
NASA CR-810

CONTINUATION OF THEORETICAL AND EXPERIMENTAL RESEARCH

ON DIGITAL ADAPTIVE CONTROL SYSTEM

By John Zaborszky, R. G. Marsh,

R. E. Janitch, and M. R. Chidambara

Distribution of this report is provided in the interest of

information exchange. Responsibility for the contents

resides in the author or organization that prepared it.

Issued by Originator as Report No. 2126

Prepared under Contract No. NAS 1-6669 by

EMERSON ELECTRIC CO.

St. Louis, Mo.

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 - CFSTI price $3.00

https://ntrs.nasa.gov/search.jsp?R=19670022767 2020-03-12T11:16:51+00:00Z



pEEC'ED_NG PAGE BLANK NOT F]LNkI_O.

FOREWORD

This Digital Adaptive Control System research continuation was

sponsored by the National Aeronautics and Space Administration, Langley

Research Center, under Contract No. NASI-6669.

These studies were conducted by the Electronics and Space Division

of the Emerson Electric Company at St. Louis, Missouri in the period

September 16, 1966 through February 16, 1967. The principal investigator

for this research activity was Dr. John Zaborszky, Emerson Consultant.

Mr. Richard Marsh was the Project Engineer.

The authors gratefully acknowledge the contributions to this effort

of Mr. E. Edward Buder of Emerson Electric Company.

iii



PRECEDING PAGE BLAIN_ NOt,, _lL_i_.

ABSTRACT

A new digital adaptive control system first presented in reference 1

is further developed for the effective control of a priori unknown plants.

Only the desired and actual plant output states are assumed to be measuraable.

A flyable digital computer of conventional capabilities is the central con-

trol agent. The primary control criterion is the minimization of a weighted

norm of the output state vector predicted one control interval into the future.

Two alternate methods for the representation of unknown linear non-

stationary plants based upon linear interpolation are investigated. More

than 600 control efficacy simulations of a representative plant spectrum

through fifth order are analyzed. An updating criterion, wherein the inter-

polation representation of the plant is recalculated only as required to main-

tain effective plant control, is developed and experimentally tested. A new

recursive procedure for the inversion of a type of matrix encountered in the

calculation of the interpolation representation of unknown plants is developed.

A first order Volterra series representation of unknown linear stationary

and linear nonstationary plants is developed. The representation is reduced

to working equational form.

Non-linear plant representations by linear interpolation and by inter-

polation over quadratic forms are developed. Control efficacy simulations

utilizing the linear and non-linear interpolation are made and the two repre-

sentations are compared. Control using either representation is demonstrated.

A data truncation study is made in which the number of significant figures

available in the plant output state data is assumed to be limited. Control

simulations are made in which the truncated data is used to periodically update

the interpolation representation of unknown linear stationary plants. The

effect of truncating the data at six, five, four, and three significant

figures is experimentally explored.
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SECTION1

INTRODUCTIONANDSUMMARY

The research here described is an analytical and experimental

investigation of a particular adaptive control concept. The method is

conveniently designated DACS(Digital Adaptive Control System). The

areas of study are cognate to those presented in reference i and to a

large degree are experimental extensions of related areas, Summary

treatment is given to those analytical areas first presented in

reference I which are considered to be expositive to the material

presented here. All analytical developments originating during the

most recent study are covered in full detail.

The DACSapproach is characterized by:

The assumption that the particular plant under control is a

priori unknown, except by its membership in one of several

broad plant classifications.

l_at the control actions be derived from computation by an
on-line digital control computer of conventional capabilities.

DEFINITION

"An adaptive control system is here defined as a control system which

is capable of monitoring its own performance with respect to a given index

of performance and modifying its behavior by closed-loop action in such a

manner as to optimize the index of performance or approach the opuimum

condition," (reference 2).

APPLICABILITY

The impetus towards the evolution and use of adaptive systems comes

from the existance of a class of control problems which are a priori

undescribable by reason of:



Unpredictability - e.g. the unforeseen failure of a component

in a space mission.

Excessive complexity of description - e.g. certain chemical

processes.

Analytical intractability - e.g. many problems in fluid dynamics.

Extreme varience - e,g, the control of high speed aircraft.

The inadequacy of conventional control systems to these problems is

predictable to the extent that conventional design is customized to a

postulated a priori description.

I.i DACS CONCEPT

The following principles are innate to the DACS concept:

The system is to be adaptive in the following sense. It is

to permit effective control of a variety of physical plants

without a p_iori knowledge of the usual plant descriptors

(pole-zero configurations, describing functions, etc,). It

is assumed that the only knowledge of the plant under control

is what can be inferred from measurements made during the

sequence of control actions.*

The primary control agent is an on-line digital computer of

conventional capabilities. The research consists primarily

in the determination of analytical nmthods resulting in

reasonably simple algorithms for such computer centered control.

Digital computer control implies a samp!e-and-hold process,

The sampling period is one of two p[imary DACS parameters.

is designated the "Decision Interval" and symbolized by T.

It

Using state space notation, the state vector components are

restricted to the plant output variables and their real time

derivatives. This choice reflects the data accessability of

an unknown plant.

* While this research has been conducted with the stated objective of

unknown plant control, many of the methods are applicable to the more

usual practical case of partial and/or inexact plant descriptions.

They do not preclude and indeed profit by the use of any available

plant descriptions.



The primary control criterion in the DACSconcept is the
minimization of a weighted normof the output error state
predicted one decision (sampling) interval into the future.
The second primary DACSparameter controls the relative
weighting of error components in the norm. It is designated
the "Weighting Coefficient" and symbolized by h.

1"ne following assumptions have been made in the present studies, but

are not necessarily inherent in the concept:

The single input-single output plant has been exclusively
investigated. This is primarily a matter of analytical
convenience, and the methods can be extended to multivariate
control.

A multistate controller has been postulated. No necessity for
the continuum of control forces has been established, and
selection from a quantized set is not excluded.

DACS FUNCTIONAL FLOW DIAGRAM

Figure I-i is a flow diagram illustrating the DACS functiona_

operations. Note that with the exception of control force application and

possible data conversion, all of the indicated functions are performed by an

on-line digital control computer.

1.2 RESULTS OF PREVIOUS INVESTIGATIONS

Prior to the current research program, the DACS concept had been

investigated and developed in considerable detail under sponsorship of

National Aeronautics and Space Administration, Langley Research Center,

Contract No. NASI-5127, May 26, 1965 - May 25, 1966 (reference i). Previous

to this work, the DACS concept was initially developed and investigated

in some detail under sponsorship of National Aeronautics and Space

Administration Contract No. NASW-599, February i, 1963 - January 31, 1964

(references 3, 4, 5, 6, and 7)° The following summary of major conclusions

establishes the background for the current research:

An equational basis was established for the digital com-

puter control of an unknown plant. The early methods (ref-

erences 3, 4, 5, 6, and 7) were partially empirical and in

a strict sense limited to linear stationary plants whose

transfer functions contained no zeroes. During the more

recent research (reference i) a method utilizing interpolation
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over values of a measured basis vector (references 8 and 9) was

investigated and found to possess extremely general applicability.

Extension to linear stationary plants whose transfer functions

contain zeroes was demonstrated on a precise analytical basis.

Further, the interpolative procedure showed promise for the

representation of nonstationary (time-varying) as well as non-

linear plants. Linear and non-linear forms of the interpolation

method were reduced to "working" equational form for linear

stationary, linear nonstationary, and non-linear plant control.

The early control methods were tested by hybrid simulation on a

set of linear stationary plants of low order (fourth order or

less with poles only). The linear interpolation representation

was investigated on a set of linear stationary pole and pole-

zero plants through ninth order. It was shown to be generally

superior to the earlier plant descriptors. The general

feasibility of the extension of linear interpolative represen-

tations to linear nonstationary and non-linear plants was

demonstrated by simulation experiments.

The general stability of the DACS control policy over a

representative set of linear stationary plants through ninth

order was studied using a Liapunov function derived from the

control policy. The region of stability of the control policy

in the T-h plane * using several plant descriptors was
established.

The Volterra series representation of unknown linear and non-

linear plants (reference I0) was developed and reduced to

working equational form for the second order truncation case.

A technique for start-up of the interpolation method based on

matrix pseudoinversion was studied. This technique is applicable

to cases where no initial plant information or data measurements
is available.

The T-h plane is that defined by all possible sets of values of the two

DACS parameters. Because both parameters are restricted to positive

values (the sampling interval, T, is innately positive and only positive

weighting coefficients, h, are considered), the T-h plane is confined

to the first quadrant. The region of stability is defined as that set

of T-h points for which stable operation of the control policy is

possible.



Twomethods of "learning" in the form of DACSparameter
optimization were postulated and given preliminary investigation.
The optimized parameters are T and h. The more usual method of
plant parameter adjustment should not be inferred.

1.3 OBJECTIVES

At the initiation of the NASl-6669 research, the following four tasks

were madethe primary objectives of the research effort.

Task I - Extend the study of linear time-varying plants of order
through fifth using the interpolative procedure . .

Task II - Extend the study of non-linear plants using the non-linear
interpolative procedure . .

Task III - Investigate the measurementaccuracy required by the
linear interpolative procedure . .

Task IV - Develop the Volterra series (R = i) control equations
applicable to linear stationary and nonstationary plants.

Tasks I and II define the objects of study with the scope of Task I

bearing the most weight. Tasks III and IV fall in the general area of

Task I as they are related to the study of linear plants.

1.4 METHODS OF INVESTIGATION

The methods of investigation were combinations of:

Problem identification and definition.

Preliminary theoretical studies,

Reduction of theoretical methods to working forms.

Analysis of simulation results and correlation with theoretical

method.

Validation or modification of theoretical methods on the basis

of simulation results.

All simulation results of this research were obtained by digital

computation on an IBM 7094 computer. Existing computer programs were used

whenever possible. Most of the experimental extensions were implemented

through relatively minor modifications and additions to the existing pro-

grams.



1.5 SUMMARY OF THEORETICAL EXTENSIONS

The primary theoretical extensions made under this contract were:

A criterion for updating the interpolation representation of

plant response matrices is developed. The criterion establishes

a basis whereby updating occurs only when the interpolative

estimates become inaccurate as could be the case when the plant

is time-varying. A summary of the criterion appears in

paragraph 2.1.

Several methods for including direct approximation of plant

time variation in the interpolation method are devised and

discussed. The study is summerized in Appendix C.

A new recursive procedure for inversion of certain types of

matrices is developed in which only simple arithmetic operations

are involved. The procedure is particularly applicable to the

type of matrices encountered using the interpolation method.

A summary appears in Appendix D with an illustrative example.

The Volterra series representation of unknown linear stationary

and nonstationary plants of reference I0 has been reduced to

working equational form for the first order (R = I) truncation

case. A summary appears in Appendix A.

1.6 SUMMARY OF EXPERIMENTAL RESULTS

The existence of over 80 graphs in this report, many synoptic of

extensive data sets, indicates the extent of the experimental investigations.

The conclusions formulated must be confined to the defined scope of the

experiments but in many cases they include a fairly general set of situations.

LINEAR TIME-VARYING PLANTS

The greatest bulk of data was obtained on approximately 50 linear

time-varying plants of orders three through five. Appendix B identifies

the most extensively studied plants.

Prediction Methods. - A primary objective of the experimental investigation

was evaluation of the relative efficacy of two alternate interpolative

representations of linear time-varying plants. The interpolative represen-

tations are individually characterized by the following features:



Stationary Basis Vector - This type of interpolative plant
representation is analytically exact for linear stationary
plants only. The data point sets consist of measuredvalues
of the output and as manyof the higher state vector elements
as possible. These measurementsalong with the associated
control forces form the basis over which the interpolation is
performed. No explicit allowance for the time variation of
the plant is included° Th_ interpolative representation depends
upon frequent updating of the data point sets and re-inter-
polation to maintain an adequate plant description.

Time-Varying Basis Vector - This type of interpolative plant
representation includes an explicit linear term to approximate
the time variation of the plant. A running time base is used
wherein an arbitrary time reference is used and the data point
sets are identified with the time at which they occur. When
updating the interpolative estimate of the plant, the time
base is re-established to correspond to the time at which the
measurementscontained in the interpolation matrices were made.
This method of explicit approximation of the plant time
variations introduces little additional complication over the
stationary basis vector as the dimension of the interpolation
matrices is increased by only one.

Type of Plant Time Variations Considered. - The type of plant time

variation studied in the most depth was sinusoidal variation of the plant

differential equation coefficients. This choice was made primarily because

a periodic type of variation allowed the study of relatively fast rates of

variation while simultaneously allowing the limiting of the range of the

coefficient values within practical values. In order to systematize the

experimental approach, only one derivative coefficient was allowed to be

time-varying for each plant. To a lesser extent, linear time variation of

the differential equation coefficients of the plant was also studied.

Stability Investigations. - The first experiments were stability deter-

minations for a set of time-varying plants in which approximately 400

regulator control simulations were made to ascertain the stability of

particular T-h points, A limited region of the T-h plane was studied using

both types of interpolative representations. The results indicated stable

operation of the control policy was possible at a11 the T-h points investi-

gated for all of the plants studied using the stationary basis vector. Use

of the time-varying basis vector resulted in only a few cases of instability.

No great preference of one of the basis vector descriptions over the other

was observed in the experimental results.



Control Simulations. - With the range of stability established in a

regulator sense, approximately 200 control simulations were made using a

sinusoid as the desired output. Both the stationary and time-varying

0

basis vectors were used in the control simulations. An updating monitor

or criterion was used in which updates were made only at times when the

interpolative plant description became inaccurate. No preference of one

of the interpolative representations over the other was evident from these

studies as both yielded about the same "tracking" results and both

suffered from inaccurate updates with about equal occurrence.

NON-LINEAR PLANTS

The plant spectrum of the non-linear experiments was limited to those

describable by the Van der Pol equation. Three values of the coefficient

of the damping term in the differential equation were considered correspond-

ing to a relatively linear plant, a moderately non-linear plant, and a

highly non-linear plant.

Prediction Methods. - A primary objective of the experimental investigations

was to evaluate the control efficacy of three interpolative plant represen-

tations. The three interpolative representations are individually

characterized by the following features:

Linear Basis Vector - This interpolative representation is

characterized by interpolation over a set of linear basis

functions. This same basis vector was used in the study of

linear stationary (reference i) and linear time-varying plants.

Its usefulness in the representation of non-linear plants relies

on a piecewise linear approximation of the non-linear plant

response characteristics, the small size of the interpolation

matrices corresponding to small data point sets, and highly

frequent updating of the interpolative estimate of the plant.

Non-linear Basis Vector - The non-linear interpolative represen-

tations studied utilize interpolation over a set of base functions

of first and second degree. Linear, square and cross terms of

the state vector elements and the control forces comprise the

data point sets. Two types of non-linear basis vectors were

studied. One of the two basis vectors included the cross products

of the state vector elements whereas the other did not.

9



Regulator Control Simulations. - Control simulations in which the desired

output state is zero were made for the three non-linear Van der Pol plants

studied at five T-h points defining the same region of the T-h plane as

was investigated in the linear time-varying plant studies. A substantial

number of the T-h points yielded satisfactory regulator performance for

the two least non-linear plants using all three interpolation basis vector

descriptions. The regulator responses of the most non-linear plant

demonstrated that a limit exists beyond which the linear basis vector

does not yield a satisfactory plant description. Only two T-h points

using the non-linear basis vector which included state vector element

cross terms yielded what could be judged satisfactory regulator results.

