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PREFACE 

, During the author's appointment as a staff member of 
the Massachusetts Institute of Technology Instrumentation 
Laboratory in the Apollo project (1963-1965) the general 
problem was formulated: could man navigate in space 
without the assistance of an electronic computer? And if 
manual navigation was possible what would be the capabilities 
of the manual navigation system? 

It seemed apparent to the author that if this country's 
space program progressed to a future stage of more or less 
routine, cxtezded space voyages, voyages with capabilities 
for on the spot decision, changes of plans, inspections, 
etc., in short routine voyages with very flexible flight 
plans, then manual navigation capability to backup and/or 
augment more sophisticated electronic navigation systems 
could contribute substantially to mission reliability. 

If a manual navigation system were to be of use to 
future space voyages of flexible flight plan it seemed 
necessary to liberate the navigation system from depen- 
dence on prestored reference crajectories. This was 
a consideration in the following work. 

R. H. Battin (Astronautical Guidance, McGraw Hill, 
New York, 1964, Chapter 7.1) well summarized the problem 
of navigating by direct use of celestial fixes. He says 
"An exact determination of position by methods described 
in this section (direct use o f  celestial f i x e s )  has 2 TILIE- 
ber of distinct disadvantages. First of all, the resulting 
algebraic equations to be solved are always nonlinear, 
which might prove to be a fairly significant obstacle to 
on-board computation. Second, the method requires sim- 
ultaneous measurements which are almost certainly impract- 
ical. Finally, and perhaps most important of all, no 
satisfactory method of incorporating redundant measurements 
to compensate for instrumentation inaccuracies is known.Ii 
Then Battin goes on to indicate that navigation with respect 
to a reference trajectory can overcome these disadvantages. 

This work overcomes the first and third disadvantages 
described above by developing navigation equations which 
though directly using celestial fixes without a reference, 
trajectory, are linear equations which readily incorporate 
redundant measurements in their orbit determination. 
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The second disadvantage, the impracticability of 
simultaneous measurements, has been shown in this work to 
pose a not insurmountable problem (Chapter VI). . 

Although the original motivation of the author in 
deriving these new navigation equations was the development 
o f  a manual navigation system, it seems possible that the 
navigation equations of this work may have application as 
a new starting point in computerized navigation. This 
looks particularly promising to the author in light of the 
freedom of this new approach from reference trajectories. 

Another point which is of practical interest, the 
navigation equations developed in this work do not use time 
as a measured parameter. lhis freedom from time has the 
advantage of liberating space navigation from an accurate 
long term time standard. 

This new approach to space navigation was first dis- 
cussed in a preliminary report, E-1540, "A Preliminary 
Study of a Back-up Manual Navigation Scheme", August, 1964, 
M. I. T. Instrumentation Laboratory, supported by the 
National Aeronautics and Space Administration through 
Contract NAS 9-153. 

The author would like to thank his group leader at the 
M. I. T. Instrumentation Laboratory, Mr. John Dahlen, f o r  
encouragement during the early phases of the work, and 
Miss Ann Romcr of the Montana State University Physics 
Department, who did the computer work necessary to produce 
the perturbation tables in this work. 

The author would also like to thank Harold A. Hamer 
and Margery E. Hannah of the Langley Research Center of 
N. A. S .  A. who gave this work a careful technical reading 
and found many places wherehe could improve the manuscript. 
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ABSTRACT 

This work develops a set of space navigation equations 
which are exact equations, yet are linear equations. This 
makes them particularly suited to manual space navigation 
applications. 

The linearity of the equations leads to simple methods 
for incorporating redundant observations into the orbit 
parameter estimation equations. 

Navigation accuracy and other operational aspects of 
a proposed manual space navigation system are studied. 
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CHAPTER I 

INTRODUCTION 

A. Review of Standard Navigational Methods 

For the purposes of this work space navigation is 
defined as the accurate estimation of the future position 
of a spacecraft with respect to a dominant central grav- 
itational body (a planet, moon, or the sun, etc.). 

Methods exist (see Battin, Astronautical Guidance, 
NcGraw Hill, New York, 1964, Chapter VII) f or finding a 
spacecraft orbit by direct use of several celestial angle 
measurements taken at a given time. However as Battin 
points out such direct use of  celestial angular data as 
a basis of a space navigation system has been thought to 
contain serious disadvantages: 

1. Operational difficulty o f  making simultaneous measurements. 

2. Nonlinearity of the equations, and consequently the 
mathematical complexity of their solution, not amenable 
to quick solution by small computers or by manual means. 

3. Difficulty of incorporating redundant measurements into 
the navigation equations. 

As a result of the above difficulties the s t anda rd  
approach to space navigation has been to define a reference 
tra j ectory which obeys 

d2Ko/dt2 = G(Ro) 

where 
specified uniquely by initial conditions (a position and 
velocity vector). Due to the complexity of the gravitational 
field when perturbing bodies are present, the integration of 
(1.1) to obtain the reference trajectory requires substantial 
computer effort. 

is the total gravitational acceleration and Eo is 

Navigation consists of knowing where the spacecraft is 
relative to the reference trajectory. Defining 



as the true spacecraft position, with AK the "off course" 
vector, a linearized differential equation for AE is obtained 

d2AR/dt2 = [a] AR 

where the matrix [a] is given by the gradients of the 
gravitational potential 

(1.3) 

[GIij Z a G.(Bo) / a Ri 
J (1.4) 

The matrix [a] is in general a complicated function of time 
which must be stored by a computer. The validity of (1.3) 
depends on the "off course" vector being sufficiently small. 
Large excursions from the reference trajectory require the 
calculation of a new reference trajectory. 

(1.3) is the starting point of practical, computerized 
navigation. The navigational goal is to estimate the six 
numbers which give the initial conditions for the "off course" 
vector. Six celestial measurements at known times give 
a solution for the "off course" vector for all times. The 
linearity of (1.3) allows for a simple recursive method for 
incorporating redundant measurements (Battin, Chapter IX). 

B. Manual Space Navigation 

The purpose of this work will be to develop a navigation 
system which is not dependent on electronic equipment. 
particular we wish to develop a manual navigation system which 
does not depend on on on-board computers, pre-calculated 
reference trajectories, a ground commpnication link, or a 
long term accurate time standard. 

In 

The manual navigation system must use relatively simple 
equations which  can be solved readily by man without electronic 
aid. It will be assumed that a space navigator will have a 
sextant type device to measure celestial angles to an rms 
accuracy of about . 5  arc-minutes. B. A .  Lampkin, R. J .  Randle 
"Investigations o f  a Manual Sextant-Sighting Task in the 
Ames Midcourse Navigation and Guidance Simulator", Ames 
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Research Center, Moffett Field, California, N. A. S. A. 
TN-D-2844,  suggest that .4 arc-minutes rms accuracy can be 

training period. 
, obtained from a hand helded sextant after a reasonable 

We also assume that trigonometric and arithmetic 
tables could be stored on board to assist the navigator 
in solving any navigation equations. Reasonable weight 
and bulk restrictions would of course be present. 

C .  Symbol List 

Below is a list of symbols which will be used i n  
various parts of this work. 

R spacecraft distance from central body 

e spacecraft azimuth from orbit perigee 

radius of central body RC 

e orbital eccentricity 

b orbit dimensionless semi-latus rectum 

n dimensionless. spacecraft distance from central 

h angular momentum constant of orbital motion 

body (measured in units of Rc) 

U energy constant of orbital motion 

G universal gravitational constant 

M mass of central body 

characteristic time of central body T 

S semisubtended angle of central body 

eo(l> spacecraft azimuth when star one makes its 
minimum angle with the central body 

B (1) spacecraft azimuth measured from eo(l) 

A J Y C  constant parameters in the one star navigation 
equation 

0 
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elevation angle of star one from orbital plane 

Y (1) 

N 

star one central body angle 

total number of navigational observations 

number of observations in cluster one N1 

C ~ Y C ~ Y C ~  

A',B',C' 

constants useful in solution of one star 
navigation equations 

constant parameters in the two star navigation 
equations for b 

' constants useful in solution of two star 1 c1 'C2'9C3 
navigation equations for b 

Y 

A",B",Ctl 

c11'9c21t,c311 

navigation variable defined for two star navigation 
equations for e 

constant parameters in the two star navigation 
equations for e 

constants useful in solution of two star 
navigation equations for e 

general measureables in navigation equations 

general constant parameters in navigation equations 

E measurement error elements i 

bi 
h rms angular measurement error 

U total rms value of error element 

bias components 

useful constants defined in error analysis 51952 
eccentric anomaly Si 

A 

r unit radial vector 

P 
t tinit vector normal to both r and p 

S unit vector toward the navigation star 

A 

unit vector perpendicular to orbital plane 
A A A 

n 
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- G  XY 

ML 
L 

e L  

YL 

x 

Qi 

components of dimensionless "off course" vector 

components of perturbing acceleration 

partial derivatives of central body gravitational 
acceleration components 

mass of perturbing body 

distance of perturbing body from central body 

perturbing body azimuth from spacecraft orbital 
perigee 

perturbing body elevation angle from spacecraft 
orbital plane 

dimensionless perturbation strength parameter 

Perturbation correction term to the two star 
navigation equations for b 

Perturbation correction term to the two star 
navigation equations for e 

useful combination of in-plane "off course" components 

time difference between measuring central body 
subtended angle and star one central body angle 

useful defined function in non-equal-time error 
ai;a:ysis 

weighting vectors used in optimum navigation 

transformation matrix to a general function of 
orbital parameters 

cofactor elements of a matrix 

linear combination of weighting vectors wa 

linear combination of measureables ma 

error correlation matrix 

coefficients of systematic errors 

eccentric anomaly for hyperbolic orbits 
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Pi residues of navigation equation violation for 
individual observations 

Subscripts 

Per perigee 

aP apogee 

i refers to the ith observation 

a refers to ath constant parameter 

nav navigation 

opt optimum 

0 

L refers to perturbing body 

(throughout this work common subscripts are to be summed 
over unless otherwise stated) 

generally refers to quantity evaluated at @ = B o  

Other Notation 

a small differential of the variable x 

a square matrix 

a column vector 

statistical average of variable x 

sum of variable x over observations in cluster c 

partial derivative symbol 

absolute value of x 

spatial vector 

time derivative of x 

spatial gradient vector 

unit vector 
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CHAPTER I1 

ONE STAR NAVIGATION EQUATIONS 

A. Introduction 

For a spacecraft in the vicinity o f  a central body, it 
is assumed that a sextant-type instrument is capable of meas- 
uring the angle between the central body edge and any of 
several fixed stars. Also the angular size of the central 
body is assumed measureable. 

The angle between the central body edge and other non- 
fixed bodies (other planets or moons) could also be meas- 
ured, but the mathematical equations necessary to incorporate 
such measurements into navigation equations are of such 
complexity as to rule out these measurements for practical 
manual navigation systems. 

The goal then is to develop navigation equations which 
use as directly as possible (with a minimum of arithmetical 
manipulation) the measurement of central body subtended angles 
and the measurements of central body-star angles. 

First the navigation equations for pure Keplerian orbits 
will be derived. In a later chapter (Chapter V) methods for 
correcting for perturbations are developed. 

