-Kutta
method, or any of the similar methods as Gill or Kutta-Merson, would
have produced a somewhat simplified program and an ability for easily
varying the integration step size, these methods were rejected in favor
of the predictor-corrector method which requires two derivative evalu-

ations at cach integration step as compared with four derivative
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evaluations for the R-K type methods. Primarily due to a desire for a
simplified tabular function storage and interpolation scheme as discussed
in the next paragraph, the integration step size was selected and fixed
over predetermined intervals. As a check on the accuracy, a warning flag
is printed by the integration routine if the relative error of the
integration is too large.

As described in Section A of this chapter, both the forward and
backward integration need variables, as time functions, which have been
computed on previous integrations. Some means must then be provided for
storing the functions at selected sample points and reconstructing the
time functions from the stored values as required. The use of a fixed
integration step size and storage grid helps to simplify the progremming
which may outweigh the fact that a variable integration step size and
nonuniformly spaced sample points could save time and memory. For this
program, both of these methods were discarded in favor of a fixed
integration step size and storage of the variables at every integration
step. If the memory is available, it is senseless to develop a more
complicated storage-interpolation routine which will waste both running
and programming time to conserve unrequired memory. If a fixed step size
is unreasonable, interpolation may still be avoidéd by continuing to
store at each integration step and using the same sequence of step size
changes for each integration. In this way the storage points are held
fixed. This method was successfully applied in reducing the integration
step size over the final part of the trajectory in order to reduce the
numerical errors in the terminal constraints. Since no storage shortage
difficulties were experienced in programming the examples on the 7090,
many extra unnecessary time functions were stored for convenience in
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outputting the results for plotting. A considerable reduction in the
total amount of memory used for data could have been échieved by out-
putting the results as they were computed, thus eliminating the need for
much of the temporary storage.

The calculation of the inner products in the determination of the
feedback coefficients was made with the aid of the program IPD18, =
double precision routine coded originally in FAP. Furthermore, an
iterative method for minimizing the sum of the squares of the residual
errors was used in the required linear equation solution. These features
were incorporated in some of the early programs in order to help to
track down some small numerical errors. By the use of an open-loop
control over the last part of the trajectory, the requirement for very
accurate numerical linear equation solutions is not so important so that
the use of double precision and iterative solution improvement may be
replaced by a less sophisticated technique.

The evaluation of each run, step (:) in Fig. 6.1, is detailed in
flow chart form in Fig. 6.4. To minimize the effects of computing
inaccuracies or noise, both ¢ and V are modified before the tests are
made. Tests of & may be made only on the first few significant bits
by first setting the remaining significant bits to zero. Since the
desired value of V is zero, V¥ 1is set equal to zero if it is below
a desired error bound.

A final comment concerns the step size adjustment in steps (ED and
GD. The theory specifies that if W is large enough, the iteration will
be successful and that W — O as the method converges ﬁo a solution for

which Huu £ 0. In practice W is replaced by OW, & >0, where
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FIG. 6.4 DETAIL OF THE RUN EVALUATION
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o = ag <1 for a successful run, step Q@), and & = ab > 1 for a bad

run, step (j). In the numerical examples, the experimentally determined

values

Q=10 and @ = 0.5 were found to produce a fairly efficient
U [2)

scheme for adjusting W.



VII. NUMERICAL EXAMPLES

In order to evaluate the efficiency of the proposed computational
method experimentally, several numerical examples are presented in this
chapter. It should be emphasized that the actual machine computation
is an essential part of this research. Although it may be possible to
prove analytically that a method converges to a solution, a machine
solution may not be feasible due to the numerical inaccuracies involved.
The experimental results presented here give a demonstration that the
method works in actual practice, at least for the examples chosen.

The choice of problems has been made to illustrate the various
special cases previously discussed. The first example, a linear plant
with a quadratic loss function and free-end conditions, compares the
one-step convergence of the second-order method to the relatively slow
convergence of a usual first-order gradient-type method. An example
with a complete specification of the terminal states for a nonlinear
plant is then given to show the special technique developed for problems
with fixed-end conditions. An example of a nonlinear plant with free-
end conditions and a quadratic loss function is presented to again compare
the second and first order techniques on a simple nonlinear problem with
no analytic solution. The last example presented illustrates the method
as applied to a problem with partially specified terminal states. This
finsl example represents the most general type of boundary condition
and the corresponding method developed in the chapter on the solution of
two-point boundary value problems is applied.

In an effort to improve the readability of this chapter, some of

the program details have been summarized in Appendix C for reference.
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A. LINEAR PLANT QUADRATIC LOSS EXAMPLE

The first example to be studied is a driven harmonic oscillator

described by the following set of linear differential equaticns

>
It
>

The cost function is the integral of the sum of the squares of the

states and the control given by

10
J=1/2 S (xi + xg + u2) do (7.
0

no
~—

The initial conditions are taken as xl(O) = 1, XE(O) = 0 and the
final state is unspecified.

This problem was solved by the usual method of steepest descent with
the program titled IQL and with the method based on second variations in

program 2MV. Both methods require reverse time solutions of the adjoint

equations
Al = AE - X
KE = - Al - x2
A (20) = A, (10) = O — (7.3)

Program 2MV also required solutions to the additional set of

equations
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Pyy =P, TP

P1o =Py 7 Ppy T P1oPop

Pos =Pttt Py

b =b, + p12<b2 +u + 7\2)

BE = - bl + pgg(b2 +u + Ag)

p,,(10) = p,,(10) = p,,(10) = b,(10) = B,(10) = O (7.4)

In (7.4) the p's are the components of the symmetric P matrix
and the b's are the components of the b wvector.

The algorithm for updating the control in this problem in LQL is

u =1 -eH = u(n) - € (Kg + u(n)) (7.5)

In order to give the best possible advantage to the program using
the usual steepest descent approach, IQL, the step size € was optimized
at each step. The exact step size is determined at each point for the
present problem. The step size optimization routine involves two extra
integrationsof the state equations at each step and resulté in an
additional cost reduction which probably does not justify use in general
programs. However, its use here eliminated all guessing from the method
and possible unfair comparisons due to poor guesses of the step size.

In the program using second variations, 2MV, the control is updated

by
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G ) e H + m e + £7Rex 4 £7)
uu u ux u e

(1) _ (1)),

Py - o+ 2y 00" - () )y (7.6)

2o - xp

il

The final optimal trajectories obtained from the second variations
program are shown in Fig. 7.l where the state variables Xy and x2,
the cost J, and the control u are all plotted as functions of time.

As expected, the second variations program coverged in one step.

Xy

05—+

TIME

X2

0.5+

FIG. 7.1. OPTIMAL TRAJECTORIES FOR l/(52 + 1) PLANT WITH QUADRATIC
LOSS Ql =TI, Q2 =1, Q5 = O AND FREE-END CONDITIONS

The results of the steepest descent program are shown in Fig. 7.2.
Starting with u = 0, 1k successive iterations on the control are shown.
At the end of the 14th iteration, the cost was 0.95667 as compared to

the optimal cost of 0.95613.
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CONTROL ITERATIONS

FIG. 7.2. SUCCESSIVE CONTROL ITERATIONS USING STEEPEST DESCENT,
EXAMPLE A

The advantage of the second-order method is clear not only from
the total number of iterations required for this problem, but also from
the total time for computation. The time per iteration is not quite
doubled by the second-order method.

This problem also illustrates some of the difficulties associated
with the indirect method. Consider the adjoint variables shown in
Fig. 7.3. Since the final adjoints are required to be zero, the quantities
to be determined are the final state variables. From the plots, the
optimal final states are picked near zero so that both the states and
adjoints remain near zero for the interval between 10 and 5, and then
rise to fairly large values in the remaining interval. From personal

experience, this problem is almost impossible to work by the indirect
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TIME
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FIG. 7.3. ADJOINT VARIABLES, EXAMPLE A.

method (i.e., adjusting the final states) on an analog computer due to
the large sensitivity of the initial states to changes in the final states
which are near zero. However, the problem with tf = 5 1is reasonably
easy. This is due to the exponential growth of the sensitivity with tf
for this problem. Most of the successful examples worked by the indirect
method either have small values of the final time or have lightly damped
plants. Both of these situations lead to reasonabie sensitivities so
that a solution is feasible.

The final set of curves given for this example, Fig. 7.4, shows the
solution to the matrix Riccati equation. The optimal control for this
problem is given in feedback form by uw = - Py Xy - pggxg. so that this
plot also shows the magnitude of the optimal feedback gains. For this

example, the feedback control is a global optimal. That is, this

teedback control law is optimal for this problem for any initiszl state.
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20+ Pu

P2

TIME

FIG. 7.4. SOLUTION TO RICCATI EQUATION FOR EXAMPLE A. The Optimal
Feedback Contrel u = - plEXl - p22x2

B. THE BRACHISTOCHRONE

The classical brachistochrone problem was chosen to illustrate a
nonlinear problem with fixed-end points. This problem has the advantage
of an analytic solution for direct comparison of results. Jazwinski [1964 ]
has reported that the ordinary gradient method has very slow convergence
for this problem. It seemed reasonable to see if the second-order
technique could be employed to speed convergence.