Trajectory Control Simulations. - A limited set of trajectory experiments

were performed using the three types of interpolation basis vector descrip-

tions. Satisfactory tracking was demonstrated for the most linear of the

three plants with the linear basis vector yielding the best results. The

tracking capabilities demonstrated by the three basis vector descriptions

became more degraded as the two more non-linear Van der Pol plants were

included in the trajectory control simulation experiments.

Overall, the feasibility of the control of a non-linear plant using

the three interpolative representations has been demonstrated although the

results could not be interpreted as being extremely positive. Any con-

clusions must be qualified by the limited nature of the experimentation.

DATA TRUNCATION STUDY

A short study was conducted in which limited accuracy of the measured

data was considered, The primacy of a study of this nature is self-evident

as any practical control situation precludes unlimited measurement accuracy.

The format of the experimentation was to truncate the number of significant

figures that was assumed to be available in the measurements of the elements

of the state vector. Full accuracy knowledge of the control forces was

assumed as this is a computer derived quantity.

I0



The plant spectrum consisted of a set of eight third and fourth

order linear stationary plants of various pole configurations. The

objective of the experimentation was to determine the effect of data

truncation on the control of the set of linear stationary plants using
the interpolation method with updating.

Two types of data truncatlon were studied. The first type involved
truncation of all elements of the state vector and the second involved

truncation of only the derivative elements of the state vector. It was

observed that in both types of truncation experiments six significant

figures in the data were necessary to provide control results equivalent

to untruncat_d control results. Both types of data truncation yielded

somewhatdegraded results as the number of significant figures in the

data was lowered successively down to three. With three significant

figures of data, both types of truncation yielded divergent control

results. The results using five significant figures were somewhatbetter

when only the derivative elements of the state vector were truncated.

Control in this situation is feasible although some inaccurate inter-

polation estimates were obtained. Truncation at four significant

figures yielded approximately equivalent results for both types of trunca-

tion. While control is possible with four significant figures, the

susceptibility to inaccurate interpolation estimation is fairly great.

1.7 ORGANIZATION OF THE REPORT

The following sections of this report have been organized so as to

make possible eclectric sampling on the basis of reader interest. Table

I.i is a guide to such reading.
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TABLEI.I READER'SGUIDE

AREAOFPRIMARY INTEREST PERTINENT PARTS OF REPORT

Linear Stationary Plants

Linear Nonstationary Plants

Section 4 and Appendices A and D.

Section 2 and Appendices A, B, C, and D.

Non-Linear Plants

Control Theory

Nonanalytic Survey

Data Truncation Study

Section 3 and Appendix D.

Paragraphs 2.1, 3.1 and 4.1, Appendices A,

C, and D.

Section i, paragraphs 2.3, 3.3, and 4.3, and

Section 5.

Section 4.
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SECTION2

CONTROLOF LINEARTIME-VARYINGPLANTS

2.1 PLANTANDSYSTEMEQUATIONS

Becausemuch of the research effort discussed here is a direct

extension of work previously documented (reference i), no attempt will be

madeto present a comprehensive development of the linear time-varying

plant and system equations° Much of text and equations will be of a

summary nature. The reader may find more complete discussions and

equational developments in reference I.

For the sake of analytical convenience, the study has been limited

to the single input - single output plant° The concepts presented here

are in no way inherently limited to the single variable control problem

and extension to multivariate control is direct. Also, because of a need

to limit the scope of the study and the primacy of certain factors over

others the class of plants studied has been restricted to those which are

not sensitive to derivatives of the input. An analogous restriction for

a class of linear stationary plants would be to limit the study to plants

whose transfer functions contain poles but no zeroes. This restriction

is not particularly severe as it is demonstrated in reference I that

inclusion of plants sensitive to derivatives of the input leads to only

slight additional complication.

The type of time-varying plant studied may be qualitively described

as possessing a single primary input with perhaps several secondary

inputs. Those quantities which are insensitive to the primary input are

termed plant parameters and those which are affected by the primary input

are termed plant variables. To preserve the single input concept, it is

13



assumedthat the effect of the secondary inputs may be considered

independently of the primary signal. Only those quantities which are

parameters of the plant as far as the primary input is concerned are

assumed to be affected by the secondary inputs. The parameter variations

due to the secondary inputs may be described as functions of time and

the plant is termed time-varying in the sense of posessing time-varying

parameters.

METHOD OF ANALYSIS

The physical plant is assumed to be describable by a linear

differential equation with coefficients which are continuous functions

of time:

L(p,t) c(t) = B0(t ) m(t) (2-1)

The plant is assumed to possess a single input, m(t), and a single output,

c(t). The quantity, L(p,t), is a linear differential operator of order n

and the derivative coefficients are functions of time. Although equation

2-1 suffices to describe the class of plants which are included in this

study 3 it is advantageous to write the mathematical description in state

space notation*:

_x(t) = H(t) x(t) + _(t) u(t) (2-2)

The state variable, x(t), is identified on a one to one basis with the

output of the plant, c(t), and its first n-i derivatives. This defines

x(t) as the n vector:

n-I

x'(t) =_¢(t) c(t) .... c(t)_ (2-3)

The particular choice of the state variable is dictated by the a priori

unknown plant assumption of this study.

* Vectors will be denoted by small Roman or Greek letters, matrices by Roman

or Greek capitals, and transposed vectors and matrices are denoted by

primes.
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Because the plant differential equation possesses no derivatives of

the input, the remaining terms in equation 2-2 are specific cases of the more

general case where derivatives of the control input are present (reference I).

= (2=4)_'(t) I0 0 . o . 0 BQ(t) jl

u(t) = re(t) (2-5)

I
H(t) =

[-A0(t) -Al(t) ........ An_l (t)I

(2-6)

Note that _(t) is a vector and u(t) is a scalar, whereas, in the more

general case _(t) is a rectangular matrix and u(t) is a vector° The A.(t)
i

elements of the matrix in equation 2=6 are the time-varying coefficients

of derivatives on the left hand side of equation 2-1. The matrix, H(t),

is square of order n.

Equation 2-2 is termed the plant dynamic equation and is a first

order vector differential equation. Equations 2-1 and 2-2 are equivalent

according to the definitions of equations 2-3 through 2-6.

THE STATE EQUATION

The general continuous solution of the plant dynamical equation 2-2

is given by:

_(t) = F_(t,to) _(to) + J [(t,T) _(r) u(z) dT (2-7)
t
o

where [(t,to) is the matrix solution of the free (homogeneous) differential

equation and is termed the state transition matrix. The quantity, _(to) ,

is the value of the state variable at t = t . Equation 2-7 is valid for
o
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any t _ to. In the case of time-varying systems the transition matrix
cannot be expressed as a simple exponential form as can be done for linear

stationary systems. The usefulness of the transition matrix in time-

varying analysis is therefore limited except for special cases where simple
solutions exist.

Becausethe control action is effected by an on-line digital computer,

the control functions, u(t) (plant inputs), are piecewise constant over

decision or sampling intervals of equal lengths (T seconds). Due to the

piecewise constant nature of the control input, it is desirable to place
the solution of the plant dynamical equation in a discrete or sampled

form compatible with the sampling Interva_ of the control action. Con-

sidering the control input (plant input) to be constant over the time

intervals kT _ t < (k+l)T k = 0,1,2, . . ., a convenient form for the

discrete solution is given in equation 2-8:

x((k+l)T) = F((k+I)T,kT) x(kT) + _((k+l)T,kT) uk (2-8)

Equation 2-8 relates the state at the end of the kth interval, _((k+l)T),

to that at the beginning, x(kT). The transition matrix, F(t,to), and the

integral of equation 2-7 are evaluated for a decision interval length of

T seconds. However, the transition matrix and the forced response vector

of the plant are not constant matrices for constant T as is the case for

linear stationary plants. The kth control input, uk, is constant over the

interval kT _ t < (k+l)T.

In order to avoid possible confusion with the notation used here

versus that used in reference i it is pointed out that because no deriva-

tives of the input are assumed to be present in the plant differential

equation in this study, the state variable, _(t), is continuous when

discontinuities occur in the input to the plant. For this reason, no

distinction is made between the instants in time just before and just

after sampling instants. The kT-, kT °, kT + notation of reference i is

therefore dropped and the following equalities exist:
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k_((k+l)T,kT) = bl((k+l)T,kT)

b2((k+l)T,kT) = O (2-9)

Because thre is no need to deal with two forced response vectors,

k_((k+l)T,kT) will be used exclusively.

THE CONTROL POLICY

The general objective of the control policy is to align the output

state of the system with some desired output state. It will be assumed

that the function describing the desired output is analytic on some open

interval (ta,tb) * except for, at most, a finite number of discontinuities

and that it is accessible for measurement or is known in advance. The

desired output state will be defined as:

r'(t) = r(t) _(t) . . . .rn-[t)1 (2-10)
- I J

where the elements of the desired output state vector and the actual

output state vector elements possess the same derivative relationship

with respect to one another.

Figure 2-1 shows a representative time history segment of the type

of control system under study. The first elements of the desired and

actual state vectors (!(t) and _(t) respectively) are shown in the upper

part of the figure and a typical control input sequence is shown in the

lower part of the figure. Graphs of other elements of the desired and

actual state vectors would be similar as the control input sequence seeks

to align the two states.

* The open interval (t ,t,) will be considered to contain that interval
a D t "of time during which control of the plan is desired.
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FIGURE 2-1 REPRESENTATIVE TIME HISTORY OF CONTROL SYSTEM

The General Control Policy Equation. - The control policy could be

identified by a variety of performance criteria, however, the following

relatively simple criterion will be used (references I, _, 4, 5, 6, and

7).

_k
(2-II)

where K is a positive definite, symmetric constant matrix and the error

state vector is defined as:

e(t) = r(t) - x(t) (2-12)

The control algorithm is to select a constant control input, Uk, to be

applied during the interval kT _ t < (k+l)T such that the positive

definite quadratic form, Qk' is minimized. Such a control input selection

is necessary for each decision interval.
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The practical control law is obtained by substituting the state

equation 2-8 into equation 2-11, equating the first derivative with

respect to uk to zero, and solving for an explicit expression for uk.

A proof that this yields a minimum for Qk is given in reference i. The

expression for uk is given by:

_'((k+l)T,kT) K [r((k+l)T) -F((k+I)T,kT) x(kT)]

Uk = __'((k+l)T,kT) _K A((k+I)T,kT) (2-13)

Equation 2-13 is the general form of the control policy equation.

The Weighting Matrix. - The constant matrix K introduced in the quadratic

form, Qk' of equation 2-11 performs the function of a weighting function

on the state variable components. The particular form used in this study

is a diagonal matrix defined by equation 2-14:

K

1

_(hT) 2i

_(hT) 2n

(2-14)

where n is the order of the system. The matrix K is obviously syrmnetric

and positive definite; therefore, it fulfills two necessary conditions

required by the control law.

The matrix has as its basis previous Emerson studies (references i,

3, 4, 5, 6, and 7). The origin of the form is extensive studies with

linear stationary plants. The extension to time-varying plants is direct.
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ESTIMATIONAND PREDICT ION

The response of the plant during a decision interval may be broken

down into two parts. The first part may be termed the free response which

would occur in the absence of a control input, The second part may be

termed the forced response, or that part of the response which is due to

the control input. The state equation:

x_((k+l)T) = F((k+I)T,kT) x(kT) + _((k+l)T,kT) uk (2-15)

may be interpreted in this light by considering the first term on the

right-hand side of the equation to be the free response and the second to

be the forced response. An appropriate control input, Uk, is calculated

by the control policy, equation 2-13, so as to better align the actual and

desired output states then would be the case if no control input was applied

and the response during the interval was exclusively the free response. In

order to calculate the control input, Uk, to apply during the decision

interval kT _< t < (k+l)T, predictio'_s of what the fre__,response during the

interval will be as well as the sensitivity of t.he plant to a control

input must be obtained. As can be ascertained by examining the control

polio-y, equation 2-13, the prediction problem takes the form of estimating

[((k+l)T,kT) and _((k+l)T,kT).

If exact knowledge of the plant is available, the prediction

problem is relatively trivial as the plant equations can be used directly.

If the plant equations are unknown (as is assumed in this study) then

prediction must he based upon some sort of estimating or fitting technique.

Two such estimating techniques have been studied. The first is termed the

first order Volterra series method and is discussed in Appendix A. A

second estimating t_2chnique based on an interpolative procedure has been

studied in the most depth. The basic interpolation equational development

is reviewed in Appendix C. For more complete treatments the reader is

referred to references I and 8.
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Interpolation Prediction Without _. - In terms of the interpolation

method, the estimate of the state at t = (k+l)T is given by the equation:

__((k+l)T) = I_X __-i __(uk,__k) (2-16)

where the tilde indicates an estin_eed value.

The basis vector in this case is given by:

_' (uiW i) = x' (iT) ui (2-17)
- - [- I

The matrix of basis vectors, _, consists of an appropriate set of __i_s

which need not be consecutive and D_XConslsts of a corresponding set of

state variable measurements.

Define a partitioned matrix B which is subdivided into two submatrices:

[ ' ]= = ' (2-18)
i

where if the assumed order of the matrix is p, _i is a pth order square

matrix and _i is a p vector. In terms of the submatrices, the estimate of

_((k+l) T)is:

__((k+l)T) --_i _x(kT) + --_IUk

where _i and _i are constant matrices.

(2-19)

This interpolation representation is most directly applicable to

stationary systems as time variations in the plant are not accounted for

directly. The usefulness of the technique resides in the fact that it

is basically a fitting technique wherein a set of data points are fitted

by a multinomial. The fact that the plant may be time-varying does not

alter the basic fitting process. If measurement of the full state vector

is possible, then estimates of all of the state variables may be

obtained and p = n.

Time variations of the plant may be accounted for by periodically

updating the interpolation matrices and obtaining new values for _i and _i"

The updating procedure consists of shifting new, more current data into _,

the matrix of bas_s vectors, corresponding data into D_ , and obtaining a
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new B matrix. If the plant is relatively slowly time-varying updating

may be required relatively infrequently.

Interpolation Prediction With t. - A second interpolation representation

studied includes a linear term in t in the basis vector in order to

The estimateaccount for the time variation of the plant more directly.

of x((k+l)T) is still given by:

= fl )

However, the basis vector is now given by:

=ix(iT) ui (i+l)T I_ (ui, _

(2-20)

(2-21)

This method of accounting for time variation of the plant is one of

several discussed in more detail in Appendix C.

Because the basis vector, _--i' contains one more term than the first

case presented, one more interval of data is required and the interpolation

matrices _ and DX will be increased in order by one. The B matrix is now

partitioned into three submatrices:

where, if the assumed order of the matrix is p, _I is a pth order square

matrix and _i and _2 are p vectors. The interpolation estimate of

_((k+l)T) in terms of the submatrices is given by:

_((k+l)T) = _I _(kT) + _I Uk + _2 (k+l)T (2-23)

where _I' El and _2 are constant matrices.

