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I, SUMMARY

The work initiated under this grant during the first six month:
period falls within two catagories. One is concerned with controlling
the structure of synchronous realizations of finite state automata
(sequential machines) when the storage elements of the machine are
flip~-flops. Basically this is the problem of assigning binary codes to
the state, input and output alphabets in such a way as to control the
extent to which the flip-flop inputs depend upon the contents of the
other flip-flop elements. The results are directed toward determining
when realizations can be fabricated by networks of smaller machines.
This not only reduces the number of corhponents but allows some control
of how the components are interconnected,

The initial work (Ref. 1) on this problem was completed prior
to the initiation of this grant, During fhe period of this report, investi-
gations have continued toward the objective of determining ;_how the feed-
back can be controlled when the storage elements are flip—fiops. The
results of this study have not been completed but will be reported at
the end of the next period.

Related to the problem of controlling the structure by which
machines are realized is the problem of controlling rﬂachine errors, In

this regard Hartmanis and Stearns (Ref. 2,3 and 4) defined the concept
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of inessential errors, Basically these are state errors within the machine
that occur because of a temporary malfunction. Although they refnain as
state errors they produce only a finite number of 6utput errors even for
infinitely long input sequences. Although Hartmanis and Stearns charac-
terized inessential errors in terms of a state partition l'lE, they did not
provide a procedure for calculating this partition, In fact, they showed
that it was not determined by state partitions with either the pair or the
substitution property relations,

During the cuwrrent reporting period we have defined a procedure
for determining inessential errors.”" An initial draft of the results of this
study is included in Part II.

The second cateéory of investigations is concerned with asyn~
chronous realizations of finite state automata that consist of a combina-
tional logic network with feedback. Included in this study is the use of
threshold logic gates, ,'

The problems associated with asynchronous realizations are those
of assigning state, input and output codes such that hazard and race
conditions within the realization are minimized, During the current
reporting period work was completed on the study of hazards in threshold
logic and a meéns for obtaining realizations that are free of logic hazards.

The results of this study is included in Part 111,
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II, ERRORS IN SEQUENTIAL MACHINES
In papers by Hartmanis and Stearns (Ref. 1 and 2) the concept
of an inessential error is defined and some of the properties of in-
essential errors are derived. An error partition I‘lE is defined and in-
vestigated. However, it is now shown in these papers how to calculate
l'lE. The purpose of this paper is to give an algorithm for determining l'IE

First we shall review some concepts that are given in Ref, 1.

Definition 1

A Moore type sequential machine is a quintuple M = ({s}, {x},0,5,N,
{s} is a finite set called the set of states, {x} is the set of inputs, 0 is
the set of outputs, 5:{3}. x {x} » {s} and A:{s} - 0.
| In this paper the only machines we will consider are Moore
machines which are completely specified; that is, the domain of § is
all of {s} x {x}. The next definition extends the function & to all

sequences of inputs,

Definition 2

Let M be a sequential machine, Let {xi}]1 be a sequence of
inputs of length j > 0 we define a function 5 as follows. Let ae {s}
- j - 1
é(a,{xi}]l) =3 if j= 0, 6(a,{xi}1) = 6(a,x1) if j= 1. In general

5(a, {xi}jl)= 5(5(a, {xi}jl-1 ),xj) for every j > 2.

Definition 3

Let M be a sequential machine. Let j >0, {xi}]1 be a sequence
of inputs and let ac{s}. Then Aa. {xi}Jl) = s (a, [xi}J1 M.
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Definition 4

Let M be a sequential machine.
i) Let T be a partition on {s}. Then if a,be{s} r[al = +[b]
means a and b are in the same set, sometimes called a block, of 1.

Example 1. If {s} = {1,2,3,4,5} and v =(1,2:3,4,5) then

7131 = 1[4] = +[5] and t[2] # +[3].
ii) Angs.p. partition t is a partition in {s} such that for every

a,be{s} with r[al = v[b] then r[s(a,x)] = v[5(b, x)] for every input x.

Definition 5

Let M be a machine. An error is a partition v_. where a, be {s}

ab

and a and b are the only two states in the same block of T ab®

=(1,3;:2:4;

R
|
e

Example 2. If {s} = {1,2,3,4,5} then'r13

Definition 6

An errc;f Tab is an inessential error iff for every input sequence
{xi}°1° there exists a finite set A< {1,2,...} such that x(a, {xi}]f) #
Aa, {xi}ll< ) if and only if k ¢ A.

The next result which is proved in Ref, 1 verifies the existence

of ]'IE the partition which we want to determine,

Result 1 (Theorem)

Let M be a machine, There exists an S.P, partition HE such that

is an inessential error and conversely if 1 is an

if Tab < l'IE then 7 ab

ab

inessential error then 1 < HE
ab—



We conclude the introductory concepts with a brief discussion
of set systems. It turns out that the set system is the principal con-

cept to be used in determining ﬂE

Definition 7

A set system on {s} is a collection p = {Ai|ie/\} where A is a

finite index set and A, < {s}] for every ieA. Also
i) l[{ Ai = {s}

ii) Ai?—Aj implies that Ai = Aj for every i, jeA.

Definition 8

Let M be a Moore machine
1)  Let E= {[a,b]l | a,be{s} and r(a) ¥ Mb)}

if) LetK= {[a,b] | a,be{s} with a # b}

Definition 9

If v is é set system in { s} then we define

i) mss('r) = {C < {s} } C=6(A,x) where Aet and xe{x} and
C is not less than §(B,x') for any Bet and x'e{x} }.
Note that §(A,x) = {b | b = §(a, x) for some acA} and that msS(T) is a
set system on {s}.

ii) mssi+1('r) =m_ (mssi('r) )

Result 2

If v is an8.P. set systemon {s} thenm__(r) < and

i+l i .
m_ (+) < m_ (v) for every i > 1.



Proof:

Since 1 has S.PI. for every Aet and x < {x} C = §(A,x) < B for
some Ber. Hence if Ce mss('r) then C < B a set of . This implies
mSS(T) < 1. The second part of the result is easily proved by induction.

Figure 1 contains an example of these concepts. In Figure 1l
T+ has S.P.and the mSS operators on v are computed, For this example

E={{1,2],01,4].[2,3],[2,5],(3,4],[4,5]3.

r=(1,2,4,5;3)
;
mss (q-) =(1,2,4;2,4,5)

20y = ,
m_ (1) =(1,2,4;2,4,5)

N bW N

= B W N NN O
[ O T e R 4 1 N -
O = o = o >

Figure 1. Machine A
Result 3 which follows is one of the principal results of this
paper in that it gives a necessary condition that UE must satisfy, When

we write [a,b] = [c,d] this meansa=candb=d ora=dandb = c.

Result 3 (Theorem)

q .
2). If Tis a

partition of {s} such thatt < l'lE and v has S.P.then for every [a,b] ¢

Let M be a q state machine where q >2. Let p =(

_ i i
such that t{al] = 1[b] we have that m_ (Tab)- [a] # m_ (Tab) [b] for
every i such that 1 < i< p.
Proof:
Suppose there exists [a,b] ¢E such that v[a] = v[b] and an integer

iwith 1 <i < p wherem (Tab) [a] = m_ (Tab) [al. This implies that

i i
Ss s
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Y@ 1=

i~
there existsa, ., b, ., and an e such that m_ (v

i-1" 7i-1 ab
i-1

m_. (Tab) [bi— 1] and [s (ai—l'xi)' é(bi—l'xi)] = [a,b]. Continue in

i-1

. . . 1 _ 1
this fashion until we have a,.b, such that m_ (Tab) [al] m__ (Tab)[bl] .

This implies that there exists x. such that [al,bl] =[5 (a,xl), a(b,xl)].

1
Thus we have a sequence {xj}i such that [5(a, {xj}i1 ). (b, {xj}; )=

[a,bl. Form the sequence {yi}c; as follows.

Let A= {r | r=ni n a positive integer}. If keA thenk = ni
which implies [§(a, {xj}l;i), s(b, {xj}ni)] = [a,b]. This in turn implies
that Aa, {xi}rlﬁ) = r(a) and A(b, {xi} Ti ) = A(b). Since [a,b] ¢E this
implies \a, {xi} ];) # b, {xi}ll< ) for every keA. Since A is an infinite
set this means v_, is not an inessential error. Thus fromResult 1 ¢

ab

is not less than II,. But since tlal = 7[b] and I, > r this is a con-

ab

tradiction which proves the theorem. ||

The remainder of this paper will be concerned with proving the
converse of Result 3, The proof of the‘converse is fairly involved, For
this reason we will isolate certain parts of the proof with the following

lemmas,

Result 4 (Lemma)

Let M be a machine. If a,be¢{s} and HE[a] # HE[b] then there
exists a sequence of inputs {x}] and [a_,b ] ¢E such that [a,b 1=
k k . P
[s(a. {xi}l )., 5(b, {x}, )1 for every k ¢ ] where ] is an infinite

subset of {1,2,...}.



Proof:

Since I'IE[a] # l'IE[b] we know that Tab is not an inessential error

from Result 1. This implies there exists {xi}? such that A(a, {xi}ll( ) #
r(b, {xi}l; ) for every k ¢ J' where J' is an infinite subset of {1,2, .. 3.
- k — o k = ! =
Let a = 8(a, {xi}1 ) and bk 6(b,{xi}1 ). Let ][c,d] {keJ'|lc.d]
[ak,bk]} I < [c,Ud]eE I[c,d] since if k eI" this implies [ak'bk] ¢E or

[ak'bk] = [c,d] ¢E. This implies ke ][C I[c,d], Since

: U
,dl T ke Gl

' is infinite this means J = J 1is infinite for some [a ,b ] ¢E.
[a 1 ‘o o' "o

b
O (o]
k k
Thus [ao,bo] = [ak,bk] = [s(a, {xi}1 )., s(b, {Xi}l )] for every k ey

which is an infinite set. ||

Result 5 (Lemma)

Let M be a q state machine with ¢ > 2, Letp= (g) . Further
suppose there exists {xi}ll< a sequence of inputs with k > 1 such that
k k
r- -— - carhn mam - = ¥ = ot fad
Ldo,bo] = [5(a, {xi}l ). 8{b, {Aijl )] where uo,bo,a, and b are states

of M. Then there exists a sequence of inputs {yi}xl’ where 1 < 4 < p and

l<t<kandla b l=1ls(a iy} ), s, [y 30

Proof:
i) If k < p then the theorem is satisfied. Suppose k > p. Let
B, = {lc.dl|c#d, [c,d] = [s(a, {xi}Jl), 5 (b, {xi}ll)] for some j such that

B . AlsoB B

0 <j<n} for n such that 0 < n <k. Clearly B 412 n 1 - Bp

. ntl 1l j j
iff 0 <n<k-1and [s(a, {x3, ) slb, {x}, )1 =[s(a, {Xi}l)' 5 (b, {Xi}l)]
for some j such that 0 < j < n. Note that for everyn an K and the
cardinality of K is p. This implies that there exists integer r such that
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B =B where 0<r<p-l. Letr ., be the minimum such r and let
r+1 r - = min

L. =r1 +1, Thenl<4{, <pandB =B

1 min 4= . {’1_1 . This implies that

there exists j1 such that 0 < j1 _<_L1—l and

[sla, {x, }11) s(b, {x, }11)] = [5(b, {x, }11), 5(b,{xi};'1]

Note that p-1 _>_1,1-112 1andk - (Ll—]l) > p —(&1-11)_>_ i 2 0. Let
= - -3 p kl

k1 k ({,1 ]1). Then k > klz 1. Form the sequence {Xi,l}l as

follows. Let

xi'1=xilf1_<_1511
=5 {7 —i)if .
x11 X, (L11)1f11<1<k1.

