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DISCUSSION OF RADIO WAVE PROPAGATION EXPERIMENTS 
TO EXPLORE THE EARTH'S MAGNETOSPHERE 

ABSTRACT 

A discussion is given of several radio wave propagation experiments 
designed to study the mean electron density between the Earth and the Moon, 
the distribution of this electron density within certain regions and electron 
density fluctuations associated with the magnetospheric boundary. The exper- 
iments require a low power multi-frequency transmitter on the Moon. The 
emission from this transmitter is monitored for  phase and delay information 
either at a ground-based station o r  in a satellite in orbit round the Earth. 
The choice of frequencies, the power requirements, as well as possible 
sources o r  e r ro r  in the experiments are considered in some detail. It is 
concluded that mean electron densities less than 10 cm-3 can be measured 
using a lunar based transmitter with an output power of a few watts. 
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DISCUSSION OF RADIO WAVE PROPAGATION EXPERlMl3NI'S 
TO EXPLORE THE EARTH'S MAGNETOSPHERE 

T. Hagfors 
Lincoln Laboratory*, Massachusetts Institute of Technology 

August, 1966 

INTRODUCTION 

It is the purpose of these notes to outline some experiments which will  
provide a vastly improved picture of the properties of the earth's magneto- 
sphere which in the tail region extends to at least some 50 Earth's radii. 

The experiments are based on placing a radio transmitting station on the 
side of the Moon which is facing the Earth and to monitor the signals on the 
Earth as well as from a satellite in orbit around the Earth. The monitoring 
of the transmitters on the ground will be a fairly straightforward task not 
requiring highly sophisticated equipment and could well be carried out by a 
number of universities on a routine basis. The monitoring of the Moon-based 
transmitters in the Earth's orbiting satellite, on the other hand, will probably 
be more demanding as far as data transmission equipment and receiving 
antennas are concerned. 

In what follows, a very brief outline is given of the recently available 
model of the magnetosphere, the basic philosophy of the experiment is then 
described (ref. l), the expected power requirements fo r  the Moon-based 
transmitters are worked out, and finally, a discussion is given of various 
considerations regarding modulation schemes, orbit parameters, choice of 

frequencies, etc. ........................ 
* Operated with support from the U. S. National Aeronautics and Space 

Administration. 



MODEL OF THE EARTH’S MAGNETOSPHERE 
The Earth is surrounded by an ionosphere with a maximum electron 

6 density of about 10 
electron density declines relatively monotonically out to a distance of about 
four Earth radii where the density is about 100 ~ r n ’ ~  (ref. 2). At this point, 
whistler data appear to indicate that the electron density drops abruptly to 
1 at least in  the solar direction. On the other hand, radar experimerts 
relying on the measurement of phase delay and group delay appear to indicate 
that the electron density beyond the plasma sphere may be as high as 200 
(ref. 1). Arguments against this high density have been advanced by Dessler 
and Michel (ref. 3) on the grounds that the supply of ionized particles is much 
too low to maintain such a high density. Scarf (ref. 4) has criticized the 
Stanford experiment on the basis of a possible presence of coherent oscilla- 
tions in the plasma density somewhere along the propagation path. It is 
concluded tentatively from calculations on more realistic models that density 
fluctuations a re  unlikely to influence the results of the Stanford experiments 
appreciably, see Appendix. We are, therefore, faced with the problem of 
exploring a region with the following electron density characteristics: 

at a height of some 300 km. Beyond this height the 

Height Density Plasma Freq. 
300 km 10 cm 
1500 km 10 cm 
4-5 Earth radii 10 cm 

9 x lo6 Hz 
9 x 1 0  Hz 
9 x 1 0  Hz 

6 -3 
4 -3 
2 -3 

1 cm o r  

5 
4 

-3 3 
Beyond { 2 x lo2 { :.; :“loH: 5 

4 Solar wind IO cm-3 2.8 x 10 Hz 
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PRINCIPLES OF THE EXPERIMENTS 

The propagation vector k of a non-magnetized plasma is given by: 

2 

mC w 
k 2 =  k 2 *  0 [ 1 - ( z ) 2 ] = k 2  0 (1-X); X=-------2 e (MKSA units) 

0 

where w is the angular plasma frequency, wherew is the angular frequency of 
the wave and where ko is the propagation constant in vacuo. In the remainder 
of this section we deal separately with experiments measuring the phase and 

the group delays of the waves. 