Time variation of the plant is now approximated by the third term on

the right-hand side of equation 2-23. The vector, _2' is multiplied by

the value of running time referenced to some arbitrary time base. There

is no inherent time base in the interpolation method, however, it is

convenient to assign the zero time reference to the oldest data in the

matrix of basis vectors _. Thus, whenever an update is made the time

base is shifted and the running time is measured from this new zero time

reference.
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Interpolation Control Policy Equations. - The practical implementation of

the control policy equation 2-13 depends upon which interpolation repre-

sentation of the discrete state equation is used. If Interpolation Predic-

tion without t in the basis vector is used the control policy equation is:

_i K [r((k+l)T) -_)i x(kT)]
(2-24)

uk = , --K- l

If the Interpolation Prediction with t in the basis vector is used the

control policy equation is:

(2-25)
Uk = ' K _iEl --

Updating: - As has been mentioned in previous paragraphs, updating is one

of the ways in which the Interpolation Prediction accuracy is maintained

if the time variation of the plant is such as to render the interpolation

matrices generated from past data prohibitively inaccurate. One way of

maintaining the accuracy is to arbitrarily update every interval or every

mth interval where m is a specified constant° This fixed updating pro-

cedure is rather inefficient as no flexibility exists which allows for

changing rates of time variation. If the interpolation estimates are

sufficiently accurate so as to provide adequate control of the system it

would seemreasonable to continue to use them until such time as the

control performance becomes degraded. A measure of the control performance

is provided by the the Euclidean output state error norm:

The allowable magnitude of the output error norm would depend upon the

required accuracy of the system but, in general, good control performance

should result in small values for the output error norm. The difficulty

in accessing the control performance and the need for updating in terms

of the value of the error norm is its high degree of dependence upon the

regularity of the desired output.
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Analternate method of determing when updating is necessary is to

comparethe predicted states based upon the interpolation estimates of

the plant matrices with the actual states as measured at the end of the

decision intervals. Onepossible updating criterion is to require that

the predicted state lie within a closed hypersurface centered on the

actual state in the state space. A prediction error vector may be defined:

61 62 (2-27)6'= • • • 6nl-- L

where _. is the allowable error threshold in the ith component of the state
1

vector. An appropriate norm of _ may then be used as the criterion for

updating:

where H defines the norm. If H = _ A corresponds to the Euclidean norm.

This criterion for updating is studied for the case where all of the

6i were set equal to the same value defining a hypersphere and the norm

matrix H was made the unity matrix. The experimental results are presented

in paragraph 2.2.

SOME COMMENTS ON STABILITY

As was pointed out in reference I_ the subject of stability of time-

varying systems is one about which the definitive word has not been said

yet. Although many of the basic theorems which apply to the second method

of Liapunov are valid for time-varying systems, the difficulties involved

with forming usable Liapunov functions are formidable. The formulation of

a general Liapunov function for the spectrum of time-varying plants

considered in this study is impractical. For this reason, stability must

be determined on an individual basis for each of the plants.

There is a strong tendency to discuss time-varying systems in terms of

poles and zeroes which move about in the complex plane. This concept is
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not without its pitfalls becaOse unless the speed of the time variation

is extremely slow as compared with the time constants of the system no

such connection exists. Certainly, describing stability of a system in

terms of the movements of the 'poles' back and forth between the left

and right half planes can be misleading.

Because of the difficulty of forming Liapunov functions for the

systems considered, stability will be judged on the basis of control

simulations. The "frozen plant" concept with ephemeral pole locations

will be consistantly avoided.

2.2 EXPERIMENTAL STUDIES

The purpose of this paragraph is tv present the experimental response

characteristics of a selected set of linear time-varying plants controlled

by the DACS Control Policy. The Interpolation Prediction method was used

throughout this experimentation because it displayed the most positive

results in previous DACS research (reference I).

The objectives of this experimental program are:

To determine the control performance of the control system

using the Interpolation Prediction method both with and without

time considered in the basis vector for a selected set of linear

time-varying plants of order through five.

To investigate the effectiveness of monitor controlled updating

for the Interpolation Prediction method both with and without

time considered in the basis vector.

To investigate the effect of the weighting factor, h, on the

control system response for the Interpolation Prediction method

both with and without time considered in the basis vector.

To compare the control performance of the Interpolation Pre-
diction method both with and without time considered in the

basis vector with respect to stability and tracking ability.

The objectives are considered along with the appropriate experimental

procedures in the following paragraphs.
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LINEAR TIME-VARYING PLANTS

In order to accomplish these objectives, it was necessary to select

a limited but representative spectrum of linear time-varying plants of

order through five. Such a set of plants was assembled by using previous

DACS research to select a number of low order plants as an experimental

starting point, and, by judicious selection, extend the set of plants to

higher order. The resultant set consisted of approximately fifty time-

varying plants (see Appendix B). This experimentation considered both

linear and sine time variations. Several ranges and rates of time varia-

tion of single derivative coefficients were studied for each plant in

various degrees of depth.

STABILITY BOUNDARY AND REGULATOR RESULTS

Previous research (references I, 3, 4, 5, 6, and 7) has noted in

some detail the two parameters of our control system, namely, the decision

interval, T, and the weighting factor, h. In the linear stationary plant

studies which are reported in the above references, the T-h stability

boundaries were analytically established by Liapunov's second method. The

Liapunov function formulated wa_ applicable to any linear stationary plant,

and so provided a very convenient method of determining the stability

boundaries for the system controlling any such plant. Many of the basic

theorems which apply to the second method of Liapunov are valid for time-

varying systems. However, because of the great degree of difficulty

associated with forming a usable Liapunov function, and because of the large

number of time-varying plants considered by this study the system stability

was established by experimental methods. Since the establishment of system

stability for many T-h combinations or points in the T-h plane would require

a considerable number of control simulations and, therefore, would be quite

costly, the stability of only a limited area in the T-h plane was investi-

gated by this experimentation.

This experimental study consisted of approximately 400 control simu-

lations on selected time-varying plants. All of the control simulations
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were conducted with either +I0 or +I units as the initial condition of

each element of the state vector. The desired output state was zero.

Also, throughout this investigation system parameters associated with

updating the interpolation estimates of the plant response matrices were

constant; i.e. new data was shifted into the matrix of basis vectors

every interval, and the interpolation estimates were recalculated every

interval, Thus, the system stability at any T-h point was experimentally

established by noting the control performance for regulator runs with all

possible interacting system parameters judiciously fixed at constant values.

The following experiments were conducted using Interpolation Pre-

diction which is not a self-starting method. Therefore, R start-up

procedure was utilized to allow Interpolation Prediction control to start

at any desired initial System skate (reference i). This procedure is of

no significant importance, since it provided only an artificial method

for starting the control simulations at a selectable initial state.

This start-up simulation phase is not included in the graphs of the

runs. At the start of each of the runs shown in this report, the inter-

polation estimates of the system response matrices have been predetermined,

and so the control is affected by the interpolation method during the

entire run. Also, these figures are reproductions of the graphs plotted

by the computer program. The axes have been relabeled and the data points

have been connected using straight llne approximation.

Stationary Basis Vector Results. - The experimental investigation of the

limited portion of the T-h stability plane was first conducted for Inter-

polation Prediction using the linear basis vector without time. In other

words, the basis vector did not contain any explicit time dependence term

to account for the plant time variation, and is referred to as a stationary

basis vector.

The portion of the T-h plane experimentally investigated consisted

of the five points shown in the plane of Figure 2-2. These particular

T-h combinations were selected for the area of investigation because they
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provided the most satisfactory control performance for linear stationary

plants of order through five (reference I). Regulator response runs were

obtained for each of these points (A through D) for the plants presented

in Appendix B. Typical third order system results are presented by

Figures 2-3, 2-4, 2-5 and 2-6, and illustrate the type of control perfor-

mance obtained at T-h points A, B, D and E. Figures 2-7, 2-8, and 2-9

show typical control results for fourth and fifth order time-varying

systems. For the sake of completeness, it must be pointed out that a

number of the regulator response run_ suffered from occurrences of poor

interpolation estimates of the system matrices due either to ill con-

ditioning of the matrix of basis vectors or simply inadequate description

of the plant. However, in all such cases, the interpolation estimates

subsequently improved to the degree that the controlled response could be

judged stable or unstable.

The experimental results, like those presented and discussed in the

last paragraph, indicated that ali five T-h combinations provided stable

control performance for all the plants in Appendix B.

Time-Varying Basis V@ctor Results. - An identical experimental study was

conducted for Interpolation Prediction using the time-varying basis vector.

In this case, running time was included explicitly in the basis vector

to account in a linear sense for the time variation of the plant.

The same limited area of the T-h plane (see Figure 2-2) was again investi-

gated by regulator response runs for the same time-varying plants. As

before, typical third order system results are shown for the T-h points

A, B, D and E in Figures 2-10, 2-11, 2-12, and 2-13. Figures 2-14, 2-15,

and 2-16 illustrate typical control results for fourth and fifth order

time-varying systems. It should be pointed out that occurrences of poor

interpolation estimates of the system matrices similar to that noted for

the stationary basis vector were encountered in the time-varying basis

vector experimentation. However, such occurrences were again self-correcting

and did not greatly interfere with the stability conclusions.
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The overall experimental result_ indicated that all five T-h com-

binations provided stable control performance for all but three of the

plants. These three exceptions were plants 3-11, 4-17, and 5-6 of

Appendix B. The unstable points for these plants are listed below:

Plant Number Unstable Points

3-11 D

4-17 D and E

5-6 D and E

MONITOR CONTROLLED UPDATING RESULTS

In the previously DACS research results (reference I) as well as in

the experimental results just presented, the interpolation estimates of

the plant matrices were updated (recalculated) every n intervals, where

n _ I was a fixed system parameter. This research resulted in the con-

clusion that if the actual and desired output states are identical to some

degree of satisfaction no new interpolation estimates should be obtained

for system control. This conclusion along with the observation that

time-varying systems require frequent updating until the desired output

state is realized and then less frequent updating in order to avoid

occurrences of matrix ill conditioning and/or poor plant description was

noted in reference i. These experimental conclusions and observations

implied the desirability and need for some monitoring procedure to decide

when updating is desirable for continuing satisfactory system control.

Such an updating monitor was developed and presented in paragraph 2.1.

This experimental investigation utilized approximately one-half of

the plants presented in Appendix B. The majority of the plants selected

were of the faster time variation plant set. In every case three allow-

able error threshold or 5 i levels were experimentally investigated for

Interpolation Prediction using the stationary basis vector description.

These allowable error threshold levels were: _. = 0.02. 0.05, and 0.i0.
I

It should be noted that this experimentation was conducted only for the

stationary basis vector case, since previous regulator results did not
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indicate a preference between the two descriptions. Therefore, intensive

investigation was conducted for only the stationary description rather

than slight investigation for both descriptions.

Throughout this particular experimentation the desired output was

a sine trajectory and the stable T-h combination was T = 0.6, h = 0.8.

New data was shifted into the matrix of basis vectors every interval.

Also, the same experimental start-up procedure utilized in the previous

stability boundry investigation and described for the linear stationary

case with fixed updating (reference I) was used in this study.

Figures 2-17 and 2-18 present typical experimental results. The

graphs in the figures present the unweighted error norm versus the number

of decision intervals for all three allowable error threshold levels.

Also, each figure contains a list of the decision intervals where the

monitor requested updating of the interpolation estimates of the plant

matrices. Several very obvious observations are: as plant order increases

more frequent updating is required for any _i value; as the value of _i is

lowered (less allowable error) more frequent updating is required for a

plant of any order. Other observations concerning the &i value and actually

reached error norm are not so clear cut or by any means general. These

results are most certainly biased by the fact that this study was completely

devoted to sine time variations using sine trajectories for the desired out-

put state. However, one general conclusion is that the value of 6i bears

no relationship to the frequency or point of occurrence of poor interpolation

estimates of the plant matrices. About equal occurrence of such poor esti-

mation was noted for all three _i values throughout this study.

TRAJECTORY RESULTS

Interpolation Prediction control performance both with the stationary

and time-varying basis vector description was examined using sine and

displaced sine desired outputs for time-varying plants through fifth order.

These plants are presented in Appendix B and it may be noted that only

plants with sine time variation of a single coefficient were used for this

study.
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FIGURE 2-17 OUTPUT ERROR NORM M_NITUDE OF A 3RD ORDER SYSTEM
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Plant Equation

(_)+ [l.6+0.4sin(0.125t)] "_"+ 1.6 _ + _ = m(=)

Run Type: Sine Trajectory
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FIGURE 2-18 OUTPUT ERROR NORM MAGNITUDE OF A 4TH ORDER SYSTEM
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This experimental study consisted of approximately 200 control simu-

lations with the selected time-varylng plants. The updating monitor with

a _i value of 0.05 was used throughout the study for both the stationary

and time-varying basis vector descriptions. Also, new data was shifted

into the matrix of basis vectors every interval for both descriptions. As

in the studies described in previous paragraphs of this section, the same

start-up procedure utilized in other DACS research (reference I) was used

for this experimentation. All the following experimentation was conducted

with either +I0 or +I units as an initial condition for each element of

the state vector.

Stationary Basis Vector Results. - Typical results of the third order

time-varylng system control experiments are given in Figures 2-19 through

2-24 for a sine trajectory desired output. The first four, Figures 2-19,

2-20, 2-21, and 2°22, illustrate the type of control performance obtained

at the points A, B, D and E of the T-h plane (See Figure 2-2). The last

two, Figures 2-23 and 2-24, show the control results for a plant config-

uration with two speeds of time variation. These latter two figures show

in different degrees tracking problems due to poor interpolation estimates

of the plant matrices being used for one or more intervals.

Figures 2-25, 2-26, and 2-27 illustrate the typical control per-

formance for three of the five T-h points investigated for fourth order

time-varying systems. Figure 2-27 demonstrates the problem of using poor

interpolation estimates of the plant matrices for one or more intervals.

This problem area is even more evident in Figure 2-28 which shows the

control performance of a fourth order system with a tlme-varying gain.

The last two figures, 2-29 and 2-30, are typical control results for

the fifth order tlme-varylng systems. The control performance is not

unexpected, since the control performance for linear stationary systems of

fifth order was approximately equivalent (reference I). The very slow and

oscillatory controlled response is typical of fifth or higher order systems,

and is not related to poor interpolation estimation of the plant matrices.
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PLANT OUTPUT

_+ _._+o.3,,.(o._,)-]_+" - nl(t)

RUN TYPE: SINE TRAJECTORY
BASIS VECTOR: T NOT INCLUDED
UPDATING: MONITOR CONTROLLED

T=0.4 h=l.0

S
O

_E

-5

10 20 30 40

I

FIGURE 2-20 TRAJECTORY RESPONSE OF A 3RD ORDER SYSTEM
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FIGURE 2-21 TRAJECTORY RESPONSE OF A 3RD ORDER SYSTEM
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FIGURE 2-23 TRAJECTORY RESPONSE OF A 3RD ORDER SYSTEM
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FIGURE 2-25 TRAJECTORY RESPONSE OF A 4TH ORDER SYSTEM

55



2O

15

PLANT EQUATION

(4)
J_.6+0.4 ,,. (o.z_,_]'T'÷,.6_. _ - ,.(,)C+

RUN TYPE: SINE TRAJECTORY
BASIS VECTOR: T NOT INCLUDED

UPDATING: MONITOR CONTROLLED
T=0.6 h=0.8

0
I0 20 30 40 50

i DECISION INTERVALS J

4_ 4. 6

FIGURE 2-26 TRAJECTORY RESPONSE OF A 4TH ORDER SYSTEM
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FIGURE 2-29 TRAJECTORY RESPONSE OF A 5TH ORDER SYSTEM
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In summary, the experimental results just presented provided no

really unexpected observations. The problem area of poor interpolation

estimates of the plant matrices did somewhatisolate itself from the ill

conditioning problem noted in the regulator runs. Occurrences of degraded

tracking were evident, and could usually be traced back to inadequate

estimates of the plant matrices. This fact is easily noted by examination
of Figure 2-28. The update monitor requested recalculation of the inter-

polation estimates of the plant matrices during the most severe time

variation associated with the sine time-varying coefficient. This occured

between 22 and 26 Decision Intervals on the plot of Figure 2-28. The

interpolation estimates of the plant matrices were inadequate and so poor
control performance resulted until better estimates were obtained at a

later time. However, in general, the trajectory results were as good as

those results obtained in the stability investigation.

