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ABSTRACT

This work is concerned with finding an efficient computational

scheme for the solution to general _ _o_±m_± control problems with

terminal constraints. It is initially assumed that the control variables

are unbounded. The results are later extended to include a class of

problems with bounded controls.

Previous work on problems of this type may be classified into two

groups_ methods which seek iterative solutions to the Euler-Lagrange

equations and those which iteratively improve initial guesses for

control functions. The solution presented is of the second type.

The approach begins by showing how the control problem may be

converted into a sequence of simpler control problems which admit

analytic solutions. These simplified problems_ which have linear

dynamics and quadratic performance criteria, are studied in detail and

optimal feedback control laws are obtained for them. In addition_ tests

which are sufficient to show the optimality of the resulting control

are given. This study is closely connected with the theory of the

second variation in the calculus of variations.

The final solution_ in the form of a computational technique_ is

found by combining the method for generating a sequence of simplified

control problems and their solution together with a method for auto-

matically adjusting several parameters necessary to insure convergence.

The resulting algorithm requires very little computational heuristics

in actual machine calculations. Since the method is second order,

convergence is considerably improved over the usual gradient techniques.

Former difficulties with other methods including small regions of
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convergence and difficulties associated with conjugate points in the

local accessory problem have been eliminated. The control law is

generated in the form of a time function plus a linear time varying

state variable feedback and may be used in a neighboring extremal

guidance control scheme. Furthermore_ tests are performed which are

sufficient to showthat the resulting control is optimal.

Several numerical examples are included to illustrate the appli-

cation of the method in actual problem solution.
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i. INTRODUCTION

A. MOTIVATION FOR THE STUDY OF THIS PROBLEM

'l_e principal goal for the research e_ort presented here is the

development of an efficient practical scheme for numerically solving

optimal control problems. Although the modern approach to optimal

control was begun a decade ago by a group of Russian mathematicians

lead by L. S. Pontryagin [1956]; [1962]; its applications have been

largely limited to simple problems which have analytic solutions. This

situation was beginning to change when Breakwell [1959] proposed a

computational scheme for numerically solving an optimal control problem

with the aid of a computer. Since Breakwell's initial efforts; several

other investigators have dealt with the problem of efficiently generating

numerical solutions to problems of this nature.

In order to illustrate a typical problem which requires numerical

solution; consider the following example. Suppose it is required to put

a payload into orbit around the earth with a suitable boost vehicle.

The direction of the vehicle is to be controlled by adjusting the

direction of thrust of the engine. For a fixed engine design, how may

the thrust direction be programmed so as to maximize the final altitude

in orbit?

This problem is typical of optimal control problems. It requires

the determination of a function of time; the control variable (the

thrust direction); so that some functional is extremized (the final

altitude); and that certain constraints are met. (The payload is

placed in orbit.)
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At this point, the problem presented maybe interpreted as an

optimal control problem with no analytic solution in the general case.

The need for a solution to this problem other than as an academic

exercise still requires demonstration. Perhaps the most important

reason for the generation of numerical answers is to study the nature

of optimal solutions. Wemaythen use these solutions as guidelines for

the design philosophy used for engineering solutions. Another important

value of the numerical results might be to act as a standard to judge

the performance of somesuboptimal schemewhich has been designed with

hardware implementation in mind. The most obvious application of

numerical solutions is to act as the actual control schemefor a vehicle.

In practice_ this idea is not too useful since the usual solutions are

open loop. That is, the solutions generated only solve one example of

a simplified model of the physical system with a fixed set of initial

conditions and terminal constraints. The more desirable solution uses

somemeasure of the system's state as feedback so that the control

program maybe altered to provide optimal performance for the calculated

example and near optimal results for slightly different situations. By

this technique_ it is possible to construct a suboptimal control system

which is similar to the more conventional linear feedback control system

designed by classical methods. The construction of numerical controls

which are of the form u(t) = c'(t) x(t) + Cn+l(t)* which are optimal

for the given problem and demonstrate near optimal performance for

similar problems is also considered in this study.

For notationj we let u_c_x be vector or column matrices.
transpose of the matrix c.

2
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B. SURVEYOFPREVIOUSWORK

In order to put the present work in its proper perspective, a brief

history of related research will be given. Although the field is rela-

tively new, the widespread use of computers in control research,

particularly in relation to aerospace problems, has accelerated the work

so that manydifferent computational techniques are now available. It

is not the intention to cover all of the related work here, but to try

to include the most significant ideas without discussing each method

in detail.

The usual methods for solving variational problems in the Calculus

of Variations lead to the reduction of the problem to one involving a

set of differential equations. This set of differential equations may

not be solved in a straightforward mannerbecause the boundary conditions

are specified on the boundary of someregion R. In optimal control

problems, R is usually an interval of values for the independent

variable so that its boundary consists of two points. For such a problem,

the set of differential equations and its boundary conditions are co_only

called the Two-Point Boundary Value Problem, (TPBVP). The difficulties

in solving the set of differential equations have led to a search for

variational methods of a different kind, known as direct methods, which

circumvent the problems associated with the differential equation solu-

tion. These methods, which are discussed in most modern books on the

Calculus of Variations,* are based on finding a sequence of functions

which give successively smaller values to the functional to be minimized.

cf._ Gelfand and Fomin [1963], Chapter 8.
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Twoof the classical direct methods are the Ritz method and the method

of finite differences.

Following the distinction given in the Calculus of Variations,

literature on computational techniques normally divides methods into two

types, the direct methods and the indirect methods. Methods based on

finding solutions to the derived TPBVP are generally referred to as

indirect, and methods which directly construct minimizing sequences for

the functional to be minimized are called direct. This dichotomization

is often confusing, for frequently a method seems to have some of the

characteristics of both techniques. For example, two-point boundary

value problems of the kind normally associated with indirect methods are

eo_only encountered in second-order direct methods and furthermore

construction of minimizing sequences, a technique that distinguishes

direct methods, is often employed in solving the TPBVP in the indirect

methods.

The basis for the indirect method involves finding the unknown

boundary values at one point so that the resulting solution to a set

of differential equations, the Euler-Lagrange equations, will satisfy

the required boundary conditions at a second point. By regarding the

boundary values at the second point as functions of the unknown boundary

conditions at the first point, the problem becomes one of finding the

values of the variables Xl, x2 which make several functions of

these variables fl(xl, x2,..._xj),...,fk(Xl, x2,...,xj) take on

specified values. The approach used by Breakwell [1959] was to evaluate

the functions fl' f2''''_fk for several selected perturbed values of

the variables Xl, x2,...,xj, to fit a suitable polynomial approximation

to each of the functions using the measured points, and to adjust the

4



variables Xl,X2,...,x j based on the polynomial approximation to the

nonlinear functions. This technique essentially uses a form of

numerical differentiation by means of finite differences. Other methods

have been developed in which the required derivatives are computed

analytically, thus hopefully avoiding the errors inherent in numerical

differentiation. Although these methods differ in the details_ they

all effectively linearize the TPBVP, solve the linearized version by

various techniques_ and use the solution to adjust the boundary condi-

tions for the nonlinear TPBVP. Some examples of this type of approach

are found in Breakwell, Speyer, and Bryson [1963], Jazwinski [1964], and

Payne [1965]. The chief characteristic of these methods is rapid

convergence if they converge at all. The requirement of relatively

good initial values of the parameters to be adjusted to insure conver-

gence has led to the development of guides for choosing good initial

guesses. These methods have been highly successful when the user is

fairly resourceful in generating good initializing boundary values.

Direct methods are normally distinguished by the characteristic of

not requiring good starting values to insure that an improved path may

be found. The first methods_ such as the Ritz method, attempt to

minimize the functional by expressing the trajectory or the control, as

an expansion in terms of a weighted sum of a suitable set of functions

and finding the minimizing set of coefficients. Methods of this type

have not been too popular in application to optimal control problems

primarily due to the difficulties in finding a suitable s@t of basis

functions and in determining the number of terms in the expansion to

use except by experimentation. A second type of direct method is

Bellman's dynamic programming [Bellman 1957], which is an efficient



sequential search schemefor determining optimal paths. The technique

of dynamic programmingis sufficiently different from the other methods

so that further detailed discussion is beyond the intended scope of

this study. Dynamicprogramminghas the advantage of being simplified

by state space and control constraints, of having the ability to include

nonanalytic system descriptions, such as tabular data, and of generating

entire families of optimal trajectories for problems with different

initial and boundary conditions. Its primary disadvantage is the require-

ment for an excessive amount of computer memory, thus limiting its appli-

cation to problems with a small numberof state variables. Larson [1964]

has presented a method for reducing the required memoryfor problems

with a continuous independent variable which has the effect of' increasing

the range of problems for which computation by meansof dynamic program-

ming is feasible.

A significantly different type of direct method_ known as the gradient

method, was developed by Kelly [1960] and later by Bryson and Denham

[1962]. The gradient methods have the ability to generate successively

improved trajectories even with very poor starting values. However_they

tend to converge slowly, particularly in the final stages of the iteration,

and require the selection and subsequent adjustment of several convergence

parameters. Several investigators have presented schemesfor improving

the convergence rate and for avoiding the selection of the somewhat

arbitrary convergence parameters. (See, for example, Brown [1964],

Rosenbaum[1963], and Stancil [1964].) Initial studies by Sinnott [1966]

have indicated that the method of conjugate gradients in a function space

shows considerable promise as a gradient-type method with improved speed

of convergence.

6



The gradient method is essentially a first-order method since it is

based on finding the first-order effects of the control on the functional

to be minimized and the terminal constraints. In an attempt to accelerate

the convergence of the gradient method, second- and higher-order direct

methods were investigated by Merriam [1964], [1965]. Merriam's parameter

expansion technique was developed for this purpose. A scheme with similar

results was later given by Kelly, Kopp, and Moyer [1964]. Due to the

similarity of the results obtained by Kelly, Kopp, and Moyer and the theory

of the second variation in the Calculus of Variations, the direct second-

order methods are often called methods based on second variations. These

methods achieve the goal of improved rates of convergence at the expense

of losing several of the desirable features of the gradient method. The

primary difficulty is the necessity of again initializing the program with

fairly good guesses of the control law. Also, Merriam's method provided

no means for meeting the specified terminal conditions exactly. Merriam

[1964] and Kelly, Kopp, and Moyer suggest that a gradient type method

be employed until the convergence begins to slow and then be changed to

a second-order method to accelerate the convergence. McReynolds and

Bryson [1965] give a direct second-order method which includes a feedback

solution to a linear TPBVP which must be solved as a part of the method.

Another type of method for computing optimal controls_ known by

various names as quasilinearization, differential approximation, or a

generalized Newton-Raphson method, is, strictly speaking, an indirect

method. However, it is considerably different from the o_her indirect

methods. Conventional indirect methods solve the TPBVP by iteratively

adjusting the unspecified boundary conditions. By quasilinearization,

a set of functions is iteratively adjusted by solving a sequence of

linear TPBVP's so that they converge to a solution of the no_!inear



TPBVP. A comparison of quasilinearization with someinefficient versions

of the gradient and second variations techniques may be found in Kopp

and McGill [1964] with numerical results in Moyer and Pinkham [1964].

Van Dine [1965] has combined quasilinearization with a finite dif-

ference schemefor eliminating the instability problems in solving the

necessary linear TPBVP's. An application of Van Dine's technique to

an aerospace control problem is found in Van Dine, Fimple, and

Edelbaum [1965]. McGill [1965] has used penalty functions to extend

the method of quasilinearization to problems with state inequality

constraints. Kenneth [1965] has used a technique due to Valentine

[1937] to include boundedcontrol in a computing method based on

quasilinearization. Although the general technique has very rapid

convergence, it still has a limited region of convergence and requires

sufficiently good initializing functions.

C. OUTLINEOFRESULTS

Merriam's work was the starting point for the research reported

here. The result has been the development of a numerical method of the

direct type which has the following characteristics:

i. The region of convergence is effectively as large as that of

the usual gradient approach.

2. The convergence rate corresponds to that of gradient methods

with feedback correction initially and to the rapid second-

order methods as the minimumis approached.

3. Although a set of initial convergence type parameters must be

specified as in the gradient methods, these parameters are

8



automatically adjusted by the program. A poor guess does not

prevent convergence, but only slows it initially.

4. Adequate tests are performed without additional computation

which are sufficient to show that the solution must be a

minimizing curve. (Sufficiency test in the Calculus of

Variations.)

5. The linear time-varying feedback coefficients for the so-called

neighboring extremal control scheme are available without

further calculations.

6. Terminal constraints are met "exactly_" without the use of

penalty functions.

The material to be presented is divided into eight chapters.

Following the introduction in the first chapter and the problem state-

ment and introductory material in the second chapter_ the third chapter

outlines, from a general point of view, the basic concepts involved in

computing constrained and unconstrained extrema. Chapter IV uses the

results of Chapter III to convert the computational problem into a

sequence of linear control problems which have quadratic loss functionals.

A feedback control solution to the linear plant, quadratic loss, control

problem with general linear terminal conditions which guarantee that the

solution obtained is optimal is also included. In Chapter VI, all of

the previous results are combined to obtain the computational method.

Several numerical examples are given in the following chapter as a

demonstration of the value of the method in actual problem solution.

Following the conclusions in Chapter VIII_ a number of appendices are

given as supplementary material which include a sample computer problem

listing, some additional numerical details for the examples given in

9



Chapter VII_ and a derivation of some useful properties of fundamental

mstrices for the Euler-Lagrange equations which are used in Chapter V.
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II. STATEMENT OF THE PROBLEM

This chapter contains definitions of the notation to be used through-

out this work _._d _ precise statement of the mathematical _+,_7 _7_

to be considered. In the last section, a number of special cases are

enumerated for special study.

Ao SYSTEM DESCRIPTION

The usual description of the system to be controlled is given by

the vector differential equation

x(t) = f[x(t), u(t)]

where x(t) is an (n × i)

(2 .i)

real vector of time functions hereafter

called the state vector, u(t) is an (m X i) vector of functions

called the control, f(',') is an (n X i) vector valued function of

its arguments, and t is the independent variable usually identified

with time.*

Although any dynamical system may be described by an equation of

th
the type (2.1), it is perhaps necessary to note that for a general n

order differential equation, this is not the case. For example, if the

differential equation is given by

G(y, y, _,...,y(n) u) = 0 (2.2)

where the y's are scalar time functions, there may not be an

Problems in which the function f depends explicitly on the independent

-variable, t_ may be considered by adding an additional state variable

Xn+ I which satisfies Xn+ I = i, Xn+l(O) = to.

ii



equivalent representation of the form (2.1).

solution for y(n) as

y(n) = y(n)[y, _,...,y(n-l) u]

However, if (2.2) has a

(2.3)

then there is no difficulty. It will be assumedthat any system to be

studied has a representation as in (2.1) which is called a state space

representation.

The vector function u may contain a set of system parameters as

well as a vector valued time function. For example, one control variable

might be the staging time for a multistage rocket. By consideration of

this more general class of controls, a wider range of problems may be

studied without loss of generality.

B.

Control Problem:

PROBLEM STATEMENT

The control problem may now be stated as follows:

For the system described by (2.1) and the set of initial

conditions

X(to) : x ° (specified) (2.4)

find a recto r control function u _ U, the class of admissible control

functions; such that at some time tf > to the scalar payoff function

9[x(tf)] is minimized and the (q X i) vector terminal constraints

_[x(tf)] = 0 (2.5)

are satisfied.

Given in this form_ the control problem is identical to the problem

of Mayer in the classical Calculus of Variations with a differential

12



u

subsidiary condition (the differential equation (2.1)). It is well

known that problems in which the payoff function is of the Lagrange

form

tf

u) do
t
o

(2.6

may be converted to the Mayer problem by defining an additional state

variable Xn+ I which satisfies

 n+l = u) (2.7

Xn+l(O) = 0

The payoff becomes

,[x(tf)] : Xn+l(tf) (2.8

In a similar manner, mixed problems of the Bolza form

tf

t
o

_(x, u) do + ¢[x(tf)] (2.9

may be written in the Mayer form without the integral cost function.

In order to insure that the solution to the problem may actually

by computed, it is necessary to redefine the problem slightly. The

actual question to be answered is "How may an optimal control be cal-

culated?" For further practical reasons, only direct methods will be

considered. This reasoning leads to a reformulation as follows: given

a nominal control function u(t) (and the corresponding trajectory),

15



ce:.'.:tr:/-_ a newcontrol which is "better" im sot_:_.:_ez.se. A n:orc precise

,._c._cnt is given as the Computational Control Problem.

Computational Control Problem: For the system described by (2.1) a.ud t!.e

initial conditions (2.5), let x°(t), t e [to, _f] be the solu1:ion oi'

O

trajectory for a given nominal control function u (t). Find a vector

control u(t) e U, the class of admissible control fu_..ctions, su:q the.-

either the change in payoff AqD obeys

_ = _[x(t_)] - _[x°(tf)] < 0 (2 .I0)

and the terminal constraint functions satisfy

I_i[x°(t_)]] < e. or, i_' ._.lWi[x°(tf)]t < e.
- i 1

I r

1

is not satisfied_ tLen

l i[x(t )]l< I i[x°(tf)]l i = l_2,...,q-I (2 .ii)

fcr._:a_._u_y determir.ed error bounds on the constraints ¢._
i

-_., • ....

The terminal time t_ for the new trajectory x(t), (obtained by solv-

ing (2.1) with initial conditions (2.3) and control u(t)) is determi:,. _

from the stopping condition

-1._qL_ktfF..f -.)] =n _[x(t_)] = 0
(2._=)

C. SPECIAL CASES

Although the problem statement given in the last section may be

sc)ived in general_ there are several special cases which have Che

advantage of easier solutions. These simplifications may be made for

more restrictive types of boundary conditions specified by the functions

?i[x(tf)], i = 1,2,...,q.

The first simplification occurs when the stopping condition

14



_[x(tf)] is of the form

_q[X(tf)] = Q[x(tf)] = (tf - b) = 0 (2.13)

for a specified constant b. With this restriction the problem is

known as a Fixed Final Time* problem. Actually this special form for

the stopping condition does not eliminate much of the formal difficulty

except for some tedious algebra. However_ the Free Final Time problem

leads to programming complications in the actual computation. This is

due to the necessity of storing time functions on the time interval

[to _ tf]. That is, the time functions are stored in the form of a

sequence of k sample points f(ti) , for i = 1,2_...,k. If the

storage points are not uniformly spaced_ it is necessary to store the

set of storage times [ti]. A considerable saving both in machine and

programming time can be obtained by assuming that the number of points

stored_ k, and the set of storage times [ti] remain fixed from one

iteration to the next. Of course, many problems of interest have the

final time specified. Other problems may be converted to fixed

interval problems by a change of the independent variable. For these

reasons_ the assumption of a fixed interval will usually be made for

convenience with an indication of the modification for the more general

case .

Several other problem simplifications can occur depending on the

nature of the constraints _i[x(tf)]_ i : l_2_..._q-!. In order to

Although time is assumed to be the independent variable in the differential

equation_ of course this is not necessary. With this understanding_ _he

independent variable will be called time to agree with common usage in

the literature.

15



discuss these simplifications_ it is necessary to consider the tangent

plane to the constraint @ = 0 given by

_ _i[x(tf)]_x. Axj = 0,

j:1 J

i : l,...,q-i (2.14)

Before discussing the simplifications_ since summations of the form

in (2.14) will appear frequently here and in later chapters, it is

expedient to introduce a more compact notation at this point.

of the usual matrix notation allows (2.14) to be written as

The use

_x : 0 (2.15)

Unfortunately; the notation for what the matrix A means in

this case is not completely standard. The system adopted here will be

th
to write the matrix A with a.. representing the element of the i

iJ

.th
row and j column as

F_gi[x(tf)] 1_x : [aij] : L _xj

(2.16)

This method has the distinct advantage of being the shortest

possible without loss of too much of the important information. It has

the disadvantage of being not completely standard and requiring more

knowledge on the part of the reader. The chief point to remember is

.th

that _x represents a matrix in which the l row is the collection

.th
of partial derivatives of the m row of the vector 4-

Another frequently required expression is the matrix of second

partial derivatives of a scalar quantity. These are the matrices whose

elements are given by

16



.

i = l_2,...,n r

j = 1,2_...,n c

rows)

y (n
C

(columns)

where f is a scalar function of the vectors x (nr × i) and

× !). The abbreviated notation for this matrix is

(2.17)

Now that the simplified notation has been introduced_ the several

special types of boundary conditions will be discussed. These special

cases are distinguished by the dffmension of the subspace described by

the tangent plane to the terminal manifold

subspace

T : fZ_Xl?x[X(tf)]-, - -- ax = O]

_[x(tf)] : 0. We assume the

(2.20)

has dimension r.

If r = n_ the problem has a free endpoint. This situation provides

the most straightforward solution. Since the methods of solution in this

case are simplified_ often problems with end constraints are converted

to approximate f_ee endpoint problems by the following technique. We

define a new cost functional _n[X(tf)]_ related to the original cost

_[x(tf)] and the terminal constraint vector

_n[X(tf)] = _[x(tf)] + Mg[?[x(tf)]]

?[x(tf)] by

(2.21)

17

B' = f (2.19)
yn

It follows from this definition that
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where g(.) is a suitable penalty function of its vector argument and M

is a positive number. In order for g(-) to be suitable, it should be

function which vanishes only when _[x(tf)] = O. In practice,a positive

this technique involves a careful choice of the form of the function

g(') and, more important, of the relative weighting given to errors in

the end constraints as compared to changes in the original cost functional

_[x(tf)]. If the value of the constant M is sufficiently large, the

vector which minimizes _n will be close to the vector which minimizes

and satisfies the constraints, _ = O. Unfortunately, very large

values of M often lead to numerical difficulties in the computer solu-

tion and some compromise must be made. A complete study of the relative

merits of the penalty function and exact methods for handling constraints

is yet to be carried out. The exact method was chosen to be used in

Chapter IV primarily to eliminate another arbitrary choice, that of the

penalty function.

The second case, r = O, is called the fixed end_oint problem.

The most common example of this case is the problem in which all of the

terminal states are required to have specified values. It will turn

out that the fixed endpoint problem has sufficient structure so that a

simplified computational scheme may be used as compared to the general

case.

The third case is the most general one. When 0 < r < n_ the

problem has partially specified end conditions. Actually the solution

in this case includes the first two cases. It is never used for free

or fixed endpoint problems since the computations for those cases

require fewer equations.
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D. CONTROL AND STATE SPACE CONSTRAINTS

For some problems_ the set of admissible controls U_ is closed.

An example might be a rocket in which the control variable is the thrust

level. Because the thrust level has a physical upper bound Um, U is

the set of ai± functions u defined on the interval [to, tf] for

_hich lul _ u • In general the set U will depend on time and the
m

state x(t). Problems of this type are said to have Control Variable

Constraints and demand special consideration.

Another type of constraint is obtained when there are physical

limitations on the values of the state vector. To avoid an unrealistic

solution to a rocket trajectory problem_ we might require the solution

to have positive altitude. Otherwise_ the optimal solution might require

an initial dive below the surface of the earth_ This type of constraint

may be given in the form of r inequalities of the form

si[x(t) , u(t), t] _ 0 i = l,...,r

When these relations may be solved for the control

state and time_ they reduce to control variable constraints.

the problem is said to have State S_ace Constraints.

(2.22)

u in terms of the

Otherwise_

The penalty function approach may also be applied to control

variable constraints as well as to state space constraints. The only

modification of the idea previously discussed is the addition of integral-

type penalty functions to the cost of the form

tf

k± _ gl[si[x(_), u(a), o]] d_ (2.23)

t
o
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The function gl C.).. is chosen to be very large if any of the s.'sz are

positive. A similar integral penalty function for bounded controls may

be used. The penalty function given by

tf

t
o

lu(o)lk (2.24)

o

will cause lu(t)l _ 1 for k large.

While the penalty function technique still may have its computational

difficulties for this type of problem; it has increased attractiveness

due to the additional complications of the "exact" method.

It is often possible to eliminate constraints by a clever change of

variables. In problems for which lul _ i, the control variable u may

be replaced by the unbounded variable v by the transformation

u = sin (v) (2.25)

If the optimal u is "bang-bang" (i.e., the control is always on the

boundary), it may perhaps be described by a time function switchir_

between limits. The new unconstrained "control variable" may be

defined as the set of numbers which specify the switching times.
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III. DIRECT YZTHODS OF SOLUTION

The Computational Control Problem posed in the last chapter is by

no means the only _o_7_ _._-._.....7_+_. Further background for t_....

problem solution will be developed in this chapter which will illustrate

other approaches to the problem of computing optimal controls. The

main part of this chapter will discuss the direct method for solving con-

strained and unconstrained minimization problems in a fairly general

fr anew ork.

A. COMPARISON OF DIRECT A_ND INDIRECT FORMULATIONS

In order to compare the direct and indirect methods_ it will first

be instructive to consider a simple example. Suppose the minimum of a

scalar function f(x) depending on the vector x _ R is desired. An

necessary condition at the minimum is the set of

fx(X): 0

n nonlinear equations

(3.i)

It is usually rare that the set of equations (3.1) admits an easy

solution. One might now propose some iterative technique for solving

this set of equations. This is the indirect method for problem solution

since the minimization is indirectly done through the solution to a set of

nonlinear simultaneous equations. The usual iterative methods used to

solve equations like (3.1) involve finding a relation

Xn+l = g(Xn) (5.2)

which satisfies

Ifx(Xn+l) l < fx(Xn) I
(3.3)
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where the last equation represents a componentby component inequality.

Thus the indirect method typically converts a given minimization problem

to a related but different minimization problem. The solution to the

original problem is obtained indirectly by solving the related problem.

Onemight suspect that if a technique is available for generating

for the componentsof Ifx(Xn)l, aa minimizing [xi]sequence

similar technique could be used to minimize the original function f(x)

directly. This leads to the direct problem formulation.

By the direct method, a relationship of the form

Xn+l : h(Xn) (S.4)

is used recursively to construct the minimizing sequence {Xn] so that

f(Xn+l) < f(Xn) (3.5)

In the control problem; the corresponding set of necessary

conditions to (3.1) were given by L. S. Pontryagin [1956], [1962].

Pontryagin's _nimumPrinciple,* which gives the control law u(t) in

terms of the solution to a nonlinear two point boundary value problem_

may be stated as follows.

Pontryagin's Minimum Princi_le

For the control problem, there exists a vector valued function h(t),

not identically zero, and a set of numbers, w0 _ 0 and the vector w,

not all vanishing, which satisfy for t c [to, tf]

n State Equations _ : _(_, x, u)

Pontryagin stated his result as a Maximum Principle but it is common

practice now to use the Minimum Form in the conditions. Only a change

in sign is involved in the equations.
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n Adjoint Equations _ = - H'(_, x, u)
x

n Initial Conditions x(0) = x0

q Terminal Constraints _[x(tf)] = 0

n Adjoint Boundary Conditions _'(tf) = WO_x[X(tf)] - W'_x[X(tf)]

m Control Equations u : min-l[H(h, x, u)] (3.6)

ucU

Where the Hami!tonian H(_, x, u) = _'(t) f(x, u) (3.7)

-i
The notation min is used to denote a function ucU which minimizes

u_U

H. If the final time tf is not fixed_ there is an additional relation

H[_(tf),x(tf),u(tf)]= Vo$[X(tf)] - v'_[x(tf)] = 0 (3.8)

Also, if f(x, u) is discontinuous at a set of points

chosen in an optimal fashion, then

t = t. to be
I

H(_, x, u) t- = H(_, x, u) t+

l l

The set of relations (3.6), (3.7), and (3.8) are necessary for a

solution to the optimal control problem.

