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T. SUMMARY AND INTRODUCTION

In the numerical treatment of ordinary linear differential
equations there are many effective integration formulas which yield quick,
reliable results. These techniques depend heavily on the fact that solu-
tions to linear differential equations are very well behaved in that all the
needed higher order derivatives exist in the range of interest.

In general, the theory of ordinary nonlinear differential equa-
tions offers no clue as to the singularities of the solutions of such
equations. Thus the detection of singularities must be accomplished
heuristically. Obviously the usual numerical integration techniques fail
in the region of such singularities. Not only are the results inaccurate
near a singularity, but also the location of such a point evades detection.
Hence, new techniques must be developed which will deal effectively with
the problem of singularities of sclutions to nonlinear differential
equations.

Recently we obtained an algorithum for computing rational ap-
proximations to the solution of a wide class of nonlinear differential
equations, see [l]. Although this technique cannot be extended to arbi-
trary nonlinear equations, it clearly demonstrates the power of rational
approximations in dealing with a function which has singular points in the
range of interest. These approximations ascertain the existence of zeros
and poles of a function and locate these critical points with great ac-
curacy. Rational approximations also allow accurate computation of the
function near a singular point -- a decided advantage over the usual ap-
proximations.

In light of the advantages cited above, it is desirable to obtain
formulas for numerical integration of ordinary nonlinear differential
equations which are based on rational approximations.

In Section II we develop multi-step predictor and corrector
formulas for numerical integration. In Section IIT we obtain the truncation
errors associated with such formulas. The results are applied to some ex-
amples in Section IV. A recommended procedure for the use of these rational
approximations in the numerical treatment of nonlinear differential equations
is outlined in Section V.




IT. DEVELOPMENT OF INTEGRATION FORMULAS

Here we develop multi-step predictor and corrector formulas based
on rational functions for the numerical integration of the differential
equation

y' o= (%) 5 v(xg) =¥y - (2.1)

The extension of the formulas to higher order equations is immediate.

It is assumed that all the needed starting values are available.
We wish to approximate the solution to (2.1) by a rational function. We
write

B, (x)
y(x) = Qn(x) + Em,n(x) ’
Py(x) = 2{: ajxj and Q,(x) = 1 + j{: bjxj > (2.2)
Jj=o j=1

where the coefficients aj and bj are unknown.

In order to obtain a k-step method, it is sufficient to require

that either n+m =2k , or nim = 2k-1 . TFor convenience, we set
Lm,n(x) = Qn(X)Y(X) - Pm(x) ’ (2.3)
Lm’n'(X) = Qn'(X)Y(X) + Qn(x)y'(x) = Pm'(x) s (2.4)

and y(xj) =Y; for a set of equally spaced interpolation points
KoK <o o o <XHyyq - Without loss of generality, x, = O and Xj41 = xj+l

We develop the predictor and corrector formulas for the case m+n = 2k and
then indicate the necessary changes for the case m+n = 2k-1 .

Let m+n = 2k and require that in (2.3) - (2.4),




Im,n(x.j) =0 J=0,1,.0., ktl ,
(2.5)
Im’n'(Xj)=O j=l,2,..-,k .

The resulting system of equations in the unknowns a. and bj has a
solution, if and only if, the following determinant vanishes;

Ric1,m+1 Sk+1,n+l

Ay = -0, (2.6)

Tk,m+l Uk,n+l

where the entries in the determinant are rectangular arrays of the size
indicated by the subscripts, and if hij denotes the i,jEE entry in a
rectangular array Hﬁ,j , the arrays in the determinant (2.6) are defined
by

rig= (1-1)971, 1 =1,2,... k42 5 § = 1,2,...,m41 and r19=1 ,

i = (i_l)a-lyi-l’ 1=1,2,....kt2 5 § = 1,2,...,n+] and syy=y, »

(2.7)

. Nj-2 . .
t54 = (3-1)(1)97%, 1 = 1,2,...,k 3 § = 1,2,...,m+l ,

. N J- -1 . .
uij‘= (J'l)(l)J EYi+(1)J Yf, i=1,2,...,k 3 J=1,2,...,n+tl .

