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1. INTRODUCTION 

This report  concerns an empirical solution to the single highest 

peak (SHP) problem for a simple beam subjected to stationary random 

excitation perfectly correlated in space and time. 

and rigidly clamped boundary conditions a re  considered. 

dependent stochastic solutions a r e  obtained by examining the output 

statist ics of an analog circuit  which simulates the physical system. 

The results a r e  presented in dimensionless fo rm and find direct  appli- 

cation in  estimating the probability that the maximum response, within 

a finite time interval, remains below a preselected threshold level. 

Both simply supported 

These t ime 

F o r  completeness in this discussion, cursory  reviews a r e  made 

of basic theory common to the random vibration of beams and to the 

analog simulation of distributed structures.  

more  fully understand and consequently appreciate the simulation pro- 

cedure (and its limitations) used in  this study. 

In this way, the reader  can 
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2. BACKGROUND INFORMATION 

The single highest peak (SHP) problem concerns the maximum 

response statist ics of a physical system subjected to random excitation. 

Specifically, one seeks to predict  the maximum response the sys tem 

may experience within a finite t ime interval. 

The statist ics of the SHP problem a r e  time varying and reflect  

a nontrivial exercise  even for a simple mechanical configuration as a 

single degree-of-freedom system subjected to Gaussian bandlimited 

white noise. 

f 

half-power bandwidth of the mechanical system and (2) includes f , 
then the output response is as shown in Figure 1. 

as simple harmonic motion of frequency f 

amplitude and phase. 

If the system is lightly damped with the natural frequency 

and the bandwidth of the input excitation (1) is  wide compared to the n 

n 
This motion appears 

with a randomly varying n 

Amp lit ud e 

Time 

Figure 1. Response of a Lightly Damped Mechanical Oscillator to 
Broadband Stationary Random Excitation 
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The RMS displacement response to this stationary excitation is 

given by 

where the mean square displacement response is 

G X (a) d o  =looc IHo(w)12 Gf(o) do (1) 

The t e r m  G (o) is the displacement response spectral  density, Gf(o) 

the spectral  density of the applied excitation, o 

frequency of the bandlimited excitation, and H (a) a displacement to 

force frequency response function of the system defined as 

X 

the upper cutoff 
C 

0 

1 1 
H (w) = 7. 
0 

m o  o 

n o 

F o r  white noise, G (o) reduces t o  the constant G and Eq. (1) becomes 
f 0 

TT. G Q 
I 0 

4 J 2  X = G 0 looc IHo(o)12 do = 2 m  2 3 n  o 
n 

(3) 

where the undamped natural  frequency o 

a r e  given by 

and the system damping Q 
n 

w = 2Tf n n 

1 
Q = -  

21: 

(4) 
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I 

The 1: t e r m  is  the damping factor,  m the mass  of the sys tem and I 

dimensionless integral  varying i n  value f r o m  zero  to one. 

the mean square velocity and acceleration responses a r e  

a 
n 

Similarly, 

TTG Q 

2m w 
n I1 + ?  = G lo U C  W ~ ) H ~ ( W ) ( ~  d o =  

0 

X 0 
n 

.rrGoQwn 

n I11 
2 OC 4 

L J J ~ =  G 0 lo w IHo(w)12 dw = 2m 2 

(5) 

where the dimensionless integrals I , I1 and I11 a r e  found i n  Ref- 

erences 2 and 9. The integral I1 , as with I , is  bounded and ranges 

in value between zero and one. On the other hand, I11 generally be- 

comes unbounded as  w -00 and tends to resul t  in values substantially 

n n  n 

n n 

n 

C 

greater than one as  w / w  > 1. F o r  these reasons,  Eq. (6) finds limited c n  
practical application. 