In order to construct an indirect computational scheme from this

set of necessary conditions_ several assumptions will be made for

simplicity. First_ assuming w _ 0"_ take WO = i without loss ofo

generality. Next assume it is possible to find an explicit solution

of the control equation which gives u(t) = u[x(t), _(t)_. Sub-

stituting this equation into the adjoint and state equations reduces

When w0 _ 0 the problem is said to be normal.
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the necessary conditions to a set of 2n differential equations. As a

final ass_mption_ suppose the q terminal constraints and n adjoint

boundary conditions can be solved to specify the terminal values of n

of the variables _(tf), x(tf). Call the n specified terminal

variables y and the n remaining terminal variables z.

By integrating the state and adjoint equations backwards it is

possible to computethe initial state x(O) which is a function of the

unknownterminal variables z. That is

x(o): g(z) (3.9)

The computational problem is now solved by specifying a method for

finding the vector z so that the initial conditions x(O) match the

specified initial conditions x O. The usual techniques involve defining

a scalar error function which measures the distance between x(O) and

xO. The problem then becomes a finite dimensional minimization problem

of this error in n variables. Thus again the indirect method has

converted the original minimization problem to another related

minimization problem.

One obvious advan%age of this approach is the large reduction in

dimension. The original minimization problem required searching an

infinite dimensional function space as compared with the auxiliary

minimization problem in which the dimension of the parameter space

is equal to the number of state variables. In addition to the conceptual

advantage of this method3 the theory for finite dimensional minimization

is quite well developed and can be applied. Programs for this type of

solution are relatively easy to write around a general purpose differen-

tial equation solving routine. Since the bulk of the calculation is
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differential equation solution with little storage and logic n_eded_

iterative analog or small hybrid-analog-digital computers may be used

to implement the method.

At this point it is reasonable to question the value of the direct

methods. Perhaps the primary consideration is one of convergence. The

indirect methods require good guesses of the vector z in order to

insure convergence. These guesses are frequently difficult to obtain

from prior physical knowledge of the problem. On the other hand, the

direct methods require an initial choice of the control function u(t)

which is usually obtainable from experience with the physical problem.

When compared with the indirect methods_ there are relatively no

convergence difficulties in the direct methods due to bad initialization.

A further practical matter concerns the value of the computational

results. Since each iteration in a direct method improves the initial

guess and generates a "better" trajectory_ intermediate results are

useful even if the process has not yet converged. Since the indirect

methods only integrate extremals (i.e._ solutions to the Euler-Lagrange

equations)_ the results of each iteration do not give much useful

information until the boundary conditions are almost met.

Probably the most severe difficulty with the indirect method is

the numerical inaccuracies encountered when integrating the Euler-

Lagrange equations. It may be shown (see for example Kipiniak [1961])

that in the case of linear equations with constant coefficients_ the

Euler-Lagrange equations have a set of characteristic roots which have

the following property. If _ + i_ is a root_ (i.e., there is a

homogeneous solution of the form e(_+i_)t), then -_+i_ is also a
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root. When these equations are integrated either forward or backwardS,

for each damped stable mode, there is a corresponding unstable mode.

For large time intervals these problems are extremely sensitive to

small changes in the initial conditions and some form of double

precision calculation may be required. Other investigators have noted

difficulties with the indirect method for problems involving highly

dissipative systems [Bryson, 1966]. However, for plants which are

lightly damped, the two point boundary value problem is only slightly

unstable. The difficulties with highly damped problems do not occur

with the direct methods. This is because the system and adjoint

equations are integrated separately in their "natural" directions.

That is to say that the state equations are integrated forward and the

adjoint equations are integrated backwards so that the linearized

equations have the same set of eigenfunctions. The stability then

depends only on the stability of the plant.

B. GRADIENT TYPE METHODS

In the remaining sections of this chapter; the discussion will be

quite general so that it will be possible to connect the techniques used

in functional minimization in an infinite dimensional space to those

used in ordinary function minimization in En. The abstraction will

actually simplify the statements to be made in most cases and the results

will admit a wider interpretation. As a suitable reference for the

mathematics used here, see Luenberger [1965], Lusternik and Sobolev [1961],

or Kantorovich [1964].

In the following; let H be a Hilbert space with inner product

< x; y> where x _ H; y e H. The norm of an element x c H will be

26
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denoted by

Jlx dl__ x,x > (3.10)

Consider the following problem which is related to the most simple

form of the computational control problem. Given a point x e H and
O

a functional f(x) : H _ El, find a point x c H so that

_f(xo, x) : f(_)- f(_o) < 0 (3.11)

Assume that there is a linear functional of

ing on Xo, denoted by _(Xo, 8x) which allows

written as

8x = x - Xo; depend-

_f(Xo, x) to be

_(xo, _) : _(xo, _x)+ o(H_Ji)

for arbitrary points x° and Sx. The function o(llSxll)

o of 8x") depends on x and satisfies
O

(read "little

Then, by definition, the functional f(x) has a strong or Frechet

differential 9(Xo, 5x) at the point x o.

If the Frechet differential exists, it is equivalent to the Gateau

or weak differential Df(xo, 5x) which is defined by the relation

f(x° + _) - f(_o)
Df(xo, 8x) : lim c (3.13)

_0

The Frechet differential is usually called the (first) variation of

the functional f(x) in books on the Calculus of Variations. The form

(3.13) is not always equivalent to the Frechet differential, but as
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previously noted they are equal when the Frechet differential exists

and is more useful for computation in most cases. In the following_ the

Frechet differential will be referred to as the first variation or

variation of f(x) and will be denoted by _f(Xo, _x) or simply _f.

Since _f is a linear functional on a Hilbert spacej it may be

uniquely represented by the inner product of an element y c H and _x.

Therefore (3.11) becomes

_(xo,x): _ y,_x> + o(ll_xll) (3•14)

a m

The function y_ which will frequently be written as fx _ is known

as the gradient of f at x
O

The fundamental basis for nonlinear minimization by gradient

techniques is given in the following proposition•

Proposition S.I

There exists a constant c > 0
O

over all Sx _ H with jlSxll C c
O

such that if _y, Sx_ is minimized

then _f _ 0. Furthermore the minimum

occurs for Sx = cy/llyll.

Proof: Any Sx c H may be written as Sx = C_y + z with <y, z> = 0.

2
Then < y, Sx > = _llyll2 and o_llyll2 + llzll2 = c If <y_ _x> is

minimized_ (_ is as small as possible which implies z = O. Then _ =

2 2 c _x) +
c /IlYll and _x = - _ y. For any c _ 0 we have Zkf = (_x, c

o(llSxll) = - llyllll_xil+ o(llSxlI). By the definition of o(l[$xlJ) there is

a constant c > 0 for which lo(llSxll)l _ ll_xll IlYll if jl_xll-_ c. There-

fore _f _ O.

The iterative technique usually referred to as steepest descent for

unconstrained minimization of the functional f may now be stated as
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x (n+l) = x (n) _ ky(x (n)) (3.15)

where k < 0 is the scalar step size. As before, the function y(x (n))

is the gradient of ti_e ....ct__na! f at the point x (n) __

3.1, the method has step by step convergence. That is_ for the proper

choice of the scalar constant k, the inequality

f(x (n+l)) - f(x (n)) = £f(x (n+l), x (n)) < 0 (3.16)

is satisfied.

This method is a gradient method since the change in x is along

the gradient. There are several schemes for computing the constant k

in this equation. Perhaps the simplest heuristic technique is the half-

ing and doubling method. To start the method, an initial step is made.

If (3.16) is satisfied, the cost functional is decreased and the step is

successful. In this case, k is doubled for the next iteration. If

(3.16) is not satisfied, k is halved and another step is made from the

original point. Of course, there are many variations of this technique

for experimentally determining k.

A different method is obtained by assuming the functional f is

quadratic in x. That is, f may be written as

f(x) : < y, x > + i/2 < Qx, x > (3.17)

where Q is a self-adjoint linear operator from H to H. With this

model for f(x), it is possible to pick the best k to minimize f_f,

(i.e., maximize I_fl).

By the method of steepest descent

x (n+l) = x (n) kp(n) (3.18)
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where p(n)

(y + Q_(n)).

by

is the gradient at the point x (n) which is given by

The constant k is chosen to minimize _f and is given

^ <_, p>k--k :,- (3.19)
<QP, p >

In practice an easier approach for some problems is to determine k

by measuring _f for two values in addition to the point k = 0 from

the previous iteration. Since if f is quadratic in x_ _f is quadratic

in k_ and these three points may be used to fit a parabola in k and

hence determine k.

Most of the problems of interest have constraints and therefore

require some modification of the unconstrained gradient technique. Before

formulating the nonlinear theorem for the problem with constraints corre -

sponding to Proposition S.l, we shall consider the necessary conditions

for the functional f(x) to be an extremum with the set of constraints

gi(x) = 0 for i = l,...,q.

Suppose f and gi are continuously differentiable in a neighbor-

hood of the point x = xo. Further assume that the constraints are

linearly independent. That is_ the gradients of the functionals gi are

linearly independent functions not all vanishing. An equivalent state-

ment is that the equation < gi,x(Xo), h > = _ i = l,...,q has a

solution h e H for arbitrary 5. or that the q X q Gram matrix A
i

given by

= gl,x"(Xo)' gj,x(Xo ) >][aij] [ <

.
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°

be nonsingu!ar.*

In the unconstrained problem_ the necessary condition for an extremum

was that the gradient of f vanish. For the unconstrained problem, the

extremum is achieved if it is not possible to increase the cost while

moving along the constraint. This is equivalent to requiring the component

of the gradient of the cost functional f in the tangent manifold of the

= . The tangentconstraint g(x) 0 to be zero at the point x = x °

manifold is the set of all elements h e H which satisfy

< gi_x(Xo)_ h > = 0 i = l_..._q. The tangent manifold is a subspace

of H and will be designated by T.

The gradient of f may be written uniquely as

u c T and v c S, the orthogonal complement of T.

tation, u is the projection of f
x

Taking the inner product of fx with gj,x gives

f = u + v with
X

In this represen-

onto the tangent manifold T.

= > + < v, gj > = < v, gj >> < u_ gj_x< fx' gj,x ,x ,x

j = l,...,q (3.20)

since u _ T. By assumption the gj_x are linearly independent and

thereby form a basis for S. v may be written as

q

v = _. _igi,x (S.21)

i=l

This assumption for the control problem is related to the idea of con-

-trollability for the linearized problem in the sense of Ka!man [Kalman;

Ho, Narendra, 1963]. It is also related to normality in the classical

calculus of variations as noted by Breakwell and Ho [1965]. The matrix

[aij] may also be recognized as the matrix I_ in Bryson and Denham

[1962 ].
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Using (5.20) and (5.21) we may solve for v as

q q

_ _ >]-i < fx' > gjv = [< gi,x' gj,x gi,x ,x

j=l i=l

(5.22)

The necessary condition follows immediately

u = f
X

q q

- _. _ [<gi_x, gj_x >]-i < fx_ gi_x

j:l i=l

> gj,x
=0 (5.25)

If we note that the term

q

[< gi,x _ gj,x

i=l

>]-i < fx' gi,x > i = 1,2,...,q

represents a vector h., we can write (3.25) in the familiar form
J

f
X

q

- _ hjgj, x : 0

j:l

or

f - h'gx : o (3.24)
X

which is the well-known Lagrange multiplier rule where g = 0 is

taken as a vector constraint.

A useful physical interpretation for the Lagrange multipliers may

be obtained by considering a problem with slightly perturbed constraints.

The modified problem consists of finding an extremum for f(x) with the

constraints
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gi(_)- c_ = o, i : 1,2,...,q. (3.25)
j

G

If x solves the proLlem with _. = 0_ then there is a solution to
O l

(3.25) for any c. _u_+_ly small--by the linear independence of the
l

constraints. Therefore_ there is a solution_ x + h_ to the con-
o

strained minimization of f(x) with the constraint (5.24). The corre-

sponding change in the minimum value of f(x) is

f(_o+h) f(Xo):<f_(_o)'h>+o(llhll). (3.26)

By the differentiability of the constraint;

gi(Xo+ h) - gi(Xo) : < gi,x(Xo), h > + o(llhll) (3.27)

Application of the multiplier rule to the original problem shows that

there is a set of multipliers X., not all zero which satisfy
I

q

fx(Xo) -_, Xigi,x(Xo) : 0.
i=l

(3.28)

By multiplying (5.27) by _i _ summing over i, and subtracting the

result from (5.26), one obtains

q

f(x ° + h) - f(x o) =_ Xi[gi(Xo + h) - gi(Xo)]

i=l

q

+ <[fx(Xo) -
i=l

_,igi,x(Xo)1, h>+ o(llhll)
(3.29)
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From the original assumptions that gi(Xo) = 0 and gi(Xo + h) - e'm= 0

together with (3.28), the last equation maybe written as

q

+ olJlhLI f(x° +h) f(Xo)= Xi i
i=l

(3.30)

Equation (3.30) is the basis for the sensitivity coefficient inter-

pretation of the Lagrange multipliers. In other words_ this result says

that the constrained extreme value of f(x) changes to first order by

.th
an amount X.e. when the j constraint is changed by a small amount

J J

C ..

J

In the following chapter_ constraints which are differential

equations will be considered. In this case, the constraint g(x) may

be of the form

g(x) = _ + (! - x 2) x + x = O(t)

so that the range of g is no longer simply a set of numbers_ but it

may be an entire time function. In the book by Liusternik and Sobolev

[!961]_ the multiplier rule is extended to handle more general problems

of this nature. This theorem will prove useful in future developments

so that it will be stated here. For the proof_ the reader is referred

Liusternik and Sobolev [1961].

Preliminary to the theorem_ a few additional definitions are

necessary. Let the constraint function g(x) be defined on a Banach

space B with range in a Banach space C, g(x) e C, x c B. f(x)

is a functional defined on B. Again assume that the constraints are

linearly independent or that the range of the operator defined by the
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gradient of g, gx _ is the whole space C. Both g

continuously differentiable in a neighborhood of x .
O

let C* denote the dual (or conjugate) space of C.

and f are assumed

In the theorem_

Proposition 3.2

If f(x) has an extremum with g(x) = 0 at the point

then there is a linear functional L defined on C, L e C%

the functional

X -_ X .,
0

such that

: -  [g(x)J

has a local minimum at x = Xo_ i.e._ the Frechet differential of

_(x, h) satisfies

_(Xo, h) = 0 for all h c B.

F(x),

The extension of this theorem to problems with inequality constraints

g(x) a 0 has been studied as a generalization of the Kuhn-Tucker theorem

by Hurwicz [1958]. Lack [1965] discusses the application of this theorem

in deriving necessary conditions for the control problem• The Pontryagin

Maximum Principle stated in Chapter II is actually another form of a

Lagrange multiplier rule with inequality constraints (bounded control)•

There are several versions of the gradient technique for computing

constrained extrema for the control problem. In the absence of constraints_

the solution is obtained by choosing 5u to minimize the linear part of

the change_ _ _ in the cost_ plus an added quadratic functional chosen

to restrict the step size. A constrained problem may be treated by

requiring the change_ 5u_ in the control to be chosen so as to satisfy

specified changes_ 5_ in the constraints to first order in addition
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to minimizing the linear part of _ plus a quadratic term as in the

unconstrained case. The following lemma gives one method for constructing

the solution to the problem of minimizing a linear plus a quadratic

functional with a linear equality constraint. The idea of the lemma is

to first find the shortest (minimum norm) solution which satisfies the

constraints and then to optimize in the tangent manifold so that the

optimization process does not effect the constraints. The solution con-

veniently separates into two parts, the part necessary to meet the

constraints, and the part which minimizes the cost.

Lemma 3.1 The solution to the problem of finding an element x E H

which minimizes _ a, x _ + 1/2 W _ x_ x _ with _ b_ x _ = _ where

a, b _ H and W and _ are scalars, is given by

i
x = -Pa+_

W

where _ is the minimum norm solution to _ b, x _ = _ and P is a

projection operator onto the nullspace of b, i.e.,

i. _ b, Px _ = 0 for every x c H

2. Pd = d for every d which satisfies _ b_ d _ = 0

Proof: By the multiplier rule_ the optimum x is given in terms of a

constant _ as x = - i/W(a _b). Since _ b, x _ = _, then

b, a _ - h_ b, b _ = - W_ or _ = (_ b, a _ + W_)/_ b, b _, so that

i (a -
x = - _ <b, b_

_b

_b_ b _

Since the minimum norm solution, _, to _b_ x _= _ is O_/_b_ b _ ,
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the proof is completed by showing Pa = (a - < b, a > b/< b, b >). To

show property i_ < b, Px > = < b, (x-b< b, x >/< b, b >)> = < b, x > -

< b_ x > - 0. Property 2 follows from Pd - (d - < b, d > b/< b_ b >) = d

since < b_ d > = O.

The solution x constructed in the lemma may be used to solve the

nonlinear constrained minimization problem by a gradient technique. The

basis for this approach is given in the following theorem.

Proposition 3.3

There exists a set of positive numbers W_ k_

such that if

IW< h_ >h with

then Igi(Xo+ h) I < Igi(Xo) 1

f(x° + h) < f(Xo).

Proof: See Appendix A.

h is an element in

and _._ i = 1,2_...q,
l

H which minimizes < fx(Xo), h > +

Igi(Xo)l> i

and

< gi,x(Xo), h > : - k gi(Xo) then if

otherwise Igi(x O + h) l < e.i

By comparison of the results of the last theorem with the goal as

defined in the statement of the Computational Control Problem in

Chapter II; it may be seen that the problem is solved by specifying a

method for finding the constants W; k_ and e.. In effect_ k
m

controls the amount of improvement desired in the constraint g; e.
l

sets a tolerance limit on the accuracy in meeting the contraints and

W controls the step size. In order to maximize the convergence rate,

it is desirable to pick !/W_ k; and e. as large as possible without
l

violating the requirements of Proposition 3.3. The method used for

finding suitable values for W_ k, and c. is discussed in Chapter VI.
m

Other versions of the construction of the element h in Proposition

3.3 may be used. One technique suggests calling for certain i_<mrovements,
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5gi_ in each of the gi's and 5f in f. The element h is then

chosen so that it is the minimum norm solution to the set of equations

< gi,x(Xo), h > = 5gi

< fx(Xo), h > : 8f

(3.31)

where 8g_ and 8f are again selected suitably small so that the

requirements of Proposition 3.3 are satisfied. By the multiplier rule, the

optimal h must furnish an extreme value for

q
T---n

<h3 h > + _ hi < gi_x; h > + ho <fx; h >

i--i

(3.32)

where ho is chosen so that < fx_ h > : 5f. The construction used in

Proposition 3.3 requires h to furnish an extreme value for

q

i/2 W<h, h >+_ vi < gi,x' h > + < fx; h >

i:l

or

q

<h; h >+_

i=l

2V.

_< h>+ 2
gi,x' W < fx' h >

(3.33)

_o that the methods are equivalent with the identifications

and

2V.
I

= ki; i = 132,...,n

2

W o
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T_ #_-,_ :_r_,,?ond_o_oh._........ : the specification of Sf determines _ and
o

°

Pe':':,: ...... .... _.,,. _.:_:_, method in the theorem requires the direct

_,__..... r_, to _-e ruitiplier rule given in the last section_ the

constralu(:i '.r:2:P.kizabion of f(x) with gi(x) = 0 may be reduced to

t.:he pro-_:P__:_ o£ findii2g the unconstrained minimum of an auxil!iary

_' ...... _ ..... _(x, _A) defined by

wi_c. , ......; _ ._,_k--22_._ :_:_ ,s'is_ EAigikx ) is written as },'g(x) with

_:e &efi_S._;io:-_ of h and g as vectors. It may be easily

........ ...:....a foT_. of cons£rained gradient technique is obtained by _pply-

:::.: !', " ,',":',_t_/_;:w_. _""',_÷ method (first order) to F(x_) In this

•_.. ..,_:.:_I......-_2._,_-_.....nod is used to minimize F(x,_)_ thus

r(:_,.:.__: i :_ ,_ _._::_2<:'r:d-ordermethod which includes constraints

".,__,:i:_ _zico_-!strai_2ed gradient method, f(x) was minimized in a

_-__' R/ ._t.:R__s.shion by choosing the change in x_ h; to minimize the

i:_, o-q:.r ]sart of f(x + h) with the constraint that the step size be

_-at _he higher order terms were negligible. In thes'.2a2.'_ {_12ou_h SO ,_:: __

:?_-?..".:]-..'.']cr2!2272oi: t22e functional to be minimized with the constraint

,h. _: C iS

- f(x) h>+l < f h, h > + o(,,h,,*,,II tl i

x xx

n w}v' c2: f
Kx

is _ =__.........e_ self adjoint operator from H to H. The



h : - [fxx + vl]-I fx

where I is the identity operator and v/2 is the Lagrange multiplier

associated with the constraint ]]h[]= c. Ordinarily, v would be

determined in terms of c from the constraint. An equivalent procedure

would be to pick v, instead of c, arbitrarily, and to minimize the

expression

1

i

< fx' h > + [ < fxx

i

h, h > +[ v <h, h > .

This method is formalized in the following theorem.

Proposition 3.4

There exists a constant v sufficiently large such that if

i i

< fx' h >+ [ < fxx h, h > + [ v <h, h >
(3.36)

is minimized over all h c H, then

f(x +h)-f(x o) <0
O

Furthermore, the minimum occurs for

h : - [fxx + v I] -I fx

Proof: See Appendix A.

A constrained minimization technique may be constructed by applying

the above method to the functional F(x,X) as defined in the first

part of this section. Expanding F(_,h) to second order as a function

of x and h gives
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i
F(x +h, _ + 8_) :F(x, _) + <F ,h >+ 5_'g(x) +_ <E h, h >

X XX

+ _' < gx'h _ + o(llhlJ2)

The condition for F(x + h, _ + 8_) F(x, _) to be an extremum for

and 8_ to second order is for h to furnish an extremum for F

considered as a function of h alone and for

h

gi (x) : - < gi,x h >

which is the condition for the constraints to be met to first order.

This idea leads to the following theorem.

Proposition 5.5

There exists a constant w sufficiently large and a set of

constraint tolerances ci, i = 1,2_...,q such that if

i i

< Fx_ h > + _ < Fxx h, h > + _ w < h, h >

is minimized over all h c H_ with

F(x, _) = f(x) + h'g(x)

and

gi(Xo): - < gi,x(Xo),h >

then if Jgi(Xo)l > ci, Igi(x 0 + h)l < Igi(Xo) I or if Igi(Xo) I < ci,

Igi(x ° + h)l _ ci and f(x ° + h) < f(Xo )"

Proof: See Appendix A.

The results given have been only concerned with step by step con-

vergence and do not include a consideration of the rate of convergence.
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The second order method maybe intuitively expected to converge faster

than the gradient since it uses more information about the local behavior

of the nonlinear functionals f and gi" Kantorovitch [1964] gives

someresults concerning bounds on the convergence rate in the uncon-

strained case in terms of bounds on the Operator f • The resultingxx

bounds have little use in practical computing schemesdue to the

difficulty in estimating a tight bound on f and because actualxx

results maybe considerably better than the theoretical bounds. For

these reasons_ only an experimental investigation of the relative con-

vergence rates has been considered in this report.
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IV. A D_RECT METHOD BASED ON SECOND VARIATIONS

In the last chapter_ the iterative constrained extremum problem

was set up and solved in a general manner from an abstract point of

view. The chief result was to reduce the complex nonlinear problem

to a sequence of less difficult problems. The purpose of the present

chapter is to apply these general results to our specific control

problem. This will lead to the formulation of an easier control problem

which can be handled analytically. The discussion of the resulting

auxiliary problem is the topic of the following chapter_ Chapter V.

A. DERIVATION OF THE METHOD

In order to avoid too many of the details of the general case, we

shall first consider a more specialized problem. More specifically, we

shall assume that the functions f(x, u), 4[x(tf)], ¢[x(tf)] all have

continuous first and second partial derivatives and that the state or

control variable constraints have been taken care of by suitably

smooth penalty functions. Further_ we assume that the final time, tf,

is fixed.

In order to apply the Lagrange multiplier technique developed in

the last chapter to the problem of minimizing ¢[x(tf)] with 4[x(tf)] = 0

and _ = f(x, u)_ suitable linear functionals to append the constraints

must be constructed. The usual end constraint function 4[x(tf)] has

its range in E and hence the dual space is also E . We may then
q q

write the appropriate linear functional of 4 as required by the theorem

as an inner product of an element of the dual space_ represented by the

vector _ _ Eq, and 4. This may be written as (_, 4) where ( , )
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denotes the inner product in E or in the more conventional vectorq

notation _'_. The constraint _ - f(x, u) = 0 may be handled by

noting that its range is a set of n-dimensional time functions defined

on [to, tf] with the inner product

tf n

t i=l
o

tf

t
o

_'(o) y(o) da .

A general linear functional defined on this space may be written as

tf

f(x) --_ _'(_) x(_) d_
t

o

where _(t) is another n-vector time function defined on [to, tf].*

The control problem (as stated in Chapter II, Section B) is

equivalent to finding the minimum of a new functional defined in the

Lagrange multiplier rule. This functional may be written with the aid

of the appropriate linear functionals defined above as

F(x, u, h, v)= ¢[x(tf)]

tf

w'_[x(tf)] + _ _'(f - _)da

t
o

(_.l)

The definition of the function spaces has been made intentionally

vague at this point to avoid unnecessary difficulties regarding the

closure of the space. We shall tacitly assume that there is an

appropriate Hilbert space which describes the functions of interest.
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It is convenient to define the Hamiltonian function again as in (3.7)

as H = h'(t) f(x, u). The functional F may then be written as

F(x, u, h, v) : [x(tf)] - w'_[x(tf)] + _tf(H - h'i) da .

t
o

(4.2)

In order to apply the results of the last chapter, it is necessary

to compute several first and second Frechet differentials of the payoff

and the constraints. However, we will not use this exact approach

but use an equivalent one. By the multiplier rule_ we seek the minimum

of the new unconstrained functional F. By expanding F in a Taylor

series in all of its variables to second order and finding the extremum

of the result, we not only compute the required differentials, but the

results in the last chapter are rederived for this specific problem.

For convenience_ the expansion will be done in two parts. First,

the function defined by

_[x(tf), v] = ¢[x(tf)] - v'_[x(tf)]

will be expanded. To second order, _ is:

!

_[x(tf) + 5xf, v + 5v] = q) + q)xSXf - 5v'? + 1/2 5xfq)xxSXf

- 8_,,x_Xf + o( II_xfll2) + o(118_112)

(4.3)

(4.4)
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!

+ _'_a+ i/2_f_xx_Xf - _'(,_xf - _a) + o(li_fii2) +

+ o(lt_ll2) + o(il_all2) (4.4)

where all of the functions on the right are evaluated at the nominal

point x(tf)_ v and 5xf_ 8v denote changes from the nominal

point.

The technique for expanding the integral remaining in (4.2) is

well known in classical calculus of variations and involves integration

by parts. The result is

tf

t
O

[_(x + 5x, u + _u, x + _x) - (x + 8x)'(£ + _._)] d_

t.o

= [(_

t
0

X

tf

t
0

[(_u)_ + _x'(Y%_Sx+ _uSU

x_+ l/2 (8_'_')

t0 HUX Huu/\ $u ,

d_

- _'(tf)_xf + X'(to)$X(to) + o(115_1l2) + o(llSul[ 2) + o(ll_xll2)
(4.5)

The nominal trajectory x(t) is chosen to satisfy x = f(x, u)

which requires
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i

4

= _ (_6)

The adjoint variables _ may be chosen to satisfy the usual

adjoint equation

_, = _' (4.7)
x

The change in x; 6x satisfies the linear perturbation equation

_9 = fxSX + fu_U : H_x_X + H_uSU

and the boundary condition taken when x(t )
o

(4.8)

is specified

SX(to) = 0 (4.9)

F is made stationary with respect to 8xf by requiring

!

x(tf)= _x (4.lO)

Given v and x(tf), (4.10) with (4.7) may be used to define _.

