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ABSTRACT

This report discusses the development and use of a digital computer
program for the analysis and design of linear state variable feedback
systems. Because the program is based on the matrix formulation, 1t
retains the generality and flexibility of this approach. The program

has been successfully used on a large number of practical problems.
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I __INTRODUCTION

Although the computations involved in linear state variable design
are algebraic, such calculations can still be laborious 1if the order of
the system is greater than three and/or if the numerical values involved
are not of the simple textbook variety. For this reasomn, it is helpful
to have a digital computer program to reduce or eliminate the computa-
tional load in analyzing and designing state variable feedback systems.
This report presents the development and use of such a program.

Although it is assumed that the reader is familiar with the basic
concepts of the state variable feedback methodsrl]’[zl, the basic matrix
formulation of the problem is presented below in order to acquaint the
reader with the specific formulation which is used here and in the pré-
gram. This presentation has been divided into two parts: the represen-

tation of the open-loop plant and the closed-loop system,

Open-Loop Plant: The nth—order plant is assumed to be represented

in matrix notation as

x(t) = Ax(t) + bu(r) (1)

and
T
y(t) = ¢"x(t) (2)

where x is the state vector, u is the scalar input and y 1s the scalar
*
output. (See Fig. 1) 1In terms of this representation, the open-loop

plant transfer function is given by

s T
Xe) « gs) = cTacadd (3

* 2
It is assumed that if series compensation[ll’[ ] is to be used, it
has already been incorporated into the plant description.
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where ¢(s) is the resolvent matrix given by

#(s) = (sI-a)! (4)

It is also convenient to represent G(s) as a ratio of polynomials in s of

the form

LN m_l
o(e) = N(s) _ n, +1n,8 + + 0.8 )
D(s) d, +d,8+d 52 + ¢+ 4+ d sn—l + sn
1 2 3 n

The basic problem associated with the open-loop plant is the deter-~
mination of the plant transfer function G(s) from the matrix representation.
The use of Eqs. (3) and (4) becomes tedious if the order is greater than
two. Although block diagram manipulations may also be used to find G(s),
this also becomes laborious if there are many internal feedback or feed-
forward loops, as there often are in practical problems. 1In addition to
determining G(s), one may also wish to determine some of the internal
transfer functions xi(s)/u(s).

One might question why G(s) and the internal transfer functions are
necessary if one is simply interested in the design of a closed-loop system.
It is the author's conviction that one cannot intelligently undertake the
design of any closed-loop system without a knowledge of the open-loop trans-
fer function. In addition, the use of internal transfer functions has been

(3]

shown to be a valuable design aid in the design of closed-loop systems.

Closed-Loop System: The closed-loop form for the control input is

given by

u(t) = K[r(t) - kTg(t)] (6)

where r(t) is the reference input, K is the forward path gain of the con-

troller and k is the feedback coefficient vector. (See Fig. 1) In terms of




this controller structure, the matrix representation of the closed-loop

system becomes

(t) = (A-KbkD)x(t) + Kbr(t) )

y(t) = eTx(t) (8)

and the closed-loop transfer function is given by

xgaz - T
(s) Ke 9k(s)§ €))
where
T,-1
% (s) = (sI-A + Kbk') (10)

If we make use of the fictitious Heq(s) representation to find

v(8)/x(s) then

8) . KG(s)
r(s) 1+ KG(s)Heq(u) (11)
where
T
k' ¢(s)b
H (S) - e (12)
eq gT?(s)Ig

As a ratio of polynomials in s, y(s)/r(s) may be written as

y(s) _ KN(s) K(nl + n,s + e+ nmsm_ )

r(s) Dk(s) 8 4 v 4+ ensn—l + 8™

(13)

(e1 + e,

Here use has been made of that fact that the zeros of y(s)/r(s) are identical
to the zeros of G(s).[1] On the other hand, the poles of Heq(s) are equal

to the zeros of G(8) so that Heq(s) becomes

N (s) (hy +hys o+ or + hnsn_l)
H (8) = NGy ™ p—y (14)
q (n1 +n,8 + 0+ ns )

In terms of Heq(s), therefore, y(s)/r(s) may be expressed as




y(s) _ KN(s) /D(s) - KN(s) (15)
r(s) 1+ K[N(s)/D(s)][Nh(s)/N(s)] D(8) + KNh(s)

so that
Dk(s) = D(8) + KNh(s) = (d1 + Khl) + (d2 + Khz)s + - 4+
(16)
+ (dn + l(hﬂ)sn_1 + 8"

The computational problems associated with the closed-loop system may
be divided into two phases: analysis and design., The analysis problem is
to determine y(s)/r(s) for a given plant if K and k are given. This problem
is similar to the open-loop problem, and once again, the use of the matrix
approach, Eqs. (9) and (10), or the block diagram approach, Eq. (11), can
become extremely tedious.

