Technical Report 32-1044

Expressions for the Precession Quantities and Their Partial Derivatives

Jay Lieske

Approved by:

TECHNICAL REPORT 32-1044

Copyright © 1967
 Jet Propulsion Laboratory
 California Institute of Technology
 Prepared Under Contract No. NAS 7-100
 National Aeronautics \& Space Administration

Contents

I. Introduction 1
II. Symbols and Nomenclature 2
III. Geometry of the Problem 2
IV. General Precession in Longitude 5
V. Equatorial Precession Elements 7
VI. Precession from Arbitrary Epoch 8
Appendix A. Expressions for $\sin \pi_{\cos }^{\sin } \mathrm{II}_{1}$ 14
Appendix B. Numerical Values of Precession Quantities 17
Appendix C. Relations Between Forward and Backward Precession Elements 21
References 21
Figure

1. Geometric system associated with precession 3

Abstract

The purpose of this paper is to investigate the functional dependence of precession quantities such as ζ_{0}, z, θ upon the fundamental constants. The effect of small changes of the fundamental constants upon the precession quantities is derived, and numerical partial derivatives are given as power series in time from an arbitrary epoch.

Expressions for the Precession Quantities and Their Partial Derivatives

I. Introduction

Comparison of planetary observations with ephemeris positions, such as is necessary for orbit improvement or refinement of astronomical quantities, requires that corrections be applied to either the observed or ephemeris positions in order to refer both sets of coordinates to the same reference system. These corrections include such well-known effects as nutation, aberration, geocentric parallax, and the precession of the equinox.

Although rather lengthy numerical expressions are usually given for the parameters describing these various effects (the precession matrix is a good example), the expressions in fact depend upon a rather limited set of basic parameters, often called the fundamental astronomical constants.

The purpose of this paper is to examine the basic parameters involved in the expressions for the mean obliquity of the ecliptic of date and for the elements of the matrix which is often used to account for the effects of precession.

It will be shown that the mean obliquity of the ecliptic at 1900.0 , the speed of the general precession in longitude at 1900.0 , and the system of planetary masses constitute the set of basic parameters upon which the lengthy polynomials defining the mean obliquity of date and the elements of the precession matrix depend.

Since the functional relations between the basic parameters and the derived expressions for obliquity and precession are quite complex, numerical expressions are given which show the effects of small changes in the basic parameter set on the derived quantities. Thus, for example, one can determine the effect of a change in the mass of Venus on the value of the mean obliquity of date and on the precession matrix.

If one has the heliocentric rectangular coordinates of a body referred to some fixed equator and equinox (e.g., 1950.0) and wishes to find the coordinates referred to the mean equator and equinox of date, the transformation used is

$$
\begin{equation*}
(x, y, z)_{\text {Date }}=\left(x_{0}, y_{0}, z_{0}\right)_{\substack{\text { nititial } \\ \text { Epoch }}} \boldsymbol{R}\left(-\xi_{0}\right) Q(\theta) R(-z) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& R(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \\
& Q(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\end{aligned}
$$

and where ζ_{0}, θ, and z are parameters describing precession. Performing the multiplications in (1) we find

$$
(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right) \text { A where } A=R\left(-\zeta_{0}\right) Q(\theta) R(-z)
$$

Thus the elements of matrix A are the following:

$$
\begin{aligned}
& a_{11}=\cos \zeta_{0} \cos \theta \cos z-\sin \zeta_{0} \sin z \\
& a_{12}=\cos \zeta_{0} \cos \theta \sin z+\sin \zeta_{0} \cos z \\
& a_{13}=\cos \zeta_{0} \sin \theta \\
& a_{21}=-\sin \zeta_{0} \cos \theta \cos z-\cos \zeta_{0} \sin z \\
& a_{22}=-\sin \zeta_{0} \cos \theta \sin z+\cos \zeta_{0} \cos z \\
& a_{23}=-\sin \zeta_{0} \sin \theta \\
& \boldsymbol{a}_{31}=-\sin \theta \cos z \\
& a_{32}=-\sin \theta \sin z \\
& a_{33}=\cos \theta
\end{aligned}
$$

These expressions are given in Ref. 1, p. 31.
Usually the parameters ζ_{0}, θ, and z are written as polynomials in powers of time from some fundamental epoch. The remainder of this paper is a discussion of ζ_{0}, θ, and z and related quantities and their dependence upon fundamental constants. Numerical partial derivatives of precession quantities with respect to the fundamental constants are given.

II. Symbols and Nomenclature

The principal symbols used herein are defined as follows (refer to Fig. 1 for the geometry):

$$
\begin{aligned}
P_{0}= & \text { celestial pole at } T_{0} \\
C_{0}= & \text { ecliptic pole at } T_{0} \\
\gamma_{0}= & \text { equinox at } T_{0} \\
\gamma_{1} \gamma_{0} E_{0}= & \text { ecliptic at } T_{0} \text { (fixed) } \\
\gamma_{0} Q A_{0}= & \text { equator at } T_{0} \\
\varepsilon_{11}= & \text { obliquity of ecliptic of } T_{0} \text { on equator } \\
& \text { at } T_{0}=<E_{0} \gamma_{0} A_{0} \\
P= & \text { celestial pole at } T_{1} \\
C= & \text { ecliptic pole at } T_{1} \\
\gamma= & \text { equinox at } T_{1}
\end{aligned}
$$

$$
\gamma N_{1} E=\text { ecliptic at } T_{1}
$$

$$
\gamma Q A=\text { equator at } T_{1}
$$

$\varepsilon=<E_{\gamma} A=$ obliquity of ecliptic of T_{1} on equator of T_{1}
$\begin{aligned} & \varepsilon_{1}=<E_{0} \gamma_{1} A= \text { obliquity of equator of } T_{1} \text { on ecliptic } \\ & \text { of } T_{0}\end{aligned}$
$\gamma_{0} \gamma_{1} \cong \Psi=$ luni-solar precession (including geodesic)
$\gamma_{1} \gamma \equiv \lambda=$ planetary precession
$\gamma_{0} N_{1} \equiv \mathrm{I}_{1}=$ longitude of ascending node of ecliptic at T_{1} on ecliptic at T_{n}, measured from fixed equinox γ_{n} along fixed ecliptic of T_{n}
$\gamma N_{1} \equiv \Lambda=$ longitude of ascending node of ecliptic at T_{1} on ecliptic at T_{n}, measured from mean equinox γ of T_{1} along mean ecliptic of T_{1}
$\pi_{1} \equiv<E_{0} N_{1} E=$ angle between ecliptics of T_{n} and T_{1}
$\zeta_{0}=$ angle at P_{0} of T_{0} between the great circles joining P_{0} with γ_{0} and P_{0} with P
$90^{\circ}-\zeta_{n}=$ right ascension of node of equator at T_{1} on fixed equator at T_{n} measured from γ_{0} of T_{0} along equator of T_{n}
$90^{\circ}+z=$ right ascension of node of equator at T_{1} on fixed equator at T_{n} measured from γ of T_{1} along equator of T_{1}
$\theta=<A Q A_{0}=$ angles between equators of T_{1} and T_{n}

III. Geometry of the Problem

If C is the pole of the ecliptic and P the pole of the equator, then the equinox γ is defined by the intersection of the planes of the equator and ecliptic. Since P and C are continuously in motion, the equinox also is in motion. The actual poles are described by the position of a mean pole plus a small oscillation (nutation) of the actual pole about the mean pole.

The precessional motion of the mean equinox is due to the combined motions of the two poles that define it.

Fig. 1. Geometric system associated with precession (from Ref. 2)

The precessional motion due to the motion of the celestial pole is called luni-solar precession and is caused by the action of the sun and moon on the earth's equatorial bulge. A small relativistic effect called the geodesic precession is also included in the motion of the celestial pole. It is a direct slipping of the mean equinox of date along a fixed ecliptic, at the rate of $1 " 9$ per century. The part caused by motion of the ecliptic pole is called planetary precession. Luni-solar precession slides the equinox along a fixed ecliptic while planetary precession changes the plane of the ecliptic.

Owing to luni-solar attraction on the earth's equatorial bulge, the mean celestial pole moves continuously toward the mean equinox of the moment with a speed given by $P \sin \varepsilon \cos \varepsilon$, where P is Newcomb's "precession
constant." It is a function of the mechanical ellipticity of the earth and the elements of the orbits of the earth and moon. P is not strictly a constant, but has a small secular term of -0.0036 per century due mainly to a secular change in the earth's eccentricity. The speed of geodesic precession in the plane of the fixed ecliptic is $-p g$: hence the speed of the celestial pole toward the mean equinox of date is $-p g \sin \varepsilon$. Thus the speed of the celestial pole toward the mean equinox of date is given by

$$
\begin{equation*}
(P \cos \varepsilon-p g) \sin \varepsilon \tag{2}
\end{equation*}
$$

Knowing that the celestial pole P at T_{1} moves toward the equinox γ of T_{1} with speed $\left(P \cos _{\varepsilon}-p g\right) \sin \varepsilon$, we can derive expressions for the rates of change of Ψ and ε_{1}.