Equation (4.10) may also be used to compute w if x(tf) and _(tf)

are known provided x(tf) and _(tf) are such that a solution for w

exists.

Normally the numerical procedure calls for a full correction to

so we take @xSXf = - 4. For a partial collection 5_, the term

-Sw'(_ + _xBXf) in (4.4) becomes -Sv'(@ + 8_). Taking the definitions

in (4.6) through (4.10) into account gives

_F = F(x + 8x, u + 5u, X + 6h, w + 6w) - F(x, u, _, w)

47



= w'_V + i/2 _X_xx_Xf

tf

t
O

H _u d_
u

tf(Ixxxu+ 1/2 I (_x'_u')
t H H Bu
O UX UH

dC

The error term is written in terms of _u alone since the other

quantities _h_ _v_ 5_ and _x are related to 5u by a bounded

linear operator.

As shown in the last chapter_ the Computational Control Problem

is solved by finding $u to extremize _ givem by

tf

= w'5% + 1/2 _xf'@xxSXf+

t
o

H Su d_
u

tf I Hxx

+ 1/2 _ (_x'Su')

t H
o ux

xu

H
uu

dc

t

+ !/2 _ f
t
o

_u'W _u d_ (_.12)

for W chosen so that IIWII is suitably large.

usually taken as a constant diagonal matrix cl

if J is to be minimized (maximized).

The weighting W is

with c _ 0 (c _ 0)
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The Computational Control Problem is then solved by finding _u

which extremizes (4.12) while satisfying certain constraints. The

perturbed control _u and the perturbed state vector 8x are related

by the perturbation equation (4.8). The boundary conditions to be

satisfied are

_X(to) = 0, _x[X(tf)] Sx(tf) = $_ (4.13)

where $_ is usually specified as -4 in an effort to

completely satisfy the terminal constraints. This subproblem has been

studied in detail in the theory of optimal control and is generally

called the linear quadratic loss problem. Before turning to the

analytic solution of this problem, some of the assumptions made in the

first part of this section will be removed.

B. EXTENSION TO BANG-BANG OPTIMAL CONTROL

There is a class of optimal control problems with bounded control_

known as "Bang-Bang" problems_ in which the Hamiltonian function assumes

its extreme values for the control on the boundary. In these problems_

the control may often be described in a simplified manner. For example_

the control bound might be lu(t)I_ i. In this case, assuming the

control is always +i or -i, the control function may be described

by its initial value and the sequence of switching times. By this

technique, knowledge of the form of the optimal control from the

Minimum Principle may be used to redefine the control variable so that

the new "control," namely the initial control and the switching times_

is possibly finite dimensional. Another valuable advantage of this
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scheme is the fact that the new control may be considered to be uncon=

strained, thereby simplifying the computational effort.

In this section it will be assumed that all of the original

)! _ f!cont_ols consisted either of variable points of discontinuity of f,

(staging times), or discontinuous controls which have been appropriately

removed by a change of variables. As before_ the investigation begins

by expanding (4.2) in two parts. Equation (4.4) is still valid so that

it is only necessary to compute the effect of a change in the points of

discontinuity of f at t = ti_ i = l_2,..._k. It will become clear

in the following derivation that it is sufficient to study only a single

discontinuity at t. without loss of generality. The expansion equivalent
l

to (4.5) is obtained by a consideration of the difference of the integral

of H - _'_ on the perturbed path as compared to the original path which

may be written as

t!+$t, tf

S m _'[f-(x + _x)- x- _] d_ +

to tl+St i

tI otf

- - .\ -
c'

to t I

(4.14)

where f- and f+ denote the respective functional forms for f to the

left and to the right of the discontinuit_ and the shift St.
I

has been

taken positive. By adding and subtracting the integral

t. +St.
I 1

S h'f + d_

t.
i

5O



the sumof the integrals in (4.14) becomes

w °

t. tf

t t.
o 1

_'[f+(x + _x)

t.+$t, t.+Dt.
I i i i

t. t.
i l

- _+(x + Sx)] do (_.15)

If St. is negative_ then by adding and subtracting the integral
l

t

i _'f-d_

t.+$t.
i i

equation (4.15) is again obtained.

Prior to evaluating (4.15), it will be convenient to define a type

of forward difference operator $. by
I

$i[g(t)] = g(t + ) - g(t_) (4.16)

In addition to the obvious linearity property of

product rule will prove useful

$. _ the following
i

÷

$i[f(t)g(t)] = f(ti)$i[g(t)] * _i[f(t)]g(ti)

= f(ti)$i[g(t)] * $i[f(t)]g(t +)
(4.17)

For convenience, the subscript i on the operator $.i

where only one discontinuity is under consideration.

will be omitted
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This difference operator maybe used to write the perturbation

equation corresponding to (4.8) in a simple form. In this case, _x

satisfies the differential equation
. w

8_ = f Bx, Sx(O) = O, _xBX(tf) = $_ (4.18)
x

except at the points of discontinuity t = t.. The discontinuity in
i

_x is obtained by extrapolation of the effect of the change in t.I

to the time of the old discontinuity in f at t.. The idea is
m

illustrated in Fig. 4.1 where the effect of a negative shift St. ini

.th
the switching time on the 0 state variable y is shown. The actual

difference between the trajectories is

T

(n+1)

_ Yln)
Y

I" 8t I I
I I

(n+t) (n)
tI ti

FIG. 4.1 EFFECT OF A NEGATIVE SHIFT IN THE SWITCHING TIME

continuous. The effect may be taken into account by considering Bx

to be discontinuous by

_($x) = - _(f)$t i - _(fxBX)_ti - l_(f) $t2
(4.19)

Returning to the evaluation of the integrals in (4.15)_ the third

integral may be evaluated either by a careful limiting process or
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- " by interpreting 6_ as a s_nbcl_c derivative of _x. t The result is

+
t.

t.
1

l + -)]'m(_) (4.20)

The fourth integral in (4.15) may be evaluated by a Taylor series

expansion to obtain

t .+_t.

t.
A

x' [f-(x + a_) - f+(x + _x)] d_

*

= - h'(ti)[_(f ) + _(fx6X)] 6t. i l d [X'_(_)]I 5t_ (_.2z)
2 dt +:+. l

i

* +
where t. = t. if St. > 0 and t.- if 6t. < O.

l i i I 1
The last term may

be simplified by car_jing out the differentiation to show that

[x'_(f)]t *
dt t=t.

i

= #'(t_)_(f) (u.22)

So that (4.21) becomes

t. +St.

t.
1

x'[f (x . _x) - _*(= * 5x)] d_ = - X'(ti)_(S=) (_.23)

The first two integrals in (4.15) may be treated as in the last

section by integrating the term - h'$_ by parts. After the integration

CFor a description of symbolic differentiation of discontinuous functions

see, for example, Friedman [1956], chapter 3.
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and the subsequent elimination of terms [by requiring _ to satisfy the

adjoint equation (4.7) on the intervals [to, t_), (ti, tf], and

to satisfy the boundary conditions (4.10)]_ the remaining part of the

first two integrals is

tf
iC

t
O

Sx'H _xd_ + _(h')$x(t_) + _'(t:)_($x)
XX

(4.24)

The expression for the change_ Aq0, in the payoff q0, may be

obtained to second order by combining (4.20), (4.25), and (4.24) with

the remaining terms of (4.4). The result is

tf
i('i , + --

am= -_'(,+_,)+ _f _xx_Xf 2 J
t

O

Sx'H &xda
XX

+ S(A')Sx(t_) + X'(t:)_($x) - A'(t:)_($x)

_ +) + x,(t[)
]_

(4.25)

If A_ is to be stationary with respect to arbitrary changes

in Sx(ti)_ then the coefficient $(_') of _x(ti) must vanish. The

adjoint variable _(t) is therefore chosen continuous and (4.25) becomes

tf

i , i_am = v'_, + _xf _xx_Xf + _ _X'Hxx_Xd_ - ,_'S(_x) (_.26)

t
O

case

The accessory problem may now be formulated. TT_e control, in this

6t._ i = l_2,...k; is to be found which minimizes the cost
i
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+ k
_f

I _x_ + _ ' _ _xd_ +_[$i(H)St i

t i=l
O

7 O 7 O

mx°X)St i ( )°t i ..... _.]i_ _ i_ _._ + _ _i _+ $ ,..o. _ + _ h,$i

with the constraint that 5x satisfies the differential equation

: f  x(0) : o,  x X(tf):
X

(!_.28

except at the points

of discontinuity is

t : t where 5x is discontinuous. The amount
i

i
_(_)St 2

$(5x) $(f)St. - $(fxSX)Sti= - l - _ 1
(I_.29

This completes the corresponding subproblem specification for

problems which have a bang-bang optimal control law. Although the

method of steepest descent for such problems will not be discussed

further here_ it is clear that the technique presented for evaluating

the functional gradient may be used to apply the method of Bryson and

Denham [1962] to such problems. This idea has been successfully used

in a different form by Vachino [1966] and Hales [1966] in developing

a steepest descent algorithm applicable when some of the controls are

of the on-off type.

C. PROBLEMS WITH CONTROL PARAMETERS

Often it is desired to optimize a system with respect to a set of

plant parameters. For example_ in a rocket steering problem_ a control

parameter might be the time at which staging occurs. In this case, the
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right-hand side of the system equation x = f(x_ u_ t ) is discontinuous
s

with respect to the staging time t • The method developed in the las_
s

section may then be applied. Suppose that the mass of the vehicle and

the initial orientation are also to be determined in an optimal manner.

The right-hand side of the differential equation may be continuously

differentiable with respect to some of the parameters_ as the mass. This

is actually a special case of the control function u(t) as discussed

in Section A. _e specialization of the results of Section A to param-

eters of this type is the first topic of this section. _e second

topic is the optimization of initial conditions such as the uJ _nown

i:_itial orientation of the rocket.

_e system equation will be written as _ = f[x(t)_ <_] where C_

is a p X i vector of parameters to be determined. The function

f[x(t); _] is taken as twice continuously differentiable on t £ [to_ t±,]

for any x(t).

Assuming C_ does not depend on time_ the results of Section A are

modified by replacing 8u(t) with 5_ and taking S<_ outside of the

integrals. Equation (4.12) becomes

]i , + H_ + 5X'Hx_ daZ_F = -Sv' (_+$_)+ _ 5xfq0xxSX f

t
o

t [;f]i_ i_<_,+ _ _x'H 5x da + + w) do
t

to o

sa . (;. 3o)

The only additional change needed is in the perturbation equation

which becomes
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x

with boundary conditions given by (4.13). This completes the modifications

necessary to include control parameters of this t_e in the theory.

In Section A, the initial conditions were assumed given and therefore

8X(to) = 0 as in (4.9). If some of the components of x(t o) are not

to are not zero.specified, the corresponding components of 5x( ) = $x°

In this case LkF in equation (4.11) will have an added term -h'Sx
o o

Since LkF is linear in _Xo, a gradient technique for adjusting

5x is suggested. This is done by the usual method of adding a term
o

of the form 1/2 _x'VSx to _F . The positivequadratic in $x ° o o

definite matrix V is then adjusted for convergence•

D. PROBLEMS WITH FREE FINAL TIME

If the final time is not specified, the derivation of Section A no

longer holds. The final state will now vary due to a change in the value

of the state at time t = t_n)- an___ddue to a change in the final time.

That is, the total change in the terminal state dxf is given by

dxf = x (n+l)(t_n+l)) - x (n)(t_n)) = x (n+l)(t_n)) - x(n)(t_ n))

+ [ _(n+l)(t_n))- _(n)(t_n) ) + _(n)(t_n))](t_n+l)- t_ n))

+ i/2 _(n)(t_n))(t_n+l) _ t_n))2+ o(Ilt_n+l) - t_ n)II2)

. (n+l) x n)ll2)+ o(11 (4.32)

The usual more compact form is
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dxf = _xf + _fStf + _fStf + 1/2 _f($tf) 2 + ... (4.33)

which is more convenient but less illuminating. The substitution of

dxf from this expression for _xf in (4.4) gives the correct expansion

of _ when the final time is not specified.

?

am = ev'(_ - a) + v'_ - ev'(_xdX f - e*)

+ _xdXf + 1/2 dx_ _xxdXf + ...
(4.34)

The other effect of a change in the final time is to generate some

additional terms in the expansion of the integral in (4.5). Evaluating

the effect of a change in the upper limit of integration leads to

tf+Stf

t
o

[Z(x+ ex, u + eu, z + e_) - (_ + e_)'(_ + e_)] do

tf

t-tf +1/2 d 2
[ ] de + [ ] 5tf _ [ ] 8t + ...

_ t =tft
o (4.35)

where [ ] denotes the integrand of the first integral. The

t

integral f f [ ] de may now be expanded as before. It will be

t
o

convenient to use the equations (4.6-4.10) to simplify the result

together with the relation

5ff : CxdXf •
(4.36)

After some manipulation, (4.34) and (4.55) may be combined to give
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_F = [(4.11) with _xf replaced by dxf] + HBt i

+ Hx6xf6t f + HuSUfBt f - _5_fStf + 1/2 Hu_St2f - 1/2 AfxfS'''_2_f

, 2
- 1/2 hf_fStf + q0xB_fBt f + 1/2 _xXfStf.. 2

= [(4.11) with 5xf replaced by dxf) + HStf

+ HuSUfBt f + 1/2 HudSt2f + HxSxfSt f + 1/2 Hx_St f (4.37)

The Computational Control Problem may now be solved by finding the

solution to the following accessory problem. We must find a control _u

a>d a time 5tf which gives an extreme value for

_=-5v'(_+5_) + 1/2 dx_ q0xxdX f + HuSUfSt f + 1/2 Hud6t2 + HStf

tf tf

+ HxSxfStf + i/2 H xSt_ + _ H Bu da + 1/2
x u

t t
o O

84' WBu ds

1+[
t H H $u

0 UX UU

dc (4.s8)

while satisfying the constraints

6x = f 5x + f 5u
X u

 x(O) : o
5_ : _x t=tf dxf

(4.39)

The matrix

Section A.

W is again suitably chosen for convergence as in
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V. THE SOLUTION OF THE AUXILIARY PROBLEM

The central result of the previous chapters was to reduce the

Computational Control Problem to a sequence of simplified problems.

These simplified problems are similar to the auxiliary or accessory

problems studied in the calculus of variations and the name will be

retained here. A feedback solution for three special cases of the

accessory problem will be obtained, followed by a discussion of

conditions sufficient to insure a true extremum.

A. PROBI_M STATEMENT

Rather than follow along with the notation of the last chapter, a

simplified problem formulation is used here--the identification of

terms corresponding to the actual auxiliary problem will be made in a

Later chapter. With the new notation, this chapter is self contained.

The system equations to be considered are

where the usual state variable x and control variable u have been

replaced by q and w to avoid confusion with the state and control

variables for the original problem. The variables q and w were

written 8x and $u in the previous chapter.

q is n × 13 B is n × n, w is m × 13 and

D are not necessarily constant.

The problem is to extremize the cost criterion given by

In this formulation,

D is n × m. B and

t tf(s)i1lq S iSJ = _ (tf)Q3q(tf) + e'w d_ + _ (q'w')

t S Q2 wto o

do (5.2)

6o



with the constraint (5.1) and the boundary conditions

Aq(t ) = a
f

q(to) = 0 (5.3)

The matrix A is a r × n

matrices R(n ×n), Q2(m x m)_ Q3(n x n), S(m x n) and the

vector e may depend on time. Without loss of generality,

and Q3 are assumed symmetric.

It is well known that the condition

problem. If Q2 < 0 on some interval,

constant matrix which is full rank. The

nXl

R, Q2'

Q2 k 0 is necessary for this

J may be made arbitrarily small

by a control w which is a large amplitude sinusoid. If the frequency

of this added control is high enough, the state will not be changed so

that the boundary conditions are also unchanged. This situation is

clearly not allowed since the necessary condition for a minimum, that

the part of the payoff J which may be controlled be positive definite;

is violated. A stronger condition is assumed here, Q2 > O, which is

known as the Strengthened Legendre Condition.

It may not be possible to find a control which generates a trajectory

x(t) which satisfies (5.3). To avoid this possible difficulty, it will

be assumed that it is possible to reach all points which satisfy

Aq(tf) = a for any a. This is equivalent to requiring the system to

be output controllable in the sense that3 for any desired output y,

there is a control w which produces a trajectory q(t) for which

Aq(tf) = y. This condition is not as strong as complete controllability

which is usually given for this problem.
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The problem maybe simplified by completing the square on the

quadratic form inside the integral in (5.2). That is

q'Rq + q'S'w + w'Sq + w'Q2w

may be written as

q'[R - s'Q_ls]q + (_'+ q'S'_I) _2(w+ {_isq)

This fact may be used to redefine the problem slightly and obtain

a more convenient form. Define

v : w + Q21Sq

QI : R - S'Q21S

F : B - DQ21S

g : S 'Q21e

Equation (5.1) becomes

4 : Fq + I)v (5.4)

Equation (5.2) may now be written

tf

J : 1/2 q'(tf) Qsq(t f) +

t
o

[e'v + g'q] dg

tf

+ 1/2
t

0

[q'Qlq + v'Q2v] dg
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The necessary conditions given in (3.6) may now be directly applied.

We define the Hamiltonian in terms of the n × i vector function p(t)

as

= p'Fq + p'Dv + e'v + g'q + 1/2 q'Qlq + 1/2 v'Q2v (5.6

The optimal control_ v*_ which minimizes _ is found to be

v* = - _l[e + D'p] (5.7

The equations usually referred to as the Euier-Lagrange equations

are found from (5.6)

P

= _ _, , (5.8)
q

where we substitute (5.7) for v.

geneous equation

=  Q;l ,p_ e

This leads to 2n linear nonhomo-

: - QI q - F'p - g
(5.9)

_e boundary conditions are given in (5.3) and the added condition

p(tf) : Qsq(tf) - A'_
(5.10)

where _ is an r × i constant vector of Lagrange multipliers (corre-

sponding to 5v of the last chapter).
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The set of equations (5.5), (5.9) and (5.10) give the solution to

the problem in terms of a two-point boundary value problem, that is, a

differential equation with boundary conditions specified at two points,

t = t and t = tf. If such a solution exists, the optimal controlo

given in (5-Z) maybe computedas a time function. However, a more

useful form for the optimal control is in a feedback form. That is,

the control v*(t) should be given as a function of the present state

q(t). This feedback control should have the property that it gives

the optimal control for any initial condition so that it is self com-

pensating for errors in the initial conditions. This feature of the

feedback control is not shared by the "open loop" control which is

optimal only for the given initial conditions.

A feedback control law of this type maybe achieved if it is

possible to find a relation giving p(t) as a function of q(t). _e

question of the existence of such a relationship which gives a unique

p(t) for each q(t) for every t c [t o, tf) is still open even if

the two-point boundary value problem has a solution. This is an important

point which will be discussed further in the latter part of this chapter

where it will be shownthat the existence of a unique feedback control

is both necessary and sufficient to insure that the conditions in (5.6)

and the Strengthened Legendre Condition give a true minimumto J.

As an initial step in solving the two-point boundary value problem,

the general solution to the linear differential equation will be studied.

This general solution may be written as

pp(t, T)

(5.11)
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I _ (!_,.:-)\
I _._ \
t /
I I

]

is a fundamental matrix* solution to (5-9) and

is a particular solution with q(T) : p(m) : O.

Taking _ = tf and m = to in (5.11) gives 2n equations in the

variables q(to ') P(to)' q(tf), and p(tf). If the total set of

2n + m-_ n _ r equations (5.11), (5.10), and (5.3) may be solved for

the 4n 4- r variables q(to) , P(to), q(tf), p(tf) and _, the two-point

boundary value problem is solved.

The solution for a feedback control, often called the synthesis

problem, remains to be solved. If t is replaced by tf and T is

replaced by t in (5.11), the resulting equation may possibly be solved

with equa0ion (5.1.0) and the first equation in (5.3) to eliminate _,

p(tf), and q(tf). This would produce a relation between p(t) and

q(t) of the general form

M'(t) p(t) = N'(t) q(t) + b(t) (5.12)

where M(t) and N(t) are n X n matrices and b(t) is an n x i

vector.

'l_nisformal procedure which has been described requires the calculation

of ¢(tf, t) or 2n linearly independent solutions to (5.9). In the

It will be assumed that the reader is familiar with this and other

elementary properties of differential equations. For an excellent

treatment of the subject, see Chapter III of the book by Coddington

and Levinson [1955].
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following sections simplified methods will be derived which involve at

most n solutions to (5.9)- The motivation for these derivations is

a search for a relation of the form given in (5.12).

Having obtained a relation of the form (5.12_ the feedback control

is found by solving for p(t) in terms of q(t) and substituting the

result into the control equation (5.7). Although it will always be

possible to find such a relation (5.12), the solution for a unique p(t)

in terms of q(t) may not exist. As previously mentioned, this

question will be discussed in the later sections of this chapter.

B. CASE I - PROBLEMS WITH FREE END CONDITIONS

The results for problems with free end conditions are quite well

known. In this case, a simpler form of (5.12) is obtained in the

following. The approach used here will be to assume a special form for

(5.12) with undetermined coefficients and to then find coefficients

which satisfy the required conditions (5-9), (5.10), and (5.3). For this

case A = 0 so that the boundary conditions at t = tf become

q(tf) N free

p(tf) = Q3q f (5.13)

Assume that there is a nonsingular transformation P(t) which

relates p(t) to q(t) by

p = Pq + b . (5.14)

The boundary conditions in (5.13) may be satisfied for all qf if
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_nd

P(tf _ Q5

t

(5.15)

(5.16)

The additional requirement is that p and q satisfy the Euler-

Lagrange equations (5.9). If (5.14) is differentiated with respect to

!ime and (5-9) and (5.14) are used to eliminate the variables p, _ and

_ the result is

(P + PF + F'P t Q1 - PDQ21D'p) q = $ + g + F'b - PDQ2!D'b (5.!7)

Since this relation must hold for all

differential equations

q(t), P and b satisfy the

- b = + PF + F'P + Q1 - P_21D'P (5.18a)

ar,d

(5.18b)

Since (5.!8a) is symmetric and P(tf)

_yr.metric_ the matrix R(t) is symmetric.

_Ene optimal control is given by

given by (5.15) is also

( 5.lena)

or

w*_ -ql(D'Pq, sq* D'b. e) (5.19b)

provided that the solution to (5.18a) exists in the interval from t to
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tf. Equation (5.18a) is a matrix Riccati equation which has the property

known as finite escape time. That is_ the solutions on finite time

intervals may become unbounded. If P becomes unbounded for any

t c (to , tf), (5.19) no longer gives the optimal control. In fact

it will be shown later that if the P matrix defined here is not

bounded_ then not only are there difficulties in obtaining the solution

by this method_ but any solution to the Euler equations obtained by

other means does not minimize J.

C. CASE II - FIXED ENDPOINT PROBLEMS

Problems with completely specified end conditions_ often called

terminal control problems_ have not been studied as actively as the free

endpoint problem. Perhaps the reason for this neglect is that the

optimal feedback control is not physically realizable. Due to the

somewhat artifical requirement that the end conditions be met exactly_

the feedback gains increase without bound to compensate for possible

terminal errors as the final time is approached. In practice the optimal

control is approximated with arbitrarily small error by bounded feedback

gains. These difficulties do not influence the mathematical solution

which is somewhat similar to the free endpoint solution.

The form for (5.12) assumed here is

q _ Rp ÷ b . (5.2O)

Again this assumption is verified by finding the matrix R and the

vector b such that the boundary conditions (q(tf) specified) and

the Euler-Lagrange equations (5.9) hold.
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Following Section B, we differentiate (5.20) and use (5.9) and (5.20)

to eliminate q, q, and _. The result is

_X _%1 m RF' + IDQ2 m - FR) p : _±

which must hold for arbitrary p(t). It follows that

R : RF' + FR + RQIR - DQ;ID ' (5.22)

and

: (F + RQ l) b + Rg - D_le . (5.25)

Since q(tf) is specified, (5.20) must hold at t : tf for

arbitrary q. This may be satisfied by the choice of boundary conditions

for R and b as

R(tf) : 0

b(tf) : q(tf) (5.24)

By the symmetry of (5.22) if R is symmetric, R is symmetric.

Therefore; the solution R(t) with the symmetric boundary condition

R(tf) = 0 will also be symmetric.

The feedback optimal control law is

or

W* : - Q;l[sq + e + D'R-I(q - b)] (5.25)
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which has the property that the coefficient of

large near t = tf since R(tf) is singular there.

q(tf) so that a large control is called for if q(t)

q(tf).

The equation for R is again of the Riccati type which may exhibit

finite escape time. Provided that R is bounded_ the solution obtained

for the assumed relation (5.20) holds. Also R must be nonsingular

except at t = tf in order for (5.25) to hold.

(q - b) gets arbitrarily

As t _ tf,b(t)

is not approaching

D. CASE III GENERAL LINEAR END CONSTRAINTS

At the beginning of this chapter_ the boundary conditions were

given in (5.5) as

Aq(tf) = a • (5.26)

In the past two sections_ special results were obtained when the rank of

A was either 0 or n. The general case, to be discussed now_ deals

with 0 S Rank A S n. The relation assumed to exist between q(t) and

p(t) is given in (5.18),

M'(t) p(t) = N'(t) q(t) + b(t) (5.27)

As before_ the differential equations are obtained by differentiation

of (5.27) and substitution of the Euler-Lagrange equations to eliminate

_(t) and ¢(t). The result is

(_' - M'F' + _'_2ID ') p = (_' + .'F + M'Ql) q

+ (b - N'I_;le - M'g)
(5.28)
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Note that (5.27) cannot be _tsed to eliminate either p(t) or q(t)

before unless H(t) or N(t) is nonsingular for t E [to, tf]. In

faet_ if H(t) is nonsingular_ (_.27) may be written

as

p = [(M')-I(N')] _ , (_')-% (5,29)

which reduces to Case I with the identification

P(t) = [H'(t)]-lN '(t) (5.30)

By the same reasoning, if N(t) is nonsingular, (5.27) may be solved

for q(t) and the resulting identification with Case II is

R(t) = [_' (t)]-LH' (t) (5._z)

In the general case, N(t) and H(t) may both be singular some-

where in the time interval of interest so that a simplified form for

(5.27) _s rw)i possible. A sufficient condition for (5.28) to hold for

all p(t) and q(t) is that the coefficients of p(t) and q(t)

vanish. _N_erefore, t]Je vector b(t) satisfies

l_ = N',DQ,2Ie + H'g (5.s2

of

partitioned matrix form:

The equations for _' and N' obtained by setting the coefficients

p(t) and q(t) equal to zero may be written in a convenient

---a !

-DQ 2 D H

-F ' / N\ (5.33)
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_Lis set of equations is immediately recognized as the homogeneouspark

of the Euler-Lagrange equations (5-9).

The remaining task is to find a suitable set of boundary conditions

for M_N, and b. A more involved procedure is necessary in this case

since the boundary conditions do not specify either p(tf) or q(tf)

completely. The set of conditions on p(tf) and q(tf) is

and

(5.34)

A_tf) = a . (5._5)

In the following, it will be shown that there are n linearly independent

....ectors [q'(tf) p'(tf)]' which satisfy (5.34) and (5.55) for arbitre_ily

selected _ and that this set of vectors may be used to construct

boundary conditions for M and N.

Theorem 5.1 If the following assumptions hold

AI. A is full rank r _ n

A2. The r × i vector

AS.
Q3 P' where= 23P

nullspace of A_

then there are

for arbitrary

a e range of A

P is a projection operator onto the

n linearly independent solutions [q'(tf) p'(tf)]'

_o

The assumptions AI and A2 have been used throughout this work.