Starting at the point (0, 0), a particle slides down a frictionless
wire under the influence of gravity until it reaches the point (gf, nf).

At the point (0, 0) the particle is assumed to have the velocity
obtained by a free-fall 6ne unit distance or JE;'. The problem is to
find the shape of the guiding wire which minimizes the tiﬁe of transition.

The velocity of the particle is
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FIG. 7.5. BRACHISTOCHRONE, EXAMPLE B

where 7' derotes the derivative of 17 with respect to €E. The

transition time is

€ Jf'""“f__
_gf_l__uf_
B v
0

at (7.8)

This problem may be expressed in control problem notation by

identifying -n' with u and -1 with the state x. With these

definitions “he reformulated problem has a cost function to be extremized

given by

N1 o+ ox

[0 .
SI S ao (7.9)
0



The independent variable has been denoted by & ingtead of t,
as is the usual convention, in order to avoid confusion with the time

veriable T in the original problem. The state equation is

x(0) = 0 x(a

The Hamiltonian for this problem is given by

N1 o+ u2

N1 + x

H = + Au 7.

ey

Along an extremal, the optimal control u* minimizes

Since the Hamiltonian does not contain & explicitly, it is =
constant of motion along extremals. Substituting (7.10) and {7.13) 1o

(7.12) yields after manipulation,

(1+x)(1+%) =c (7.14)

where c¢ 1s a constant to be determined by the boundary conditions.
The set of solutions to this differential equation may be writien

in parametric form with parameter v as

£(v)

n

r(l ~ Ccos (V)) + 1

n(v) = (v - sin (v)) +k (7.15)
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which describes a family of cycloids. The former constant ¢ has been
absorbed in the new constants r and k which are picked to satisfy
the boundary conditions (7.11). The initial and final values of the
parameter v are also chosen so that the boundary conditions are
satisfied. This leads to a set of four simultaneous transcendental

equations in the unknowns ) v r, and k.

l)
0 =1r(l - cos (vo)) + 1

0 = r(vO - sin (vo)) + k

r{(1 - cos (vl)) +1
e = r(vl - sin (vl)) + k (7.16)

In order to solve (7.16), a numerical technique must be used. An
IBM 1620 program was written to carry out a solution by a form of Newton's

method. The solution for = 1.0 and Ne = - 0.5 1is Vo= - 1.8087562,

te

vy o= - 2.5936165, r = - 0.8092k45, and k = - 0.677285k4.

It may be easily shown that the minimum transit time is given by

-

T~ oo (v -v.)/ Ve (7.17)

For this particular terminal condition, the minimum time is computed as
T = 0.99849827/ V2g .

The optimal trajectory is now completely specified by the constants
computed above and is given in parametric form in (7.15). However, for

comparison with the trajectories generated by the second variations, it
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is convenieni to have the value of mn for a set of evenly spaced values
of E. The set of corresponding values of 7 was found by another
1620 program using iteration on the parametric equations.

The preliminary calculations to set up the direct method based on
second variations begins by computing the required partial derivatives

of the Hamiltonian.

H =2A

u
+
u 5
N1+ x 1+ u2
—\/1 + u2

X 2(1 +X)3/2

1
N1+ x (1 0+ ug)s/g

uu

- u

2N1 + u2 (1 + X)S/2

31+ u2

ex 7 L(1 +'x)5/2 (7:28)

The adJjoint equation is

A= - H == | (7.19)

24

where ¢ and d are defined by

ad = N1 +x (7.20)
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readily obtained by substituting (7.18) into the defining equations

R=[f -f[H +Wl™™H ]R+R[f -H [H +Wl ¢
X u uu ux X xXu uu u

+R[E_ -H [H_+WI™® 1R -f [0 +wl e
XX xXu uu ux u uu u
b=(f -f [H + wi'H  +R[H - [ + W]'lH ) b
uu ux XX Xu uu ux
- | - 1
- fu[Huu + W] lHu RHku[Huu + W] lHu (7.21)

The substitution and simplification for this example give the

following equations for the scalars R and Db,

R - c < u2 > R2 uc2 ch
- - 3 T2 - 3
2 a( )

1+Wdc 1+Wdc5) (1+Wde

T e e
b= | = (5 - ——E———> Rb - ——5—39—————-b S+ L)
247 (

ha” 1+Wdc 1+Wdc”) cd
2
c5d - R € °
24°
= (7.22)
(1+Wdc™)

The boundary conditions are

!
(@

R(ozf) =

b(af) Amf desired = - x_. + 0.5 nominally . (7.23)

The remaining equations for R and b, as defined in Chapter V, are
|
|
|
|

|
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st
The control for the (n + 1) iteration is given by

) L) e e D))

(n+l) _ X(n) _ b)] .

+ f&R-l(X (7.24)

Substituting the expressions for this example results in the

equation for the control

3
u(n+]_) _ u(n) _ c% [7\ N l—clE ) us N %) X(n) - %]
' 1+We d . 2cd - '
csd u 1\ (n+l)
- 3 z tE|x (7.25)
1+We d 2cd

The terminal boundary condition for A is initially assigned an

arbitrary value and then updated at each iteration by solving the equation

L7y L) e - r(t) (¢ - A () (7.26)

However, R = O at the end point. The
W(n+1) ()

at the final time for A(n+l).

method used in the program involved solving for BA = at
several points near t = tf énd then extrapolating the result to the
end by fitting a polynomial through the computed points.

The machine results are shown in Fig. 7.6 which is a'plot of the
iterations on the trajectory. The initial guess was u = O which

corresponds to a horizontal path. The first iteration reduced the cost

and met the end conditions to within machine accuracy. The high degree
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FIG. 7.6. TRAJECTORY ITERATIONS BY SECOND VARIATIONS FOR THE
BRACHISTOCHRONE PROBLEM, EXAMPLE B

of success, which may seem surprising at first glance, may be attributed
to two major causes. Theoretically, the accuracy is to be expected
since the corrections are in fact exact for errors in a linear terminal
constraint with a linear state equation. However, one might suspect this
will not be the case in practicedue to integration errors. These érrors
are compensated for by the feedback control which helps to force the
errors in the terminal constraint to zero.

The method converged to within the accuracy of the numerical
integration in only two steps. The plot shows that further iterations
coincide with the second. The cost continued to decrease slightly
after the second iteration, with variations in the eighth significant
figure only.
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As originally noted, this problem was chosen because of the poor
convergence of the normal gradient method as reported by Jazwinski [1964].
The version of the problem worked here is due to McReynolds [1966]. The
difference in the problem worked by Jazwinski and McReynolds is only in
the numerical value of the terminal conditions. Jazwinski used gf = 5,
Ne = -7 and McReynolds used gf =1, e = -0.5. A guick check
revealed that the change in terminal conditionsdid not change the con-
vergence rate with the method based on second variations. Sinnott [1966]
recently checked the problem with the gradient method and found it to
be quite effective, converging in 3 or 4 steps to an acceptable answer
for both choices of terminal conditions. This does not agree with the
work of Jazwinski, who reported that his program terminated after 13
iterations and that the resulting trajectory did not satisfy the Euler

equations well.

C. QUADRATIC LOSS VAN DER POL WITH FREE ENDPOINT

The problem chosen for this section is found on pages 267-270 of
C. W. Merriam's book [1964] on optimization techniques. In discussing
this problem, Merriam states for a particular control initialization that

" .. the method based on second variations results in

the application of
complete failure." The difficulty encountered here is due to the
existence of a conjugate point in the accessory problem. The application
of the theory developed in Chapters V and VI to circumvent these diffi-
culties is illustrated in this numerical example.

The driven second-order nonlinear oscillator studied by Van Der Pol

may be written in state space form as
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x, = -x, +a(l - xi) X, +u (7.27)

1 2

where the driving function u(t) has been added as a control. The
parameter a, which determines the degree of nonlinear behavior of the
solutions, is taken as 1. This causes the free oscillations to be a

rough sawtooth waveform. The initial conditions given are x 0) =1

1 (

and x.(0) = 0, which is a point inside the stable limit cycle.