Show [s(a, {x 1}1 1y, s (b, {x, 1)]= [ao,bo]. From the

}
]. 1
definition of {x, 1}11 [s(a, {Xi,l}l ). 8(b, {Xi 1}11)] = [5(a,{xi}j11)

6(b.{x€} 1=1[s(a, {x, }Ll), s(b, {x, }Ll)] Thus if j, <r<k since

for i such that Jjp<iskyx  =x+ (Ll i) ls(a, {x, 1} ), 8(b. {x,

[s(s(a, {x, 1}1 ), {x; 1}1 +1) 66(b {x, 1}1 Yo {x, 1}3 +1)

1}1)] =

[s(s (a, {x}ll) [x }i i{il 1) (b, [X}ll), x }r+({,1 iy =

[G(a.{xi}l Hey- ]1)) §(b, {x }r - jl] If we letr=k1 we get that
[G(a,{xill}lfl), é(b,{xill}};l)] = [a(a,{xi}]l‘), 5(b,{x1,}}1‘)] = [ao,bo].

Thus {xi 1}';1 is a sequence of inputs such that 1 < kl < k and

[s(a. {Xi,,l}}lcl)' s(b, {Xi, 1}];1)] = [ao,b(')].

ii) If k., < p then the lemma is satisfied. If not repeat step i)

1

and get a sequence {xi 2}}1(2 where 1 < kz < kl and [5(a, {x

2}1
5(b, {x. }kz)] =[a ,b_]. Continue in this manner until for some k.
i,2%1 o o ]

7



= ki _ L
we have kj-<- p. Lett = kj. Then the sequence {xi,j}izll— {yi}i=1
satisfies the lemma. |

The next result is the converse of Result 3. Its proof follows

easily from the two preceeding lemmas.

Result 6 (Theorem)

Let M be a g state Moore Machine where q > 2. Ift isa S.P.
partition on { s} and if for every [a,b] ¢E such that v[a] = r[b] we have

i i
that m_ (Tab) [a] # m__

1‘_<_1'IE.

Proof:

(r ) [b] for every i such that 1 <i< p then

Suppose T < l'[E ‘Then there exists a,b such that r[a] = 7[b]
and HE[a] # HE[b]. From esult 4 this implies that there exists a

. <o —
sequence of 1quts {x,}] and [ao,bo] ¢E such that [ao,bo]

k ‘ '
s(a, {xi} 1), 5(b, {xi}ll()] for every k e, an infinite subset of {1,2,3,...

Let k1 be the minimum element of Io' This means that mssk(T) [ao] =

SS

Let k2 be the minimum element of ]o - {kl} . Then [ao,bo] =

[6(a:{xi}]1<2), 8 (b, {Xi}lfz )] =Tls(s(a, {xi}]fl), {xi}tiﬂ )
= k k
(5 (b, {x}ll) {x}k L= [6(ao,{xi}k§+1), zs(bo,[xi}k-"‘i+1 ). Thus

k
2
we have a sequence {xi}k

41 of length k. - k., such that [ao,bo] =

2 1

[é(a  {x, }k +1) 6(b {x, }k +1 FromResult 5 there exists {yi}}({

k('r) [b] which implies T[ac] = 'r[bo] since 1 > mssk(-r) fromResult 2.

et



= L L i
such that [ao,bo] .[a(ao,{yi}l), s(b_ {yi}l)] and 1 <t < p. This

. . 1
implies [ao,bo] em ('ra b

). Since[a ,b JeE andrla 1= +[b ] this
SS oPo o' o “o o

is a contradiction, ||
Results 3 and 6 imply the following theorem which is an algorithm

for finding l’lE

Result 7 (Theorem)

Let M be a q state machine with g > 2. Let F = {7 |7 satisfies
i and ii below}.

i} T is ang§. P, partition of {s}.

ii) For every [a,b] ¢E such that t[a] = v [b] mssi('rab) [al #
mssi(T'ab) [b] when 1 <i < p. Then there is a largest partition in F and

this partition is l'lE

Proof:

From result 3 I, ¢F. If reF thenr <IL from 6. |

We conclude this paper with some examples of Result 7. Consider
machine A inFigure 1. The only S.P, partitions are those in the Figure,

We compute F. Clearly 0 the zero partition is in F. Consider r =

)

i

(1,2,4,5;3). Note that [1,2]¢E and ~[1] = ¢[2]. mssl( (1:2;3:4, 5),
3 4

ss (le ss TlZ)=
(2,4:2,5;1,2:4,5). Sincep= (2) =10 and [1.,2] ¢ msss(le) this implies

T12

2 — —_- .—I— - . o—.—
mss (le) - (1141214l3l5)l m ) (2[4/2,51311) and m

T ¢ F. Thus F = {0} andrIE=0.

Consider machine B in Figure 2. All the S.P. partitions are given
in the Figure. We again want to compute F. Since [4,5]¢E and



Inputs Output

0o 1
1 1 2 0 I

2 3 2 1 T, =(1,2,3,5:4)
3 3 5 0 Tl=(1,3,z,5,Z)
4 5 4 1 0
5 1 5 0

Machine B

Figure 2.

1 1 ,
m_ (1-45)[4] =m__ (745)[5] clearly I ¢ F. Consider T,. Note

that the only a,b such that [a,b] ¢E and 7{al = 7[b] are {[1,2],[2,3],[2,5]3.

. : 1
Consider these pairs. m_ ('r12

)= (1,3;2:4:5), m_ sz(le) = (75;—2_73;?),
msss('r-lz) = (1,3;2,5;4). Since mssz(flz) = mss3(+12) we can stop.
mssl(723) = (1:2,5:3:4), mssz(723) = (1,3;2,5:4), mss3(T23) = (1,3;2,5,4)
and again we can §top. Also inssl(Tzs) = (ﬁ;ﬁ,Z) and 5552(725) =

(1,3:2, 5:74—). By noting for example that [1, 2] I mssl(le) for any i we

know that T, € F. Since there can be no other partitiont > 2 in F this

implies Ty = IIE
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III. LOGIC HAZARDS IN THRESHOLD NETWORKS

Threshold Definitions and Theorems

The notation of Reference [1] will be used and will be briefly
reviewed here.

A threshold gate has binary inputs x . 'Xn and a binary output

1’
y. The threshold gate has an internal threshold T, and each binary input
has an internal weight ai. Let {0, 1} n denote the collection of Zn n~-tuples
of Xl' v ,'xn. Associated with each gate is a function f which is defined
on {0, l}n as follows:
f(p) = glaixi(p)i where pe{0, l}n, xi(p) is the value of X, at p,

1 _and where normal arithmetic operations are used,

The function f is called the separating function,

If F is a Boolean function defined on {0, 1}n, then F is linearly

separable if, and only if, there exists numbers Qyseees@ and T such

< ad

that f(p) > T F(p) = 1 and f(p) < T « F(p) = 0.

The Boolean function F, which is realized by a threshold gate

with threshold T and separating function f, can be represented as
F(xl, e ,xn) = (f(xl, . e ,xn))T = (a1x1+- . °+anxn)T.

The collection {F(p), f(p)} is called the map of F. Let u denote
the smallest f(p) such that F(p) = 1 and { denote the largest f(p) such
that F(p) = 0. A map of F is separated if £ < u. The gap for a separated
map is the set of real numbers z such that £ < z < u and is denoted by
w:{. If F is linearly separable then for some F it follows that £ < T < u,
In terms of this f, the previous expression can be written as:

1



i , = -F...-f. = f .
P(Xl"" xn) (alx1 anxn)u:L (>u:L

Obviously, all Boolean functions are not linearly separable;
hence, they cannot be realized with one threshold gate., When such
a case occurs the multigate realization can be represented as

(f (T B3 |
'(p)>u:£,— iizll Biyi(p)>u%

where u:{ is the gap of the output gate, Yi is the Boolean function
realized by the 1m input, and Bi is the associated weight,

The following threshold theorems, which are proved in Reference
1], will be needed in later sections.

PR i i ceet '
Theorem A. 1If F(x1 xn) is realized by (51y1+ Bmym

>u:L

then any vy i=1,2,...,m can be replaced by (1—§i), and conversely,
and the result is an equivalent realization.

i i oot v
Theorevm B, If P(x1 Fe e ,xn) is realized by (Blyl+ Bmym)u:f,

then an equivalent realization is

3 +o . o+
(i) (aslyl a'emym>au:a& for any real a > 0 and

(ii) (a+51y1+- L IR AN for any real a.

m’m’uta:{+a

m
Theorem C. If P(Xl' - ,xn) = (f(yl,yz, . e "ym)>u:{,= <iilaiyi>u’{'

then the complement Boolean function F can be realized by

F(Xllc.-lX)=<f> =<f(yllY2'---er)>o__L:o__u
m
where g = & Bi'

m -
=(z BiY.>
= i=1

=1 i"g-4:0-u

Corollary C. If T is realized by a threshold gate network, then

a realization of F is obtained by complementing each of the input



3
variables to the network and replacing each gap uj:f,j by (gj-)(,j):(gj—uj),
where o is the sum of the coefficients of the j@- threshold gate.

When using the reconstruction technique of Lewis and Coates [1],
the addition of a gate is accomplished by using the following theorem,

Theorem D,

(K6 u:{,] - [<f+a.0>u:4’;] = [frar 1>1:r*-a:&+a]
where 0 and 1 represent constant Boolean functions.

The constant functions, in Theorem D, represent gates which
have been added. It is shown in Reference [1] that the separating
functions for these can be 0 = (0)0:_oo and 1= (0)0:_00
Reference [1] giyes a step by step procedure for the tree reali-

zation technique and gives numerous examples, Also, Examples 3 and

4 will illustrate this technique.