The design problem is associated with the determination of K and k in
order to achieve a desired y(s)/r(s). There are two basic computational
problems related to this design task. First, the closed-loop transfer
function must be found. In this case the task is even more difficult than
in the analysis problem since literal coefficients involving the unknown
values of K and k are involved. Second, once y(8)/r(s) is determined in
terms of K and k, the various coefficients must be equated and the resulting
equations must be solved. Since these equations are, in general, a set of
n simultaneous linear algebra equations, the labor is not trivial.

The purpose of this section has been to introduce the reader to the
notatien and formulation that is used through this report while at the
same time to outline the computational problems associated with the linear
state variable feedback method. The program discussed in this report

eliminates all of the computational problems discussed above and also



provides additional valuable design information. The basic approach of the

program is discussed in the next section.

IT METHOD OF SOLUTION

Two possible solutions of the computational problems of state variable
feedback were discussed briefly in the preceding section: block diagram
[4]

manipulations and the direct matrix approach. Unfortunately neither of
these techniques is well suited to machine computation. The rules of block
diagram manipulation, although well suited to hand calculations, are not easy
to program. Because of this fact, one must normally force the problem to be
formulated in terms of special configurations before results can be obtained.
In addition, both the block diagram and matrix methods necessitate the hand-
ling of polynomials in s whose coefficients, in the case of closed-loop
design problems, may be functions of K and k. Such operations are particu-
larly difficult to treat with a digital computer.

To the credit of the block diagram approach is its close tie with
classical engineering procedures and the attendant engineering intuition
associated with these procedures. The advantage of the matrix technique,
on the other hand, is the generality of its formulation of the problem.

An ideal method of solution might, therefore, incorporate the generality
of the matrix formulation and the significance of the block diagram method
while eliminating the programming problems discussed above.

The method developed in this report, which is referred to as the in-

direct matrix or phase variable approach, does satisfy these requirements

reasonably well. This method is based on the realization that if the plant
i8 represented in phase variables, then both the open- and closed-loop

computational problems listed in the previous section may be solved by




inspection. In order to illustrate this feature, consider the phase variable

(1]

representation of the open-loop plant described by the transfer function
£ Eq. (5)."
of Eq. .
17)
T
y= (gp) §p
where
r oes [ B
0 1 0 0] 0] n,]
0 .
0 0 1 oo 0
n
P P "
AP = b = | i | and cP = (18)
L] . L] . - . . L . . . L . L] L L] ¢ 0
0 .
-dl -d2 —d3 se -d 1 0
b— i b J b -

A comparison of Eq. (5) and Eqs. (17) and (18) reveals that the plant transfer
function may be determined by inspection from the phase variable representation.
In terms of the closed-loop calculations, the task may be similarly
accomplished by inspection. If the closed-loop expression for the control
is given
u(t) = K[x(t) - &P x(0)]
where gp is the feedback coefficient vector in terms of phase variables,

then the system representation becomes

— - - -
0 1 K 0 0
0 0 ces 0 0
P - L+ [ e @9
0
_ Py _ P Ve - P
(d1+Kkl) (d2+Kk2) (dn+Kkn) 1
*
The superscript "p" is used throughout to indicate phase variable
quantities.



and

y(t) = Kln; n, +=+ n_ 0 -« 0]xP(e) (20)

Therefore the closed-loop transfer function is given by

m-1
(8) _ K(n1 + n,s + + n s )

x(s) (d1+Kk§) + (d2+Kkg)s + o0 4+ (dn+1<kg)s°‘1 +8

” (21)

A simple comparison of Eqs. (13) and (21) reveals that the coefficients of

the denominator of y(s)/r(s) may be determined from the simple equation

=d + Kk‘: 1=1,2,...,n (22)

€y
Hence, 1f Ep and K are known, y(s)/r(s) may be determined directly from

Eqs. (21) or (22). Similarly if the di's and e,'s are known then K and

i
Bp may also be obtained directly. In order to make the solution for K
and Ep unique, it 1s assumed that zero steady-state position error is

desired so that K is given by
K=-— (23)

In addition to the above advantages of the phase variable representa-
tion, it is easy to show that Heq(s) is also easily related to the phase
variable elements by the following equation

kP + kPs + --- + KPg™L
1 2 n
-1

m
nl + nzs + + nms

Heq(S) = (24)

The above discussion establishes the fact that the solution of the open-
and closed-loop computational problems become trivial if phase variables

are used. Since transfer function expressions for G(s) and Heq(s) may




also be obtained using the method, the technique retains in part at least
the appeal of the block diagram approach.