Al

The cost function to be minimized in this problem is

5
J=1/2 S (xi + xg + ug) at (7.28)
0

and the end condition is left free.
The first example is similar to the present one, in fact, the linear
problem is a linearization of the nonlinear problem about the point

=0, x, = 0.

x 2

1
The first step in setting up the iterative technique is to define

the Hamiltonian H as

> o 2 2 |
H=2Nx, - A2Xl + Ag(l - xl) X5 f Agu f l/2(xl f X, f uw ) (7.29)

As before, the required partials of H are evaluated and substituted
into the equations necessary. The program used to generate the steepest
descent solutions, titled SDVP, and the program based on second variations,

titled 2VVP, both required solutions to the adjoint equations
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which become

>/
i

(1 + 2X1X2) %2 - X

- 1) A, - x. . , (7.30)

Program 2VVP also required the n X n symmetric matrix P which

satisfies
P--f'P-Pf -H +Pr (H +W P
X b'd XX utuu u
where W determines the constraint on the control space step size. For

this problem the components of P solve the following set of scalar

differential equations

2
. =2(1 + 2x.x,.) + 2Ax. -1+ E&%
P1y T 1%/ P1o %o oW

DD
. 2 10P00
Bip = Py * (X - L) pyy (L 2xyxy) pyy F 2Nx) g

02

. 2 22 -
By = 2p12 + 2(xl - 1) SRS L+ (7.31)

The additional n vector b satisfies

1

b=-f'b+Pf (H_+ W)~
X ‘ u uu ‘

f'p + £ (H  + w)"lH
u u uu u

For this problem the equations for the components of b are
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by = (1 +2x%,) by + ppp(by + A * w)/(1 + W)
- >
b, = -b, + (xl - 1) b, + p22(b2 + xg +u)/(1 + W) . (7.32)

Since the end conditions are not specified for the state variables
in this problem, the terminal adjoint variables are zero for both programs.
For the same reason the final b variables are also zero. The final P
matrix is zero because there is no terminal cost function. The total

set of boundary conditions at the terminal time is

b(tf) =0, P(tf) =0, Mt.) =0 . (7.33)

f

In SDVP, the steepest descent algorithm for updating the control is

u(n+l) = u(n) -eH = u(n) - 6(7\2 + u(n)) . (7.3k4)

The program SDVP was initialized with two different starting
values for the control function u(t) =0 and u(t) =1 in order to
investigate the effect on the convergence. No particular difficulties
were encountered with either guess. However, the u = O guess produced
a lower cost after 18 iterations, although the cost on the first Iteration
was higher than for u = 1. For a comparison, the successive iterations
u(o) =0

on the control function are plotted in Fig. 7.7 for and in

Fig. 7.9 for u(o) - 1. After 18 iterations, the costs were 1.450 and
(o) 4 (o)

1.565 for the runs initialized with u and u =1 respec-

tively. These figures are to be compared with the optimal cost of
1.433508 as obtained by second variations.

Program 2VVP was also initialized with several starting control
functions. Since the change in the shape of the control function ls
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FIG. 7.7. CONTROL ITERATIONS USING STEEPEST DESCENT INITIALIZED WITH
u(t) = O FOR THE VAN DER POL PROBLEM, EXAMPLE C

05

CONTROL ITERATIONS
(o]
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3 4 5 6 7

FIG. 7.8. CONTROL ITERATIONS USING SECOND VARTATIONS INITIALIZED WITH
u(t) = 0 FOR THE VAN DER POL PROBLEM, EXAMPLE C (The
sequence of small numbered plots may be used to help
distinguish each iteration in the larger plot.)
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FIG. 7.9. CONTROL ITERATIONS USING STEEPEST DESCENT INITIALIZED WITH
u(t) = 1 FOR THE VAN DER POL PROBLEM, EXAMPLE C

CONTROL ITERATIONS

FIG. 7.10.
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ITERATION O
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CONTROL ITERATIONS USING SECOND VARIATIONS INITIALIZED
WITH u(t) = 1 FOR THE VAN DER POL PROBLEM, EXAMPLE C
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quite large from one iteration to the next, some additional information
is helpful to distinguish the various curves. The iterations on u for
2¢) _ 6 are shown in Fig. 7.8 and for W0 1 inpig. 720, At
the bottom of each figure, a sequence of small numbered plots shows the
general trend of each iteration. These small figures may be used to
help trace out each corresponding curve in the large plot which shows
all iterations superimposed.

The first striking difference between the iterations in the
steepest descent and second variations is in the apparently large steps

taken with 2VVP. Recall the definition of "close" functions required

that the norm of the difference given by

P
foull - § ) - o)) e

0

be sufficiently small. In practice "sufficiently small" is determined
so that the resulting control leads to improved cost and constraints.
On the other hand, the method of steepest descent determines H&un by
a different scheme. In this case ©du 1is picked along the gradient
H (i.e., it is a function proportional to the function Hu)' Consider
the resulting change in cost to be a function of loull. Then |[Buj| is
picked as the smallest value which gives a local minimum to the function
giving the change in cost. This example illustrates the large differences
in |jpul| which occur when the two different criteria for .determining
HSuH are applied in the two methods.

Some of the control iterates may be seen to have sharp discon-

tinuities. (The computer plotting faills to show the exact plot in these
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regions.) The ~urves for this problem exhibit a step continuity when
the accessory problem has a conjugate point. This is due to the method
of solution. When a conjugate point occurs, the optimization in the
smaller interval produces a nonzero ©&u only in the smaller interval.
If this 8u 1is not zero at the ends of the small interval, the next
resulting control becomes discontinuous. For this problem the control
is updated in the second variations program by

L2 )

+ wl'l(H + 8x'Pf + b'f )
uu_ uA uA u

= u(n) - (A, + o) &x

2 * 1Pyt BXgRyp *p)/(1 * W)
(n+1) (n) _ _(n+l) (n) _ _(n+1)
u = [—7\2 + (xl - X ) P1q + (x2 - X5 ) Pip - b2]/(l+W)
(7.35)
. . (n+l) . ‘
Since A, x, b, and P are continuous, u will also be continuous ‘

on the next iteration provided there are no conjugate points.

The optimal trajectories as computed by 2VVP are shown in Fig. 7.11.
Although the nonlinear system equation differscconsiderably from the
response of the linearized version discussed in Section A of this chapter,
the controlled responses are gquite similar. (Compare Fig. 7.1l and the
first 5 seconds of Fig. 7.1.) The control law is shown in feedback form
in Fig. 7.12. This neighboring extremal control is optimum for the
given initial conditions and is correct to second order for changes in
the state. These numerical results agree with previously published
solutions by Merriam ([1964] pp. 266-267).

The method based on second variations has a clear advantage in this

example. This is illustrated graphically in the Figs. 7.7-10 and
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FIG. 7.11. OPTIMAL TRAJECTORIES FOR THE DRIVEN VAN DER POL EQUATION
WITH AN INTEGRAL QUADRATIC LOSS FUNCTION
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FIG. 7.12. THE TIME VARYING FEEDBACK FOR THE NEIGHBORING EXTREMAL
CONTROL LAW, EXAMPLE C
146




numerically in the following data. For u(o) = 0, SDVP obtained a

cost which agreed with the optimal cost in only two significant figures
after 18 iterations. For the same u(o) = 0, 2VVP converged to 8
significant figures in the cost in 7 iterations and the cost was correct

to 5 figures in only 5 iterations. For u(o) =1

, SDVP took 19
iterations for a cost in error in the second significant figure. 2VVP
converged to 8 figures in only 5 steps.

In the numerical results presented here, conjugate point difficulties
were avoided by working the accessory problem in a smaller interval. This
method proved successful in that it was able to eliminate the conjugate
point in one step for both choices of the initializing control. The
initial convergence rate was slowed due to this difficulty as expected.
However, the rate of improvement was only slightly less than that of the
steepest descent for the first few steps. It is doubtful that the
frequently proposed scheme of using a steepest descent program for the
first few iterations to initialize the second variations program would
have much effect on the convergence rate at the added expense of writing
an additional program.

The relative rates of convergence for the two methods are further
compared in Fig. 7.13. This figure was made by plotting the logarithm

) n)

of J(n - J¥ +versus the iteration number where J( is the cost on

the nth iteration and J¥ is the optimal cost. The effect of this

scale is to show the errors in terms of the equivalent number of signif-

(o)

icant figures. The curves are given here for = 0 only, since

(o)

the results are similar for u = 1.
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FIG. 7.13. A COMPARISON OF THE RELATIVE RATES OF CONVERGENCE FOR
STEEPEST DESCENT (SDVP) AND SECOND VARIATIONS (2VVP)

D. VAN DER POL TO A LINE

This problem was chosen to illustrate the method as applied to a
problem with partially specified, or Case III, type boundary conditions.

The problem is the same as the problem specified in (7‘27) and (7.28) of

the last section, except for the boundary conditions. The initial

conditions

xl(O) =1, X2(O) =0 (7.36)

are unchanged. The new terminal conditions require that

Ylx(tp)] =1 - xl(tf? f xz(tf) =0 (7.37)
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which represents a line in the state space.

The program written for this example used the method of second
variations and required the solution of the adjoint equations, (7.320),
the state and cost equations, (7.27) and (7.28), and the equations

for M, N, and b given below. The differential equations are

m,, =m

11~ Toi

mo,o=-(1+2x,x.)m, + (1L - x2) m.,., - n_.k

oi 1%27 ™4 17 Mot o1

. -

fy,o= (@x A, - 1) mypy 2o hmy, o+ (14 2x9%,) ny,

n. =2xAm. -m,. -n,. + (x2 -1)n

oi 172M11 21 1 1 2i

b, = n21(7\2 +u) k

. .
o, r122(7\2 +u) k (7.38)

for i = 1,2. The constant X isequal to 1/(1 + W), where the
constant W effectively controls the step size in control space and
is adjusted by the method given in Chapter VI.