Time-Varyin 8 Basis Vector Results. - The four figures, 2-31, 2-32, 2-33,

and 2-34, present control results obtained with Interpolation Prediction

using the time-varying basis vector description. This set of figures are

typical of those obtained for the third order time-varying systems at the

upper and lower T-h point combinations considered during the stability

investigation. The next two figures, 2-35 and 2-36, present the same

T-h combinations for the same plant configuration except that the speed

of the time variation is twice as fast in the second figure. Also, it

may be noted that Figures 2-35 and 2-36 illustrate different degrees of

the tracking problem associated with using poor interpolation estimates

of the plant matrices for one or more intervals.

Typical fourth order time-varying system control results are presented

in Figures 2-37, 2-38, and 2-39 for three of the five T-h combinations

considered in this experimentation. The problem of poor interpolation

estimation is quite evident in Figure 2-37 of this set as well as in

Figure 2-40. Figure 2-40 presents the control performance of a fourth

order system with a time-varying gain.
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FIGURE 2-33 TRAJECTORY RESPONSE OF A 3RD ORDER SYSTEM
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FIGURE 2-34 TRAJECTORY RESPONSE OF A 3RD ORDER SYSTEH
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FIGURE 2-37 TRAJECTORY RESPONSE OF A 4TH ORDER SYSTEM

68



PLANT EQUATION

(4) + _ , ._ ct_ _ •
c I,.6 + 0.4 sln ,0.25r u + 1.6c + c = re(t)

RUN TYPE: SINE TRAJECTORY
BASIS VECTOR: RUNNING T INCLUDED
UPDATING: MONITOR CONTROLLED

T = 0.6 h = 0.8

10 20

/
_, DECISION INTERVALS /

FIGURE 2-38 TRAJECTORY RESPONSE OF A 4TH ORDER SYSTEM
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Figures 2-41 and 2-42 demonstrate the typical control results obtained

for the fifth order time-varying systems. As noted for the stationary

basis vector results, these control responses are not really unexpected

events. Such control results were very similar to those observed for

the linear stationary systems of fifth and higher order (reference i).

In general, th_ experimentation uncovered no new or unexpected

results. The same problem of poor interpolation estimates of the plant

matrices was again noted as it was for the regulator runs. In summary,

the trajectory results were as good as the results obtained in the

stability investigation. The time-varying and stationary basis vector

descriptions provided very similar control results in every aspect of

comparison.

WEIGHTING FACTOR PARAMETER STUDY RESULTS

The two control system parameters of most interest are the length of

the decision interval, T, and the weighting factor, h. These parameters

were discussed in previous paragraphs, and in past DACS research (references

I, 3, 4, 5, 6, and 7). This particular study was concerned with experi-

mentally establishing the effect of the weighting factor on the control

system performance for time-varying plants.

The results of this study are very similar to those obtained for

linear stationary plants (reference I). Typical control results are

illustrated by Figures 2-3, 2-4, 2-5, 2-6, 2-19, 2-20, 2-21, and 2-22 for

the stationary basis vector description. Figures 2-10, 2-11, 2-12, 2-13,

2-31, 2-32, 2-33, and 2-34 show typical control results for the time-

varying basis vector description. These results demonstrate that for a

given value of the decision interval, T, the smaller values of the weighting

factor, h, tend to make the controlled output response faster.

STATIONARY VS TIME-VARYING BASIS VECTOR RESULTS

The experimental results presented in the preceding paragraphs have

covered in some detail the particular investigations conducted on the
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selected time-varying plants. These investigations were in mose cases

equally divided between the Interpolation Prediction with the stationary

and with the time-varying basis vector descriptions. In review the

following experimental studies were made for these descriptions:

Demonstration of regulator control with fixed updating for all

selected time-varying plants for five T-h combinations.

Establishment of the T-h stability for a limited area of the

T-h plane for all selected time-varying plants. The stability

was established by the experimental regulator control results.

Demonstration of trajectory (sine and displaced sine desired

outputs) tracking ability with the updating monitor incorporated

for selected time-varying plants.

Establishment of the effect of the weighting factor, h, on

control system performance for the selected time-varying

plants.

Upon close review of these experimental investigation results, a

preference for either the stationary or the time-varying basis vector

description is not evident. This may be illustrated by noting that the

stationary basis vector description provided completely stable performance

for all T-h combinations for all the selected time-varying plants. The

time-varying description yielded a total of five unstable T-h combinations

for three of the plants. However, the time-varying basis vector descrip-

tion provided slightly better trajectory tracking as was noted from the

unweighted error norm. These observations indicate no clearcut advantage

of either description. Moreover, both descriptions were equally plagued

by occurrences of poor interpolation estimates of the plant matrices.

In order to establish if the time-varying basis vector description

is better with respect to controlling a broader spectrum of time-varying

plants, a short experimental study was conducted on several third order

plants. The particular set of plants considered are listed in Appendix B

under the B.5 heading. It should be noted that these plants possess linear

time variation, whereas those considered previously contained sine time

variation of a single coefficient.
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This investigation consisted of Interpolation Prediction control runs

for both basis vector descriptions. The desired output was a sine trajectory,

the updating monitor was utilized with a _i value of 0.05, and new data was

shifted into the matrix of basis vectors every interval. Also, as in all

previous studies, the same start-up procedure was utilized as is presented

in reference I. For the sake of completeness, it should be_noted that an

initial condition of +I0 units was used for each element of the state vector.

Stationary Basis Vector Results. - Figure ._4_ through 2-48 present a summary

of the experimental results obtained using this description. Figure 2-43

illustrates very satisfactory control performance. However, as the speed

of the time variation is increased (Figures 2-44, and 2-45), the tracking

is somewhat degraded by a few occurrences of the use of poor interpolation

estimates of the plant matrices for one or more intervals. Figure 2-46

demonstrates that for a higher speed of time variation the stationary basis

vector description produces poor control results. Control performance for

even higher speeds of time variation is demonstrated by Figures 2-47 and

2-48.

Time-VaryinK Basis Vector Results. - The control performance of this

description is summarized by Figures 2-49 through 2-54. Satisfactory

control is observed in Figures 2-49 and 2-50. However, as the speed of

the time variation is increased the tracking performance is somewhat

degraded as may be noted by Figures 2-51 and 2-52. Again such occurrences

are due to poor interpolation estimates of the plant matrices being used

for one or more intervals. Figure 2-53 illustrates a speed of time

variation where poor control performance is observed to a greater degree.

Figure 2-54 presents the control results obtained for the fastest time

variation considered in this study.

Comparison. - The results of this limited study indicate that the time-

varying basis vector description does provide adequate control for time-

varying plants for which the stationary description control was somewhat

degraded. However, these results by no means establish in general the

point or speed of variation at which the time-varying description becomes

superior.
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2.3 SUMMARY OF ANALYTICAL AND EXPERIMENTAL RESULTS

ANALYTICAL STUDIES

The mathematical tools for the study of the control policy as applicable

to time-varying plants were developed in previous DACS research (reference i)

and in paragraph 2.1. These included a mathematical description of the par-

ticular plants considered, a state equation relating the values of the state

variable of the plant at the sampling times, and the control policy equation

by which the control input to the plant is calculated. Involved in imple-

menting the control policy is the prediction of future states of the plant

output without assuming any a priori knowledge of the plant. Throughout the

time variation investigation Interpolation Prediction has been utilized

with the basis vector being one of three forms. The stationary basis vector

approach uses the linear basis vector without any explicit time dependence

term included; the time-varying basis vector includes an explicit time de-

pendence term (running time); the time augmented basis vector includes an

explicit time dependence term (constant time). The first and last forms of

the basis vector were introduced and utilized in earlier research (reference

I) whereas the first and second were presented and studied in greater depth

in the research presented in this report.

An updating monitor criterion is developed in paragraph 2.1. This

criterion determines when updating (recalculation of the interpolation

estimates of the plant matrices) is necessary, and is based on a comparison

of the predicted and measured states at the end of the decision intervals.

Also, of interest is the recursive method of matrix inversion presented in

Appendix D° This method is indeed applicable to the matrix inversion

associated with the interpolative procedure.

EXPERIMENTAL STUDIES

Since this research extension was mainly of an experimental nature, a

very large amount of data was compiled during the study. A representative

set of the experimental data is presented in paragraph 2.2. Approximately

400 regulator control responses were made for about fifty linear time-
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varying plants of orders three through five. These were used to establish

the T-h stability of five T-h combinations for each plant with both the

stationary and time-varying basis vector descriptions. Also, over 200

trajectory control simulations were made to test the control performance

characteristics of these two basis vector descriptions.

Numerous regulator and trajectory control simulations were made on

selected plants to study such areas of interest as:

The updating monitor criterion

The weighting factor h

The possible preference of the time-varying basis vector

over the stationary description.

The results of these studies are considered in the following paragraphs.

Stability Boundaries. - The stability results of both the stationary and

time-varying basis vector descriptions were very similar. For all five T-h

combinations examined, the stationary basis vector description provided

stable regulator control, and so experimental stability was established

for the selected set of plants. The time-varying description yielded a

few unstable combinations, and only for three of the plants considered.

Also, occurrences of matrix ill conditioning and/or poor estimation were

noted about equally for both descriptions. Therefore, both descriptions

are about equally likely to provide satisfactory control from the stability

standpoint. This conclusion applies only to the set of plants considered

in this study, and any further extension or generality is not be assumed

at this stage.

TrackingCapability. - Trajectory control simulations were conducted for

both the stationary and time-varying basis vector descriptions. The desired

output was either a sine or displaced sine trajectory. The results of this

study indicate that both of the plant descriptions provide about the same

degree of tracking capability. Also, both basis vector descriptions were

plagued by about equal occurrences of poor interpolation estimates of the

plant matrices. Therefore, as was noted in the stability boundary investi-
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gation, neither description shows any clear cut advantage over the other.

The most worthwhile conclusion from this investigation is that both descrip-

tions provide adequate control for the selected plants.

Upd.atin_ Monitor. - The particular updating monitor criterion examined by

this study accomplished th_ required task. The most obvious and perhaps

the most expected conclusion is that the frequency of updating for any

plant is definitely a function of the allowable error threshold level. The

lower this level is the more frequent the requested updating of the inter-

polation estimates of the plant matrices. Also, the higher order plants

require more frequent updating. The most important conclusion is that

monitor controlled updating is feasible.

Weighting Factor. - The weighting matrix (see reference 1 and/or paragraph

2.1) has the effect of weighting the state vector of the plant so as to

control the importance of the higher order state vector elements. The

experimental results of paragraph 2.2 show similar types of responses to

those of the linear stationary studies (reference i). That is, for buth

basis vector descriptions the larger values of the weighting factor, h,

make the response more sluggish as the control policy seeks to control

more precisely the higher order state variable elements.

Stationary vs Time-Varying Basis Vector. - The summary and conclusions did

not provide a strong preference for either the stationary or time-varying

basis vector description. In general, both descriptions are about equal in

all aspects considered in these studies. In order to possibly demonstrate

the preference of one description over the other, an investigation was con-

ducted on a different type of time-varying plant, i.e., plants with a linear

time variation.

The results of this. study indicate that the time-varying basis vector

description does perhaps provide satisfactory control over a wider spectrum

of plants. However, this is definitely not a general conclusion because of

the very limited depth of this particular study.
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SECTION3

CONTROLOF NON-LINEAR PLANTS

3.1 PIANTAND SYSTEM EQUATIONS

As was the case in Section 2, much @f the research effort discussed

here is a direct extension of work previously documented (reference [).

Much of the text and equations will be of a summary nature where the more

complete discussions and equational developments appear in reference i.

METHOD OF ANALYSIS

The dynamics of the plant are assumed to be describable by the

following very general type of non-linear differential equation:

n-i
L(p,t) c(t) + F(t,c(t), c(t), . . . c (t)) = M(p,t) m(t) (3-i)

where the plant is assumed to have a single input, m(t), and a single

output, c(t). L(p,t) and M(p,t) are linear differential operators with

time-variable coefficients° The function, F, is a non-linear function of

its arguments.

An input-output relationship for the plant is conveniently expressed

in terms of a functional relationship:

c(t) = Tim(t)] (3-2)

Volterra (reference ii) presents a proof that if the functional, T [m(t)] ,

is continuous, it may be approximated to any desired degree of accuracy

over finite time intervals by a finite series of the form:

J t t

3 3

j=l (3-3)
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The essential restrictions are that the system produce continuous and

bounded outputs for continuous and bounded inputs. If Tim(t)] can be

represented exactly by a converging infinite series (J = _) of the form

of equation 3-3, it is called analytic (reference 12). Volterra and George

(r_ferenae I_ show that equation 3-3 may be interpreted as a functional

generalization of the Taylor series expansion for the analytic functional.

The particular control method under study assumesthe existence of a

functional relationship of the form of equation 3-3 but makesno attempt

to identify ito The control element instead senses the current response

of the system along with the current sensitivity to control inputs and

extrapolates this into the near future.

the functional T[m(t_ to be analytic in the intervalBy considering
over which it is being approximated, it is convenient to expand the input-

output relationship to a vector relationship in which the successive state

variables possess a derivative relationship.

Sucha convenient way of representing the state equation is:

_((k+l)T) = _k((k+l)T) + Ak((k+I)T) _k (3-4)

where:

_k((k+l)T ) = x((k+llT) +

and

Ai((k+l)T) u. (3-5)
m i].

x'(t) =i c(t) _(t) .... ncl(t)j
(3 -6)

Equation 3-5 defines the first term of the right-hand side of equation 3-4

as the current response of the plant due to that response, [((k+l)T),

which would occur in the absense of any control inputs, plus that due to

all past control forces previous to uk. Superposition is not implied as

the _Ai's will depend upon [ and the previously applied Uo'S.l The second

term on the right-hand side of equation 3-4 is the current sensitivity of

the plant to the control input _k" Again, superposition is not implied as

_Ak is not a unique constant of the plant, but is a function of past states,

_(t), and the past control inputs.
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PLANT FUNCTIONAL REPRESENTATION USING INTERPOLATION

Interpolation is a particularly simple way of selecting a continuous

functional that coincides with the system functional at measured data

points when no information is available regarding the dynamic relations of

the plant° Two methods were studied for the approximation of the functional

of non-linear plants.

Linear Interpolation. - For non-linear systems which may be considered to

be relatively linear on a piecewise basis, interpolation over linear terms

may provide an adequate piecewise description of the plant. It would be

expected that the linear interpolation matrices would require frequent

updating as the non-linear response of the plant is approximated by a

linear combination of basis vector functions over short intervals.

If the non-linear plant can be considered to be stationary, then the

first form of the linear basis vector discussed in paragraph 2.1 would be

appropriate. The interpolation estimate of the state at t -- (k+l)T would

be given by (reference i):

_((k+l)T) = DX __-i _(Uk,_k ) (3-7)

and the basis vector would be given by:

_ _x'(iT) u (3-8)
q_'(ui'!i) -" L. i i

Non-Linear Interpolation. - A second form of interpolation studied is one

in which second order terms are included in the basis vector. The inter-

polation estimate of the state at t = (k+l)T is still given by equation

3-7, however, two possibilities exist for the basis vector as given in

equations 3-9 and 3-10:

,2 2 (3-9)
__b'(ui,Ni) = _x'(iT) _x (iT) u i_x (iT) u.l u.1 i

_'(ui,N i) -- x'(iT) x'2(iT) _(iE) uix(iT ) u i ui2 (3-I0)
- - I- - - i

The basis vector of equation 3-10 includes the cross product of the state

variable elements whereas the basis vector of equation 3-9 does not°
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THE INTERPOLATION MATRICES

The interpolative procedure would depend upon which of the three basis

vectors is used.