A3 assures that the terminal cost is appropriate in that only the uncon-

strained part of the terminal state contributes to the cost. The first
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.°

clep ir_ a const_uctiv,_ _I_J_ "s to fi_ud all of the vectors q(tf) _'hick

_ _'_fy (5.35). _e u_:_ber of !ir_ar!y independent solutions q(tf) _o

_$_) is n - q, the ...... of _ii_ Taking _ O,j • _-1__• _men_±uu nullspace of A. =

Eq. (5.34) may be used with the n - q solution to (5.35) to find n - q

li_,e_:rly independent vec;_ors [q'(tf) p'(tf)]' which satisfy both

5.54) and (5.Z5). A _-:,e,<of r additional vectors may be generated by

s1_ccessive:Ly setting _' - (i,0,...), (O,i,0,...), etc. in 5.3_ with

q(tf) taken from the ,_e_ of n - q solutionsto (5.35). T%ese vectors

span an r dimensional space since rank A' = r. By AS, Q3q(tf) is in

t]_e nullspace of A which is perpendicular to A'_ for all _. Thero-

fore_ the r additional vectors do not lie in the space spanned by the

first n - r vectors. T%is completes the construction of n linearly

i:_dependent solutions [q'(tf) p'(tf)]' to (5.34) and (5.35).

in the fol!owing_ this set of solutions to the boundary conditions

(5.34), (5.35) with a = O will be used to define the n x n matrices

M(tf) and N(tf) as follows

M(tf) = [ql(tf) q2(tf)_...,qn(tf)]

N(tf) = [Pl(tf) P2(tf),...,Pn(tf)]

(5.36)

.th
v:here [q._(tf) pi(tf)]' is the 1

Tllese matrices have been named M(t )
f

the proof that they will provide suitable boundary conditions for the

matrices M(t) and N(t) previously discussed. Preliminary to this

linearly independent solution•

and N(tf) in anticipation of

proof_ some interesting properties of M and N will be obtained.
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Property i M'(tf) N(tf) = N'(tf) M(tf)

Proof: Any q which satisfies (5.35) with

written uniquely as M_I, for _i an n × i

p is N_I. From (5.35) AM_I = 0 for all

of A. From (5.34) p - Q3q = (N - Q3M) _2 is in the range of

is perpendicular to the nullspace of A. Hence,

a = 0 and (5.34) may be

vector. The corresponding

_i or M_ I c nullspace

A' whic]

{iH'(N- %M) {2 : {iCM'N- M'%M] {2 : 0

for all E1 and {2" It follows that M'(tf) N(tf) is symmetric.

Another useful property of the matrices M(t) and N(t) may be

proved with the aid of several properties of the transition or fundamental

matrix for the Euler-Lagrange equations. These properties are derived

in Appendix D. They enable one to show that the symmetry property ot_

M'(t) N(t) for t = tf holds for all t < tf.

Property 2 M'(t) N(t) : N'(t) M(t) for all t < tf if

M'(tf) N(tf) : N'(tf) M(tf).

The algebraic proof of Property 2 is also given in Appendix D.

Using the matrices M(t) and N(t) any solution to the nonhomo-

geneous Euler-Lagrange equations(5.9) may be written as

1 (5.37)

where [%(t)pp'(t)]'

for [g_(t) p!_(t)]'

solution to

is a particular solution. The boundary conditions

can be givenj for examplej by the minimum norm
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Ii
pp(tf) = Q3qp_;f)

With the parameter _ (5.37) describes the well-known n-parameter family

of extremsls emanating from the terminal manifold.

Premuitiplyit_ (5.3_) by [N'(t) -M'(t)] gives

N'(t) q(t) _vI'(t) p(t) := [N'(t) M(t) M'(t) N(t)]

+ [N'(t) _(t) - M'(t) pp(t ].
(5 .sS)

Since N'(t) M(t) is symmetric, the coefficient of { is zero. The

result establishes the following main theorem.

Theorem 5.2 Any solution of the Euler-Lagrange equations (5.9) which

satisfies the boundary conditions at t = tf given by (5.5) satisfies

H'(t) p(t) = N'(t) q(t) + b(t) (5.39)

Where 2n X n matrix [M'(t) N'(t)]' satisf'ies

-t," N(t)

5.40)

with the boundary conditions (5.36), and the n X i vector b(t) solves

5.41)

with the boundary conditions
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b(tf) = -N'(tf)A'(AA')-Ia (5.!_2)

_le _iy par +. of this theorem which has not been previously derived

i_ the boundary conditions on b(tf). They are obtained from (5.38) by

identifying M'(t) pp(t) - N'(t) _(t) with b(t) and substituting

t = tf. The term M'(tf) pp(tf) --M'(tf) Q3_(tf) = 0 by assumption A3.

It is clear that the matrices M(t), N(t), and the vector b(t)

in (5.39) are not unique. For example, (5.39) still holds if M, N, and

b are each multiplied by a nonsingular possibly time-varying matrix.

Furthermore, the general boundary conditions specified by (5.36) do nol

give unique values to M(tf) and N(tf). For numerical calculations,

it is necessary to describe a specific set of initial conditions #or

M(tf) and N(tf) which are easy to obtain. For this purpose, M(tf)

and N(tf) will be taken as the partitioned matrices

M(tf) = [B O] (5 3)

and

N(tf) = [Q3B A'] (5.44)

The columns of the (n - r) X n matrix B form a basis for the null-

space of A. If it is necessary to compute B numerically, it may be

obtained by finding the (n r) eigenvectors with zero eignevalues for

the n X n symmetric matrix A'A. In typical problems, this procedure

is often unnecessary because the nulispace of A may be determined by

inspection.

The optimal control is found from (5.29) and (5.7) as
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so that the original control variable w* is

w* : - Q_ILe+ _'(M')-l(_,q+ b) + Sq] (5._$)

E. SUFF]CIENCY C{)Ni)ITIONS

In the last three sections_ solutions to the necessary conditions

for the optimal control problem posed in the first part of this chapter

were obtained. _ie purpose of this section is to determine when these

solutions to the necessary conditions are in fact optimal_ that isj when

they furnish a minimum value for the cost function and meet terminal

constraints. It will turn out that this question is related to the

existence of' solutions to some of the matrix differential equations which

_as assumed in the last three sections.

In the following_ it will be necessary to make several assumptions:

AI, A2s and AS as in theorem 5.1

A4. Q2 > O, the strengthened Legendre Condition

A5. The system is completely controllable on any sub-

interval of [to, tf].

As previously mentioned_ condition A5 may be relaxed somewhat.

However_ the strong condition A5 will be used here.

!n Section D_ it was shown that the n-parameter family of solutions

to the Euler-Lagrsnge equations (5.9) and the boundary conditions (5.34)

and (5.35) may be written as

p(t)l H(t) pp(t)l
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The solutions q(t) are known as extremals. If there is a unique

extremsl passing through every point of a region R _ E , the regio_n

R is said to Oe covered by a field of extremals. Two extremals

which have corresponding parameters _i and _2 arbitrarily close are

said to be neighboring extremals because a measure of their separation

[ql(t) - q2(t)]'[ql(t) - q2(t)] is bounded by Kli_l - _2ii for some

K ( O, where ilM(t)ll ( K for all t belonging to a finite inter_r_l.

If at some time t* two neighboring extremals cross, the point

ql(t*) = q2(t*) cannot belong to the region R which is covered 0y a

field containing ql(t). _is situation is made more precise in the

t
definition of a conjugate point.

Definition If two neighboring extremals ql(t) and q2(t cross at

t = t*, i.e., ql(t*) = q2(t*), then the extremal ql(t) (or q2(t))

is said to have a conjugate point at t = t*.

If there are two vectors _i' _2 which satisfy, for ± _ 1,2

qi(t) = M(t) _i + _(t) and for which ql(t _-) = q2(t*) then there is

a conjugate point at t = t*. In such a case_ M(t*) must be singular

and any _ of the form _i + _o will also produce an extremal passing

through q(t*) = ql(t*) if M(t*) _o = 0. This shows that there are

an infinite number of extremals passing through a conjugate point and

leads to the following equivalent definition:

fThe exact definition of a conjugate point is not completely standardized

in the literature. The situation is further confused by definitions

which incl_;de statements as "the point t = t* is conjugate to the poin-_

t = t_" since there are three points to contend with, the "point" t _ t*,

the "_oint" q(t*), and the "conjugate point." The above definition

only mentions one point as such. This definition will be connected to

other possible definitions in the following pages.
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° Alternate Definition If det M(t) = 0 for t = t* _ tf, then there

is a conjugate point at t = t*.

The re!ation_ip between tl_e matri_ M(t) end the solutions to the

Riccati equation P(t) (Case I, Section B) and R(t) (Case II, Section

C) given in (5.30) and (5.31) may be used to connect the idea of conjugate

points to the existence of solutions to the differential equations (5.18)

and (5.22). The results_ stated in the form of two !emmas_ may also

be used as possible conjugate point definitions.

Lemma i For the free endpoint problem (Case I), the matrix Riccati

equation

-P = PF + F'P + QI - PDQ2 IDIP

with P(tf) = Q3 _ has a solution on [to, tf] if and only if there are

no conjugate points in [to, tf].

Proof: For the free endpoint problem_ the appropriate boundary conditions

for M(t) and N(t) are M(tf) = I, N(tf) = Q3" Since det M(tf) J 0

by the continuity of the solution to the differential equation for M(t),

tLere is an interval (c, tf] over which det M(t) J 0. By direct

substitution P(t) and [M'(t)] -I N'(t) = N(t) M-l(t) satisfy the same

differential equations. Since also P(tf) = Q3 = N(tf) M-l(t ),f

P(t) = N(t) M-l(t) on (c, tf] by the uniqueness of the solution to the

differential equations. In order for P(t) to become unbounded_ then

M(t) must be singular since N(t) satisfies a linear homogeneous differ-

ential equation and cannot become unbounded in finite time. Conversely_

if there is a conjugste point_ det M(t) _ 0 and hence P(t) becomes

unbounded.
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Lemma 2 For the fixed endpoint problem (Case II)_ the matrix Riccati

equation

with R(tf) = O_ has a nonsingu!ar solution on [to_ tf) if and only

if there are no conjugate points in the interval [to_ tf).

Proof: If R is nonsingular on [to3 tf) then by direct substitution

-i
it may be shown that R (t) satisfies the same differential equstion

as P(t). If R-l(tl ) = P(t I) at some t = tl, then R-l(t) = P(t)

for all t Eto, tf). P(t) is boundedsince R(t) is nonsingula ,

hence there are no conjugate points in [to, tf). Now it is assumed

that there are no conjugate points in [t , tf) Then M(t) is non-o

singular and N(t) M-l(t) = P(t) is bounded. Therefore R(t) is

nonsingular.

The construction of a feedback optimal control in Sections B_ C_ and

D required that either P(t), R-l(t), or M-l(t) exist for t c [to_ tf)

for each of the three cases. It is clear that if there are no conjugale

points_ then it is possible to construct a unique feedback control. In

fact_ it can be shown that if there is a conjugate point along an

extremal_ no optimal feedback control law exists.

If it can be determined that a solution to the necessary conditions

has no conjugate points_ then the following theorem may be used to

e st abli sh opt imality.

Theorem 5.3: If a solution [q(t), p(t)] to the Euler-Lagrange

equations exists which satisfies the boundary conditions and
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i. AI, A2, and AS of 'iheorem 5.1

_. A_ and A5 of this section

3. There are no conjugate points in [to, tf)

then [q(t), p(t)] furnishes a minimumfor the cost functional J.

another control _ = -Q21D'p + Su, Su _ O,Proof: Assumethere is

which results in a trajectory q which satisfies the boundary conditions.

_e difference trajectory, _q = q - q, is a solution to 8_ = F 8q +

D Su. The difference in the cost on the original trajectory, q, and

on the trajectory q is

tf
2LhJ=

t
o

[q'Ql_q + 6q'Qlq + 6q'Q18 q - p'DSu

- 5u'D'p + 5u'Q28u]da (5.46)

_ue expression for J may be written in a more convenient form

by adding the integral

tf

t
o

d

_-_ [(p' + 6q'A(t))Sq]d_ = 0

where A(t) is an arbitrary n X n matrix. Since Sq(to ) = _q(tf) = O,

the integral in (5.47) is equal to zero. Carrying out the indicated

differentiation and substituting the differential equations for Sq and

p, the results are

tf

[-qQlSq + p'D6u + 5qSA(t)DQ21D' q - 6q'F'A'(t)6q]dg

t
o

(continued )
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tf

t
o

[q'DQ21D'A'(t)$ q + Sq'A(t)$q - Sq'A(t)FSq)ds .

Since there are no conjugate points in [to, tf),

Riccati equation has a solution there by Le_ma i. If

solution to the Riccati equation, then (5.48) becomes

the matrix

A(t) = P(t), a

tf

t
O

- 5qQl$ q + p'DSu]d (5._9)

Adding (5.49) to (5.46),

tf

t
0

+ 8u'Q2$u) d_
(5.5o

which may be written

tf

2Z_J =

t
O

+Q lDpsq)'Q l(Su+Q ZDPSq)d 0 (5.5i

The above expression is non-negative since _I

the equality holds, then 8u = -_IDP_q so that

linear homogeneous differential equation. Since

Therefore for any control u _ -Q21D'p, ZSJ > O.

is nonsingular. If

Sq must satisfy a

6q(to) = O, Sq(t) _ O.
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In the paper by Breakwell and Ho [1965], it is shownthat the

conjugate point condition is also necessary for the control problem.

That is_ if an extremal is also a minimizing trajectory, then there must

be no conjugate points in [to, tf). This result is well knownfor the

classical Bolza problem (see Bliss [1946] Chapter 9_ or Gelfand and

Fomin [1963] Chapter 5). In fact, for problems which are normal (in

the sense of Bliss) and for which the Hamiltonian has a unique minimizing

function u(t) for each t (called nonsingular in the control literature),

then the control u(t) maybe eliminated and the results of the classical

calculus of variations maybe applied to the control problem.

By the foregoing, computational methods based on second variations

which do not test for conjugate points cannot be guaranteed to succeed.

On the other hand_ any method which generates a feedback control

similar to the one developed in this chapter automatically tests for

conjugate points.
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Vi. THE COMPUTATIONAL METHOD

In Chapter III, the so-called Computational Control Problem,

that of finding a "better" control_ was reduced to one of examining

the expanded version of the cost functional to quadratic terms.

Chapter IV showed how this expansion could be carried out for several

special problems of interest and further reduced the problem to one of

studying a special form of control problem_ the linear quadratic loss

problem. The next chapter_ V_ was concerned with finding optimal

feedback controls for general linear plant quadratic loss problems.

1_e purpose of the present chapter is to combine all of these previous

results into a useful computational algorithm. The properties of the

solutions and some of the details of the programs developed by the

a_thor for machine solution will be discussed in the last sections of

this chapter.

A. OUTLINE OF THE COMPUTATIONAL TECHNIQUE

For the purpose of presenting an introductory overall picture of the

type of calculations necessary_ a simplified flow diagram of the procedure

is given in Fig. 6.1. After describing how the procedure is carried out,

the justification for the method will be given. In the first problem to

be discussed_ it will be assumed that the final time tf is specified,

general end conditions are given (Case III of Chapter V)_ the initial

conditions on the state x(o) = x ° are given, the functions ¢[x(tf)]_

_[x(tf)] and f(x, u) are twice continuously differentiable in all of

their arguments, and that an unconstrained control function u(t) is
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°.

Initialize u(O)(t) by a choice of ci(t) i = l,...,n+l

x(-!)(t), v° for t c [to, tf]
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Integrate sensitivity functions h(t)

variables M(t), N(t), and b(t) from tf to t' The time t'

is the maximum of the time of the first conjugate point in the

+ W changes sign, and taccessory problem, the time where Huu o

© During the backwards integration Q ; compute and store the

control law cl(t), c2(t),...,Cn+l(t- ] and the sensitivity

functions h(t) as needed in _.

FIG. 6.i

C Go back to step _ )

SIMPLIFIED FLOW CHART FOR COMPUTING OPTIMAL CONTROLS

USING SECONDVARIATIONS
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to be found which gives an extreme value to the payoff ¢[x(tf)] while

the terminal constraints _[x(tf)].satisfying

To start the computation_ it is necessary to guess an initial

control u(O)(t) (see _ in Fig. 6.1). This guess may be given as a

function of time only or as a function of time plus a possibly time-

varying linear combination of the states as feedback. That is_ the user

starts the program with values for the time functions ci(t)

i = l,...jn+l. The nominal trajectory is then computed from the control

law

u(t) = cl(t) xl(t) + c2(t) x2(t) + ... + Cn(t) Xn(t) + Cn+l(t)

(6.1)

and the state equation

= f(x, u), = x (6.2)
0

Of course_ the convergence is improved by a fortunately good initial

guess of the control. However_ step by step improvement may be obtained

with very poor initial guesse_ and good starting controls_ which are

required by other numerical methods_ are not necessary to insure

convergence.

For the first iteration_ it is necessary to guess starting values

for the q X i vector of Lagrange multipliers w. The choice of good

numerical values is aided by the physical interpretation of the w's as

.th
sensitivities as in Chapter III. For this problem_ the I component

of v_ w._ is the sensitivity of the extreme value obtained for the
l

.th

payoff ¢[x(tf)] due to a small change in the value of the l
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of @[x(tf)]. In other words, the extreme value of ¢[x(tf)]component

will change by the amount v.c. when Wi[x(tf)] is changed by c..II i

At the end of each simulation of the system in step _ the results

are evaluated by comparing the values for the payoff and the terminal

constraints with the values from the previous iteration. If the payoff

did not improve while the constraints remained within tolerances or if

the constraint errors did not decrease and were too large_ it is con-

cluded that the change in control was too great. _merefore_ the con-

straint on the step size given by

tf

il uji= at-<c
t
O

(6.3)

is made tighter for the next iteration. On the other hand_ if the payoff

and the constraints are both improved or remain unchanged_ the iteration

is considered successful. If the number of successful iterations is

equal to the maximum number specified by the user as input data_ or if

the method has converged as indicated by mo change in either the payoff

or the constraints with iiSuil effectively unconstrained, the program

outputs all of the results necessary for properly restarting the program

and reads in the data for a new problem. At the end of a successful

iteration which does not cause an exit_ the states and the control are

stored as the new nominal and the constraint on iiSuii is reduced for

the next iteration.

The purpose of the backwards integration is to solve the accessory

problem discussed in Chapter V and to find the sensitivity functions

8T



_(t). _me solution to the backwards integration is used to generate a

correction to the control u and to the terminal constraint sensitiv-

ities v.

The equations for the backwards integration are obtained by iden-

tifying the solution to the general problem found in Chapter V_ Section A_

w_th the linear quadratic loss problem derived in Chapter IV. This

correspondence is

°.

2 3   x(Xf)

Q2_H +WUE_

QI _ H Hxu(Huu + W)-IHxx _x

F _ f - f .(Huu + W)-IH"
X _ UX

g _ -Hxu(Huu + W)-IH 'u

D *-f
u

A _ 9x

a *- 5t_

p _ 6h

q _ _x

v _ 6u - (Huu + W)-IHuxSX
(6.4)

With these appropriate substitutions the equations for the backwards

integration and boundary conditions are obtained from the last chapter.
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.o The boundary condition on _(t) at t = tf is given by

_(tf) = ¢'[x(tf)] - _;[x(tf)] v .
x

(6.5)

Consequently_ both x(tf) and w must be updated before finding the

new value of _(tf). At first, it may seem reasonable to try to find

8_(tf) from the relation

M'(tf) $_(tf) = N'(tf) Sx(tf) + b(tf) (6.6)

where M(t), N(t), and b(t) are from the previous iteration and

_x(tf) = x(n)(tf) - x(n-l)(tf), t _en the new _(n+l)(tf) is calculated

from

_(n+l)(tf) = #(n)(tf) + 5_(tf) (6.y)

However_ this is not possible since M(tf) is singular at t = tf. In

= O, (6.y) cannot even by used to find _w byfact since M'(tf) _x

taking 8_ = _xxSX - _;$v. As an alternative to solving (6.6) for

_(t) at t = tf, it may be solved at several points t = tf c,

tf - 2c, tf 3£ near t = tf and the result extrapolated to the end.

This method has also met with little success in practice probably due

to the difficulty of solving (6.6) when M(t) is almost singular.

More reliable results have been obtained by solving for $_(t) at some

time t = t' where M(t) has become suitably well conditioned. The

result is then extrapolated to t = tf by integrating the differential

CThe superscript on x(n)(tf)

th
from the n iteration.

is used to denote the values of x(tf)
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equation for SK(t) which is obtained from (5-9) with the substitutions

(6.4) as

_i : [-f'+ _u(W + _uu)-lf;]_x
X

[Hu(W + Huu)-IHux - Hxx][x(n+l)(t ) - x(n)(t)]

+ _xu(W+_uu)-l_[ (6.8)

th
where the partials of f and H are evaluated along the n

trajectory.

In order to insure that the resulting h(tf) satisfies (6.5), it

is necessary to remove the part of h(n)(tf) + Sh(tf) - ¢'[x(n+l)(tf)]x

!

which is perpendicular to 9x" That is, after computing Sh(tf) from

(6.8), w (n+l) is found as the least square solution to

@x[x(n) (tf) ] w(n+l) : ¢_[x(n)(tf)] - x(n)(tf) $X(tf)

_]e solution is

W(n+l) : [j/x_x ]-1 9xe¢ x - ;_(tf) - $]_(tf)] (6.9)

T%e boundary conditions on h(t) at

from (6.5).

The equations for M(tf), N(tf)

translating (5.42) and (5.4S) with the "dictionary," (6.4).

t = tf may then be determined

and b(tf) are obtained by

The

results are

M(tf) = [B O]

(continued
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h,

!

_(tf) = [Q3B _x ]

b(tf) = -N'(tf) [_x_x']-i _r. . (6.1o)

The columns of the n × n - q matrix B are the n - q linearly

independent vectors which are perpendicular to the rows of _x" The

determination of B has been discussed in the last section of

Chapter V. Normally Q3 = _xx' but in some cases it may require some

modification which is discussed later in this section.

From equations (5.40) and (5.41) together with (6.4), the

differential equations for M(t)_ N(t), and b(t) are obtained as

(M) <[fx - fu(w+ _uu)-m_ux]
[H=u(_ * _)-IHux - _xx

(6.11

and

= N'fu(Huu + W)-IH ' M' W) -I H'u Hxu(Huu + u (6.12

On the next iteration_ the new control is obtained by adding the

correction Su to the old control u(t). The expression for Su, which

corresponds to w of Chapter V, is found by combining (5.45) and (6.4).

_ = -(_uu + w)-i[_'u + Hu=_X+ fL(M')-l(N'_x + b)] (6.i3)

The new control becomes

n+l(t ) = - - N'X (n)u un(t) - (Huu + W)-I[H'u Hux x(n) + fu (M')-I (b )]

(continued)
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+ f'(M')-IN') xn+l(t)-(Huu + w)-l(Hux u (6.14)

which may be written in the form

un+l(t) = cl(t)xl(t) + c2(t)x2(t) + ... + Cn(t)Xn(t) + Cn+l(t)

(6.15)

with the definitions

(clc2...Cn),= _(Huu + + (6.16)

and

: n(Cn+ 1 u t) - (Huu + W)-I[Hu - Hux x(n) + fu(M,)-1(b_ .

(6.1T)

The partial derivatives of H and f are again to be evaluated

along the nominal (old) trajectory. This is obvious if the c's are

evaluated and stored during the backward integration since the new

trajectory is not yet available. However; some confusion might arise

if the c's were calculated during the forward integration which may

also be done although it requires more storage.

The reverse time integration is continued until t is reached;o

or the determinant of H + W changes sign; or the determinant of M
uu

changes sign; whichever occurs first. If to is not reached_ the

starting time for the next forward integration; t' ; is set slightly

to the right of the exit time in the backward integration] The test of

thesign of the determinant of H + W insures that one of the assumption,s
uu

made in Chapter V; the Strengthened Legendre Condition_ is satisfied on

the interval (t' + e; tf] if c is at least one numerical integration
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o.

step size. _nis test requires no additinnal program effort since th_

inverse of H + W is already required. The test on the determinant
uu

of M checks for no conjugate points in (t'; tf), a necessary con-

dition for the control computed in (6.13) to be optimal for the

accessory problem. This test is also almost automatic since the

determinant of M is computed in the calculations necessary for find-

ing ci, i : l_...,n+l from (6.16) and (6.17).

Having computed the new control law by the coefficients

ci(t), i = l,...;n+l_ t c [t' + c; tf]; the resulting control is evaluated

by returning to step _ in Fig. 6.1 and integrating forward from t = t'

The initial conditions for the states at t' are obtained from the

stored values of the last trajectory x(n)(t) at t = t' The process

is then continued until the result of the test at _ produces an exit

to (_).

Due to the near singularity of M'(t)

determination of $A(t) from (6.6) for t

which prevented an accurate

near tf_ there are corre-

spondingproblems in computing the feedback coefficients Cl;C2,...,Cn(t)

as the terminal time is approached. Further difficulties are caused by

the very large feedback gains which lead to instabilities in the numerical

integration of the state equations. Good results have been obtained by

changing to a type of open-loop corrections in an interval [T_ tf]. It

is convenient to take the interval [T_ tf] the same as the interval

chosen for the integration Iof the differential equation for Sh(t) in

determining 8_(tf). The open-loop control correction is then computed from

+ W)-I[H ' + x (n+l) x (n) 'Bh(t)]
5u = -(_uu u _ux ( - ) + fu
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In order to showthe validity of the technique_ it is only necessary

to collect together someof the previous results and verify that the

computational method satisfies the necessary assumptions.

The Computational Control Problem was reduced, in Chapter III, to

a consideration of the e_pansion of the functional F(x, u, _, v) _o

second-order terms only. By taking ll_ull and ii_ii sufficiently small,

the quantities llSxil, II_II, and llSvll are also small so that the

higher-order terms in the expansion may be neglected. This condition is

insured in the programby increasing IIWII, which is equivalent to

tightening the constraint on llSull_ until a particular iteration is

successful.

The next assumption_ in Chapter III_ concerned normality. In

assuming normality, vo i O; therefore it was set equal to unity. This

operation may be viewed in another way as the result of dividing ea<h

v. through by v so that as an abnormal solution is approached eacL
I O

of the v.'sm (which are actually vi/Vo) become very large. The

effect will be to produce a control which concentrates on the end cor_-

straints and ignores the payoff. No experience of applying this com-

putational method to problems which are abnormal is available at this

time. However_ the relative sizes of the v.'s i = l_...jn as the
m

extremum is approached give a crude numerical test for abnormality.

The final step in the proof that the computational scheme as

described has step by step convergence is to show that the solution to

the accessory problem actually furnishes a minimizing curve. This may

be done by showing that each member of the set of sufficient conditions

in Theorem 5.3 is satisfied.

consideration here are

These conditions for the problem under
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i.

AI'. 9x is full ra_

f_'. _There is a vector

A3'. _xx = P'(_xx ) P

of _x

_4'. (Huu + w) >o

A_ '.

q-<n

_x which satisfies _x 5x = $4

where P is a projection onto the nuilsp_c_

The system in the accessory problem is completely controllable

on any subinterval of [t', tf]

A6'. There are no conjugate points in It', tf].

If the problem has been properly formulated and _(t) is an optimal

trajector_ 9x[_(tf)] will have full rank. Otherwise, one or more of

the constraints is redundant and has no effect on the problem solution.