Definitions Concerning the Boolean Function I and Its Realization

t
Let p represent a variable on {0, l}n where the i h component of
p is the variable x’i‘ . In this space x’; can be represented by either the

literal X, or 3-<i since x, = 1 if, and only if, ii =0,

Definition 1, A subset K of {0, l}n such that x*i = bi fori=1,2,

....m<nis a subcube of {0, l}n and will be denoted as {plx’i= b,.x3

=Db ,x:‘n = bm},where bi represents a specific value of 1 or 0,

2!-..

m
Obviously there exists 2 different ways a specific subcube can

be represented. For instance, the subcube K = {p|x1=1,x =0} can also be

2
represented as {plxl=0,x2=l}, {plx1=1,x2=1}, or {p]xl=0,x2=0}.



Definition 2, Let F be a Boolean function defined on the space

{O,I}n. A 1(0) subcube Kl(KO)ifz is a subcube of {0, l}n such that
F(p) = 1(0) for all peKl(KO).

Definition 3. A 1(0) prime implicant Pl(PO)_o_f_E is a 1(0) sub-

cube of F such that for all subcubes K > Pl(PO) there exists a peK such
that F(p) = 0(1).
Example 1. For instance, consider the Boolean function

F(x X x)—xxx + XX X + X.X.X

2 1%0%3 T X XXyt X XXy F 13"4' (1)

Referring to Pigure 1, the subcube {p|x1=1,x2=1,x3= 0} is a 1 prime

implicant of F; whereas, the subcube {p|x1=0,x =1,x4=0} is a 0 prime

2
implicant of F. Table 1 lists all the 1 and 0 prime implicants of F.
Whereas the previous examples and definitions were concerned
with properties of Boolean functions, the following examples and defi-
nitions will be concerned with properties of realizations.
McCluskey [S]* has shown that for detecting logic hazards it
is necessary to draw a distinction betweben the literals of the Boolean
function and the literals of the realization., The distinction being, that
in the realization, the literal X, and its complement must be treated as
independent of each other; whereas, in the Boolean function F this is
not true, The necessity of this distinction is based on the fact that

during an input state change it is possible for the input lines X, and ;ci

to be temporarily the same and, as shown in Reference [4] and [5], it is

* Most of the material of Reference [5] has been recently published in

the following book, Introduction to the Theory of Switching Circuits,
McGraw-Hill Book Co., 284-306, 1965,
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exactly this property that causes a hazard. Henceforth, let I-‘t denote

the transient or output function that is realized by a given realization

when xi and its complement are treated as independent variables. The
following paragraphs, which are based primarily upon McCluskey work
{5], will be concerned with obtaining rtfor a given realization,

When considering the Boolean function F, the "barred" literal
;:i will be used to denote the complement of X, The literals X, and ;{i
are not independent of each other. Whereas when considering the
realization of F, the "primed" literal xi will be used to denote the input
literal which is independent of X, but which would be the complement of
xi if an input state change is not occuring (i.e. the input literals cor-
responding to ;(i are represented as x'i) .

The method for determining 1:‘t will depend upon the following
two sets of rules. The first set of rules, Property 1, contains Boolean
relations which are allowable, Similar Boolean relations which do not
involve cancellation of literals would be included in this set, Property
2 contains Boolean relations which arégo_t allowable. Similar Boolean

operations which involve the cancellation of a literal would be included

in this set.

Property 1 Property 2
XX=X; (X')'=Xx X+X' #1 X-X #0
X+X=X;(X+Y+..4+2)'=X'Y'"...Z' XZ+YZ+X'YZXZ+X'Y

X+XY=Xi(XY-+-Z)'=X"+Y'+...42" (X+2)(Y+2)(X'+Y) # (X+2) (X' +Y)
XX+Y)=X
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The following procedure can now be given for determining the

t
output function F of a given realization,

Procedure 1

(1) Change all independent inbut literals ;(i to x'i .

(2) sStarting with the input gates, determine the Boolean func-
tion realized by these gates in the usual manner, except ;:1 is replaced
by x'i. This will give the transient function for the input gates,

(3) Next consider the set of gates such that their inputs are
either independent inputs or outputs of input gates. Using the transient
functions obtained in Step (2), determine the function realized by each
of these gates in the usual manner, except that the restrictions of Pro-
perty 2 must be observed. This will give the transient functions for the
gates of this set,

(4) C.ontinue this process for all gates of the realization, The
function realized by the output gate is Ft‘,

For example, referring to Figure 1, the transient functions
realized by G1 and G2 are, respectively

Ft=xxx' andFt=(x+xx)' =x! x' + x' x'.

1 17273 2 17273 172 173
Hence, the transient function realized by GO is

t
— ) ] 4 [} 1 +
PO x1x2x3+(x1x2+xlx3)(x4+x3) X, X, X

134

X +X. X X, . (2)

= X XXyt X 3%3 ¥ X3%y

17%2%3 1X2X+XX

' +| +'
4 1 X TX_ X, X X1X

273 713 4
Since Ft may contain both X, and x'i the domain of the transient

function is {0, l}zn. Hence, when studying hazards the problem
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becomes that of distinguishing between the properties of F and the
t
properties of F'. Before continuing, notice the following fact., Since

X,

'1= ;(i for the steady state condition, it follows that if xfl is replaced

- t
by X, in the function F and if the usual Boolean operations are used,
t
then F can be obtained from F,
Consider now the relations between Ft and F, Let q represent

a variable on {0, 1}zn where the (2i-1)th component is xi and the 2i-th

component is x1

, and where xi and x; are considered as independent of

SRR XL oL ox X,
nn

each other. Thus, g is a function of Xy X)Xy Xy

Definition 4, For each point p of {0, 1}n such that p = (x"lc

= bl’ .o ,x; = bn), there is a point qp of {0, l}zn, called the image

i = % = *' = h & = %' = T
point of p, such that a, (xl b . %] bl"'A"Xn b .x* bn)'

For example, consider the point p = (x1= l,x = O,x3= 1) of the

2

space {0, 1}3. The image point is qp= (x1= l,x'l= O,x2=0,xé= 1,x3=1,x13=0).

Definition 5, For each subcube K of {0, l}n such that

K= {plx’i=b1, ...,x‘:n= bm} there is an image subcube S of {0,1}2n
= * = *!' = f * = *' =
such that S {qlx1 b xt'=b. ... Xk =b .x*'=b }.

For example, consider the subcube K = {p[x1=1, x3= 0} of {0, 1}3.

The corresponding image subcube is S = {q|x1=1,x'1=0,x3=0,xé=1} .
Obviously, if a subcube K contains - m points, the image sub-

2(n-m)

cube S will contain 2 points and Zn—m of these points will be the

image points of the points of K.
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Notice that since the inputs xi and x‘i in a realization may not
change simultaneously, it is possible for the two to be temporarily the
same, Hence, the realization (f) wt is actually defined on the space
{o, 1}2n. In fact, now that an image point and output function have
been defined, a realization can be redefined as follows,

t
Definition 6. Let F be an arbitrary Boolean function and let F

be the output function of an arbitrary realization (f) wt of F, where F
t . n 2n )
and F~ are defined on {0,1} and {0,1} ", respectively. Let p be an
arbitrary point of {0, l}n and qpthe corresponding image point, Then
<f>u'{, is said to realize F if, and only if, for every pe{0, l}n
. t
F(p)=1e1f(q)>T(i.e. F(q)=1)
| S p
. t
F(p)=0ef(q )< T (i.e. F(q )= 0).
p p
Notice that Definition 6 does not place any requirement upon
the non-image points of {0, 1}zn. Hence, Ft(q), for the non-image
points can be either 1 or 0, These points, however, do determine the
hazard conditions of the realization,

: :
Definition 7, Let F be the transient function of an arbitrary

threshold realization <f>u'L' A 1(0) subcube (_)jf_t_ is a subcube S of
{0, 1}2“ such that F'(g) = 1(0) for all geS.

For example, the subcube {q]x;=1,x,=1,x,=0} is a 1 subcube

2
of Equation 2.
Now that the properties relating the Boolean function F and the

t
transient function F have been established, the next task is to define

a logic hazard in terms of our newly established definitions,



A logic hazard, first defined by Eichelberger [2], can be defined

in the following equivalent manner.

Definition 8, A realization <f>'u.'l, of F contains a_logic 1(0)
hazard within the 1(0) subcube Kl(KO) of F if, and only if, the corres-
’ t
ponding image subcube Sl(SO) of {0, l}zn is not a 1(0) subcube of F,

t
where F is the transient function of <f>u'&'
t
Consider the function F (x1 /X

', ...,X ,%x') and the subcube
1 n n

,x'=b.,....x =b_,x' =b_3}. The function which re-
1 m

S={q|x1=b 1 m m'"m

1

sults when X, and x'i are set equal to b,1 and —bi' respectively, in the func-

tion Ft, is referred to as a reduced function of F'C and is denoted by Ft(S) .
Ft(S) = 1(0) implies that the reduced function Ft(S) is the constant func-
tion 1(0). By using the idea of reduced functions, Definition 8 can also
be expressed in the following e‘quivalent manner.,

Definition 9, A realization <f>u' of F contains a logic 1(0)

1
hazard within the 1(0) subcube K, (K ) of F if, and only if, Ft(Sl) £ 1

(Ft(SO) # 0), where Sl(SO) is the imagé subcube of KI(KO) and Ft is the

transient function of <f>u'& .

Detection of Logic Hazards - Method 1

The following theorem will now give a method for determining

if a realization (f) u: of F contains any logic hazards. The proof

1

follows directly from Definitions 3, 5, and 9.
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Theorem 1, Let {Pi}({Pg}) denote the set of 1(0) prime impli-
cants of F and let {Sil}({Sz}) denote the corresponding set of image
subcubes in the space {0, l}zn. A realization (f) s of F will not con-
tain any logic 1(0) hazards if, and only if, Ft(Sil) =1, (Ft(SB) = Q) for all

i i i i t, . .
S1 e{Sl},(SO e{SO}), where F is the transient functlo/n of <f>u:£,'

Summarizing, Theorem 1 can be used to determine if a given
realization contains a logic hazard, If it does, then, Definition 8 or
Definition 9 can be used to determine the subcube within which the
logic hazard occured. The following procedure can be used to determine

if a realization contains any logic 1(0) hazards,

Procedure 2
(1) Determine the transient function Pt of <f>u:L'
(2) Determine the set of 1(0) prime implicants {Pil}({Pg}) of F.
(3) Determine Ft(Sil), (Ft(SB)) for all Sil(S(i)), where Sil(S(i)) is
the image subcube of Pil(P(i)).
(4) The realization <f>u:£, doés not contain a logic 1(0) hazard
within Pi(Pg) if, and only if, Ft(Sil) =1 (Pt(SB) = 0).
The following example will illustrate Procedure 2,

Example 1, Consider the Boolean function of Equation 1,

VX, X, X,)= x, + + X X X, F X XX,
P(x1 X, 1 X, x4) X XXyt X XX, X XXy F X XX,

The Karnaugh map and a realization for Equation 1 are given in Figure 1.