In order to find the end conditions for M and N, it is
necessary to find the n X 1 matrix B which is any nonzero solution
to WXB = 0. Since WX = (-1 1), by inspection B = (1 1)'.
According to Fig. 6.2, the end conditions for M, N, and b are given

by
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The control is computed from

G s W o)+ 00 nen) e L) e

= (1 - k) u(n) - k[?x2 + (0 1)(M')‘l(b - Nx(n))]

- x(0 l)(M')_le(n+l) (7.40)
which may also be written as
N O EORENOEAORENE (7.42)
with the coefficients cl(t), cz(t), and cS(t) given by
ey (8) e ()] = -k(0 1)) 7w (7.52)
and
el(t) = (1 -1 ™ Cxin v (00 DT - w1 (7ae)
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Tt et un frowm 0.9t to t

£ o the control is computed in

terms of  ont) vy solving the differential equations

. /- Y e - ~

ety {ex, - 1) exg + (2xA) Bx, + (1 + cxlxz) &1,

EA = ) n 5x,. - BN\ + (x2 - 1) 8A (7.44)
J ; 1 2 1 1 2 )

B o "J:lyrji/ n . . .
where &u(t) = 2! ’\L) - X( )(t). Equation (7.&&) is integrated from
3.9 ¢ to ot wath the boundary conditions obtained from solving

M' (0. tf) S0y tf) = N'(0.9 tf) 8x(0.9 tf) + b(0.9 tf). (7.45)

The control is then Tound from

u(n+l) = (1 - k) u<n) - k[, + axg] . (7.46]

o

e values of 6%Qtf) obtained from the solution to (7.44k) are used to
find the correction to v as shown in Chapter VI, equation (6.9).

The results of applying the computational method to the problem are
shown in ¥ig. 7.14, which is a phase plane plot showing the trajectories
for the first severn iterations. The initial trajectory, labeled
iteration 0, resulted from the nominal control u(t) = 0. The nominal
trajectery gave a cost of 7.478 and a terminal constraint error of
0.63%13. After only seven iterations, the cost was reduced to 1.6857
with an error in the terminal constraint of -5 X 10_6. A conjugate
point was encournered on the second iteration so that the second and the
third itevatiors are identical until the time of the conjugate point at

T o= 3.55 seconds.
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The neighboring extremal control law for this problem is shown in
Fig. 7.15. Although the feedback coefficients may be computed in the
entire interval [to, tf), cl and c2 were set to zero during the last
tenth of the interval so that the final control is open loop.

Additional numerical results are given in Appendix C, Example D,
which includes a table giving the values of J, ¥, and Xl(tf) for
each iteration. From the table, it may be observed that quite good
results are obtained for the cost and the constraints even before the
value of %l(tf) is correct to within two significant figures. This
is because the control is not found by finding u(t) in terms of x(t)
and K(t) directly, so that a fairly good value of u(t) may be

obtained even before the value of A(t has converged.

e)
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FIG. 7.14. PHASE PLANE PLOT OF SEVERAL ITERATIONS FOR THE VAN DER POL
170 A LINE PROBLEM, EXAMPLE D

= +
u c18xl c28x2+<:3

FIG. 7.15. NEIGHBORING EXTREMAL CONTROL LAW FOR THE VAN DER POL TO A
LINE PROBLEM, EXAMPLE D
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VIII. CONCLUSIONS

A. SUMMARY OF RESULTS

This investigation has been primarily concerned with the search for
an efficient computational scheme for the solution of optimal control
problems. The procedure which has been developed, while not a final
solution to the problem, offers several advantages over previous
methods. Some of the important features are:

1. The region of convergence is effectively as large as that of
the usual gradient approach. This is a distinct advantage over most other
second-order methods and eliminates the requirement for good initializing
control time histories.

2. The convergence rate corresponds to that of the gradient or
steepest-ascent methods initially and to the rapid second-order methods
as the solution is approached.

3. Although a set of initial convergence type parameters must be
specified as in the gradient methods, these parameters are automatically
adjusted by the program. Poor initial guesses do not prevent convergence,
but only slow it initially.

b, Adequate tests are performed without additional computation
which are sufficient to show that the solution must be a minimizing
curve.

5. The linear time-varying feedback coefficients for the so-called
neighboring extremal control scheme are available without further
calculations.

6. Terminal constraints are met "exactly,' without the use of

penalty functions.
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7. Certain types of problems with adjustable points of
discontinuity in the differential equation, known as "staging times, "
and "bang-bang' problems are included.

As a byproduct of the derivation of the computational method, a
complete study of feedback solutions to the linear plant quadratic loss
control problem with general linear end constraints is given in Chapter V.
This discussion leads to an investigation of a set of sufficiency
conditions for optimality for this problen.

Another result of this research which has value in itself is the
work given in Chapters IV and VI on extending the method to bang-bang
and related problems. In addition to the application to computing
optimal trajectories, this result allows the construction of neighboring
extremal solutions in a feedback fashion for this problem for the first

time.

B. SUGGESTIONS FOR FUTURE RESEARCH

As i1s frequently the case with research, this study has perhaps
uncovered more interesting problems than it has solved. The first
general area for future work is the field of computational experience.

It would be very instructive to try the method out on some large scale
trajectory optimization problems such as a reentry calculation, in order
to further test its usefulness. There is also a need for the development
of a set of several standard test problems with known bad properties in
order to compare the various techniques. Since it is doubtful that no
single method is best for all problems, it would be very useful to be
able to say something about what type of method should be used for a

particular problem at hand. Another interesting point is the discrete
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vs continuous optimization. Since the calculations are to be done on
the digital computer and ultimately discretized, perhaps a complete
discrete theory of optimization would lead to a more efficient scheme.
There is virtually nothing in the current literature on a theory of
errors in computing optimal controls, although it has been generally
known for some time that certain problems are more difficult than others
due to error propagation. Also, since most of the differential equations
which must be solved in optimizing nonlinear problems are linear, more
work could be done in developing special techniques for the integration
of linear differential equations as well as the application of these
methods to the.computational technique presented here. A final compu-
tational topic would be a thorough investigation of the use of penalty
functions as compared to the "exact" method for dealing with terminal
constraints.

The second area is more theoretical than the first. In this
development, possible singular as well as abnormal problems can arise
guite naturally in the process of calculation even when the true solution
may not possess any of these undesirable properties. Very little seems
to be known concerning the optimization of near singular or near abnormal
problems. Furthermore, problems with conjugate points can occur in the
course of computation. With the exception of a few isolated papers,
conjugate points are not discussed in the literature on control theory.
Other areas of interest include an extension of the method to problems
with state variable constraints and a consideration of sufficiency
conditions for bang-bang problems. It is quite likely that the method

developed for handling the bang-bang problems can be used to obtain a
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complete theory of second variations for such problems and corresponding

.
suf

‘iciercy theorems for local optimal controls.
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APPENDIX A. PROOFS OF THEOREMS OF CHAPTER III

Proposition 3.3

There exists a set of positive numbers W, k, and €. s i=1,2,...59,

such that if h is an element in H which minimizes

< fx(xo), h>+1/2W <h, h >

with
<:gi,x(xo), h>=- kgi(xo), then
1. for |gi(xoﬂ > €45 lgi(xo +n)| < lgi(xo)l
2. for \gi(xo)l < ey |gi(xo + h)|< €y

<
and f(xo + h) f(xo)

Proof: From Lemma 3.1, h i1s given by

1 ~
- - = +
h W Pfx kh

where h is the minimum norm solution to < 81 . x’ h>= - gi i=1,2,...9
J

and P is a projection operator onto the nullspace of < 8
2

Since h 1is perpendicular to Pfx, the norm of h satisfies

P = % lee P + < RIF -

L
By assumption HfXH is bounded and HhH is bounded since the Gram matrix
> is nonsingular. Hence there exist positive numbers M

<
gi,x’ gj,x

and N such that
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If g (xo)| > €, then we must show that Igi(xo + h)l < |gi(xo)1'

gi(xo + h) may be written as

o]

—
o
+
=2

~
i

g, (x)) + < gi,x(xo); n > + o(|fh|)

=g;(x)) +k <g; (x), B>+ o(lnl)

Il

(1 - k)gi(xo) + o(|n]]) .

If W 1is chosen so that l/k =W, then

g, (x, + 1) - g (x) = - ke (x ) +o([x]) .

By the definition of o(|k|), there is a bound km on k such that

if o <k <k then
m
xe, (x )] > o([x])

and hence for km sufficiently small

0 <g (x, +h)< g (x ), if g.(x ) >0

or

0 >g (x, +h)>g(x), if g;(x,) <0

It follows that

g, (x, + )| < lgy(x )] R (A.1)
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In the second case Igi(xo)l < e, and we must show lgi(xo +h)| = €,

while f(xo + h) < f(xo). f(xo + h) is given by

f(xo + h)

1!

£(x ) +<f, h>+ o([lnl)

l ~
£(x ) - <f, P >+k <f,n>+o(lnl)

1l

Now choose k = Q/W such that

l "~
- <
= fX,Pfx>>k<fX,h>l

There is a bound kn such that if k < kn then
f(xo +h) < f(xo) . (A.2)

If gi(xo) 4 0, then the proof of the first part of the theorem holds
and by choosing k < min (km, kn) then (A.1) and (A.2) both hold.