We call AP the predictor determinant. To obtain the corrector determinant,
A. , corresponding to the conditions (2.5), replace the first row of (2.8).
by the last row of (2.6) with k replaced by k+l . After setting

Ap = Ac = 0 and expanding the determinants, we obtain

Ap = Ayp41+B = 0, (2.7)

Bo = Cy2 1*Dyis1*E = O , (2.8)




where the coefficients in (2.7) depend on y. and y'j , J=0,1,...,k ,
and the coefficients in (2.8) depend not only on these values, but also on
Y'xs1 - DNote that (2.8) requires solutions of a quadratic equation for the
corrected value. This is discussed in more detail later. Thus after set-
ting y(x) = y(xy+hx) we obtain the final form for the predicted and cor-
rected values at y,,; by solving (2.7) and (2.8). The predicted value of
Yk+1 1is obtained from (2.7), the differential equation is employed to get
a predicted y'k+l and the corrector is used repeatedly until the results
stabilize. However, for small h , the predictor can be used alone.

For the case m+n = 2k-1 , we get the predictor from (2.6) by
deleting the first row and we get the corrector from this result by in-
creasing the row indices of the last k rows by unity. In illustration,
three cases are listed below. ‘

If m=n=1l:

2
2yoy1-2y1+hyoyy'
2yo-2yl+hyl'

Vo(predicted) =

b

and the corresponding corrector formula is

2 o
yo -2y1ye + (y1 -hyi'ye') = O .

For m=1 , n=2 :

2(

Yo (3y +hy ') + y12(2hyo'-3yo)

ye(predicted) = ' o -
Yo (4y,-5y1+hyy ") + yq(y+8hy,' )-2hSy "y

and for the corrector, the values in (2.8) are given by

Q
!

= oy

v}
Il

5Yoy1-3Y1°H oY1

E =2y, 'vp' (v1 "+ )-v12(v*2y5") -




For m=n=2 :

(2hyo'—3yo)dl + yld2 + y2d5

vz (predicted) = T34, + dp + dg P
where
a4 = (y,v,)% - v8y 'y,
do = = (4yo-3hyy ' -4y5) (y1-vo) - z hyy' (5y1-5y4+6hy,")
2 2

= ! - L - - - !
dz = hy, ' (4y,-3hy '-4y,) - (v;-v,)(5y,-Sy +6hy ')

and for the corrector, the values in (2.8) are

Q
|

1
= ¥1-Vo-hy,'- " hy;' ,

w)
Il

1
2hy o' Y1402 -Y154Y 1Yot 5 Wov1' s

2

1
E = yoyle-yOle—hyo'ylg-hyg'(ylryo) -3 hy o2y +h3y o'y Tyn!

ITI. TRUNCATION ERROR

In this section we develop an expression for the truncation error
associated with the integration formulas of Section II. We restrict our-
selves to the predictor formula for the case m+n = 2k (see (2.5) - (2.7)).
The other cases are handled similarly and, since we are interested only in
the order of the truncation error, the treatment of one case is sufficient.

As in (2.2), we set

y(x) = 2+ By () (3.1)

Let XX <ow o <Xpyq be equally spaced interpolation points and assume y is
(2k+1) times differentiable in the interval Exo’xk+l] except at the poles
C15Cssy...,C, of orders S158ps++«s8y respectively. Thus, if

5




S.
- d
(x-Cy)
1

r(x) =

H

[TH= S

J
Then r(x)y(x) is (2k+1) +times differentiable in [x,,x%

<) = m n(x)F(x)
() = e

where

k
2
nm,n(x) = T (x-xj)
J=1

and F(x) is a function to be determined. Now if

Iy n(x) = y(x)ay(x) - By(x)

then for the case m+n = 2k , the predictor formula requires

Im,n(xi) =0 , 1i=0,1,...,k+1

b
Im,n'(xi) =0, i=1,2,...,k

Consider the function

5(t) = 2(o)r, (6) 28 - g, (1) {2200

x-d)

We have-

g(x;) =0=1g"(x;) , 1i=1,2,...,k

k+l]'

(3.2)

Now we set

(3.3)

(3.4)

(3.5)

(3.8)

(3.7)




Now c¢ and d in (3.6) can be determined so that g'(xg,) = O . Thus,
g"(t) has 2k zeros in the interval [XO’Xk+l] .  Repeated use of Rolle's
theorem guarantees the existence of a number wu in the interval

x <u<x,,, such that g(2k*l)(u) = 0 . Differentiation of (3.6) (2k+l)
times yields