Other statist ics regarding Figure 1 also a r e  known. The prob- 

ability distribution function is  Gaussian for the instantaneous amplitudes 

and is essentially Rayleigh for the individual peaks. 

distribution function for the SHP is neither Gaussian nor Rayleigh but 

of the fo rm 

The probability 

where A is dependent upon the initial conditions and CY 

parameter  dependent upon the damping Q and the th.reshold level p . 
is a stochastic 

0 0 

0 
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The t e r m  p is a dimensionless ratio of the maximum response ampli- 

tude to the RMS response of the sys tem to broadband stationary white 

noise. F o r  many applications of practical interest ,  A 

equal to unity with negligible e r r o r .  may be found in 

Reference 8 as  families of curves in p for both p and lp1 . An 

alternate and (perhaps) more  descriptive manner of presenting the in- 

formation contained in Eq. (7) i s  shown as  Figure 2. 

may be assumed 
0 

Values of CY 

t 0 

0 

The f o r m  of the data presentation in Figure 2 represents  a s to -  

chastic solution for a constant probability value and i s  originally based 

upon the resul ts  f rom an analog simulation study (Reference 3 ). This 

curve is fo r  the constant probability P ( l p l  < p ) = 0. 95 and, as with 

the ordinate p ,  the abscissa  is likewise a dimensionless ra t io  consisting 

of the natural  frequency f , the system damping Q and the sampling t ime 

interval T .  This t ime interval corresponds to the time duration during 

which the sys tem response is observed. The product f T corresponds n 
(approximately) to the number of response cycles so  that f T / Q  may be 

n 
interpreted as the number of response cycles per  Q of the system. 

F o r  a specific single degree of freedom system and a preselected prob- 

ability value (f , Q and PM(IpI  < p ) a r e  thus fixed), the p response 

varies exponentially with the t ime T and theoretically approaches 00 

as T e r n .  

i n  the range 0 < f T / Q  - < 3 .  F o r  each desired probability value of 

PM(I p(  - < Po),  a separate  p curve is  required. Each such p plot 

appears s imi la r  to Figure 2 wherein, as  expected, the curves associ-  

ated with the higher probability values yield correspondingly higher p 
values . 

0 - M 

n 

n - n 

The greatest  ra te  of increase in I p I  appears to occur with- 

n - 

The response of a distributed elastic s t ructure  to random ex- 

citation is somewhat more  involved than with the single degree-of- 

f reedom system. F o r  the single degree-of-freedom system, it is 
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recalled an  ordinary differential equation is treated and the random 

excitation is functionally dependent only upon time. 

s t ructure ,  a partial  differential equation must be examined wherein the 

external loading is random excitation and usually is correlated with the 

spatial  dimensions as well as in time. 

Fo r  a distributed 

The s t ructure  has many (theoretically infinite i n  number) natural 

o r  modal frequencies and associated with each such frequency is a 

modal damping factor and a mode shape. 

a r e  used to define generalized quantities such as generalized mass ,  

generalized damping, generalized stiffness and generalized force; all 

of which a r e  convenient to  a modal analysis of the system. F o r  many 

engineering applications involving structures with nonuniform physical 

and geometric properties,  it is frequently advantageous to represent  

such systems by discrete  models. 

ordinary differential equations by matrix procedures ra ther  than solve 

par t ia l  differential equations with variable coefficients. 

approach, concepts based upon modal solutions a r e  equally appropriate. 

These s t ructural  properties 

In this way, one t reats  sets  of 

With either * 
The response due to an a rb i t r a ry  loading is' dependent upon how 

well the loading couples with the structure. Such coupling is a function 

not only of the spectral  frequency distribution of the applied excitation, 

but a lso upon the spatial frequency distribution of this loading. Conse- 

quently, to achieve a maximum coupling between the s t ructure  and the 

input excitation, coincidence o r  resonance in both space and time is r e -  

quired. 

spec t ra l  densities, space-time correlation functions and joint acceptances. 

These concepts a r e  common to calculations for the RMS response of a 

distributed s t ructure  t o  random excitation. 

Such phenomena naturally give r i s e  to concepts of space-time 

* 
citation bandwidth) is 2 6 ,  statist ical  energy procedures (Reference 10) 
become effective analysis tools for  RMS calculations. 