B. Review of Useful Properties o f  Conic Orbits 

All orbits in an inverse square acceleration field are 
described in polar coordinates by 

R = R b/(l+ecos9) ( 2 . 1 )  C 

where R is the radial distance of the spacecraft and 8 is its 
azimuth measured from the point of closest approach to the 
central body (perigee). Rc is the central body radius, b and 
e are dimensionless constants specifying the shape of the orbit. 

Measuring radial distances in units of the central body 
radius, (2.1) becomes 
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n = b/(l+ecose) 

with 

n = R/Rc 

Perigee distance is given by 

n = b/ (l+e) 
Per 

( 2 . 3 1  

( 2 . 4 )  

and for closed orbits (ellipses) which have e < 1 the apogee 
is given by 

n = b/(l-e) 
aP ( 2 . 5 )  

Kepler's second law or the law of  conservation o f  angular 
momentum states that 

with the constant h given by 

h = T  ( 2 . 7 )  

G is the universal gravitational constant, M the mass of the 
central body. The other constant of the motion is the total 
energy 

2 U = -GM(1-e )/ZbRc 

The plane of the orbital motion is another constant in time, 
the unit vector normal to the orbital plane p being a constant. 

h 

At several points in this work when dealing with time 
it will be convenient to measure time in units 

To = dRc5/GM ( 2 . 9 )  

8 



. C .  D e r i v a t i o n  of One S t a r  Nav iga t ion  Equa t ions  

Using ( 2 . 2 )  and d e f i n i n g  

l / n  = s i n s  (2 .10)  

w i t h  s t h e  semisubtended  a n g l e  of  t h e  c e n t r a l  body as shown 
i n  F i g u r e  ( 2 . 1 ) ,  t h e  K e p l e r i a n  o r b i t s  can  be expres sed  a s  

b s i n s  = 1 + e c o s 0  (2 .11 )  

I n s t e a d  of r e f e r r i n g  t h e  az imuth  a n g l e  t o  p e r i g e e  a n o t h e r  a n g l e  
e o ( l )  i s  i n t r o d u c e d ,  and (2 .11 )  t a k e s  t h e  form 

b s i n s  = 1 + e c o s 8 0 ( l ) c o s ( 0 - e o ( l ) )  

- e s  in0  ( 1 )  s i n  ( 8  - 0 ( 1 )  ) 

o r  d e f i n i n g  

~ ( 1 )  = e - e o ( i )  

(2 .12)  

(2 .13)  

(2 .12)  becomes 

b s i n s  = 1 + e c o s e o ( l ) c o s B ( l )  

- e s i n e o ( l )  s inB(1)  (2 .14)  

D e f i n i n g  t h e  t h r e e  c o n s t a n t s  

A = e c o s e o ( l )  
B = - e  s i n e o ( l )  
C = - b  

(2 .15a)  
(2 .15b)  
( 2 . 1 5 ~ )  

( 2 . 1 4 )  becomes 

(2 .16 )  i s  s t i l l  on ly  a d i s g u i s e d  form of t h e  o r i g i n a l  c o n i c  
e q u a t i o n  ( 2 . 1 ) .  We now show t h a t  f o r  an a p p r o p i a t e  c h o i c e  
o f  e o ( l )  b o t h  s and B(1) a r e  c l o s e l y  connec ted  w i t h  measureable  
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RELATIONSHIP BETWEEN n AND 
THE MEASURABLE (semi subtended) 

ANGLE S 

body 

R c  = Central body radius 

Figure 2.1 The semisubtended angle of the central body, S ,  is 
shown to give the range of the spacecraft from the central 
body by sins = Rc/R = l/n. 
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RELATIONSHIPS AMONG 
VARIOUS NAVIGATION ANGLES 

to star 

F i g u r e  2 . 2  The v a r i o u s  n a v i g a t i o n  a n g l e s  and t h e i r  r e l a t i o n -  

s p a c e c r a f t  az imuth  when s t a r  l i e s  d i r e c t l y  above (below) t h e  
c e n t r a l  body, 6 = s p a c e c r a f t  azimuth measured from 8 , y = 
star  e l e v a t i o n  a n g l e  from o r b i t a l  p l a n e ,  and y = s t a p - c e 8 t r a l  
body a n g l e .  

- s h i p s  a r e  shown. e = s p a c e c r a f t  azimuth from p e r i g e e ,  - 
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qua.ntities. The fact that the constants A,B,C appear 
linearly in (2.16) will be useful in the development of 
our navigation equations. 

From Figure (2.1) it is seen that s is the measureable 
semisubtended angle of the central body. 

8 (1) is now chosen to be that spacecraft azimuth at 
which ?he star-central body angle is minimum. 
in Figure (2.2). 
elevation angle yo(l) from the spacecraft orbital plane, 
spherical trigonometry gives the star-central body angle y ( 1 )  
to be 

This is shown 
Given a star at azimuth O0(l)+T and 

cosy(1) = cosyo(l) cosB(1) (2.17) 

or 

cosB(1) = COSY (l)/c0svo(l) (2.18) 

From (2.18) it is seen that one can convert a measurement 
of y(1) into a value for B(1) if yo(l) is known. yo(l) can 
be measured by tracking the star during its passage through 
the minimum of y(1). This means a star approaching the 
central body must be initially picked. 

Consider three pairs of measured angles s 

s2 ~ ( 1 ) ~ '  s 3  ~ ( 1 ) ~  available to the navigator. 
linear equations for the three unknowns are obtained 

~ ( 1 ) ~ ~  
Then three 

*1 

cosB(l)lA + sinB(l)lB + sins 1 C = -1 
cosB(l)2A + sinB(1)2B + sins 2 C = -1 
c0sf3(l)~A + sinB(1)3B + sins3C = -1 

( 2 . 2 0 )  

* The angle y(1) in (2.18) is the angle measured to the central 
body's center. 
to the central body's edge. However we have simply 

The actual measured angle will probably be 

Y(1) = Y(1Im f s 
where s is a measured angle. We assume in the rest of the 
theoretical analysis that y(1) is measured or constructed 
from the measureables by (2.19). 

(2.19) 
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The solution of (2.20) for A,B,C is straightforward algebra. 
By using the inverse of equations (2.15) the orbital parameters 
can be calculated 

b = - C  
and 

2 2 2 e = A  + B  

(2.21) 

A knowledge of e and b gives the shape of the spacecraft 
orbit and consequently supplies much of the necessary infor- 
mation for future spacecraft maneuvers designed to fulfill 
some operational goal. For example, safe reentry into the 
central body atmosphere requires an orbit perigee within 
a certain reentry "window". Perigee altitude is determined 
by e and b. 

D. Navigation Equations with Redundant Measurements 

In general there will be noise error in the measured 
angles s and y ( 1 ) .  Therefore a redundant number of pairs 
of measured angles are desirable in order to reduce the 
final error in estimating e and b. 

The linear form of (2.16) allows for a simple incor- 
poration of redundant measurements. Consider N > 3 pairs 
of measurements si and ~ ( 1 ) ~ .  i runs from 1 to N. Divide 
the measurements into three clusters of N1, N2, and Ng pairs 
of measured angles. Then simply summing (2.16) over the 
measurements in each cluster gives 

C3(cosB(l))A + 13(sinB(1))B + C3(sins)C = - N 3  

where the notation in (2.22) is as follows 

cosb(1)) c cosB(l)i 11 ( 
i in cluster 1 

and 

i 
i in cluster 3 

13(sins) E c sins etc. (2.23) 
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It is observed that (2.22) is of the exact same form as 
(2.20) except now the coefficients of A,B,C are sums of 
measured quantities. This leads to an operational procedure 
especially suited to manual calculation. As each new 
measurement of navigation angles is made the appropiate 
sums in (2.22) are updated. The calculation of A,B,C need 
only be made once by solving (2.22) after sufficient data 
has been accumulated. 

Below we exhibit the solution of (2.22) for C. A 
complete discussion of the operational procedures of a 
practical navigational system will be made in Chapter VII. 

(2.24) 
clCi (sins) + c2C2 (sins) + c3C3 (sins) 

where 

A consideration of (2.18) indicates that each y(1) 
measurement is converted to a cosB(1) value by dividing by 
cosyo(l). 
sinB(1) from cosB(1). In order to free the manual navigation 
equations from these manipulations a two star navigation 
procedure is developed in Chapter 111 which does not require 
this repeated use of the quantity y (1). 

Then a trigonometric table must be used to obtain 

0 
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CHAPTER I11 

TWO STAR NAVIGATION EQUATIONS 

A. Two Star Navigation Equations for b 

Several operational simplifications in the required 
manual arithmetic of space navigation can be made by measuring 
two different star-central body angles with each central body 
subtended angle measurement. Consider (2.12) for two 
different stars 

b sins = 1 + e coseo(l) cosB(1) 

- e sineo(l) sinB(1) 

b s i n s  = 1 + e coSeo(2) COSB(2) 

- e sineo(Z) sinb(2) 

(3.la) 

(3.lb) 

where B(1) = 0-e0(1) and 8 ( 2 )  = 0 - e o ( 2 ) .  

It would be useful if the sinB(1) and sinB(2) terms 
could be eliminated from (3.la,b) since obtaining these terms 
from the measured angles requires the substantial arithmetical 
operations described at the end of Chapter 11. This elimination 
can be accomplished. B(1) and P ( 2 )  are related by 

sinB(1) = sin(B(2) - e0(12)) 

= sinB(2)coseO(l2) - cosB(2)sin00(12) (3.2) 
where 

e O ( w  = eo(l) - e o ( z >  (3.3) 

is another constant angle. Making the substitution (3.2) for 
sinP(1) in (3.la) and subtracting (3.lb) multiplied by the 
factor sin00(l)cos00(lZ)/sin00(2) from (3.la) eliminates all 
sin6 terms, leaving a single equation of  the form 

A'cosy(1) + B'cosy(2) + C'sins + 1 = 0 (3.4) 
I where cosB(1) and cosB(2) have been expressed in terms of the 

measured y(1) and y (2 )  by use of (2.18). The constants in (3.4) 
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A' = -e sineo(2) / sineo(12) cosyo(l) 

B '  = e sineo(l) / sineo(12) cosyo(2) 

C' = -b 

(3.5a) 

(3.5b) 

(3.5c) * 

All o f  the variables in (3.4) are now closely related to 
measured quantities. Only a minimum of arithmetical man- 
ipulation is now required with the data. 

The orbital constant b is still easily extracted from 
using (3.5c), but it is seen that e is impossible to obtain 
from A',B' unless the angles in these constants were known 
very accurately. 
necessary to obtain e. 

Another navigation equation will be 

Note that knowledge of y (1) or y o ( 2 )  is totally 
unnecessary in order to obtai8 b. 