P 

Phase Delay Method 
+ -b 

The phase delay in radians over a path between rl and r2 is given by: 
4 

+ r 2  
@ =$ "k dz = ko S (r2) 

r 1 
+ 

where S (T2) is the eikonal of the wave-field. Suppose r2 is the position of 
the orbiting satellite and that the position is changing according to 
r2 = R(t). The Doppler frequency observed at the receiver is given by: 
+ +  

-b + 
where n is the unit wave normal at the point of observation and Y is the 
velocity of the observer. Implicit in this derivation is the assumption that 
the rate of change of the medium is small. 
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For  high frequencies X<< 1 and we may write 

Now, suppose doppler frequencies are recorded at two harmonically 
related frequencies ul and u2 such that ( p >  1). 

w2 = p  w1 

A comparison of the two signals observed in the orbiting satellite after multi- 
plying the frequency of the low frequency signal with the harmonic ration c1 

gives a difference frequency: 

r) 

Since both ~(Ao) and Aa2 are measurable and p is predetermined, the local 
electron density at the satellite can be determined in principle. Complica- 
tions arise due to the motion of the Moon-based transmitter which makes rl 

also vary with time. Considerations must also be given to the change with 
time of the path between rland rZ Simplest conditions obviously prevail 
when vand n a re  parallel, indicating that an eccentric orbit with apogee point- 
ing in the general direction of the Moon is to be preferred. 

-+ 

-b -b 

+ -b 
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Group Delay Method 

The group delay in units of time between the two points rl and r2 is 
+ + 

given by: + + + 
r2 r2 '2 

rl rl rl 

1 1 
G o d ; ) * -  

ak + + - (n ds) = D =/ % ao d: = [ 
+ qc-E- + 

-b 

+ +  1 
2 fi, (n ds) (1 + zX) 

rl 

If the graup delay is measured at frequencies o1 and o2 corresponding re- 
spectively to X1 and % , the difference in group delays becomes: 

+ 
r r2 

+ 
r2 

rl 
r 

rl 

Since ds when X<< 1. + 0 
In this experiment p need not be an integer. The measurement of 6D, 

therefore, provides direct information on the integrated electron density 
over the transmission path. 

Some Numerical Examples 

Consider the time delay experiment first. Suppose we specify the differ- 
ence in time delay to be 100 p sec which hould  be rather easily measurable. 

8 For  a range of 3.8 10 m between transmitter and receiver and for p>> 1, 
the required lower frequency f l  is found to be: 
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100 
10 
1 

6 
6 
5 

7.2 10 HZ 
2.1 10 HZ 
7 .2  10 Hz 

Consider next the measurement of differential doppler frequency. Fo r  
the same frequencies as above and again for p<< 1 one obtains, assuming a 
typical velocity to be 5 10 m/sec: 3 

N ( c ~ - ~ )  f l  6 4  

100 7.2 lo6 Hz Hz 
10 2 .1  lo6 Hz HZ 

HZ 
5 1 7.2 10 HZ 

The same G&'s would have been obtained with a constant f l  also. At 
least the two higher ones of these numbers should be readily measurable. 

SOME NOTES ON POWER IiEQUIEEEMENTS 

The construction of an efficient satellite born antenna at these low 
frequencies is fairly difficult, We shall, however, assume that an antenna 
can be built with unity directivity, i. e., with g e  1. The collecting area of 
such an antenna is approximately equal to X /12 (A = gX /4n). The received 
power is determined from the equation: 

2 2 

P = PtArgt/4nr 2 
r 

= 1 and with with the distance r of 3.8 10 m, gt 
obtains : 

watts. 

= 300 m (1 MHz) one 8 

Pr = Pt 0.43. 
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7 0  The noise background temperature at 1 MHz is equal to 2.3 10 K 
(ref. 5) and the noise power in the receiver will be: 

p = 1.38. 2.3. lo7 B = 3.2. B watts n 

where B is the noise bandwidth in Hz. The predetection signal-to-noise power 
ratio therefore becomes: 

20 Pt 

pn -- B 
r -  P 

Since the effective bandwidth of the transmitted signal may be only a few 
cycles per second fo r  the measuring principles described above it seems 
that a signal-to-noise ratio in  excess of unity could be achieved for a trans- 
mitted power of only one watt on the Moon. In view of the possible avail- 
ability of as much as 50 watts on the Moon in the near future the power 
requirements seem to be quite reasonable. 