However, 9x[X(tf)] may not be full rank if x(tf) is not optimal even

if the constraints are linearly independent for x(tf) : x(tf). Since

the program requires the inversion of 9x_ , a test for the ra_ of _x

is automatically made. Although it is unlikely that 9x_ will ever

appear singular in practice due to the inevitable numerical errors in the

inversion, this situation can be remedied by temporarily dropping the

redundant constraints. This can be accomplished in principle by extract-

ing a basis for the range of _x and using this in place of _x" If

one column of 9x is a multiple of another, it may simply be removed.

As a last resort, a Gram-Schmidt procedure (see e.g., Shilov [1961]

Chapter 8) might be used to reduce @x to a matrix of full rank. Of

course_ it may be possible to determine from the functional form of

_x[X(tf)] that it is full rank for all x(tf) and avoid the test all

together. In any event it is possible to redefine the problem so that
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Wx[X(tf)] is full rank and hopefully this will not be necessary. AI'

is therefore satisfied.

g?r is then automatically satisfied if the original (unmodified)

_x was full rank. If it was necessary to construct a basis for _x

given above, $_ must perhaps also be modified so that it is in the

range of the new _x" This can be done if necessary since _T is

specified independently by the user although it is usually taken equal

to - _.

Conditions A3' and A4' may be satisfied by construction. If'

A3' does not hold_ _xx may be replaced by

problem so that then A3' will be satisfied.

there is a W suitably large which satisfies

AS' and A6' are forced to hold by the choice of t' The

program determines t'

minant of M (or P or R

when the determinant of H
UU

t for the original problem.
o

accessory problem is solved_

additional conditions are sufficient to show that

P'_xx P in the accessory

For any bounded H ,
uu

A4'.

as

as the maximum of the time where _i_e de_-

in cases I and II) changes sign, the time

+ W changes sign; and the initial time

Thus on the interval over which the

H + W > 0 and det(M) _ 0. These
uu

A5' and A6' hold.

B. EXTENSION TO OTHER TYPES OF PROBLEMS

The computational method of the last section may be modified so that

it is applicable to the several different types of problems as discussed

in Chapters IV and V. Second-order techniques for handling problems

with free endpoints, completely specified endpoints, free terminal time,

control parametersj and variable switching times will now be considered.
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The only reason for derivir_ special methods for problems with

free end conditions (Case !) or completely specified end conditions

(Case II) is to obtain more efficient computation since the general case

still applies. The saving in computation is quite substantial particu-

larly in the free endpoint case. The general case requires the inte-

grabion of the differential equations for M_ N_ and b_ a total

of 2n 2 + n equations_ and the inversion of an n X n matrix at

every integration step. In comparison_ Case II requires the integratiorL

of 1/2 n(n + I) + n equations and an n X n matrix inversion at each

integration step. Case I is even easier to compute as it requires

1/2 n(n + i) + n equations to be integrated and n___omatrix inversions

are needed in computing the control•

The equations for Case I and Case II may be obtained by reinter-

preting the results given in Chapter V with the aid of (6.4). The

results are summarize_ in Fig. 6.2. In addition to computing P and

b (or R and b) and their boundary conditions_ the test for conjugate

points_ the calculation of _(tf)_ and the calculation of _u must

also be changed for Case I or Case II. The conjugate point test is made

by checking for a change in the sign of the determinant of M_ or R_

or by checking to see if the norm of P becomes too large. In Case !_

there is no need to compute 6_(tf) since _(tf) is known to be equal

to zero. For Case II 6_(t) at some point t' near tf may be

obtained by solving R(t) _2(t) = _x(t) + b(t) and extrapolating the

result to t = tf by solving the differential equation for $h(t) as

before. The method for finding _u in each case is given in Fig. 6.2.

It is natural to question why problems with end constraints (Cases II

and III) appear to be so much more difficult in terms of co_utation than
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problems with unspecified end conditions (Case I).

M, N, R_ and P were shown to be related by

[M'(t)]-iN'(t) = R-l(t) = P(t)

In the last chapter_

(6.18)

This relationship is the key to the difficulty. For problems of Case II

R(tf) is singula_ and for problems of Case III M(tf) is singular so

that there is no suitable boundary condition for P(t) at t = tf in

either case. However, at any other time t', which is not a conjugate

point, P(t') may be found if either M and N or R is known.

Accordingly, at such a point P(t') and b(t') of Case I may be foumd

from R(t') and b(t') = bll(t') for Case II by

P(t') = R-l(t ')

b(t') = R-I(t ') bll(t,) (6.19)

Similarly_ the variables of Case ! and Case !II are related by

P(t') = [M'(t')]-iN'(t ')

b(t') = [M'(t)]--_lll(t')

(6.2o)

In order to avoid the added computations in Case II and III, in

principle one would pick t' very near to tf, use (6.19) or (6.20)

to find P(t') and b(t'), and then work the problem over the remain-

ing interval from t' back to t o as if it were Case I. In practice

t' should be determined far enough away from t = tf so that R(t')

[or M'(t')] becomes well conditioned enabling accurate numerical

results in (6.19) or (6.20). The advantage of this modification for a
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Definitions F = f - fu(Huu. + W)-I" H
x UX

Case I

Q : fu(Huu + W) -I f,U

s : _ _ (H + w)-I
XX XU' UU IAX

c = - fu(Huu + W) -I H'u

d : Hux(Huu + W) -I H'U

B is any n x n - q full rank solution to

(Free Endpoint) 5Z : PSx + b

: -F'P - PF - S + PQ,P

: -(F' -P{)b +d -Po

P(tf) = @xx' b(tf): o

_u : -(_uu + w)-l[_; + H bx + fu(P_x + b)]
ttX

_xB = 0

Case II

Case III

FIG. 6.2

(Fixed Endpoint) R$_ : Sx + b

= FR + RF' + RSR - Q

: (F+_S) b +c -_d

R(tf) : O, b(tf) : - _x(tf)

+w)-lE_+ _ _x + f'_-i(_x+ b)J_U = -(HUU ux u

(General) M'$_ = N'_x + b

: -SM - F'N

: M'd - N'c

M(tf) : [B O]

N(tfi : [_xx B 4;]

b'(tf)= [0 $*']

-l[g, + _ _x + f'(M')-l(_x + b]]_u : -(Huu + W) u ux u"

SUMMARY OF RESULTS FOR THE ACCESSORY PROBLEM
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Case III problem with four state var_ablesis that 18 first-order

differcn+_ial _+i_,s are solved from t' to t as comparedto 40

first-order differential equations and the inversion of a 4 × 4 matrix

at each integration step.

An additional simplification occurs when the problem is in the

Mayer form. In this case; it maybe easily demonstrated by differentiation

and substitution of the equations for M, _; and b; that the expression

M'(t) _(t) + b(t) is constant so that

M'(t) A(t) + b(t) = M'(tf) _(tf) + b(tf) . (6.21)

There is therefore no need to integrate the equations for the n com-

ponents of b(t) in this case since b(t) may be determined from M(t)

and from (6.21).

The extension of the computing method to problems with free

terminal time requires considering the terms involving Stf in (4.41).

The part of _ which depends on 5tf is

(i/2 _'q0xx_ + 1/2 Hud + 1/2 Hx_) &2tf + (H + X I _0XX_

5u + H 8u) 5tf+ Hu x

th
where the terms in parenthesis are evaluated on the n

_(n) The quadratic form is extremized by setting
t = _f .

iteration at

(x'q0xxX + HuSU + HxSX + H)

U X

(6.22)

so that on the (n + i) st

computed until t = tLn)_
i

iteration the final time_ which cannot be

the new final time t_ n+l) is given by
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t(n+l)
= tfn)( + $t_ .f (6.25)

(_,n+l,] is larger than before,
If 6t_ > 0 so that the new interval [to_ tf

_i n )

_,_+i_]jf. Forany $t_,5u is
f \

6u is set equal to zero on (_f

computed in the normal manner over the interval [to, tSn)]. Some dif-

ficulties may arise if (6.22) specifies a very large 6tf since a

constraint II_uii,which will reduce _u(tf) and _x(tf), does not change

the other terms. Consequently_ it may be necessary to restrict $tf by

an artifical bound if 8t_ from (6.22) is very large.

Problems with control parameters_ although formulated in a similar

manner to the problems with continuous control functions (c.f._ Chapter

IV Sections A and C)_ must be solved in a quite different manner. The

reason for the difference is that since the parameters are constants,

they cannot be adjusted along the trajectory as functions of 6x. This

eliminates the usual feedback approach which has been used for the other

problems considered earlier. Following Section C of Chapter IV_ 6_ is

chosen so that the cost functional

o

tf I tf al
+ i/2_ _'_xx_X_ + 1/2_' (_ + w)d

t
to o

(6.2£.)

is minimized while satisfying the constraints

5_ = f 5x + f 6_
X

(6.25)

i01



"4

and

sx(o) = o SxSX(tf) = 5_
(6.26)

The solution for this problem is quite straightforward.

equation (6.25) is solved m times with the m x i control vector

set equal to (i, 0,...,0)', (% l, 0,...,0)', etc. That is, the

matrix solution X(t) is found for the equation

First_

8_

nxm

X(t) = fxX(t) + f_K, X(O) = 0
(6.27)

where kij = 5ij.

By linearity, any solution to (6.25) for a particular 5_ is

5x = XS@ (6.28)

so that X is the sensitivity of the solution to changes in _. After

eliminating 5x from (6.24) with (6.28) and (6.26), the problem, which

is now strictly algebraic_becomes one of finding the constant vector 5_

which minimizes the quadratic form

=- $V'($ + _/) + 1/2 _:_'QSO_ + a'5O_ (6.29)

where

tf

Q = X'(tf)@xxX(tf) + _ [X'(t) HxxX(t) + Ho£x + W] da

t
o

tf

a = _ (H& + H(xxX(t)) d_

t
O
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At the same time $_ must satisfy the linear equation

(6.31)

By the methods of Chapter III_ the optimal _ may be computed in

terms of the projection operator P = [B'(BB')-IB - I] which projects

any m X 1 vector onto the nullspace of B. The minimizing vector

5_ is given by

= B,(BB9-1 + Py (6.32)

where the m X I vector y is the minimum norm solution to

P'QPy = -P'a .

The adjustment of the terminal constraint sensitivities remains to

be found. With the interpretation of 5w as the sensitivity of the

optimal cost to changes in the constraints_ -Sw' is the coefficient of

$_ in the second two terms of

for $_. This results in

5V = -(BB')-IB(Q,PY + a)

from (6.29) with (6.32) substituted

(6.33)

which completes the set of equations necessary to optimize sequentially

a set of control parameters 5.

The last special problem to be discussed concerns optimization with

respect to the points of discontinuity of f(x_ tl_ t2_...,tk). This is

probably the most important one of the special extensions discussed as

it includes the very interesting bang-bang control problems by a trans-

formation of variables. Following Section B of Chapter IV3 the acces-

so_j problem _!r_s the minimization of
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tf

_---_v'(¢+_)+i/28X_xx_Xf +_2_ (_X'Hxx _x) d_

t
o

k

i=l

The variation in the state, Sx, satisfies the differential

equation and the boundary conditions

_ = f 8x
x

= o

_xSX(tf) = 54 (6.35

on the intervals t e [to, tl), (t I, t2),...,(t k, tf].

tinuous at t = t.. The amount of discontinuity is
i

$i(5x) = - $i(f) ati - $(fx_X)$ti - 1/25(f)St2z

8x is discon-

(6.36

Since 5x does not satisfy a differential equation (6.35) on the

whole interval [to, tf]_ the former derivation for the sensitivity

functions is no longer valid. The differential equation constraint (6.35)

may be taken into account in the usual manner by appending the follow-

ing identically zero term to (6.34),

ti

X +

to t I

°,°

t

f _h'(f ex - 5_) do = O.
+ x

tk (6.37)
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The integration by parts involves no tricks since all of the "bad points"

t = t. are not interior points in intervals of integration. A typicalm

term results in

m

_,(_x_x- _) do = _x'(_ + _i)_ - _x'_
+ v+ +

t. t. t.
I i i

(6.38)

Summing terms_

k ti+ 1 tf k

C = i___ !+ 5x'(f'_ + 5_) d_ -8x'_Ix t -f
• o i=l
i

_i(_x'_i.(6.39)

The last sum may be combined with (6.36) which gives the discontinuity

in 8x at t = t.. A representative term becomes
i

6i(8x'_) = 5x'(t +) 5_(t +) - _x'(tZ) 5_(t Z)

+

= Bx'(tZ)6i[82(t)] - 8h'(ti)_i[f(x , u)] 8t.m " (6.4o)

Equations (6.39) and (6.20) may be combined with (6.34) to obtain

tf

xx x

t
o

(continued)
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k k

- i--_ 5x'(tZ)_i[$h(t) - H'StIx i +Zi=l[_i(H)+ 5h'(ti)_if(x' u)]St.l

k

_, +)_i f(x' u) ](Sti )2+ 1/2 [Wi + _'(ti)_i(f) - 2H(t i

i=l

(6.41)

Following the usual calculus of variations argument, the necessary

condition for an extremum requires that 5J = 0. In taking the variation

of J, variations in 5xf, 5x(tZ), 5t i, and 5x(t) are written as

52xf , 52x(tZ), 52ti , and 52x(t), corresponding to second variations

in the variables of the original problem, xf, x(tZ), t i, and x(t).

The result is

tf

5_ = 52 = 52x)(_xxSX f - 5hf) + _ 52x'(HxxSX + f'Sh× + 5k) d_

t
O

k k

- Z52x'(tl)_i[Sh(t) - H'St.]x1 + _[_i (H)

i:! i:i

+

+ 5h'(ti)_if(x , U) + 5x'(tZ)_iHx + h'(ti)_i(f)Sti

+)_if(x, u) 5ti]b2t+ WiSt i - 2Hx(ti i
(6.42)

If 5J = 0 for arbitrary variations in x(t) and ti, the

coefficients of 52xf, 52x(t), 52x(ti), and 52t'm must all vanish.

This leads to the necessary conditions for the accessory problem. The

adjoint variable 5k(t) for the accessory problem is chosen to satisfy

the differential equation
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= - f'sx - x tx (6.4s)
X XK

except at the points ti_ i = i, 2_..._k. At each of the points ti_

stationarity with respect to Sx(ti) requires _A(t) to be chosen so

that the quantity _(t) + H'_t. is continuous or that $_(t) is
x i

possibly discontinuous according to

_.$_(t) = _.H'_t. (6.44)
I iX i

Equations (6.45), (6.44) and the end condition

8h(tf) = q0xxSX(t f)

completely specify the accessory adjoint variable $h(t).

The remaining term in (6.42) is set equal to zero if

[W. + _'(ti)Si(f) 2H( +- ti)_if(x , u)] _
i i

= + _x'(t_)_iH x + _.Hm + D2X'(t+)6i f(x' u) (6.46)

which specifies the optimal shifts in the switching times if the

coefficient of _%. is not zero. Equation (6.46) may be written in
i

instead of $_(t +) by the use of (6.44) to obtain
_h(t_)terms of

i

C-_'(ti)_i(f)- W. + [Hx(t +) + Hx(ti)]_if(x, u)} _%.l i

= _.H + _'(ti)_if(x, u) + _x'(ti)_iH x •1

In order to achieve the goal of a feedback control, _ must be

eliminated from the expression for at.. As before_ a relationship
1
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enablir_ _ to be found from _x is desired. Having motivated the

method in the previous chapter, a strictly algebraic approach will now

be used. A relation between _x and _ of the form

M'(t) $#(t) = N'(t) Sx(t) + b (6.48)

is assumed to hold except at the points t.. By differentiation of
l

(6.48) and the substitution of (6.35) and (6.43), it may be shown that

(6.48) will hold for all t _ ti,' to _ t S tf if M and N satisfy

(fx
-H -f N

xx x

On the interval (tk, tf]_ the previous theory applies so that the

set of boundary conditions for M_ N_ and b in (6.10) are also

appropriate here. They are

M(tf) = [B O]

,]N(tf) = [Q3 B _x

b(tf) = - N'(tf)[_x_x']-l_ (6.50)

with the definitions of B and Q3 as given in Section A of this

chapter.

Since the Euler-Lagrange equations are homogeneous_ the differential

equation for b is b = O. b is therefore constant over each of the

intervals [to , tl), (tl_ t2),...,(tk, tf].

It is reasonable to expect M, N_ and b to be discontinuous at

t = t. since _x and 5_ are not continuous there. A relationship
1
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between the possible discontinuities in M_ N_ and b and the discon-

tinuities in 5x and 5_, which may be obtained from (6.48); is

" _"_i ) + ' ( i L_,,_j_

= $i[N'(t)] 5x(ti) + N'(t +) $i[Sx(t)] + $.[b(t)]m (6.51)

The idea to be used in finding *i M, *i N, and m

similar to the method used to obtain the differential equations for M_

N_ and b in Chapter V. If, by suitable manipulations,. (6.51) may

be written in a form A(ti) 5x(t_) + B(ti) 5_(t_) + C(ti) = 0 with

A(t), B(t), and C(t) not depending on $x or

condition for the equality to hold for arbitrary

is that A(t i) = B(t i) = C(t i) = 0.

The terms in (6.51) involving ,.5_ and *.Sx may be eliminated
i i

by substituting (6.44) and the first-order part of (6.56) to obtain

I

$.b Ifrom (6.51) is

5_ then a sufficient

5x(ti) and 5_(t +)

_.M'(t) 5?_(t +) - *.N'(t) 5x(ti) - *ib(t)
1 l

= [-M'(ti) _i H' - N'(t +) *i f] at.x 1
(6.52)

By picking W. large enough_ the coefficient of 5_. in (6.46) is
l I

nonzero so that 5_. may be found by dividing through by its coefficient.
1

The substitution of 5_. obtained in this way into (6.52) and the sub-
1

sequent collection of terms gives

[*iM'(t) + CXi[M'(ti) 6iHx - N'(t +) 6i f ] Dif'] 5_(t +)

: [*iN'(t) - CZi[M'(t_) £.H'mx - N'(t+) *i f] *iHx ] 8x(t_)

(continued)
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+) _±f] (6.53) "+ $'lb - C_i_iH[M' (ti) _iHx N'(t i

where

1/5 =- W. - h'(t i) $i ( _ ) + 2Hx(t+) $'fi 1 1
(6.54

A sufficient condition for (6.53) to hold for all 5k(t_) and

Sx(ti) is that each of the terms in braces is zero. This leads to

the conditions for the discontinuity in N_

_.N : C_i[M'(t_) _.H' - N'(t +) _i f] _.H1 I X i X
(6.55

and M

_.M(t)l = - _'_mif[_iHxM(ti ) - _'f'N(t+)]l (6.56

and b

= + , +- _i f _(ti)]_._l i l
(6.57

The last three relations_ together with the differential equations

(6.49) and the boundary conditions (6.50), make it possible to compute

the quantities M(t), N(t), and b(t) by backward integration. In the

forward integration_ the shift in the switching times t. is computed
1

at each point t = t. from (6.46). A feedback form of correction may
i

be obtained from (6.47) if

the use of equation (6.48).

times becomes

5_(t_) is found in terms of 5x(t_) by

Then the optimal shift in the switching

5_i = _i[_i H + b'M-l_if ] + #i[_i(f')(M')-l(N ') + $iHx](X (n+l)- x(n))!:t=t_

1

(6.58)
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where

i/# i : [Hx(t +) + Hx(t_)]_if - Wi - k'(ti)_i(f )

If 5_. as computed from (6.58) turns out to be negative, indicating
i

that the nominal switch is too late_ the correct new trajectory could be

A

computed by backing up to the point t = to + St. and restarting the
1 1

integration. An easier scheme for computation would be to allow x to

be discontinuous by the discontinuity in 5x given in (6.36), which has

an effect approximating the effect of the shifted switching time,

independent of the sign of 5_.. For the next iteration_ the times
I

could be changed according to

t!n+l) _ t! n) + 5_.
1 i l

(6.59)

The adjustment of the v's may be carried out as before by

integrating the accessory adjoint_ (6.43), over a small interval

[t', tf] after initializing with 5k(t') as found from (6.48).

C. PROPERTIES OF THE SOLUTION

The computational method has been shown to construct a sequence of

successively better controls. In this section, several of the properties

taken on by the solution as the sequence of controls converges will be

discovered.

By the convergence of the control sequence, it is implied that

5u _ 0 or

8u : -( uu+ 5x + f (M' + k)] o (6.60)
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where*

k = M'(tf) #(tf) + b(tf) (6.61)

T%e original non-feedback form of Eq. (6.60) is

Su = -(Huu + w)-l[HuxSX + Huh$h + H']u (6.62)

which may be recovered from (6.66) by using the relations

k = M'(t) _(t) + b(t) (6.6S)

and

M'(t) $_(t)= N'(t) _x(t) + b(t)

The gradient of the Hamiltonian_

trajectory may be expressed as

mu_

(6.6_)

evaluated along the (n + i) st

H (n*l) = H (n) . H (n) [x(n*l) _ x(n) ]
u LLX

+ H(u_)[h(n+l) - h(n)] + H(n)uu [u(n+l) - u(n)]

+ o(ll_il2) + o(tivoli2) + o(I1_112)

so that if _u _ O; W _ 0;

H (n+l) _ 0 .
u

and H _ 0 then (6.62) implies
UU

(6.65)

Equations(6.61) and (6.63) hold for the Mayer problem only.

assumed that the problem has been put into the Mayer form.

It is
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a_

if _u _ 0 then 8x _ 0 also and therefore 3_ = O. The solution

will therefore sat_ the constraint _[x(tf)] = O.

It has been previously shown that the method continues to generate

successively better controls until no further progress is made. By the

foregoing_ it may be concluded that when _u _ O_ the solution satisfies

all of the necessary conditions given in the Minimum Principle since

the only conditions not originally satisfied by the construction of the

computational technique were Hu = 0 and _[x(tf)] = O.

Throughout this study the linear quadratic loss problem solved in

Chapter V has been called the "accessory" problem. To be more exact_

this problem should be perhaps called the "pseudo accessory" problem to

distinguish it from the accessory problem discussed in texts on the

Calculus of Variations. The distinction is that the accessory problem

arises when considering second variations about an extremal and that the

"pseudo accessory" problem is obtained by studying second variations

about any nominal trajectory. Since the method gives a solution which

approaches a solution to the necessary conditions_ the pseudo accessory

problem approaches the true accessory problem. The equations for the

true accessory problem are obtained from the equations in Fig. 6.2 by

setting H u = O, _xf = O_ W = O_ and 3_ = O. Since c_ d_ and

b(tf) are now zero in Eig. 6.2_ b satisfies a homogeneous linear

differential equation with zero terminal conditions and is therefore

identically zero. 'l_e resulting equations for the accessory problem

are summarized in Fig. 6.3. In the remainder of this section_ the

nominal trajectory will be assumed to satisfy all of the necessary

conditions so that the equations in Fig. 6.3 describe the corresponding

i13



Definitions F = f - f H-IH
X U U_ HX

Q = f H-if ,
L1 UU tl

S = H H H-IH
xx xu u_ UX

b is any n × n - q full rank solution to

_xB = 0

Case I

Case II

Case III

(Free Endpoint) _h = PSx

= -F'P - PF - S + PQP

P(tf) = _xx

_u = -H-I(H Sx + f'P x)
U_ HX U

(Fixed Endpoint) R_ = _x

= FR + RF' + RSR - Q

R(tf) = 0

(General) M'_ = N'Sx

: FM - QN

: -SM - F'N

M(tf) = [B O]

N(tf) = [_xx B _]

: -H-l[Hu_x_x + f'(M')-IN'Sx]
uu u

_u

FIG. 6.3 SUMMARY OF RESULTS FOR THE ACCESSORY PROBLEM WHEN

THE NOMINAL TRAJECTORY IS AN EXTREMAL
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accessory problem. At convergence, the solution to the accessory

problem has two very important uses which are now to be presented.

Oneof the disadvantages in the application of optimal control to

real problems is that a complete knowledge of the system equations and

the initial conditions is required in order to generate a numerical

answer. If someof the variables in the problem description are

slightly in error, the numerical control is no longer optimal. Therefore3

several methods have been devised for on line correction of the control

when it is applied so that the resultant control is improved. These

methods attempt to generate a new extremal from the old extremal in the

event that the prescribed control u(t) causes the trajectory to drift

off of the originally computedoptimal trajector due to unpredicted

errors in the system equations, unforeseen extremal disturbances, or

initial conditions. The Lambda-Matrix control schemeused by Bryson

and DerA_am[1961] and the method of Rosenbaum[1963] are examples of

this type of control correction. The sameidea is called Neighboring

Extremal Control in the paper by Breakwell, Bryson_ and Speyer [1963].

In the following, it will be shownthat the Neighboring Extremal Control

Law is obtained as an automatic byproduct of the computational method

based on second variations without additional calculations.

Optimal paths, or extremals_ are constructed so that the cost does

not change to first order for small changes in the control u(t) or the

state x(t). Therefore, optimization schemesin the neighborhood of an

extremal must consider second-order terms. In the neighboring optimal

control scheme _u is chosento optimize the second-order terms in the

expansion of the functional _ - v'_ while maintaining _[x(tf)] = 0
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to first order. This _ precisely the way in which the control was chosen

in the computational method. In fact, since the correction to the

control u was found as a function of Sx by eliminating _h, the

coefficients el(t), c2(t),...,Cn(t), Cn+l(t), computed with each

iteration, give the correct neighboring extremal control law as

u(t) : cl(t) xl(t) _ ... + Cn(t) Xn(t) + Cn+l(t)

This control is optimal along extremals and has an error of order

higher than ilx(t) y(t)ll along a nonoptimal trajectory y(t) which

is in the neighborhood of an optimal trajectory x(t).

The accessory problem solution may be used to obtain another useful

result; testing the conjugate point condition for the solution. In an

earlier chapter, the absence of conjugate points was given as one of ihe

sufficient conditions guaranteeing that the extremal was actually a

minimizing curve for the pseudo accessory problem. There are similsr

results for the nonlinear problem which are given in the following

theorem.

Theorem 6.1

If there exists a pair of vectors [x(t), h(t)] which satisfies

the necessary conditions given in (3.6) and (3.7) (Pontryagin's

Minimum Principle) and

i. H is nonsingular for all t c [to_ tf] (Strengthened
uu

Legendre Condition)

2. There is an optimal 5u for the accessory problem with the

boundary condition @xSX = a for arbitrary a (output

controllability)

ll6
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3. There are no conjugate points in [to_ tf] then the trajectory

x(t) is optimal in the sense that it provides a weak relative

extremum for the payoff _[x(tf)] while satisfying the

constraints _[x(tf)] = O.

For a proof of this theorem_ stated in a different form, see Bliss

[1949]_ Chapter IV.* Condition 2 replaces Bliss' assumption of normal

extremals. Since the accessory problem is quadrati% it is its ow_

accessory problem, so that Condition 5 of the theorem ma_ be interpreted

as pertaining to conjugate points for the accessory problem or for the

original nonlinear problem.

Since the conditions of Theorem 6.1 are also necessary for the

computational method based on second variations to converge on the interval

in [to_ tf] in the sense that 5u _ 0, _(tf) _ a finite value, and

IIWII_ O_ it may be concluded that the numerical solution must furnish

a local extremum for the payoff _[x(tf)] while satisfying the con-

straints _rx[tf)]__ _- = O.

D. SUGGESTIONS FOR CODING

Comments concerning the mechanics of programming are usually not

found in the literature on computational methods probably either because

the authors did not perform the actual programming or because subjects

of this nature do not make interesting reading for a general audience.

Bliss' conjugate system Uik(X), Vik(X) (k = l,...,n) of solutions to

the accessory equations corresponds to the matrices M(t) and N(t) im

in this report.



This section is included because the author was the programmer and

some of the ideas may save the prospective programmer a great deal of

wasted effort before he discovers the same thing for himself.