F o r  problems wherein the modal density (modal frequencies per  ex- 
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For  the SHP problem of a distributed s t ructure ,  a most salient 

question i s  what quantities does one use to categorize the maximum 

response characterist ics? By deciding upon a simulation procedure 

(similar t o  Reference 3) to examine empirically the SHP statist ics,  the 

dimensionless ratios used in Figure 2 appear appealing. Since the 

RMS response of such a s t ructure  always can be estimated either theo- 

retically and/or  by measurement,  this quantity is used to normalize 

the response maxima s o  that the basic definition of the p ratio is un- 

changed. 

ratio as f lT /Q1  , the basic fo rm of the data presentation in  Figure 2 r e -  

mains intact. is the fundamental modal frequency of 

the structure and Q is a measure of its modal damping. With these 

definitions, the maximum response resul ts  a re  presented in a useful 

fo rm inasmuch a s  all  of the various quantities in the dimensionless ratios 

may be plausibly calculated, measured, o r  estimated. 

In addition, by arbi t rar i ly  defining the dimensionless time 

The quantity f 1 

1 

This report  considers principally the p results for a Bernoulli- 

Euler  beam with both simply supported and rigidly clamped boundaries 

where the random excitation i s  stationary white noise with a correlation 

of unity in  both space and time. 

lated electrically and the p results then determined f rom measurements 

taken at the mid-span of the beam. 

detail, it is judicious to review briefly the basic theory for 

dynamics and (2) the analog simulation. 

The beam and the excitation a r e  simu- 

Before examining these resul ts  in  

(1) the beam 
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3. BASIC BEAM THEORY 

The equation of motion for  a Bernoulli-Euler beam is  of the 

f o r m  

2 4 
?-Y t c !!Y t EI% = f(x, t) m 

ax 2 a t  a t  

where  m is the mass  per  unit length, c a viscous damping coefficient, 

E the Young's modulus and I a cross-section a r e a  moment of inertia. 

The variable y represents  the la teral  displacement of the beam f rom 

the static equilibrium position and i s  a function of the spatial  dimension 

x and t ime t so that y = y(x, t) . 
citation and may be likewise a function of x and t .  

beam to be homogeneous and uniform, the coefficients of Eq. (8) reduce 

to constants and the complexity of mathematics required to calculate 

a solution is thereby decreased. 

The quantity f(x, t) is the applied ex- 

By assuming the 

A modal solution of y(x, t) may be writ ten i n  the f o r m  

where +.(x) is the jth normal mode of the sys tem and q.(t)  i s  the 
3 J 

normal  coordinate associated with. the jth mode. The summation is 

implied to range f r o m  one to infinity, thus including a l l  of the elastic 

modes of the distributed s t ructure .  

9 



The normal modes a r e  orthogonal functions in x aud a r e  some- 

t imes called the eigenfunctions of the system. Physically, they may 

be interpreted as the spatial f o r m  of the f r ee  vibration of the sys tem 

in the absence of damping and all external forces.  If a body is thus 

distorted into one of the normal mode shapes, say +.(x) , then released; 

the body wi l l  vibrate for all t ime in  this jth mode with the modal f r e -  

quency o . 
may be expressed as  

3 

The general f o r m  of the jth mode shape for a simple beam 
j 

+.(x) = C .  cos X . x  t D. sin X.x t E .  cosh h.x t F. sinh X.x 
3 3 3 J 3 J 3 J J 

where the parameter  X is related to the jth modal frequency as  
j 

The numerical values of the quantity X.1 a r e  obtained f rom solutions to 
J 

the frequency equation of the system, this equation being formed a s  a 

resul t  of applying the boundary conditions to Eq. (10). 

The normal coordinate q.(t)  is obtained by solving the equation 
J 

of motion 
- 
F . (t) 

J J  M 
j 

a 2 
qj( t )  -t 2c. 0.4 . ( t )  t o. q.( t )  = - - 

3 3 3  

where 

10 



- 
C .  

- - 
The t e r m  M. is the generalized mass ,  C .  the generalized damping, 

K .  the generalized stiffness and F.( t )  the generalized force. These 

generalized quantities a r e  related to the physical properties of the 

beam by 

I I - - 
3 3 

- 2 -  
K. = a. M 

I ~j 

If initial conditions a r e  quoted, these may be incorporated into the solu- 

tion by evaluating the expressions 

11 



Since the fo rm of Eq. (12) corresponds to that of a single degree-of- 

freedom system, q.(t)  may be interpreted a s  the output response of a 
J 

modal oscillator in  the jth mode. 