Ir gi(xo) = 0, +then we must show
+ . .
g (x, +n)] <e (A.3)

In this case gi(xo +h) = o(lk]). Choose k= so that if k <k,
then lgi(Xo +n)| < €, Then if k < min (ko, km), (A.1) and (A.2)

both hold.

Proposition 3.k

There exists a constant v sufficiently large such that if

1 1
< + =< Zy < AL
foh>+5<f h h>+Zv h, h > (A.L)
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is minimized over all h € H, then

tlx, + n) < f(x ) . (A.5)

Furthermore, the minimum occurs for

Proof: The expression for the value of h which minimizes (A.4) follows
directly from setting the gradient to zero and solving for h. Note
that v must be chosen sufficiently large so that there is a unique

solution. The expression for h may also be written as

1 1
h=-2f + o(.|?|) ;

The resulting change in f 1is

f{x_ + h)

i £(x) + <£5 b >+ o(fnl)

1 1
f(xo) -5 <, f >+ o(2)
1 1

For 1/v small enough S<f,f o> > Io(;)| so that

f(xo + h) < f(xo) .

Proposition 3.5

There exists a set of constants v and l/k sufficiently large and

a set of tolerances ei, i=1,2,...q such that if
1 1
<F,h>+=<F h,h>+=v<h, h> (A.6)
X 2 XX

2
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is minimized over all h € H with

F(x,N) x) + Nel(x)

and
g.(x_ ) = - % <g. (x ), h> (A.7)

then

)| or

1. if Igi(xo)| > Ei; lgi(xo + h)l < lgi(X

o}

7 <
2. if Igi(xo)l <€ Igi(xo +h)| s € and f(xo + h) < f(xo).

Proof: By an easy extension of Lemma 3.1, the h which minimizes (A}

while satisfying (A.7) is given by

h=-[F +v I]'l

PF + kh
XX X

where P 1is a projection operator onto the nullspace of L =< g, X
)

i=1212,...q and E is the minimum norm solution to < 81 4 h > =
)
- gi(xo). Since
q 4
F =7 ~+}:A_g, , PF =PI -+§:%_Pg. = Pf
b'q X i71i,x X X i 7i,x X
i=1 i

so that

h = - [FXX + v I] leX + kh -

The expression may be further simplified as follows
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1 ~
h =~-=Pf +kh + o(%) .
|4 X v

The proof of the theorem then fcllows from Proposition 3.3.
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APPENDIX B

SAMPLE PROGRAM

**STEEPEST DESCENT 2ND VARIATION VAN DER POL PROBLEM TO A LINE
COMMENT MAIN PROGRAM BEGINS HERE
REAL EXTERNAL PROCEDURE 1PD18()
EXTERNAL PROCEDURE SMOOTH()$ REAL SMOOTH()
EXTERNAL PROCEDURE STARTTIMER()$ EXTERNAL PROCEDURE TIMER()
REAL TIMER()
INTEGER | ,M,MM, INT,NSETZ,J,NBITS ,NTOL ,POOPED
ARRAY TITLE(12)
INTEGER ARRAY AX{6) = (@ X10,8  X2@,@ COST@,@ cia,
@ c2@,@ c3@)
INTEGER ARRAY AA(12) =(@ M11@,@ Mi12@,@ N11@,@  N12@,
@ Bl@,@ Ll@,@ M21@,@ M220,8 N21@,@  N22@,
@ B@.@ L@}
GLOBAL REAL ARRAY RAT(2),FEATHERS(2) $ GLOBAL REAL DETM
GLOBAL REAL ARRAY X(6,20,AU( 501),ASTATE(S, 501),ASTOVE(5, 501)
GLOBAL REAL ARRAY AADJ(12. 501), SAU( 501),CEE(3,501)
GLOBAL REAL T,TEMP,FKK,FU,uU,EPS,C1,C2,C3,CC
GLOBAL INTEGER NFUNCT, N, ITIME, 1CU,ICUP,NSETT
GLOBAL BACKK, CONJUGATEPOINT, HADES
PROCEDURE OUT (K)
BEGIN INTEGER K,|
'F (NFUNCT EQL 1)
BEGIN
IF K EQL O AND N EQL 3
WRITE ($$HEADT)
PRINTOUT(T,FOR 1 = (1,1,3) $ X(1,1),U0,C1,C2,C3)
RETURN
END
IF (NFUNCT EQL 2)
BEGIN IF (K EQL 0)
WRITE ($SHEAD2 )
WRITE(S$SADJ1,FO5)$ WRITE($$ADJ2 ,FO06)
RETURN END
FORMAT HEAD?(B7,*T*,Blk *X1% ,B13,%X2% B12,%COST*,

B12,%U* BIh xCi*,Bi3,%C2*,B13,%C3%,W0)
FORMAT HEAD2{B7,*T*,B22, %Mk B29,%Nk B20,*B*
OUTPUT ADJ1 (T, (FOR 1 = (1,1.6)8X(1,1)),DETM)
OUTPUT ADJ2(FOR 1| = (7,1,1258x(1,1) )

FORMST ??S(SFIS.S,W&), F06 (B15,6F15.8,W0)
END OUT
PROCEDURE ADDUMS( H , 170, TZERO, TMAX, KK $ Xz() $ F() )
BEGIN

BOOLEAN TIRED$ TIRED = O

INTEGER 1T,KK,EOA,1TO, INCR,ISET,K,|,NSTEPS

INTEGER COUNTS COUNT = O

ARRAY C(6,20)

B1L ,*L* ,B12,*DETM* ,W0)
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H ABS( H ) $ IT = 1T0 $ ITIME = KK
TZERO -~ TMAX $NSTEPS = ENTIRE(ABS(D/H)+0.5)
EITHER IF (D LSS 0.0) $ INCR = 1
OTHERWISES ( H= - H $ INCR = -1
HH = 0,5,H $ D = H/24,0 $ EOA = KK +INCR,NSTEPS
START,.

T = TZERO $§ ISET =0

(X(1,1) = X(6,1) = Xz(1))
FOISX(3,)) $ FLO§X(5,))

oUT(0)
206..
FOR K = (1,1,N)
1.k} = x(5,K)HH

FOR K=(1,1 N) $ X(1.K) = X(1,K) + C(1,K)
T = T+HH

F(2$C(2, ) )% ITIME = ITIME+INCR § F(25C(3,))
FOR K = (1,1,N) $ C(2,K) = 0.5(C(2,K) + C(3,K) )HH
FOR K=(1,1,N} § X(1,k} = x(6.K) + ¢(2,K)

FC2 4¢3, ) ") s ITIME = ITIMEZINCGR $ F(2$C(L,))
FOR K = (1,1,N) $ C(3,K) =0.5(C(4,K) + C(3,K))H
T = T+HH $ ITIME = ITIME + INCR
FOR K=(1,1,N) $ X(1,K) = X(6,K) + C(3,K)

F(réc(u.) )
FOR K=(1,1,N)
(X{6,K)= X(!,K)=X(6 K)+(C(1,K)+2.C(2,K)+C(3,K)+C(4,K)HH)/3.0)
[SET = ISETH
IT = IT = 1

IF(IT EQL 0) $(OUT(1) $ IT = 1T0)
SWITCH ISET (TIMEI TIME2 TIME3)
TIMET. F(osx(3 )) $"FOR K= (1,1,N)$ X(5,K)
GO TO 206
TIMEZ2, F(0$X(h )) § FOR K = (1,1,N) $ X(5,K)
GO TO
TIME3, F(0$X(5 ))
(FITEQL O S (1T
IF TIRED $ RETURN
IT = [T
ITIME = {TIME + INCR
T=T+H
FOR K = (1,1,N)
X(1,K)= x(6 SK)+D(55.%(5,K) 59, X (4,K)+37.X(3,K)=9.X(2,K))
FOR K = (I,I,N) $ BEGIN
X(2,K) 3,K)
X(3,K) x(h 'K)
X(4,K) = X(5,K) $ END

X(3,K)
X(4,K)

ITO $ OUT(1) )