DISCUSSION 

The Moon-based transmitters should operate simultaneously at at least 
two carrier frequencies at a time. The lowest frequency suitable for  recep- 
tion in an Earth orbiting satellite should be within the range 1 - 10 MNz, the 
lower frequency limit being determined principally by the availability of 
suitable transmitter and receiver antenna designs, whereas the upper limit 
is determined by the detectability criteria. The choice of the higher frequen- 
cies required for comparison purposes is quite uncritical. 

the transmission might well be unmodulated. The group delay may be carried 
out as originally suggested by Dr. V. R Eshleman f o r  a similar radar exper- 
iment by transmitting a pair  of frequencies near fl with a separation Af and 

As far as the phase o r  the Doppler frequency measurement is concerned 
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simultaneously another pair near f2 with exactly the same frequency separation 
Af. The phase difference of the "beats" of the two frequency pairs will be 
directly proportional to the difference in group delay of f l  and fa. This phase 
difference should preferably be measured in the satellite -- but if this re- 
quires too much data processing in the satellite the raw-unprocessed data may 
be transmitted to the ground on a telemetry link fo r  further processing. The 

tuning of the receivers to accommodate the Doppler shift should be made by 
means of a tracking receiver at one of the frequencies, the local oscillator of 
the other receiver should be locked to that of the former. 

The orbit parameters of the satellite should be chosen in such a way that 
the satellite goes through the magnetospheric "knee", and, if at all possible, 
the satellite should be made to precess in such a way that apogee is in the 
general direction of the Moon most of the time. 

A number of other experiments can also be done by this simple setup. 
When the propagation path passes obliquely through the boundary layer be- 

tween the magnetospheric tail and the solar wind region one should expect 
the signal to exhibit fluctuations in phase and direction of arrival. With a 
well designed point source of radiation on the Moon it should not be difficult 
to derive a considerable amount of information from these fluctuations about 
the nature of the boundary layer. 

a 
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APPENDIX 

COMMENTS ON PAPER BY F. L. SCARF 

Scarf (ref. 4) has recently advanced some criticism of the methods of 
measuring electron densities described in this report. The argument is that 
electron density fluctuations, particularly coherent ones, could very substan- 
tially modify the effective mean propagation constants in the mediu. As 
Scarf's conclusions in his coherent density fluctuation case leads to a highly 
resonant effect and also appears to rest on invalid solutions of a transcen- 
dental equation, we shall reexamine his ideas very briefly in this appendix. 

Let the wave propagation constant in the unperturbed plasma be ko, the 
electron density N and the scalar wave field in the unperturbed medium be 

goZ). In the perturbed medium the field at a point (r) can then be thought of 
as a linear superposition of the unperturbed wave cpo(r) and a scattered wave: 

+ 
+ 

2 2 2 2  where X = Nee /meow =ap /o 
-t + 

6N*f( r )  = perturbation in electron density at r 
+ + 

G(r; r') = Green's function for wave equation of unperturbed medium, L e ,  

2 2 +-t  - t - t  
(V + ko ) G(r;r') = 6(r-r') or: 

1 G(r, r') = - 4.rr e 

For  the mean f ie ld(  cpG))we must have: 

(A-2) 

(A-4) 
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We now assume that 

CPG) = { CPG) ) + 6 CPG) (A-5) 
+ 

where 6 q(r) is a zero mean variable which is also assumed to be at least 
approximately gaussian, Substitution of (A-4) into (A-3) gives: 

+ +  + +  
G(r; r') G(r; r") (A-6) 

2 2 Applying the operator @ + ko ) to both sides of (A-6) one obtains the equation 
for (ptr)): 

The dispersion equation is obtained by substituting a plane wave of the form 
exp(f k r) into (A-7) and by changing the variable of integration in (A-7) to 
p = r - r, and by introducing the spatial correlation function defined by: 

++ + 

+ + +  

Rd) =( f(r') f ( d )  (A-8) 

I 
which is identical to Scarf's equation (ref. 8) except for occurrence of a factor 
exp (i k* p) in (A-9) rather than the factor exp(iBo* p') in Scarf's equation. We 

now show that this discrepancy leads to an erroneous result in Scarf's paper, 
particularly for the coherent oscillation case. 

+ +  

Consider Scarf's first case, i. e., that with 

(A-10) 
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Solving the dispersion equation on the assumption that k + kn one obtains: 

(A-11) 

This is in agreement with Scarf's result except for  the factor of 2 multiplying 
the correction term under the square root sign. We are therefore in agree- 
ment with Scarf's conclusions in this case. 

In the second case, namely that of coherent density fluctuations, as con- 
sidered by Scarf the correlation function was isotropic and of the form: 

~ ( p )  = sin HP/W (A- 12) 

Substitution of this into equation (A-9) gives: 

k+ko> u 

\k-kol > H 
+i{ i  } 1 \k-kol < x <  k+k 0 

This only reduces to Scarf's result when k = ko is substituted on the right 
hand side of the equation. With this substitution k2 -+ when u + 2 ko. The 
result that coherent resonant fluctuations have a profound effect on the wave 
propagation is closely linked with this artificial infinity, and Scarf's argu - 
ments cannot be immediately accepted. 

