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On the Controllability of Delay-Differential Systems

by

Leonard Weiss

1. Introduction.

The importance of dealing effectively with the inevitable
delays of signal transmission within a control system is attested
to by the volume of literature devoted to this problem over the
years [1l]. The early textbooks on control generally treated the
problem of time lags by ad hoc and approximation methods, some of
which involved modelling a system with pure delay by a higher order
system without pure delay. (See Repin [2] for a detailed discussion
of this technique.)

For a wide class of systems, however, it is natural and
important that the model show the delay explicitly (See [3,4]),
which motivates the consideration of delay-differential equations
as models and the study of their properties from a system-theoretic
point of view.

One of the fundamental system-theoretic properties of a
control system is that of "controllability", which can be viewed
as pertaining to the question of whether a given (optimal) control
problem is well-posed or not, and which therefore impinges on
questions of existence of solutions to such problems. Exactly how
one should define the concept of controllability depends on the
nature of the problems one is considering. Even in the case of

control systems with finite dimensional state spaces, there is more



than one natural way of defining controllability [5]. In the case
of infinite dimensional spaces and with possibly infinite dimension-
al target sets, the controllability concept of interest certainly
depends on the precise nature of the target set.

In this paper we define and discuss a type of controlla-
bility which is likely to play an important role in a broad class
of optimal control problems for systems described by delay-differ-
ential equations. One of our objectives is to illustrate that
some techniques which have been found tc be eminently useful in
obtaining results for ordinary differential equations can also be
profitably used when dealing with delay equations. In particular,
the approach we take to the solution of the problem discussed
in the sequel is analogous to that for ordinary differential
equations given by Markus and Lee [6] as medified by Kalman [T7].
The results subsume the controllability results given by Chyung
and Lee [8] in their paper on optimal control of delay-differential

systems with target sets in euclidean space.

2. Definition of Controllability and Some Preliminary Remarks.

Consider the system

(1) %(t) = £(4,%(t),x(t-h),u(t)), t >t

where x(t) € Rn, u(t) e R® and u is measurable and bounded on

every finite time interval,* h = positive constant (the delay),

*
Such functions will be referred to as "admissible".




fect in all its arguments and f(t,0,0,0) = 0. Let 65 be the
Banach space of real n-vector-valued continucus functions defined
on the interval [to—h,to] with the uniform norm, i.e., if ¢ € 63,

we have |lo|| = max |o(t)|. Then a solution of (1) exists
te[t_-h,t_]

and is unique for t > to if one specifies an initial function

o e ® ro].

Remark: The assumption of a single constant delay is for conven-
lence only. All the results in thils paper can be easily generalized
to the case of multiple delays and these delays can also be time-
varying as long as they are appropriately bounded so that their
values do not overlap.

Let ~}QL be an abstract normed linear space of functions

defined on the interval [to-h,tO]. Then we give the following:

DEFINITIONS: (1) A system (1) is controllable to a func-

tion V(-) € }QZ with respect to the space of initial functions 63

if, for any given ¢ € 63, there exists a time tl’ t, < t] < =,
‘s *

and an admissible control segment u[to’t1+h] such that

x(t3t_,0,u) = ¥(t-t,+t -h), t € [t,,t,+h], where x(t;t ,p,u) is the

*
A segment g . denotes a function g defined over the interval

[a,b].

[a,b]




I

solution of (1), starting at time t,, with initial function o
and control u.
(2) 1If the system (1) is controllable to all functions

in &/ it is controllable to the space KL.

(3) If V¥(+) =0 in definition (1), then the system is

controllable to the origin.

(L) If t

1 is constant with © in any of the above defi-

nitions, the corresponding type of controllability is uniform.

In the sequel, we shall give sufficient conditions for (1)

to be controllable to the origin as well as to a function with re-

spect to the space 03 . We shall also give sufficient conditions

under which the linear system
(2) %(t) = A(t)x(t) + B(t)x(t-h) + C(t)u(t)

(where x(t) e Rn, u(t) € Rp, and A(-), B(:), C(-) are continuous
matrix functions) is controllable to the origin and to a function

with respect to 'ia . The aforementioned conditions for (2) will be
shown to be necessary if a certain assumption about the space of tra-

jectories of the homogeneous equation
(3) x(t) = A(t)x(t) + B(t)x(t-h)
is true.