Let

$$
\begin{aligned}
& P^{\prime}=\text { celestial pole at } T_{1}+\Delta T \\
& C^{\prime}=\text { ecliptic pole at } T_{1}+\Delta T
\end{aligned}
$$

Then

$$
\begin{align*}
C P= & \varepsilon \\
C_{0} P= & \varepsilon_{1} \\
C_{0} P^{\prime}= & \varepsilon_{1}^{\prime} \text { (obliquity of equator of } T_{1}+\Delta T \text { on } \\
& \text { ecliptic of } T_{0} \text {) } \\
<P_{0} C_{0} P= & \Psi \\
<P C_{0} P^{\prime} & =d \Psi \tag{3}\\
<C_{0} P C= & \lambda \\
P P^{\prime}= & (P \cos \varepsilon-p g) \sin \varepsilon d t \tag{4}\\
<C P P^{\prime} & =90^{\circ}(\text { pole } P \text { moves in circle about } C)
\end{align*}
$$

If one draws a small circle about C_{0} through the point P, intersecting the $\operatorname{arc} C_{0} P^{\prime}$ at D, then

$$
\begin{aligned}
& C_{0} P D=90^{\circ} \\
& C_{0} D P=90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
<P C_{0} P^{\prime} & =d \Psi \\
P D & =\sin \varepsilon_{1} d \Psi \\
P P^{\prime} & =(P \cos \varepsilon-p g) \sin \varepsilon d t
\end{aligned}
$$

and subsequently

$$
\begin{gathered}
\frac{\sin \varepsilon_{1} d \Psi}{\sin \left(\frac{\pi}{2}-\lambda\right)}=\frac{(P \cos \varepsilon-p g) \sin \varepsilon d t}{\sin \frac{\pi}{2}}=\frac{d \varepsilon_{1}}{\sin \lambda} \\
\sin \varepsilon_{1} \frac{d \Psi}{d t}=(P \cos \varepsilon-p g) \sin \varepsilon \cos \lambda \\
\frac{d \varepsilon_{1}}{d t}=(P \cos \varepsilon-p g) \sin \varepsilon \sin \lambda
\end{gathered}
$$

In the triangle $\gamma \gamma_{1} N_{1}$, differential spherical trigonometry yields

$$
\begin{aligned}
d_{\varepsilon}= & \cos \lambda d \varepsilon_{1}+\cos \Lambda d \pi_{1}-\sin \lambda \sin \varepsilon_{1} d \Psi \\
& -\sin \Lambda \sin \pi_{1} d \Pi_{1}
\end{aligned}
$$

or
and arc $P D$ is of length $d \Psi \sin \varepsilon_{1}$. Thus

$$
\begin{aligned}
<D P P^{\prime} & =\lambda \\
P^{\prime} D & =d_{\varepsilon_{1}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \varepsilon}{d t}= & \cos \lambda \frac{d \varepsilon_{1}}{d t}+\cos \Lambda \frac{d \pi_{1}}{d t}-\sin \lambda \sin \varepsilon_{1} \frac{d \Psi}{d t} \\
& -\sin \Lambda \sin \pi_{1} \frac{d \Pi_{1}}{d t}
\end{aligned}
$$

Using the expressions (3) and (4) in the above, one obtains

$$
\frac{d \varepsilon}{d t}=\cos \Lambda \frac{d \pi_{1}}{d t}-\sin \Lambda \sin \pi_{1} \frac{d \Pi_{1}}{d t}
$$

which may be written as

$$
\begin{align*}
\frac{d \varepsilon}{d t}= & \cos \left(\Lambda-\pi_{1}\right) \frac{d}{d t}\left(\sin \pi_{1} \cos \Pi_{1}\right)-\sin \left(\Lambda-\Pi_{1}\right) \\
& \times \frac{d}{d t}\left(\sin \pi_{1} \sin \Pi_{1}\right)+2 \sin ^{2} \frac{\pi_{1}}{2} \cos \Lambda \frac{d \pi_{1}}{d t} \tag{5}
\end{align*}
$$

We also have the following relations:

$$
\frac{\sin \lambda}{\sin \pi_{1}}=\frac{\sin \left(\Pi_{1}+\Psi\right)}{\sin \varepsilon}=\frac{\sin \Lambda}{\sin \varepsilon_{1}}
$$

$$
\left.\begin{array}{rl}
\cos \varepsilon= & \cos \varepsilon_{1} \cos \pi_{1} \\
& -\sin \varepsilon_{1} \sin \pi_{1} \cos \left(\Pi_{1}+\Psi\right) \\
\sin \lambda \cos \varepsilon= & -\sin \Lambda \cos \left(\Pi_{1}+\Psi\right) \tag{6}\\
& +\cos \Lambda \cos \pi_{1} \sin \left(\Pi_{1}+\Psi\right) \\
\tan \frac{\Lambda-\Pi_{1}-\Psi}{2}= & -\tan \frac{\lambda}{2} \frac{\cos \frac{\varepsilon+\varepsilon_{1}}{2}}{\cos \frac{\varepsilon-\varepsilon_{1}}{2}}
\end{array}\right\}
$$

IV. General Precession in Longitude

The general precession in longitude is a result of the luni-solar precession westward along the fixed ecliptic
of T_{0} and an eastward motion of the equinox along the moving equator of T_{1} which is known as planetary precession. There are several measures of the general precession in longitude. One definition is that the general precession in longitude is the difference between the great circle arcs joining the equinox of T_{1} to the node N_{1} and the equinox of T_{0} to $N_{1}-$ i.e., $\Lambda-\Pi_{1}$. This definition is used by Andoyer, Tisserand, and Chauvenet, among others.

Another definition is that of Newcomb. He defines the general precession in longitude as the motion of the mean equinox of T_{1} along the moving ecliptic of T_{1} and adopts as its measurement the orthogonal projection of this motion onto the fixed ecliptic of T_{0} (i.e., intersection of great circle joining γ and C_{0} with ecliptic of T_{0}).

Thus Andoyer's general precession in longitude is $\gamma_{0} T$ in the figure below, whereas Newcomb's is $\gamma_{0} R_{0}$.

The numerical difference between the two expressions is about $0.001 T^{2}$.

The Newcomb definition may be then defined as the longitude of the mean equinox of T_{1} referred to the fixed mean equinox and ecliptic of T_{0} (measured westward).

One usually expresses Newcomb's "precession constant" as

$$
\begin{equation*}
P=P_{0}+P_{1} T_{1} \tag{7}
\end{equation*}
$$

The expression for P_{1} is given by deSitter and Brouwer (Ref. 3).

From the theory of secular perturbations in planetary theory one obtains the quantities (see Appendix A):
the theoretical relations given by Eqs. (3)-(6), one can determine $\Lambda-\Pi_{1}, \lambda, \Psi, \varepsilon, \varepsilon_{1}$, etc.

$$
\left.\begin{array}{l}
\sin \pi_{1} \sin \Pi_{1}=s T_{1}+s^{\prime} T_{1}^{2}+s^{\prime \prime} T_{1}^{3} \\
\sin \pi_{1} \cos \Pi_{1}=c T_{1}+c^{\prime} T_{1}^{2}+c^{\prime \prime} T_{1}^{3} \tag{8}
\end{array}\right\}
$$

where T_{1} is the time in tropical centuries from some basic epoch.

Using the observationally determined values of the speed of general precession in longitude at T_{0}, the obliquity ε_{0} at T_{0}, the values P_{1} and $p g$ (also given by deSitter and Brouwer), the expressions $\sin \pi_{1} \sin _{\cos } \Pi_{1}$ and

$$
\begin{align*}
& a=c, \quad f=P_{0} \cos \varepsilon_{0}-p g, \quad g=s \csc \varepsilon_{0}, \quad h=f-g \cos \varepsilon_{0} \\
& a^{\prime}=c^{\prime}-\frac{s h}{2}, \quad b^{\prime}=\frac{s f}{2}, \quad f^{\prime}=\frac{1}{2} P_{1} \cos \varepsilon_{0}+\frac{1}{2} c P_{0} \cos 2 \varepsilon_{0} \csc \varepsilon_{0}-\frac{1}{2} c p g \cot \varepsilon_{01} \\
& g^{\prime}=\left(s^{\prime}+c h\right) \csc \varepsilon_{0}, \quad h^{\prime}=f^{\prime}-g^{\prime} \cos \varepsilon_{0}+\frac{s c}{2} \\
& a^{\prime \prime}=c^{\prime \prime}-\frac{1}{3}\left(2 s^{\prime} h+s h^{\prime}\right)-\frac{c}{6}\left(h^{2}-s^{2}-c^{2}\right) \quad b^{\prime \prime}=\frac{\sin \varepsilon_{0}}{3}\left(2 f^{\prime} g+f g^{\prime}\right) \\
& f^{\prime \prime}= \tag{10}\\
& \\
& \quad+\frac{a P_{1}}{3} \cos 2 \varepsilon_{0} \csc \varepsilon_{0}+\frac{P_{0}}{3}\left[a^{\prime} \cos 2 \varepsilon_{0} \csc \varepsilon_{0}-b^{\prime} \cos ^{2} \varepsilon_{10} \csc \varepsilon_{0}-\left(2 a^{\prime}+\frac{g^{2}}{2}\right) \cos \varepsilon_{0}\right] \\
& g^{\prime \prime}= \\
& \left.\left(s^{\prime \prime}+a^{\prime}\right) \cot \varepsilon_{0}+\frac{1}{2}\left(a^{2}+g^{2}\right)\right] \\
& h^{\prime \prime}= \\
& f^{\prime \prime}-g^{\prime \prime}-\cos \varepsilon_{0}+\frac{\left.\sin b_{0}^{\prime} \cot \varepsilon_{0}-\frac{s h^{2}}{2}\right) \csc \varepsilon_{0}+\frac{g^{3}}{6}}{2}\left[\left(a^{\prime}+b^{\prime}\right) g+a g^{\prime}\right]-\frac{s^{3}}{12} \cot \varepsilon_{0}
\end{align*}
$$

Since $h, p g$, and ε_{0} are given, we can find P_{0} from $P_{0}=\left(h+p g+s \cot \varepsilon_{0}\right) \cdot\left(\sec \varepsilon_{0}\right)$ and then all the other quantities.

To find the relation between Newcomb's and Andoyer's measures of general precession in longitude consider the triangle $\gamma_{1} R_{0} \gamma$

As mentioned earlier, Newcomb's general precession in longitude is $\gamma_{0} R_{0}$ and Andoyer's is $\Lambda-\Pi_{1}$. Since $\gamma_{1} \gamma_{0}=\Psi$, then $\gamma_{1} R_{0}=\Psi-\gamma_{0} R_{0}$. Then in the preceding figure we have

$$
\tan \left(\Psi-\gamma_{0} R_{0}\right)=\cos \varepsilon_{1} \tan \lambda
$$

Using the expressions

$$
\begin{aligned}
\varepsilon_{1} & =\varepsilon_{0}+b^{\prime} T_{1}^{2}+b^{\prime \prime} T_{1}^{3} & \Psi & =f T_{1}+f^{\prime} T_{1}^{2}+g^{\prime \prime} T_{1}^{3} \\
\lambda & =g T_{1}+g^{\prime} T_{1}^{2}+g^{\prime \prime} T_{1}^{3} & \Lambda-\mathrm{I}_{1} & =h T_{1}+h^{\prime} T_{1}^{2}+h^{\prime \prime} T_{1}^{3}
\end{aligned}
$$

and supposing that

$$
\gamma_{0} R_{0}=\alpha T_{1}+\alpha^{\prime} T_{1}^{2}+\alpha^{\prime \prime} T_{1}^{3}
$$

we easily find

$$
\left.\begin{array}{l}
\alpha=h \\
\alpha^{\prime}=h^{\prime}-\frac{s c}{2} \tag{11}\\
\alpha^{\prime \prime}=h^{\prime \prime}+\frac{1}{2} h\left(s^{2}-c^{2}\right)-\frac{1}{2}\left(s c^{\prime}+c s^{\prime}\right)
\end{array}\right\}
$$

So

$$
\begin{align*}
\gamma_{0} R_{0}= & \Lambda-\Pi_{1}-\frac{s c}{2} T_{\mathrm{i}}^{3} \\
& +\left[\frac{1}{2} h\left(s^{2}-c^{2}\right)-\frac{1}{2}\left(s c^{\prime}+c s^{\prime}\right)\right] T_{1}^{3} \tag{12}
\end{align*}
$$

V. Equatorial Precession Elements

We now shall consider the effects of precession in the equatorial frame and the determination of the quantities ζ_{0}, z, θ, which are used in (1).