00 01 11 10

00 0 1 1 1

01 0 1 0 0

12

fu—]
[on)

11 1 1

10 0 0 1 0

(a)

Figure 1: Karnaugh Map and Realization for Example 1

The problem is to determine if the given realization contains
any logic hazards. From Procedure 2, the first step is to obtain Ft.
In this case, 15't is giveh by Equation (2). The following table contains
the set of 1(0) prime implicants {Pil}({Pg}) of F and the corresponding
set of reduced functions {Pt(Sil)},({Ft(Sg)}) .

For example, from Table 1, P;l = {p|x2=0,x =1,X4=1}; then,

3

'=1,x =1,x'=0,x

4 _
§) = {a]x,=0.x, 3 3 %y

=1,x;1=0} . Hence, the reduced func-

t, 4 t
i i = ' = , =], = , =1, ' = = ' 4+
tlonF(Sl) 1sP(x2 0,x2 1 Xq 1 X3 0 Xy 1 Xy 0) X+ x,.

Referring to Table 1, Ft(Slll) £ 1, Pt(SZ) #1, Pt(S?) # 1, and
Pt(Sz) # 0. [For the present, disregard the columns labeled ?(q:)) and
’f(qi)]. From Definition 9, the realization will contain a logic 1 hazard
7

in Plll, Pl' and P? and a logic 0 hazard in Pg.
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i i
P1 P
i X, X, XX Ft(Si) ?(qi) XX, XX Ft(Si) T(qi)
172734 1 0 1727374 0 1
1 1 10 - 1 6 - 110 0 3
2 6 01 - 1 5 01 -0 x1x3x3 5
3 0 - 01 1 S 1 00 - 0 3
4 - 011 xl+x'1 4 - 00 0 4
5 1 - 11 1 5 011 - 0 4
6 00 -1 1 5 1 - 10 0 3
7 11 -1 x3+x:'3 3 1 0 -0 0 3
8 - 101 x1+x'1 2 0 - 00 0 3

Table 1: Table for Example 1

Procedure 2 requires the calculation of the transient function
Ft and the calculation of all of the prime implicants of F. McCluskey
[5] has presented several alternate methods for determining if a given
realization contains ény static hazards, all of which require the calcu-
lation of Ft. These methods can be readily extended to include logic
hazards and for further detail the reader is referred to Reference [5].

Béfore continuing, notice the following fact. If the realization
contains negative weights and/or invérting gates, one cannot determine
Ft by succe’ssively applying the 22n possible combinations of {0, ljzn
as inputs to the realization and determining the value of the output for
each. In terms of the separating function this gives the surprising
result that

F'(q) = 1(0) # £(a) > u (£(a) < 4) OR

fq) > u () < £) # F'(q) = 1(0), where qe{0,13°".
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For example, consider the point g = (xl=0,x'1=0,x2=0,x'2= ,

x3=1,x;3=0,x4=1,x;1=0). Referring to Figure 1(b), fl(q)=0; hence, the

output of G1 is 0. Also, fz(q)=1; herce, the output of Gz is 1, Like-
wise, fo(q)=5; thus, the output of the realization is 1, Now referring
to Equation (2), Ft(q)=0. Hence, Pt(q)=0; whereas, f(q) > u.

The next section will be concerned with modifying the given

realization <f>u° in such a manner that Ft can always be obtained by

£
considering only the 22n possible input states. This modification will,
in many cases, give an easier method for determining Ft. Also, it will
yield a method for determining if a realization contains any logic hazards
which does not require the calculation of Pt. But even more important,

it will develop the fundamentals which will be needed to synthesize

hazard free threshold gate networks.

Detection of Logic Hazards - Method 2

" realization (f)u_

First we will prove a lemma which concerns modifying the given
L and then we will prove the theorem which will give

the desired results. However, the following term must be defined first,

Definition 10. A threshold realization which does not contain

any negative weights or inverting gates will be called a positive thres-

hold realization and will be denoted as <f>’i’1°7€',’

Lemma 1 For each realization <f>u' of F there exists a unique

£

corresponding positive realization (’f)ﬁz of F; moreover, the transient

functions of the two are the same,
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Proof, First we will prove the following two assertions,

m
(1) If a realization ( £ g§ y*) is followed by an inverter
=1 b1 wd

and the combined realization yields the transient function Ft, then Ft

m m
is also realized by {( ¥ B8.y*) , whereg =% B8..
. i1 g-4:0-u . 1
i=1 i=1
2 f ' 1i i o' * + 5 * ield
(2) If a realization {(-% |Bi|yi by % >u:JL yields the

i=1 i=m'+1
transient function Pt, then Ft is also realized by

(% |p l7r+ B *) h PRI
L B \YF+ T B.Y¥) ,..., whereu':t'= u+g |g. l:t+ = |B.|.
=1 0 gemey VLW =1 ' =1

Proof of Assertion 1: Referring to Figure 2(a), let P: be the input

m
transient function of the gate G0= (% Biy’i‘ Y .., which corresponds to

=1 u:f

y;‘ and let Ft be the corresponding output function of the gate GO.
tl

Referring to Figure 2(a), assume that P is expressed in the

t
following minimum sum-of-product form, F = z1+zz+- . -+zn. From

t
Property 1, the complement is F = z',z'z, et z;l. Hence the output func-

. . , , .t .
tion of the combined realization is F =z',z'2 fee e z;l. Now consider the

gate G0 of Figure 2(b), which has a transient output of F* and inputs
1 1

P;. cee 'F:n' From Theorem C, it is known that F*=2' z'z, e z;l, hence,
t

F= F*,

Since Ft= F*, it can be concluded that the hazard condition will

not change if the inverter is moved from the output of the gate G 0

to the inputs of G_ and u:{ is changed to g-£:5-u (see Figure 2).

0

This in effect says that the hazard condition is not changed if the
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inverter is removed from the realization and instead F i is realized on

all of the inputs of G_ and u:4 is changed to g-4:0-u, If F: is an inde-

0
pendent input literal xi , this involves realizing xﬁ(’ instead of x;.

t .
Whereas, if Pi is a dependent function it follows, from the above proof,
that this involves realizing the complements of the transient functions

; .
which realize Fi‘ By continuing this process from G_ to the input gates,

0
the final results will be (1) all independent inputs are changed from x’if
to x*i' and (2) all gaps uj:f,:i will be changed to oj—{,j:gj—uj, where Gj is
an arbitrary gate of the realization, However, in the steady state con-
dition x*i' = if and from theorem C, t—lj:f—,j = cj—{,j:cj—uj. Referring fo
Corollary C, steps (1) and (2) are the same conditions needed to obtain

m R
the realization ( © Biy’i‘> Thus, part (1) of Lemma 1 is proved.

=1 o-L:ig-u’
The proof of Assertion 2 is similar to that of Assertion 1 and will
be omitted. A
It now follows from Assertion 1 that all inverting gates in the
realization <f>u:L of F can be replaced by non-inverting gates and the
hazard condition will not change,
Also, it follows from Assertion 2 that all negative weights in the

realization <f>u'{, can be replaced by positive weights and the hazard

condition will not change,
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= B

Figure 2; Removal of Invertes From A Given Realization

Before continuing, notice that the inverse of the statemeﬁts used
to prove Lemma 1 are also true. Hence, given an arbitrary realization,
if Theorem C is used to change noninverting gates to inverting gates and
if Theorems A and B are used to change positive weights to negative
weights the realization obtained will have the same hazard condition,
Hence, there is no loss of generality by considering only realizations
which do not have inverting gates and/or negative weights.

By using Lemma 1, we can now state the following procedure for
obtaining the corresponding positive irealization va)ﬁ,z of a given reali-

zation <f>u'JL' The following procedure will not differentiate between

an inverting gate and a gate followed by an inverter,.

Procedure 3
(1) Starting on the 0 logic of (f)u% (i.e., with the output gate),

m
if a gate { ¢ aiy;‘ >u'l; is followed by an inverter, then replace it and
=1 ’

m  _ m
the corresponding inverter with the gate { & 8.y*) , where 6= % B8,.
=1 i"i "g-L:g-u =1
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(2) 1If the preceding gate that corresponds to y‘ik is followed by
an inverter, then realize ;rf by removing the inverter.
(3) If the preceding gate that corresponds to y’{ is not followed
by an inverter, then realize ;r’l'f by using Theorem C.
(4) Continue this process until all inverters have been removed

from <f>u:&' 4
ml
(5) Starting on the 0 logic level of <f>u'&' if a gate (- & (si[y’.f
m : i=1
+ Biy,ic ) has negative weights for 1 < i < m' and positive

=m'+1 uid

weights for m'+1< i< m then, using Theorem C, replace it with the gate

m' : vk + o * 1.t m m
(‘{ |Bi|yi _2 . BV} )u.:{’.,whereu .k’,—u+'z |Bi|.l,+.2 Ieil .
=1 =m'+1 i=1 i=1

(6) Repeat step (5) until all negative weights have been re-

moved from (f) w The final realization will be the corresponding posi-

L.

tive realization of (f) .
u:d

For example, consider the realization of Figure 1(b). The cor-

responding positive realization is

' (3)

+ 3(2%_+%_+x

3:2 1 2 3>3:2)

+ +x_+X
(x1 2xX_+2x +5 (xl X, x3)

3“4 5:4°

Definition 11, Consider the subcube S = {q|x1=b1,x'1=f>1, cee

x_=b ,x'=b } of the space {0,1}2n, Define q. as the element
m m m m 1

(x.1=b1 , x1=b1 L e xm=bm, xm=bm, Xm+1=l e 'Xn=1' xn=l) and g, as the
element (xl=b1,xl=b1 s xm=bm, xm=bm, Xm+1=0' s xn=0, xn=0) . The

elements qo and g, will be called the minimum and maximum elements of

1

S, respectively,
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A theorem can now be given for determining if a given realiza-
tion contains a logic hazard within a specific subcube., The theorem

. t
will not require the calculation of F .

Theorem 2. Let (f>u:{, be an érbitrary realization of F and let
G)ﬁ:?: be the corresponding positive reaiization, Let {pil}({p;}) be
the set of 1(0) prime implicants of F, let {sil}({sio}) be the correspond-
ing set of image ‘subcubes, and let {qé}({qil}) be the corresponding set

of minimum (maximum) elements. The realization <f>u'£ will not contain

any logic 1(0) hazards if, and only if, Af(qB)zﬁ,(?(qi)S'Z) for all qée
i i i
fapia; efa;].