It should be strongly emphasized that controllability to

the origin for a delay-differential system does not imply, in general,




controllability to a function or a space of functions. However, the
techniques which are used in this paper to study controllability to
the origin are completely applicable to the study of controllability
to a function or function space. This fact is i1llustrated in Section

6, where some results along this line are given,

3. The Linear Problem.

Consider equation (2) with B the space of initial func-
tions. The solution of (2) for time t > to, and corresponding to

initial function ¢ e (B, has the form [10]

t
(4) x(t) = x(t; to,w,u) = M(t,to,m) + £ K(s,t)C(s)u(s)ds

where M(t,to,¢) is the solution of the homogeneous eguation (3)

corresponding to initial time to and initial function ¢, 1.e.
(5) M(t,t_,0) = ¢(t) for t e [t -h,t .

The kernel K(s,t) 1is defined for t 2z to and to <sst

and is an n X n matrix solution of the equations

(6a) Eglt—) = -K(s,t)A(s) - K(s+h,t)B(s+h), t_= s<t-h

(6b) X(s,t) . K(s,t)A(s), t-hss

1A

t
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with K(t,t) = I (the identity matrix).

Equation (6b) shows the obvious fact that over one delay
interval, the delay equation behaves similarly to an ordinary d4if-
ferential equation with X(s,t) playing the role of a fundamental

matrix solution of the homogeneous equation [1l].

LEMMA 1: Given (2) with any ¢ € 63. A sufficient condition for
existence of an admissible control which results in the solution

having a zero-crossing in finite time is that there exists tl > to

such that

t
1
(7) rank [ K(s,tl)C(s)C'(s)K'(s,tl)ds =n
t

e}

where (') indicates transpose.

o

Proof: Let (% y8) = [ K(s,t,)C(s)C! ()K" (s, )ds.
— o X 1 1
(o]

In equation (4), substitute

u(s) = - ()K" (s,8,)_B (v,,5) Mt ,_,0).

Then x(tl) = 0.

DEFINITIONS: (5) The Force-Free Attainable Set at time t

of a system (2) is the set of all points in R that can be reached

at time t by the trajectories of (3) resulting from all initial

functions contained in (B




(6) A system (2) whose Force-Free Attainable Set at any

time t is all of Rn is pointwise complete.

Since we have been unable to give an example to the contrary, we pre-

sent for the reader's amusement, the following:

CONJECTURE: All constant coefficient systems of the form (2) are

pointwise complete.

Remark: The conjecture is true if we consider the trajectories only
on the interval to -h=sts to + h, since the elements of 63 span
all of R* at any time t ¢ [to-h,to] and the system (3) behaves

as an ordinary differential equation on the interval [to,to+h].

LEMMA 2: If a system (2) is pointwise complete, then (7) is necessary
as well as sufficient for existence of a control which results in a

zero-crossing in finite time of the solution of (2) for any o € &3.

Proof: Given any @ € ES, suppose there exists tl > to and a con-

trol u such that x(t,) = 0, but (7) doesn't hold. The
[t,,t] 1

latter implies that there existes a nonzero vector X, € R" such that

xiK(s,tl)C(s) =0, t = sst. Then, from (4), xiM(tl,to,Q) = 0.

By hypothesis, however, ¢ can be chosen so that M(tl,to,w) = X, .

Then xIx; =0 which contradicts the assumption that x, # 0.

THEOREM 1: A pointwise complete system (2) is controllable to the
origin with respect to GB if and only if

(1) there exists tl > to such that (7) holds
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(ii) given ¢ € 63, then with t, as in (7) and for some

admissible u such that x(t.,t ,p,u =0
[to,tl] 12 70°7? [to,tl]
the equation
(8) C(t)u(t) = 'B(t)x(t'h; to’(p’u[to’tl])’

has an admissible solution wu(-) on the interval (tl,tl+h).

Proof: By Lemma 1 we have that for any ¢ € d5 there exists

u such that x(t.;t ,p,u ) = 0. If (8) holds, then
[t,,t] 1300 Pyt ] )

over the interval (t%,,t,+h), equation (2) becomes

(9) x(t) = A(t)x(t),  x(ty) = o.

It follows by the uniqueness theorem for ordinary differential equa-
tions that x(t) = 0 for all t e [t,,t,+h].

Conversely if (2) is controllable to the origin with re-
spect to &3 s then for any @ € &3, there exists tl >t eand

an admissible control u[to’tl+h] such that x(t;to

¥t e[t),t;+h] which implies (8). sSince x(tl

u =0
PPl Lt +h]

,to’q)’u[tb’tl]) =0

and the system is pointwise complete, then (7) must hold by Lemma 2. Q.E.D.