Following the procedure in one star navigation it is 
assumed that redundant measurements are grouped into three 
clusters. Summing (3.4) in each cluster gives 

~l(cosy(l))A' + 11(cosy(2))B' + Il(sins)C' = -N1 

12(cosy(1))A' + I2(cosy(2))B' + lZ(sins)C' = - N 2  
( 3 . 6 )  

C3(cosy(l))A' + 13(cosy(2))B' + 13(sins)C' = - N 3  

where the notation used above is the same as defined in (2.23). 
(3.6) need only be solved for C '  giving 

cl'Nl + c2'N2 + c 'N 3 3  

c1 '1  1 (sins) + c2112(sins) + c3Il3(sins) 

where 
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E .  Nav iga t ion  Equa t ions  For e 

Having s o l v e d  ( 3 . 7 )  f o r  b w e  can  r e t u r n  t o  t h e  one star 
n a v i g a t i o n  e q u a t i o n  f o r  e .  D e f i n e  

y = 1 - b s i n s  (3 .9 )  

where i t  i s  assumed t h a t  b i s  now known, t h e n  (2.12)  c a r  
be  r e w r i t t e n  a s  

e cos0 cos6  + y = e s i n e  s i n e  (3 .10)  
0 0 

The l a b e l  1 o r  2 h a s  been dropped from B o  and B ,  a s  (3 .10)  
can  b e  used  f o r  e i t h e r  o r  b o t h  s t a r s  used  i n  t h e  two s t a r  
n a v i g a t i o n .  Squar ing  ( 3 . 1 0 ) ,  u s i n g  ( 2 . 1 8 ) ,  and t h e  i d e n t i t y  

(3 .11 )  2 2 s i n  f3 = 1 - c o s  f3 

a new n a v i g a t i o n  e q u a t i o n  i s  o b t a i n e d  

2 2 A" - B" C O S  y + C" Y C O S Y  - y = 0 

where 
2 A'; = e2  s i n  e o  

B" = e' / c o s  2 y, 

(3 .12 )  

(3 .13a)  

(3 .13b)  

C r f  = - 2 e  case / cosy ( 3 . 1 3 ~ )  
0 0 

S o l v i n g  (3 .12 )  f o r  B", e can  be o b t a i n e d  from (3.13b)  

(3 .14)  2 2 e = B" c o s  y 
0 

i f  a measurement of  y o  of  s u f f i c i e n t  accu racy  i s  a v a i l a b l e .  
If no measurement of  y o  i s  a v a i l a b l e ,  one can  s t i l l  o b t a i n  
e by s o l v i n g  f o r  a l l  t h r e e  c o n s t a n t s  A " , B " , C " .  From ( 3 . 1 3 a , b , c )  
w e  have 

2 
= A" / (B" - (C") / 4 )  2 c o s  yo 

giv i r ig  

(3 .15 )  

e 2  = All B f !  / (Bl!  - ( C y 2 / 4 )  (3 .16)  
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Substantially more computational effort is needed to obtain 
e by use of (3.16) than by using (3.14). But (3.16) allows 
navigation to become completely independent of a y measure- 
ment. 
available the simpler (3.14) can be used. 

I n  those cases where a reasonable yo measurgment is 

Forming three clusters of observations and using (3.12) 
the solution for B" is 

2 2 2 cl" I1(cos ) + c21f C2(cos ) + c311 C3(COS ) 

where 

Clf' - - N ~ C ~ ( Y C O ~ Y )  - N ~ C ~ C Y C O S Y )  
~ 2 "  = N~C~(YCOSY) - N ~ C ~ ( Y C O S Y )  
c I t  = N1C2(YC0SY) - N2Cl(YC0SY) 

(3.18a) 

(3.18b) 

(3.18~) 3 

We now possess navigation equations for both e and b 
which use measured data with only a minimum of arithmetical 
manipulations. 
At most a single multiplication by cos yo is required to 
obtain e. 

The use of y o  has been reduced to a minimum. 
2 
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CHAPTER IV 

NAVIGATION ACCURACY 

A. Introduction 

In the approach to navigation studied in this work, as 
well as in other forms of navigation, orbital parameters are 
estimated from an accumulation of celestial angle measurements. 
In general these measurements will contain errors due to 
both inaccuracies in the measuring instruments and obser- 
vational errors. Measurement errors are of two types; noise 
errors in which the error in any one measurement is indepen- 
dent of the error in any other measurement, and systematic 
errors in which the error in the several measurements are 
correlated with each other. For example, systematic errors 
can be the result o f  bent or miscalibrated measurinR instruments, 
biases i n  t h e  o b s e r v e r s ,  o r  i n s t r u m e n t  r e a d i n g  t e c h n i q u e s .  

The influence of measurement errors on parameter 
estimation accuracy is now studied and applied to the nav- 
igation equations developed in the previous chapters. 

B General Theory of Error 

The general form of navigation equation employed in 
this work is of the form 

where K are several ( k )  constant parameters to be estimated, 
(ma)i and (mo)i are measureable functions. 
a is to be summed f r o m  1 t o  k. The subscript i refers to 
the ith observation. i runs from 1 to N, N being the total 
number of observations. Redundancy of  observations means 
that Tu’ > k .  In order to obtain k equations for the k 
unknowns K a ,  the N observations are grouped into k clusters, 
giving the k equations 

a 
The common index 

for each a’ from 1 to k. The notation defined by (2.23) is 
used in (4.2). In matrix notation (4.2) reads 
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where the entries of the matrix are given by 

i in cluster a' 

and the entries of the vectors are given by 

{ I O a  = K a 
and 

i in cluster a' 

Taking the differential of (4.3) gives 

with an error vector defined by 

Lxplicitly showing the components of the error vector 

E E } ~ '  = -1 (6(moIi + 

i in cluster c' 
( 4 . 9 )  

The 6(mo)i and &(ma)i are the measurement errors. 
the error element for the ith observation 

ilefining 

(4.9) can be written as 

( 4 . 1 0 )  

( 4 . 1 1 )  

i in cluster a 
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The useful quantitative properties o f  the error 
elements are given by the first two moments of their prob- 

denoted by <ci>. 
given by 

- ability distribution. The mean of the error element is 
If the second moment of the errors is 

i f i = j  
= o  i f i f j  

2 
< & - E . >  = 0 I J  i ( 4 . 1 2 )  

the errors are said to be uncorrelated with oi2 being the 
mean square error. If 

( 4 . 1 3 )  

the errors are said to be uncorrelated with an unknown 
systematic error in the measurements of the functional form 
bi. 
correlation matrix. 

In general we will refer to the < € . E . >  as the error 
1 J  

Returning to ( 4 . 7 )  and taking a statistical average 

where the inverse of the [MI matrix is indicated. If there 
are no mean measurement errors, the mean estimation errors of 
the parameters K, will be zero. Then multiplying (4.14) 
by its transpose and taking the statistical average yields 

In particular the mean square error of any particular par- 
ameter is given by 

( 4 . 1 6 )  

where the matrix row and column labels are exhibited. The 
subscripts a' and a r t  are summed over. For the case of no 
systematic errors ( 4 . 1 2 )  is valid and ( 4 . 1 6 )  becomes 

( 4 . 1 7 )  

i in cluster a '  
a' is summed in ( 4 . 1 7 ) .  
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A discussion o f  the optimal use of the measured data 
and the eii~ilination of systematic errors from measurements 
is presented in Appendix A and Appendix B. 

C .  Application to One Star Navigation Equations 

The one star navigation equation given by (2.16) has 

(ml)i = cosBi (4.18a) 

(m2)i = sinBi (4.18b) 

(4.18~) (m3)i = sins i 

(4.18d) 

Then (4.10) becomes 

E = b &sinsi - e(coseo 6cosBi - sineo 6sinBi) (4.19) i 

(4.19) can be expressed directly in terms of the angular 
measurement errors 6y 
definitions in Chapter 11. 

and 6si by use of the relations and i 

E = (b cossi ? e siny i sinei &si 
i 

i cosy sin6 
0 

+ e siny i sinei 6yi (4.20) 
cosyo sinBi 

In obtaining ( 4 . 2 0 )  it has been assumed that si the semi- 
subtended angle of the central body was added to (or sub- 
tracted from) the star-central body edge angle. 

Squaring ci, taking the statistical average, and assuming 
that <dsi2> = <6y i 2 >  = A 2 ,  and that cossi = 1 
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< E  2> = a. 2 = A' ( b2 + 2(e sinyi sinei/cosyo sinB.) 2 
i 1 1 

2 2be sinyi sin0./cosy 1 0 sinBi ) (4.21) 

If the choice is available it is worthwhile to measure to 
the central hody edge which gives the sign in (4.21) which 
makes ai smaller. (4.21) also suggests that yo be made as 
close t o  zero as possible in order to minimize ai. 
would mean the navigation star is lying in the orbital plane. 

In order to make a quantitative estimate of  navigation 
accuracy by using (4.17) a navigation mission schedule is 
introduced. Consider the spacecraft trajectory of Figure (4.1). 
At three positions on the spacecraft orbit, 0 ,8 ,8 clusters 
of N1,N2, N3 observations are made of the navigation angles. 

parameter b is given by 

zero 

1 2 3  

By use of (4..16) the mean square error in the orbital 

L L L L 

(4.22) 
l 2  1 

a sin O Z 3  o2 sin' a3 sin' 
+ l3 + 1 I 

< 6 b  2 > = b 2 N1 N2 N3 

( sineZ3 - sinel3 + sine l 2  12 

where e12 = y e  etc. The derivation of (4.22) is given 
in Appendix 2 .  

in cluster 1 given by (4.21). 

(4.22) can be minimized with respect to the division of 
N observations into N1,N2,N3, giving the optimum division of 
a fixed number of observations. Setting 

2i 
al is a typical mean square error eieriier~t 

f o r  a = 1,2,3 (4.23) 

subject to the constraint N1 + N2 + N3 = N, we obtain 

N1/N = al / SUM (4.24a) 

N2/N = IsinOl31 a2 / SUM (4.24b) 
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TYPICAL TRAJECTORY 
WITH OBSERVATION 

\ 
\ 

spacecraft trajectory 
1 

Ibservat ions 
e 

\ 
observations 

Y 
NI 
observations 

Figure 4.1 A typical mission schedule is shown. Three clusters 
of observations with N , N  , N  observations in each cluster 
are taken when spacecr!lft2az$muth is about e1,e2,e3, repectively. 
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(4.24~) 

where 

SUM = IsinBZ31 crl + 3 (T (4.25) 

This gives a minimized error of  

(4.26) <6b 2 > = (b SUM) 2 / N (sinez3 - sinel3 + sinel2) 2 

We next minimize (4.26) with respect to O 2  for fixed e l  and 
e3, that is we seek the location of the middle cluster o f  
observations which minimizes the error in b. Setting 

(4.27) 

yields 

(T case - al cose32 = JN 6b (cose21-~~~e32)/b 3 21 rms 
(4.28) 

where rms indicates root mean square 

6bieins = J<bb 2 > (4.291 

For o1 = (T ( 4 . 2 8 )  gives 3 

e 2  = (61 + e31/2 (4.30) 

The intermediate cluster of 
measuring in terms of orbital azimuth, between the first and 
last cluster of observations. 

bservations should be midway, 

If the result (4.30) is used in (4.24ayb,c) and if the 
angle O 3  - el is small which it usually is, then 

N1 = N3 = N 2 / 2  = N/4 (4.31) 

for the best accuracy of b prediction. 
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Calling le3 - e l l  = enav the angle through which 
navigation takes place, (4.26) takes the simple form for 
optimum navigation (navigation fulfilling (4.30) and 
(4.31)) 

= b a  sinenav 
6brms - 

+ 2 si enav/z) nav 4 4R -sine (4.32) 

By use of the trigonometric multiple angle relations 

s in0 nav = 2 sin(Bnav/2) COS(Bnav/2) (4.33a) 

(4.33b) 
and 

1 - cosknav/2)= 2 sin 2 lenav/4] 

( 4 . 3 2 )  becomes 

= b o  (4.34) rms -- 6b 
/n 

For most applications 8 /4 is a small angle so (4.34) nav 
is well approximated by 

= 16 b CI (4.35) 6brms ~ 

2 

nav m e  

In most all cases (4.21) is approximated well by 

a = b A  (4.36) 

If we consider an eccentric orbit around earth with perigee 
equal to about an earth radii, then e = 1, b = 2 .  Assuming 
N = 49 observations and a measurement rms error of A = . 5  
arc-minutes, (4.35) can be converted to perigee rms estimation 
error, obtaining 

miles (4.37) - 2 (Perigee Error)rms - 2.5 / 8 nav 

(4.37) is plotted in Figure ( 4 . 2 )  for various combinations 
of nmin 
navigation. Figure (4.2) can be scaled to any other rms 
measuring error and number of observations by use of (4.35). 

and nmax, the ranges of the spacecraft position during 
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Figure 4.2 
eccentric orbit with perigee about one earth radii. It is 
assumed that good navigation stars are used, that measurement 
accuracy is A = . 5  arc-minutes, and that a total of N = 49 
observations were made. nmin and n are minimum and maximum 
spacecraft range during navigation. 