Proof, Let Pl be an arbitrary 1 prime implicant of F. From Defi-

nition 9, the realization <f>u')(, will not contain a logic 1 hazard within

P1 if, and only if, Ft(Sl) = 1, where, by Lemma 1, Ft is the output func-

tion of both <f>u'{, and (?),ﬁ.z. Thus, we will prove that Ft(Sl)=1 if, and
only if, ?(qé) >,
First we will prove that Ft(Sl) = 1 implies thatT(qO) >71. By

Definition 7, Ft(Sl) = 1 implies that Ft(q) =1 VqgeS Let q be an arbi-

1

trary element of S Since there are no negative weights or inverting

1 .
gates in (?}ﬁ.z, it follows that Ft(q) =1 implies?(q) >7. Also, since
q is an arbitrary element, it follows that Ft(qo) = 1 and, hence ?(qo)_z .

Next assume that ?(qo) Z'ﬁ. Let g be an arbitrary element of S1 .

Since the realization <f>'ﬁ-'z does not include any negative weights or

inverting gates, the value of the separating function f can only be



19
increased by inputs which are a 1; hence, £(q) > f(qo) >TU. Also, since
G)Ti% dogs not contain any negative weights or inverting gates, it follows
that?(q) > u implies Ft(q) = 1, Finally, since q is an arbitrary element

of S., it can be concluded that Ft(q) =1 YVqgeS

; t _
1 ; hence, F (Sl) 1.

1
The proof concerning logic 0 hazards is similar and will be
omitted. A

The following procedure will outline a method for determining if

a given realization contains any logic 1(0) hazards.

Procedure 4.

(1) Determine the set of 1(0) prime implicants {Pi}({PB}) of F.

(2) Obtain the corresponding positive realization (%-7; of <f>u'1(,'

(3) Determine ?(qg), (?(qi)) for all q(i)(qil), where qé(qil) is the
corresponding minimum (maximum) image point of Pil(P;) .
(4) The realization <f>u:L will not contain a logic 1(0) hazard
within Pil(P(i)) if, and only if, 'f(q(i)) Zﬁ,(f(qil) <7).
‘ Suppose that we apply Procedgre 4 to Example 1. The set of
prime implicants are given in Table 1 and the corresponding positive
_realization is given by Equation (3). Now consider step (3). For example,

4
consider the 1 prime implicant P The corresponding image subcube is

B
4__. — = — g — $ - :
Sl—— f_q]x2 O,X2 1,x3 l,x3 O,x4 l,x4 0}. Hence, the corresponding

minimum image point is qg = (xl=0,x'1=0,x2=0,xé=1,x3=1,xé=_0,x4=1,

x:l=0). From Equation (3), ?(qé) = 4, Sincel= 5, it follows from Theorem

4
2 that the realization will contain a logic 1 hazard in P1 .
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Table 1 contains ?(q(i)) for each Pi1 ¢F and ?(qil) for each PB eF.
As can be seen, the results of Procedure 4 agree with those of Procedure
2.

Detection of Logic Hazards - Method 3

Methods 1 and 2 for detecting logic hazards were based on
either Ft or the input-output relations of the realization. A method will
now be given which will be based on the structure of the realization.‘ As
will be seen, this later method is inferior to the previous two for detect-
ing logic hazards; however, the results obtained from this method are
needed to obtain a theorem for synthesizing a hazard free threshold net-
work .,

Definition 12, Let (f) wl denote an arbitrary realization of the

Boolean function F and let B denote a set of gates contained in <f>u°JL°

The set of gates B will be defined as an output connected subset of

gates if (1) B contains the output gate of (f) Wl and (2) excluding the
outpuf: gate of <f>u:1(,' the output of each gate in B is an input to another
gate in B.

For example, in Figure 1(b) the sets {Gl,GO} and {GO} are out-

put connected subsets of <f>u° i whereas, the set {Gl,Gz} is not.

2

Definition 13, Let Gi denote an arbitrary gate in the positive

realization Zbﬁ?f and let B* denote an arbitrary "output connected sub-

~ 2
set" of (f)Tj;Z. Also, let S be an arbitrary subcube in the space {0, 1} n

with minimum element q0 and maximum element q1 . The set B* is defined
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as a 1(0) branch of G’}Efz which realizes S if, when (f')ﬁ_»z is modified

such that all gates not in B* have 0(1) output, then the value of?i(qo),
(f'i(ql)) for the modified realization satisfies the condition?i(qo) >
ui(-i(ql) < Li) for all GieB .

For example, consider the realization of Equation 3, which is

Gy G G,

(f >'G':’Z= (x1+2x3+2x4+5 (x1+x +3(2x.+x%x

o
2t%373.2 1% ’

+% )
X373.275.4

Suppose one wishes to determine if the set of gates {GO'GI} isal

branch which realizes the subcube S = {q|x1=l,x'=0,x =1,x'=0,x3=0,

1 2 2
xé=1} . According to Definition 13, in order for {GO'Gl} tobeal

branch which realizes S the conditionTl(qO) Zﬁl

and?o(qo) T must

exist when the output of GZ is 0. Under the condition G2=0, the modi-

fied realization becomes

G Gy

(x1+2x +2x ,+5 (x1+x +x3)3:2+0)

3 4 2 5:4°

'=0 ,x.=1,x'=0,x%x.=0,x'=1,x =0,x"=0). From the

The point q is (x1=1,x1 2 2 3 3 4 2

above equation, ?1(q0)= 3 and?o(q0)= 6. Thus, from Definition 13, the
set {GO,GI} is a 1 branch which realizes S,
The following lemma will give a relationship between the term

?(QO)G’(ql)) and a 1(0) branch.

Lemma 2. Let G>ﬁ-}f be an arbitrary positive realization of F. Also,
let KI(KO) be an arbitrary 1(0) subcube of F, let the set {qp} 1({qp}o) be

the corresponding set of image points of Kl(KO),and let g (ql) be the

0

corresponding minimum (maximum) element of KI(KO) . Then

?(qo) Z'i'l,(f(ql) <7) if, and only if, there exists a 1(0) branch BI(BO)
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of (f >ﬁ?(, which realizes all qp € {qp} 1({qp} 0) .

Proof. First we will prove that all qp e{qp}l are realized by a

particular 1 branch B, implies that?(qo) ZTA. We will prove this result

1

by using induction.

Let Gj be an arbitrary gate of B, which is on the r logic level

1

~

of { )le Let Gi be an arbitrary gate of B, such that its output is an

1

input to Gj (i.e.. Gi must be on the r+1 or greater logic level), Let
= * = * = :
Ky {plx1 by, ....x¥=b 1} be an arbitrary 1 subcube of F.

Assume that Lemma 2 is true for all Gi (i.e., assume ?i(qO)z ui) .

X ,x'

Thus, the output of G, is not a function of x , X! f e e .
i m+l “mtl n n

A
Now consider the independent inputs to Gj’ Let xi denote an
" ' A
independent input to Gj' Assume that Gj does not have both xi and its

A
complement x'i as inputs, which is true for all gates, From the hypothesis

of Lemma 2, it is known that the output of Gj is a l for all qpe{qp} 1

A A
Hence, there exists a qp for which x =1,... ,xn=1 and some other

m+1

A
0,... 'Xn=0 such that the output of Gj is 1 for both.
A A

Thus, the output of Gj is not a function of Xm+1' ooy Xn' Now since the
A

“en ,x;l are not inputs to Gj and since

Lo A -
qp for which xm+1

A
corresponding complements X;n+ 1’

P X s eeerX X', it follows
m+l “Tm+l n n

the output of <Gi is not a function of x

.o X ,x', Thus
n" “n

that the output o i i f X' ‘.
ha u.pu ij is not a function o Xm+1 Xm+1

?j(qo) 2'ﬁj. Hence, we have proved that if Lemma 2 is true for all Gi
it is true for Gj.’
Next consider an arbitrary input gate of the branch. Since for

the modified realization (i.e., all gates not contained in B1 have 0
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outputs) the gate contains only independent inputs and since it does

not contain both X and x'i, it follows, by the above reasoning, that

Lemma 2 is true for all input gates of B Thus, it follows from induc-

1"
tion that the 'f(qo) >,

Next we will prove that?(qo) > u, implies that all qp e[qp}1

0
are realized by the same 1 branch.

First assume'f(qo) >; hence, the output of G)ﬁ:’z isal at 95
Let B* be the largest output connected subset of gates that have unit
output at qo. Clearly this is nonempty., Since all coefficients are
positive and no inverters exist in the realization, then the gates of B*

will have unit output for all geS,, where S, is the image subcube of Kl'

1 1
independent of the outputs of the gates not in B*, Hence, B¥ isa l
branch which realizes all qul, and hence, all qpe{qp}l.
The proof concerning the inequality?(ql) _<_I is similar and will

be omitted., A

Theorem 3 follows directly from Lemma 2 and the proof of Theorem 2.,

Theorem 3. Let <f>u:L be an arbitrary realization of F and let
(?),ﬁ:?: be the corresponding positive realization. Also, let Kl(KO) be
an arbitrary 1(0) subcube of F and let the set {qp} 1({qp}0) be the cor-
responding set of image points for all peKl(Ko) . The realization <f>u:&

will not contain a logic 1(0) hazard in KI(K ) if, and only if, there

0
exists a 1(0) branch Bl(BO) of (ff)ﬁfz which realizes all qpe{qp}l({qp} o).

o
Summarizing, we have proved the following facts. Let K be an

arbitrary 1(0) subcube of F and let Sd and qz(q(:) be the corresponding
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image subcube and minimum (maximum) element, respectively. An arbi-

trary realization (f)u_ of F will not contain a logic 1(0) hazard within

L
K* @Ft(Sa) = 1(0) @’f(qg) _>_'i'1,(7fl(qil) <7) e there exists a 1(0) branch Bl(BO)
of (?}E:,Z which realizes all of the image points of Ka,‘ where G>ﬁ7€
is the corresponding positive realization.

As in the preceding cases, a theorem can now be given for deter-

mining if a given realization contains any logic hazards. The proof

follows from Theorem 2 and Theorem 3.

Theorem 4. Let <f>unt, be an arbitrary realization of F and let
<?>'fi:z be the corresponding positive realization, Also, let {Pi}({PB})
be the set of all 1(0) prime implicants of F and let {{qp}ll},({{qp} B}) be
the corresponding collection of sets of image points. The realization
<f>u'{, will not contain any logic 1(0) hazards if, and only if, there exists
a 1(0) branch B¥*(B%) of (¥}~ which realizes all q_e{q }, ({q }1) for all

10 ur p - p’l " 7p’0
i i i i
tagdy eflag}y b Ua}g eflaiph).