2k+1 1
0 = 2 d—gﬁ{r(umu)y(u)(u-c)} - w0 DL (5.0)
du
XU k+].
Solving for F(x) , we get
_ (X-d) d2k+l
") = e e {rw)Qn(u)y(u)(u-c)} : (3.9)

so that

~ m ’n(x)(x—d) g2k+1 -
N 3 e3) e sy = {“”Qn(u’““)(u'c)} -
(3.10)

Using the fact that xj =Xy t Jh, setting x = X7 and simplifying, we
have

(33.,7-0) (k)2 42+
Em’n(X) = h2k Qn(xk+l)r(xk+l)(xk+l_c)(2k+l): du2k+l r<u)Qn(u)Y(u)(u'c) .

(3.11)

Thus, the order of the truncation error is hek . The order for the cor-
rector is the same. It is very important to point out that the usual
linear k-step integration methods have truncation error of at most order
of hk*2 | see [2]. Thus, the predictor (2.7) is more accurate than the
usual k-step method.




For the case n+m = 2k-1 , it can be shown as above that the
predictor and corrector both have truncation errors of order h2K . Thus
for computational purposes, it seems desirable to utilize the approximations
(2.6) in which n+m = 2k-1 .

IV. EXAMPLES AND APPLICATIONS

We apply the results of Section II to three examples. In the
first two examples, first order differential equations are treated. Here
the approximations (2.7)- (2.8) with m=1 and n=2 are employed. In the
third example, a second order differential equation, we use m=n=2 . 1In
both cases, the corrector is used repeatedly until successive iterates
agree to eight decimal places. The root of (2.8) was chosen which agreed
best with the previously computed value of Vi1 -

Let u = tan(x+1/4) , v = J1(x)/Jo(x) and let Z be Painlevé's
second transcendent. These functions satisfy

w' = 1+, u(O) = 1, (4.1)
v' = 1+v2 - % v , v(0) =0, (4.2)

and
7" = 2754x7+1 , 2(0) = 1 , 2'(0) = O . (4.3)

Now u , v and Z have simple poles at m/4 , 2.40482 and 1.1577,
respectively. ©See Tables I, IT and III for the results of numerical inte-
gration. Notice; that the relative error has a slow rate of growth and

that these approximations do indeed detect the presence of a pole in each
case. To illustrate this last remark, we have listed in Table II the ap-
proximations to thé smallest pole of tan(x+r/4) based on use of the
predictor only. Here the function was approximated by a linear over a
quadratic, and the zeros of the denominator were computed. We point out
that this table also indicates that the pole can be computed very accurately
if the functional values are known relatively close to the pole.




In Tables I, ITI and IV, the corrected value that appears is the
final result of correcting repeatedly until successive corrected values
agreed to eight decimals. TFor the step size h = 0.01 , all the interme-
diate values were computed but these are omitted for the sake of brevity.
Note that the computed values beyond the pole are very accurate. Even
though this practice of integrating over a pole is not recommended, it does
give valuable information about the behavior of the function.-

TABLE T

NUMERICAL SOLUTION OF u' = 1+u2, u(0) = 1
u = tan(x+/4)

h = 0.05 h = 0.01
x True (u) Predicted Corrected Predicted Corrected
0.1 1.22305 1.22304 1.22305 1.22305 1.22305
0.2 1.50850 1.50848 1.50850 1.50850 1.50850
0.3 1.89577 1.89574 1.89577 1.89577 1.89577
0.4 2.46496 2.46493 2.46498 2.46496 2.46496
0.5 3.40822 3.40815 3.40826 3.40822 3.40822
0.6 5.33186 5.33165 5.33195 5.33186 5.33186
0.7 11.68137 11.67998 11.68153 11.68138 11.68139
0.8 -68.47967 -68.59667 -68.66273 -68.48685 -68.49443
0.9 - 8.68763 - 8.73393 - 8.68629 - 8.69860 - 8.69493
1.0 - 4.58804 - 4.62137 - 4.64804 - 4.56120 - 4.56121
TABLE II