Perigee prediction accuracy is given for an 

max 
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of e 
nav i 
an o 
so t 
the 

There is also an error associated with the estimation 

iational errors at perigee due to e uncertainty are of 
lrder of magnitude smaller than those due to b uncertainty. 
he error estimates of ( 4 . 3 7 )  represent essentially all 
navigation error to be expected. 

the orbital eccentricity. It can be shown that 

Physically it is straightforward to see why uncertainty 
in b contributes an order of magnitude greater error in 
perigee than does uncertainty in e. From 

n = b / (1 + e case ) ( 4 . 3 8 )  

the sensitivity o f  b and e to an error in 8 gives 

a b/a e = - e n sine 
and 

( 4 . 3 9 )  

a e/a 0 = e tan0 ( 4 . 4 0 )  

The ratio of the errors 

bb/be = - n / cos0 ( 4 . 4 1 )  

shows that the b error is an order of magnitude larger than 
the e error. The error in perigee 

= b(b/(l+e)) 
per 

bn 

is then dominated by the b error. 

( 4 . 4 2 )  

D. Sensitivity of One Star Navigation to yo Error 

and used to convert measured quantities to more useful 
quantities which appear in the navigation equation. 
in measuring y o ( l )  then will produce a systematic error in 
every converted measurement. First we note that si measurements 
are uneffected by the y o ( l )  error. From (2.18) however we 
have 

In one star navigation equations yo(l) must be measured 

An error 

a cosB(l)/a y o ( l )  = cosB(1) tanyo(l) 

- 8  sin~(l)/a yo(l) = cosB(1) cotB(1) tanyo(l) 

( 4 . 4 3 )  

and it is then straightforward to obtain 

( 4 . 4 4 )  

Combining ( 4 . 4 3 )  and ( 4 . 4 4 )  into ( 4 . 1 9 )  gives 
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a € / a  yo(l) = - e tanyo(l) sinei cos8(l)i (4.45) 

sin@(l)i 

* Adapting (4.14) to the purposes of this section 

Evaluating (4.46) for K = C = -b using the equations derived 
in Appendix C gives 

a b/a yo(l) = - be tanyo(l) / sin 
(4.47) 

x (sinelcotB(l)l + sine3cotp(1)3 

-zc0senav/z) I sine2cotB(1)z) 

For most applications f3(l)l is smaller than B(l)z or f3(l)3 
and dominates (4.47). Then (4.47) becomes approximately 

(4.48) a b/a yo(l) = -16betanyo(1) sinel cot@(l)l / 0 2 nav 

where we have assumed Bnav/4 a small angle. 
tanyo(l) so it suggests picking stars in the orbital plane to 
keep the sensitivity of b to yo(l) error small. 
iess than i o o  (4.48) gives substantial sensitivity of b to 
yo(l) error, giving us another argument for going to two star 
navigation equations. 

(4.48) goes as 

Even for yo(l) 

E. Application to Two Star Navigation Equations 

The two star navigation equations for b given by (3.4) 
have 

i ( m 3 ) i  = sins (4.49c) 
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Using the definitions of the constants A1,B1,C1 given 
by ( 3 . 5  a,b,c) the error element is 

e sineo(l) 6c0sy(2)~ E = b Gsinsi + i 

Expressing (4.50) in terms o f  the measured angle errors, 
squaring, and taking the statistical average yields 

(4.51) 

where 

5, = e sineo(2) siny(l)i / sineo(12) cosyo(l) 

5, = e sineo(l) siny(2)i / sineo(12) cosyo(Z) 
and 

2 We have made the approximations cossi = 1, <tisi'> = <6y(l) i > = 
< 6 ~ ( 2 ) ~  > = A . 2 2 

Again as in one star navigation it is worthwhile to 
measure angles to the central body edge which gives the sign 
in (4.51) making < E ~ ~ >  the smallest. 

(4.51) also suggests that both yo(l) and y o ( Z )  should 

In other words the two stars used in 
be kept small as possible. 
to 590' as possible. 
navigation should lie in the orbital plane but perpendicular 
to each other. If these conditions are fulfilled (4.51) gives 
to good approximation 

Also Bo(12) is to be kept as close 

(4.52) 

As shown in Appendix C the error equation for b is similar in 
one star and two star navigation. This leads to 
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2 2 
A / fi enav = 1 6  b brms ( 4 . 5 3 )  

. being valid in both cases. Therefore the curves plotted in 
Figure ( 4 . 2 )  are useful for both one and two star navigation. 

As in one star navigation, in two star navigation errors 
in e are an order of magnitude smaller than errors in b. 

F. Sensitivity of Two Star Navigation to yo Error 

Two star navigation was developed to simplify the navigation 
equations' dependence on yo, the star elevation angle 
measurement. As was derived in Chapter I11 the estimate 
of the orbital parameter b was made independent of y o .  

dependence o f  the parameter e on yo was simply that expressed 
in ( 3 . 1 4 )  

The 

2 e'-= B" cos yo 

Taking a derivative of ( 4 . 5 4 )  yields 

( 4 . 5 4 )  

a e/a yo = - e tanyo ( 4 . 5 5 )  

In terms of perigee sensitivity to yo 

e 
2 Perigee/a y o  = Rc riper l+e tanyo ( 4 . 5 6 )  

For eccentric orbits (e = 1) around earth with a perigee of 
about n = 1, ( 4 . 5 6 )  gives 

Per 

miles/arc-minute ( 4 . 5 7 )  
1 
2 0 

a Perigee/a yo = - tany 

If yo is small this is a quite acceptable error, being a 
smaller contributor to navigation error than noise error. 
is at least an order of magnitude improvement over the one 
star navigation sensitivity given by ( 4 . 4 8 ) .  

( 4 . 5 7 )  

31 



CHAPTER V 

GRAVITATIONAL PERTURBATIONS 

A. The Linearized Perturbation Equations 

For many space missions in which navigation is required 
the spacecraft will not be moving in a perfect Keplerian 
orbit. Other gravitational bodies will be present to perturb 
the spacecraft orbit. The navigation equation for perfect 
Keplerian orbits developed in the previous chapters must 
be modified to include perturbations. 

Let IT,(t) be a conic orbit which would be the true 
spacecraft orbit in the absence of perturbations. 
be the perturbin acceleration, T; the dominant central body 
acceleration. 
trajectory is given by 

Let K 
A 8 is an "off course" vector; the true 

R ( t )  = Ro(t) + AR(t) ( 5 . 1 )  

The equation of motion for R(t) is given by 

.. ,. .. - E ( t )  = Ro(t) + AE(t) = €(E') + A(E) 

Linearizing (5.2) for small E(t) 
.. 

( 5 . 2 )  

AB = A(Ko) + AE*E(Eo) ( 5 . 3 )  
.. 

where we have eliminated Eo by the definition of the unper- 
turbed orbit 

.. 
R 0 = i3(€To) ( 5 . 4 )  

Since our navigation equations do not employ time as a 
variable ( 5 . 3 )  must be reexpressed in terms of 8 ,  azimuth 
angle, as the independent variable. To transform ( 5 . 4 )  we 
use 

(5. Sa) 
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2 d2 '* d 
= ( 8 )  -2 + e - d2 

dt2 de de 
(5.5b) 

. 6 can be expressed in terms of 8 by use of  the conservation 
o f  angular momentum (2.6) 

2 8 = h (1 + e cose) / Rc2 b2 (5.6) 

It is convenient to make the substitution 

IT 
RC 

AR = 

1 + ecos9 

( 5 . 7 )  

where IT is a new dimensionless "off course" variable. 
then takes the form 

(5.3) 

d2Di/iBz + (ecose/(l+ecose) - b 4 3  Rc G /h 2 ( l + e c o s 0 ) j 4 ) D  
ii i 

2 4 ( 5 . 8 )  
= b4Rc3 Ai/h2(l+ecosB)' + b4Rc3 D.G. -/h (l+ecosB) 

for each i = x,y,z. The common subscript j is summed in 
( 5 . 8 )  
eration. To the linear order we are doing this problem 
they are given by 

J 3 1  

The Gij are the gradients of the central body accel- 

2 2  - -  - GM(1 - 3x /R )/R3 Gxx 
G = - GM(1 - 3y2/R2)/R3 YY 

- -  - GM/R3 
GZz 
G = Gyx = 3GM xy/R' and XY 

(5.9a) 

(5.9b) 

(5.9c) 

(5.9d) 

(5.9e) 

The xy plane is defined as the spacecraft orbital plane with 
the perigee along the positive y axis with Badvancing clock- 
wise. Using (5.9a-e) the three equat ions  of ( .5.8) become 

d2D /de2 = - (1 - 3sin 2 9/(l+ecosO)) Dx 
X (5 .10a )  

+ 3sinecose D /(l+ecos9) + b4R Ax/h2(l+ecosB) 3 
Y C 
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d2Dy/d0' = - (1 - 3cos20/(l+ecos ) )  D Y (5.10b) ' 

2 3 + 3sinOcose Dx/(l+ecosB) + b4Rc3 A /h (l+ecos0) 
Y 

and 

(5.10~) 2 2 3 d DZ/de = - DZ + b4Rc3 AZ/hZ(l+ecosf3) 

It is useful to treat the perturbing gravitational field in 
terms of its leading multipole term. This allows us to factor 
out most constants as scale factors in the perturbation prob- 
lem, leaving the perturbation differential equation free of 
almost all constants of the problem. 