Linear Interpolation Matrices. - The linear interpolation matrices would

be identical in form to those presented in paragraph 2.1. They are repeated

here for the sake of completeness. The B matrix would be factored into two

submatrices:

[o]B--_¢-I I-*I
_ _ 1 I

(3-11)

The linear interpolation estimate of the state equation would be:

_((k+l)T) = _I x(kT) + _i Uk (.3-12)

where _OlX(kT ) is the estimate of _Xk((k+l)T ) of equation 3-4 and -_I is the

estimate of _Ak((k+l)T).

Non-Linear Interpolation Matrices. - The form of the non-linear interpolation

matrices would depend upon which of the two non-linear basis vectors is used.

The equations presented will be for the basis vector of equation 3-10 which

includes the cross products of the state variable elements. The differences

in the equations for the basis vector of equation 3-9 will be noted as they

occur.

The B matrix is factored into six submatrices:

F JIo2 :031 _,: : , _ _ (3-13)B D__4I -ell , , II 2
! I ! I

I 9 I l I

where if the assumed order of _(t) is p, the oroer of _I' _2' and O-4 is

p x p, the order of _3 is p x p(p-l) and _I' and _2 are p vectors.
p

The interpolation estimate of the first term on the right-hand side

of equation 3-4 is given by:

-Xk((k+l)T) = _i x(kT) + _2 --x2(kT) + -03 xix_(kT) (3-14)
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If the basis vector without state variable cross terms is used, the term

involving _3 will be missing in equation 3-14 and B is factored into five

submatrices rather than six with the 0--3submatrix being excluded.

The estimate of the second term of the right-hand side of equation
3-4 is given by:

Ak((k+l)T) - (kT) + _I) I (_2)

and :

2

U'k = I Iuk uk

(3-15)

(3-16)

The quantitY_k((k+l)T ) is a p vector, the order of _((k+l)T) is p x 2,

and _k is a 2 x i vector.

The non-linear interpolation estimate of the state equation is given by:

_((k+l)T) = _k((k+l)T ) + _k((k+l)T ) _k (3-17)

where _--k'--_kand u k are defined by equation 3-14, 3-15, and 3-16 respective-

ly.

THE CONTROL POLICY

The control policy for the control of non-linear plants is the

same as that for the linear plants:

min[Qk]= din [e'((k+l)T)K e((k+l)T)_
uk u k -- _

(3-18)

where the error state vector _(t) is defined as it was for the linear

studies:

_(t) = !(t) - _(t) (3-19)

The final form of the control policy equation will depend upon whether the

linear or one of the non-linear interpolation basis vectors is utilized.

Linear Control Policy Equation° - The control policy equation using the

linear basis vector is identical in form with that presented in paragraph

2.1. It is obtained by substituting the linear estimate of the state
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equation, equation 3-12, into the quadratic form, equation 3-18, setting

the first derivative of the resultant equation with respect to uk equal

to zero and solving for uk. The final equation for uk is given by:

_1' K [rC(k+l)T) -_1 x(kT)]

_K_%

Non-Linear Control Policy Equation. -

(3-20)

The manner in which the non-linear

control policy equation is derived is identical to that used in deriving

the linear control equation. The interpolation estimate of the state

equation, equation 3-17, is substituted into equation 3-18, the derivative

of the resultant equation with respect to uk is set equal to zero, and the

derivative equation is solved for uk. In the non-llnear case the resultant

control equation is a cubic in terms of Uk:

(2 o K k oo)%3 + (3k ° K k o)%2

+ (2_o K k_ A + a' K uk + ' K = 0- k-=o -- k_o ) k_ -- k_A

where the following notational definitions apply:

k_ A -- _((k+l)T) - r((k+l)T)

(3-21)

(3-22)

The fact that equation 3-21 is a cubic guarantees that at least one real

root exists which will minimize the quadratic form Qko

COMPARISON OF THE INTERPOLATION METH(_S

Reviewing the equations involved with the three types of interpola-

tion basis vectors shows that the linear form is by far the simplest. An

explicit solution for the control force, Uk, is possible in the linear case

whereas both non-linear forms involve the solution of a cubic equation. The

size of the interpolation matrices are smallest for the linear case and are

substantially greater in the two non-linear cases. The critical matrix as

far as size is concerned is @ the matrix of basis vectors. This matrix

must be inverted whereas the other matrices are involved in matric
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multiplications and additions which are simpler operations.

for the order, d, of the _ matrices are given below.

of the system is p,

Linear Basis Vector:

d=p+l

Non-Linear Basis Vector Without Cross Terms:

d=3p+2

Non-Linear Basis Vector With Cross Terms:

d = 3p + £I£i_+ 2
2

The formulas

The assumed order

(3-23)

(3-24)

(3-25)

Table 3.1 lists the dimension of _ for several system orders:

SYSTEM

ORDER

2

3

4

5

LINEAR _

4

5

6

TABLE 3.1 DIMENSIONS OF __

NON-LINEAR _
WITH CROSS TERMS

NON-LINEAR

WITHOUT CROSS TERMS

8

Ii

14

17

9

14

20

27

3.2 EXPERIMENTAL STUDIES

This section presents the experimental results of the non-linear con-

trol studies. The interpolation method of plant functional representation

discussed in paragraph 3.1 have been used throughout the simulation experi-

ments.
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,OBJECTIVES

The objectives of the experimental program were:

To investigate the feasibility of the control of non-linear

plants using a non-linear interpolation basis vector.

To establish if a region exists in the T-h plane within which

satisfactory control of a non-llnear plant is obtained. A

corollary to this objective is to observe if any systematic

trends exist with respect to values of the T-h control system

parameters.

To investigate the control of a non-linear plant with the

linear interpolation control policy and to compare these results

with those obtained using the non-linear interpolation basis

vectors.

The accomplishment of these objectives along with the experimental

procedures used is discussed in the following paragraphs.

NON-LINEAR PLANTS

It was first necessary to select a set of non-linear plants to use as

vehicles for the experimentation. This is not a menial task as the area

of non-linear control systems is vast and rather highly segmented. There

are many methods of analysis and synthesis which apply to limited classes

of non-llnear problems but no general method which applies to all. If

the problem of selecting a representative spectrum of linear stationary

and linear time-varying plants is considered difficult, a corresponding

selection of non-linear plants is virtually impossible. The set of non-

linear plants was therefore limited to those characterized by the Van der

Pol equation:

E - e(l - c2) 6 + c " 0 (3-26)

While this may seem restrictive, the available time and funds allowed

only a very limited look at the feasibility of the control of non-linear

plants. It was decided that rather than define a very limited set of

experiments for each of several non-llnear plants, it would be more
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instructive to confine the experiments to a more exhaustive set with one

type of plant_ The Van der Pol "plant" was chosen because it is easy to

control the degree of non-linearity by appropriate selection of the

coefficient, _ , the non-linear damping term. The ability to control

the non-linearity of the plant is certainly not a unique property of the

Van der Pol equation (i.e. an otherwise linear plant with a non-linear

spring constant) so that the choice is arbitrary in this respect.

The free response of the Van der Pol equation for three values of

is shown in Figure 3-1. In all three cases the initial conditions were

x = 1.0 and x = 1.0 which placed the initial state inside the characteris-

tic limit cycle which the Van der Pol equation always assumesregardless

of the initial conditions. The output response in all three cases grows

in magnitude until it oscillates between ±2 units which is characteristic

of the Van der Pol limit cycle.

The following paragraphs consider the control of the Van der Pol

"plant" as defined by equation 3-27:

"6 - _(i - c2) 6 _ c = m(t) (3-27)

where m(t) is the input or forcing function determined by the control

policy discussed in paragraph 3.1.

T-h PLANE AND REGULATOR RESULTS

Previous research (references I, 3, 4, 5, 6, and 7) has established the

primacy of the two control or design parameters of the DACS control

concept in determining controlled response characteristics of many systems

for various values of the decision interval length, T, and the weighing

factor, h, For linear stationary systems, a region of stable operation

of the control policy in the T-h plane was established using a Liapunov

function. The concept of stable operation of the control policy in the

T-h plane was extended to linear time-varying systems in reference i and

paragraph 2.2 where control simulations were performed at various T-h

points to ascertain the regions of stability. Further extension to the

controlled response characteristics of non-linear systems in the T-h plane

is now made with the following restriction. Conclusions as to stability
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are not made and performance is assessed only as being satisfactory or

unsatisfactory. The inexactness of any estimation technique (including

the interpolation method) in describing the non-linear system response

characteristics and resultant high dependence on the system initial con-

ditions and subsequent trajectory precludes general stability conclusions.

As was the case in paragraph 2.2, only a limited region of the T-h plane

was investigated because of economic considerations.

The first set of experiments conducted were concerned with the

regulator response characteristics of the Van der Pol plant (r(t) = O for

all t) for three different values of E (the coefficient of the damping

term) using the three types of interpolation basis vectors discussed in

paragraph 3.1. As in all of the previous control simulations presented

using the interpolation procedure, a start-up phase is necessary as the

procedure is not self starting. The start up method used in these

studies is identical to that discussed in paragraph 2.2 of reference I

concerning "Interpolation Prediction Control-With Updating". Simply

stated, the start-up procedure computes a set of initial interpolation

matrices while allowing the arbitrary selection of a set of system

initial conditions for the control simulation. The controlled response

graphs presented (i.e. Figure 3-8) are reproductions of the graphs

plotted by the computer simulation program. The axes have been relabeled

to make them more readable and the data points have been connected with

straight lines. The start-up phase is not shown on the graphs.

Regulator Results For _ Of 0.2. - This value of _ yields a system which is

the most nearly linear of those considered. The T-h planes for the three

types of basis vectors are shown in Figures 3-2, 3-3, and 3-4. For the

sake of brevity, the basis vectors are identified as follows:

Type One - linear basis vector

Type Two - non-linear basis vector without state variable

cross terms

Type Three - non-linear basis vector with state variable

cross terms

The definitions of the three basis vectors have been presented in equa-

tions 3-8, 3-9, and 3-10 respectively of paragraph 3.1. They will be
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referred to by type only henceforth with the inferred definition of type

being that given above.

One of two letters, "S" or "U", occurs on the T-h planes at points

where regulator control simulators were made. The letter "S" indicates

satisfactory performance at a particular point and "_' indicates unsatis-

factory performance. Performance is judged upon whether the system output

was driven to 0 during the control simulation. In all cases the initial

state of the system was:

_'(0) = il'O 1.0, (3-28)

In all cases, new data was shifted into the interpolation matrices every

interval and the interpolation estimates were updated every interval.

Figure 3-2 shows that all five points investigated using the Type

One (linear) basis vector yielded satisfactory control performance. In

Figures 3-3 and 3-4 only one point gave unsatisfactory performance for

each of the two non-linear basis vector descriptions. Although different

points yielded the unsatisfactory performance in these cases, they both

occurred at the largest value of h investigated.

Regulator Results For e Of 1.0. - This value of e yields a system which

is of an intermediate nature as far as the degree of non-linearity of the

three plants studied. The parameters of the experimentation (types of

basis vectors, initial conditions, etc.) are the same for this value of

e as those described for E = 0.2.

The T-h planes corresponding to the three types of basis vector de-

scriptions are shown in Figures 3-5, 3-6 and 3-7. Figure 3-5 shows that all

five points using the Type One (linear) basis vector yielded satisfactory

performance. Figure 3-6 shows that the Type Two basis vector yielded one

unsatisfactory point and Figure 3-7 shows that two unsatisfactory points

occurred using the Type Three basis vector. Unsatisfactory performance

was obtained at the middle point of the plane with both of the non-linear

basis vectors.

The actual regulator control simulations for one T-h point (T = 0.4,

h = I._ using the three different basis vectors are presented in Figures

3-8, 3-9 and 3-10. The graphs are typical of the type of performance obtained
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at a T-h point classified as satisfactory in all three _ cases investiga-

ted. The actual regulator responses are shown for this value of _ only

so as to unify the presentation of the data as much as possible. Typical

unsatisfactory performance yields a controlled response graph in which

the system output diverges.

In all three figures (3,8, 3-9 and 3-!0) the response is somewhat

irregular before converging to zero. The response of Figure 3-9 for a

Type Two basis vector is the most extreme in this regard.

The regulator control performance simulations for a second point in

the T-h plane (T = 0.8, h = 0.6) of the E = 1.0 Van der Pol plant are

shown in Figures 3-11a, 3-11b, and 3-iic for Type One, Type Two, and Type

Three basis vectors respectively. The response in all three cases is

more regular than that obtained for the first T-h point.

Resulator Results For e Of 5.0. - This is the largest • value studied.

Again, the parameters of the experimentation are the same as those of the

• _ 0.2 case.

The T-h planes corresponding to the three types of basis vector de-

scriptions are presented in Figures 3-12, 3-i3, and 3-14. Figure 3-12

shows that the Type One (linear) basis vector breaks down completely as

far as yielding a satisfactory plant description for control at the T-h

points considered. This is significant when compared with the Type One

basis vector T-h planes of the previous two e values. The free response

of Figure 3-1 indicates that the c = 5.0 Van der Pol plant is consider-

ably more non-linear than the other two and the linear basis vector descrip-

tion is not satisfactory.

Figure 3-13 shows that all five T-h points also yielded unsatisfactory

performance using the Type Two basis vector and Figure 3-14 shows that

only the lower two T-h points yielded satisfactory control performance using

the Type Three basis vector. For the T-h points considered, the e = 5.0

Van der Pol Plant appears to be a limiting case as far as control is

concerned. A more practical limit would appear to be a Van der Pol

plant with an e value somewhere between 1.0 and 5.0.
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TRAJECTORY RESULTS

The control performance for the Van der Pol plants was investigated

for the case where the desired output is a sine wave. The other elements

of _(t) are the corresponding derivatives of the output. Control simula-

tions were made using all three of the basis vector types. In all experi-

ments the initial state of the system was x = 1.0 and _ = 1.0 and new data

was shifted into the interpolation matrices every interval. The updating

monitor was utilized in the Type One (linear) basis vector control simula-

tions with 6. = 0.05 for all i. The use of the updating monitor is a
l

direct extension of the procedure developed for the linear time-varying

systems discussed in Section 2 and the experimental procedure used for

updating in the non-linear experiments is identical.

Trajectory Results For _ Of 0.2. - Typical trajectory results for the

= 0.2 Van der Pol plant are presented in Figures 3-15, 3-16, and 3-17

for Type One, Type Two, and Type Three basis vectors respectively. The

T-h point is the same (T = 0.4, h " 0.6) in all three figures. Various

degrees of tracking difficulty are apparent for the different basis

vector descriptions.

Figures 3-18 and 3-19 show the trajectory response at two other T-h

points using the linear basis vector. The tracking of Figure 3-18 is

somewhat degraded over that of Figure 3-15 for the same h value but a

decision interval one-half the length. The higher h value of Figure 3-19

shows the effect of moving out in the T-h plane holding the length of the

decision interval constant. The trends shown in T and h for the linear

basis vector are also typical of those obtained using either of the two

non-linear basis vector descriptions.

Figure 3-19 demonstrates the interesting result that even though the

regulator response at the T-h point was satisfactory (Figure 3-2) the

trajectory response appears to be diverging at the end of the run.
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Trajectory Results For ¢ = 1.0. - Typical trajectory results for the

= 1.0 Van der Pol plant are presented in Figures 3-20, 3-21, and 3-22

for Type One, Type Two, and Type Three basis vectors respectively. In all

three cases bad plant estimation occurs somewhere during the run. The

tracking response might be classified as adequate for the Type One and Type

Three basis vectors, however, the control using the Type Two basis vector

is inadequate at the end of the run.