From Fig. 1, the triangle $\Delta \gamma_{1} \gamma_{n} Q$ gives the differential relation

$$
\begin{aligned}
\frac{d \theta}{d t}= & \sin \left(90^{\circ}+z+\lambda\right) \sin \varepsilon_{1} \frac{d \Psi}{d t}-\cos \left(90^{\circ}-\zeta_{0}\right) \frac{d\left(-\varepsilon_{0}\right)}{d t} \\
& -\cos \left(90^{\circ}+z+\lambda\right) \frac{d \varepsilon_{1}}{d t}
\end{aligned}
$$

and inserting $\sin \varepsilon_{1}(d \Psi / d t)$ from (3) and $d \varepsilon_{1} / d t$ from (4) we find

$$
\begin{equation*}
\frac{d \theta}{d t}=(P \cos \varepsilon-p g) \sin \varepsilon \cos z \tag{13}
\end{equation*}
$$

Similarly, from $\sin A d b=\cos c \sin B d a+\sin c d B$ $+\cos A \sin b d C$,

Or, if one writes $\rho=90^{\circ}-\zeta_{0}, \mu=90^{\circ}+z$ we have

$$
\begin{equation*}
\frac{d \theta}{d t}=(\boldsymbol{P} \cos \varepsilon-p g) \sin \varepsilon \sin \mu \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\sin \theta \frac{d \rho}{d t}=(P \cos \varepsilon-p g) \sin \varepsilon \cos \mu \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\sin \theta \frac{d \zeta_{0}}{d t}=(P \cos \varepsilon-p g) \sin \varepsilon \sin z \tag{14}
\end{equation*}
$$

In $\Delta \gamma_{1} \gamma_{\|} Q$ we also have the following relations

$$
\left.\begin{array}{rl}
\frac{\sin \theta}{\sin \Psi}= & \frac{\sin \varepsilon_{0}}{\sin (\mu+\lambda)}=\frac{\sin \varepsilon_{1}}{\sin \rho} \\
\cos \theta= & \cos \varepsilon_{0} \cos \varepsilon_{1}+\sin \varepsilon_{0} \sin \varepsilon_{1} \cos \Psi \\
\sin \Psi \cos \varepsilon_{0}= & -\sin \rho \cos (\mu+\lambda) \\
& +\cos \rho \cos \theta \sin (\mu+\lambda) \\
\tan \frac{\mu+\rho+\lambda}{2}= & \frac{-\tan \frac{\Psi}{2} \sin \frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{0}\right)}{\sin \frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{0}\right)} \tag{17}\\
\tan \frac{\mu-\rho-\lambda}{2}= & \frac{\tan \frac{\Psi}{2} \cos \frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{0}\right)}{\cos \frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{0}\right)}
\end{array}\right\}
$$

If one supposes that

$$
\begin{aligned}
\mu+\rho & =180^{\circ}+u^{\prime} T_{1}^{2}+u^{\prime \prime} T_{1}^{3}=180^{\circ}+z-\zeta_{0} \\
\mu-\rho & =r T_{1}+r^{\prime} T_{1}^{2}+r^{\prime \prime} T_{1}^{3}=z+\zeta_{0} \\
\theta & =w T_{1}+w^{\prime} T_{1}^{2}+w^{\prime \prime} T_{1}^{3}
\end{aligned}
$$

from (15)-(17) one finds, similarly to Andoyer,

$$
\left.\begin{array}{rl}
r=f \cos \varepsilon_{0}-g, \quad w=f \sin \varepsilon_{0} \\
u^{\prime} & =\frac{f^{\prime} g-f g^{\prime}}{3 f}, \quad r^{\prime}=f^{\prime} \cos \varepsilon_{0}-g^{\prime}, \quad w^{\prime}=f^{\prime} \sin \varepsilon_{0} \\
r^{\prime \prime} & =f^{\prime \prime} \cos \varepsilon_{0}-g^{\prime \prime}+\frac{f^{2} \sin ^{2} \varepsilon_{0}}{12}\left(f \cos \varepsilon_{0}-3 g\right) \tag{18}\\
w^{\prime \prime} & =f^{\prime \prime} \sin \varepsilon_{0}+\frac{f \sin \varepsilon_{0}}{24}\left(3 g^{2}+6 f g \cos \varepsilon_{0}-f^{2} \cos ^{2} \varepsilon_{0}\right)
\end{array}\right\}
$$

The quantity $u^{\prime \prime}$ will be found later.

Thus, with Eqs. (10) and (11) one can find $\varepsilon, \varepsilon_{1}, \Psi, \lambda$, $\Lambda-I_{1}$ and Newcomb's expression for the general precession in longitude for time T_{1} from fundamental epoch T_{0}. And from Eqs. (18) one can find $z-\zeta_{0}, z+\zeta_{0}$, and θ for epoch T_{1} referred to epoch T_{0}. From (18) we also have

$$
\left.\begin{array}{l}
\zeta_{1}=\frac{1}{2} r T_{1}+\frac{1}{2}\left(r^{\prime}-u^{\prime}\right) T_{\mathrm{i}}^{2}+\frac{1}{2}\left(r^{\prime \prime}-\mathbf{u}^{\prime \prime}\right) T_{1}^{3} \\
z=\frac{1}{2} r T_{1}+\frac{1}{2}\left(r^{\prime}+u^{\prime}\right) T_{\mathrm{I}}^{3}+\frac{1}{2}\left(r^{\prime \prime}+u^{\prime \prime}\right) T_{1}^{3} \tag{19}\\
\theta=w T_{1}+w^{\prime} T_{\mathrm{i}}^{\prime}+w^{\prime \prime} T_{1}^{3}
\end{array}\right\}
$$

for equatorial precession parameters.

VI. Precession from Arbitrary Epoch

Frequently, one wants the precession quantities referred to some abitrary epoch. In the preceding sections, we expressed the quantities from the epoch which is associated with the values of $\sin \pi_{1}{ }_{1}^{\sin } \Pi_{1}, \varepsilon_{0}$, etc. We now
shall derive the quantities for any arbitrary epoch. Let T_{0} refer to the basic epoch to which the quantities $\sin \pi_{1}{ }_{\cos }^{\sin } \Pi_{1}, \varepsilon_{0}$ refer (1900, say), T_{1} the new fundamental epoch from which we want to express the precessional quantities and T the epoch of date from T_{1} in some unit of time (centuries, say). Let T^{\prime} be the elapsed time from basic epoch to date.

Then $T^{\prime}=T+T_{1}$ is the elapsed time in centuries from the original basic epoch to the epoch of date.

What we essentially wish to do is to derive the quantities a, a^{\prime}, etc., for the arbitrary epoch T_{1}. In other words, we want $\sin \pi_{1}{ }_{\text {cos }}^{\text {sin }} \Pi_{1}$ in terms of T from T_{1} rather than T^{\prime} from T_{0}.

Let a prime denote the value of $\pi_{1}, \Pi_{1}, \varepsilon, \varepsilon_{1}$ for the epoch of date on the original basic epoch (1900). Let a bar denote the quantities for the epoch of date on the new arbitrary epoch (hereafter called the fundamental epoch), and let no bar or prime refer to the quantities for the fundamental epoch referred to the basic epoch.

From Fig. 1 we have the following equator-ecliptic configurations for the basic epoch and the new fundamental epoch.

where

$$
\begin{aligned}
& E_{0}=\text { ecliptic at fundamental epoch } \\
& E_{b}=\text { ecliptic at basic }(1900) \text { epoch } \\
& A_{0}=\text { equator at fundamental epoch } \\
& A_{b}=\text { equator at zero epoch }
\end{aligned}
$$

Then for three dates (basic, fundamental, date) we have the following ecliptic configuration

where

$$
E_{b}=\text { ecliptic at basic epoch (1900) }
$$

$E_{0}=$ ecliptic at fundamental epoch (arbitrary e.g. 1950) (T_{1} from T_{n})
$E=$ ecliptic of date (T from T_{1})

$$
\left.\begin{array}{rl}
\gamma_{b} & =\text { equinox at time } T_{n} \text { (basic) } \\
\gamma_{0} & =\text { equinox at time } T_{1} \text { from } T_{0} \text { (new fundamental } \\
\quad \text { epoch) }
\end{array}\right] \begin{aligned}
\gamma= & \text { equinox of date (} T \text { from } T_{1} \text { or } T^{\prime}=T+T_{1} \\
& \text { from } T_{0} \text {) } \\
\pi_{1}= & \text { angle between ecliptics of } T_{0} \text { and } T_{1}=<E_{0} C E_{b} \\
\pi_{1}^{\prime}= & \text { angle between ecliptics of } T^{\prime} \text { and } T_{0}=<E B C \\
\bar{\pi}_{1}= & \text { angle between ecliptics of } T \text { and } T_{1}=<E A E_{0}
\end{aligned}
$$

Then
$\Pi_{1}=$ basic equinox to fundamental node on basic ecliptic $=\gamma_{b} C$
$\Pi_{1}^{\prime}=$ basic equinox to date node on basic ecliptic $={ }_{\gamma b} B$
$\bar{\Pi}_{\mathrm{t}}=$ fundamental equinox to date node on fundamental ecliptic $=\gamma_{0} A$
$A=$ fundamental equinox to fundamental node on basic ecliptic $=\gamma_{0} C$

Then

$$
\begin{aligned}
& B C=\gamma_{b} C-\gamma_{b} B=\Pi_{1}-\Pi_{1}^{\prime} \\
& A C=\gamma_{0} C-\gamma_{0} A=\Lambda-\bar{\Pi}_{1}^{\prime}
\end{aligned}
$$