However, most plants are not naturally or easily described in phase
variables. In addition, it 1s not recommended that an attempt be made to
use phase variables to representation the plant since this would destroy
the generality of the matrix formulation. Because of these facts, it is
obvious that 1f the phase variable approach is to be used it 1s necessary
to find a technique for transforming the plant to phase variables and
then trausforming the feedback coefficients back to the original systems
of state variables. Fortunately such a procedure exists and is relatively
eagy to program on a digital computer.

Kalman[5] has shown that it is possible to transform any controllable[1]
plant to phase variables by means of a nonsingular linear transformation of
variables of the form

x = PxP (25)
or since P is nonsingular

X = g—lx (26)

~ -

In terms of the transformation matrix P, the elements of the phase variable

representation may be determined from the following equation

AP = plap, pP =2 b ana P =rlc (27)

- -

In addition, the feedback coefficients in phase variable and the original

variables are related by the following expressions

P =pTk  and k= (DN (28)

-~



Therefore once the matrix P 1s known, the complete transformation problem
is solved. ‘

A number of recent articles[6]—tlo] describe a simple algorithm for
determining P if the coefficients of the characteristic polynomial of A,
i.e. the di’s, are known. This algorithm 1indicates that if the vectors pi

are defined by the recursion formula,

p =b
and
n-1i n-i+l
P = Ap + dn—i+1P i=1,2,...,n-1 (29)
then P is given by
121 !
?- [PliP : --.; gn] (30)

This procedure i1s simple and extremely easy to program.
Fortunately, there are a number of simple methods for determining the
coefficients of the characteristic polynomial. Two of these methods were

investigated: the Leverier algorithm[6] [11].

and the principal-minor method
Although the Leverier algorithm is easier to program and uses less computer
storage and time than the principal-minor method, unfortunately it does not,
in general, yield answers which are as accurate as the principal-minor
method., The inaccuracy of the Leverier algorithm i8 a result of the
sequential nature of the algorithm, i.e. each coefficient depends on the
previously computed coefficients. Whenever the values of the coefficients
vary widely, especially if the later coefficients are much smaller than the
earlier ones, round-off error can propogate and cause large errors to arise

in the results. Due to this problem with the Leverier algorithm, the prin-

cipal-minor method was selected for use in the program. The principal-minor

10




method determines the coefficients of the characteristic polynomial of the

matrix A by means of the following expression

a, = D" 7| of the _‘1‘+;) (n-1+1)-order (31)
principal minors of A

Once again, this expression is quite easy to program.

After the di's have been calculated, P can be determined from Eqs. (29)
and (30) and any of the open; or closed-loop analysis or design problems
may be solved by using Eqs. (27) and (28). This procedure has been tested

on a wide variety of problems[3]’[12] with very successful results.

IIT CAPABILITIES

In this section, the general capabilities of the computer program are
presented and compared to the computational problems posed in Section I.
A more detailed discussion of the utilization of the program is presented
in the next two sections which are concerned with the preparation of the
input data and the interpretation of the output results. In addition, an

abbreviated flow chart of the program is contained in Appendix B.

Open-Loop Computations: The basic problem associated with the open-

loop plant is the determination of the open-loop transfer function G(s).
This problem is automatically solved when the plant is transformed into
the phase variable presentation. In addition to determining G(s), the
program factors the numerator and denominator polynomials of G(s) so that
the locations of the open-loop poles and zeros are known.

The program can determine internal transfer functions of the form

x,(8)/u(s) by simply defining a fictitious ¢ matrix. If, for example,



the transfer function xk(s)/u(s) is desired then c is selected with ¢, = 1

k
and cj = 0 for § # k. Any number of these internal transfer functions may
be determined at the same time. However, the ¢ for the actual output y must

always be used last so that the forward gain K is selected properly. The

denominator polynomial of all the transfer functions is always D(s).

Closed-Loop Computations: The program is capable of performing three

types of closed-loop calculations which are indicated by setting the symbol
KEY as 1, 2 or 3 respectively. One of these three computations (KEY = 1)
is for closed-loop analysis while the other two (KEY = 2 and 3) are for
design. Any number of these three types of computations in any combination
may be accomplished at one time.