Fo r  forcing functions which a r e  deterministic functions of space 

and time, Eq. (9) is an appropriate solution. F o r  forcing functions 

which a r e  random, the mean square response is a desired response 

solution. If the forcing field i s  isotropic, homogeneous and stationary, 

the mean square displacement response of an a rb i t r a ry  l inear elastic 

beam may be written as 

;pc 
where H (w) is the complex conjugate of H (0) and H.(w) the jth modal 

magnification factor 
k k 3 

12 



The quantity L. (a) is expressed i n  terms of the spatial c ross -spec t ra l  

density function of the applied excitation G (x, X I ,  a) a s  
Jk 

f 

2 o r  in t e rms  of the joint acceptance j (a) as 
jk 

where 

The t e r m  G (x ,a) re fers  to a spectral  density of the applied excitation 

at x wherein x is  selected s o  that G (x ,a) is a maximum. In this 

way, j (w) will vary f rom zero to one. 

f o  

0 f o  2 

By assuming the j # k te rms  t o  be negligible in comparison with 

0 

jk 

those fo r  j = k ,  the mean square response becomes 

13 



where the quantity L (o ) -+L . (w)  and appears in the fo rm 
jk J 

F o r  an excitation perfectly correlated in space and time, Gf(x, x', o)+G 

and the mean square response becomes 
0 

-2 4 
M. w. 

J J  

then reduces to 

(26) 
2 -  Q 

.2 3 
r m  j=1, 3, 5..  . 3 W j  

I >: s in  
0 

2 G  2 
qJy(x) = - 2 

for  a simply supported beam. 
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4. BASIC ANALOG CONCEPTS 

To conduct an analog simulation study, physically realizable 

e lectr ical  analogs depicting the dynamics of a distributed elastic beam 

a r e  required. 

cedures for applying random excitation with a specific space-time cor 

relation function. 

In addition, special  attention must be given to pro- 

In this study, passive analog circuits a r e  used to describe the 

beam. 

they correspond mechanically to a lumped parameter  model and cor re-  

spond mathematically to a finite-difference model. 

cur ren t  and velocity voltage, the network impedances become equiv- 

alent to mechanical mobility and the resultant analog is called cate- 

gorically a mobility analog. These networks consist of capacitors, in- 

ductors,  res i s tors  and t ransformers  - the la t ter  component describing 

the geometry of the structure.  

capacitors yo mass ,  inductors .- flexibility and res i s tors  damping. 

Such circuits appear topologically s imi la r  to the physical system; 

By requiring force rc. 

F o r  this particular simulation, 

Although various derivation methods may be used (Reference 7 )  

one of the most efficient procedures employs energy relationships associ-  

ated with both the s t ructure  and the circuit (Reference 1). 

s t r a in  energy to the energy associated with an inductor and equating 

kinetic energy to the energy associated with a capacitor, minimum com- 

ponent circuits may be readily constructed. 

energy expression (which a r e  spatial functions of the la te ra l  deflection) 

that t ransformers  a r e  required. 

segment of a simple beam is shown a s  Figure 3. 

venience, albeit a slight departure f r o m  traditional circuit  symbolisms, 

inductors L a r e  noted by w, t ransformers  a r e  represented by the 

conventional pr imary  P to secondary S coding wherein the t signs 

indicate the t ransformer  polarity, and electrical  grounds a r e  shown by 

By equating 

It is in  describing the s t ra in  

Such a n  analog circuit  for a difference 

F o r  notational con- 

n 

6 n n 
. 
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This difference model consists of two principal circuits,  (1) for the 

slope propert ies  and (2)  for the la teral  deflection properties,  and bothare  

magnetically coupled by the t ransformer.  

c i rcui t  correspond to the internal bending moments between stations 

n to n t  and n t  to n .  Similarly, current  flow in  the lateral velocity 

c i rcui t  corresponds to the internal shear  between stations n to n t  1 . 
All 8 voltages denote slope velocities a t  particular spatial  positions 

and, likewise, all y voltages denote la teral  velocities at specific 

spatial  locations. 

Current  flows in the slope 

0 

0 

By using the scale  factor relationships given in Reference 7 

as 

k 
a 

F = - I  

ka 
Y = N  e; 

t = N t  m e 

the individual c i rcui t  components become of the f o r m  

17 



1 n t z  

c n = ( ; ) 2 m A x l  n-z 1 

1 

implies the mass  and flexibility distributions a r e  inte- 1::: 1 1 

The notation 

grated between stations n-z  to n t z .  The scaling constants a, N and 

Po a r e  selected such that the component values a r e  consistent with 

setting values available on the analog computer. 