A perturbing body o f  mass ML located at L from the 
central body gives a dominant quadropole perturbing acceleration 

A(R) = GML (3K-L L/L5 - K/L3) (5.11) 

It is convenient to define the dimensionless strength 
3 parameter 

A = ML - It] b4 ( 5 . 1 2 )  
M 

If the position of the perturbation is expressed in polar 
coordinates-- L (radial distance), €iL (azimuth from orbital 

(elevation angle from orbital plane), then the 
inhomogeneous terms in (5.10ayb,c) (call them A '  ) are 

A; = A 3COS y L  sineL ~os(0-e~) - sin0 /(l+ecose) 

A '  = A  COS y L  co~(e-8~) -  COS^ /(l+ecos0) 

A; = 3 A  cosyL siny cos(e-eL) / (l+ecose) 

By use of the identity 

perigee), YL 

X,Y,Z 

4 

4 

(5.13a) 

(5.13b) 

(5.13~) 

1 
1 

2 

2 

4 

[ 
Y I 

L 

cos(e-eL) = coseL case + sineL sine (5.14) 

we can include all position dependence of the perturbation in 
the strength factors. (5.13aybyc) then read 
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[3 h c o s  2 yL"in2eL) 4 cose/(l+ecose) 
+ X(3cos 2 yL sin 2 B L  - 1) sine/(l+ecose) 4 

(5.15a) 

The significant thing to notice about (5.10a,b,c) with 
the inhomogeneous terms expressed as (5.15a,b,c) is that the 
differential equations have only the paraxeter e left in 
them. All other parameters including b and the strength 
and location of the perturbing body have been included in 
scale factors of the inhomogeneous terms. This simplifies 
the presentation of necessary perturbation tables or graphs 
to the navigator. 

B. Effect of Perturbations on the Navigation Equations 

an amount Ai?(e) then the measurements s and y will be system- 
atically altered from their values as measured from the 
hypothetical unperturbed conic orbit. 

If the spacecraft deviates from a conic trajectory by 

Let the conic orbit which best fits the perturbed orbit 
at perigee be defined as the reference conic orbit. Relative 
to this orbit (which provides the proper orbital information 
for safe reentry into a planetary atmosphere) the spacecraft 
is "off course" by AK(8). At a given azimuth 8 this will lead 
t o  an altered semisubtended angle si 

* A 

(5.16) &sinsi = - dni/n2 = - sin 2 si [*Fer - 1 dn AE*t]/Rc 
iia 

A A 

where r is a unit radial vector, t a unit vector in the orbital 
plane perpendicular to the radial vector. This is seen in 
Figure (5.1). The first term in brackets in (5.16) is simply 
the "off course" vector projected along the radial distance. 
The second term is necessary because if the "off course" 
vector has a component in the tangential direction, adjustment 
must be made for the fact that the reference conic is changing 
its radial distance with 8. In other words if 
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TYPICAL TRAJECTORY SHOWING 
"OFF COURSE" VECTOR AND 

Unit tangential 
vector 

Unit radial / ,/ 
R o (0) vector 

Figure  5 . 1  The r e f e r e n c e  c o n i c  t r a j e c t o r y  and t h e  a c t u a l  
t r a j e c t o r y  due t o  p e r t u r b a t i o n s  a r e  shown, 
AB i s  t h e  "o f f  cour se"  v e c t o r .  I n  t h e  o r b i t a l  p l a n e  A we have 
d e f i n e d  two u n i t  v e c t o r s ,  r a r a d i a l  v e c t o r ,  and t .  

t h e  d i f f e r e n c e  

h 
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A A 1 dn A8*r/AE*t = 5 (5.17) 

were to hold (5.16) indicates no change in s. But (5.17) 
is just the condition for the "off course" vector to lie 
along the reference trajectory. 

In terms of the dimensionless D(e) defined by (5.7) 
(5.16) becomes 

From (5.18) it is seen that only in-plane perturbations 
effect the subtended angle measurement. 

Out-of-plane perturbations effect the y measurement 
however. Starting from 

(5.18) 

(5.19) 
A 

where s is a unit vector toward the navigation star, then 
A A  

&cosyi = - Gri*s (5.20) 
A 

Defining the unit vector p perpendicular to the orbital plane 
we have 

Therefore from (5.20) 
A A A  

&cosyi = - AR-p pes / Rcn 

(5.21) 

(5.22) 

(5.22) expressed in terms of the dimensionless "off course" 
vector, u s i n g  (2.2) , becomes 

6cosyi = - DZ siny / b (5.23) 
0 

So it is seen that y measurements are only altered by out- 
of-plane perturbations. 
to zero (5.23) indicates that y i  is insensitive to developing 
an " o f f  course" error. 

As the star elevation angle y o  goes 
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Consider now the two star navigation equation for b 
C oiven by (3.4). It will be modified by the systematic 
gerturbation to read 

A' cosy(l)i + B '  ~osy(2)~ + C' sinsi + 1 + Qi = 0 
where 
Q~ = - [ c '  Gsinsi + A' Gcosy(l)i + B' Scosy(2)i) 

(5.24) 

(5.25) 

A',B',C' are the orbital parameters for the reference conic 
trajectory. 
on the perturbed orbit to their values if measured from the 
reference conic orbit. 

The factor Qi corrects the actual measured angles 

The correction to the navigation equation (5.24) leads 
to the correction for the evaluation of b. (3.7) should 
simply be modified by the substitutions 

c ( Q )  
' 1,2,3 1,2,3 + 

+ N  
1,2,3 

N (5.26) 

where the notation of (2.23) is indicated. The operational 
form of (5.26) is 

I (5.27) 
Q. = - - 1 [sine D~ + (e+cose) D 

b Y i  1 

In the same manner corrections to the equation for B" 
(3.17) used to obtain e are made by the substitution in (3.17) 
of 

A A 

C ( y L )  + C(yL> + CCQ') (5.28) 
1,2,3 1,2,3 1,2,3 

where the notation of (2.23) is indicated. In (5.28) the 
quantity Q '  is given by 

(sinei D~~ + (e+cose) D )sinei Yi I 2e sin Q! = 
1 

b - e tany sinei D 
0 zi 

(5.29) 

From (5.23) one sees that the change in y o  due to perturbations 
is 

38 



(5 .30)  

where the o subscript indicates the value of DZ at 
The correction of e can then be made by using (3.14) 

8 =  8 . 
0 

6e = - e D tanyo / b Z O  
(5 .31 )  

In-plane perturbations always appear in the combination 

A ( e )  = sine D,(e )  + (e+cos0) D ( e )  Y (5 .32 )  

The two functions A(@) and D , C e )  have been computed by 
integrating (S.lOa,b,c) for various values of e and for the 
several inhomogeneous terms given in (5.15a,b,c) with unit 
strength coefficient. Examination of (5.15a,b,c) indicates 
that there are five independent inhomogeneous terms which 
will produce the most general perturbation with arbitrary 
strength and location and for any value of the orbital 
parameter b .  Three o f  the inhomogeneous terms are required 
for the most general A ( 0 )  and two for the most general D , ( e ) .  

navigator would scale each of these sets of curves by the 
strength coefficient appropiate to his particular perturbation 
problem. 

Figures (5 .2 - 5 . 6 )  give these integrated functions. The 

The curves of A and D -  have been plotted as a function 
L 

of the variable l+ecose instead of the variable 8 .  By (2.11) 
it is seen that this new variable is more convenient and 
more closely related to a measureable, s. This aspect of the 
problem is discussed more fully in Chapter VII. 
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IN-PLANE PERTURBATION 
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e=.975 

Ax=cose/( I+ e COS e)4 
Ay=sine/(l+e  COS^)^ 

0 1 I 
I I I I I 1 I I 1 

.025 .050 .075 ,IO .I25 .I50 .I75 ,200 ,225 .25 
i + e  c o s 0  

I 

Y Figure 5.2 The perturbation function A = sine Dx + (e+cose)D 
is plotted as a function of the variable l+ecose, for various 
values of e, the orbital eccentricity.4 The inhomogeneous actel- 
eration values are Ax = cosB/(l+ecosO) , A = sine/(l+ecos8) . 
The curves were obtained by computer integration of (5.10a,b). 

Y 

40 



IN-PLANE PERTURBATION CURVES 

100- 

90- 
80- 
70 - 
60 - 
50- 
40- 
30 - 
20 - 
10- 
0 

A,=sine/ ( ~ t  e COS el4 
Ay'Q 

I I I I I I I 

100- 

90- 
80- 
70 - 
60 - 
50- 
40- 
30 - 
20 - 
10- 
0 I I I I I I I 

i t  e cos e 

Figure 5.3 The perturbation function A = sin0 Dx + (e+cos0)D 
is plotted as a function o f  the variable l+ecose, for various 
values of e, orbital eccentricity. The inhomogeneous acceleration 

The curves were ob- 
tained by computer integration of (5.10a7b). 

Y 

values are Ax = sine/(l+ecose) 4 , A = 0 .  Y 
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Figure 5.4 The perturbation function A = sine Dx + (e+cose)D 
is plotted as a function of the variable l+ecose, for various 
values of e, orbital eccentricity. The inhomogeneous accel- 
eration values are A The curves 
were obtained by computer integration of (S.lOa,b). 

Y 

4 
= 0 ,  Ay = cosO/(l+ecose) . X 
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OUT-OF- PLANE PERTURBATION 
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Figure 5 . 5  

function of the variable l+ecose, for various values of e, 
orbital eccentricity. The inhomogeneous acceleration value 

4 is AZ = cose/(l+ecose) . 
integration of ( 5 . 1 0 ~ ) .  

The perturbation function DZ is plotted as a 

The curves were obtained by computer 
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OUT-OF-PLANE PERTURBATION 
D, (e) CURVES 
550- 

500- 
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400- 
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100- 
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e=.s5 

e =.975 

.02 5 .050 .075 .IO .I25 .I50 .I75 .20 .25 
i + e   COS^ 

Figure 5 . 6  The perturbation function D is plotted as a 
function of the variable l+ecos , for various values of e, 
orbital eccentricity. The inhomogeneous acceleration value 
is A Z  = sin /(l+ecos) . 
integration of (5.10~). 

2 

4 The curves were obtained by computer 
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CHAPTER VI 

ELIMINATION OF NON EQUAL TIME ERRORS 

A. Derivation of Non-Equal-Time Errors 

The navigation equations derived throughout this 
work assume that the measured quantities in each observation 
are measured at the same time. We are not saying that the 
several observations in each cluster must be made at the 
same time; only that for each i the angles si, ~ ( 1 ) ~ ’  ~ ( 2 ) ~  
in two star navigation are made at the same time. 

Operationally these measurements must be made at slightly 
different times. We now examine methods to eliminate any 
navigation errors due to these non-equal-times of measurement. 

Consider the two star navigation equations. Let the si 
measurement time define the ith measurement time. Let 
AT(l)i and AT(2)i be the time differences between the si 
measurement and the ~ ( 1 ) ~  and ~ ( 2 ) ~  measurements, respectively. 
Starting from 

cosy(l)i = cos(ye(l)+s)i = cosyo(l) cosB(l)i (6.1) 

where ye(l) is the angle between the star and the central 
body edge, and noting that 8(1) = e-eo(l), and assuming that 
the AT(1’2) are small times, then 

Gcosy(l)i = - cosyo(l) sinB(l)i 6e(l)i (6.2) 

5 siny(l)i G s ( ~ ) ~  
But from (2.11) 

e sing i 
b coss- 

gs(1)- 1 = - 6 0  (1)i 
1 

Therefore 

Gcosy(l)i = - [ cosyo (1) sin8 (1) * 
esiny (1) is in0 

b cossi 

(6.3) 
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The azimuth angle change can be related to the 
non-equal-time of the measurements by use of the equation 
giving the angular velocity of the spacecraft (5.6). 