So the triangle formed by the three equinoxes is

Hence

$$
\begin{align*}
& \sin \bar{\pi}_{1} \sin \left(\bar{\Pi}_{1}-\Lambda\right)=\sin \pi_{1}^{\prime} \sin \left(\Pi_{1}^{\prime}-\Pi_{1}\right) \\
& \sin \bar{\pi}_{1} \cos \left(\bar{\Pi}_{1}-\Lambda\right)=\sin \pi_{1}^{\prime} \cos \pi_{1} \cos \left(\Pi_{1}^{\prime}-\Pi_{1}\right)-\cos \pi_{1}^{\prime} \sin \pi_{1} \tag{20}
\end{align*}
$$

which may be written

$$
\begin{align*}
\sin \bar{\pi}_{1} \sin \bar{\Pi}_{1}= & \sin \pi_{1}^{\prime} \sin \left(\Pi_{1}^{\prime}+\Lambda-\Pi_{1}\right)-\sin \pi_{1} \sin \Lambda \\
& +2 \sin \Lambda \sin \pi_{1} \sin ^{2} \frac{\pi_{1}^{\prime}}{2}-2 \sin \Lambda \sin \pi_{1}^{\prime} \cdot \\
& \sin ^{2} \frac{\pi_{1}}{2} \cos \left(\Pi_{1}^{\prime}-\Pi_{1}\right) \\
\sin \bar{\pi}_{1} \cos \bar{\Pi}_{1}= & \sin \pi_{1}^{\prime} \cos \left(\Pi_{1}^{\prime}+\Lambda-\Pi_{1}\right)-\sin \pi_{1} \cos \left(\Pi_{1}+\Lambda-\Pi_{1}\right) \tag{21}\\
& +2 \cos \Lambda \sin \pi_{1} \sin ^{2} \frac{\pi_{1}^{\prime}}{2}-2 \cos \Lambda \sin \pi_{1}^{\prime} \cdot \\
& \sin ^{2} \frac{\pi_{1}}{2} \cos \left(\Pi_{1}^{\prime}-\Pi_{1}\right)
\end{align*}
$$

Now
$T_{1}=$ time in centuries of new fundamental epoch from basic epoch
$T=$ time in centuries of date epoch from fundamental epoch
$T^{\prime}=$ time in centuries of date from basic epoch $=T_{1}+T$
So

$$
T=T^{\prime}-T_{1}
$$

Now we know that

$$
\begin{array}{lll}
\sin \pi_{1} \sin \Pi_{1}=s T_{1}+s^{\prime} T_{1}^{2}+s^{\prime \prime} T_{1}^{3} & \text { Fundamental epoch from } \\
\sin \pi_{1} \cos \Pi_{1}=c T_{1}+c^{\prime} T_{1}^{2}+c^{\prime \prime} T_{1}^{3} & \text { basic epoch } & \\
\sin \pi_{1}^{\prime} \sin \Pi_{1}^{\prime}=s\left(T_{1}+T\right)+s^{\prime}\left(T_{1}+T\right)^{2}+s^{\prime \prime}\left(T_{1}+T\right)^{3} & \text { Date from } \\
\sin \pi_{1}^{\prime} \cos \Pi_{1}^{\prime}=c\left(T_{1}+T\right)+c^{\prime}\left(T_{1}+T\right)^{2}+c^{\prime \prime}\left(T_{1}+T\right)^{3} & \text { basic epoch }
\end{array}
$$

and we desire to find

$$
\begin{array}{ll}
\sin \bar{\pi}_{1} \sin \bar{\Pi}_{1}=\bar{s} T+\bar{s}^{\prime} T^{2}+\bar{s}^{\prime \prime} T^{3} \\
\sin \bar{\pi}_{1} \cos \bar{\Pi}_{1}=\bar{c} T+\bar{c}^{\prime} T^{2}+\bar{c}^{\prime \prime} T^{3}
\end{array} \quad \text { Date from fundamental epoch }
$$

We also know

$$
\Lambda-\Pi_{1}=h T_{1}+h^{\prime} T_{1}^{2}+h^{\prime \prime} T_{1}^{3}
$$

Inserting the above quantities into (21) we get

$$
\left.\begin{array}{c}
\sin \bar{\pi}_{1} \sin \bar{\Pi}_{1}=\bar{s} T+\bar{s}^{\prime} T^{2}+\bar{s}^{\prime \prime} T^{3} \\
\sin \bar{\pi}_{1} \cos \bar{\Pi}_{1}=\bar{c} T+\bar{c}^{\prime} T^{2}+\bar{c}^{\prime \prime} T^{3} \tag{22}
\end{array}\right\}
$$

where

$$
\begin{array}{lll}
\bar{s}=s+s_{1} T_{1}+s_{2} T_{1}^{2} & \bar{s}^{\prime}=s^{\prime}+s_{1}^{\prime} T_{1} & \bar{s}^{\prime \prime}=s^{\prime \prime} \\
\bar{c}=c+c_{1} T_{1}+c_{2} T_{1}^{2} & \bar{c}^{\prime}=c^{\prime}+c_{1}^{\prime} T_{1} & \bar{c}^{\prime \prime}=c^{\prime \prime}
\end{array}
$$

with

$$
\begin{align*}
& s_{1}=2 s^{\prime}+c h \\
& s_{2}=3 s^{\prime \prime}+2 c^{\prime} h+c h^{\prime}-\frac{s}{2}\left(h^{2}-s^{2}-c^{2}\right) \\
& s_{1}^{\prime}=3 s^{\prime \prime}+c^{\prime} h+\frac{s}{2}\left(s^{2}+c^{2}\right) \tag{23}\\
& c_{1}=2 c^{\prime}-s h \\
& c_{2}=3 c^{\prime \prime}-2 s^{\prime} h-s h^{\prime}-\frac{c}{2}\left(h^{2}-s^{2}-c^{2}\right)=3 a^{\prime \prime} \\
& c_{1}^{\prime}=3 c^{\prime \prime}-s^{\prime} h+\frac{c}{2}\left(s^{2}+c^{2}\right)
\end{align*}
$$

Thus if we have $\sin \pi_{1}{ }^{\sin }{ }_{\cos } \Pi_{1}$ for time T from basic (1900) epoch and if we have h and h^{\prime} for $\Lambda-\Pi_{1}$ for T_{1} from basic epoch, we can compute $\sin \bar{\pi}_{1} \sin \overline{\cos }_{1}$ for time T from arbitrary epoch T_{1} via (23).

Now that we have

$$
\begin{aligned}
& \sin \bar{\pi}_{1} \sin \bar{\Pi}_{1}=\bar{s} T+\bar{s}^{\prime} T^{2}+\vec{s}^{\prime \prime} T^{3} \\
& \sin \bar{\pi}_{1} \cos \bar{\Pi}_{1}=\bar{c} T+\vec{c} T^{\prime 2}+\bar{c}^{\prime \prime} T^{3}
\end{aligned}
$$

and knowing that

$$
\begin{align*}
& \bar{P}_{0}=P_{0}+P_{1} T_{1} \\
& \bar{P}_{1}=P_{1} \\
& \bar{\varepsilon}_{0}=\varepsilon\left(T_{1}\right)=\varepsilon_{0}+a T_{1}+a^{\prime} T_{1}^{2}+a^{\prime \prime} T_{1}^{3} \tag{23b}
\end{align*}
$$

one can compute $\bar{\varepsilon}, \bar{\varepsilon}_{1}, \bar{\Psi}, \bar{\lambda}, \bar{\Lambda}-\bar{\Pi}_{1}$ by a process similar to that in the first part of the paper.

If

$$
\begin{aligned}
& \bar{\varepsilon}=\bar{\varepsilon}_{0}+\bar{a} T+\bar{a}^{\prime} T^{2}+\bar{a}^{\prime \prime} T^{3} \\
& \bar{\varepsilon}_{1}=\bar{\varepsilon}_{0}+\bar{b}^{\prime} T^{2}+\bar{b}^{\prime \prime} T^{3}
\end{aligned}
$$

$$
\begin{aligned}
\bar{\Psi} & =\bar{f} T+\bar{f}^{\prime} T^{2}+\overline{f^{\prime \prime}} T^{3} \\
\bar{\Lambda}-\bar{\Pi}_{1} & =\bar{h} T+\bar{h}^{\prime} T^{2}+\bar{h}^{\prime \prime} T^{3}
\end{aligned}
$$

For Newcomb's general précession in longitude, expressed in the form $\bar{\alpha} T+\bar{\alpha}^{\prime} T^{2}+\bar{\alpha}^{\prime \prime} T^{3}$, we find

$$
\bar{a}=\bar{c}=c+c_{1} T_{1}+c_{2} T_{1}^{2}
$$

$$
\bar{f}=f+f_{1} T_{1}+f_{2} T_{\overline{1}}^{\cdot \nu}
$$

$$
\bar{g}=g+g_{1} T_{1}+g_{2} T_{1}^{2}
$$

$$
\bar{h}=h+h_{1} T_{1}+h_{2} T_{\overline{1}}^{2}
$$

Also $\bar{\alpha}=\alpha+\alpha_{1} T_{1}+\alpha_{2} T_{\bar{i}}$

$$
\bar{a}=a^{\prime}+a_{1}^{\prime} T_{1} \quad \bar{a}^{\prime \prime}=a^{\prime \prime}
$$

$$
\bar{b}^{\prime}=b^{\prime}+b_{1}^{\prime} T_{1} \quad \bar{b}^{\prime \prime}=b^{\prime \prime}
$$

$$
\overline{f^{\prime}}=f^{\prime}+f_{1}^{\prime} T_{1} \quad \bar{f}^{\prime \prime}=f^{\prime \prime}
$$

$$
\bar{g}^{\prime}=g^{\prime}+g_{1} T_{1} \quad \bar{g}^{\prime \prime}=g^{\prime \prime}
$$

$$
\bar{h}^{\prime}=h^{\prime}+h_{1}^{\prime} T_{1} \quad \bar{h}^{\prime \prime}=h^{\prime \prime}
$$

$$
\bar{\alpha}^{\prime}=\alpha^{\prime}+\alpha_{1}^{\prime} T_{1} \quad \overline{\alpha^{\prime \prime}}=\alpha^{\prime \prime}
$$

where $\bar{\varepsilon}_{0}, \bar{P}_{1}, \bar{P}_{0}$ are given in (23b); where $s_{1}, s_{2}, s_{1}^{\prime}, c_{1}, c_{2}, c_{1}^{\prime}$ are given in (23); where $a, f, g, h, a^{\prime}, b^{\prime}$, etc., are given in (10) and (11), and where