LA AP A AP ALY AP P AL ASE ALY ALY S AP AT A ASY ALY AL ALY ALY AP A AL AP LY A AP S S S AN RV SV, SV, 27, 2V, g
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IF ITIME EQL EOA $ TIRED = 1
F(15X(5,))
FOR K = (1,1,N)
X(6,K) = X(6,K)+D(9.X(5, K)+19 X(4,K)=5.%(3,K)+X(2,K))
FOR K = (1,1,N)% BEGIN
IF (ABS(X(8,K)=-X(1,K)) GTR 00, “001ABS (X(6,K)))
BEGIN WRITE(SSLOW,ACCURACY)$ COUNT = COUNT +
IF COUNT GTR 30 $ GO TO HADES
END
X(1,K) = X(6,K)$ END
GO TO TIME3
FORMAT ACCURACY (*P - C TOO LARGE, P = *,F15.8,* C = *,F15.8,
*FOR  X* . J,W0)
ouTPUT LOW(X(1,k}, X(6,K),K)
END ADDUMS () .
PROCEDURE  FVDP(BOOLSF())
BEGIN INTEGER BOOL,K
IF BOOLS BEGIN
Ct = CEE(1,ITIME) § €2 = CEE(2,ITIME)$C3 = CEE(3,1TIME) END
COMMENT AT AN INTERMEDIATE STEP N TTHE Rk STARTING INTEGRATION, THE
INTEGER BOOL IS 2 AND WE KEEP DX=LAST VALUE
IF BOOL LEQ 1 $ BEGI N
DX1 = X(1,1) - ASTOVE(1,ITIME)
DX2 = X(1.2) - ASTOVE(2,ITIME) END
EITHER IF N'GTR 3 § BEGIN
UU = €3 - CC.X(1,5)
IF ITIME EQL 1CUPS UU = C3 + C1.DX! + C2.DX2
F(4) = (2.0 . EPS . AADJ(IZ,ITIME) JX(1,2) =1.0 - FU) . DXI
+(2.0 . EPS . AADJ(12,1TIME) . X(1, 1) ) . DX2
+1.0 ¥ 2.0.EPs.x(1,15.x(1,2))x(1,5
F(5) = ox1(2 0.EPS. AADJ(IZ,ITIMES x{1 13) - DX2(1.0 + FU)
X (1,54) =X (1,5)EPS (1.0 - X(1,1)x(1,1)) END
OTHERWISE § UU = C3 + Ci.DX1 + C2.DX2
F(1) = X(1,2)
F(2) = -X(1,1) + EPS(1=X(1,1)%2),X(1,2) + W
F(3) = 0.5(X(1,1)%2 + X(1,2)%2 + UU¥2)
IF NOT BOOL $
SAUCITIME) =UU § A = 0,0
FOR K = (1,1,N) $
XX=ASTATE (K, 1 TIME)=X(1, K)$A=MAX(ABS(XX) A) END
IF A GTR 1,0%*5 $ BACKK END
RETURN END FVDP() .
PROCEDURE BVDP(BOOLSF())
BEGIN BOOLEAN BOOL § REAL ARRAY G(2), E(2) , A(4) , B(2)
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FEATHERS (1) = M22 = X(1,8) $ THERS(Z) = M21 = X(1,7) $
RAT(1)=MI1=X(1,1) $ M 2= X( AT$2) = -M12 §
NTT = X(1,3) §  N12 = X(1,b) § N21 = X(1,9) $ N22 = X(1,10) 3
B(1)= X{1.5) $ B(2)= X(1,11)$ L1 = X(1,6)% L2 = x(1,12) S
X1 = ASTOVE(1,iTIME)$ X2 = ASTOVE(2,ITIME) S
EITHER IF ( NOT BOOL ) AND ( ITIME NEQ IcU) § BEGIN §
COMMENT... THE FOLLOWING CHECKS DET(M) 5
DETM = I1PDI8(1,1,2,RAT(),FEATHERS()) $
EITHER IF ITIME EQL 1CU~14(OLDSGN=S1GN(DETM)S$G(1)=G(2)=0) $
OTHERWISE §
IF SIGN(DETM) NEQ OLDSGN $ GO TO CONJUGATEPOINT §
COMMENT FIND THE FEEDBACK CONTROL ONLY IF NOT TOO NEAR TF $
IF ITIME GTR |CUP 3 BEGIN §
CEE(3, ITIME)=AU(ITIME)(1-CC)-X(1,12)CC$GO POGO END &
COMMENT NOW SOLVE M.G = - FU BY LEAST SQUARE ITERATION S
A(1) = - M22/DETM  $§  A(2) = M12/DETM §
A(3) = M21/DETM $ A(L) = - MI1/DETM S
FOR J = (1,1,2) $ BEGIN S
E(1) = 1PDI8{1,1,2,%(1,),6()) 3
E(z) = 018(7’1’2’X(1’) G() ‘-0,‘-0) $
G(1) = 018(1,1,2.A§).E?).G?1).1.0) 5
CEE(1,I1TIME) = 1PDI8(1,3,2,G6(),X(1,))cc §
CEE(2,ITIME) = IPD18(1.9.2.G().X(1.))cC $
CEE(3.ITIME) = 1PD18(1.1.2.6().8()} . CC + AUCITIME)
~CC(AUCITIME)+X(1,12)) END  $
OTHERWISE $ IF NOT BOOL g DETM = 0.0 S
POGO., . FOR | = (1,1,N) $ AADJ(I,ITIME) = X(1,1) S
F(1) = DMI1 = M2i $
F(2) = DMI12 = M22 $
F(7) = DM21 = —(1+2.EPS.X1.X2)MI1 + EPS.(1-X1%¥2)M21 - N21.CC $
F(8) = DM22 = ~(142EPS.X1.X2)MI2 + EPS(1-X1%2)M22 - N22.CC $
F(3) = DN11 = (2EPS.L2.X2~1 -FU)MI1 + (2EPS.L2.X1)M21
+ (142EPS.X1.X2 )N21 $
F(4) = DN12 = (2EPS.L2.X2 -1 -FU)MI2 + (2EPS.L2.X1)M22
+ (142EPS,X1,X2)N22 $
F(9) = DN21 = M11(2EPS.L2.X1) - M21(1+FU) —- N11 —EPS(1-X1*2)N215
F(10)= DN22 = M12(2EPS.L2.X1) - M22(1+FU) = N12 —EPS(1-X1%2)N225
F(5) = DB1 = (L2+AU(ITIME))N21,.CC S
F(11)= DB2 = (L2+AU(ITIME))N22.cCC $
F(6) = DL1 = (142EPS.X1.X2)L2 — X1 S
F(12)= DL2 = -L1 — EPS(1-X1%2)L2 -X2 $
RETURN END  BVDP() ]
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SUBROUTINE SANCTUM $
BEGIN $
COMMENT EXTRAPOLATE TO END POINT WHERE M 1S SINGULAR S
FOR 1| = (1,1,3) S
CEE(1,1CU)=3CEE(!,1CU-1)-3CEE(1,1CU-2)+CEE(1,ICU-3) S
WRITE( §$ § BYRON , WINN ) $
RETURN END SANCTUM $
SUBROUTINE MISSION $
BEGIN IF MM $ BEGIN $
FOR 1 =(1,1,N=1)$ WRITE(SS JOE, SINNOTT ) §$ NFUNCT = 2 $
IF POOPED $ BEGIN S
FOR I = (1,1,3) $ WRITE(SS JOE, SINNOTT ) $ NFUNCT = | S
FOR | =1,2,7,8,3,4,9,10,5,11,6,12% WRITE(SSJOEY,SINNOTT) g
END END
OUTPUT JOEY(FOR J = (1,INT,ICU)SAADJ(1,J),AA(1)) $
OUTPUT JOE(IF NFUNCT EOL 1%
(FOR J = ( 1 , INT,ICU )SASTATE(),J),AX(1)),
IF NFUNCT EQL 2 $
(FOR J = ( 1 , INT,ICU )$ CEE (1,J),AX(1+3))) S
FORMAT SINNOTT(6(8F9.3,P),3F9.3,B46,A6,P) $
RETURN END MISSION $
COMMENT THE REST OF THE MAIN PROGRAM STARTS HERE...eeeeses $
HADES.. CARDREAD(FOR | = (1,1,12)$TITLE(1)) S
WRITE(SSTITLL,HDG) S
WRITE(SSTITLL,PT) S
WRITE(SSTITLL,TITFO) S
READ($SOPTS) $
WRITE($S0PT ,F53) S
COMMENT... OPTS INCLUDES PRINT INTERVAL (M), ZERO FOR NO PUNCH (MM),
STEP SI1ZE (H), NUMBER ITERATIONS (NSETZ), ITERATION STEP SIZE (FKK),
FINAL TIME (TEND), EPSILON (EPS}.. IF FKK 1S NEGATIVE, IT
IT USED TO CONTROL THE CONSTRAINT ON DX, OTHERWISE DU
READ($SALOTOFSTUFF)

WRITE(SSALOTOFSTUFFOUT ,MESS)
COMMENT,.. THE INTEGER NBITS ROUGHLY SETS THE ACCURACY OF PS1 REQUIRED
AND THE SECOND NUMBER(NTOL) SETS THE LOWER LIMIT ON THE TOL
EITHER |IF FKK GTR 0 $ FU = 0,0
OTHERWISE § (FU = -FKK $ FKK = 0 )
STARTTIMER (TEMP)
NSETT = -1 § POOPED = 0O
ICU = ENTIRE( TEND/H + 0,5) + 1
ICUP = ENTIRE(0.9TEND/H+0.5) + 1
INT = ICUP/L45