(6.5) 2 S0(l,2)i = J6 sin s i AT(l,2)i / To 

with T given by (2.9). Using the two star navigation 
equati8n (3.4) we obtain the total non-equal-time error 
e 1 emen t 

The q(l,2) factor changes slowly during the observational 
period, changing essentially as azimuth angle changes. The 
sinsi factor however changes rapidly during a sequence of 
observations as sin s is proportional to the spacecraft range 
to the inverse square power (l/n ) .  It is expected that the 
errors given by (6.6) will be dominated by their contribution 
in cluster 3 (see Figure (4.1)) when the spacecraft is 
closest to the central body and the factor l/n is largest. 

2 
2 i 

The estimation error in b produced by (6.6) is then given 
by applying (4.14) giving 

C3'13(E) 
6b = (6.7) '1 (sins) + c2'C2(sins) + c '1 (sins) c1 1 3 3  

where the constants c' are given by (3.8a,bYc). The notation 
in (6.7) is that defined in (2.23). 

If we randomize the time ordering of the measurements 
between the order y(l),s,y(2) and y(2),s,y(l) the error 
elements have the statistical properties 

< E . >  = 0 
1 and 

(6.9) 4 2 <AT'> 
-7 < & - E . >  = b sin ~~(A'q(l)~-B'rl(2)~) 

1 1  
0 

if i = j and zero otherwise. This leads to a mean square 
estimation error for b of 
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t i m e s  

/ 

2 4 <AT'> 
7 (A'q(1) - B ' n ( 2 ) )  b sin s -- 

(6.10) 

N3 
I 

0 

with (6.10) evaluated in cluster 3. Using Appendix C (6.10) 
gives to good approximation 

(6.11) 

for optimally selected stars as discussed in Chapter I V  and V. 
Using ATr = 1 minute, To = 780 seconds appropiate to earth, 
(6.11) yigfds a perigee error for eccentric orbits (e = 1) of 

miles 2 2 &Perigeerms = 2200 sin s / AT3 enav (6.12) 

(6.12) is plotted in Figure (6.1) for several values of 
n 
shown are unacceptable for most navigational purposes. Better 
methods must be examined for handling non-equal-time errors. 

and nmax, with N3 = 16 observations. The perigee errors min 

B. A Non-Equal-Time Error Nulling Procedure 
It -w-as Seen + L - 4 .  L l l c l L  q g , q  21-e s?owly  vary i f ig  f a c t e r s  and 

2 sin s the fast varying factor in (6.6). This leads to a 
method for nulling the non-equal-time errors. 

First the order of the measurements y(l),s,y(2) and 
y(Z),s,y(l) are alternated. The times AT(1,Z) are recorded 
to some rough precision (t a couple seconds). The sums 

(6.13) 

i in cluster 3 

are kept for each star by the navigator. The AT(1,Z) will 
be alternating in sign in the sum (6.13) so (6.13) will not 
continuously grow larger with growing N 3 .  

But after the observations in the cluster have been 
obtained and the two sums indicated by (6.13) computed each 
sum will in general have a residual non zero value. At this 
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Perigee Error Due to Non-Equal-Time 
( with no nulling) 

80 

- 60 
E 

2 

u) a - .- 
U 

L 

L a 
a 
-- 40 
L a 
Q 

u) 

L 
E 

2 0  

N3= 16 observations 
b = 2.0 
e=.97 \ A T  r. m.s.= 60 seconds 

I I I 

25 3 0  33 
maximum range of navigation ( ::$: 

Figure 6.1 Error in perigee estimation due to uncorrected 
non-equal-time of measurements are shown for various values 
Of "min 
navigation. 

and nmax, spacecraft minimum and maximum range during 



point the navigator has several choices. He can make one 
more observation adjusting the AT(1) and A T ( 2 )  so as to null 
the sums given by (6.13). Or he can go back through the 
cluster o f  observations and delete the one which best nulls 
(6.13). 

By nulling the sums given by (6.13) the navigator 
essentially makes zero the numerator of (6.7) which gives 
the non-equal-time error in b. 
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CHAPTER VI1 

OPERATIONAL ASPECTS OF THE NAVIGATION 

A. Introduction 

This chapter will give a brief description of the actual 
operational steps which would be required of a space naviga- 
tor using the navigational equations developed in this work. 
The equations which are to'be employed in this chapter 
have all been derived and analyzed in previous chapters. It 
is the purpose here to use them all together in a navigation 
problem s o  that the reader can get a view of the operational 
procedures free of the theoretical work of previous chapters. 

It should be pointed out that the purposed charts, 
tables, arithmetic steps, etc., discussed and used in this 
chapter cannot be considered as already optimally designed. 
Their optimal design must wait upon the results of actual 
man-system tests and experiments in which the more efficient 
o f  alternative operational procedures are found. 

B. The Measurements 

It is assumed for the purposes of this chapter that two 
star navigation is being used. The mission is the return of 
a spacecraft to earth from the lunar vicinity. The pertinent 
parameters of the problem are given below: 

Orbit [E ig7) 

~ ~ ( 1 )  = ioo, e o ( i )  = 167O 
y0(z )  = iso, e o ( z )  = Z S O O  I Navigation Stars 

Lunar Perturbation yL = l o o ,  BL = 190° ( 7  3) 

The two navigation stars have been properly selected to 
minimize navigational error. They fulfill the conditions 

1. Star line of sights lie close to the orbital plane. 

2 .  Star line o f  sights are approximately perpendicular to 
each other. 
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. 3. One star line of sight has an azimuth such thatyo can 
be measured for that star. 

. Note that the stars used for navigation can be any stars 
which fulfill the above conditions. The stars do not have 
to be identified with pre existing tables. 

When at some distance from earth, nmax 30 earth radii, 
the navigator takes the first cluster of celestial measure- 
ments- Y (1) i, si, Y (2) i. Y(l)i is the angle between star one 
and the earth edge, ~(2). is the star two to earth edge angle, 
and si is the semisubtenaed angle of the earth. 
of observations are taken about five or ten minutes apart. 
But it is important that the three angle measurements in 
each observation be taken as close together in time as possible. 
In each observation the order of the three measurements is 
reversed from the order in the previous observation. 

The cluster 

At a later time when the spacecraft is closer t o  earth 
another cluster of measurements are taken. Finally when 
the spacecraft reaches nmin 6 earth radii, the third and 
final cluster of measurements are taken. (4.30) and (4.31) 
indicate that optimal navigation accuracy is obtained when 

(7.4) 

and 

N1 = N3 = N2/2 = N/4 ( 7 . 5 j  

and therefore the navigator endeavors to approximately fulfill 
these two conditions. For this example navigation problem 
the total number of observations N = 8. 

C. The Data Tables 

Figure (7.1) is a possible format for producing the 
necessary navigation sums. Note that all sums are simply 
updated upon making each new measurement. The first three 
columns are the measured angles. The other columns are 
generated from the data in the first three columns by 
either addition or by use of trigonometric tables, as in- 
dicated. 
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Figure (7.2) contains additional data and sums which 
would be needed for perturbation corrections and for the 
nulling of non-equal-time errors (see Chapter VI) if 
necessary. The perturbation data is taken from Figures 
(5.2-5.6). 

Because the lunar perturbations are quite small until 
the'spacecraft position is far from earth, in most all 
navigational cases like this navigation problem, only 
cluster one perturbation data need be obtained if any at 
all. 

On the other hand azimuth rate of change is growing 
rapidly as the spacecraft approaches earth, s o  non-equal- 
time nulling data need only be obtained for cluster three 
in most cases. 

D. The Navigation Calculations 

the orbit parameters can now be made using the sums of 
measured data generated in Table (7.1) and Table (7.2). 

All of the arithmetical calculations needed to estimate 

Table (7.3) shows the calculations needed to estimate b. 

With b estimated and using a measured value for y , 
Table (7.4') gives the sequence of calculations necessapy to 
estimate the orbital parameter e. 
an alternative method for estimating yo is given at the end 
of Chapter 111). 

(If yo cannot be measured 

Actually the perturbation data of Table (7.2) cannot 
be completed until at least a rough estimate of b and e 
are made. The ordinate of Figures (5.2-5.6) is the quantity 
l+ecose = bsins so requires the measured angle s and the 
orbital parameter b .  Also the curves of Figures (5.2-5.6) 
form a one parameter family of curves w'ith e being the 
parameter, hence an estimate of e must be made before one 
can read out the perturbation data. 

the perturbation correction to b. 

produced using (5.28) through (5.31). But such corrections 
are an order o f  magnitude smaller than b corrections. Except 
in extraordinary circumstances e corrections can be neglected. 

Table (7.5) shows the calculations used to obtain 

A table for perturbation corrections to e could also be 
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TABLE 7.2 

-_ 

AT(1) AT(2) sin2s I sin2s AT(1) sin2s AT(2) 
58 -63 .0237 I 1.37 -1.49 

. . . . . . . . . . . . . . . . . . . . . . .  1.37 -1.49 
-61 55 I .0247 -1.50 1.36 

. . . . . . . . . . . . . . . . . . . . . . . .  -0.13 0.13 

LUNAR PERTURBATION CORRECTION DATA 

/ / / / / / / /  
.0651 

-300 14d -85 35 0 
-250 130 -80 33 0 

szl %2 'A1 'A 2 'A 3 

Table 7.2 The tables shown give the additional data necessary 
to make the non-equal-time nulling and to make the perturbation 
corrections to the orbital parameters. The quantity bsins is 
the ordinate variable of the perturbation curves of Figures (5.2- 
5.6). 
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TABLE 7.3 
ESTIMATION EQUATIONS FOR b 

= (3.7742)(-.8087)-(1.6749)(-.6458) = -1.9705 

= (1.6749) (.  1600) - (1.9681) ( - .  8087) = 1.8596 

= (1.9681)(-.6458)-(3.7742) (.1600) = -1.8749 

NUM ' N  + c3'N3 
- c2 2 - 

cltNl + 1 b =  - 
Cl'SAl+ C2'SA2+ C3'SA3 DEN 

= (-1.9705) (2)+(1.8596) (4)+(-1.8749) (2) 
(-1.9705) (.0641)+(1.8596) ( .  3138)+(-1.8749) ( .  3112) 

1 I 

Table 7.3 The arithmetical steps used in estimating the 
orbital parameter b are shown. First 'c3' are computed 
from sums in Table 7.1. Then b is computed from the expression 
shown above. The text equations used in this table are (3.7) 
and (3.8). 
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TABLE 7 . 4  

ESTINATION EQUATIONS FOR e 
~~ 

jH1 = SB1 + b ( S F 1  - Sc1) /2  

= [ 1 . 9 6 8 1 ) + [ . 9 9 9 2 ) ( . 2 9 2 6 - . J 1 8 9 )  = 1 . 8 4 1 9  

( - 1 . 7 4 R b )  [ - .  O t ~ Z O ) + ( l .  3 7 5 b )  [ - .  2 8 9 2 ) + (  - 1 . 0 0 2 6 )  ( -  , 2 6 2 8 )  

( - 1 . 7 4 8 6 )  [ .  0 6 . 3 4 ) -  ( 1 . 3 7 5 6 )  [ , 4 3 8 8 )  + [ - I ,  0 0 2 6 )  ( .  5'174)  

e 2  = 2 b W cosLyo 

= ( 2 ) ( 1 . 9 9 8 4 ) ( . 2 4 3 7 ) ( . 9 8 4 8 ) *  = , 9 4 4 4  

e = , 9 7 1 8  ( f rom J t a b l e )  

Table 7.4 The equations necessary to estimate e are shown. 
First several new sums of data are obtained from sums generated 
in Table 7.1. 
c2",c3". A quantity W is computed, which along with a measured 

2 value ofyo  gives an expression for e . 
gives e. The text equations used in this table are (3.141, 
(3.17) and (3.18a2b,c,J. - 

These are used to obtain the coefficients c1", 

A square root table then 
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TABLE 7.5 
PERTURBATION EQUATICNS ?OR b 

eL = 190' (estimated) 

'A 1 

yL = 10' (estimated) 

* - .5 

- -.9 

2.0 

2 = 3 cos yL coseL sineL 

2 2 = 3 cos  yL sin eL - 1 

2 2 

- 
KA 2 

= 3 COS yL COS eL - 1 KA 3 

?. = 3 cosyL siny cosOL - -.5 K Z  1 L 

KZ2 = 3 c o s y L  sinyL sineL - -.l * 

I = .16 
OP = e sineo(2) tanyo(l) - sineo(l) tanyo(2) 

sineo ( 1 2 )  

X = 5.74 (stored constant f o r  earth-moon system) 

= (5.74)(8) 

( ( . S I  (-165)+(- .9) (68)- ( -  . 5 )  (.16) (-550) 
I '  

-.84 
-(-.1)(.16)('270) 

- -.. 