LOCATION OF POLE OF tan(x+r/4); TRUE POLE; m/4 = 0.785398

h = 0.05 h = 0.0L
x Root of Qo(x) x Root of Qo(x)
0.60 0.7868 0.76 ' 0.78540 35
0.65 0.7855 » 0.77  0.78539 82
0.70 0.7869 0.78 0.78540 08
0.75 0.7851 0.79 0.78539 89
0.80 0.7851 0.80 0.78539 65




TABLE IIT
NUMERICAL SOLUTION OF v' = 1+v2 - % v, v(0) = 0

v o= Jl(x)/Jo(x)

h = 0.05 h = 0.01
X True (v) Predicted Corrected Predicted Corrected
0.2 0.10050 0.10050 0.10050 0.10050 0.10050
0.4 0.20411 0.20411 0.20411 0.20411 0.20411
0.6 0.31436 0.31436 0.31436 0.31436 0.31436
0.8 0.43584 0.43584 0.43584 0.43584 0.43584
1.0 0.57508 0.57508 0.57508 0.57508 0.57508
1.2 0.74246 0.74246 0.74246 0.74246 0.74246
1.4 0.95606 0.95606 0.95606 0.95606 0.95606
1.6 1.25141 1.25141 1.25142 1.25141 1.25141
1.8 1.71041 1.71041 1.71043 1.71041 1.71041
2.0 2.57592 2.57589 2.57596 2.57592 2.57592
2.2 5.03762 5.03636 5.03698 5.03754 5.03754
2.4 207.43659 126.95138 128.87352 207.31622 207.31021
2.5 -10.27398 -11.13360 -11.64502 -10.28250 -10.28618

TABLE IV
NUMERICAL SOLUTION Z'" = 223+XZ+1LZ(O) =1, Z2'(o) = 0
Z IS PAINLEVE'S SECOND TRANSCENDENT

h - 0.05 h = 0.01
X True (Z) Predicted Corrected Predicted Corrected
0.2 1.06261 1.06271 1.06267 1.06261 1.06261
0.3 1.14638 1.14634 1.14640 1.14637 1.14638
0.4 1.27415 1.27377 1.27379 1.27415 1.27415
0.5 1.45921 1.45751 1.45730 1.45921 1.45921
0.6 1.72538 1.72170 1.72159 1.72537 1.72538
0.7 2.11844 2.11211 2.11185 2.11840 2.11845
0.8 2.73694 2.72608 2.72581 2.73710 2.73710
0.9 3.83440 3.81512 3.81417 3.83522 3.83520
1.0 6.31100 6.24525 6.25787 6.31763 6.31758
1.1 17.31546 19.30070 21.69210 17.37845 17.38471
1.2 -23.64085 1.62902 -3.06227 *

¥ This value could not be computed due to overflow on the computer. The
last value computed was for x = 1

1

4.

0




V. CONCLUSIONS

It is evident that the integration techniques developed here can
be extremely useful, particularly in locating singularities of solutions to
nonlinear differential equations and in computing functional values near
such points. Before these approximations can be used on a wide scale,
several problems must be analyzed. First there is the problem of selecting
the correct root of the quadratic equation (2.8) associated with the cor-
rector. Another pertinent question is the stability of the process. This
is particularly important when the predictor is used without the corrector.
Finally, there is the problem of obtaining stepwise a priori estimates of
the error involved in the integration. In connection with the latter, it
appears that the predicted value and the first corrected value can be used
to estimate the error in much the same way as is done for the usual
numerical integration schemes. In the present instance the process is
much more complicated for at each stage one must compute the coefficients
in the denominator polynomial of the rational approximation and other
quantities as evidenced by (3.11). All these questions are interrelated
and we recommend further research on these topics.

Our experience to date with the developments in this report sug-
gests that the approximations be employed in the following fashion. The
usual integration formulas should be used as long as the solution to a
given differential equation is well behaved. If large differences in suc-
cessive computed values occur (indicative of a pole), employ the rational

approximations to locate the pole p . Then introduce a reciprocal trans-
formation in the differential equation to obtain the equation whose solution
has a zero at p . In the neighborhood of this zero, the usual integration

techniques can be utilized.  After having gone a sufficient distance beyond
this zero, use the reciprocal transformation to recover the original
equation and proceed with the integration.
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