Remark: If the control u transfers an initial function
—_ [to,tl+h]

P € 63 of the system (2) to the origin (the zero function on the

interval [tl,tl+h]), then if wu(t) = 0 for all t > t, + h, the

1

system will remain at the origin.




4. On the Solution of (8).

Congider the following facts.

(1) An admissible solution of (8) will exist on an inter-

val (tl,tl+h) if and only if -B(t)x(t-h; t is in the

P L]
range of C(t) almost everywhere on (tl,tl+h). Standard techniques
can then be employed to construct a solution [12].

(2) 1If "controllable" is replaced by "uniformly control-
lable" in Theorem 1, then the right side of (8) must be in the range
of C(t) for all ¢ e 03 on (tl,tl+h) where %, 1s fixed.

(3) No solution of (8) can be unique since one can add
to it any vector-valued function of time which is in the null space
of C(+) almost everywhere on (tl,tl+h).

To obtain sharper results than the preceding, it is

necessary to do some deep analysis of the attainable set for (2),

as indicated by the results below.

Consider equation (8) over an interval (tl,tl+h), and
let P Dbe the set of initial functions in d} which are control-

lable to the origin using admissible controls defined over [to,tl+h].

(P GB for uniform controllability). For each ¢ € P, let

K¢ = {ui,

the origin (the zero function defined over the fixed time interval

A € A(p)) = the set of admissible controls taking ¢ to

t.,t,+h]). Invoking the axiom of choice, define
1’71 ?

Q= {¥; V:P — t_J K¢}
peP

(i.e., Vv € Q =>VU(p) = ﬁi for some A € A(9)).



-10-

Now, let

Sy(t) = (x(t; £,9,¥(9)); @ P

where x(t; tO,Q,W(Q)) denotes the value at time t of the tra-
jectory of (2) generated by initial function ¢ and control V(9).

We then have

LEMMA 3: If for each ¥ € Q and each t € (tl-h,tl) the set Sw(t)

covers all directions in euclidean n-space, then a necessary and

sufficient condition for (8) to have a solution independent of

u almost everywhere on (%t,,t.+h) is that there exists a
[to,tl] 1’1

p X n matrix D(t) with bounded measurable elements such that

B(t) = C(t)D(t) almost everywhere on (tl,tl+h).

Proof; Fix +t € (tl,tl+h). The problem reduces to solving the

algebraic equation

where x is an n-vector which can take on values correéponding
(except for a magnitude constraint) to any collection of n basis
vectors. Then -Bx € range € 1if and only if the columns of B

are linear combinations of those of C, i.e., there exists D such
that B = CD. Continuity of B(t) and C(t) assure that this
process can be repeated for each t e (tl,tl+h) with the matrix

D(t) having bounded measurable elements on that interval. Q.E.D.




Remark; Under the above conditions, the solution for wu(+) has

the form

(10) u(t) =X aiei(t) + D(t)x(t-h;to,w,u[to,tl]), £ <t<t +h
where ei(t) € null space of C(t) and a; = constant. The pre-

ceding facts plus Theorem 1 immediately imply

THEOREM 2. A pointwise complete system (2), which satisfies the
hypothesis of Lemma 3 is uniformly controllable to the origin with

respect to &3 if and only if

(1) There exists t) >t such that (7) holds
(ii) There exists an n x p matrix, D(t), with bounded
measurable elements such that, with tl defined as

above, B(t) = C(t)D(t) a.e. on (tl,tl+h).

Since engineers have an aversion (and rightfully sol!) to
measurable solutions of control problems, we give the conditions
under which one can find an absolutely continuous solution to (8)
over the interval (tl,tl+h). The result emerges as an application

of the next lemma which is due to Ddlezal® [13].

LEMMA 4 (DSlezal): Let G(t) be an n X p matrix defined on an
interval [a,b] and continuous,at least. Suppose there exists an
integer r £ p such that rank G(t) = r for all t e [a,b]. Then

there exists an p X p matrix H(t), defined and nonsingular on

*
This important Lemma has a variety of applications to problems in

system theory [16,17].
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[a,b] and whose degree of smoothness matches that of G(t), such

that
G(t)H(t) = [F(t):O], te [a:b]:

where F(t) is nxr, rank F(t) =r for all t e [a,b].

THEOREM 3: If equation (8) has an admissible solution and if
rank C(t) = r = constant for all t e [t,,t +h], then that solu-

tion can be chosen to be absolutely continuous.