By assuming N = 1 and then substituting the expressions of Eq. (28) 

into the frequency expression 

it follows the modal frequencies (electrical)  i n  cycles pe r  second a r e  

given by 

1 
P 

S n 

18 



. where n denotes the number of difference segments into which the 
0 

beam is subdivided. Since X. = j r / l  f o r  a simply supported beam, the 

fundamental modal frequency (electrical)  for this particular s t ructure  

becomes 

J 

T I  1 
f (elec) = - - 4 2 P  

S 
0 

n 1 

n 

By requiring the beam circui t  to  have i ts  fundamental resonance a t  

f l  (elec) = 100 cps, the various plausible interrelationships between 

P / S  , L and C a r e  shown in Figure 4. nos n n n n 
By cascading circuits similar to that of Figure 3, an effective 

sixteen cell  analog model of a simply supported beam is shown as  F i g -  

u r e  5. By simply closing the switch in  the 8 circuit  a t  station 0 ,  the 

beam boundary conditions convert to  those for  a simple beam rigidly 

clamped a t  both ends. Due to symmetry,  only half of the beam is shown 

wherein station 0 corresponds t o  x = 0 and station 8 to x = 1 / 2 .  The 

t ransformer  whiffle-tree allows the random excitation to be distributed 

with a correlation of unity in  both space and time. 

input as the applied excitation, the loading would appear a s  a uniformly 

distributed harmonic forcing function. 

excitation and recording the 

plots of Figure 6 a r e  obtained. 

of velocity to force frequency response functions, they may appropriately 

be called plots of vobi l i ty  magnitude. 

* 
For  a sinusoidal 

By applying such a harmonic 

response magnitude at station 8, the 

Since these plots denote the magnitude 

* 
The t ransformers  a r e  all  center-tapped. 
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5. ANALOG SIMULATION RESULTS 

By using the circuits of Figure 6, three problems of interest  a r e  

considered 

1. the effect of a flexible boundary in bending on the 
fundamental modal frequency of a beam 

the RMS profile of a beam subjected to random excitation 
perfectly correlated in both space and time 

the SHP response of a beam subjected to random ex- 
citation perfectly correlated in both space and time 

2. 

3 .  

The first two problems may be treated efficiently by other analytical 

and/or  computational methods whereas the las t  problem is particularly 

well adapted to this analog simulation. 

The initial problem requires the first eigenvalue to the frequency 

equation for a simple beam with the following boundary conditions 

By applying these boundary restraints  to  Eq. ( l o ) ,  there  resul ts  the 

determinant 

23 



1 - -  2E1 X.1 
“e J 

1 

I I 

I 
cos X.1 t -  X . l  (cosh X . 1  + cos X . l )  I - X . l  sinh X . 1  

1 k e  J J J I  1kg J J J 

I 

I X.1 s in  X.1 
E1 - 
1‘0 J J t  

1 
t (sin X . l  t sinh X . l )  I 

i J J 

which produces the frequency equation 

t 2 (g)  X.1 (sin X . l  cosh X . l  - cos X . 1  sinh X . 1 )  = 0 
J J J J J 

t cosh X.1 
J 

Modal frequencies a r e  then determined by substituting the X.1  solutions 

into the frequency expression 
J 

thus producing the resul ts  of Figure 7. 

to the fundamental modal frequency of a simple supported beam, an  easily 

calculable quantity. 

cuit  simply by tuning the oscil lator to the fundamental resonant frequency 

of the network. 

Note the ordinate is normalized 

These s a m e  resul ts  a r e  obtained f rom the analog c i r -  

24 

= o  

(32) 

(33) 
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The second problem resolves to evaluating the analytical expression 

for the mean square response given by Eq. (18) as 

F o r  the random forcing function considered here ,  that i s  a forcing func- 

tion correlated perfectly in space and time, this expression may be 

evaluated with relative ease.  Fo r  forcing functions with variable spatial  

correlation functions and for s t ructures  with flexible boundaries, this ex- 

pression i s  fa r  more  tedious to evaluate precisely and various approxi- 

mations subsequently a r e  made. In the analog simulation, one simply 

records the output response of a t rue  RMS meter  at the spatial position 

of interest .  

is normalized to the RMS response at the mid-span of the beam. 

analog and calculated values agree closely for both the simply supported 

and the rigidly clamped boundaries. 