NN AN AN
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OLDPS| = OLDCOST = 1,0%*420 $
COMMENT READ IN INITAL FEEDBACK GAINS (G1), (G2) AND (LAMBDA2 TF)$
CARDREAD(G1,G2,22(12) ) ? 22(6) = - 22(12) $
CARDREAD(FOR 1= (1,1,icu) $§ CEE(3,1)) S
CARDREAD(FOR 1 = (1,1,2)$xXZ(1)) $
FOR J = (1,1,1CU) $ BEGIN CEE (1 J) Gl $ CEE (2,J) = G2 $
FOR | = (1,1,3) $ ASTOVE(!,J) = 0,0 $ END $
FOR | = 2,3,5,8,9 $ ZZ(I) o $
FOR | = 1,7,10 $ 22(1) = $
zz(u) = -1 $
LOOP, . 3 $ NFUNCT = 1 $
ADDUMS(H M,0,0.9TEND,1$XZ()$FVOP()) $
FORTH.. IF NSETT GEQ O $ BEGIN
COMMENT THIS SECTION FINDS DLAMBDA(O0.9TF) FROM M@DLAM = N@DX + B $
A(1) = AADJ(3,I1CUP) $ A(2) = AADJ(9,ICUP) $
A(3) = AADJ(4,1CUP) $ A(L) = AADJ(IO 1CUP) S
G(1) = X(1,1) = ASTOVE(1,1cuP) § G(2) = x(1,2) ~ASTOVE(2,1CUP)$
B(1) = 1PD18(1,1,2, A(), G() AADJ( 5,1CUP),1.0) S
B(2) = IPD18(3 I,Z,A() G() AADJ(ll ICUP),1.0) S
RAT(1) = AADJ(é,ICUP) $’ RAT(2) = —-AADJ(7,1CUP) $
DETM = 1PD18(1,1,2,RAT(),AADJ(,ICUP) ) S
Yz(1) = -AAoJ(é,lcup) DETM S YZ(2) = AADJ(7,I1CUP) / DETM §
YZ(3) = AADJ(2,ICUP) / DETM $ YZ(4) = -AADJ(1,I1CUP) / DETM §
A(1) = AADJ(1,ICUP) $ A(Z) = AADJ(7, i CUP) $
A(3) = AADJ(2,1CUP) $ A(4) = AADJ(8,ICUP) S
G(1) = G(2) = 0.0 S
FOR J = (1,1,3)$ BEGIN S
E(‘) = 'PD18(1)]!2’A (),G(),-B(]),].O) $
E(Z) = |P018(391’2’A (),G(),—B(Z),'.O) $
G(Z) = lPD‘8(3,1,Z,YZ(),E(),G(Z),i.O) END $
WRITE( $ § SHA,ZAM ) $
X(1,6) = G(1) § X(1,5) = G(2) $ N=5 END 5
FOR I = (1,1,N) $ YZ(1) = X(i,1) $
ADDUMS( H, M,0,9TEND,TEND, ICUP  $YZ()SFVDP()) $
TEMP = TIMER(TE P; $ WRITE(SSLOTT,FORT) § STARTTIMER(TEMP) S
DLAM! = 0,5(X(1,4) - X(1,5)) $ N =3 9
PSI = =1,0 = X(1,1) + X(1,2) S
WRITE($$LSTAT,F00) $ WRITE(SSPPSI,FO1) S
COMMENT EVALUATE NEW ITERATION AND ADJUST CONVERGENCE FACTORS S
NEWCOST = SMOOTH(X(1,3)) $ NEWPSI = SMOOTH(ABS(PS!)+2*NBITS) S
IF NEWPS| GTR OLDPSI AND NEWCOST GTR OLDCOST $
BEGIN WRITE ($ $ PSPOTOMATIC ) $ GO BACKTO END $
IF NEWCOST EQL OLDCOST AND NEWPSI EQL OLDPSI : S
BEGIN
EITHER IF NBITS LEQ NTOL $(POOPED = 1 $WRITE($$HOTDOG) ) 3
OTHERWISES( NBITS = NBITS - 4 $ WRITE( $ $ SCRU,NCH ) )g
END
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GOODRUN.. NSETT = NSETT + 1 $ WRITE( $ $ MAD,EIT )
IF NSETT EQL NSETZ $ POOPED = 1
FOR | = (1 ,1CU)S AU(1) = SAU(I)
FOR | = 1 'N) $ FOR J = (1,1,1CU) $ ASTOVE(!,J) = ASTATE(!I,J)
ENTER  MISSION
IF POOPED ¢ BEGIN WRITE( $ $ LU,PUNU ) $ GO TO HADES END
OLDCOST = NEWCOST § OLDPS| = NEWPSI
FKK = 0.5.FKK $ FU = 0.5FU
COMMENT,.. UPDATE BOUNDARY VALUES
22(6) = 7z(6) + DLAMT $ 2z(12) = - 2Z(6) $ ZZ(11) = PS}

GO BOCK
BACKK,.,. PRINTOUT(@BLEwW UP @ ,X(1,1),X(1,2),X(1,3),@AT T =@,T)
BACKTO.. FKK = 10FKK §$ FU = 10FU

BOCK.,. WRITE($$BRAD,AFMAN) $ CC=1,0/(1.0 + FKK)SWRITE(SSPAGE)

NFUNCT = 2§ N = 12
ADDUMS( H, M,TEND,0.9TEND,ICU$ZZ()$BVDP())
FOR 1 =(1,1.N) §vz(1) 2 x(1.1)
ADDUMS (H,M,0,9TEND,0, ICUP = $YZ()$BVDP())
9..TEMP = TIMER(TEMP) $ WRITE($SLOT1,FORT) $ STARTTIMER(TEMP)
WRITE(SSHEAD3)S OUT(0) $ WRITE(S$SPAGE)
ENTER SANCTUM $ GO TO LOOP
CONJUGATEPOINT.. WRITE($$CON,JU)S OUT(O)
TEMP = TIMER(TEMP) $ WRITE(SSLOT1,FORT) $ STARTTIMER (TEMP)
WR | TE ($$PAGE )
NFUNCT = 15 N = 3
J = MIN(ITIME +5 + M, ICU = 1)
J=J - MOD(J,M) + 1
IF J GEQ 1COP  § BEGIN

iIF J GEQ ICU § (PRINTOUT(@CONJUGATE PT TOO CLOSE TO TF@)

GO TO HADES
ITIME = 1CUP S ENTER SANCTUM
FOR | = (1,1,N) $X(1,1) = ASTOVE(I,ITIME) $GO FORTH END
TZ= T + FLOAT(J - ITIME) $ ITIME = J

ENTER SANCTUM
FOR | = (1,1 3)$ YZ(1) = ASTOVE(I,ITIME)

ADDUMS(H ,TZ,0,9TEND, ITIMESYZ ()$FVOP())

GO FORTH S’ COMMENT *kkdkkkdkk END OF PROGRAM*HHkdk koo
OUTPUT TITLL(FOR I = (1,1,12)STITLE(}))
FORMAT(TITFO(A72,W9) ,HDG(A72 w7))

INPUT OPTS(M,MM,H,NSETZ,FKK, TEND,EPS)
OUTPUT OPT?M MM H NSETZ FKK, TEND,EPS)
FORMAT F53(wO0, £PRINT INTERVAL * ,15 *, MM

WO,*PRESENT PENALTY ON STEP S1ZE... *
* EPS = * F15.8,W0)
OUTPUT CON(T) , PPSI{PSI)
FORMAT HOTDOG(*HOT DOG... cosr IS UNCHANGED WITHIN SIX BITS,
.. PROBLEM SOLVED... 0)
OUTPUT LSTAT(FOR | = (1, N$$ASTATE(| 1cu)) BRAD (FKK+FU)
FORMAT FOO(WO * THE FINAL $TATES ARE..*,WO0, 2F18.8 WO,*WITH A COST
OF *,F15.8.W0) , FO1 (@PSI IS ,,. @,Fi8.8 woS
FORMAT AFMAN(*PRESENT PENALTY ON STEP S1ZE... *,F15.8,W0)

*
oF
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FORMAT
OUTPUT
FORMAT
FORMAT
OUTPUT
FORMAT

FORMAT
*

FORMAT
OUTPUT
FORMAT

OUTPUT
FORMAT
FORMAT
FORMAT

INPUT ALOTOFSTUFF ( NBITS , NTOL )

OUTPUT
OUTPUT
FORMAT

FINISH

PT(A72,P)

LUCFOR 1 = (1,1,1CU)$AU(1))
PUNU(5F15.8,P)

HEAD3(*THE INITIAL VALUES ARE... *,W0)

LOT1 (FIX(1000TEMP) )$FORMAT FORT(*ELAPSED TIME = *,J,*MSEC* ,WO0)

JU(*AHA.. SUSPECT CONJUGATE POINT NEAR T = *,X5,2.% SECONDS *,
WO,* CURRENT VALUES ARE  *,W0)

PSPOTOMATIC(*OH NUTS.. CONSTRAINTS NOT IMPROVED, TRY AGAIN WITH
*SMALLER STATE SPACE STEP*,W0)

PAGE (W1)

BYRON (FOR | = (1,1,3)$FOR J = 1CU-3,1CU=2,1CU-1,1CU$CEE (1,J))

WINN (WO,@THE LAST 3 + EXTRAPOLATED VALUES OF C1,C2, + C3 WEREQ

WO.3(B20,4F15.8,W0))
MAD(NSETT),SCRU(NBT TS

EIT(*THIS RUN LOOKS GOOD, ITERATION NUMBER *,J,Whk)
NCH (*TIGHTEN ERROR MARGIN ON PSI, NBITS = *,J, WO)
MESS(*PS1 IS ADDED TO *,J,* BEFORE ANY TEST IS MADE* ,WO0