Table 7.5 The perturbative correction to b is made above. 
From rough measurements of the moon's position the five position 
coeffients are computed. Then OP, an out-of-plane constant, 
is computed. 
6 b  is then computed from an expression containing c 1 ' and DEN 
which were previously computed in Table 7.3. 
used in this table are (S.lSa,b,c) and (5.26). 

Finally SK,  the total perturbation sum is computed. 

Text equations 
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CHAPTER VI11 

SUMMARY 

A. The Navigation Equations 

The requirement that navigation equations be linear is 
a strong one. Linear equations admit of straightforward 
arithmetic solutions, while nonlinear equations almost 
always present an impossible task for quick manual solution. 

In Chapters I1 and I11 the first accomplishment was to 
transform Keplerian orbit equations (conic equations) into a 
form where all the unknown parameters to be estimated appeared 
in a linear fashion. Note that we have obtained exact 
equations with the unknowns appearing in a linear fashion, 
not linearized equations valid only for sufficiently small 
deviations from a reference trajectory. Our navigator needs 
no reference trajectory to start his navigating from. 

The linearity of the navigation equations also leads 
to a straightforward operationally simple method of incor- 
porating redundant measurements into the navigation equations. 
Individual pieces of measured data simply become sums of 
measured data. 

v 
m 
w 

After linear equations were obtained in Chapter I1 the 
ariables in the equations (the quantities which vary from 
easurement to measurement along the spacecraft trajectory) 
'ere manipulated in order to find other variables which were 
closer to the directly measured data. "Closer to the directly 
measured data" means that less computational steps are needed 
t o  c o n v e r t  t h e  measured a n g l e s  i n t o  t h e  variables which appear 
i n  t h e  n a v i g a t i o n  e q u a t i o n s .  

The chief reason for going from the one star navigation 
(Chapter 11) to two star navigation (Chapter 111) was that 
the variables in the two star navigation equations could be 
brought much closer to the measured data, thus eliminating 
several calculational steps for the navigator. 

independent of the time variable. This liberates the system 
from dependence on an accurate clock. 

The final navigation equations which are developed are 
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B. Navigation Accuracy 

navigation accuracy with our navigation equations, an error 

measurement errors were small quantities, a first differential 
of the navigation equations was made. Then using the stat- 
istical properties of the measurement errors, equations were 
obtained which gave the expected statistical properties of 
orbit parameter navigation errors. 

In order to obtain an analytical estimate of operational 

. analysis was made in Chapter IV. Assuming that all the 

These formulas are exceedingly useful because the de- 
pendence of navigation accuracy on all of the adjustable 
parameters of the navigation problem can be explicitly 
calculated and studied analytically. From this knowledge 
operational rules can be made which will guarantee near 
optimum navigation accuracy. 

The error equations in Chapter IV have been derived 
in the most general case. But whenever qLantitative 
estimates were made, the particular case of an eccentric 
orbit arcund earth with orbit perigee equal to about one 
earth radii was used as the illustrative example. These 
particular estimates are valid for the typical return 
trajectory from the lunar vicinity to earth. 

Listed below are several of the conclusions that can be 
made concerning navigation accuracy which come out of the work 
on Chapter IV. 

1. Navigation accuracy gces approximately as l/enav where 

0 nav 
the navigational period. 

is the total spacecraft orbit azimuth change dii-i-iiig 

2. Error in estimating the orbit parameter b is an order of 
magnitude larger than the error in e. 

3 .  Contrary to many comments in the literature, it has been 
found that the planet subtended angle measurement and the 
star planet angle measurement contribute about the same size 
error to b or e estimation. Often it is stated that planet 
subtended angle is a poor measurement when far from the planet. 
This is only true if estimation of present spacecraft position 
is desired. This is not true if it is orbital parameters e 
and b which are to be estimated. 

4. Optimal accuracy is obtained when a cluster of measurements 
is performed at each extreme azimuth limit of the spacecraft 
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trajectory with a third cluster of observations performed 
at an azimuth bisecting the minimum and maximum azimuths. 
For a fixed total number of measurements about half o f  them 
should be performed in the middle cluster, a quarter each in 
the other clusters. 

5. In two star navigation the stars should lie as much in 
the spacecraft orbital plane as possible and perpendicular 
to each other. 

C. Gravitational Perturbations 

The basic navigation equations developed in Chapters I1 
and I11 are valid for perfect Keplerian (conic) orbits. In 
many navigation problems there will be one or more perturbing 
gravitational bodies present which will cause orbit deviations 
from the perfect conic orbits. 

In order to treat such corrections within the simple 
linear equations developed in this work we have restricted 
the perturbation study to cases where the perturbations 
are small, that is the spacecraft is substantially within 
the sphere of influence of the central body. 

If a spacecraft is slightly off course from the conic 
orbit the measured angles will be systematically in slight 
error from what their values would be if moving on the conic 
trajectory. In other words, one can view the gravitational 
perturbation as causing a systematic error in the measured 
data. By applying opposite signed systematic errors to the 
actual measured data one generates the data which would be 
obtained if orbiting on a perfect conic trajectory. The 
equations of Chapter IV dealing with known systematic errors 
can then be applied to obtaining corrections to the orbit 
parameters which are being estimated. 

The differential equations for the deviations of an orbit 
from a conic trajectory due to a perturbation are linearized 
in Chapter V, and then the perturbing acceleration is expanded 
in a multipole expansion with only the leading multipole 
retained. This results in the simplification that the final 
perturbation table is reduced to dependence on just one 
parameter, the orbital eccentricity e. A l l  the other parameters 
of the problem like the strength and location of the perturbing 
body and the orbital parameter b are factored out into 
coefficients which just scale the size of the perturbations. 

handle estimation corrections due to a perturbing body of 
arbitrary (but weak) mass and location. 

We have produced a general perturbation table which will 
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D. The Non Equal Time Problem 

One of the difficulties with direct navigation from 
celestial fixes is the necessity of simultaneous measurements. 
In Chapter VI this problem is investigated for the navigation 

* equations developed in this work. Due to the fact that sums 
of data from clusters of observations are the final numbers 
used in the navigation equations, it becomes possible to 
quench the errors due to individual non-equal-times of 
measurement. 

E. Operational Problems and Aspects of Manual Navigation 

In Chapter VI1 a model navigation problem is gone through 
step by step in order to give the reader a unified view of 
the manual navigation system in operation. It remains for 
actual man-system experiments and tests to decide on optional 
operational procedures, and to also test the actual feasibility 
of this approach to manual navigation. 

F. The Appendices 

Several different problems and derivations which explore 
topics of direct relevance to this approach to space navigation 
but which are not required to'follow the main development 
of this work are included in appendices. 

In A equations for the optimum use of each measurement 
are derived. The optimum navigation equations require sub- 
stantially more sums of data to be kept. In the limit that 
observations are condensed into three compact clusters, it 
is straightforward to show that the equations of Chapter I1 
and 111 are optiiiiuiii. 

In B we obtain the important result that systematic bias 
errors in a man-machine system can be filtered out of 
parameter estimations. If the filtering techniques derived 
here are not feasible for manual navigation because of the 
additional computation required, these techniques can still 
be adopted in computerized navigational systems in order to 
protect navigation estimates from hidden systematic errors. 

matrix determinants which are needed in the analytical 
expressions for navigation error. 

In C we derive expressions for useful cofactors and 

In D the necessary calculations for estimating the time 
to perigee are derived. These expressions would be useful for 
spacecrafts on a reentry trajectory; 
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Appendix E presents the necessary equations for a-. 
navigator to make an a posteriori calculation of his nav- 
igational accuracy. In most cases the considerable additional 
calculational effortprobably makes such an a posteriori 
estimate impractical except in situations where unlimited 
time is available to the navigator. 
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APPENDIX A 

OPTIMUM USE OF NAVIGATION MEASUREMENTS 

In the body of this work we developed navigation equations 
from redundant observations. This involved grouping the 
observations into three clusters. It is the purpose o f  this 
appendix to derive the optimum linear navigation equations and 
compare them with the equations derived for operational use. 

Consider the general navigation equation 

for each i (the observation label) from 1 to N. ais summed 
over the constant parameters from 1 to k, there being k 
parameters in the linear equation. Instead of clustering the 
N equations (A.l) into k groups as was done earlier in this 
work, we assume k weighting vectors ( w ~ ) ~  where a goes from 
1 to k .  We can obtain the desire k equations for the Ka by 
dotting (A.l) with each weighting vector 

where the dot product notation used is 
N 

- wal*ma = I(WaI>i(mali 
i-1 

The problem is to pick the ( w ~ ) ~  s o  as to minimize the rms 
error in the estimation of the constant parameters Xa. 
a differential of ( A . 2 )  we obtain 

Taking 

wa1*ma 6 K a  = - w a' ' E  

where 

ci = 6(mo)i + Ka 

Consider a linear transformation on the parameter error 
components 

6 K &  = TaIa 6 K a  
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KkI could represent any function of the orbital parameters 
Ka with the elements of the transformation matrix given by 

= 3 K V a ,  / 3 Ka a'a T (A.7) 

We only require that the transformation (A.7) have an inverse. 
Going to matrix notation (A.4) becomes 

[M][T]-'{6K11 = - { w e & }  

where 
- = w  e r n  [MIaIa a' a 

{W*da = w ' E  

and 
- 

a 

Defining the new matrix 

(A.9a) 

(A.9b) 

(A.8) can be formally solved to yield 

Letting 

(CfIa Ia = cofactor of [NIaIa 

(A. 10) 

(A. 11) 

(A.12) 

the solution of (A.ll) for any particular 6 K A ,  is 

k k 

a=1 a=l 
6 K A '  = - c [(Cf)aaI{W*E1a] / 1 [(cf)aa,tNla,l) (A.13) 

But by (A.lO) and (A.9) we have finally 

6 K A '  = - Y a ' . E  / ~ a " u a I  

where we have defined the quantities 

(A. 14) 
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k 

and 
1. 