$$
\begin{align*}
f_{1}= & -a P_{0} \sin \varepsilon_{0}+P_{1} \cos \varepsilon_{0} \\
f_{2}= & -\frac{1}{2} a^{2} P_{0} \cos \varepsilon_{0}-a^{\prime} P_{0} \sin \varepsilon_{0}-a P_{1} \sin \varepsilon_{0} \\
g_{1}= & s_{1} \csc \varepsilon_{0}-a g \cot \varepsilon_{0} \\
g_{2}= & s_{2} \csc \varepsilon_{0}-a g_{1} \cot \varepsilon_{0}+g\left(\frac{1}{2} a^{2}-a^{\prime} \cot \varepsilon_{0}\right) \\
h_{1}= & f_{1}-g_{1} \cos \varepsilon_{0}+a g \sin \varepsilon_{0} \\
h_{2}= & f_{2}-g_{2} \cos \varepsilon_{0}+a g_{1} \sin \varepsilon_{0}+a^{\prime} g \sin \varepsilon_{0}+\frac{1}{2} a^{2} g \cos \varepsilon_{0} \\
\alpha_{1}= & h_{1} \\
\alpha_{2}= & h_{2} \\
a_{1}^{\prime}= & c_{1}^{\prime}-\frac{1}{2}\left(s_{1} h+s h_{1}\right) \tag{25}\\
b_{1}^{\prime}= & \frac{1}{2}\left(s f_{1}+s_{1}\right) \\
f_{1}^{\prime}= & \frac{1}{2} P_{0} \csc \varepsilon_{0}\left[c_{1} \cos 2 \varepsilon_{0}-a^{2}\left(\cot \varepsilon_{0}+\sin 2 \varepsilon_{0}\right)\right] \\
& +\frac{1}{2} a P_{1} \csc \varepsilon_{0}\left(\cos 2 \varepsilon_{0}-\sin \varepsilon_{0}^{2}\right) \\
& +\frac{1}{2} p g \csc \varepsilon_{0}\left(a^{2} \csc \varepsilon_{0}-c_{1} \cos \varepsilon_{0}\right) \\
g_{1}^{\prime}= & \left(s_{1}^{\prime}+c h_{1}+c_{1} h\right) \csc \varepsilon_{0}-a \cot \varepsilon_{0} \csc \varepsilon_{0}\left(s^{\prime}+c h\right) \\
h_{1}^{\prime}= & f_{1}^{\prime}+a g^{\prime} \sin \varepsilon_{0}-g_{1}^{\prime} \cos \varepsilon_{0}+\frac{1}{2} s_{1} c+\frac{1}{2} c_{1} s \\
\alpha_{1}^{\prime}= & h_{1}^{\prime}-\frac{1}{2}\left(s_{1} c+c_{1} s\right)
\end{align*}
$$

Thus, the planetary precession from arbitrary epoch T_{1} to date T is

$$
\bar{\lambda}=\left(g+g_{1} T_{1}+g_{2} T_{1}^{2}\right) T+\left(g^{\prime}+g_{1}^{\prime} T_{1}\right) T^{2}+g^{\prime \prime} T^{3}
$$

and similarly for the luni-solar precession.
For the equatorial precessional elements we have

$$
\begin{aligned}
\bar{r} & =r+r_{1} T_{1}+r_{2} T_{1}^{2} \\
\bar{w} & =w+w_{1} T_{1}+w_{2} T_{1}^{2} \\
\bar{r}^{\prime} & =r^{\prime}+r_{1}^{\prime} T_{1} \\
\bar{w}^{\prime} & =w^{\prime}+w_{1}^{\prime} T_{1} \\
\bar{u}^{\prime} & =u^{\prime}+u_{1}^{\prime} T_{1} \\
\bar{r}^{\prime \prime} & =r^{\prime \prime} \\
\bar{w}^{\prime \prime} & =w^{\prime \prime} \\
\bar{u}^{\prime \prime} & =u^{\prime \prime}
\end{aligned}
$$

where $r, w, r^{\prime}, w^{\prime}, u^{\prime}, r^{\prime \prime}, w^{\prime \prime}$ are given by (18) and
$r_{1}=f_{1} \cos \varepsilon_{0}-a f \sin \varepsilon_{0}-g_{1}$
$r_{2}=f_{2} \cos \varepsilon_{0}-a f_{1} \sin \varepsilon_{0}-g_{2}-\frac{1}{2} a^{2} f \cos \varepsilon_{0}-a^{\prime} f \sin \varepsilon_{0}$
$w_{1}=f_{1} \sin \varepsilon_{0}+a f \cos \varepsilon_{0}$
$w_{2}=f_{2} \sin \varepsilon_{0}+a f_{1} \cos \varepsilon_{0}+a^{\prime} f \cos \varepsilon_{0}-\frac{1}{2} a^{2} f \sin \varepsilon_{0}$
$u_{1}^{\prime}=\frac{1}{3 f}\left[g\left(f_{1}^{\prime}-\frac{f_{1}}{f} f^{\prime}\right)+f^{\prime} g_{1}-f g_{1}^{\prime}\right]$
$r_{1}^{\prime}=f^{\prime} \cos \varepsilon_{0}-a f^{\prime} \sin \varepsilon_{0}-g_{1}^{\prime}$
$w_{1}^{\prime}=f_{1}^{\prime} \sin \varepsilon_{0}-a f^{\prime} \cos \varepsilon_{0}$

Note that

$$
\begin{array}{ll}
w^{\prime}=\frac{1}{2} w_{1} & r^{\prime}=\frac{1}{2} r_{1} \\
w_{2}=w_{1}^{\prime} & r_{2}=r_{1}^{\prime}
\end{array}
$$

The quantity $u^{\prime \prime}$ (which was not computed earlier) may be determined by the fact that since $\mu+\rho=180^{\circ}+u^{\prime} T_{1}^{2}$ $+u^{\prime \prime} T_{1}^{3}$ gives $\mu+\rho$ at T_{1} from zero epoch and $\bar{\mu}+\bar{\rho}=$ $180^{\circ}+\left(u^{\prime}+u_{1}^{\prime} T_{1}\right) T^{2}+u^{\prime \prime} T^{3}$ gives $\bar{\mu}+\bar{\rho}$ at T from T_{1} epoch, then if $T=-T_{1}$ we have $\mu+\rho$ for zero from T_{1} epoch $=\mu+\rho\left(T_{1}\right)$.

Thus we get

$$
\begin{aligned}
& \mu+\rho\left(T_{1} \text { from } 0\right)=180^{\circ}+u^{\prime} T_{1}^{2}+u^{\prime \prime} T_{1}^{3} \\
& \bar{\mu}+\bar{\rho}\left(0 \text { from } T_{1}\right)=180^{\circ}+u^{\prime} T_{1}^{2}+\left(u_{1}^{\prime}-u^{\prime \prime}\right) T_{1}^{3}
\end{aligned}
$$

or

$$
u^{\prime \prime}=\frac{1}{2} u_{1}^{\prime}
$$

Finally, we get

$$
\left.\begin{array}{l}
\zeta_{0}=\frac{1}{2}\left(r+r_{1} T_{1}+r_{2} T_{1}^{2}\right) T+\frac{1}{2}\left[\left(r^{\prime}-u^{\prime}\right)+\left(r_{1}^{\prime}-u_{1}^{\prime}\right) T_{1}\right] T^{2}+\frac{1}{2}\left(r^{\prime \prime}-u^{\prime \prime}\right) T^{3} \tag{27}\\
z=\frac{1}{2}\left(r+r_{1} T_{1}+r_{2} T_{1}^{2}\right) T+\frac{1}{2}\left[\left(r^{\prime}+u^{\prime}\right)+\left(r_{1}^{\prime}+u_{1}^{\prime}\right) T_{1}\right] T^{2}+\frac{1}{2}\left(r^{\prime \prime}+u^{\prime \prime}\right) T^{3} \\
\theta=\left(w+w_{1} T_{1}+w_{2} T_{1}^{2}\right) T+\left(w^{\prime}+w_{1}^{\prime} T_{1}\right) T^{2}+w^{\prime \prime} T^{3}
\end{array}\right\}
$$

where all the quantities are previously given.
We now have explicit expressions for precession quantities and their relationship to the fundamental quantities P_{0} or h, ε_{0} and the system of planetary masses. Hence, we can compute partial derivatives of these derived quantities with respect to the fundamental constants and thus get
an idea of how the derived quantities vary with small changes in the fundamental constants. The partial derivatives are given in Appendix B.

The reader may consult Refs. 5-8 for a more detailed discussion of the problems presented by the necessity of determining the precession constants.

Appendix A

Expressions for $\sin \pi_{1 \text { rus }}^{\sin } \Pi_{1}$

In Ref. 8 (p. 377), Newcomb lists values of a quantity $\kappa_{\text {cos }}^{\sin } L$ for the planets Mercury through Neptune at the epochs $1600,1850,2100$. These expressions are the components from each planet of the time derivative of $\pi_{1} \sin _{\sin }^{\sin } \Pi_{1}$ per Julian century. Clemence (Ref. 9) lists $d / d t\left(\pi_{1} \cos _{\sin }^{\sin } \Pi_{1}\right)$ for Pluto at the same epochs.

From the tabular values of $d / d t\left(\pi_{1}{ }_{1}^{\sin } \Pi_{1}\right)$ for epochs $1600,1850,2100$ one can form a second-degree polynomial in time for $d / d t\left(\pi_{1}{ }_{\text {cos }}^{\sin } \Pi_{1}\right)$ and by integration one gets $\pi_{1}{ }_{\text {cos }}^{\sin } \Pi_{1}$ for time T centuries from 1850. However, since the perturbations $\kappa_{\text {cos }}^{\sin } L$ have been found by multiplying a quantity involving the elements by the mass of the disturbing planet, the quantities $d / d t\left(\pi_{1} \sin _{\cos }^{\sin _{1}} \Pi_{1}\right)$ will change whenever the system of planetary masses is changed.

If $\alpha_{-1}, \alpha_{0}, \alpha_{1}$ are the quantities $d / d t\left(\pi_{1} \sin \Pi_{1}\right)$ or $d / d t\left(\pi_{1} \cos \Pi_{1}\right)$ for the epochs $1600,1850,2100$, then the value of $\pi_{1} \sin I \Pi_{1}$ or $\pi_{1} \cos \Pi_{1}$ is found from

$$
\begin{equation*}
\pi_{1} \sin _{\cos } \mathrm{II}_{1}=\alpha_{0} T_{1}+\frac{1}{10}\left(\alpha_{1}-\alpha_{-1}\right) T_{1}^{2}+\frac{2}{75}\left(\alpha_{1}-2 \alpha_{0}+\alpha_{-1}\right) T_{1}^{3} \tag{28}
\end{equation*}
$$

where the unit of time is the Julian Century. If the expressions are desired for tropical centuries, substitute $0.999978641 T_{1}$ for T_{1} in (28).