Example 2 will illustrate the application of Theorem 4:

Example 2. Again consider the realization of Figure 1(b). From
Equation 3 the positive realization is
4)

= +x_+X
(x1+2x +2x ,+5 (x1 x,+x

-
3t 4%y 3730+ 3 (2x +x

2 %303.97 5.4+ {

Only the logic 1 hazards will be considered. Therefore, the following
table will contain only the points pj of {0, l}n such that F(pj)= 1, the
corresponding image points q;, and the set of 1 branches which realize
each qi). Actually, in this example each point q; is realized by only

one 1 branch.




T N I N G BN D & OE BN B B B GE B EE BN AaE W

25
In Table 2, the points pc{0, 1}" such that F(p,)=1 can be ob-
tained from Figure 1(a); whereas, the corresponding 1 branch can be
obtained from Equation 4.

Consider the 1 prime implicant {p|x1=1,x2=1,x3=0} . The cor-

N s . 1 — -— | J— — | — l_.
responding image points are qp- (xl l,x1 0,x2 l,x2 0,x3 0,x3 1,

‘- 2 _ . _
x,=0,x'=1) and qp— (x1 1,x

4 1 =0,x.=1,x =O,x=0,x=1,x=1,x4=0).

1 2 2 3 3 4

Referring to Table 2, both image points are realized by the 1 branch
{Gl,GO} . Therefore, by Theorem 3, the realization will not contain

a logic 1 hazard within {p|xl=1,x =1,X3=0} .

2

Next consider the 1 prime implicant {p|x1=1,x =1,x4=1} . The

2

corresponding image points are qf) and q;. Referring to Table 2, qi

and qg are realized by the 1 branches {Gl,GO} and {G_}, respectively.

03

Hence, from Theorem 3, the realization will contain a logic 1 hazard

within {p|x1=1,x =1,X4=1}.

2

Likewise, it can be determined that the realization will contain a

logic 1 hazard within the 1 prime implicants {p|x2=1,x =0,x4=1} and

3

{p|x2=0,x =1,x4=1} . Hence, the results agree with those of Example 1,

3
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j o
] P “m B
%535 X1 X%1%0%9 % 3% 3% 4%y
I 1100 10100101 {G,.G}
2 1101 10100110 {G,.G,)
3 1111 10101010 (G}
4 1011 10011010 (G}
5 0101 01100110 {Gy.G,)
6 0001 01010110 (G, G,)
7 0011 01011010 {G, G,
8 0010 01011001 {G,G,)

Table 2: Table for Example 1
As previously mentioned, the application of Theorem 3 or 4 to
determine if a given realization contains any logié hazards is con-
siderably more involved than Procedure 4. Hence, it is doubtful if

Theorem 3 or 4 would_be used to detect logic hazards. However,

Theorem 4 will be used, in conjunction with a later lemma, to derive

a theorem for synthesizing a hazard free threshold network directly
from the Boolean function F. How this is accomplished is the subject

of the next section.

Synthesis of Hazard Free Threshold Networks

This section will be concerned with synthesizing positive thres-
hold gate realizations which are hazard free. Then, as previously
shown, Theorems A and B can be used to change positive weights to
negative weights and Theorem C can be used to change noninverting

gates to inverting gates and the resulting realizations will also be hazard

\
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free. Hence, one can obtain any type of desired hazard free threshold
realization, The following synthesis technique will be primarily based
on the multigate realization technique of Reference [1]. However, at
the ehd of this section, an alternate method is given for obtaining a
two level hazard free threshold realization.,

Since the material will be largely concerned with the n-level of
the function tree, the following terms are needed, Let {qp} be the sub-
set of {0, l}Zn such that qp is the image point of p for each pe{0, l}n.
Consider a function tree for a Boolean function F, ’A given position on
the n-level of the tree corresponds to a specific p of {0, l}n, in that
each position corresponds to a unique reduced funétion F(p), where p is
the subcube of {0, l}n consisting of the single point p. Moreover, any
realization of F(p) must have an output function Ft such that Pt(qp) = F(p).
Thus, the position corresponding to p also corresponds to ,qp.

Now consider the reconstruction procedure of Reference [1]. A
separating function fn is selected which, with appropriate gaps un:X,n,
will realize the n-level reduced function Ft(qp) = F(p). Unless specifi-
cally indicated, such n-level realizations, (fn) ul g0 will not contain
negative weights or inverters. Appendix 1 gives several possible n-level
realizations.,

Consider some n-level realization (fn> T If Gi denotes an
arbitrary gate of (fn)un%n, then let yrix denote the Boolean function
realized by Gi' Notice that yri1 is a constant function of either 1 or 0,

Referring to Appendix 1, an example of an n-level realization and the
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corresponding Boolean functions is
% G g
) yn g™ (OFBCOBLCO) D Ve (5)
where y2=0, yl;=1, and y3=1.

The following definition will define a set of constants which

can be associated with a n-level realization,

Definition 14, Consider an arbitrary n-level realization <fn>un.&n-
Let Gj and Gi denote arbitrary gates of (fn)un_Ln such that the output of
Gi is an input to Gj. Define Cj as
m
C.= % Biy? + k,
] i=1 ]
where Bi is the weight of input yri1 to Gj' and kj is the weight of a con-
stant input to Gj.
For instance, consider Equation 5. The set of constants are:
Cz=0, Cl=0,co=s1 .
The following definition will define a branch which corresponds
to the n-level of the tree. The definition is similar to the previous de-
finition of a branch except that it is defined for an n-level realization
n
f .
( >un:JLn

e aas , . n
Definition 15, Let Gi denote an arbitrary gate in (f >un;&n and

let B* denote an arbitrary "output connected subset"” of <fn>un.)¢n- The

set B* is defined as a n-level 1(0) branch BT(BS) and is said to realize
the constant function 1(0) if, when <fn>un°x,n is modified such that all

the gates not contained in B* have 0(1) output, then Ci for the modified
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, . - n n *

n-level realization satisfies the condition CiZui (Cig Li) VGi eB .
As an example of a n-level 0 branch, consider the following

n-level realization, which can be obtained from Appendix 1.

GO G1 G2

n -—
(f >un:Ln - <0+B1<0+ BZ(O>O:—co>oo:BZ>co:O

Consider the set {G ,GO} as a possible n~level 0 branch. According

1

to Definition 15, the condition CO_<_L8 and Cls{,rll must exist when the

output of G2 is a 1. For this condition, the modified n-level realiza-
tion becomes
+ + .
<0 Bl <0 82>m282 >cc:O

n

0 = 0, it follows that

= = 3 n -
Hence, C1 BZ and C0 0. Since Ll Bz and 4
the set {GI,GO} is a n-level 0 branch.

The following lemma will now give a relationship between n-

level branches and branches of a positive realization. The lemma

 assumes a configuration of gates for the n-level realization such that

no void ranges occur during reconstruction (i.e., no additional gates

are necessary during reconstruction) .

Lemma 3. Consider an arbitrary point qpe{O , l}zn such that
Ft(qp) = 1(0). Assume that no void ranges occur during reconstruction.
Given that a set of gates B* is a n-level 1(0) branch BT(BB) which
realizes Ft(qp) on the n-level of the tree, then B* is a 1(0) branch

Bl(BO) which realizes qp in the final realization.
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Proof. We will prove this result by using inductio‘n.
Let Gj be an arbitrary gate of B* which is on the r logic
level of (fn)un:&n; and, hence of (T}«E:,Z. Let Gi be one of the m
arbitrary gates whose output is an input to Gj (i.e., Gi must be on
the r+1 or greater logic level). Then the n-level realization for Gj

can be expressed as
l

n
= + +
(f ) 7 Ln (© Z B Yl 2 1yi->ur.1:JLr.1
) j i=1 i=m'+1 j

where 1 < '1_<_m‘@Gie Brl1

and m'+1_§i_<_m¢$Gi;fBrl1

n
Referring to the previous equation, when all Gip‘B have 0 output,

1
then

*
Since B is an n-level 1 branch, it follows from Definition 15 that

C ==z sizu’.‘ : | (6)
i=1 J

t
From properties of reconstruction it is known that if F (qp) =1, then

n+n * )
u, kzl a X, (q >uJ (7)

* ~
where ak_>_0, xk is a literal of Xk' and uj is the upper gap for Gj

in the final realization.

Assume that Lemma 3 is true for all Gi’ where 1 <i<m',

Thus, all Gi' for 1 <i<m',are elements of B1 for the point qp in the

final realization. Therefore,

m
'f(q)_2 akk(q)+2 Bl,whenallG ;e’B have 0 output. (8)

k=1 i=1
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From Equations 6, 7, and 8, it follows that
T >1,, when all G, ¢ B, have 0 output.
J(qp) 20, 1 9B P

Hence, Gj is an element of B, for the point qp in the final realization.

1

(For this case

. . n
Now consider an arbitrary input gate G.i of Bl .

ul;= 0). It follows from the above reasoning that the gate will be an

element of B1 for the point qp in the final realization. Thus, it follows

from induction that B1 will be a 1 branch for the point qp in the final

realization.

The proof concerning 0 branches is similar and will be omitted,

Definition 16, Let <f>u:l, denote an arbitrary realization of the
Boolean function F. Consider the real numbers u' and &' such that
u>u' >4' >14. The gaps wL', u':4, or u':4' are defined as reduced
aps of u:p.
Consider a realization <f>u:{, of the Boolean functiop F. Obviously,
u:f can be replaced by a reduced gap and the Boolean function F is still
realized, provided T is properly selected. For instance, consider the

gate G, of the Equation 5 which has a n-level gap of Blz— «. A possible

0

reduced gap is 0:- ». The n-level realization then becomes

e G G,

(0 + Bl <0 + BZ <0>m:0>0:- oo>O:"' o (9)

This still realizes the Boolean function 1 and {Gl,GO} is still a
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n-level 1 branch. However, now by Definition 15, the gate GO is
also a n-level 1 branch, where before it was not. Hence, by Lemma 3,
if Equation 9 is used to realize a specific Pt(qp) on the n-level of the
tree, then the 1 branches {GO} and {GO,GI} will both realize a, in
the final realization. Thus, reduced n-level gaps provide a means
for obtaining a final realization such that the point qp will be realized
by more than one branch.

The value of a point qp being realiz.ed by more than one branch
follows from Theorem 3. For example, let Ka and KB be two 1 sub-
cubes of F which have the set of points {pj} in common and let {q;}

B be the

o
be the corresponding set of image points. Let S and S
corresponding image subcubes. Clearly, {q;} belongs to the set of

o'
points common to S and SB . Assume that for some positive realization

a
S and SB are realized by the 1 branches Ba and BB, respectively,

where BY # BB . It follows, from Theorem 3, that the realization will
not contain a logic 1 hazard within Ka and KB. However, notice that the
pbints of {q;} are realized by both Bdand BB.