Squar ing  (A.14) and t a k i n g  a s t a t i s t i c a l  a v e r a g e  y i e l d s  

CI N 

( A .  1 5 )  

(A. 16 )  

( A .  17)  

Minimizing (A.17) w i t h  r e s p e c t  t o  y i e l d s  

N 
( A .  18 )  

- 1  o r  d e f i n i n g  t h e  i n v e r s e  e r r o r  c o r r e l a t i o n  m a t r i x  [ E ]  by 

(A.18) can  be s o l v e d  f o r  C Y , , ) ,  

(A.19) 

(A. 2 0 )  

(A. 21) 

From (A.15) i t  i s  s e e n  t h a t  Yal i s  a l i n e a r  combina t ion  o f  
From (A.16) i t  i s  s e e n  t h a t  pa, i s  a t h e  w e i g h t i n g  v e c t o r s  w a .  

l i n e a r  combina t ion  of  t h e  measureables  m a .  But t h e  o r i g i n a l  
~ ~~~~~~~~ 

* Note t h a t  t h e  e r r o r  c o r r e l a t i o n  m a t r i x  i s  an N x N m a t r i x ,  
t h e  l a b e l s  i , j  r e f e r r i n g  t o  o b s e r v a t i o n s .  In  o t h e r  words t h e  
e r r o r  m a t r i x  i s  i n  a d i f f e r e n t  space  from t h e  k x k m a t r i c e s  
p r e v i o u s l y  i n t r o d u c e d  i n  t h i s  work. 
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navigation equations are invariant under taking any linear 
combination of themselves, hence (A.21) is equivalent to 
setting 

(A.22) 

for the optimum weighting factors. This result is independent 
of  the transformation matrix [TI, hence (A.22) minimizes the 
rms size of any linear combination of the parameter errors. 

Inserting (A.22) in to (A.3) gives the optimum navigation 
equations 

with 
N 

and 

For the case of constant uncorrelated errors we have 
[Elij = o 2 

= o  

(A. 23) 

(A. 24) 

(A. 25) 

(A. 26) 

and (A.23) takes the particularly simple and symmetric form 

m em K = - mcl,*mo (A. 27) a' a a 

One disadvantage of using the optimum navigation equation 
(A.27) in which the weighting factors'are determined by the 
measureables is that we produce mean errors in Ka even though 
the measurement errors have zero mean value. To understand 
this take a differential of (A.27) 

m,,-ma 6Ka - - - ma,*€ - 6ma,*E: (A. 28) 

where ci is given by (A.5). 
of (A.28) gives 

Taking the statistical average 
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which does not vanish even when <6m > = 0. The left and right a 
side of ( A . 2 9 )  grow linearly with N, so  < 6 K a >  does not diminish 
with the accumulation of additional observations. 

The operational disadvantage of the optimum equations 
( A . 2 7 )  is seen by noting that the required sums o f  measureables 
in ( A . 2 7 )  includes all among the measureables. In 
the case of k = 3 ,  m2 twelve different sums o f  
measureables to be kept, while we have seen that by clustering 
observations we required only three different sums of measure- 
ables. 

It is straightforward to show that in the limit as the 
observations in each cluster are made at times near each other, 
the simple navigation equations of  Chapter I1 and I11 approach 
the optimum equations. For practical observation schedules 
the simple navigation equations are within 5 or 10% o f  giving 
optimum rms parameter errors. 
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APPENDIX B 

ELIMINATION OF SYSTEMATIC MEASUREMENT ERROR FROM 

NAVIGATION MEASUREMENTS 

In Chapter IV it was seen that systematic measurement 
errors led to systematic navigation errors which do not 
decrease in size with additional data as l / n .  In the long 
run, then, systematic errors could determine the accuracy of 
navigation. 

We present here an outline o f  a procedure which can 
eliminate the systematic errors from the measurements without 
a priori knowing the magnitude of the systematic errors. 

Consider the two star navigation equation (3.4) 

A' cosy(l)i + B' cos~(2)~ + C' sins i + 1 = 0 (B.1) 

Suppose that a combination of man and instrument biases led 
to the possible systematic error in the measurement of the two 
star-central body angles, 6 ~ ( l ) ~  = 6 ~ ( 2 ) ~  = 6y. Then (B.l) 
would become 

A' cosy(l)i + B '  cos~(2)~ + C' sins i + 1 + = 0 (B.2) 

where the additional term is the systematic error correction 
coef f ient 

'i = A' siny(l)i + B' ~iny(2)~ 0.3) 

The unknown bias 6y can now be considered a new parameter 
to be estimated by the navigation equations. Then we must 
divide the observations into four clusters to obtain four 
equations. The fourth equation can formally be solved for 
giving 

The 6y obtained from (B.4) can now be inserted into the other 
three cluster equations giving three modified equations for the 
three orbital parameter unknowns, A',B',C'. The navigation 
equations of Chapter 111 are then simply modified by the sub- 
stitution 
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. where k represents the kth cluster (k=1,2,3) and v represents 
any variable which is formed into sums. The substitutions 
indicated by ( B . 5 )  represent a "bias filter", they filter out 
of the data any systematic error of the form given by ( B . 2 ) .  

This technique can be generalized to filter out several 
systematic errors at once, the cost being increased complexity 
of the navigation equations and an increase in the noise error 
of the parameters. 

The bias filter ( B . 5 )  would also result by assuming an 
error correlation matrix 

and using the optimum navigation equations given by ( A . 2 3 ) .  
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APPENDIX C 

DERIVATION OF RMS ERROR FORMULAS 

In order to obtain analytical expressions for orbital 
prediction error, several expressions in the body of this work 
must be simplified. First in one star navigation the denomina- 
tor of  ( 2 . 2 4 )  is analyzed. 

Assuming all the measurements in each cluster to be made 
approximately at the same time, (2.25ayb,c) become 

Expressing 

sins = (l+ecose)/b (C.4) 

the c o s e  terms cancel when summed over the three terms in the 
denominator of (2.24) leaving the denominator to be 

DENl = N1N2N3 [sin(O3-e2)+sin(e 1 3  - e  )+sin(e 2 1  - e  )]/b (C.5) 

For the error in b (4.17) becomes 
7 

The elements of the inverse matrices are constructed from 
cofactors of the original matrix divided by the determinant 
of the matrices. This yields 

[ M ] & M ] i :  = N 2 2  N sin 2 @,-e2) / DENl 2 2 3  

( C . 8 )  
2 2  2 2 [ M ] i : [ M ] i i  = N1 N3 sin ( e 3 - e 1 )  / DENl 

and 

( C . 9 )  
[ M ] i $ M ] i :  = N12N2’ sin 2 @,-e2) / DENl 2 
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Using the above derived results (C.6) then becomes (4.22) of  . the body o f  this work. 

Similarly, we consider the denominator of the two star . navigation equations (3.7). (3.8a,b,c) are given by 

c1 1 = N2N3 cosyo (l)COSyo (2) cosB(1) 2 ~ ~ ~ B ( 2 )  3-~~~B(l)3~~~(3(2) 

( C . 1 2 )  

Again using (C.4) and canceling the terms from the cose part we 
get for the entire two star navigation denominator 

DEN2 = N1N2N3co~y0(1) cosyo(2) / b 

+ c o s B ~ 1 ~ 3 ~ c 0 S B ~ 2 ~ 1 - c O s B ~ 2 ~ 2 ~  j (C.13) 

I f  we use the optimum location of 
several trionometric manipulations give 

e 2  as given by (4.30) then 

DEN2 = 8N1N2N3 cosyo(l) cosy,(2) sineo(12) COSe31/4 

(C.14) ' 
3 sin e31/4 / b  

where eo(i2) = eo(l)-eo(2) and eI1 = e3-e1. 
O 2  as given by (4.30) isusedin (C.5) we also obtain 

If the optimum 

DENl = 8N N N cose31/4 /b 1 2 3  (C.15) 
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If good navigation stars are selected which fulfill the 
condi t ions 

it is seen that 

D E N Z  = DENl (C.17) 

If (C.16) is fulfilled then c ' = c  and it can 1YZY3 1,293 
be concluded that one star and two star navigation accuracy in 
estimating-b will be the same if the b Gsins term dominates 
the error elements which is generally the case. 
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APPENDIX D 

TIME TO PERIGEE 

It would be desirable for the navigator to be able 
to estimate the time remaining until the spacecraft will 
arrive at orbital perigee. Preparation for reentry could 
then be allotted the necessary time, or other maneuvers 
which are desirable to perform at perigee could be made at 
the proper time. 

For an elliptical orbit the time to perigee is given 
in terms of the eccentric anomaly 5" 

cos5 = (e+cose)/ (l+ecose) (D.1) 

or 
tan6/2 = J(l-e)/(l+e) tane/2 

The time to perigee T is then given by 
Per 

T = T 0 (b/(l-e ) )  3/2 (c-esinc) (D.3) Per 

where T has been defined in ( 2 . 9 ) .  
0 

For hyperbolic orbits a slightly modified equation replaces 
(D.3) 

= T j b j  (2-1)) 3/2 (esinhH-H) 
0 

T 
Per (D.4) 

where 

tanhH/2 = J(e-l)/(e+l) tanhe/2 

It is more useful to express and H in terms of the measureable 
sins. From the trigonometric identity 

tanO/2 = J(1-cose)/(i+cose) 

(D.2) gives 

* P. Van DeKamp, Elements - of Astromechanics, (Freeman, San 
Francisco, 1964) Chapter 4 
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tan</2 = J(1-e) (e-bsins+l)/(i+e) (e+bsins-1) (D. 7 )  
. 

For hyperbolic orbits the direct substitution L 

e = arc-cos ((bsins-l)/e) (D.8) 

must be used to express H in terms of sins. 

The accuracy o f  time to perigee prediction can now be 
calculated. From (2.6) 

RL d0/dt = h 

which gives 

(D.9) 

6T = R' a0/asins 6sins /h 
Per 

But 
l+ecos0 = b sins 

(D.lO) 

(D.ll) 

so finally 

(D.12) 2 6T - -  - J6 To 6sins / e sin0 sin s 
Per 

For an eccentric orbit with perigee of about one central 
body radii (e = 1, b = 2 ) ,  setting sins E l/n = 1/6, and 
6sins = 1 arc-minute 

= -13 seconds (D.13) 
Per 

6T 

for the case o f  earth. 
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APPENDIX E 

A POSTERIORI DETERMINATION OF NAVIGATION ACCURACY 

Consider the general navigation equation (4.1) 

including the perturbation corrections Qi. 
equations demand that (E.l) be valid only for the sum of 
observations in the cluster. For each i (E.l) should 
actually give a residue 

The navigation 

with the error element given by (4.10). Sq-uaring (E.2), 
summing over i, and taking a statistical average yields 

Only the first term in (E.3) grows as N the total number of 
observations. Because <6K > goes as l / m  the other terms 
become negligible comparedawith the leading term as N gets 
large. Therefore for large N (E.3) becomes 

N 2  N 1 <pi > = 
i=l i=l 

( E . 4 )  

The navigator then has an operational way to estimate the size 
of his observational noise errors 

where the measured (ma)i and estimated Ka are used in ( E . 5 ) .  

necessary t o  produce the a posteriori error estimate. 
Note that substantially more sums of measured data are 
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