If m_{i} are the reciprocal masses of the planets which one uses in integrations, then from Newcomb's data and system of masses (Ref. 8, p. 336), one has

For $1600\left(\alpha_{-1}\right)$

$$
\begin{align*}
\frac{d}{d t}{ }_{\pi_{1}}^{\operatorname{sinn}_{\text {ris }} \mathrm{H}_{1}=} & \frac{7,500,000}{m_{\text {Mercuru }}}\binom{+0.247}{-0 " 212}+\frac{410,000}{m_{\text {Venus }}}\binom{+6.790}{-28.473} \\
& +\frac{3,093,500}{m_{\text {Mars }}}\binom{+0.617}{-0.735}+\frac{1047.88}{m_{\text {Jupiter }}}\binom{-2.804}{-16.170}+\frac{3501.6}{m_{\text {saturn }}}\binom{-0.574}{-1.310} \\
& +\frac{22,756}{m_{\text {Uranus }}}\binom{+0.002}{-0.008}+\frac{19,540}{m_{\text {Neptunc }}}\binom{-0.004}{-0.004}+\frac{360,000}{m_{\text {Pluto }}}\binom{-0.0004}{-0.0012} \tag{29}
\end{align*}
$$

For $1850\left(\alpha_{n}\right)$

$$
\begin{align*}
\frac{d}{d t}\left(\pi_{1}^{\sin } \sin _{1}\right)= & \frac{7,500,000}{\text { Mercury }}\binom{+0.251}{-0.210}+\frac{410,000}{\text { Venus }}\binom{+7.412}{-28.332} \\
& +\frac{3,093,500}{\text { Mars }}\binom{+0.634}{-0.719}+\frac{1047.88}{\text { Jupiter }}\binom{-2.511}{-16.047}+\frac{3501.6}{\text { Saturn }}\binom{-0.542}{-1.318} \\
& +\frac{22,756}{\text { Uranus }}\binom{+0.002}{-0.008}+\frac{19,540}{\text { Neptune }}\binom{-0.004}{-0.004}+\frac{360,000}{\text { Pluto }}\binom{-0.0004}{-0.0012} \tag{30}
\end{align*}
$$

For $2100\left(\alpha_{1}\right)$

$$
\begin{align*}
\frac{d}{d t}\left(\pi_{1}^{\sin } \mathrm{sin}_{1}\right)= & \frac{7,500,000}{\text { Mercury }}\binom{+0.254}{-0.208}+\frac{410,000}{\text { Venus }}\binom{+8.032}{-28.185} \\
& +\frac{3,093,500}{\text { Mars }}\binom{+0.651}{-0.703}+\frac{1047.88}{\text { Jupiter }}\binom{-2.224}{-15.919}+\frac{3501.6}{\text { Saturn }}\binom{-0.510}{-1.325} \\
& +\frac{22,756}{\text { Uranus }}\binom{+0.003}{-0.008}+\frac{19,540}{\text { Neptune }}\binom{-0.004}{-0.004}+\frac{360,000}{\text { Pluto }}\binom{-0.0004}{-0.0012} \tag{31}
\end{align*}
$$

where the unit of time is the Julian Century and the quantities are in seconds of arc.

For an example: JPL, at the time of this writing uses Clemence's masses (except for earth-moon) given in Ref. 9.

Mercury	$6,000,000$
Venus	408,000
Earth-Moon	329,390
Mars	$3,093,500$
Jupiter	1047.355
Saturn	3501.6
Uranus	$22,869.0$
Neptune	19,314
Pluto	360,000

Hence using (29), (30), and (31) or taking the quantities from Clemence (Ref. 9, p. 175)

	1600	1850	2100	(per Julian century)
$\frac{d}{d t}\left(\pi_{1} \sin \Pi_{1}\right)$	$+4^{\prime \prime} .3674$	$+5^{\prime \prime} .3395$	+6.3035	
$\frac{d}{d t}\left(\pi_{1} \cos \Pi_{1}\right)$	-47.1143	-46.8390	-46.5518	

and so

$$
\begin{gathered}
\pi_{1} \sin \mathrm{~J}_{1}=+5.3394 T_{1}+0^{\prime \prime} 19361 T_{1}^{2}-0^{\prime \prime} .000216 T_{1}^{3} \\
\pi_{1} \cos \mathrm{II}_{1}=-46.8380 T_{1}-0^{\prime \prime} 05625 T_{1}^{2}+0^{\prime \prime} 000317 T_{1}^{3}
\end{gathered}
$$

where T_{1} is in centuries (tropical) from 1850.

In the present work, all expansions are made in terms of $\sin \pi_{1}{ }_{\cos }^{\sin } \Pi_{1}$ rather than $\tan \pi_{1}{ }_{\cos }^{\sin } \Pi_{1}$ or $\pi_{1}{ }_{\cos }^{\sin } \Pi_{1}$, which may sometimes be furnished by planetary theory.

Employing the relations

$$
\begin{aligned}
\tan x & =\sin x+\frac{1}{2} \sin ^{3} x \\
x & =\sin x+\frac{1}{6} \sin ^{3} x
\end{aligned}
$$

it can easily be shown that if the planetary theory furnishes $\tan \pi_{1}{ }_{\sin }^{\sin } \Pi_{1}$ then one should substitute

$$
s^{\prime \prime}-\frac{1}{2}\left(s^{2}+c^{2}\right) s \text { for } s^{\prime \prime}
$$

and

$$
c^{\prime \prime}-\frac{1}{2}\left(s^{2}+c^{2}\right) c \text { for } c^{\prime \prime}
$$

in the formulae of the preceding sections.

On the other hand, if the planetary theory furnishes $\pi_{1}^{\sin } \cos _{1}$, then one should substitute

$$
s^{\prime \prime}-\frac{1}{6}\left(s^{2}+c^{2}\right) s \text { for } s^{\prime \prime}
$$

and

$$
c^{\prime \prime}-\frac{1}{6}\left(s^{2}+c^{2}\right) c \text { for } c^{\prime \prime}
$$

in the preceding formulae. However, since $s^{2}+c^{2} \sim 5$ $\times 10^{-8} \mathrm{rad}$, and s and c are less than $50^{\prime \prime}$, we have $\left(s^{2}+c^{2}\right)^{\sin }<3^{\prime \prime} \times 10^{-6}$, which may be ignored since the quantities $d / d t\left(\pi_{1}{ }_{\cos }^{\sin } \Pi_{1}\right)$ are only given to 4 or 5 figures anyway.

So from Newcomb's values of $\kappa_{\text {cos }}^{\sin } L$ we get $\sin \pi_{1}{ }_{\text {cos }}^{\sin } \Pi_{1}$ as time series from 1850 as shown above. However, usually we update the zero epoch from 1850 to 1900 . This involves (22) and (23). But in (23) we used

$$
\Lambda-\mathrm{II}_{1}=h_{0} T_{1}+h^{\prime} T_{1}^{2}+h^{\prime \prime} T_{1}^{3} \quad T_{1} \text { from } 1850
$$

and if we have

$$
\frac{d}{d t}\left(\Lambda-\Pi_{1}\right)=h \text { at } 1900 \quad \text { Note } h=h_{0}+h^{\prime}+\frac{3}{4} h^{\prime \prime}
$$

as the speed of general precession in longitude, then in formula (23) we set $h^{\prime}=0, T_{1}=1 / 2$ and $h=$ general precession in longitude at 1900 to get $\sin \pi_{1} \sin _{\cos } \Pi_{1}$ for 1900 . Or, one could calculate h^{\prime} at 1900 by (10), estimate $h_{1850}=h_{1900}-1 / 2 h_{1900}^{\prime}$ and then recalculate $h_{1850 .}^{\prime}$. By using (23) one then gets $\pi_{1}^{\sin } \sin _{8} \Pi_{1}$ for 1900 .

Thus, using Clemence's $\pi_{1} \sin _{\cos } \Pi_{1}$ for 1850, and taking at $1900 \varepsilon_{0}=23^{\circ} 27^{\prime} 08^{\prime \prime} 26, h=5025.64$, we get, from (23):

$$
\begin{aligned}
& \sin \pi_{1} \sin \Pi_{1}=4.9625 T+0.1940 T^{2}-0.00022 T^{i} \\
& \sin \pi_{1} \cos \Pi_{1}=-46.845 T+0.0544 T^{2}+0.0032 T^{3}
\end{aligned}
$$

as $\sin \pi_{1}{ }_{\cos }^{\sin } \Pi_{1}$ terms of tropical centuries from 1900 .

Thus 1900 now becomes our zero epoch with $s, s^{\prime}, s^{\prime \prime}$, $c, c^{\prime}, c^{\prime \prime}$ given above, and $\varepsilon_{0}=23^{\circ} 27^{\prime} 08{ }^{\prime \prime} 26, h=5025 .{ }^{\prime \prime} 64$.

With $P_{1}, p g$ at 1900 , we can compute all the quantities for time T derived in the paper for arbitrary epoch T_{1} tropical (or Julian) centuries from 1900. This is given in Appendix B.