Once the set of n-level gaps are chosen the reconstruction
process of Reference [1] is a technique for obtaining the coefficients
of the independent input variables for each gate of the network. In
some realizations, the restricted n-level range, caused by using a
reduced n-level gap for some arbitrary Ft(qp), will not have any effect

upon the coefficients. When such a case occurs, the reduced n-level

gap is referred to as an unnecessary reduced n-level gap. However,
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if the reduced n-level gap does effect the final coefficient, it is
referred to as a necessary reduced n-level gap. Example 3 illustrates
both types of reduced n-level gaps.

The following theorem can now be used for synthesizing a
logic hazard free threshold network directly from the Boolean function

F.

Theorem 5. Let {Pi} ({P;}) be the set of 1(0) prime impli-
cants of F, let {{qp}il} , ({{qp}io}) be the corresponding collection
of sets of image points, and let {{Ft(qp)}il} , ({{Ft(qp)};}) be the
corresponding collection of sets of n-level reduced functions.

A final realization G>’J:Z of F will not contain any logic 1(0) hazards

if (1) the n-level gaps are assigned such that there exists at least

one n-level 1(0) branch which realizes all Ft(qp)e:{Pt(qp)}l1 ]

((r'a )3 for all (P )1ye (P @)1}, (F' (@)Y el (P (@)] )

and (2) reconstruction is possible without adding any additional gates.
Proof. Let P'1 be an arbitrary 1 prime implicant of F, let

{.qp}'1 be the corresponding set of image points, and let {Ft(qp)}'1

be the corresponding set of n-level reduced functions. Assume that

the n-level gaps are assigned such that all Ft(qp) e:{Ft(qp)}'1 are

realized by the same n-level 1 branch and that reconstruction is

possible without void ranges. By Lemma 3, all qp € {qp}.'1 will be

realized by the same 1 branch in the final realization. Hence, by

Theorem 3, P'1 will not contain any logic 1 hazards.
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The proof concerning 0 prime implicants is similar and will
be omitted. A

Examples 3 and 4 will illustrate the application of Theorem 5.
However, several additional facts must be considered first.

In general, a set of n-level gaps, which will yield a hazard
free solution, will not be known., Therefore, suppose that while
trying to obtain a hazard free solution, condition (1) éf Theorem 5 is
satisfied but condition (2) is not. Two alternatives exist, (1) a
procedure analogous to Reconstruction III of Reference [1] or (2) an
additional threshold gate or gates can be added in such a way as to
remedy the situation.

Only the second alternative will be considered here. Assume

that an inconsistency occurs for a gate Gj on the k-level of the tree.

Normally one determines the inconsistency, uses Theorem D to add

the necessary gate(s) in such a manner that the inconsistency is
removed, and then continues on up the tree. However, if the final
realization is to be logic hazard free, .Theorem 4 must also be satisfied;
hence, the application of Theorem D is restricted in the following
manner.

The set of n-level gaps consisting of.the n-level gaps for the
additional gate(s) plus the changed n-level gaps for the previously |

chosen gates must satisfy condition (1) of Theorem 5. In practice, the
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most straightforward procedure for satisfying this restriction of
Theorem D is the following.

Determine the inconsistency on the k-level of the tree and then,
instead of adding gates on the k-level of the tree, add the gates on
the n-level of the tree in such a manner that (1) the inconsistency
is removed from the k-level of the tree and (2) condition (1) of
Theorem S is satisfied. The gates that need to be added on the n-
level of the tree, to remove the inconsistency of the k-level, can easily
be determined by tracing the gaps that caused the inconsistency to
the bottom of the tree. Example 4 will illustrate this.
Assume that all additional gates are added in this manner.
It is proved in Reference» [7] that a final realization can always be

obtained with this restriction on Theorem D. Clearly the final

" realization will be hazard free.

The next fact concerns the application of Theorem 5. In
order to apply Theorem 5 it is necessary to associate each n-level
reduced function F(p) = Pt(qp) with a specific set of prime implicants
of F. Namely, the set for which the corresponding point p is an
element. For example, assume p is an element of the 1 prime impli-

cants Pi",ng and PZ. Hence, Pt(qp) must be associated with P:ls,

Pfli, and PI. In which case, Pt(qp) = 1 can be labeled 13, 16, and

17 on the n-level of the tree. A similar statement exists for 0 prime

implicants. Now, from Theorem S the final realization Will be hazard
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free if (1) all n-level points bearing the same label are realized by
the same n-level branch and (2) reconstruétion is possible without
additional gates, Examples 3 and 4 will illustrate this procedure.
Also, Chapter 6 of Reference [7] gives an algorithm for identifying
the points at the bottom of the tree,

The last fact to be considered is concerned with incomplete
functions, A function is said to be incomplete if for some pe{0, l}n,
F(p) is not specified as either 1 or 0, Such p's are called "don't
cares". This type of Boolean function should also»be considered when
studying hazards in threshold gate networks. A method has been
presented for synthesizing incomplete logical functions by threshold
gate networks [1]. The-method, in effect, assigns the n-level gaps
of the "don't cares" points to be w:-». Therefore, when assigning
the n-level gaps in accordance to Theorem 5 (i.e., such that a logic
hazard will not occur) the n-level gaps of the don't care points are
assigned as «»:-». Unfortunately, however, by this method one has
no control of the logic hazards associated with the don't care points.

In summary, the following procedure is outlined for obtaining

a hazard free threshold network.,

Procedure 5.

(1) Using the function tree, decompose F in the usual manner,
(2) Using the method previously described, identify the reduced
functions Ft(qp) at the bottom of the tree with their associated prime

implicants,
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(3) Referring to Theorem 5, assign the n-level gaps such that
there exists at least one n-level branch which realizes all of the re-
duced functions Ft(qp) which bear the same label,

(4) Reconstruct in the normal way, if no void common ranges
occur the final realization is hazard free; whereas, if a void common
range occurs go to Step 5.

(5) Using Theorem D, add a sufficient numbe.r of gates to
eliminate the void common range, However, the set of n-level gaps
consisting of the n-level gaps for the additional gates plus the changed
n-level gaps for the previously chosen gates must satisfy Step (3).

(6) Repeat Steps (3), (4), and (5) until a final realization is
obtained.

-The following two examples will illustrate Procedure 5,

Example 3, Consider the Boolean function

F= X X, * §<2x3+x3x4. (9)
The Karnaugh map is shown in Figure 3, The problem is to obtain a
hazard free threshold realization direétly from the Boolean function F
by application of Theorem 5, The first step is to obtain the prime
implicants of F. These are obtained from Figure 3(a) and are given
in Figure 3(b).

Decompose F by removing X.,X,,X,, and x4, respectively.

17273

The resulting function tree is shown in Figure 4. The prime implicants
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1 prime implicants n-level branch

I |
X3X, {plxl—l, x,=1}=P, {GO}
2
1 = = =
00 01 11 10 {p[x2 0, x,=1}=P| {G,.G}
_ a3
00|00 |1 |1 {p]x3—1,x4—1}—Pl {Gl,GO}
_ a4
orjofloj1ijo {p|><1—1,x3-1}—1>1 {GO]
*1%2
111|111
0 prime implicants
10001 |1 )
{p|x1=0, x,=0}=P {G,.G}
- —01=p2
{p]x,=0, x,=0}=P_ (G, .G}
{plx1=0, x23=1,
x,=01=P {G,.Gy}

(b) (c)

Figure 3. Karnaugh Map, Prime Implicant List, and n-level Branch
Assignment for Example 3.

that each n-level reduced function corresponds to are identified at the
t
bottom of the tree. For example the reduced function F (x_ =1, x'1=0,

1

x2=1, x2=0, x3=1, x3=0, x4=1 , x4=0)( henceforth to be denoted as
4

r'(10, 10, 10, 10), corresponds to Pi, P‘Z‘, and P .
The next step is to assign the n-level gaps according to

Step (3) of Procedure 5. Referring to Figure 4, all of the points labeled

11(01) should be realized by the same n-level 1(0) branch, etc. Dis-

regarding the terms in parentheses, one such assignment is given in

Figure 4.
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For example, consider the four reduced functions labeled 14.
The n-level reduced function Ft(lo, 10, 10, 01) is realized by the n-
level realization <0+2<O>m:0>0:—-m . Whereas, the other three reduced
functions labeled 14 are realized by the n-level realization
(0+2<O}O:_m)o:_m. Hence, Ft(lo, 10, 10, 01) is realized by the n-
level 1 branch consisting of the gate {GO}; whereas, the other three
are realized by the n-level 1 branches consisting of both {GO} and
{Gl ,GO} . Thus, all four are realized by the n-level branch, {GO} .
Similarly the n-level branch which corresponds to each prime impli-
cant of F is shown in Figure 3(c).

Figure 4 shows that reconstruction is possible, and that the
final realization is

(D)ypp = (eghey o 42 g 2x31R) 05007312
Thus, condition (2) of Theorem 5 is satisfied. Therefore, the final
realization will not contain any logic hazards.

Consider the realization which results when Pt(10, 10,10,10),
Pt(10,01 ,10,10), and Ft(10,01 ,10,01) are assigned normal n-levgl
gaps (see Figure 4). This assignment and the reconstruction changes
caused by this assignment are enclosed in parentheses in Figure 4, the
final realization being

(£) = (X +x_ +2 (x +2x_+X_)_ O

uf 2 1 4 3 "273:272:1°

Notice that the 1 prime implicant {p |X1=1 , X,=1} is not contained in

3

the latter realization. It will therefore contain a logic 1 hazard. Also,
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notice that on comparing the two realizations we see that the prime
implicant can be realized without requiring any additional gates. This
is not possible with conventional elements such as AND, OR, NAND, NOR,
or Relays (i.e., a conventional element can only realize one prime
implicant).

By comparing the two previous reconstructions, it can be
determined that the reduced n-level gap for Ft(lo, 10,10,10) is an
unnecessary reduced n-level gap; whereas, the reduced n-level gaps
for Ft(10 ,01,10,10) and Ft(10, 01,10,01) are necessary reduced n-level
gaps. By definition, if a gap is an unnecessary reduced n-level gap,
the normal gap could be used and the final realization would be the
same. However, when £he n-level gaps are being assigned it is not
known if a reduced n-level gap is an unnecessary reduced n-level gap or
not. Therefore, to obtain a logic hazard free realization, the best ap-
proach is to apply Theorem 5 and assume all reduced n-level gaps are
necessary reduced n-level gaps.

Example 4. Consider the Boolean function

F=xl3<'3 +3€1x3 +xX.Xx, +x.X

The Karnaugh map is shown in Figure 5. Again the problem is
to obtain a hazard free threshold realization directly from the Boolean
function F by application of Theorem 5. The first step is to obtain the

prime implicants of F. Referring to Figure 5(a), it is obvious that a
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logic 0 hazard can not occur; hence, only the 1 prime implicants of

F need be considered.

x3x4 ]l prime implicants
00 01 11 1
10 1 Lplx —"’X O}
01 1 0 1 1 3

~{p|x =0,%,=1}

»
%
.._.-

12

.J:.