Trajectory Results For _ - 5.0. - A few trajectory control simulations

were made for the E = 5.0 Van der Pol plant with rather discouraging

results. This might be expected from the T-h plane plots where only two

satisfactory regulator points existed for the Type Three basis vector and

none existed for the other two basis vectors.

3.3 SUMMARY OF EXPERIMENTAL RESULTS

The experimental results presented in paragraph 3.2 show that two of

the Van der Pol plants ( _= 0.2 and _ = 1.0) could be controlled with some

degree of success. The control of a third Van der Pol plant (_ = 5.0),

the most non-linear of the three, would have to be graded as unsatisfactory.

In all cases a somewhat limited region of the T-h plane was investigated so

that conclusions must be confined to this area. It is possible that more

satisfactory performance might be obtained in other parts of the T-h plane

but to expect this would require a great deal of optimism. Although the

non-linear plants used in the study were rather limited in number, the

general feasibility of the linear and non-linear control algorithms has

been demonstrated. The results for the three types of basis vectors are

considered in the following paragraphs.

LINEAR CONTROL POLICY RESULTS

The linear basis vector defined by equation 3-8 of paragraph 3.1 was

used in both regulator and trajectory control simulation experiments. The

experimental results using the linear basis vector appear to be the most

positive of the basis vectors studied except for the _ = 5.0 Van der Pol
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plant. The regulator control simulations at all five T-h points investi-

gated demonstrated satisfactory performance in the cases of the E = 0.2

and _ = 1.0 Van der Pol plants. The regulator response of the _ = 5.0

Van der Pol plant was unsatisfactory at all five T-h points investigated.

The interpolation estimates of the plant matrices were updated every

interval during the regulator runs but even under these conditions the

linear interpolation estimation procedure "broke down" when the plant

became fairly non-linear. This illustrates that the limit of the descrip-

tion obtained using the linear basis vector exists for an E value somewhere

between 1.0 and 5.0.

The trajectory control simulations using a sine wave as the desired

output demonstrated various degrees of tracking capability depending upon

the plant and the particular T-h point. The updating monitor described in

paragraph 2.1 and used in the experiments with time-varying plants was

also used in the trajectory control simulations of the Van der Pol plants

with the linear basis vector. The monitor dictated fairly frequent up-

dating with the E = 0.2 Van der Pol plant and updating almost every interval

with the _ = 1.0 plant. No trajectory control simulations were performed

for the E = 5.0 Van der Pol plant because of the negative results of the

regulator runs.

The best tracking in the trajectory experiments occurred at the lower

T-h points in the plane, Typically the best T-h point was T = 0.4, h = 0.6

with the T-h point of T = 0.4, h - 1.0 providing a slightly more sluggish

response.

NON-LINEAR CONTROL POLICY RESULTS

Two non-linear basis vector descriptions were studied as defined by

equations 3-9 and 3-10 of paragraph 3.1. The difference between the two

was that one contained the cross-products of the state vector elements

(referred to as the Type Three basis vector in paragraph 3,2) and the other

did not (referred to as the Type Two basis vector).
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The regulator control simulations at the five T-h points studied

demonstrated varying degrees of success of the control policy with both
non-linear basis vectors. In no case did all five points yield satisfactory

performance for any one plant using either of the basis vector descriptions.
There were four satisfactory T-h points for the _ = 0.2 Van der Pol plant

using each of the two basis vectors although not the same four. The _ = 1.0

Van der Pol plant yielded four satisfactory T-h points using the Type Two

basis vector and three using the Type Three basis vector. Only two T-h

points (the lower two in the plane) gave satisfactory regulator performance

using the Type Three basis vector for control of the _ = 5.0 Van der Pol

plant and none of the five T-h points yielded satisfactory performance

using the Type Twobasis vector.

The trajectory control simulations using a sine wave as the desired

output demonstrated feasibility of the non-linear control method although
in most cases the performance was no better than that obtained using the

linear (Type One) basis vector and in manywas not as good. As for the

linear basis vector, the most satisfactory tracking occurred at the T-h

point T = 0.4, h = 0.6 for both basis vectors. The Type Three basis vector
which includes the state variable cross terms gave slightly better results.

Based upon the more positive results obtained at small T values, trajectory

runs using the _ = 1.0 Van der Pol plant were madeat the T-h point T = 0.2,

h = 0.8 to see if the trend persisted. The results using the Type Twobasis

vector were negative. While the tracking using the Type Three basis vector

exhibited extremely good initial tracking, the matrix of basis vectors very

quickly becameill conditioned preventing successful updates. The cause of
this maybe due to the close proximity of the data points caused by a small
decision interval and the size of the matrix (9 x 9).
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SECTION4

DATATRUNCATIONSTUDY

4.1 APPROACR

The experimentation reported in the previous sections andthe majority

of the past DACS research (reference I) has utilized the Interpolation

Prediction method to obtain estimates of the plant matrices. The applica-

tion of the Interpolation Prediction method to either linear or non-linear

plants involves the use of measured (or estimated) output state variables.

Before presenting the specific form of data truncation used in this study,

a discussion of the reason for such an investigation is pertinent,

INTERPOLATION PREDICTION REVIEW

In review it may be remembered that Gorman and Zaborszky (reference 8)

demonstrated the usefulness of interpolation as a simple way of selecting

a continuous functional, _ [u, _](t), that coincides with the system

functional at measured data points when no information is available regard-

ing the dynamic relations of the plant. Also, Ostfield (reference 9) con-

sidered in more detail the particular type of interpolation procedure which

applies to the control algorithm utilized in the DACS control policy.

Because the control inputs are constant over decision intervals T seconds

in length, it is convenient to have the set of measured data points take

the form of the initial conditions _-m at the beginnipg of M decision intervals,

the control inputs, um (constants), during the intervals, and the outputs

x at the end of the intervals.
m

The method of solution for the approximating functional takes the form

of solving a determinant equation which in turn yields the following solu-

tion for the interpolation estimate of the state at t = (k+l)T:
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__((k+l)T) - _ fl __(uk,._k) (4-i)

where for the linear stationary case the basis vector is defined by:

__'(ui__l) = x'(IT) u_ (4-2)
!

The matrix of basis vectors, _, consists of an appropriate set of basis

vectors, _i's, which need not be consecutive, and DXX conslsts of a cor-

responding set of state variable measurements.

The partitioned matrix, B (of assumed order p), is defined as:

= l_ l]B_: ¢__-1 let I

where _01 is a pth order square matrix and --_iis a pth order vector. This

form yields as an estimate of state at (k+l)T:

_((k+l)T)_ _eI _x(kT)+ _-ZUk (4-4)

where _i and _i are the interpolation estimates of the plant matrices. An

equation presented for review is the associated control policy equation.

__[_ [__((k+l)T) - e_l _.(kT)]
Uk = t (4-5)

Based on the above equational review, the control performance is

dependent on the validity of the Interpolation Prediction estimates of the

plant matrices. However, these estimates, _I and _I' are in turn directly

effected by the measurement accuracy of the output state variables. There-

fore, any form of measurement accuracy investigation is certainly of con-

siderable interest. A particular one (data truncation) was selected since

it seemed a logical and convenient starting point for such an investigation.

More elaborate study was beyond the scope of the study.
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METHOD OF TRUNCATION

As was noted above, only truncation of measured data was considered

in this limited depth study of measurement accuracy requirements for the

Interpolation Prediction method. The particular form considered truncation

of significant digits of each measured value. For example, an exact measure-

ment such as 109.86541 would become 109.86500 when truncated to six signifi-

cant figures and 109.00000 when truncated to three significant figures. It

may be noted that round off was not considered in the type of truncation

employed in this study.

Also of importance is the number of elements of the state vector which

are truncated and the manner of such truncation. Referring to equation 4-3,

it can be seen that the estimates of the plant matrices depend on the DXX

and _ matrices. As was noted then, the _ matrix consists of the output state

measurements and control forces, where as the DXX matrix consists only of

output state measurements. Throughout this study the control inputs were

assumed known to the actual computer accuracy (i.e. untruncated or eight

place accuracy). The output state variable measurements included in both

the I_X and _ matrices were always truncated in one of the following manners:

Type One:

Type Two:

The entire output state vector (i.e. the output and all

the derivatives) was truncated to the same number of

significant figures.

The output was considered to be known to eight place

accuracy, but the derivatives were all truncated to

some lower number of significant figures.

4.2 EXPERIMENTAL STUDIES

This section presents the experimental response characteristics of a

selected set of linear stationary plants controlled by the DACS control

policy for the above two types of output state vector truncation with

various significant figures. The set of plants consisted of eight third

and fourth order pole configuration transfer functions. Each order was

equally divided between plants with and without an integration (i.e. a

pole at the orgin). Throughout this investigation only one stable T-h
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combination was considered for each plant (T ffi0.6, h = 0.8). Also, new

data was shifted into the matrix of basis vectors every interval, and new

Interpolation Prediction estimates of the plant were recalculated every

fifth interval. The desired output was a sine trajectory, and the initial

condition on each element of the state vector was +I0 units.

The specific objective of this experimental program was to determine

the effect of measurement data truncation on the control performance of

the control system.

Type One Results. - The results of this investigation for both third and

fourth order plants are typified by Figures 4-1 through 4-4. Figure 4-1

shows the untruncated (full measurement accuracy) control performance for

one of the fourth order systems. The following three figures (4-2, 4-3,

and 4-4) show the control performance for the same system, but with data

measurements truncated at six, five, and four significant figures respec-

tively. This same system was also investigated for data measurements

truncated at three significant figures. In this case the controlled output

quickly diverged from the desired output trajectory.

Type Two Results. - The results of this investigation for both third and

fourth order plants are typified by Figures 4-5, 4-6, and 4-7. Figure 4-1

shows the control performance for the untruncated case. Control performance

with the measurements truncated at six, five, and four significant figures

are presented in Figures 4-5, 4-6 and 4-7. The controlled output diverged

for the case where the data measurements were truncated at three significant

figures.

4.3 SUMMARY OF EXPERIMENTAL RESULTS

The experimental results indicate that either Type One or Type Two

state vector truncation at six significant figures provides equivalent

control to that of the untruncated case. Also, that both types completely

fail to provide any degree of control for truncation at three significant

figures.
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However, at five and four significant figure truncation the picture

for Type One is somewhat different from that of Type Two. For Type One

with truncation at five significant figures the control is somewhat dete-

riorated from that of the untruncated control performance. However, Type

Two truncation at five significant figures did not result in any control

performance deterioration. In fact, the control is about the same as that

of the untruncated case. Both types of state vector truncation at four

significant figures provided about the same control performance. Poor

tracking is noted in both cases as well as occurrences of poor Interpola-

tion Prediction estimates of the plant matrices. However, with fixed

updating the estimates of the plant matrices were corrected at a later

time which is quite noticeable in the figures.

In summary, the experimental results show that in the worst case

condition of no data smoothing at least six significant figure data measure-

ments are required for control performance equivalent to that of the

untruncated case. Also, from the Type Two investigation it may be concluded

that with good measurement of the output, the higher derivatives need only

be known to five significant figures for control similar to that of the

untruncated case. Also, of interest is the fact that control performance

could usually be rated as fair even at four significant figure truncation.

142



SECTION 5

RECO_RMENDATIONS FOR FURTHER STUDY

The theoretical and experimental research presented in this report

is to a great degree inseparably intertwined with that of reference I.

In most cases the experimental studies are extensions of areas covered

briefly in the previous research and listed as primary recommendations

for further study. Throughout the course of these investigations certain

areas noteworthy of further study have been recognized and are summarized

in the paragraphs which follow. The primacy of an ultimate practical

application of the concepts developed in this research effort serves as a

guide to the recommendations made here. They embody areas which require

more study before practical applications may be meaningfully pursued.

The recommendations are:

Definition of a more specific area of possible practical application

of the control methods.

Extension of the investigation in the area of measurement require-

ments on both a theoretical and experimental basis.

Investigation of possible learning and pattern recognition techniques

with regard to obtaining the T-h parameters for best possible control

performance.

Investigation of data processing and computing techniques so as to

simplify the numerical computations. An example of this is the

recursive method of matrix inversion presented in Appendix D.

Investigation of possible methods for avoiding the use of inaccurate

estimates of the plant dynamics obtained using the updating technique.

Each of these areas is considered in more detail in the paragraphs which

follow.
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The definition of a more selected area of possible practical

application is perhaps one of the most important recommendations. The

research effort has been conducted on as general a basis as possible

to this point. It has repeatedly been necessary to arbitrarily fix

some of the general problem variants while studying others allowed

to remain free. An example of this is the type of plant time variations

investigated. In this study sinusoidal time variation and, to a lesser

extent, linear variation of one coefficient of the plant differential

equation at a time was studied. It became increasingly evident during

the study of linear time-varying systems and non-linear systems that the

number of practical variants proliferates so greatly that a completely

general research effort in these areas is impractical.

The general problem of data measurement requirements is of prime

importance as far as practical application of the control method. A

"first look" at the problem is presented in Section 4 where limiting

the number of significant figures in the data was studied. Investigation

into the area of data smoothing and filtering is necessary before practical

limits may be set. Consideration of more intervals of data with the use

of puesdolnverse techniques offers promise.

An investigation in the area of learning in the sense of adjustment

of the T-h system parameters to provide the best possible control is

important from the point of view of the adaptiveness of the control method.

In many practical situations the plant dynamics could be expected to vary

over relatively wide ranges. Some criterion for adjustment of the control

system parameters, T and h, would be necessary to maintain adequate,

preferable best, control of the system performance.

The recursive technique presented in Appendix D for obtaining the

inverse of the type of matrix inherent in the interpolative procedure

offers great promise but is experimentally untested. This and other

numerical techniques should be investigated with the goal of minimizing

the computing load on the central control computer.
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A criterion for when updating of the interpolation estimates of the

plant matrices should occur has been developed and studied. The experi-

mental studies of the criterion produced promising results although the

area is by no meansexhausted. A companioncriterion which determines

when to use the updated estimate is needed. This criterion requirement is
related to two problem areas. The first is the case where the matrix of

basis vectors becomesill conditioned and the numerical matric inversion

techniques produce inaccurate results. In the present study this situation

was handled by premultiplying the matrix of basis vectors by its computed

inverse and the resultant matrix was compared to the unity matrix. This

procedure proved to be sufficient to avoid inaccurate interpolation esti-

mates due to ill conditioning. The second problem area is somewhat more

obscure and is not recognizable by the unity matrix comparison. It was

observed that in many instances the updated interpolation estimates resulted

in poor prediction even though the matrix of basis vectors was invertable.

The problem which remains to be solved centers about recognizing when the

more current data contained in the interpolation matrices will yield a

better estimate of the plant dynamics than the one currently being used.

In many instances it was observed that better performance would have resulted

if the current estimate was retained until a more accurate update was

possible.
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APPENDIX A

DERIVATION OF THE FIRST ORDER VOLTERRA SERIES WORKING EQUATIONS

The purpose of this appendix is to present the equational develop-

ment leading to the R = I Volterra series working equations. The develop-

ment presented here is somewhat isolated from the remainder of the text

as all other sections and appendices are more related to the interpolation

procedure. The R -- i Volterra series approximation is an alternate way to

estimate the dynamics of linear stationary and linear time-varying plants.

The Volterra series procedure has been thoroughly documented (reference

I0) and the detailed development of the R = 2 Volterra series working

equations appears in reference I. The reader is referred to both of these

documents as the underlying equational development leading up to the work-

ing equations will not be presented here.