Appendix B

Numerical Values of Precession Quantities

Using the JPL masses (Appendix A) and the following observed quantities for 1900 (per tropical century):

$$
\begin{aligned}
h & =5025 . " 64 \\
P_{1} & =-0.0036 \\
p g & =1.921
\end{aligned}
$$

and the values of $\pi_{1}{ }_{\cos }^{\sin } \Pi_{1}$ for 1850 , we get for T_{1} tropical centuries after 1900 and T tropical centuries (date) after T_{1} the following values:
$P_{0} @ 1900$, zero epoch 1900
$P_{1} @ 1900, \quad$ new fundamental epoch T_{1}
$p g @ 1900, \quad$ date $\left\{\begin{array}{l}T_{1}+T \text { from } 1900 \\ T \text { from } T_{1}\end{array}\right.$

$$
\begin{aligned}
\sin \pi_{1} \sin \Pi_{1}= & \left(s+s_{1} T_{1}+s_{2} T_{1}^{2}\right) T \\
& +\left(s^{\prime}+s_{1}^{\prime} T_{1}\right) T^{2}+s^{\prime \prime} T^{3}
\end{aligned}
$$

$\sin \pi_{1} \cos \Pi_{1}=\left(c+c_{1} T_{1}+c_{2} T_{1}^{2}\right) T$

$$
+\left(c^{\prime}+c_{1}^{\prime} T_{1}\right) T^{2}+c^{\prime \prime} T^{\prime}
$$

$$
\bar{\varepsilon}_{0}\left(\text { at } T_{1}\right)=\varepsilon_{0}(1900)+a T_{1}+a^{\prime} T_{1}^{2}+a^{\prime \prime} T_{1}^{3}
$$

$$
\bar{\varepsilon}(\text { at } T)=\varepsilon_{0}(1900)+a T_{1}+a^{\prime} T_{1}^{2}+a^{\prime \prime} T_{1}^{3}+\left(a+a_{1} T_{1}\right.
$$

$$
\left.+a_{2} T_{1}^{2}\right) \mathbf{T}
$$

$$
+\left(a^{\prime}+a_{1}^{\prime} T_{1}\right) T^{2}+a^{\prime \prime} T^{3}
$$

$$
\begin{aligned}
\bar{\varepsilon}_{1}\left(T \text { on } T_{1}\right)= & \bar{\varepsilon}_{0}+\left(b^{\prime}+b_{1}^{\prime} T_{1}\right) T^{2}+b^{\prime \prime} T^{3} \\
= & \varepsilon_{0}+a T_{1}+a^{\prime} T_{1}^{2}+a^{\prime \prime} T_{1}^{3} \\
& +\left(b^{\prime}+b_{1}^{\prime} T_{1}\right) T^{2}+b^{\prime \prime} T^{3}
\end{aligned}
$$

Ψ luni-solar-geodesic $=\left(f+f_{1} T_{1}+f_{2} T_{1}^{2}\right) T$

$$
+\left(f^{\prime}+f_{1}^{\prime} T_{1}\right) T^{2}+f^{\prime \prime} T^{3}
$$

Planetary $=\left(g+g_{1} T_{1}+g_{2} T_{1}^{2}\right) T+\left(g^{\prime}+g_{1}^{\prime} T_{1}\right) T^{2}$

$$
+g^{\prime \prime} T^{3}
$$

Andoyer's general precession in longitude $=\Lambda-\Pi_{1}$

$$
\begin{aligned}
& =\left(h+h_{1} T_{1}+h_{2} T_{1}^{2}\right) T+\left(h^{\prime}+h_{1}^{\prime} T_{1}\right) T^{2}+h^{\prime \prime} T^{3} \\
\zeta_{0} & =\left(x+x_{1} T_{1}+x_{2} T_{1}^{2}\right) T+\left(x^{\prime}+x_{1}^{\prime} T_{1}\right) T^{2}+x^{\prime \prime} T^{3} \\
z & =\left(z_{0}+z_{1} T_{1}+z_{2} T_{1}^{2}\right) T+\left(z^{\prime}+z_{1}^{\prime} T_{1}\right) T^{2}+z^{\prime \prime} T^{3} \\
\theta & =\left(w+w_{1} T_{1}+w_{2} T_{1}^{2}\right) T+\left(w^{\prime}+w_{1}^{\prime} T_{1}\right) T^{\prime 2}+w^{\prime \prime} T^{3}
\end{aligned}
$$

It should be noted that de Sitter's (Ref. 3) and Clemence's (Ref. 9) quantities for p_{1}, λ, and p correspond to the coefficients of T (first power only) in $\bar{\Psi}, \bar{\lambda}, \bar{\Lambda}-\bar{\Pi}_{1}$ in our development. Also, several of Clemence's secondorder terms in T_{1} are in error. (They use T as time since 1900 whereas we call it T_{1}.)

In the following tables, the first line contains the coefficients of the powers of T and T_{1}, using the JPL masses and basic constants given above. Subsequent lines give the partial derivatives with respect to general precession in longitude at 1900 , obliquity at 1900 , and the system of planetary masses. Units for the quantities are seconds of arc, and for the partial derivatives the corrections for $\Delta h, \Delta \varepsilon_{0}$ are assumed to be in seconds of arc while those of the masses are pure numbers $\Delta m / m$. The unit of time is the tropical century. T_{1} is the time from 1900.0 to the fundamental epoch (e.g., 1950.0), and T is the time from the fundamental epoch to date.

For the partial derivatives we have listed only the terms which affect the quantities involved to $10^{-+} \mathrm{sec}$ of arc. It was assumed that the reasonable sizes of corrections are:

Δh	$l^{\prime \prime}$
$\Delta \varepsilon_{0}$	$1,2^{\prime \prime}$
θ_{1} (Mercury)	10^{-2}
θ_{2} (Venus)	2×10^{-3}
θ_{3} (Mars)	10^{-2}
θ_{4} (Jupiter)	5×10^{-4}
θ_{5} (Saturn)	10^{-3}
θ_{6} (Uranus)	3×10^{-3}
θ_{7} (Neptune)	2×10^{-2}
θ_{8} (Pluto)	10^{-1}

Table B-1. $x=\sin \pi_{1} \sin \Pi_{1}$

x	$\left.\left.14.9624-0.7534 r_{1}+0.00026 T_{1}^{2}\right) T+10.1940+0.0007 r_{1}\right) T^{2}-0.00022 T^{2}$					
$\partial_{x} / \partial h^{\prime \prime \prime}$)	1-0.00011	0.000237_{1}	Or $\mathbf{r}_{1}{ }^{2} \boldsymbol{r}+($	0	Or_{1}) \boldsymbol{T}^{2}	Or ${ }^{3}$
$\partial_{x} / \partial \varepsilon_{0}(\underline{\prime \prime})$	0	0	0	0	0	0
$\partial_{x} / \partial \theta_{1}$	0.311	0	0	0	0	0
$\partial_{\mathbf{x}} / \partial \boldsymbol{\theta}_{\boldsymbol{i}}$	7 "23	-0."44	0	0.12	0	0
$\partial_{\mathbf{x}} / \partial_{\boldsymbol{\theta}} \boldsymbol{\theta}_{3}$	0.629	-0.011	0	0	0	0
$\partial_{x} / \partial \theta_{4}$	-2.65	-0.27	0	0	0	0
$\partial_{x} / \partial \theta_{s}$	-0"55	0	0	0	0	0
$\partial_{x} / \partial \theta_{i}$	0	0	0	0	0	0
$\partial_{x} / \partial \theta_{7}$	0	0	0	0	0	0
$\partial_{x} / \partial \theta_{x}$	0	0	0	0	0	0

Table B-2. $x=\boldsymbol{\operatorname { s i n }} \pi_{1} \cos \Pi_{1}$

x	$\left.1-46.1845-0.0122 T_{1}+0.0054 T_{1}{ }^{2}\right) T+\left(0.0544-0.0038 T_{1}\right) T^{2}+0.0032 T^{3}$					
$\partial_{x} / \partial h$	0	0	0	0	0	0
$\partial_{\mathbf{x}} / \partial \varepsilon_{0}$	0	0	0	0	0	0
$\partial_{x} / \partial \theta_{1}$	-0"266	0	0	0	0	0
$\partial_{\boldsymbol{x}} / \partial \boldsymbol{\theta}_{\boldsymbol{\theta}}$	-28.53	-0.12	0	0	0	0
$\partial_{x} / \partial \theta_{3}$	-0.723	0	0	0	0	0
$\partial_{x} / \partial \theta_{1}$	16.00	0.11	0	0	0	0
$\partial_{x} / \partial \theta_{s}$	-1.31	0	0	0	0	0
$\partial_{\mathbf{x}} / \partial \boldsymbol{\theta}_{\mathbf{a}}$	0	0	0	0	0	0
$\partial_{x} / \partial^{\prime} \theta_{7}$	0	0	0	0	0	0
$\partial_{\boldsymbol{x}} / \partial \theta_{\boldsymbol{x}}$	0	0	0	0	0	0

Table B-3. $x=\bar{\varepsilon}_{0}\left(\varepsilon_{1,}=23^{\circ} 27^{\prime} 08^{\prime \prime}\right.$ 26)

x	ε_{0}	-46" $845 \mathrm{~T}_{1}$	-0.00617 ${ }^{2}$	$+0.0018 \mathrm{I}_{1}{ }^{3}$
$\partial_{x} / \partial h$	0	0	0	0
$\partial_{x} / \partial \varepsilon_{0}$	1	0	0	0
$\partial_{x} / \partial \theta_{1}$	0	-0",266	0	0
$\partial_{x} / \partial \theta_{z}$	0	-28.53	0	0
$\partial_{x} / \partial \theta_{3}$	0	-0.723	0	0
$\partial_{x} / \partial \theta_{4}$	0	-16.00	0	0
$\partial_{x} / \partial \theta_{5}$	0	-1"31	0	0
$\partial_{x} / \partial^{\prime} \theta_{6}$	0	0	0	0
$\partial_{x} / \partial \theta=$	0	0	0	0
$\partial_{x} / \partial \theta_{x}$	0	0	0	0

Table B-4. $\bar{\varepsilon}=\bar{\varepsilon}_{9}+x$ (see Table 3)

x	$\left.\left.1-46.845-0.0122 T_{1}+0.0054 T_{1}^{2}\right) T+1-0.0061+0^{\prime \prime} .0054 T_{1}\right) T^{2}+0.0018 T^{3}$					
$\partial_{x} / \partial \boldsymbol{h}$	0	0	0	0	0	0
$\partial x / \partial \varepsilon_{0}$	0	0	0	0	0	0
$\partial x / \partial \theta_{1}$	-0"266	0	0	0	0	0
$\partial_{x} / \partial \theta_{2}$	-28".53	-0.12	0	0	0	0
$\partial_{x} / \partial \theta_{3}$	-0.723	0	0	0	0	0
$\partial \mathrm{x} / \partial \boldsymbol{\theta}_{\mathbf{4}}$	-16.00	-0.11	0	0	0	0
$\partial \mathrm{x} / \partial \theta_{5}$	-1.31	0	0	0	0	0
$\partial x / \partial \theta_{0}$	0	0	0	0	0	0
$\partial x / \partial \theta_{7}$	0	0	0	0	0	0
$\partial x / \partial \theta_{k}$	0	0	0	0	0	0