Som_ of the initial programs were written in FORTRAN ii for the

IBM 1620 and 7090 • Later programs were written in a special form of

ALGOL for the 7090, called SUBALGOL% which is a compiler language

developed at Stanford University. For reference_ a sample listing of

a SUBALGOL program is included in Appendix B. The sample program was

used to obtain some of the numerical results given in Section D of

the next chapter. Due to the way in which the language is constructed_

readers with no prior experience with SUBALGOL_ who are familiar with

another compiler language_ should experience little difficulty in

reading the program. The sample program is strictly ad hoc, written for

the purpose of investigating some of the properties of the method iI_

obtaining numerical examples for a specific example. Because of this_

it is suggested that the reader write his own program_ using the listing

to answer occasional questions rather than as a model program.

The heart of the program is the integration of differential equations

so that it is worthwhile to devote some careful thought to the selection

of the method to be used. Since most available library routines do not

make provisions for some of the options desirable in this program such

as storing the variables at prescribed intervals_ testing several

o-

This language was derived from the Burroughs Algebraic Compiler

(BALGOL), originally developed for the Burroughs 220 machine. SUBALGOL

is the mnemonic name for Stanford University's version of the

Burroughs Algebraic Compiler.
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possible conditions for possible exits at each integration step_ inte-

grating backwards without changing variables, and integrating equations

which _epend on functions stored in tabular form, it is tempting to write

a special differential equation solver incorporating the desired special

features. This procedure_ which was followed in the numerical work

reported in the next chapter, is not recommended without first seriously

considering modifying_ if necessary, existing package routines for

differential equation solution available at most computation facilities.

The final version of the program used for the test of the method,

entitled ADDUMS in the listing, is actually reasonably standard except

for the features of backwards integration (the initial value of the

independent variable is larger than the final) and the provisions for

keeping track of the running index on the stored variables_ which is,

although convenient and efficient, really not necessary. In fact, most

of the special features needed may be included as a part of the sub-

routine which furnishes the derivative of the dependent variable

(Procedures BVDP and FVDP in the listing) since these programs must be

written anyway. The type of numerical integration method used_ based on

the previous reasoning, is probably best determined by what is available.

Procedure ADDUMS uses a fourth-order Runge-Kutta method for startirg a

fourth-order Adams-Bashforth predictor-corrector method as given in

Hamming [1962]. Although a program using a fourth-order Runge-Kutta

method, or any of the similar methods as Gill or Kutta-Merson, would

have produced a somewhat simplified program and an ability for easily

varying the integration step size_ these methods were rejected in favor

of the predictor-corrector method which requires two derivative evalu-

ations at each integration step as compared with four derivative
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evaluations for the R-K type methods. Primarily due to a desire for a

simplified tabular function storage and interpolation schemeas discussed

in the next paragraph; the integration step size was selected and fixed

over predetermined imtervals. As a check on the accuracy_ a warning flag

is printed by the integration routine if the relative error of the

integration is too large.

As described in Section A of this chapter_ both the forward and

backward integration need variables3 as time functions_ which have been

computedon previous integrations. Somemeansmust then be provided for

storing the functions at selected sample points and reconstructing the

time functions from the stored values as required. The use of a fixed

integration step size and storage grid helps to simplify the programming

which mayoutweigh the fact that a variable integration step size and

nonuniformly spaced sample points could save time and memory. For this

program_ both of these methods were discarded in favor of a fixed

integration step size and storage of the variables at every integration

step. If the memoryis available3 it is senseless to develop a more

complicated storage-interpolation routine which will waste both running

and programmingtime to conserve unrequired memory. If a fixed step size

is unreasonable3 interpolation may still be avoided by continuing to

store at each integration step and using the samesequence of step size

changes for each integration. In this way the storage points are held

fixed. This methodwas successfully applied in reducing the integration

step size over the final part of the trajectory in order Ptoreduce the

numerical errors in the terminal constraints. Since no storage shortage

difficulties were experienced in programmingthe examples on the 7090_

manyextra unnecessary time functions were stored for convenience in
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outputting the results for plotting. A considerable reduction in the

total amount of memoryused for data could have been achieved by out-

putting the results as they were computed, thus eliminating the need for

muchof the temporary storage.

The calculation of the inner products in the determination of the

feedback coefficients was madewith the aid of the program IPDI8, a

double precision routine codedoriginally in FAP. Furthermore, an

iterative method for minimizing the sumof the squares of the residual

errors was used in the required linear equation solution. These features

were incorporated in someof the early programs in order to help to

track down somesmall numerical errors. By the use of an open-loop

control over the last part of the trajectory, the requirement for very

accurate numerical linear equation solutions is not so important so that

the use of double precision and iterative solution improvementmaybe

replaced by a less sophisticated technique.

The evaluation of each run, step _ in Fig. 6.1, is detailed in

flow chart form in Fig. 6.4. To minimize the effects of computing

inaccuracies or nois%both ¢ and _ are modified before the tests are

made. Tests of @ may be madeonly on the first few significant bits

by first setting the remaining significant bits to zero. Since the

desired value of _ is zero_ _ is set equal to zero if it is below

a desired error bound.

A final commentconcerns the step size adjustment in steps _ and

_. The theory specifies that if W is large enough_the iteration will

be successful and that W_ 0 as the method converges to a solution for

which H / O. In practice W is replaced by OCW_ _ > O, where
uu
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no

_Bad Run_

no

no

Good Run

FIG. 6.4 DETAIL OF THE RUN EVALUATION
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= _ _ i for a successful run_ step _ and _ = _ _ i for a badg b

run, step 7_. In the numerical examples; the experimentally determined

values O_ = i0 and _ = 0.5 were found to produce a fairly efficientu g

schemefor adjusting W.
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Vll. NUMERICAL EXAMPLES

In order to evaluate the efficiency of the proposed computational

method experimentally_ several numerical examples are presented in this

chapter. It should be emphasized that the actual machine computation

is an essential part of this research. Although it may be possible to

prove analytically that a method converges to a solution, a machine

solution may not be feasible due to the numerical inaccuracies involved.

The experimental results presented here give a demonstration that the

method works in actual practice; at least for the examples choser_.

The choice of problems has been made to illustrate the various

special cases previously discussed. The first example, a linear plant

with a quadratic loss function and free-end conditions, compares the

one-step convergence of the second-order method to the relatively slow

convergence of a usual first-order gradient-type method. An exampl<

with a complete specification of the terminal states for a nonlinear

plant is then given to show the special technique developed for problems

with fixed-end conditions. An example of a nonlinear plant with free-

end conditions and a quadratic loss function is presented to again compare

the second and first order techniques on a simple nonlinear problem with

no analytic solution. The last example presented illustrates the method

as applied to a problem with partially specified terminal states. This

final example represents the most general type of boundary condition

and the corresponding method developed in the chapter on the solution of

two-point boundary value problems is applied.

In an effort to improve the readability of this chapter, some of

the program details have been summarized in Appendix C for reference°
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A. LINEAR PLAI_T QUADRATIC LOSS EXAMPLE

The first example to be studied is a driven harmonic oscillator

described by the foilowirN set of linear dll±e._en___l ..... +e_'_

Xl : x2

x2 = - xI + u

(7.1)

The cost function is the integral of the sum of the squares of the

states and the control given by

i0

J= 1/2
0

2 2 u2
(xI + x2 + ) d_ (T.2)

The initial conditions are taken as Xl(0) : i, x2(O) : 0 and the

final state is unspecified.

This problem was solved by the usual method of steepest descent with

the program titled LQL and with the method based on second variations in

program 2MV. Both methods require reverse time solutions of the adjoint

equations

_i : h2 - Xl

_2 : - _i x2

_m(lo): _2(lO): o (7.3)

Program 2MV also required solutions to the additional set of

equations
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• 2 - i
Pll = 2P12 + PI2

PI2 = P22 Pll + PI2P22

• 2

P22 = - PI2 - i + P22

bl = b2 + P12(b2 + u + _2 )

_2 = b I + P22(b2 + u + _2)

Pll(10) = P12(10) : P22(i0) : bl(10 ) = b2(lO ) : 0

In (7.4) the p's are the components of the symmetric P matrix

and the b's are the components of the b vector.

The algorithm for updating the control in this problem _n LQL is

u (n+l) : u(n) c H : u (n) _ (h2 + u(n)) (7.5)
u

In order to give the best possible advantage to the program using

the usual steepest descent approach_ LQL_ the step size c was optimized

at each step. The exact step size is determined at each point for the

present problem. The step size optimization routfne involves two extra

integrations of the state equations at each step and results in an

additional cost reduction which probably does not justify use'in general

programs. However_ its use here eliminated all guessing from the method

and possible unfair comparisons due to poor guesses of the step size.

In the program using second variations_ 2MV_ the control is updated

by
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u(n+l) = u(n) - (Huu + W)-I(H ' + H 5x + f'PSx + f'b)
U tlX U U

= -h2 - b2 + Pl2(Xl n) - xl n+l)) + P22(x_ n) - _2"(n+l))(7.6)

The final optimal trajectories obtained from the second variations

program are shown in Fig. 7.1 where the state variables xI and x2,

the cost J_ and the control u are all plotted as functions of time.

As expected_ the second variations program coverged in one step.

I.O-

0.5-

-0.5-

j

/ TIME_- --

i
8 I0

FIG. 7.1. OPTIMAL TRAJECTORIES FOR l,/(s2 + i) PLANT WITH QUADRATIC

LOSS QI = I, Q2 = i, Q3 = 0 AND FREE-END COND_TIONS

The results of the steepest descent program are shown in Fig. 7.2.

Starting with u = O_ 14 successive iterations on the control are shown.

At the end of the 14th iteration3 the cost was 0.95667 as compared to

the optimal cost of 0.95613.
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'TIMAL

TIME

8 IO

FIG. 7.2. SUCCESSIVE CONTROL ITERATIONS USING STEEPEST DESCEN%

EXAMPLE A

The advantage of the second-order method is clear not only from

the total number of iterations required for this problem_ but also from

the total time for computation. The time per iteration is not quite

doubled by the second-order method.

This problem also illustrates some of the difficulties associated

with the indirect method. Consider the adjoint variables shown in

Fig. 7.3. Since the final adjoints are required to be zero_ the quantitie_

to be determined are the final state variables. From the plots_ the

optimal final states are picked near zero so that both the states and

adjoints remain near zero for the interval between i0 and 5_ and then

rise to fairly large values in the remaining interval. From personal

experience_ this problem is almost impossible to work by the indirect
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I \

l.O-I

8 IO

-1.o-

FIG. 7.3. ADJ01NT VARIABLES_ EXAMPLE A.

method (i.e._ adjusting the final states) on an analog computer due to

the large sensitivity of the initial states to changes in the final states

which are near zero. However_ the problem with tf = _ is reasonably

easy. This is due to the exponential growth of the sensitivity with tf

for this problem. Host of the successful examples worked by the indirect

method either have small values of the final time or have lightly damped

plants. Both of these situations lead to reasonable sensitivities so

that a solution is feasible.

The final set of curves given for this example_ Fig. 7.4_ shows the

solution to the matrix Riccati equation. The optimal control for this

problem is given in feedback form by u = - Pl2Xl - P22X2 so that this

plot also shows the magnitude of the optimal feedback gains. For this

example_ the feedback control is a global optimal. That is_ this

feedback control law is optimal for this _7 _ _..... J ............pro_e_L_ _ o_ inic_a_ '_-
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P2 2

P12
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2 4 6

TIME

i

8 IO

FIG. 7.4. SOLUTION TO RICCATI EQUATION FOR EXAMPLE A. The Optimal

Feedback Control u = - Pl2Xl - P22X2

B. THE BRACHI STOCHRONE

The classical brachistochrone problem was chosen to illustrate a

nonlinear problem with fixed-end points. This problem has the advantage

of an analytic solution for direct comparison of results. Jazwinski [1964]

has reported that the ordinary gradient method has very slow convergence

for this problem. It seemed reasonable to see if the second-order

technique could be employed to speed convergence.

Starting at the point (0, 0), a particle slides dowm a frictionless

wire under the influence of gravity until it reaches the point ({fj _f).

At the point (O; O) the particle is assumed to have the velocity

obtained by a free-fall one unit distance or _g . The problem is to

find the shape of the guiding wire which minimizes the time of transition.

The velocity of the particle is

d.._£: Jl + (7.7)
dT dT
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FIG. 7.5. BRACHiSTOCHRONE_EXAHPLEB

where

transition time is

_f J1 + _,2

T = _ v

0

TI' denotes the derivative of

d_

with respect to _. _e

_fJ 2
=- i \_ I+_'

_g J J£ =
0

at (_.8)

_nis problem may be expressed in control problem notation by

identifying -TI' with u and -_ with the state x. With these

definitions the reformulated problem has a cost function to be extremized

given by

2C_f + u

J=_ j_+_
0
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The independent variable has been denoted by _ instead of t,

as is the usual convention_ in order to avoid confusion with t_e _i_e

variable T in the original problem. The state equation :_s

u (-7.-I''¸

with the boundary conditions

x(O) ; o _(_f) = _f

The Hamiltonian for this problem is given by

2
H- l+u +ku ,,i

w_÷x

Along an extremal; the optimal control u* minimizes 7T_ '_,_'_

Since the Hamiltonian does not contain _ explicitly_ _t _s _

constant of motion along extremals. Substituting (7.10) and (_.lS) _t,:_

(7.12) yields after manipulation_

(l +_)(l+_2) = c

where c is a constant to be determined by the boundaI7 eondi_OnSo

The set of solutions to this differential equation may be wz'itter:

in parametric form with parameter v as

_(v) = r(l - cos (v)) + i

3(v) : r(v - sin (v)) + k (7._5)
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which describes a family of cycloids. The former constant c has been

absorbed in the new constants r and k which are picked to satisfy

the boundary conditions (7.11). The initial and final values of the

parameter v are also chosen so that the boundary conditions are

satisfied. This leads to a set of four simultaneous transcendental

equations in the unknowns Vo, Vl, r, and k.

0 = r(l - cos (Vo)) + I

0 = r(v O sin (Vo)) + k

: r(l - cos (Vl))+ i

Df : r(v I - sin (Vl)) + k (7.16)

In order to solve (7.16), a numerical technique must be used. An

IBM 1620 program was written to carry out a solution by a form of Newton's

method. The solution for If = 1.0 and Bf = 0.5 is Vo = - 1.80$7562,

v I = 2.5936165, r : - 0.8092445, and k = - 0.6772854.

It may be easily shown that the minimum transit time is given by

T = _- 2r (vI - Vo) / 2_ (7.17)

For this particular terminal condition, the minimum time is computed as

T = 0.998498271

The optimal trajectory is now completely specified by the constants

computed above and is given in parametric form in (7.15). However, for

comparison with the trajectories generated by the second variations_ it
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is convenient to have the value of _ for a set of evenly spaced values

of _. The set of corresponding values of _ was found by another

1620 program using iteration on the parametric equations.

The preliminary calculations to set up the direct method based on

second variations begins by computing the required partial derivatives

of the Hamiltonian.

H =_+
U

g 2_-_+ X + U

J 2- l+u
H -

x 2(1 + x) 3/2

1
H =

uu u2)3/2Ji+x(l+

H
ux

- u

J 22 I + u (1 + x)3/2

5 Ji + u2

- x)512xx 4(1 +

(_.18)

The adjoint equation is

i cH _

x 2d S

(7.19)

where c and d

C = + U

are defined by

d= _+x (7.20)
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The remaining equations for R and b_ as defined in Chapter V_ are

readily obtained by substituting (7.18) into the defining equations

: [fx- fu[_uu+ w]-Z_u_] R + _[f'x- _xu[_uu+ w]-!fu]

+ W]-IHux ] R - f [Huu + W]-if '+ R [_xx - Hxu [Huu u u

: (fx - fu[_uu+ w]-ZHu_+ R[Hxx- _xu[_uu+ w]-l_ux])b

- fu[_uu+ w]-_' - _xuE_uu + w]-_'u u
(7.21)

The substitution and simplification for this example give the

following equations for the scalars R and b_

= c R2 _ uc dc S

l+_c _2(l+Wdo3) (l+Wdc3)

= c 5 Rb uc b - (h +
l+_c 3 2d2(l+Wdc3) _)

_ __ 2d-

(l+Wdo3)
(7.22)

The boundary conditions are

R(%) : o

b(O_f) = AXf desired = - xf + 0.5 nominally . (7.25)
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The control for the (n + i) st iteration is given by

u (n+l) : u (n) _ [Huu + W]-I[Hu + Hux(X(n+l) _ x (n))

+ f'R-l(x (n+l) - x (n) - b)]
u

(7.24)

Substituting the expressions for this example results in the

equation for the control

3d [ u _< u i)x(n)b]u(n+l) : u(n) c h + _ + R _
l+Wc3d 2cd 3

l+Wc3d 2cd 3 +
(7.£5)

The terminal boundary condition for h is initially assigned an

arbitrary value and then updated at each iteration by solving the equation

x(n)(t) - b(t) = R(t)[_(n+l)(t) - _(n)(t)]x(n+l)(t) (7.26)

at the final time for _(n+l). However_ R = 0 at the end point. The

method used in the program involved solving for 8h = h(n+l) _(n) at

several points near t = tf and then extrapolating the result to the

end by fitting a polynomial through the computed points.

The machine results are shown in Fig. 7.6 which is aplot of the

iterations on the trajectory. The initial guess was u = 0 which

corresponds to a horizontal path. The first iteration reduced the cost

and met the end conditions to within machine accuracy. The high degree
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FIG. T.6. TRAJECTORY ITERATIONS BY SECOND VARIATIONS FOR THE

BRACHISTOCHRONE PROBLEM_ EXAMPLE B

of success_ which may seem surprising at first glance_ may be attributed

to two major causes. _eoretically_ the accuracy is to be expected

since the corrections are in fact exact for errors in a linear terminal

constraint with a linear state equation. However_ one might smspect this

will not be the case in practice due to integration errors. _ese errors

are compensated for by the feedback control which helps to force the

errors in the terminal constraint to zero.

The method converged to within the accuracy of the numerical

integration in only two steps. The plot shows that further iterations

coincide with the second. The cost continued to decrease slightly

after the second iteration_ with variations in the eighth significant

figure only.
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As originally noted_ this problem was chosen because of the poor

convergence of the normal gradient method as reported by Jazwinski [1964].

The version of the problem worked here is due to McReynolds [1966]. The

difference in the problem worked by Jazwinski and McReynoldsis only in

the numerical value of the terminal conditions. Jazwinski used _f = 5_

_f = -7 and McReynoldsused _f = i, _f = -0.5. A quick check

revealed that the change in terminal conditionsdid not change the con-

vergence rate with the method based on second variations. Sinnott [1966]

recently checked the problem with the gradient method and found it to

be quite effective_ converging in 3 or 4 steps to an acceptable answer

for both choices of terminal conditions. This does not agree with the

work of Jazwinski_ who reported that his program terminated after 13

iterations and that the resulting trajectory did not satisfy the Euler

equations well.

C. QUADRATICLOSSVANDERP0L WITHFREEENDPOINT

The problem chosen for this section is found on pages 267-270 of

C. W. Merriam's book [1964] on optimization techniques. In discussing

this problem_ Merriam states for a particular control initialization that

the application of "... the method based on second variations results in

complete failure." The difficulty encountered here is due to the

existence of a conjugate point in the accessory problem. The application

of the theory developed in Chapters V and VI to circumvent these diffi-

culties is illustrated in this numerical example.

The driven second-order nonlinear oscillator studied by Van Der Pol

maybe written in state space form as

°
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_i = x2

£2 = -Xl + a(l

2
xl) x2 +u (7.27)

where the driving function _(t) has been added as a control. The

parameter a_ which determines the degree of nonlinear behavior of the

soiutions_ is taken as i. This causes the free oscillations to be a

rough sawtooth waveform. The initial conditions given are Xl(O) = i

and x2(O ) = O_ which is a point inside the stable limit cycle•

The cost function to be minimized in this problem is

5

J = 1/2 (xI + x2 + u2) dt

0

(7.28)

and the end condition is left free.

The first example is similar to the present one_ in fact_ the linear

problem is a linearization of the nonlinear problem about the point

x I = O_ x2 = O.

The first step in setting up the iterative technique is to define

the Hamiltonian H as

2

H = _ix2 - _2Xl + _2(i - xI) x2
2 2 u2

+ _2 u + !/2(x 1 + x 2 + ) (7.29)

As before_ the required partials of H are evaluated and substituted

into the equations necessary. The program used to generate the steepest

descent solutions_ titled SDVPj and the program based on second variations_

titled 2VVP_ both required solutions to the adjoint equations
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_c "-ii ------f 7\

X X

which become

h! = (i + 2XlX 2) h2 xI

2
i2 = -hl + (xl - i) h2 - x2 (7.30)

Program 2VVP also required the n X n symmetric matrix P which

satisfies

P = -f'P - Pf - H + Pf _(Huu + W)-If'P"
X X XX U U

where W determines the constraint on the control space step size. For

this problem the components of P solve the following set of scalar

differential equations

911 = 2(1 + 2XlX 2) PI2 + 2h2x2 - i +--

2

PI2

I+W

• 2 _ i) + (i + 2XlX 2) + 2h2x I +PI2 = -Pll + (xl PI2 P22

PI2P22

I+W

2

P2__22
922---2p12+ 2(x_- l)P22 - ! + 1+w (?.31)

The additional n vector b satisfies

= -f'b + + W)-if + + W)-IHx Pfu(Huu _b fu(Huu u

For this problem the equations for the components of b are
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bI = (I + 2XlX2) b2 + p12(b2+ _2 + u)/(1+ W)

_2 ---bl + (x_.- l) b2 + p22(b2+ _o + u)/(1+ W) (7.32)

Since the end conditions are not specified for the state variables

in this problem, the terminal adjoint variables are zero for both programs.

For the same reason the final b variables are also zero. The final P

matrix is zero because there is no terminal cost function. The total

set of boundary conditions at the terminal time is

b(tf) = 0, P(tf) = O, _(tf) = 0
(7.33)

In SDVP, the steepest descent algorithm for updating the control is

u (n+l) = u (n) - _ H = u (n) - C(_ 2 + u (n)) (7.54)
u

The program SDVI° was initialized with two different starting

values for the control function u(t) = 0 and u(t) = i in order to

investigate the effect on the convergence. No particular difficulties

were encountered with either guess. However, the u = 0 guess produced

a lower cost after 18 iterations_ although the cost on the first _teration

was higher than for u = i. For a comparison_ the successive iterations

on the control function are plotted in Fig. 7.7 for u (°) = 0 and in

Fig. 7.9 for u (°) = i. After 18 iterations, the costs were 1.450 and

1.565 for the runs initialized with u (°) = 0 and u (°) = ! respec-

tively. These figures are to be compared with the optimal cost of

1.433508 as obtained by second variations.

Program 2VVP was also initialized with several starting control

functions. Since the change in the shape of the control funetiom i_

141



I0

05

o

d o

5
u

0.5

FIG. 7.7. CONTROL ITERATIONS USING STEEPEST DESCENT INITIALIZED WITH

u(t) = 0 FOR THE VAN DER POL PROBLEM, EXAMPLE C

0

I 2

TIME

I 2 3 4 ,5 6 7

FIG. 7.8. CONTROL ITERATIONS USING SECOND VARIATIONS INITIALIZED WITH

u(t) = 0 FOR THE VAN DER POL PROBLEM, EXAMPLE C (The

sequence of small numbered plots may be used to help

distinguish each iteration in the larger plot.)
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FIG. 7.9. CONTROL ITERATIONS USING STEEPEST DESCENT INITIALIZED WITH

u(t) = i FOR THE VAN DER POL PROBLEM, EXAMPLE C
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FIG. 7.10. CONTROL ITERATIONS USING SECOND VARIATIONS INITIALIZED

WITH u(t) = i FOR THE VAN DER POL PROBLEM, EXAMPLE C
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quite large from one iteration to the next_ some additional infor_ation

is helpful to distinguish the various curves. The iterations on u for

u (e) = 0 are shown in Fig. 7.8 and for u (°) = i in Fig. 7.10. At

the bottom of each figure, a sequence of small ntmlbered plots shows the

general trend of each iteration. These small figures may be used to

help trace out each corresponding curve in the large plot which shows

all iterations superimposed.

The first striking difference between the iterations in the

steepest descent and second variations is in the apparently large steps

taken with 2VV_. Recall the definition of "close" functions required

that the norm of the difference given by

5

liSull= _ (u<n)(t> - u<n+l>(t>) 2 dt

0

be sufficiently small. In practice "sufficiently small" is determined

so that the resulting control leads to improved cost and constraints.

On the other hand, the method of steepest descent determines ll_uii by

a different scheme. In this case 8u is picked along the gradient

H (i.e., it is a function proportional to the function H ). Consider
u u

the resulting change in cost to be a function of IlsuII. Then IIsuii is

picked as the smallest value which gives a local minimum to the function

giving the change in cost. This example illustrates the large differences

in l}Sull which occur when the two different criteria for determining

ilSull are applied in the two methods.

Some of the control iterates may be seen to have sharp discon-

tinuities. (The computer plotting fails to show the exact plot in these
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regions.) The curves for this problem exhibit a step continuity when

the accessory problem has a conjugate point. This is due to the method

of solution. _en a conjugate point occurs_ the optimization in the

smaller interval produces a nonzero Bu only in the smaller interval.

If this Bu is not zero at the ends of the small interval_ the next

resulting control becomes discontinuous. For this problem the control

is updated in the second variations program by

u (n+l) = u (n) - [Huu + W]-I(Hu + 5x'Pfu + b'fu )

= u(n) - (Z2 + u(n) + 8XlPll + Bx2PI2 + b2)/(l + W)

u(n+l) = [-h2 + (x_ n) - xln+l)) Pll + (xg n) - xg n+l)) PI2- b2]/(l+W)

(7.35)

Since _ x_ b_ and P are continuous_ u (n+l) will also be continuous

on the next iteration provided there are no conjugate points.

The optimal trajectories as computed by 2VVP are shown in Fig. 7.11.

Although the nonlinear system equation differs_ considerably from the

response of the linearized version discussed in Section A of this chapter;

the controlled responses are quite similar. (Compare Fig. 7.11 and the

first 5 seconds of Fig. 7.1.) The control law is shown in feedback form

in Fig. 7.12. This neighboring extremal control is optimum for the

given initial conditions and is correct to second order for changes in

the state. These numerical results agree with previously published

solutions by Merriam([1964] PP. 266-267).

The method based on second variations has a clear advantage in this

example. This is illustrated graphically in the Figs. 7.7-10 and
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FIG. 7.11. OPTIMAL TRAJECTORIES FOR THE DRIVEN VAN DER POL EQUATION

WITH AN INTEGRAL QUADRATIC LOSS FUNCTION

c3 2VVP37

u=cl xI+cEx2÷c3

_

FIG. 7.12. THE TIME VARYING FEEDBACK FOR THE NEIGHBORING EXTREMAL

CONTROL LAW_ EXAMPLE C
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numerically in the following data. For u"°" = O, SDVPobtained a

cost which agreed with the optimal cost in only two significant figures

u(o)after 18 iterations. For the same = O, 2VVP converged to 8

significant figures in the cost in 7 iterations and the cost was correct

to 5 figures in only 5 iterations. For u (°) = 1, SDVP took 19

iterations for a cost in error in the second significant figure. 2VVP

converged to 8 figures in only 5 steps.

In the numerical results presented herej conjugate point difficulties

were avoided by working the accessory problem in a smaller interval. This

method proved successful in that it was able to eliminate the conjugate

point in one step for both choices of the initializing control. The

initial convergence rate was slowed due to this difficulty as expected.

However_ the rate of improvement was only slightly less than that of the

steepest descent for the first few steps. It is doubtful that the

frequently proposed scheme of using a steepest descent program for the

first few iterations to initialize the second variations program would

have much effect on the convergence rate at the added expense of writing

an additional program.