Proof: By Lemma 4, there exist real n-vector-valued continuous

functions cl(t),...,cr(t) which span the range C(t) at each

t e [t,,t,+h]. Then, if (8) has a solution almost everywhere on
(t,,t;+h) we can write

r
(11) B(t)x(t-h; to,cp,u[to’tl]) = .=lai(t)ci(t), a.e. on (tl,tl+h).

hE

But since the left side of (11) is absolutely continuous,
then the ai‘s can be chosen absolutely continuous. It then

follows that an absolutely continuous solution of (8) exists. Q.E.D.

5. The Nonlinear Problem.

The problem will be solved in two steps. First, conditions
are given under which one can control a system (1) to an arbitrarily

small neighborhood of the origin in finite time, and then we give




conditions under which the origin can be reached in finite time from

a point in its neighborhood.

DEFINITION: (6) A system (1) is quasi-controllable to the

origin with respect to (ss if for any ¢ ¢ 63 and any € > O, there

exists tl > to and an admissible control u[to’t1+h] such that
lx(e,t ,0,u) = max  |x(t; t_,p,u)| < e.
© [ty,%,+h] t StSt +h °

Consider the system (1) with f(t,0,0,0) =0, f € ¢t in

Rx R xR xRP, u(t) eR’, and ¢ ¢ .

Define the functions:

w(+) = continuous, real-valued nondecreasing function
such that o(s) >s, s > 0;
pu(+) and v(.) = continuous, real-valued functions of
s defined for s 2z 0, and positive and nondecreasing for s # 0.
B(+) = continuous, real-valued function of s defined

for s 2 0, and positive for s # O.

THEOREM 4: Given the system (1) and the above defined quantities.
Suppose there exists a real-valued function V(t,x), defined and
continuous for t = to -h, xe€ Rn, and a real p-vector-valued

function U(x) which is ¢ in R® such that

(1) w(|x]) = v(t,x) = v(|x]), t= t,-h



1k

(i1)

(t,x) HN(t,x)
ot

y J(E,
x=p(t)

l - £(t,0(t),0(t-h),U(p(t)))
x=p(t)

s -(le(®)])

for all t 2 to and all continuous, real n-vector-valued function

segments such that

p[t'h)t]

(111)  V(e,p(8)) < o(V(t,p(t))), t-hs=¢t s t.
Then the system (1) is quasi-controllable with respect to ﬂB .

Remark: Theorem 4 is an easy generalization of a theorem originally
due to Krasovskii [14] on uniform asymptotic stability of delay-
differential equations. The proof follows precisely the novel but
lengthy proof given by Driver [9] of the original theorem and will
therefore not be reproduced here. Suffice it to say that if the
conditions of the theorem are met, then for any initial-function

P € 63, there exists an admissible control which has the effect

of driving the system to an e-neighborhood of the origin (in function
space) in finite time.

Now, consider the following:

DEFINITION: (7) A system (1) is locally controllable to

the origin with respect to 63 if it is controllable to the origin

with respect to a neighborhood N(dg) of the origin in 63 .

(8) The first variation of (1) about the zero-solution is
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the system (2) where

A(b) = $(t,0,0,0)

5(2) = 5 (£:9:0,0) (x,(8) = x(t-1)

6(8) = $5(+,0,0,0)

THEOREM 5: A system (1) is locally controllable to the origin with
respect to 63 if its first variation about the zero-solution

satisfies the conditions

(1) there exists t, >t such that (7) holds

(ii) with t, defined as above, there exists an n X p
matrix D(t) with bounded, measurable elements

such that B(t) = ¢(t)D(t) a.e. on (tl,tl+h).
Proof; Following Kalman [7], we introduce a parameter ¢ into the
control u and define

1

“B(t)x(t-h; t_,08 ),

C'(t)K'(t,tl)g, t st

A

(12)  ub(t) = u(t,e)

solution® of C(t)u(t)

tl <t< tl + h

Notes:

(1) u(t,0) = u®(t) =0 for t e [t_,b 1.

(i) If @ =0, then x(t; to,Oiauo) =0 on [t_-h,t;].