Table B-5. $\overline{\mathrm{F}}_{1}=\overline{\mathrm{p}}_{\mathrm{g}}+\mathrm{x}$ (see Table 3)

x	$\mathbf{1 0 . 0 6 0 6}$	$\left.-\mathbf{0 . 0 0 9 1 9 I _ { 1 }}\right) T^{2}$	$-0.00771 I^{s}$
$\partial_{x} / \partial h$	0	0	0
$\partial_{x} / \partial \varepsilon_{0}$	0	0	0
$\partial_{x} / \partial \theta_{1}$	0	0	0
$\partial_{x} / \partial \theta_{3}$	0	0	0
$\partial_{x} / \partial \theta_{3}$	0	0	0
$\partial_{x} / \partial \theta_{4}$	0	0	0
$\partial_{x} / \partial \theta_{5}$	0	0	0
$\partial_{x} / \partial \theta_{6}$	0	0	0
$\partial_{x} / \partial \theta_{7}$	0	0	0
$\partial_{x} / \partial \theta_{8}$	0	0	0

Table B-6. $x=\bar{\Psi}$

x						
$\partial x / \partial h$	0.99974	0	0	-0.0002	0	0
$\partial_{x} / \partial \varepsilon_{0}$	-0.00015	0	0	0	0	0
$\partial x / \partial \theta_{1}$	0 ".718	0	0	0	0	0
$\partial_{x} / \partial \theta_{2}$	1 1. 66	0.30	0	-0.166	0	0
$\partial_{x} / \partial \theta_{3}$	1".449	0	0	-0.017	0	0
$\partial_{x} / \partial \theta_{4}$	-6.'11	0.17	0	-0.36	0	0
$\partial_{x} / \partial \theta_{5}$	-1.27	0	0	0	0	0
$\partial_{x} / \partial \theta_{6}$	0	0	0	0	0	0
$\partial_{x} / \partial \theta_{7}$	0	0	0	0	0	0
$\partial_{x} / \partial \theta_{s}$	0	0	0	0	0	0

Table B-7. $x=\bar{\lambda}$

x	$\left(12.469-1.8866 T_{1}-0.300032 T_{1}{ }^{2}\right) T+\left(-2{ }^{\prime \prime} .3805-0.00159 T_{1}\right) T^{2}-0.00157 T^{2}$					
$\partial x / \partial h$	-0.00028	-0.00057	0	-0.00057	0	0
$\partial x / \partial \varepsilon_{0}$	-0.00014	0	0	0	0	0
$\partial_{x} / \partial \theta_{1}$	-0.782	-0.011	0	-0.014	0	0
$\partial x / \partial \theta_{2}$	18.16	-1"10	0	-1".43	0	0
$\partial x / \partial \theta_{3}$	1". 579	0".026	0	-0.036	0	0
$\partial_{x} / \partial \theta_{4}$	-6.'66	-0.'69	0	-0.183	0	0
$\partial_{x} / \partial \theta_{5}$	-1.39	0	0	0	0	0
$\partial_{x} / \partial \theta_{i}$	0	0	0	0	0	0
$\partial x / \partial \theta_{\tau}$	-0.010	0	0	0	0	0
$\partial x / \partial \theta_{8}$	-0".001	0	0	0	0	0

Table B-8. General precession in longitude

$$
\begin{aligned}
\mathbf{x}_{1} & =\Lambda-\Pi_{1} \\
\mathbf{x}_{2} & =\boldsymbol{P}
\end{aligned}
$$

(Andoyer) (Newcomb)

$\begin{aligned} & x_{1} \\ & x_{2} \end{aligned}$	$\begin{array}{ccccc} \hline\left(5025 . .64+2.2228 T_{1}+0^{\prime \prime} .00040 T_{1}{ }^{2}\right) T+\left(1 " 1114+0.00040 r_{1}\right) T^{2}+0.00014 T^{3} \\ 5025.64-2.2228 & 0.00040 & 1.1120 & 0.00032 & 0.00003 \end{array}$					
$\partial_{x} / \partial h$	1.000	0.00062	0	0.00031	0	0
$\partial x^{\prime} / \partial \varepsilon_{0}$	0	0	0	0	0	0
$\partial_{x} / \partial \theta_{1}$	0	0.013	0	0	0	0
$\partial_{x} / \partial \theta_{2}$	0	1.31	0	0.66	0	0
$\partial_{x} / \partial \theta_{3}$	0	0.032	0	0.016	0	0
$\partial_{x} / \partial \theta_{4}$	0	0.80	0	0'. 40	0	0

Note: (a) Partials of x_{1} and x_{2} are identical; (b) Partials not listed are zero.

Table B-9. $\mathbf{x}=\zeta_{0}$

x	$\left.12304.253+1{ }^{\prime \prime} 3972 T_{1}+0^{\prime \prime} .000125 T_{1}^{2}\right) T+\left(0^{\prime \prime} .3023-0.000211 T_{1}\right) r^{2}+0.0180 T^{3}$					
$\partial x / \partial \boldsymbol{h}$	0.45872	0.00038	0	0	0	0
$\partial x / \partial \varepsilon_{0}$	-0.00486	0	0	0	0	0
$\partial x / \partial \theta_{1}$	-0.062	0	0	0	0	0
$\partial x / \partial \theta_{2}$	-1".44	0.'83	0	0.'18	0	0
$\partial_{x} / \partial \theta_{3}$	-0."125	0 0"020	0	0	0	0
$\partial_{x} / \partial \theta_{4}$	0". 53	0'. 50	0	0.111	0	0
$\partial_{x} / \partial \theta_{s}$	0.11	0	0	0	0	0

Table B-10. $x=z$

x	$12304.253+1.3972 T_{1}+0^{\prime \prime} .000125 T_{1}^{2} 1 \mathrm{r}+11^{\prime \prime} .0949+0^{\prime \prime} .00046 T_{1} 1 T^{2}+0^{\prime \prime} .0183 T^{3}$					
$\partial x / \partial h$	0.45872	0.00038	0	0.00028	0	0
$\partial x / \partial \varepsilon_{0}$	-0.00486	0	0	0	0	0
$\partial_{x} / \partial \theta_{1}$	-0".062	0	0	0	0	0
$\partial x / \hat{\partial} \theta_{2}$	-1".44	0.183	0	0.65	0	0
$\partial_{x} / \hat{\partial} \theta_{3}$	-0.125	0".020	0	0.016	0	0
$\partial_{x} / \partial \theta_{i}$	0". 53	0". 50	0	0.3 39	0	0
$\partial_{x} / \partial \theta_{s}$	0."11	0	0	0	0	0

Table B-11. $x=\theta$

x	$\left(2004.684-0.8532 T_{1}-0.000317 T_{1}{ }^{2}\right) T+\left(-0.4266-0.00032 T_{3}\right) T^{2}-0.0418 T^{3}$					
$\partial_{x} / \partial h$	0.39788	-0.00017	0	0	0	0
$\partial_{x} / \partial \varepsilon_{0}$	0.02234	0	0	0	0	0
$\partial_{x} / \partial \theta_{1}$	0.286	0	0	0	0	0
$\partial_{x} / \partial \theta_{2}$	$6^{\prime \prime} .63$	-0.52	0	$0-0.126$	0	0
$\partial_{x} / \partial^{\prime \prime} \theta_{3}$	0.577	-0.013	0	0	0	0
$\partial_{x} / \partial \theta_{4}$	$-2^{\prime \prime} .43$	$-0 . .29$	0	$-0^{\prime \prime} 14$	0	0
$\partial_{x} / \partial \theta_{5}$	-0.51	0	0	0	0	0

From the preceding tables, one can evaluate the quantities for 1950.0 and have the precession quantities expressed in time from 1950. The partial derivatives can also be evaluated at 1950.0 by setting $T_{1}=1 / 2$. One then has a power series expression in time from 1950.0 for the effect of a change in a fundamental quantity upon the precession numbers used in practice.

Appendix C

Relations Between Forward and Backward Precession Elements

Draw the equator-ecliptic configurations for times T_{0} and $T_{0}+T$.

If E_{0}, A_{0} are ecliptic and equator for time T_{1}, and E, A are ecliptic and equator for time $T_{1}+T$, then

$$
\begin{aligned}
\gamma_{0} \gamma_{1} & =\Psi\left(T_{1}, T\right) \\
\gamma Q & =90^{\circ}+z\left(T_{1}, T\right) \\
\gamma_{0} Q & =90^{\circ}-\zeta_{4}\left(T_{1}, T\right)
\end{aligned}
$$

where

$$
\left(T_{1}, T\right)=>\operatorname{times} T \text { from epoch } T_{1}
$$

However, if we consider E to be the fixed ecliptic (Epoch $T_{1}+T$), then E_{0} is the moving ecliptic at time $-T$ from Epoch $T_{1}+T$.

But by definition

$$
\begin{aligned}
\gamma Q & =90^{\circ}-\zeta_{0}\left(T_{1}+T,-T\right) \\
\gamma_{0} Q & =90^{\circ}+z\left(T_{1}+T,-T\right)
\end{aligned}
$$

and

$$
<A Q A_{0}=\theta\left(T_{1}, T\right)=-\theta\left(T_{1}+T,-T\right)
$$

Hence we have

$$
\begin{aligned}
\zeta_{0}\left(T_{1}, T\right) & =-z\left(T_{1}+T,-T\right) \\
z\left(T_{1}, T\right) & =-\zeta_{0}\left(T_{1}+T,-T\right) \\
\theta\left(T_{1}, T\right) & =-\theta\left(T_{1}+T,-T\right)
\end{aligned}
$$

These relations are sometimes useful in reducing the volume of tabular data required for manual data reduction.

References

1. Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, H. M. Nautical Almanac Office, H. M. Stationery Office, London, 1961.
2. Woolard, E. W., "Theory of the Rotation of the Earth Around Its Center of Mass," Astronomical Papers of the American Ephemeris, Vol. 15, Part 1, U.S. Government Printing Office, Washington, 1953.
3. de Sitter, W., "On the System of Astronomical Constants," (edited and completed by D. Brouwer), Bull. Astron. Inst. Neth., 8, 213-231, 1938.

References (contd)

4. Andoyer, H., "Les formulaes de la précession d’apres S. Newcomb," Bull. Astron., 28, 66-76, 1911.
5. Newcomb, S., "The Precession Constant," Astronomical Papers of the American Ephemeris, Vol. 8, Part 3, U.S. Navy Department, Washington, 1897.
6. Newcomb, S., Compendium of Spherical Astronomy, Dover, New York, 1960.
7. Newcomb, S., "Elements of the Four Inner Planets and the Fundamental Constants of Astronomy," Supplement to the American Ephemeris for 1897.
8. Newcomb, S., "Secular Variations of the Orbits of the Four Inner Planets," Astronomical Papers of the American Ephemeris, Vol. 5, Part 4, U.S. Navy Department, Washington, 1895.
9. Clemence, G. M., "On the System of Astronomical Constants," Astron. J., 53, 167-179, 1948.