For  the third problem, a purely analytical attempt is  virtually 

By means of the 

Such RMS results a r e  shown as Figure 8 wherein the ordinate 

Both 

intractable and a simulation study thus is in order.  

analog circuit  shown in Figure 5 and using the format  of Reference 3, 

peak response statist ics to stationary random excitation may be collected 

and readily examined. Typical examples of the input excitation at any 

point on the beam and the response at x = 1 / 2  a r e  shown as Figure 9. 
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F o r  this SHP problem, it is remembered that the beam has 

achieved stationarity in i t s  response and one measures  the highest r e -  

sponse (both positive and negative) of the sys tem which occurs within 

the sampling time interval T .  After accumulating 100 such readings, 

these data a r e  arranged to fo rm histograms such that P 

values can be estimated. 

T value, plots s imilar  to Figure 10 may be developed for  any desirable 

probability value of I P I  - < Po.  The curve for  the average absolute peak r e -  

sponse is found to be approximately the same a s  PM(l P I  5 Po) = 0.  50. 

( 1  P I  - < Po) M 
By repeating this procedure for  each preselected 

The peak response statist ics a r e  shown a s  (3 plots of I p I versus 

the dimensionless time parameter  f T / Q  To fo rm the P ratios,  the 

absolute maximum response values a r e  normalized by the RMS response 

of the sys tem to stationary white noise. 

though consistently higher, a r e  s imilar  in f o r m  to those for a single 

degree-of-freedom system and graphically display the time dependency 

of I p I . Since there appears to be no consistent difference between the 

data for a simply supported beam and that for  a rigidly clamped beam, 

one concludes the I P (  response essentially i s  independent of boundary 

conditions for  a distributed elastic beam with rectangular geometry. 

1 1 '  

The curves in  Figure 10, al- 
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6. CONCLUDING REMARKS 

The analog simulation methods mentioned here  a r e  particularly 

well suited f o r  parametr ic  studies wherein the physical systems a r e  

defined by partial  differential equations and the input excitation is 

stochastic, Typical problems categorically include those dealing with 

distributed s t ructures  and random excitation, transient thermal '  anal- 

yses  of s t ructures ,  control system-elastic vehicle dynamics, vibration 

attenuation character is  t ics of inters  taging s t ructure  and viscoelastic 

response characterist ics.  By coupling these analog concepts with con- 

ventional analysis procedures common t o  s t ructural  dynamics and c i r -  

cuit analyses, impedance relationships naturally evolve so  that additional 

insight into the dynamic behavior of multi-degree-of-freedom systems is 

obtained somewhat a s  a by-product. 

The maximum response statist ics presented as plots of I S 1  versus 

f T / Q  

a rb i t r a ry  distributed structure.  

involves s t ructural  design in a random environment wherein a maximum 

response c r i te r ia  is  appropriate. 

I P I  
t ime in the random environment. 

solution (or a n  equivalent thereof) m u s t  be achieved in order  to have a 

valid design for such an environment. 

far more  costly experimental design procedures o r  use gross  "over- 

design" factors.  

show the time dependency of the maximum response for  an 1 1 
A common application for  SHP resul ts  

It is clear f r o m  such curves that the 

ratio, for  a constant probability, changes as a function of exposure 

This implies a maximum response 

The alternative is to employ 

By comparing the results of Figure 10 with equivalent results for  

a square plate (Reference 4), the I p (  plots fo r  both the beam and the plate 
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appear nearly identical. In both cases ,  moreover,  the data a r e  noted 

to be independent of boundary conditions. Since the practical  implica- 

tion of such results a r e  noteworthy, additional selective experimental 

and theoretical work should be considered before general  conclusions 

a r e  definitively stated. In the absence of conflicting remarks ,  however, 

the empirical stochastic solutions of Figure 10 may be used in  the design 

of both beams and plates of rectangular geometry subjected to random 

excitation. 
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