In the way of a brief review, it is assumed that the state of a system

for t_nT may be written as:

x(t) = _n(t) + A u (A-l)

where:

x
--n = y(t) + _ Ak(t) _k (A-2)

The plant may be non-linear and time-varying but a basic assumption in

equations A-I and A-2 is that it can be approximated over finite time

intervals by a finite functional polynomial of the form:

j t t

= +El /x(t) y(t) . hj(t,T I,

j=l o o
, l) u('tj) d_ I ...

(A-3)

dT.
]
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where hj are the kernels of the functional polynomial fit.

It is further assumed that the output state, _(t), may be written

in the form:

P

_xCt)= _ _<e te
e_-O

_T_t < (k+l)T (A-4)

This is simply a Taylor series expansion about some convenient point

(ideally P =4 of the system output and its derivatives. The _e

coefficients are linear combinations of the A<n>ps± and the yp coefficients

(reference I0).

If it is assumed that the signal, _(t), can be measured exactly, then

a definite set of _ke can be established for each interval kT_t <(k+l)T.

When these are equated to the expressions obtained from expressions which

lead to the development of equations A-I and A-2 from the general Volterra

series, equation A-3, a set of simultaneous linear equations results which

uniquely determines the A<n>ps_ and yp coefficients.

Specifically, for the first term in _ke:

S P

s=0 p=0 <n>

+

A<n>p +(-hT)S [-(n-h>T] P'eI

k = 0,1,2, ... ,n

e = 0,I,2, ... ,P

(A-5)
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This will yield a sufficient numberof equations if:

n = 2 _(S+I) + i (A-6)

where_ is the numberof <n> sets considered significant and the determina-
tion of which is desired.

A.I THE R _ 1 CASE SIMPLIFICATIONS

The R _ I, or linear case, allows considerable simplification of

the general equations. First of all, only one <n> set is significant due

to the linearity of the approximationwhen R _ i. The A<k >(t) terms reduce

to one type, namely Ak(t ). The number, _, is therefore automatically one

and the linear version of the gke equation A-5 is given by:

+ Uk Akps_[.(n_k) ] s (.kT)P-e I (A-7)

k ffi0,1,2, . . o,n

e ffi0,1,2, . . .,P

In order to make the R = 1 case more tractable to implementation, some

practical limits must be imposed. These take the form of specific values

for P, the upper limit of truncated Taylor series approximations of y(t)

and Ak(t), and S, the series expansions of the Taylor series coefficients

and _p± which accounts for time variation of the plant. A linearYp

approximation of the time variation of the plant should be sufficient in

most cases (S ffii) and in many cases S = 0 may give sufficient accuracy if

the plant is relatively slowly time varying.

The definition of a particular R = i case takes the form of specifying:

P - The point at which the Taylor series for y(t) and _ are
truncated.

S - The degree of the polynomial fit accounting for plant time

variation.
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EXAMPLE CASE ONE

In this case, the R = 1 working equations are developed with the

following assumptions :

P=2

S=O

Under the assumptions, equation A-7 becomes:

+ Uk Akp" (-kT)P'e t

The number of past intervals of data which are necessary to determine

the coefficients is given by equation A-6 to be three.

The coefficients for which values are needed during the interval

nT_t < (n+l)T are:

A
np-

Anp + p = 0,1,2 (A-9)

Yp

which gives a total of nine unknowns. A set of nine equations of the form

of equation A-8 must be formulated in order to evaluate these coefficients.

To obtain the nine equations the Kk e coefficients are measured in the form

of equation A-4 where the expansion point is assumed to be absorbed in the

coefficient. These measurements are made during three intervals of the

immediate past and the equations will be formed by equating the measured

Kk e coefficients to the unknown coefficients through equation A-7.

In this example, these equations for the interval kT_t < (k+l)T take

the form shown in equations A-10, A-II, and A-12 where, for the sake of

notational brevity, q = k-l.
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= + A Uq(-qT) + Uq (-qT)gko Y0 + Aq(0+) Uq q(l+) Aq(2+)

+ Ak(0. ) uk + Ak(l. ) uk (-kT) + Ak(2_) uk (-kT) 2 (A-10)

gkl = Yl + Aq(l+) Uq + 2Aq(2+ ) Uq ('qT) + Ak(l_ ) uk

+ 2Ak(2. ) uk (-kT) (A-It)

gk2 = Y2 + Aq(2+) Uq + Ak(2_ ) uk
(A-12)

A total of nine equations is obtained if k assumes three values

corresponding to three intervals of the immediate past. The corresponding

Akp ± coefficients of the different intervals may be set equal to each other

and equated to Anp ± which gives a total of nine equations and nine un-

knowns. In matric form the set of nine equations can be expressed compactly

as:

M a = _ (A-13)

where :

_' =

and :

Ol ! =

(A-14)

[gkl0 gkll gkl2 .... gk30 gk31 gk32 _

|Y0 Yl Y2 An(0+) An(l+) An(2+) An(0-) An(l-) An(2-) I (A-15)

The matrix M is a 9 x 9 square matrix consisting of the known constants

and control forces of equations A-10, A-II, and A-12° It is possible to

partition M in such a way that inversion of the full matrix is not

required. Instead, a partial solution is obtained from the equation

resulting from the partitioned matrix M:

--_I : _ (A-16)

where:

_' =
gkl 2 gk22 gk32 (A-17)

I !

_' : Y2 An An (A-18)
-- [ (2+) (2-)i
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and _ is a 3 x 3 matrix given by:

n m

1 Uk 1-1 Uk 1

I Ukl Uk2 (A-19)

I Uk2 Uk3
m

By inverting _, a solution is obtained for the unknowns contained in "_I"

" (A-20)

Having found values for three of the unknowns, a solution for another

three is obtained in the form:

" (A-21)

where _ is the same matrix as given in equation A-19.
m

is defined as:

The quantity _2

--_2 = [Yl An(l+) An(l-) I (A-22)

and _1 is a vector function of the gki 1 and the solution for the quantities

contained in --_1"

Similarly, a solution is obtained for the remaining unknowns:

--_3= _-i _2 (A-23)

where _is again defined by equat_n A-19 and:

--_3 = I Yo An(0+) An(0-), |

The vector _2 is a function of the gk.0

unknowns in --_Iand --_2" i

(A-24)

and the previously determined
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Assuming a second order system, the output state is given by:

x(t) -- Z gne te

e=O

_(t) = Z e gne te'l

e=0

nT<__t< (n+l)T (A- 25)

where the gne coefficients are obtained by substituting the solutions

for the yp and Akp +_ coefficients along with the control forces Un and

Un_ I into equations A-10, A-II, and A-12.

The state vector, x(t), may be approximated during the interval

nT<__t < (n+l)T by an equation of the form:

1 )] I]n -I an2J

x(t) = Xnl(t + an u

x(t) x_2 (t) _ n
(A-26)

where equation A-26 follows from equation A-25 by proper division of the

terms contained in the solutions for the gne coefficients.

The matrix _ must be updated every interval by shifting the most

recent control forces into the last row of M (equation A-19) and shifting
m

the other rows in the matrix up one thereby shifting the first row of

'oldest' control forces out of the matrix.

EXAMPLE CASE TWO

In this case, the degree of the Taylor series expansions is raised

by one. The case is specified by:

P = 3

S = 0
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Under these assumptions equation A-7 becomes.-

(A-27)

+_k Akp-(-kZ)p-e1

Tne number of past intervals of data required is given by equationA-6

to be three.

The unknown coefficients to be determined are:

Anp+

A p = 0,1,2,3 (A-28)
np-

Yp

where in this case the number of unknowns is 12. The solution proceeds

in a manner identical to that of the first example case except for the

presence of terms corresponding to p = 3. The matrix _ is identical to

that defined by equation A-19 however a _3 vector exists and four matrix

multiplications of the form of equations A-20, A-21, and A-23 of example

case one are necessary to solve for all of the unknown yp and Akp_+

coefficients.

EXAMPLE CASE THREE

In this case a time-varying plant is assumed.

P= 2

S=I

Under these assumptions, equation A-7 becomes:

1

[-(k-l)T] p-e

(A-29)
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The past intervals of data necessary to determine the coefficients is

given by equation A-6 to be five. The unknown coefficients to be

determined are:

A
nps+

Anps. p = 0,1,2 (A-30)

yp s = 0,I

where the number of unknowns in this case is 15. The solution proceeds

in a manner very similar to that of example case one except that there

are now two _p terms on the right-hand sides of equations equivalent to

equations A-10, A-If, and A-12 of example case one because s takes on

values of 0 and i whereas only the s = 0 terms were considered before.

The matrix _ in this case will be 5 x 5 corresponding to the five un-

knowns for each value of p. Once _ is inverted, it can be used repeatedly

in the three matric multiplications needed to solve for all 15 unknowns.

Once the solutions for the gne coefficients are obtained, the solutions

for _(t) may be placed in a form identical to equation A-26.

A.2 CONCLUSIONS

The R = I Volterra series equations are obtained in a procedure very

similar to that used for the R = 2 working equations (reference _. The

corresponding simplifications that occur in reducing the assumed order

of the Volterra series are reflected in simpler equations in the R = i

case. The matrix which must be inverted is again a function of the control

forces and the size of the required matric inversion is also less than the

number of unknowns.

A summary of some important equations is given below:

i. The number of intervals of data required to identify the unknown

coefficients:

n = 2(S+I) + i (A-31)
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2. The number of unknowns:

unknowns - (P+l) { 2(S+I) + i I (A-32)

o The size of the matrix which must be inverted to identify the

unknown coefficients:

size = 2(S+I) + i (A-33)

o The number of metric multiplications which must be performed to

identify the unknown coefficients:

Multiplications = P + i (A-34)

Note that the size of the matrix which must be inverted is equal to the

number of intervals of data required and is independent of the order of

the Taylor series approximating the _(t) terms except as it is reflected

through the magnitude of S. The order of the Taylor series determines

the number of metric multiplications which must be made.
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APPENDIXB

A SELECTEDSETOFLINEARTIME-VARYINGPLANTS

The set of linear time-varying plants (equations) documented in this

appendix numbers thirth-five and represents the plants which were used

for the majority of all the experimental investigations. The plants

range from third through fifth order. Also, as was previously noted, this

set is restricted to plants which are not sensitive to derivatives of the

input (See Section 2).

Upon inspection of these plants several obvious observations are:

All plants contain only one (i) time-varying coefficient.

All plants have this one coefficient vary as a sine function
of time.

In all cases, except for the plants with time-varying gain,

two (2) speeds of time variation are considered for each

plant configuration.

Also, it may be noted that the majority of the plants considered are

of fourth order, and that a time-varying gain plant of each order is

included in the set. This set of plants was selected since the experimental

funds were not unlimited, and so it was necessary to limit the spectrum of

plants to those which are somewhat restricted by the above three observations.

B.I THIRD ORDER PLANTS

(3-1) "c+(0.6 + 0.3 sin 0.125t) c + d = m(t)

(3-2) "c+(0.6 + 0.3 sin O. 25t) "c + 6 = m(t)

(3-3) "_+0.6H + (1+0o5 sin 0.125t) 6 = m(t)

(3-4) "6"+0,.6c"+ (I+0o5 sin O. 25t) 6 = m(t)
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(3-5)

(3-6)

(3-7)

(3-8)

(3-9)

(3-1o)

"6"+(1.6+0.4 sin 0.125t) _ + 1.6_ _. c ffire(t)

"6_(1.6+0.4 sin 0.25t) _ + 1.66 + c = re(t)

"6_1.6_ + (1.6+0.4 sin 0.125t) _ + c - re(t)

"6¥1.6_ + (1.6+0.4 sin 0.25t) 6 + c = re(t)

"6VI.6_"+ 1.66 + (1+0.25 sin 0.125t) c ffire(t)

"c'+1.6_+ 1.66 + (1+0.25 sin 0.25t) c = re(t)

B.2 FOU_ ORDER PLANTS

(4)
(4-1) c + (1.6+0.4 sin 0.125t) "6"+ 1.66 + _ - re(t)

(4)
(4-2) c + (1.6+0.4 sin 0.25t)'6"+ 1.6_ + 6 - m(t)

(4)
(4-3) c + 1.6c'+ (1.6+0.4 sin 0.125t) _ + 6 ffire(t)

(4)
(4-4) c + 1.6c'+ (1.6+0.4 sin 0.25t) _ + 6 = re(t)

(4)
,o.

(4-5) c + 1.6c + 1.6c + (1+0.25 sin 0.125t) 6 - re(t)

(4)
(4-6) c + 1.6"c'+ 1.6c + (1+0.25 sin 0.25t) _ = re(t)

(4)
(4-7) c + (3+0.75 sin 0.125t) c'+ 13.25c + 11.256 + 12.5c ffire(t)

(4)
(4-8) c + (3+0.75 sin 0.25t)"6"+ 13.25c + Ii,25c + 12,5c ffire(t)

(4)
(4-9) c + 3c'+ (13.25 + 3.3125 sin 0.125t) "6 + 11.256 + 12.5c = re(t)

(4)
(4-10) c + 3c + (13.25 + 3.3125 sin 0,25t) "c + 11,256 + 12,5c - re(t)

(4)
(4-11) c + 5c'+ 8.25c" + 8c + (3.75 + 1.875 sin 0.125t) c = re(t)

_.4)
(4-12) c + 5c + 8.25c + 8c + (3,75 + 1,875 sin 0,25t) c ffire(t)

(4)
(4-13) c + 5c'+ 8.25c + (8+2 sin 0.125R) c + 3.75c ffire(t)

(4)
(4-14) c + 5"c"+ 8,25c + (8+2 sin 0.25t) c + 3.75c ffire(t)

(4)
(4-,15) c + 5c + (8.25 + 2.0625 sin 0.125t) "c + 86 + 3.75c ffim(t)

(4)
(4-16) c + 5c'+ (8.25 + 2.0625 sin 0.25t) "c + 86 + 3.75c ffire(t)
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B.3 FIFTH ORDER PLANTS

(5) (4)
.4.

(5-1) c + 5c + 8.25c + 8c'+ (3.75 + 1.875 sin 0,125t) 6 = re(t)

(5) (4)
,°t

(5-21 c + 5c + 8.25c + 8c + (3.75 + 1.875 sin 0.25t) 6 = m(tl

(5-31 (51+ _4)+ 8.25"6"+ (8+2 sin 0.125t) c" + 3.75 c = m(t)

(5-41 (51+ _4)+ 8.25c'+ (8+2 sin 0.25t) "c + 3.75c ffim(tl

(5-5) _5cI+ (3 + 1.5 sin 0.125t1(c4)+ 13.25c'+ II.25_" + 12.5c ffim(t)

(5)
(5-6) c + (3+1.5 sin 0.25t)(4)+ 13.25"c'+II.25c'+ 12.5C = re(t)

B.4 TIME-VARYING GAIN PLANTS

(3-11)'c'+'c + 1.25c =[I,+ 0.5 sin 0o25t] m(tl

(4-17) (4)+ 2"c"+ 2.25c" + 1.256 =[I + 0.5 sin 0.25t] re(t)

(5-7) (5)+ _c4)+ 12.25"c'+ 12.5c" + 6.25c-[I + 0.5 sin 0.25t] re(t)

B.5 A SUBSET OF LINEAR TIME-VARYING PLANTS

The following subset of third order plants was mainly used

for the experimentation presented under the 'STATIONARY VS TIME-VARYING

BASIS VECTOR RESULTS' heading of paragraph 2.2. These plants again have

only one time-varying coefficient. However, only linear time variation

of the coefficient is considered by this set of plants. The two basic

configurations considered are:

(1) "_'+(0.4 + at) _ + _ = m(O

(2) "c'+ 1,6c" + 1.6c + (l+at) c = re(t)

where the values of "a" considered in both cases are as follows: 0.02,

0.04, 0.08, 0.12, 0.16, 0.2, 0.3, 0.5, and 1.0.
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APPEND IX C

INCLUSION OF TIME VARIATION IN THE INTERPOLATION PROCEDURE

The usefulness of interpolation has been demonstrated (reference 8)

and documented (reference I) as a particularly simple way of selecting

a continuous functional that coincides with the actual system functional

at measured data points. The data points take the form of a set of

measured values for the system input Um, initial conditions _n' and the

system output Xm, m _ I, 2, . .., M. The set of measured items may

include a variety of quantities which are assumed to affect the dynamics

of the plant. The specific concern of this appendix is the inclusion of

time in such a way as to account for the time dependent nature of the

dynamics of time-varying plants.