The relative rates of convergence for the two methods are further

compared in Fig. 7.13. This figure was made by plotting the logarithm

of j(n) _ j. versus the iteration number where j(n) is the cost on

th
the n iteration and J* is the optimal cost. The effect of this

scale is to show the errors in terms of the equivalent number of signif-

icant figures. The curves are given here for u(°) = 0 onl_ since

the results are similar for u(O) : i.
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D. VAN DER POL TO A LINE

This problem was chosen to illustrate the method as applied to a

problem with partially specified_ or Case III_ type boundary conditions.

The problem is the same as the problem specified in (7.27) and (7.28) of

the last section_ except for the boundary conditions. The initial

conditions

Xl(O) : i, x2(0) : 0 (7.56)

are unchanged. The new terminal conditions require that

_[x(tf)] = i - xl(tf) + x2(tf) = 0
(7.37)
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which represents a line in the state space.

The program written for this example used the method of second

variations and required the solution of the adjoint equations, (7.30),

the state and cost equations, (7.27) and (7.28), and the equations

for M, N, and b given below• The differential equations are

mli = m2i

m2i = -(i + 2XlX 2) mli + (i - x_) m2i - n2ik

nli = (2x2_ 2 - i) mli + 2Xl_2m2i + (i + 2XlX 2) n2i

• 2
n2i = 2Xl_2mli - m2i - nli + (xI - i) n2i

bl = n21(_2 + u) k

b2 = n22(#2 + u) k (7.38)

for i = 1,2• The constant k _ equal to i/(i + W), where the

constant W effectively controls the step size in control space and

is adjusted by the method given in Chapter VI.

In order to find the end conditions for M and N, it is

necessary to find the n X i matrix B which is any nonzero solution

to @x B : O. Since @x : (-i 1), by inspection B = (i i)'

According to Fig. 6.2, the end conditions for M, N, and b are given

by
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M(tf) = L_

0 -

N(tf) : [_xxB _,] =
x 0

b(tf) =
(7._9)

The control is computed from

u(n+l) = (i - k) u(n) - k [h2 + (0

:(l-k) _(_)
- k[_2 + (0

I)(M')-I[N(x(n+i)

i)(H')-i(b _ Nx(n))]

- k(0 i)(M' )-!Nx(n+i)

which may also be written as

u(n+l) = el(t ) xl(t) + e2(t) x2(t) + cz(t )

7._o)

(._z)

with the coefficients cl(t), c2(t), and c3(t ) given by

and

[el(t) c2(t)] = -k(O i)(M')-iN

c3(t) = (i - k) _(_) _ k[k2 + (o i)(M')-i(b Nx(n))]

(7._2)

(7.43)
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J_ ,i _ ....:_i fzo:; 0. 9 tf to tf_ the control is computed in

tezmm or o&(t) _ ,_,_'ri_g th_ differential equations

4'

+ (2x17'2) _2 + (i + 2_1_2) o%

'2 Sx2 8x1 _ 2 _ l) _'2 (T.44), ! "b_, - + (x1
J _ .I.

whef£

0.9 tf

i_i_i, x(n)_x:(t) :::,_ L_) (t). Equation (7.44) is integrated from

to tf with the boundary conditions obtained from solving

M'(O.-}, tf) ::',0,%, t,): = N'(O.9 tf) _x(0.9 tf) + b(0.9 tf). (7.45)

q_le control is thel; found from

(n+l) (n)
u = (1 - k) u - k[_2 + Sh2] (7.46]

:_f:_,e_aiues of _h(t:,) obtained from the solution to (7.44) are used to
±

r_d the correctio_i to w as shown in Chapter VI, equation (6.9).

_e results of applying the computational method to the problem are

shown in Fig. 7.1!I_ which is a phase plane plot showing the trajectories

for the first seven iterations. The initial trajectory_ labeled

iteratio_ O_ resulted from the nominal control u(t) = O. The nominal

traj_ctc_'y _a_,{: _ a cost of 7.478 and a terminal constraint error of

O_6SIIS. Af_:er only seven iterations; the cost was reduced to 1.6857

with an error _n Lhe terminal constraint of -5 X 10 -6 . A conjugate

.

point was e:_co_:_<ered on the second iteration so that the second and the

third it(::_,'ati,u,sare identical until the time of the conjugate point at
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The neighboring extremal control law for this problem is shown in

Fig. 7.15. Although the feedback coefficients may be computed in the

entire interval [to_ tf)_ cI and c2 were set to zero during the last

tenth of the interval so that the final control is open loop.

Additional numerical results are given in Appendix C, Example D,

table giving the values of J_ _, and _l(tf) forwhich includes a

each iteration. From the table_ it may be observed that quite good

results are obtained for the cost and the constraints even before the

value of _l(tf) is correct to within two significant figures. _is

is because the control is not found by finding u(t) in terms of x(t)

and _(t) directly, so that a fairly good value of u(t) may be

obtained even before the value of _(tf) has converged.
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i--0

FIG. 7.14. PHASE PLANE PLOT OF SEVERAL ITERATIONS FOR THE VAN DER P0L

TO A LINE PROBLEM_ EXAMPLE D

-2

u=cl_x I +c2_x 2+c 3

C

FIG. 7.15. NEIGHBORING EXTREMAL CONTROL LAW FOR THE VAN DER P0L TO A

LINE PROBLEM, EXAMPLE D

153



Vlll. CONCLUSIONS

A. SUMMARY OF RESULTS

This investigation has been primarily concerned with the search for

an efficient computational scheme for the solution of optimal control

problems. The procedure which has been developed, while not a final

solution to the problem, offers several advantages over previous

methods. Some of the important features are:

i. The region of convergence is effectively as large as that of

the usual gradient approach. This is a distinct advantage over most other

second-order methods and eliminates the requirement for good initializing

control time histories.

2. The convergence rate corresponds to that of the gradient or

steepest-ascent methods initially and to the rapid second-order methods

as the solution is approached.

3. Although a set of initial convergence type parameters must be

specified as in the gradient methods_ these parameters are automatically

adjusted by the program. Poor initial guesses do not prevent convergence,

but only slow it initially.

4. Adequate tests are performed without additional computation

which are sufficient to show that the solution must be a minimizing

curve.

5. The linear time-varying feedback coefficients for the so-called

neighboring extremal control scheme are available without further

calculations.

6. Terminal constraints are met "exactly," without the use of

penalty functions.
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7. Certain types of problems with adjustable points of

discontinuity in the differential equation_ knownas "staging times,"

and "bang-bang" problems are included.

As a byproduct of the derivation of the computational method_a

complete study of feedback solutions to the linear plant quadratic loss

control problem with general linear end constraints is given in Chapter V.

This discussion leads to an investigation of a set of sufficiency

conditions for optimality for this problem.

Another result of this research which has value in itself is the

work given in Chapters IV and VI on extending the method to bang-bang

and related problems. In addition to the application to computing

optimal trajectories_ this result allows the construction of neighboring

extremal solutions in a feedback fashion for this problem for the first

time.

B. SUGGESTIONSFORFUTURERESEARCH

As is frequently the case with research_ this study has perhaps

uncovered more interesting problems than it has solved. The first

general area for future work is the field of computational experience.

It would be very instructive to try the method out on somelarge scale

trajectory optimization problems such as a reentry calculation, in order

to further test its usefulness. There is also a need for the development

of a set of several standard test problems with knownbad properties in

order to comparethe various techniques. Since it is doubtful that no

single method is best for all problems_ it would be very useful to be

able to say something about what type of method should be used for a

particular problem at hand. Another interesting point is the discrete
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vs continuous optimization. Since the calculations are to be done on

the digital computer and ultimately discretized_ perhaps a complete

discrete theory of optimization would lead to a more efficient scheme.

There is virtually nothing in the current literature on a theory of

errors in computing optimal controls_ although it has been generally

known for some time that certain problems are more difficult than others

due to error propagation. Also_ since most of the differential equations

which must be solved in optimizing nonlinear problems are liuear_ more

work could be done in developing special techniques for the integration

of linear differential equations as well as the application of these

methods to the.computational technique presented here. A final compu-

tational topic would be a thorough investigation of the use of penalty

functions as compared to the "exact" method for dealing with terminal

constraints.

The second area is more theoretical than the first. In this

development_ possible singular as well as abnormal problems can arise

quite naturally in the process of calculation even when the true solution

may not possess any of these undesirable properties. Very little seems

to be known concerning the optimization of near singular or near abnormal

problems. Furthermore_ problems with conjugate points can occur in the

course of computation. With the exception of a few isolated papers_

conjugate points are not discussed in the literature on control theory.

Other areas of interest include an extension of the method to problems

with state variable constraints and a consideration of sufficiency

conditions for bang-bang problems. It is quite likely that the method

developed for handling the bang-bang problems can be used to obtain a
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complete theory of second variations for such problems and corresponding

sufficiency theorems for local optimal controls.
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APPENDIXA. PROOFSOFTHEOREMSOFCHAPTERIII

Proposition S.3

There exists a set of positive numbers W3 k_ and

such that if h is an element in H which minimizes

ci_ i = l_2_..._q_

< fx(Xo), h > + 1/2W < h, h >

with

<gi,x(Xo), h > : - kgi(Xo) , then

i. for Igi(_o)I> _i' Igi(Xo+ h) < Igi(Xo)1

, fo_ }gi(Xo)l-<_i'Igi(Xo+ h) < _i

and f(x ° + h) < f(Xo)

Proof: From Lemma Z.l_ h is given by

i
hef + kh

W x

where

and P

Since

is the minimum norm solution to < gi;x; h > : - gi i = l;2;...q

is a projection operator onto the nullspace of < gi;x; > •

is perpendicular to Pfx; the norm of h satisfies

I + k 2
Jlhll2 _ _ JiPfxjl2 II_II2

By assumption llfxll is bounded and iihil is bounded since the Gram matrix

< gi_x _ gj, x > is nonsingular. Hence there exist positive numbers M

and N such that
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, ,2 i

If Igi(Xo) I > ci, then wemust showthat

gi(Xo + h) may be written as

Igi(xo + h)i< Igi(Xo)1.

+ h) (xo) + < ), h > + o(jlhij)gi(Xo = gi gi, x(Xo

: gi(Xo)+ k < gi,_(Xo),_ > + o(llhll)

= (1 - k)gi(x o) + o(iLhjl)

If W is chosen so that i/k = W_ then

gi(_o+ h) - gi(Xo): - kgi(xo) + o(Ikl)

By the definition of o(Ikl),

if o < k < k then
m

there is a bound k on k
m

such that

[kgi(Xo)l > o(Ikl)

and hence for k sufficiently small
m

0 < gi(Xo + h) < gi(Xo), if gi(Xo) > 0

or

0 > gi(Xo+ h) > gi(Xo), if gi(Xo)< 0

It follows that

Igi(x 0 + h) I < Igi(Xo)l
(A.1)
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In the second case __Igi(Xo)l< e. and we must show ..Igi(x° + h)l _<6
l i

+h)<f(x ). f(_o+h) is givenbywhile f (Xo o

f(x° + h) =f(xo) + < fx'h > + o(flhll)

=f(Xo)-_i_< f, Pf_ > + k < fx'_ > + o(]JhIl)

Now choose k : _/W such that

i
_<fx 'PfX > > kt <f_, _> I

There is a bound k such that if k < k then
n n

f(x° + h) <r(xo) (A.2)

If gi(Xo) / O, then the proof of the first part of the theor<m holds

and by choosing k < min (km, k ) then (A.I) and (A.2) both hold.n

If gi(Xo) = O, then we must show

Igi(xo + h)I< _. (A.3)
1

In this case gi(Xo_ + h) = o(Ikl). Choose k so that if k < k
O O

then Igi(Xo + h) l < e''l Then if k < min (ko, km) ; (A.I) and (A.2)

both hold.

Pro2osition 3.4

There exists a constant v sufficiently large such that if

i i

< fx; h >+ _ < fxx h, h > + [ v <h; h > (A.4)
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is minimized over all h _ H_ then

f(x° + h) < f(_o) (A.5)

Furthermore_ the minimum occurs for

h = - _[fxx _ + I]-lfV X

Proof: The expression for the value of h which minimizes (A.4) follows

directly from setting the gradient to zero and solving for h. Note

that w must be chosen sufficiently large so that there is a unique

solution. The expression for h may also be written as

_- ih -- 1 f + o(l_l)
V X

The resulting change in f is

I i

=f(Xo)_V < f' f > +°(V)x X

For I/w small enough iv < fx' fx > > IO(1) l so that

f(xo+h) <f(xo)

Proposition S.5

There exists a set of constants w and i/k sufficiently large and

a set of tolerances ei_ i = l_2_...q such that if

< F , h > + i < F h, h > + I (A 6)
x _ xx _v<h, h>
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is minimized over all h c H with

and

F(_,_): f(x)+ _'g(x)

i

giCXo)..:-[<gi,x<Xo_,"" h> (A.7)

then

i. if Igi(Xo)l > el' Igi(Xo + h)l < Igi(Xo)l or

+ h)l-<_. and f(x° + h) < f(_o)2. if Jgi(_o)I < _i' Igi(Xo •

Proof: By an easy extension of Lemma 5.I; the h which minimizes (A. ,,

while satisfying (A.7) is given by

h : - [Fxx + w I] -I PFx + k[

where P is a projection operator onto the nullspace of L : < gi_x'

i = i;2_., q and _ is the minimum norm solution to < gi;x; h > :

- gi (xo)" Since

q
_--7

F : f +'higi;x_/_ PF : PfX X X X

i=l

q

+_hiPgi;x : Pfx

i:l

so that

X

The expression may be further simplified as follows
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A

h = _ipf +k_ + oI_l

_ne proof of the theorem then follows from Proposition 3.3.
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APPENDIX B

SAMPLE PROGRAM

**STEEPEST DESCENT 2ND VARIATION VAN DER POL PROBLEM TO A LINE $
COMMENT MAIN PROGRAM BEGINS HERE $
REAL EXTERNAL PROCEDURE IPD18() $
EXTERNAL PROCEDURE SMOOTH()$ REAL SMOOTH() $
EXTERNAL PROCEDURE STARTTIMER()$ EXTERNAL PROCEDURE TIMER() $

REAL TIMER() $
NTEGER I,M,MM, INT,NSETZ,JjNBITS,NTOL,POOPED $

I ARRAY TI TLE(12) ,XZ(2=O),YZ(20),ZZ (20),A(4),B(2),G(2) ,E (2),YY (20) $
INTEGER ARRAY AX(6) (@ Xl@,@ X2@,@ COST@,@ Cl@,

@ C2@,@ C3@) $
INTEGER ARRAY AA(12) =(@ Ml1@,@ M12@,@ N11@,@ N12@,

@ BI@,@ LI@ @ M21@,@ M22@ ,@ N21@,@ N22@
@ B2@,@ L2@1 ' $

GLOBAL REAL ARRAY RAT(2),FEATHERS(2) $ GLOBAL REAL DETM $
GLOBAL REAL ARRAY X(6,20),AU( 501),ASTATE(5, 501),ASTOVE(5, 501) $
GLOBAL REAL ARRAY AADJ(12, 501), SAU(501),CEE(3,501) $
GLOBAL REAL T,TEMP,FKK,FU,UU,EPS,CI,C2,C3,CC $
GLOBAL INTEGER NFUNCT, N, ITIME, ICU,ICUP,NSETT $
GLOBAL BACKK, CONJUGATEPOINT, HADES $
PROCEDURE OUT(K) $

$
BEGIN INTEGER K,I

IF (NFUNCT EQL I)
BEGIN $

IF K EQL O AND N EQL 3 $
WRITE($$HEADI ) $

PRINTOUT(T,FOR I = (1,1,3) $ X(I,I),UU,CI,C2,C3) <-,.
RETURN S

END $

IF (NFUNCT EQL 2) $
BEGIN IF (K EQL O) ¢

WRITE ($$HEAD2)

WRITE($$ADJI ,FO5)$ WR ITE ($$ADJ2 ,FO6) $
RETURN END $

FORMAT HEAD1(B7.WTW,BI4,*XI*,B13,*X2*,B12,*COST*,
B12,*U*.B14,*C1*,B13,*C2*,B13,*C3*,W0) $

FORMAT HEAD2 _B7 ,*T*, B22 ,*M*, B29 ,*N*, B20 ,*B* _B14,*L*, B12 ,*DETM* ,WO) $
OUTPUT ADJI (T, (FOR I = (I ,I,6)$X(I,I)),DETM) $
OUTPUT ADJ2(FOR I = (7,1,12)$X(1,1)) $
FORMAT FO5(8F15.8,W4), F06(B15,6F15.8,WO)
END OUT( )
PROCEDURE ADDUMS( H , ITO, TZERO, TMAX, KK $ XZ() $ F() ) $

BEGIN $
BOOLEAN TIRED$ TIRED = O $

INTEGER IT,KK.EOA, ITO, INCR,ISET,K,I,NSTEPS $
INTEGER COUNT_ COUNT = u $
ARRAY C(6,20) S
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H = ABS( H ) $ IT = ITO $ ITIME = KK $
D = TZERO - TMAX SNSTEPS = ENTIRE(ABS(DIH)+O.5) $
EITHER IF (D LSS 0.O) $ INCR = I $
OTHERWISE$ ( H = - H $ INCR = -I ) $

HH = O.5.H $ D = H/24.0 $ EOA = KK +INCR,NSTEPS $
START,,

T = TZERO $ ,SET = 0 $

I x(6,1)= xz(1)) $
F(ISX,2,)) $ F(OSX(5,)) $

OUT(O) $
206..

FOR (1 ,1 _N) $

K =C(,I,K} = X(S,K)HH $
FOR K=(I I,N) $ X(I,K)= X(I,K) + C(I,K) $
T = T+HH $

KF(= 2 $ C(2, ) ) $ ITIME = ITIME+INCR $ F(25C(3,)) $
= O,5(C(2,K) + C(3,K) )HHFOR (1,I,N) $ C(2,K) $

FOR K=(1 1.N) $ X(1,K)$. =IX(6,K!_ + C(2,K) $F( :_ $ C(3, ) TIME ITIME-INCR $ F(25C(4,)) $
FOR K = (1,1,N) $ C(3,K) =O.5(C(4,K) + C(3,K))H $
T = T+HH $ ITIME - ITIME + INCR $

FOR K=(I I_N) $ X(I,K)= X(6,K) + C(3,K) $F( { ) . $
FOR K=(I,I,N) $
(X(6,K)--X(I ,K)=X(6,K)+(C(I ,K)+2. C(2,K)+C(3,K)+C(4,K)HH)/3.0)$
ISET = ISET+I $
IT = IT - I $
IF(IT EQL O) $(OUT(I) $ IT = ITO) $
SWITCH ISET_ (TIMEI ,TIME2,TIHE3) $

TIMEI.. F(OSX(3,)) $ FOR K = (I ,I,N)$ X(5,K) = X(3,K) $
GO TO 206 $

TIME2.. F(O$X(4,)) $ FOR K = (I,I,N) $ X(5,K) = X(4,K) $
GO TO 206 $

TIME3.. F(O$X(5,)) $
IF IT EQL 0 $ ( IT = ITO $ OUT(l) ) $
IF TIRED $ RETURN $
IT = IT-1 S
ITIME = ITIME + INCR $
T= T +H $
FOR K = (I,I,N) $

X(I ,K)=X(6, K)+D(55. X(5 ,K)-59. X(4,K)+37. X(3 ,K)-9. X(2, K) ) $
FOR K = (1,1,N) $ BEGIN $

X(2,K) - X(3,K) $

X(3,K) - X(4,K) $
X(4,K) (5,K) $ END $
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IF ITIME EQL EOA $ TIRED = 1 $
F(I$X(5,)) S
FOR K = (I ,I,N) $

X(6,K) = X(6,K)+D(9.X(5,K)+I9.X(4,K)-5.X(3,K)+X(2,K)) $
FOR K = (1,1,N)$ BEGIN ' $

IF (ABS(X(6,K)-X(I,K)) GTR O0.O01ABS(X(6,K))) $
BEGIN WRITE($$LOW,ACCURACY)$ COUNT = COUNT + I $

IF COUNT GTR 30 $ GO TO HADES $
END $

X(I,K) -- X(6,K)$ END
GO TO TIME3 S

FORMAT ACCURACY (*P - C TOO LARGE, P = *,F15.8,* C = *,F15.8,
*FOR X*. J,WO) S

OUTPUT LOW(X(I,K}, X(6,K),K) S
END ADDUMS()

$
PROCEDURE FVDP(BOOLSF()) $

BEGIN INTEGER BOOL,K $
IF BOOL$ BEGIN $

CI = CEE(I,ITIME) $ C2 = CEE(2,1TIME)$C3 = CEE(3,1TIME) ENDS
COMMENT AT AN INTERMEDIATE STEP IN THE R-K STARTING INTEGRATION, THE

INTEGER BOOL IS 2 AND WE KEEP DX=LAST VALUE S
IF BOOL LEQ I $ BEGIN

DXI = X(1,1) - ASTOVE(I,ITIME)
DX2 X(1,2) - ASTOVE(2,1TIME) END $

EITHER IF N GTR 3 $ BEGIN $

uu = c3 - cc.x(I 5)$ $IF ITIME EQL ICU UU = C3 + C1.DX1 + C2.DX2 $
F(4) = (2.0 . EPS . AADJ(12,1TIME) . X(1,2) - 1.0 - FU) . DXI

+(2.0 . EPS . AADJ(12,1TIME) . X(1,1) ) . DX2
+(1.O + 2.O. EPS.X(1,1)oX(1,2))X(1,5) $

F(5) = DX1(2.O.EPS.AADJ(12,1TIME).X(1,1)) - DX2(1.O + FU)
-X(1,4) -X(I,5)EPS(I.0 - X(1,1)X(I,1) ) END $

OTHERWISE $ UU -- C3 + CI.DXI + C2.DX2 S

F(1) = X(1,2) S
F(2) = -X(1,1.) + EPS(1-X(1,1)*2).X(1,2) + UU $F(3) 0.5(X(1,1)'2 + X(1,2)'2 + UU*2) $
IF NOT BOOL $ BEGIN $

SAU(ITIME) = UU $ A = 0.0 $
FOR K = (1,1,N) $ BEGIN $

XX=ASTATE (K, I T I ME)=X_I ,K)$A=MAX (ABS (XX),A) END IIF A GTR ! .O*'5 GO BACKK END
RETURN END FVDP() $

PROCEDURE BVDP(BOOLSF()) $
BEGIN BOOLEAN B00L $ REAL ARRAY G(2), E(2) , A(4) , B(2) S
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FEATHERS(1) = M22 = X(1,8) $ FEATHERS(2) .= M21 = X(1,7) $
RAT(1)=MII=X(I,I) $ MI2= X(1.2)$ RAT(2)=-M12 $

NIl = X(1,3) $ N12 = X(1,4) $ N21= = X(1,9) $ N22 = X(1,10) $
B(I x ,5) $ B(2)= X(1.11)$ LI X(1,6)$ L2 X(1,12) $

)=X1 (I=ASTOVE(I,ITIME)$ X2 = ASTOVE(2,1TIME) $

EITHER IF ( NOT BOOL ) AND ( ITIME NEQ ICU) $ BEGIN $
COMMENT... THE FOLLOWING CHECKS DET(M) $

DETM = IPD18(1,1,2,RAT(),FEATHERS()) $
EITHER IF ITIME EQL ICU-I$(OLDSGN=SlGN(DETM)$G(1)=G(2)=O) $
OTHERWISE $

IF SIGN(DETM) NEQ OLDSGN $ GO TO CONJUGATEPOINT $
COMMENT FIND THE FEEDBACK CONTROL ONLY IF NOT TOO NEAR TF $

IF ITIME GTR ICUP $ BEGIN $
CEE(3,1TIME)=AU(ITIME)(1-CC)-X(1,12)CCSGO POGO END $

COMMENT NOW SOLVE M.G -- - FU BY LEAST SQUARE ITERATION $
A(1) = - M22/DETM $ A(2) = M12/DETM $
A(3) = M21/DETM $ A(4) = - M11/DETM $

FOR J = (1,1,2) $ BEGIN $

E(1) = IPD18(1,1,2,Xq1,),G()) $
E(2) = IPD18(7,1,2,XI1,),G(),1.0,1.0) $
G(1) = IPD18(1,1,Z,AI),E(),G(1),1.0) $
G(2) = IPD18(3,1,2,AI),E(),G(2),I.0) $ END $
CEE(I,ITIME) = IPD18(1,3,2,G(),X(1,))CC $
CEE(2,1TIME) = IPD18(1,9,2,G(),X(1,))CC $
CEE(3,1TIME) = IPD18(1,l,2,G(),B()) . CC + AU(ITIME)

-CC(AU( I TIME)+X(1,12)) END $

OTHERWISE $ IF NOT(BOOL_ _; OETM = 0 0 $POGO.. FOR I I,I,N) $ AADJ(I_ITIME) = X(I,I) $
F(I) = DMII = M21 $

F(2) = DM12 = M22 $
F(7) = DM21 = -(1+2.EPS.X1.X2)M11 + EPS.(1-Xl*2)M21 - N21.CC $
F(8) = DM22 = -(I+2EPS.XI.X2)MI2 + EPS(1-XI*2)M22 - N22.CC $
F(3) = DN11 = (2EPS.L2.X2-1 -FU)M11 + (2EPS.L2.XI)M21

+ (I+2EPS.X1.X2)N21 $
F(4) = DN12 = (2EPS.L2.X2 -I -FU)M12 + (2EPS.L2.XI)M22

+ (I+2EPS.XI.X2)N22 $
F(9) = DN21 = MII(2EPS.L2.XI) - M21(I+FU) - N11 -EPS(I-XI*2)N215
F(IO)= DN22 = M12(2EPS.L2.XI) - M22(1+FU) - N12 -EPS(I-XI*2)N225
F(5) = DB1 = (L2+AU(ITIME))N21.CC $
F(ll)= DB2 = (L2+AU(ITIME))N22.CC $
F(6) = DLI = (I+2EPS.XI.X2)L2 - XI $
F(12)= DL2 = -L1 - EPS(1-XI*2)L2 -X2 $

RETURN END BVDP() $
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SUBROUTINE SANCTUM $
BEGIN S

COMMENT EXTRAPOLATE TO END POINT WHERE M IS SINGULAR $

FOR t = !1 1,3) $
CEE(,, _CU)=3CEE(I ,ICU-I )-3CEE(I ,ICU-2)+CEE(I ,ICU-3) $

WRITE( $ $ BYRON , WlNN ) S
RETURN END SANCTUM S

SUBROUTINE MISSION S
BEGIN IF MM $ BEGIN S

FOR I =(1,1,N-I)$ WRITE($$ JOE, SINNOTT ) S NFUNCT = 2 S
IF POOPED $ BEGIN $
FOR I = (l 1,3) $ WRITE($$ JOE, SINNOTT ) $ NFUNCT = I S
FOR I I,_,7,8,3,4,9,1o,5,11,6,12S WRITE(S$JOEY,SINNOTT) S

END ENDS

OUTPUT JOEY(FOR J = (I,INT. ICU)$AADJ(I,J),AA(1))
OUTPUT JOE(IF NFUNCT EQL I_

(FOR J = ( I , INT,ICU )$ASTATE(I,J),AX(1)),
IF NFUNCT EQL 2

(FOR J = ( I , INT,ICU )$ CEE (I,J),AX(I+3)))
FORMAT SINNOTT(6(SFg.3,P),3Fg.3,B46,A6,P)

RETURN END MISSION

$

COMMENT THE REST OF THE MAIN PROGRAM STARTS HERE ..........