11 1 1 0 1

-{pl x,=1}

'_.o

10 1 1 1 0

(a) (b)
Figure 5. Karnaugh Map for Example 4.

Decompose F by.removing xl ,x2 ,x3 , and x4, in that order.

The resulting function tree is shown in the following figure. The prime
implicants that each Pt(qp) correspond to are identified at the bottom of
the tree.

The néxt step is to obtain n-level realizations and to assign n-
level gaps according to Step (3) of Procedure 5. Since F is not unate,
the initial n-level realization must contain at least two gates. Consider
the n—leyel assignment labeled A in Figure 6, where the n-level reali-
zation is

G G

(fn)n n—(0+2(0) n!n)nln.
1”1 0°70

Referring to Definition {15) and assignment A, the n-level reduced

functions labeled 11 are realized by the n-level 1 branch {GO} , whereas,

the other n-level reduced functions which are 1 are realized by the n-
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level 1 branch {Gl ,GO} . Hence, a hazard free threshold realization
will be obtained if reconstruction is possible. However, a void common
range occurs for G1 on the 3rd level of reconstruction. Therefore, an
additional threshold gate or gates must be added to complete recon-
struction, However, before considering the addition of a gate or

gates to correct the void range for G.1 , further reconstruction for G0

will be considered. Referring to Figure 6, it is seen that reconstruction

of GO can be completed without any void common range.

Now consider the inconsistency which caused the void common
range for G1 on the 3rd level of the tree. Referring to Figure 6, if the
gaps identified by the symbol "A" are increased by more than 2 the
void common range will not occur. Hence, the n-level gaps for Pt(Ol ,10,
10,10), F'(01,10,10,01), F'(01,01,10,10), and F'(01,01,10,01) must be
increased by more than 2. Therefore, change these n-level gaps from -

0:-» to 4:-» by adding the gate G, as input to Gl , where [-32:4. The

2

n-level assignment for G, and G2 , denoted by B, is shown in Figure 6.

1

The n-level realization is now

(fn) n n=0+2(0+4<0)n n)n n)n n,

u 4 uz.,2 ul'{’l uO'LO
Referring to assignment B and the previous assignment for GO'
the n-level reduced functions labeled 11 and 12 are realized by the n-

level 1 branch {GO} and {Gl,G respectively. Whereas, the other

0}'

n-level reduced functions which are 1 are realized by the n-level 1
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branch {GZ,G ,GO} . By Theorem 5, if reconstruction is possible

1

the final realization will not contain any logic hazards.

Before continuing, notice the following two things:

1

, the image points of Pl

(1) Since reconstruction was complete for G
0

will be realized by the 1 branch consisting of G_ regardless of which

0

gates are added.

(2) In this example when the inconsistency is removed from the 3rd
level of G1 , it so happens that condition (1) of Theorem 5 is also
satisfied. This is not true in general, and in such cases some ad-
dition n-level gaps for G1 must 1\)8 changed.

The process of reconstruction will now be continued. Referring
to Figure 6, reconstructi.on of G1 can now be completed without any
void common ranges. Next consider the reconstruction for GZ . A
void common range occurs for G2 on the 3rd level of the tree. 1If the
gap, identified by the symbol "§", is increased by any positive
amount the inconsistency will not occur. Hence, the n-level gap of
Ft(10,01 ,01,10) is increased from o:—; to 2:~» by adding G3 as an

input to G, , where 83 = 2. The n-level assignment for G2 and G

2 3’

denoted by C, is shown in Figure 6. The corresponding n-level reali-
zation is also shown in Figure 6. Reconstruction is now possible,
the final realization being

1__ 1
= (ZX.+x_+-x_+%X + +X_+2%_+
(f)u:{, (le X, 4%, 4%, 2 (2x1 %, 2x3 %

+ .
QIR AR 20 b 2R 45 ) ) 1 )90 4000, 1%
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Hence, from Theorem §, the realization will not contain any logic

‘hazards.

Theorem 5 gives a means for obtaining a general threshold
realization which is hazard free. However, the following special
realizations are also of interest.

(1) Obviously if the desired realization can contain logic
0 hazards, but not logic 1 hazards, then only the 1 prime implicants
of F must be contained ip the realization. Hence, in Theorem 5, the
n-level reduced functions Ft(qp) which are 0 can be chosen arbitrarily.
A similar statement exists if the realization can contain logic 1
hazards, but not 0 hazards.

(2) Eichelberger [2] has proved that a sum-of-product
(producf—of-sum) realization will not contain any logic hazards if
each 1(0) prime implicant of F is realized by a unique AND (OR) gate.
Consider the case where the number of 0 prime implicants of F is
less than the number of 1 prime implicants of F (i.e., the number of
1 prime implicants of F is less than thé number of 1 prime implicants
of F). From the previous statement, the product—bf-sum hazard free
realization requires fewer gates than the ‘sum—of-product hazard
free realization. If the number of 1 prime implicants is less, the sum-
of-product realization would require fewer gates.

The following theorem will show that a similar situation exists

for the following type of two level threshold realization.



where szuoz for1<j<m-1and (a,x*+:-:+a _x*) realizes F_ ;
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Theorem 6, Let {Pi} be the set of 1 prime implicants of the

i

-Boolean function F and let s, be the product Boolean function which

1

realizes the 1 prime implicant Pi. Then the Boolean function F can
be expressed as

1 ,
P=sl+..-+si+...+s?, where 1 < i< n, (10)

If the above equation can be expressed as a sum of m Boolean thres-
hold function i.e.

Fp + «ee + Fo + F (11)
m_

1 Ty

Tl m

then it can be realized by the two level positive threshold realization

= e + * fee ot *
<fa>u L <E51PT Bm—lF'_[‘ alxl aan>u 4
o o 1 m-1 o o

1’1 nn ua:&a Tm

moreover, <foz>u ‘L will not contain any logic hazards.
o o
Proof. Since szuo:' it follows that Equation 11 and hence, F,

can be realized with m gates. Now consider the logic hazards.

All of the reduced functions such that Ft(qp)v = 0 are realized by

g

the same 0 branch; namely, the 0 branch which consists of all of the

gates contained in <fol>u 0 Thus, from Theorem 4, <fa>u ‘1 will
: o o o o
not contain any logic 0 hazards., Obviously, <foz>u ‘L will not contain
' - a
any logic 1 hazards., A

is equivalent to a sum-of-product
o

The realization {f

( oz>u 4
o
realization,

Now consider the complement Boolean function T and express it

in the form of Equations 10 and 11, respectively, and let m* denote



|
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the number of Boolean threshold functions obtained in the latter
e_xpression. From Reference [ 6], m?* will not necessarily equal m;
it may be greater or less. From Theorem 6, there exists a realization

~% .« . . . - . .

<Ioz>u*-f,* which contains m* gates, realizes F, and does not contain
o' o

any logic hazards. From Theorem C, there exists a corresponding

complement realization <—f:/>ﬁ* T which realizes F with m* gates.
[ "

will not contain any logic hazards.

Obviously, <f;>1—1*:/€*

L
(04 o

. * : :
2 : whereas, if m > m the realization
o o

Therefore, if m* < m the realization (?; >G* —x will require

fewer gates than {(f )
a’u
<foz>u ., requires fewer gates.

a o
(3) Theorem 5 ar_ld Theorem 6 give means for synthesizing

threshold networks which do not contain any logic hazards. However,

from another point of view, they also enable us to design threshold
networks which contain certain specified logic hazards and only
those specified. The utilization of such networks and their designed
with conventional type gates has begn considered in a paper by
Eichelberger [3].

(4)‘ One of the most common applications of hazard free com-
b'inational circuits is in the design of asynchronous systems. More-
over, in most asynchronous systems the assumption .is made that
only one input variable can change at a time. When such an assump-

tion is made, it has been shown that it is not necessary to realize
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all of the 1 and 0 prime implicants of F, [4] and [5]. In such a
case, Theorem 5 can be changed accordingly, in that the set of
necés‘sary 1 and 0 prime implicants will be a subset of {Pil} and

{P;} , respectively.
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APPENDIX 1

Appendix 1 contains the possible n-level separating functions
with n-level gaps for two gate and three gate - three level realizations.
The parameters B can be selected equal to any number greater than
unity. It should be selected equal to 2 or greater if it is desired not
to decrease the gap length [1]. For the following table the n-level
realizations are:

(o+g. 0> ., > . :
1 ul.Ll uO.LO 2 gate

0+, £0+8,.€0Y > >
1 2 u2'*’2 ul.Ll uO.LO

3 gate - 3 level

where Bi’ ui, and &i correspond to the gate Gi'

NORMAL GAPS

n-level Separating Function ‘ n-level Branch
| -.1 = <0+81<0>o:—m>81:—w {GO,Gl}
1= <O+Bl<0>oo:0>02"co {GO}
1= {0+p. {0+5,€0) > . > . {G,.G,.G,}
1 2" 0i=w’ By’ Bime 0’7172
1= <O+Bl<0+82<0>0'-oo>oo'6 i (Gl
: :B, o
1= (0+Bl<0+82<0>w‘0>0'—m>8 A {GOIG]_}
: : v
1 =0+ 0+8,K0) . > . ). (G}
0= <0+51<0>w_0>w.0 {GO’GI}
0= <O+Bl<0>oz—w>w:81 (G}
0 = {0+, <0+, 0) > > . . {G,.G,.G,)
0= (0+p, 048, 0 > > {Gy}
. o @D, 1
0= “’*?1<°+Bz<°>o;-m>w:gz>m;o {Gy.G}
0= (0+g 0+, <0) > . ) . {Gy}
1 2 Ol Bz.—co oo.Bl 0



REDUCED GAPS

n-level Separating Function

1= (0+8,<0)__ )

i~ Oi-o

L= <0+BZ<O+BI (O>o:—m>o:~m>51:-m

1 = (0+s,¢0+p,€0) . ) )

o Oi=® Ol-w

= (0+p,(0+6,(0)__ ) )

Ol—» 0!~
0= (01,00

0= Cota, (048, (0)_ ) )

. By

0= (0+p,(0+8. (0Y Y > |
2 1 00 00.82 00.81

0 = {0+8,¢0+8.€0) = > )
2 1 O:—w oo.Bz co.?l

51

n-level Branches

{GO'Gl}’ {GO}
{GO’GI'GZ}'{GO’Gl}
(GG .Gy} 1[G Gy 1G )
{GO'GI}' {GO}

{GO’GI}' {GO}
{GO’GI'GZ}'{GO'Gl}
(Gy.G,G,1.{Gy.G 1. (G}

(Gy.G 3. (Gy)
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