¥
An admissible solution exists by hypothesis (ii).
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Let

(15) J(t) = Py £=0

Since @ = 0, the solution of (1) is written as

t
x(t;to,oiaug) = x(t;¢) = i f(T,X(T),Xd(T),ug(T))dT, t, St st +h.

o
From (i) and (ii) above, it follows that
t
3 3 o ¥ A au]
J(t) = = (7,0,0,0)x + (t,0,0,0) ++<-(1,0,0,0)
=i H& 0% X ' 3

t, 4

dv

=0

v 2
[ [A(7)d(7) + B(7)J(7-h) + C(T)E(T,O)]d'r.
t

o}

Differentiating,
J(t) = A(t)J(t) + B(£)J(t-h) + c(t)%(t,o), t,stst +h
But from (12),
M o) = O (LK (£,8.), t St st
x\ YT 271/ Yo T YT ML

and

C(t)%l(t,o) = -B(t)J(t-h), t, <t <t +h
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Therefore

C(E)C (B)K' (t,8,), t st =t
(14) J(t) = A(t)T(t) + B(t)J(t-h) + .

-B(t)J(t-h), tp<t<t, +h

The solution of (14) over the interval [t,,t,] is then

t
(15) J(t) = [ K(s,t)C(s)C" ()K" (s,t,)ds, t St =t
t

e}

1

By hypothesis, equation (15) implies that det J(tl) # 0.

Moreover, on the interval (tl,tl+h), equation (14) is
(16) J(t) = A(£)I(t)

so that J(t) is a fundemental matrix solution for (16). It follows
that det J(t) # 0 for t e [t),t,+h].
Since J(t) is defined by (13), the above facts suggest

that one may use an implicit function theorem to solve the equation
x(t;to,@,g) =0, t;=t=st +h

for ¢ as a function of ¢. More precisely, consider the follow-

ing theorem from Dieudonné [15].

THEOREM 6: Let 651,&32,635 be Banach spaces; g a continuously
differentiable map of an open subset § of (Bl X (Bg into @5.
Let (xo,yo) € S where g(xo,yo) = 0 and let the Frechet derivative

of g with respect toc y Ybe a linear homeomorphism of ﬂ% into
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&5:5. Then there exists an open neighborhood, No’ of X in 631

such that for every open connected neighborhood N of X contained
in NO, there exists a unique continuous map II:N — 652 such that
I(x_) = Yo (x,I(x)) € S and g(x,M(x)) = 0 for all x ¢ N. Further-

more II is continuously differentiable in N.

Application: Let ﬁgl = the space &5 of all continuous functions

n 63 . .
on [to-h,to], 652 = R, 3 = the space of all continuous functions

on [%,,t,+h], g = a solution segment of (1) i.e. g(+,+) = x (tosse)-
[')']

Let S = O& X I where T CiRn is an open neighborhood of the origin

G r

(07,07)

in R and represents the permissible range of ¢. (Thus is

an interior point of S). The Frechet derivative of g with respect to

¢ 1is a map which takes R" onto 635. The fact that the Jacobian

matrix J(t) is a homeomorphism of R° onto R® for each

t e [tl,tl+h] implies that the Frechet derivative of g is a homeo-

8 r

morphism from R° onto 63 . Now, since 0,0) =0,

3 x[tl,tl+h](to’
then by Theorem 6 there exists a neighborhood N(OB) of Cﬁ3 and a
®

unique continuous map I:N(O°) — R such that o e N(dﬁ5 implies

(0,10)) € = x o p0(,0,(@) = 0, that is if o e N(dD)
1’71

then the equation
x(t; to,m,g) =0, t stst +h

has an admissible solution ¢ = I(p). This completes the proof of

Theorem 5,
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Theorems 4 and 5 provide sufficient conditions for control-

lability to the origin with respect to the space 63 for the system

(1).

6. Controllability to a Function.

To repeat our earlier assertion; controllability to the
origin does not necessarily imply controllability to a function or
to a function space. To illustrate this, and to show how the tech-
niques presented thus far can be adapted to study controllability to
a function, we present some results for controllability of (2) (and
local controllability of (1)) to a function in the space K of real

n-vector-valued Cl-functions defined on the interval [to-h,to].
THEOREM 7: Consider a pointwise complete system (2) and let it(-) =
d .

ag(‘) - A(t)(-). Let ae A. Then (2) is controllable to « € AL

with respect to GB if and only if

(i) there exists t >t such that (7) holds
(ii) with t, defined as above, for any ¢ € 63, and for

some admissible u such that x(t

; ¢ u =
[tg,%;] 1 Cor® [to,tl]>

a(to-h), there exists an admissible solution to the equation
(17) C(t)u(t) = (ita) (t'tl"'to"h) - B(t)x(t"h; to,cp’u[to’tl])

on the interval (tl,t1+h).