HADES.. CARDREAD(FOR I = (I,I,12)$TITLE(1)) $
WRITE($$TITLL,HDG) $
WRITE($STITLL,PT) $
WRITE($$TITLL,TITFO) $
READ($$OPTS) $
WRITE($$OPT ,F53) $

COMMENT... OPTS INCLUDES PRINT INTERVAL (M), ZERO FOR NO PUNCH (MM),
STEP SIZE (H), NUMBER ITERATIONS (NSETZ), ITERATION STEP SIZE (FKK),

FINAL TIME (TEND), EPSILON (EPS).. IF FKK IS NEGATIVE, IT
IT USED TO CONTROL THE CONSTRAINT ON OX, OTHERWISE DU $

READ($$ALOTOFSTUFF) $
WRITE($$ALOTOFSTUFFOUT,MESS) $

COMMENT... THE INTEGER NBITS ROUGHLY SETS THE ACCURACY OF PSl REQUIRED.
AND THE SECOND NUMBER(NTOL) SETS THE LOWER LIMIT ON THE TOL_

EITHER IF FKK GTR O $ FU = O.O $
OTHERWISE $ (FU = -FKK $ FKK = 0
STARTTIMER(TEMP)
NSETT = -I $ POOPED = O
ICU = ENTIRE( TEND/H + 0.5) + I
ICUP = ENTIRE(O.gTEND/H+O.5) + I
INT = ICUP/45
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OLDPSI = OLDCOST = 1.0"*+20 $

COMMENT READ IN INITAL FEEDBACK GA!NS (GI! (G2) AND (LAMBDA2 TF)$
CARDREAD(G1,G2,ZZ(12) ) $ ZZ(6) =. - ZZ(.:_) $
CARDREAD(FOR I = (I,I,ICU) $ CEE(3,1)) $
CARDREAD(FOR I (I,1 ,2)$XZ(1)) $
FOR J : (1,1,1CU) $ BEGIN CEE (1,J) = G1 $ CEE (2,J) = G2 $

FOR I = (1,1,3) $ ASTOVE(I,J) = 0.0 $ END $
FOR I = 2,3,5,8,9 $ ZZ(1) = O.O $
FOR I = 1,7,10 $ ZZ(1) = 1.O $
zz(4) = -1 $

LOOP.. N = 3 $ NFUNCT : 1 $
ADDUMS(H,M,O,O.gTEND, ISXZ()$FVDP()) $

FORTH.. IF NSETT GEQ O $ BEGIN
COMMENT THIS SECTION FINDS DLAMBDA(O.9TF) FROM M@DLAM = N@DX + B $

A(1) = AADJ(3,1CUP) $ A(2)= AADJ(9,1CUP) $
A(3) = AADJ(4,1CUP) $ A(4)= AADJ(IO,ICUP) $

G(1) = X(1,1) - ASTOVE(I ICUP) $ G(2) = X(1,2) -ASTOVE(2,1CUP)$

B(2) IPDI8(3,1,2,A( ,G(AADJ(II,ICUP),!.O) $
RAT(1) = AADJ(8,1CUP) $ RAT(2) = -AADJ(7,1CUP) $
DETM = IPD18(1.1,2,RAT(),AADJ(,ICUP) ) $
YZ(1) = -AADJ(8,1CUP) / DETM $ YZ(2) = AADJ(7,1CUP) / DETM $
YZ(3) = AADJ(2,1CUP) / DETM $ YZ(4) = -AADJ(I,ICUP) / DETM $
A(1) = AADJ(1,1CUP) $ A(2) = AADJ(7,1CUP) $

AADJ(8, ICUP)A(3) = AADJ(2,1CUP) $ A(4)=
G(1) = G(2) = O.0

FOR J = (1,I,3)$ BEGIN
E(1) = IPD18(1,1,2,A (),G() -B(1 ,I.O)

E(2) = IPDI8(3,1,2,A (),G()i-B(2 ,1.O)
G(1) IPDI8(I,I,2,YZ(),E() G(1) 1.0)
G(2) = IPDI8(3,1,2,YZ(),E()_G(2) 1.01 END

WRITE( $ $ SHApZAM )
X(1,4) = G(1) $ X(1,5) = G(2) $ N = 5 END
FOR I = (1,1,N) $ YZ(1) = X(I,I)
ADDUMS ( H, M,O.gTEND,TEND, ICUP $YZ()$FVDP()) .
TEMP = TIMER(TEMP) $ WRITE($$LOT1,FORT) $ STARTTIMER(TEMP)
DLAMI = O.5(X(1,4) - X(I,5)) $ N = 3
PSl = -I.O - X(1,1) + X(1,2)
WRITE($$LSTAT,FOO) $ WRITE($$PPSI,FO1)

COMMENT EVALUATE NEW ITERATION AND ADJUST CONVERGENCE FACTORS

NEWCOST = SMOOTH(X(I,3)) $ NEWPSl = SMOOTH(ABS(PSI)+2*NBITS)
IF NEWPSI GTR OLDPSI AND NEWCOST GTR OLDCOST

BEGIN WRITE ($ $ PSPOTOMATIC ) $ GO BACKTO END
IF NEWCOST EQL OLDCOST AND NEWPSI EQL OLDPSl

BEGIN
EITHER IF NBITS LEQ NTOL $(POOPED = 1 SWRITE($$HOTDOG) )
OTHERWISE$( NBITS = NBITS -4 $ WRITE( $ $ SCRU,NCH )

END

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

)$
$
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GOODRUN.. NSETT = NSETT + I $ WRITE( $ $ MAD,LIT ) $
IF NSETT EQL NSETZ $ POOPED = I $
FOR I = (1,1,1CU)$ AU(I) = SAU(I) $
FOR I (1,1,N) $ FOR J -- (I,I,ICU) $ ASTOVE(I,J) = ASTATE(I,J) $

ENTER MISSION $

IF POOPED $ BEGIN WRITE( $ $ Lu,PUNU ) $ GO TO HADES END $
OLDCOST = NEWCOST $ OLDPSI = NEWPSI $
FKK : O.5.FKK $ FU = O.5FU $

COMMENT... UPDATE BOUNDARY VALUES $
ZZ(6) : ZZ(6) + DLAMI $ ZZ(12) : - ZZ(6) $ ZZ(11) : PSl $

GO BOCK $

BACKK.. PRINTOUT(@BLEW UP @ ,X(I,I),X(I,2),X(I,3),@AT T =@,T) $
BACKTO.. FKK = IOFKK $ FU : IOFU $

BOCK.. WRITE($$BRAD,AFMAN) $ CC = 1.O/(1.O + FKK)SWRITE(SSPAGE)$
NFUNCT = 25 N : 12 $
ADDUMS ( H, M,TEND,O.gTEND, ICUSZZ( )$BVDP( )) $
FOR I =(1,1,N) $ YZ(1) = X(1,1) $
ADDUMS (H,M,O.9TEND, O, ICUP $YZ()SBVDP()) $

9..TEMP = TIMER(TEMP) $ WRITE($$LOT1.FORT) $ STARTTIMER(TEMP) $
WRITE($$HEAD3)$ OUT(O) $ WRITE($._PAGE) $

ENTER SANCTUM $ GO TO LOOP S
CONJUGATEPOI NT . WRI TE($$CON,JU)$ OUT(O) $

TEMP = TIMERiTEMP) $ WRITE($$LOTI,FORT) $ STARTTIMER(TEMP) $
WR I TE($$PAGE) $
NFUNCT = IS N-- 3 $
J = MIN(ITIME + 5 + M, ICU - I) $
J = J - MOD(J,M) + I $
IF J GEQ ICUP $ BEGIN $

IF J GEQ ICU $ (PRINTOUT(@CONJUGATE PT TO0 CLOSE TO TF@) $
GO TO HADES ) $

ITIME : ICUP $ ENTER SANCTUM $
FOR I = (1,1 N) $X(I,1) ASTOVE(I,ITIME) SGO FORTH END $

TZ= T + FLOAT(J - ITIME)H $ I;IME = J $
ENTER SANCTUM $

FOR I = (1,I,3)$ YZ(1) = ASTOVE(I ITIME) $
ADDUMS(H,M,TZ,O.gTEND, ITIME$YZ[)$FVDP()) $
GO FORTH $ COMMENT ********** END OF PROGRAM********** $

OUTPUT TITLL(FOR I -- (1,1,12)$TITLE(I)) $
FORMAT(TITFO(A72,W9) ,HDG(A72,W7)) $
INPUT OPTS (M_MM,H, NSETZ, FKK,TEND, EPS ) $

OUTPUT OPT(M,MM,H,NSETZ _FKK, TEND jEPS) $
FORMAT F53(WO,*PRINT INTERVAL *,15,*, MM *,J,* H *,F8.2,*, NSETZ *,J,

WO,*PRESENT PENALTY ON STEP SIZE... *,F15.8:* TEND *,F15.8,

* EPS = *,F15.8,WO) $
OUTPUT CON(T) , PPSI(PSI) $
FORMAT HOTDOG(*HOT DOG.... COST IS UNCHANGED WITHIN SIX BITS,

•..PROBLEM SOLVED...*,WO) $
OUTPUT LSTAT(FOR I = (I,I,N)$ASTATE(I,ICU)) , BRAD(FKK+FU) $
FORMAT FOO(WO,*THE FINAL STATES ARE..*,WO,2FI8.8,WO,*WITH A COST

OF *,F15.8,WO), FOI (@PSI IS ... @,FI8.8,WO)FIS.8,WO)'" *, $FORMAT AFMAN(*PRESENT PENALTY ON STEP SIZE. $
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FORMAT PT(A72,P) $
OUTPUT LU(FOR I = (I,I,ICU)$AU(I)) $
FORMAT PUNU(5F15.8, P) $
FORMAT HEAD3(*THE INITIAL VALUES ARE... *,WO) $
OUTPUT LOTI(FIX(IOOOTEMP))$FORMAT FORT(*ELAPSED TIME = *,J,*MSEC*,WO) $
FORMAT JU(*AHA.. SUSPECT CONJUGATE POINT NEAR T = *,X5.2,* SECONDS *,

WO,* CURRENT VALUES ARE *,WO) $
FORMAT PSPOTOMATIC(*OH NUTS.. CONSTRAINTS NOT IMPROVED, TRY AGAIN WITH

*, *SMALLER STATE SPACE STEP*,WO) $
FORMAT PAGE(WI) $
OUTPUT BYRON (FOR I = (1,1,3)$FOR J = ICU-3,1CU-2,1CU-I,ICU$CEE (I,J))$
FORMAT WlNN (WO,@THE LAST 3 + EXTRAPOLATED VALUES OF C1,C2 + C3 WERE@

WO,3 (B20,4F15.8 WO)) '
OUTPUT MAD(NSETT),SCRU(NBITSI _;
FORMAT EIT(*THIS RUN LOOKS GOOD. ITERATION NUMBER *,J,W4) $
FORMAT NCH (*TIGHTEN ERROR MARGIN ON PSl. NBITS = *pJ,WO) $
FORMAT MESS(*PSI IS ADDED TO *,J,* BEFORE ANY TEST IS MADE*,WO

* AT THE END PSI IS COMPARED TO *,J,WO)

INPUT ALOTOFSTUFF ( NBITS , NTOL ) $
OUTPUT ALOTOFSTUFFOUT (2*NBITS,2*NTOL) $
OUTPUT SHA ( G(1) , G(2) , E(1) , E(2) ) $
FORMAT ZAM (@NEW DELTA LAMBDA(O.9TF) = @,2F15.8,@ ERROR = @,2F15.8,WO)$

FINISH $

***** BINARY DECKS FOR MACHINE LANGUAGE PROGRAMS IN HERE*****

2FINISH $
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Example A

Program Titles

System

APPENDIX C

DETAILS OF NUMERICAL EXAMPLES

Linear Quadratic Loss Problem

LQL (steepest descent)

2MV (second variations)

:<I = x2

x 2 = -x 1 + u

10 2 2

Cost Function J = 1/2 f (x 1 + x 2 + u 2) d_
0

Initial Conditions Xl(0) = 1, x2(0) = 0

Terminal Conditions tf = 10, xf free

Integration Step Size 0.01 (very conservative)

Trajectory Storage Interval 0.05, 201 points each

Results:

LQL 2MV

Time/Iteration 12.1 sec. 11.6 sec.

Realistic I Time/Iteration 5.7 sec. 11.6 sec.

Cost after (N) Iterations 0.962250 (9) 0.956137

x I (I0) 0.006445 -0.002774

x 2 (i0) -0. 01492 +0. 0006251

k I(0) i. 912 i. 912

X2 (0) 0.4140 0.4140

Pll(0) - 1.912

P12(O) - 0.4142

P22 (0) - 1.352

b I (0) - -0.00041

b 2 (0) - -0.000014

(1)

Notes: I. Realistic time indicates the program time without the step

size optimization loop.
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Example B The Brachistochrone

Program Title

System 1

Cost Function

Initial Conditions

Terminal Conditions 2

Integration Step Size

Trajectory Storage Interval

2VBRA (second variations)

x=u

1 u2J= 1/2 f [(i + )/(i + x)]
0

x(O) = o

x(1) = +0.5

0.01 0 < t < 0.9
m

0.0001 0.9 < t < 1.0
D

each integration step stored,

191 points per variable

1/2

Results:

Time�Iteration 2.4 sec.

Cost after 3 Iterations 3 0.99849

)_1 (i) 0.21627

_1(0) 0.61365

b(O) -0.00429

R(O) 0.95715

x (1) O. 50000

Notes: i. Alternate choices of the state variables are possible. A

different choice which leads to simplified equations is

x = _, u = d_/d_.

2. The corresponding condition for the original problem variables

is _(I) = -0.5.

3. In 3 iterations the trajectory, control, and cost all agreed

with the optimal solution to within 5 figures, the accuracy

justified by the integration errors.

do
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Example C Free Van Der Pol

Program Titles

System

Cost Function

Initial Conditions

Terminal Conditions

Integration Step Size

Trajectory Storage

Results:

Time/Iteration

2
Realistic Time�Iteration

Cost after (N) Iterations

Xl(5)

x2(5)

kl(O)

_2(o)

Pll (0)

P12 (0)

P22 (0)

bl(O)

b2(O)

Notes: i. These results are for

2. See Note I, Example A.

SDVP (steepest descent)

2VVP (second variations)

xI = x 2

2

x 2 = -x I + x 2(I - x I) + u

5 2 2 2

J = 1/2 f (x 1 + x 2 + u )
0

x 2 (0) = 0

free

x 1(o) = 1,

tf = 5, xf

0.025 for SDVP with

0.I for others

du

(o)
U = 0

each integration step stored

201 points for SDVP, u (0) = 0

51 points for others

SDVP 1

I. 7 sec.

O. 6 sec.

1. 72403 ( 12 )

0.0745010

-0.459410

2.30185

1.06942

i
2VVP

0.7 sec.

0.7 sec,

1.43350 (7)

-0.0519296

+0.0662353

2.43604

0.412329

1.01156

0.413450

1.72858

0.00079

-0.00107

(o)
U = i.
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Example D Van Der Pol to a Line

Program Title

System

Cost Function

Initial Conditions

Terminal Conditions

Integration Step Size

Trajectory Storage

Results:

Time/Iteration 1

Cost after 7 Iterations

after 7 Iterations

Cost after I0 Iterations

after i0 Iterations

x(5)

_(5)

_(0)

b(0)

VDPTL

Xl = x2

x2 = -Xl + x2(l - x_) + u

5

J = 1/2 f (x_ + x_ + u 2) do
0

Xl(O) = i, x2(O) = 0

= 1 - xl(t f) + x2(t f) = 0

0.025

each integration step stored for

a total of 201 points

6.14 sec.

1. 6857157

-4.97 × 10 -6

1. 6857045

1.60 X 10 -6

(-.22931 +.77068)

(.59248 -.59248)

(2.3766 .38855)

(-0.0011 -.0015)

Notes: i. This time is large due to a conservative (small) integration

step size.
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Example D (Cont.)

Iteration # Cost

0 7.4780

1 6.2783

21 3.0891

3 3.0011

4 1.9177

5 1.6991

6 1. 6871

7 1. 6857

8 1.6857

9 1.6857

10 1. 6857

63131

- 0519

-.3279

-.00534

-.1172

-.0184

+.00067

- 0000049

- 000000089

+ 000001609

+.000001765

Notes: 1. A conjugate point was encountered at t= 3.45 seconds.

_l(tf )

0

-2.0267

-7. 5890

1.7636

-0.2283

O. 7909

O. 6002

O. 59309

O. 59249

O. 59249

O. 59248
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APPENDIX D

PROPERTIES OF THE FUNDAMENTAL MATRIX

FOR THE EULER-LAGRANGE EQUATIONS

Several properties of the transition matrix @(t, T) for the

homogeneous Euler-Lagrange equations are necessary to derive Property 2

of Chapter 5, Section D. Since these properties are relatively unknown

in the literature except in Kalman and Englar [1965], they will be d#rived

as necessary before presenting the proof of Property 2.

The homogeneous form of the Euler-Lagrange equations to be studied

here may be written as

where x and y are n × 1 vectors and F, S, and Q are n X n

matrices with S and Q symmetric. The fundamental matrix _(t, z)

will be written in partitioned form in terms of four n X n matrices as

_(t ,Z) =

_ll(t, T) ¢12(t,

¢21(t, %) ¢22(t, T)

It will be convenient to define the 2n × 2n matrix J in terms

of the n × n identity matrix I by
n

J:(:-n:n)

(D.1)

(D.2)

(D.3)

Note that J satisfies the following identities
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JJ' = I2n "

J! _ md

(D.4)

Another useful definition is the symplectic property of a matrix.

A matrix A is said to be symplectic if it satisfies the relation

-I
A = J'A'J (D.5)

In the following, it will be shown that the fundamental matrix @(t, "[)

corresponding to the Euler-Lagrange equations (D.I) is symplectic.

Theorem @(t, T) is symplectic.

Proof: Since _ satisfies

¢ ¢(T, _) = I

then from the identity JJ' = I,

< siF

d__ (j,¢,j) = j,¢,jj, j
dt

Q -F'

or

dt_ (J'@'J) = -(J'@'J) ,/F S,I
kQ -F

-i
The proof is completed by showing that $ satisfies the same

-i
differential equation as J'_'J since # (T, _) = J'_'(T, T) J = I.

Differentiation of the identity -i = I with respect to time may be

used to show
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b

d (_-1) = _¢-1 d _-1d-T _ (¢)

which is the desired result.

From the identities @-i@ = I and @_-I = I and the |ymplectic

property of _, the following set of relations may be obtained:

_{1®21: (,{i,21)' (D.Sa)

,11_{2= (_ii,{2)'

| _-- ! !

¢22¢12 (¢22¢12)

(D.6b)

(D.6e)

¢22¢21' = (¢22¢_i)'
(D.6d)

and

¢22¢11 ¢12¢21
(D.7a)

' -¢2 ' = I¢22¢11 1¢12
(D.7b)

The proof of Property 2 of the matrices M(t) and N(t) as given in

Chapter 5, Section D, will now be given.

Property 2 M'(t) N(t) = N'(t) M(t) for all t if

M'(tf) N(tf) = N'(tf) M(tf).

Proof: Since are solutions to equation (D.I), they kay be written

N(t)(

in terms of their values at t = tf as
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i i= ¢(t, tf)

N(t)/ N(tf)

4

or

M(t) = ¢llM(tf) + ¢12N(tf)
(D.8a)

N(t) = ¢21M(tf) + ¢22N(tf).
(D. 8b)

For convenience M(t) will be written simply as M, N(t) as N,

M(tf) as A, and N(tf) as B. Then from (D. 8a) and (D.8b) one obtains

MtN NIM A t , - ,- = (¢11¢21 _21¢Ii ) A

+ B' , _ ,
(_12¢22 ¢22¢12 ) B

+ A' ' - '
(¢11¢22 ¢21¢12 ) B

' ' - ' ) B.
+ B (¢12¢21 ¢22¢11

Using (D.6) and (D.7), this reduces to

M'N - N'M = A'B - B'A,

which shows that M'(t) N(t) = M'N is symmetric if and only if

A'B = M'(tf) N(tf) is symmetric.

180



REFERENCES

R. Bellman, Dynamic Programming, Princeton University Press, Princeton,

New Jersey, 1957.

G. A. Bliss, Lectures on the Calculus of Variations, University of

Chicago Press, _icago, 1946.

J. V. Breakwell, "The Optimization of Trajectories," J. Soc. Indust.

Appl. Math., 7, 2, Jun 1959.

J. V. Breakwell and A. E. Bryson, "Neighboring Optimum Terminal Control

for Multivariable Nonlinear Systems," SIAM Symposium on Multivariable

System Theory, Cambridge, Massachusetts, 1962.

J. V. Breakwell, and Y. C. Ho, "On the Conjugate Point Condition for

the Control Problem," Int. J. En_ng. Sci., _, 1965.

J. V. Breakwell, J. L. Speyer, and A. E. Bryson, Jr., "Optimization and

Control of Nonlinear Systems Using the Second Variation," J. Soc.

Indust. Appl. Math. on Control, Ser. A, _, 2, Feb 1963.

R. E. Brown, "Some Numerical Aspects of Steepest Descent Trajectory

Optimization," presented at AIAA/ION Astrodynamics Guidance and Control

Conference, UCLA, Los Angeles, California, Aug 1964.

A. E. Bryson, "Optimal Programming and Control," Proceedin_s of the IBM

Scientific Computing Symposium on Control Theory and Applications,

Yorktown Heights, New York, Oct 1964.

A. E. Bryson and W. F. Denham, "Multivariable Terminal Control To

Minimize Mean Square Deviation from a Nominal Path," Proceedings of

Symposium on Vehicle Systems Optimization, Inst. Aerospace Sciences,

Nov 1961. (Also Raytheon Report BR-13S3).

A. E. Bryson and W. F. Denham, "A Steepest Ascent Method for Solving

Optimum Programming Problems," Jour. Appl. Mech., Series E, 29, 2,

Jun 1962.

E. A. Coddington and N. Levinson, Theory of Ordinary Differential

E_uations, McGraw-Hill Book Co., New York, 1955.

B. Friedman, Principles and Techniques of Applied Mathematics, John W_ley

and Sons, New York, 1956.

I. M. Gelfand and S. V. Fomin_ Calculus of Variations, Prentice Hall, Inc.,

Englewood Cliffs, New Jersey, 1963.

K. Hales, "Minimum-Fuel Attitude Control of a Rigid Body in Orbit by

an Extended Method of Steepest-Descent," Ph.D. Dissertation, Stafford

University, Stanford, California, 1966.

181



R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill

Book Co., Inc., New York, 1962.

L. Hurwicz, "Programming in Linear Spaces," in Studies in Linear and

Nonlinear Programming, Arrow, Hurwicz, and Uzawa, eds, Stanford University

Press, Stanford, California, 1958.

A. H. Jazwinski, "Optimal Trajectories and Linear Control of Nonlinear

Systems," AIAA Journal, _, 8, August 1964.

R. E. Kalman, Y. C. Ho, and K. S. Narendra, "Controllability of Linear

Dynamical Systems," Contributions to Differential Equations, i, 1963.

R. E. Kalman and T. S. Englar, "An Automatic Synthesis Program for

Control and Optimization_" final report on Contract NAS 2-1107, RIAS_

Baltimore, 1965.

L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed

Spaces_ MacMillan Company, New York, i965.

H. J. Kelly, "Gradient Theory of Optimal Flight Paths," ARS Journal, 30,

i0_ Oct 1960.

H. J. Kelly, R. E. Kopp, and H. G. Moyer, "A Trajectory Optimization

Technique Based upon the Theory of the Second Variation," Progress in

Astronautics and Aeronautics, 14, 1964.

P. Kenneth, and G. E. Taylor, "Solution of Variational Problems with

Bounded Control Variables by means of the Generalized Newton-Raphson

Method," Symposium on Recent Advances in Optimization Techniques,

Carnegie Institute of Technology, Pittsburgh, Pennsylvania, April 21-23,

1965.

W. Kipiniak, Dynamic Optimization and Control, M.I.T. Press, Mass.
Institute of Technology and John Wiley and Sons, Inc., New York_ 1961.

R. E. Kopp and R. McGill, "Several Trajectory Optimization Techniques,

Part I; Discussion," in Computing Methods in Optimization Problems_

Academic Press, New York, 1964.

Geoffrey N. T. Lack_ "Optimization Studies with Applications to Planning

in the Electric Power Industry and Optimal Control Theory," Report CCS-5,

Institute in Engineering-Economic Systems, Stanford University_ Stanford,

California, Aug 1965.

R. E. Larson, "Dynamic Programming with a Continuous Independent Variable,"

Ph.D. Thesis at Stafford Univ., Stanford, California, 1964.

D. G. Luenberger, Lecture notes for EE292h, Stanford University,

spring, 1964.

L. _ Liusternik and V. J. Sobolev, Elements of Functional Analysis,

Frederick Ungar Publishing Co.? New York, 1961.

182



R. McGilI, "Optimal Control, Inequality State Constraints, and the
Generalized Newton-RaphsonAlgorithm," SIAM Journal_ Series A: Control,

_, 2, 1965.

S. R. McReynolds and A. E. Bryson, "A Successive Sweep Method for Solving

Optimal Programming Problems," Technical Report 4633 Cruft Laboratory,

Division of Engineering and Applied Physics, Harvard University, Cambridge,

Mass., 1965. (Also Proceedings of Joint Automatic Control Conference,

Rensselear Polytechnic Institute, Troy, New York, June 1965.)

• "AS. R McReynolds, Successive Sweep Method for Solving Optimal

Programming Problems," Ph.D. Dissertation, Harvard University, Cambridge,

Massachusetts, 1966.

C. W. Merriam, O_timization Theory and the Desisn of Feedback Control

Systems, McGraw-Hill, Inc., New York, 1964.

C. W. Merriam, "An Algorithm for the Iterative Solution of a Class of

Two Point Boundary Value Problems," Information and Control, 83 23

Apr. 1965.

G. H. Moyer and G. Pinkham, "Several Trajectory Optimization Techniques,

Part II: Application," in Computin_ Methods in 02timization Problems,

Academic Press, New York, 1964.

J. A. Payne, "Computational Methods in Optimal Control Problems,"

Technical Report AFFDL-TR-65-50, Department of Engineering, U.C.L.A.,

Los Angeles, 1965.

L. S. Pontryagin, V. G. Boltyanskii, and R. V. Gamkrelidze, "On the

Theory of Optimal Processes," Doklady Aka. Nauk S.S.S.R., iiO, 1956.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.

Mischenko, The Mathematical Theor_ of Optimal Processes, Interscience,

New York, 1962.

R. Rosenbaum, "Convergence Technique for Steepest Descent Method of

Trajectory Optimization," AIAA Journal, _, 7, July 1963.

J. F. Sinnott, Private Communication, Stanford University, "Stanford,

California, 1966.

G. E. Shi!ov, An Introduction to the Theor_ of Linear Spaces, Prentice

Hall, Inc., Englewood Cliffs, New Jersey, 1961.

R. T. Stancil, "A New Approach to Steepest Ascent Trajectory Optimization,"

AIAA Journal, _, 8, Aug 1964.

R. F. Vachino, "Steepest Descent with Inequality Constraints," Journal

of SIAM on Control, _, i, 1966.

183



P. A. Valentine, "The Problem of Lagrange with Differential Inequalities

as Adde_ Side Conditions," Ph.D. Dissertation, Department of Mathematics,

University of Chicago, Chicago, Illinois, 1937.

C. P. Van Dine, "Application of Newton's Method to the Finite Difference

Solution of Non-Linear Boundary Value Systems," Report UAR-D37, Research

Laboratories, United Aircraft Corporation, Mar 1965.

C. P. Van Dine, W. R. Fimple, and T. N. Edelbaum, "Application of a

Finite-Difference Newton-Raphson Algorithm to Problems of Low Thrust

Trajectory Optimization," AIAA paper No. 65-698, AIAA/ION Astrodynamics

Specialist Conference, Monterey, California, Sept 16-17, 1965.

184