* AT THE END PSI 1§ COMPARED TO * »J,WO)

ALOTOFSTUFFOUT (2*NBITS,2*NTOL)
SHA ( G(1) , G(2) , E(l) E(2) )
ZAM (@NEW DEL TA LAMBDA(O 9TF) @,2F15,8,@ ERROR = @,2F15,8,W0)

<N P-4 DA AN NN </ ALY YA ALY

*%%%% BINARY DECKS FOR MACHINE LANGUAGE PROGRAMS IN HERE**%%%

2FINISH
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APPENDIX C

DETAILS OF NUMERICAL EXAMPLES

Example A Linear Quadratic Loss Problem

Program Titles LQL (steepest descent)

2MV (second variations)
System X, = X,

:}2 = -x +1:

2
Cost Function J=1/2 [ & + %2+ u?) do
0 1 2

Initial Conditions xl(O) =1, x2(0) =0
Terminal Conditions tf = 10, xf free
Integration Step Size 0.01 (very conservative)

Trajectory Storage Interval 0,05, 201 points each

Results:

LQL 2MV
Time/Iteration 12,1 sec. 11.6 sec.
Realistic1 Time/Iteration 5.7 sec. 11.6 sec.
Cost after (N) Iterations 0.962250 (9) 0.956137 (1)
Xl(lo) 0.006445 -0.002774
x2(10) -0.01492 +0.0006251
Xl(O) 1.912 1.912
XZ(O) 0.4140 0.4140
pll(O) - 1.912
p12(0) - 0.4142
p22(0) - 1,352
bl(O) - -0.00041
b2(0) - -0.000014

Notes: 1., Realistic time indicates the program time without the step
size optimization loop. ’
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Example B The Brachistochrone

Program Title 2VBRA (second variations)
System1 x=1u
1 2 1/2
Cost Function J=1/2 [ [(Q +u")/( + x)] do
0
Initial Conditions x(0) =0
Terminal Condition52 x(1) = +0.5
Integration Step Size 0.01 0<t<0.9

0.0001 0.9 <t < 1.0

Trajectory Storage Interval each integration step stored,
191 points per variable

Results:

Time/Iteration 2.4 sec,
Cost after 3 Iteration53 0.99849
Xl(l) 0.21627
Xl(O) 0.61365
b(0) -0,00429
R(0) 0.95715
x(1) 0.50000

Notes: 1. Alternate choices of the state variables are possible, A
different choice which leads to simplified equations is
x = E, u-=d&/dn.

2., The corresponding condition for the original problem variables
is E(1) = -0.5.

3. In 3 iterations the trajectory, control, and cost all agreed
with the optimal solution to within 5 figures, the accuracy
justified by the integration errors.
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Example C Free Van Der Pol

Program Titles SDVP (steepest descent)
2VVP (second variations)
System X, = X,
X, = -x. + (1 2) +
2= 1 T % X1 v
5 2 2 2
Cost Function J=1/2 f (x1 +x, +u ) do
0
Initial Conditions xl(O) =1, xz(O) =0
Terminal Conditions tf = b, xf free
Integration Step Size 0.025 for SDVP with u(o) =0
0.1 for others
Trajectory Storage each integration step stored
201 points for SDVP, u'®) = o
51 points for others
Results: SDVPl 2VVP1
Time/Iteration 1.7 sec. 0.7 sec.
2
Realistic Time/Iteration 0.6 sec. 0.7 sec,
Cost after (N) Iterations 1.72403 (12) 1.43350 (7)
x1(5) 0.0745010 -0.0519296
x2(5) -0,459410 +0,0662353
Xl(O) 2.,30185 2.43604
xz(o) 1.06942 0.412329
- . 156
p11(°) 1.01
- .41345
p12(0) 0.413450
- .72858
p22(0) 1
bl(O) - 0.00079
b2(0) - -0,00107
. (0)
Notes: 1. These results are for u = 1.
2. See Note 1, Example A.
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Example D Van Der Pol to a Line
Program Title

System

Cost Function

Initial Conditions
Terminal Conditions
Integration Step Size

Trajectory Storage

Results:

Time/Iteration1

Cost after 7 Iterations
y after 7 Iterations
Cost after 10 Iterations
¥ after 10 Iterations
x(5)

A(5)

A (0)

b(0)

Notes: 1.
step size.

VDPTL
*) T %
X, = =x. + x_ (1 ~ xz) 4+ u
2 1 2 1
5
2

J=12 | (x2 + x2 +u) do

o 1 2

xl(O) =1, x2(0) =0
=1 = xl(tf) + xz(tf) =0
0.025

each integration step stored for
a total of 201 points

6.14 sec.

1.6857157

~4.97 x 10°°
1.6857045

1.60 x 10°
(-.22931  +.77068)
(.59248 -.59248)
(2.3766 .38855)
(-0.0011  -.0015)

This time is large due to a conservative (small) integration
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Example D (Cont.)

Iteration #

0

10

Notes:

1.

Cost

7.4780

6.2783

3.0891

3.0011

1.9177

1.6991

1.6871

1.6857

1.6857

1.6857

1.6857

A conjugate point was encountered at t= 3.45 seconds.
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.63131
.0519
.3279
.00534
1172
.0184
.00067
.0000049
.000000089
.000001609

.000001765

xl(tf)

~2.,0267

-7.5890
1.7636

-0.2283
0.7909
0.6002
0.59309
0.59249
0.59249

0.59248



APPENDIX D

PROPERTIES OF THE FUNDAMENTAL MATRIX
FOR THE EULER-LAGRANGE EQUATIONS

Several properties of the transition matrix o(t, 1) for the
homogeneous Euler-Lagrange equations are necessary to derive Property 2
of Chapter 5, Section D. Since these properties are relatively unknown
in the literature except in Kalman and Englar [1965], they will be derived
as necesgsary before presenting the proof of Property 2,

The homogeneous form of the Euler-Lagrange equations to be studied
here may be written as
/

ol

where x and y are n X 1 vectors and F, S, and Q@ are n Xxn

S /X

><o

(D.1)

e

F
f
Q -F' \y

matrices with S and Q symmetric, The fundamental matrix o(t, 1)

will be written in partitioned form in terms of four n x n matrices as

ot ,1) = (D.2)

It will be convenient to define the 2n x 2n matrix J in terms

of the n x n identity matrix In by

J = (D.3)

Note that J satisfies the following identities
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JJ' =1

2n
(D.4)
J' = =J
Another useful definition is the symplectic property of a matrix.
A matrix A is said to be symplectic if it satisfies the relation
-1 tat
A = J'A'J (D.5)

In the following, it will be shown that the fundamental matrix ¢(t, T)
corresponding to the Euler-Lagrange equations (D.1l) is symplectic.

Theorem &(t, T) is symplectic.

Proof: Since ¢ satisfies
F S
¢ = ® o(t, 1) =1
Q ~-F!
then from the identity JJ' = I,
1
F S
d_ txt —_ T'AY 1
At (J'9'J) = 3'90'JJ J
Q -F'
or
g /F S
= (FY — _(T'®" {
ac (J'9'J) J'e'J) |

o o

The proof is completed by showing that ®_1 satisfies the same
-1
differential equation as J'®¢'J since ¢ (1, 1) = J'¢"'(7, ) J = 1I.
Differentiation of the identity ®—1® = 1 with respect to time may be

used to show
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which is the desired result.

From the identities o ‘0

property of ¢,

and

The proof of Property 2 of the matrices

the following

]
®11%

1
*1%12

¢

1]
®22%21

%22%11

1
®22%11

I

set

= (o!

? —_
22%12 ©

= (o,,0]

-0

1

and 00 =1 and the lympiectic

of relations may be obtained:

]
11%21’

Ry
(¢11¢12)

(¢ )!

1
22%12

*
22 21)

¢ =1

*
12721

- 0,01, =1

21712

M(t) and N(t)

Chapter 5, Section D, will now be given.

Property 2

M'(tf) N(tf) = N'(tf) M(tf).

Proof: Since (

M(t)

N(t)

in terms of their values at ¢t =

t

M'(t) N(t) = N'(t) M(t)

£

for all t 1if

179

(D.6a)
(D.6b)
(D.6c)

(D.64d)

(D.7a)

(D.7b)

as given 1in

) are solutions to equation (D.1), they may be written



M(t) M(tf)

= o(t, tf)
N(t) N(tf)
or
M(t) = ¢11M(tf) + ¢12N(tf) (D.8a)
N(t) = ¢21M(tf) + ¢22N(tf). (D. 8b)

For convenience M(t) will be written simply as M, N(t) as N,

M(tf) as A, and N(tf) as B. Then from (D.8a) and (D.8b) one obtains

M'N - N'M = A' (¢!

-
11%1 - %21%11 A

' ' Y ]
+ B (¢12¢22 ¢22¢12) B
+ A" (! 0 - ¢} ¢..) B

11722 21712

' ' Y
+ B (¢12¢21 ¢22¢11) B.

Using (D.6) and (D-7), this reduces to
M'N - N'M = A'B - B'A,

which shows that M'(t) N(t) = M'N is symmetric if and only if

A'B = M'(tf) N(tf) is symmetric.
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