Proof: Essentially the same as for Theorem 1.
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Now consider the following

DEFINITION: (9) A system (1) is locally controllable to a

function « e_}ﬂ, with respect to 43 if, given any initial time t

o’

and a trajectory xo(-; to,ma,ua), P € da, v, admissible, such that

04
o/,. _ _ _

for some t, >t , x (t; to,@a,ua) = a(t-t +t_-h) for all

t e [ty,t,+h], then there is a neighborhood N(@a) of the initial

function @a such that for each ¢ € N(@a) there exists an admissible

control u¥ defined on [t ,ty+h] such that x(t; to,@,u*) =

a(t-t+t _-h) for all t e [t,,t +h].

1

(10) The first variation of (1) about the trajectory

xo(-; to,@a,ua) is given by (2) where

(18)  A(6) = S5(6,x°(8; t,9,u ), x°(b-h; t_,0_,u ), v (5)

(19) B(t) = of (t,x°(t; t_,9 ,u), x"(t-h; t ¢ ,u), u (t))
&d, ’ Yoty e ? ) Yoy Y’ o

(20) o(t) = Ee,xO; 5,0 ,u), x (bh; £ 0 ,u), u(t))
&: 2 ol ol ? ) VY e’ o .

We then have

THEOREM 8: A system (1) is locally controllable to a function o« € X
with respect to d} if its first variation about the tfajectory

x(*,t ,¢ ,u ) as defined in Definition 9 satisfies the conditions
2o’ T _

(i) (7) holds for t, as defined in Definition 9

(ii) with t, as above; Gfta)(t-tl+to-h) e range C(t) almost

everywhere on (tl,t1+h).




(iii) there exists an n X p matrix D(t) with measurable bounded
elements such that B(t) = C(+)D(t) almost everywhere on

(t,t,+h).

Proof: Essentially the same as that for Theorem 5, but is outlined for

illustrative purposes.
Let x°(t; to’@a’ua) = x°(t) and perform the substitution in

(1)

(21) x(t) = y(t) + x°(t).

Then (1) can be written as

(22) 7(t) = -x°(t) + £(t,x(t),x(t-h),u(t)).

Solving for y assuming the zero initial function (corresponding to

initial function ¢, € 03 for x) we obtain

t
(23) y(8) = =x7(t) + 9 (8) + [ 2(r,x(%) x(v-n) u(x))ar

o}

Now introduce a parameter ¢ into u(t) and let

u () + CH (DK (6,6)8, t 5t st

(24)  ub(t) = u(t,t) = u (t) + solution* to C(t)u(t) =

“B(t)y(t-h; t_,0,u

[to’tl]), t, <t <t +h,

An admissible solution exists by hypotheses (ii) and (iii).
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where K represents the kernel matrix in the solution of (3) with
A(+), B(+) given by (18) and (19), and C(t) is given by (20).

Let the corresponding solution of (22) be y(t; t_,0,&) and define

A (t; t,50,8)

J(t) X

£=0

Since u’(t)

ua(t) and y(t; t_,0,0) = 0 we have, upon

differentiating (23)

t
J(t) = [ [A(7)I(7) + B(T)J(7-h) + C(7)
t

(@] g:o

° (v)
where A(-), B(+), C(-) are as in (18), (19), (20) respectively.

The remaining steps are now exactly as in the proof of
Theorem 5, i.e., it follows from (7), (17), and (24) that det J(t) # O

for all t € [tl,tl+h]. Hence we can apply Theorem 6 to show existence

of a solution to the equation
(25) v(t; to,m,g) =0 for all t € (tl,tl+h)
of the form ¢ =7 (p) for ¢ in some small neighborhood of the

origin in y-space. (And the range of the control is contained in

a neighborhood of the range of ua.) But since, by definition,

*
y(t; to,@,g) x(t; to)@ ,§) - xo(t3 to’wa’ua)

X(t; to’¢*’§) - a(t-tl+to—h), t e (tl,tl+h)




-3

where o* = ¢ - Py then the solution of (25) implies that the equa-

tion
x(t; t_,0%,8) = a(t-t;+t_-h), t e (t,,5+h)

has a solution ¢ = II'(9*) for all ¢* in a small neighborhood of
@a and with the range of the control contained in a neighborhood of
the range of ua.
Q.E.D.
To obtain sufficient conditions for controllability of (1)
to o € Jﬁﬁ with respect to 43 we need merely complement Theorem 8
with a theorem which yields quasi-controllability of‘(l) to o € }Z.
Such a theorem is easily obtained by rewriting Theorem 4 so that it

pertains to equation (22).
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