A general development of the interpolation equations applicable to

this study appears in reference i. They are reviewed here for the sake

of continuity.

Col THE BASIC INTERPOLATION EQUATIONS

Because the control inputs to the plant are constant over decision

intervals T seconds in length, it is convenient to have the set of

measured values take the form of the initial conditions, _-m' at the

beginning of the decision intervals, the control inputs, um (constants),

applied during the decision intervals, and the outputs, Xm, at the end

of the intervals.

The method of solution for the approximating functional, _(u, _),

takes the form of solving the determinaht equation:
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Det

where Xl, x2, . .., xM are the measured outputs of this system at the end

of decision intervals. _(u,__) is a basis vector of M linearly independent

analytic base functionals [u, _] upon which the system dynamics is

assumed to depend, and --_I'_--2' " " "' _M are the basis vector evaluated

at the measured data points, Ul__l , u2_2, . .., uM _M"

Equation C-i may be expanded in terms of minors of the first column,

yielding as a solution for _(u,_..):

_(u,_) = D_' __-i _(u,_ (C-2)

where D_ and _ are defined by equations C-3 and C-4:

= xI x2 . . . xM i (C-3)D_' i

@-- = [-_l(Ul'-_l ) _2 (u2 '_2 ) • • _(UM,.._M) 1 (,C-4)

An approximating functional for each of the elements of the output state

vector elements may be obtained by replacing each of the measured output
i

states x in equation C-I by the measured state variable elements x
m m

yielding as a solution for the functional approximation of the ith state

variable:

i
i, .-I

_(u,_) = _ _ _(u,_) (c-s)

i,
where _ is identical to that defined by equation C-4 and D_ is defined

by equation C-6:

i iI ' x2' " " "'
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The solution for the total state vector or whatever part of it is desired

or measureable is conveniently combined into the single equation

= 1

where D_ is the rectangular matrix:

(c-7)

x 1 x 2 • . x M

(P) (P) (P)

xI x2 • . xl_

(c-8)

and p is the number of elements of the system state vector for which

estimates are obtained• The matrix of basis vectors, _, is defined by

equation C-4. Due to the discrete nature of the interpolation equation,

it is convenient to rewrite equation C-7 in the form:

_((k+l)T) = D_ _-I _(Uk,_ ) (C-9)

where the estimate of the state at the end of the kth decision interval,

_((k+l)T), is given in terms of D_X, _, and the basis vector evaluated at

the beginning of the interval, _(Uk,_k).

The number of measurements required to determine _ and D_ is equal

to the dimension of the basis vector _(u,_). Thus, if the dimension of

is M then a total of M decision intervals are required to specify the

interpolation estimate.

The data contained in D_X and _ may be changed from time to time by

shifting a new column of data in and dropping one of the columns corres-

ponding to older data out of the matrices• This process is conveniently

mechanized by shifting the new columns of data in one end of the matrices

and dropping the first or last column of data out depending upon which

end of the new data is shifted into. The columns of data in the matrices
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shift from right to left (or vice-versa) as more new data is sequentially

shifted in.

C.2 TIME VARIATION USING CONSTANT T

One method of accounting for plant time variations is to include

the length of the decision interval, T, in the interpolation basis vector.

This technique followed directly from the description of stationary plants

where the basis vector was defined by:

x'(t) u (c-10)=, _

With reference to equation C-5, the interpolation estimate of the ith

state vector element is given by equation C-ll:

i P

x((k+l)T) = _I aij xj(kT) + b.l Uk (C-II)

where the aij and b i coefficients are given by the product D_' _-I. To

account for time variation of the plant, a linear term in t may be added

to equation C-II so that the interpolation estimate of the ith state

vector element would be given by:

p
((k+l)T) = i_=l aij xj(kT) + b i uk + c i T (C-12)

where in this case aij, b i and c i are given by the product D_' _-I The

inherent time reference is the time at which the initial state of the

system, _(kT), occurs so that the time at which the final state occurs

is always T seconds later. Using this estimate for successive decision

intervals reestablishes the time base each time to that of the initial

conditions. The basis vector for this interpolation estimate is:

= x'(iT) u. Z (C-13)
-- |-- Z !

This method of accounting for time variations is presented in reference

1 along with experimental results.
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C.3 TIME VARIATION USING RUNNING TIME

A second method of accounting for time variations utilizes a running

time base. This method follows more directly from the plant dynamical

equations than the first method.

Consider the vector differential equation of the plant as given by

equation 2-2 of paragraph 2.1 of the text:

__(t) -H_Ct) xCt) + _(t) uCt) (c-14)

and its general continuous solution:

_(t) = E(t,t o) _(t o) + 7 F(t, T) _(r) u(O dT (C-15)
L.

O

If the control input, u(t), is considered to be a constant equation C-15

may be rewritten in the form:

_x(t) = _F(t,t o) _x(to) + _(t,t o) uc (C-16)

were equation C-16 is valid as long as u(t) remains constant at the value

u . Equation C-16 is therefore valid for any state which occurs during
C

one decision interval.

With reference to equation C-16, the state _(t) may be written as a

vector function:

-- t)x(t) G(X(to), uc, (C-17)

where t is included as an explicit argument of G when the system is time-

varying. Forming the total differential of x(t):

_G _ _G

dx(t)_ = _X(to)_ dX(to)_ + _Uc dUc + _ dt (C-18)

If the plant is sufficiently slowly time-varying the partial derivatives

are approximately constant and the integral of equation C-18 may be

approximated by:

-- +-¢e t_(t) O_l(t-to) x(to) + _el(t-to)uc (C-19)
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Equation C-19 may be converted to a discrete .form by setting t-t - T,
o

The form of the discrete equation for the interval kT_t <(k+l)T would

then be:

__((k+l)T) = e_l(T) x(kT) + __I(T) uk + _--2 (k+l)T (C-20)

where the matrices _)I' --_I(T), and _2(T)are evaluated for the constant

decision interval length of T seconds. Equation C-20 is approximately

equivalent to the discrete form of equation C-16 for short intervals of

time the length of which will depend upon the rate of time variation of

the plant.

The interpolation estimate of equation C-20 may be obtained by using

a basis vector of the form:

(Uk, k)= x'(kZ)uk (k+l)Z (C-21)
! !

where the time origin to which (k+l)T is reference is arbitrary. The

interpolation matrices may be built up using equation C=21 as the basis

vector. The dimension of the interpolation matrices is increased by only

one over that of the stationary basis vector.

C.4 TIME VARIATION USING A TRUNCATED TAYLOR EXPANSION

A third method of accounting for time variations of the plant is

obtained by a direct Taylor expansion of _,e metric elements of the

discrete state equation.

The discrete state equation of a tlme-varying plant is given In

equation 2-8 of paragraph 2.1 to be:

_((k+l)T) = £((k+l)T,kT) _(kT) + _((k+l)T,kT) uk (C-22)

Each of the elements of the _matrix and the _ vector may be expanded in

a Taylor series about some time reference t = t
O

@i(t) = 7o +Vl(t-to ) + . . . (C-23)
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For sufficiently slow time variations the Taylor series of each element

may be truncated after two terms without prohibitive loss of accuracy so

that equation C-22 may be approximated by:

__((k+l)T)-IF + _F1 (k+l)Z}__(kZ)+ {_ + _-I(k+l)Z}_ (C-24)

An appropriate interpolation estimate of equation C-24 would be:

__((k+l)T) = O_l_X(kT) + 02{(k+l)T}x(kT ) +--_i Uk + --_21(k+l)T}uk (C-25)

The corresponding basis vector to this interpolation procedure is:

= x'(kT) {(k+l)T}x(kT) uk {(k+l)T}Ukl (C-26)-*'(Uk'_k) l-

The interpolation estimate of this method is given by:

__((k+l)T) ,,, D_X @-I __(Uk,_k ) (C-27)

where the B matrix may be factored into four submatrices:

 xo: ]
which correspond to the matrices of equation C-25.

This method should be the most exact of the three presented in this
#

appendix , however, the size of the matrix of basis vectors is substantially

larger. If the assumed order of _(t) is p, then the _matrix of either

of the first two methods is p+2. The order of the _matrix in this last

case is 2(p+l).
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APPENDIXD

A RECURSIVEMETHODFORINVERSIONOF CERTAINMATRICES

Muchof the previous DACSresearch (reference I) and all that docu-

mented by this report utilized the Interpolation Prediction method to obtain

estimates of the plant matrices. Associated with this method regardless if

applied to linear or non-linear systems is the inversion of a certain matrix.

In our research it has been referred to as the matrix of basis vectors, and

is formed from state variable measurementsat past decision intervals. Under

the assumption of no plant knowledge with respect to time variability, it is

necessary to frequently update the interpolation estimates of the plant.

This, in turn, requires frequent inversion of the matrix of basis vectors

compiled over different time intervals. For ease and speed of computation

a recursive method for obtaining the inversion of this matrix at various

times is definitely a desirable goal. Such a recursive procedure (reference

14) is presented in the following paragraphs.

D.I STATEMENT OF THE PROBLEM

Given a square matrix, _I and its inverse, _i' it is required to obtain

the inverse of A*. The square matrix A* is of the same order as _I' but

differs from _I with respect to only one column. The required inverse is

[A,]-I which is desired to be computed in a recursive manner without actually

having to invert A*.

D.2 DEVELOPMENT OF THE PROCEDURE

In order to develop the recursive procedure the matrices A and B are

assumed known. The matrix A is composed of measurements taken over a number

of discrete decision intervals of time and the matrix B, is defined by:

B = A -I (D-l)
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Therefore, the matrix, A_,may be written as:

A © [Cl c2... c .... _n] (D-2)

where c. refers to a column whose elements are formed by state variable
--i

measurements taken at t = T i.

B_ - _A-1 = _r2

-.n

At t = T a new lumn
n+l

to define Ae.

The matrix, B_, may also be written as:

(D-3)

of measurements, On+l, is available and is used

A* =[K2 _3 ° " " c _n+l] (D-4)-- "11

It should be noted that A* contains the most recent system information,
Q

and differs from A by only one column. Thus, it is obvious that

and A* contain (n-l) identical columns°

At this point a matrix _I is defined as:
i i

Note that _1 has the same columns of _, but interchanged in a particular

manner°

Using the above definitions, it can be shown that:

K2

_i "I = _i :_3 (D-6)

r
--n

The interesting point here is that _I has the same rows of B, but inter-

changed in the same manner as are the columns of _ to obtain _i"
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Since A 1 and A..*differ only in the last column, it is possible to define

A* as:
D

D

m

where

I_! 0 . . . 0 d 1

0 . . . 0 d 2

0 0 . . . 0 d
n

(D-8)

and the last column, d, of D is defined by:

At this point, the inverse of A..*may be written as:

where I is an identity matrix of order n.

(D-9)

(D-IO)

A new matrix G is now defined as:

C=B z D

This matrix can be easily written in the following form:

G

B

0 0 . .

0 0 . o

• e

0 0 .

m

• 0 gl

• 0 g2

e •

• 0 gn

where n

gk :
j=l

(D-IZ)

(D-12)

(D-13)
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r 7
Forming the II + BI DI portion of equation D-10 yields:

L. J
m

i 0 . . . 0 0 I gl

0 1 . . . 0 0 1 g2

0 0 0 i

gn-I

o o . . . o o I (l+g n)

[I+G.]"l gn,tIt can be readily shown that _ exists if -i, and has the same
r _

form as If+G) . That is:

L--J
1 0 ° .

0 i . .

_I_]-I Q

0 0 .

0 0 .

"gl
. 0 0

(l+g n)
-g2

• o o (l+gn---5
(D-15)

-gn-i

• 0 I (l+gn----5

i

• 0 0 (l+g--)n

An so _ has the following form:

R = (D-16)

-- q22

where __ I is an identity _trix of order (n-l).

Therefore, the matrix _ is very readily determined by only the

computation of the dements of the last col_. This in turn leads to

the formulation of the desired inverse recursive relation•

[_]'i = _BI =_i-i (D-17)
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By proper partitioning of B__1 it is possible to write:

O q22J Lb21 b22J

and finally as

(D-18)

(D-19)

This equation is an alternate form the recursive relation of equation

D-17.

In conclusion it is worthwhile to note that the recursive method

just presented can be extended to the inversion of an arbitrary matrix

starting from an identity matrix.

D.3 EXAMPLE

This recursive method was programmed for the GE-235 digital computer

and used to test the inverse of various arbitrary matrices. Approximately

twenty tests were made for third through fifth order matrices° These

test results were very good, and a typical example is given below•

The following matrices were known:

2.15415

.e04188
= -•3 151

776518

E-2 •034887

-9.19926 E-2 9.57817

2.09739 E-3 .064822

•394947 -.126053

•529451 -.581688

8.46194= 75.3261

ll2.8

-144.517

-3183 •93

13.0074 -.429154

20.1942 6.13629

49.4594 13.9172

-107.3 -53.18

-219.75 -529.548
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9.12530 E-5 -1.58968 E-4

5.71688 E-3 -1.55386 E-3

-2.12117 E-2 2.28264 E-3

-4.16931 E-2 5.75911 E-3

-6.83791 E-2 -2.91468 E-3

3.46684 '.881939
!

3.84968 -2._6193

8.34951 -5.12259

-11.8844 -4.50091 E-e

e35.398 -1.88191



A-x.

q

2.15415 E-2 .034887 -2.04179 E-2 9.12530 E-5 -3.27030 E-4

= _.204188 -9.19926 E-2 9.57817 E-3 5.71688 E-3 7.90297 E-4

-.386151 2.09739 E-3 .064822 -2.12117 E-2 1.43941 E-4

I'"380493 •394947 -.126053 -4.16931 E-2 -3. 24154 E-3

[ .776418 •529451 -.581688 -6.83791 E-2 -5.04379 E-3

The goal was to obtain the[A*] "I by the standard inversion methods

and by- the recursive method. The actual inverse is denoted by[A_la , and

that obtained by the recursive method, [A*] "I. The resulting inverses
r

were:

and

-1.00469 12.4927 -1.66944 4.01817 -.886346

-490.808 -18.8795 -88.0226 45.7057 -2.79655

113.19 49.4863 13.9821 8.32066 -5.12236

-144.747 -107.316 -53.2183 -11.8673 -4.51452 E-2

-62457.5 -4310.72 -10387.9 4617.67 -36.9165

"i.00468 12.4927 -1.66944 4.01817 -.886346 "

-I;90.808 -18.8795 -88.0226 45.7057 -2.79655

113.19 49.4863 13.9821 8.32067 -5.12236

-144.747 -107.316 -53.2183 -11.8673 -4.51452 E-2

-62457.5 -4310.72 -10387.9 4617.67 -36.9165
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