12 



If we assume the attenuation to be negligible and make the following 
substitutions in (A-13) 

k 
Y = %  

0 

U a = %  
0 

we obtain: \ 

(A- 14) 

o r  

Let u s  consider an extreme example, viz. B = 0.01. This might for instance 
correspond to 6N = 0.1N and X = ’z’ o r  o = 0.707 o. Let us  solve equation 
(A-14)numerically for a few values of a, Note that in this case the increase 

in phase velocity over that in vacuum caused by the unperturbed plasma 
(6N = 0 )  corresponds to the ratio 

1 
P 

= 1-41 or 41% 
vacuum C 

The following table gives some values of k/$ for different values of a: 

n/kn = a ‘5/ko = Y 

1 1.0014 
2 1.0042 
2.1 1.0021 
2.2 1.0017 
4 1.0003 

(A-15) 
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Hence, we see that even in this case, which Scarf considers extreme, the 
effect of the irregularities on the propagation constant is only on the order of 
1% of the effect of the smeared out plasma background. Fo r  smaller values 
of X the relative importance of the coherent density fluctuations becomes 

background plasma goes to unity as X. 
even smaller since y + 1 as 2 whereas the refractive index of the smooth 

The resonance condition introduced by Scarf in order to cause the density 
fluctuations to affect the propagation properties of the medium is also logi- 
cally unsatisfactory since it would be a strange coincidence to have the condi- 
tion n = 2 ko fulfilled fo r  the particular wavelength selected fo r  the experiment. 
For  this reason it might be of interest to explore some other possibilities 
which would affect the propagation characteristics in a non-resonant fashion. 
In order for the irregularities to become important one must have an appre- 
ciable second order scattering in the medium. The first order scattering 
component is ineffective in modifying the mean propagation properties. The 
second order scattering can be effective in that waves are scattered out of 
the main beam and then back into the main beam with a definite phase rela- 
tionship with respect to the main wave beam. It was therefore thought that 
density waves travelling perpendicularly to the direction of propagation of the 
wave might be effective in modifying the propagation properties of the wave 
because this wmld seem to enhance the second order forward scattering 
required to modify the unperturbed wave. Such density irregularities might 
well be expected to e d s t  particularly when the direction of propagation lies 

along magnetic field lines. The density fluctuations may be thought of as 
being associated with so-called longitudinal hydromagnetic waves (longitudinal 
referti to the direction of particle motion with respect to the direction of wave 
motion (ref. 6). 

14 



Cmsider therefore the case: 
7 
2 2  iq z-axis and RG) = e  (A-16) 

Substitution into (A-9) and integration then gives: 

(A-17) 

We distinguish between two main cases, viz 

so that we may expand the Arctan function conveniently. 

2 Case 1 
2 2 2  (kat) 

(k2-k,2) = (%) (A) ko 1 + (kz,k 2),' + imaginary par t  (A-18) 
0 

neglecting the imaginary part  and solving the second degree equation one 
obains : 

where B has the same definition as  (A-9). Only the case (ko 
possible in view of the initial assumption in this case, and we obtain: 

k2 = k 2  (1 + X *  r)- 6N k 2  [ 1 - X(1 - -)) 6N N vacuum 0 

(A-19) 

1 is 

(A-20) 
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where only that sign is used which appears to be physically reasonable. 
Hence, the correction can only amount to a few per  cent, depending on (6N/N). 

Case 2 

Solving this in the same manner as above, one obtains: 

1 - X (1-0.707 N 2 2  
=kvacuum 

(A-2 1) 

and again the correction to the propagation canstant indtroduced by the density 
fluctuations can only be rather slight. 

Let us  finally consider the case where we have density fluctuations 
corresponding to a collection of plane, monchromatic density waves which all 
travel perpendicularly to the direction of propagation of the electromagnetic 
wave. If they a re  undamped and all of the allowed directions are equally 
likely then: 

R(Z) = Jo ( x d x 2  + y2 ) (A-22) 

Substituting this into (A-9) and carrying aut the integration one obtains: 

Again one can show that the correction to the non-perturbed case is of the 
form: 

1 -x(1 +a!- I N 
2 
vacuum k2 = k  (A-23) 

where a! is of the order of unity or less. 

Hence it appears that the correction to the apparent electron density 
caused by the density fluctuations, be they coherent o r  not, can only amount 
to at most a fraction 6N/N. No large discrepancy between observed and 
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actual plasma density should arise due to the presence of irregularities. 
Also, the apparent density seems to be smaller - not larger than the true 
density as one would have to require to bring Yoh et al's experiement (ref. 1) 
into line with current physical ideas about the magnetosphere (ref. 3). 
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