In the analysis mode, KEY = 1, the program must be given K and k as
input. From this input the program determines the coefficients of the
closed-loop characteristic polynomial, Dk(s), and the numerator of Heq(s)’
Nh(s).* In addition, both Dk(s) and Nh(s) are factored and their roots are
displayed. This mode of operation is perhaps most useful for sensitivity
studies. By varying the values of K and k, it is possible to see the effect
of such changes on y(s)/r(s). One may use this procedure for plotting the
root locus of 1 + KG(s)Heq(s) versus K. In addition, since G(s) and Heq(s)
are known in factored form, the root locus may be easily sketched by hand.

The input for the first of the two design modes, KEY = 2, is the
desired closed-loop characteristic polynomial, Dk(s). From this informa-
tion, the program computes K and k and determines the numerator poly-

nomial of Heq(s). In the second design mode, KEY = 3, the input is

*
The reader will recall that the denominator polynomial of Heq(s) is
equal to the numerator of G(s), i.e. N(s).




the desired closed-loop pole locations and output is again K, k and Heq(s).
As in the analysis mode, the polynomial Dk(s) and Nh(a) are always given
in factored as well as unfactored form.

The reader is reminded that K is alwavs selected so that zero steady-
state error for a step input results. If it is desired that some other
condition be used to select K, then one may always rescale K and E to meet
such a restriction by hand. Suppose, for example, that it is desired that
the d.c. gain be ten rather than one, then one would simply multiply K by
ten and divide k by ten. This procedure leaves the denominator of y(s)/r(s)
unchanged but multipltiplies the numerator by ten as desired.

Which of the two design modes is to be used depends on whether the desired
y(s)/r(s) 1is known in factor or unfactored form. It is the author's opinion
that the second design mode, i.e. y(s)/r(s) given in factored form, 1s the
more useful. Since the inclusion of the first design mode required only a
minor addition to the coding, it is included for added flexibility. A sum-

mary of the three modes of closed-loop calculations is given in Table 1.

Special Computations: In addition to the standard open-~ and closed-

loop computations discussed above, the program also makes two special com-
putations to assist the user in evaluating the applicability and accuracy
of the program.

Since the program involves transforming the plant to phase variables,

[5]

it 1s necessary that the plant be controllable. In addition, the plant
must be controllable before any transfer function techniques can be sensi-
bly utilized. Hence it is important to check the controllability of the

plant to insure that the results obtained are meaningful. Controllability

should be checked even if the physical plant is known to be controllable

13
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TABLE 1

SUMMARY CLOSED-LOOP COMPUTATIONS

KEY TYPE Input Output
1 Analysis K and k Nh(s) and Dk(s)
2 Design Dk(s), unfactored Nh(s), K and k
3 Design Dk(l), factored Nh(s), K and k




since the mathematical modeling, especially if linearization has been
involved, may have destroyed the property.

The easiesat method for determining controllability is the test,
[5]

originally proposed by Kalman » which states that the plant

% = Ax + bu (1)

b] (31)

is nonsingular. Although the application of this test is straight-forward,
the computational labor involved can, once again, become excessive if the
order of the plant is greater than three. On the other hand, it becomes
increasingly important to make the controllability test as the order of
the plant increases since it becomes more difficult to determine controll-
ability by inspection.

The obvious solution to this problem is to include the controllability
test as part of the digital program. The additional coding is very minor,
and by including the test an integral part of the program, one is assured
that controllability is always checked. The controllability test is
applied by finding the determinant* of the controllability matrix yc. If
the dEt(Uc) = 0 then plant is indicated as being uncontrollable (See
Section V); however all computations, both open- and closed-loop continue to
be performed. Extreme caution should be applied in interpreting any
results obtained for an uncontrollable plant.

Even when the det(gc) ¢ O** problems may still arise i1f the matrix ¥

is 1ll-conditioned and therefore difficult to invert. In order to check

*
Both the determinant and inversion subroutines are already required
to determine P and g’l.

hek
Note that the exact value of det(uc) is unimportant since it may be
set at any value by scaling the original plant equations.

15



this possibility, the matrix yc is inverted, as well as possible, by the
numerical inversion subroutine included in the program. If this inverse
matrix M;l 1s multiplied with Mc, the result should be the identity matrix
I. The degree to which this product deviates from I is a measure of the
uncontrollability of the plant. If the maximum value of absolute deviation
is greater than 10—5*, the system 1s identified as being numerically uncon-
trollable. This terminology was chosen to indicate that while the plant is
theoretically controllable, it is uncontrollable in a numerical sense since
Mc cannot be inverted by the program.

Although the numerical controllability of the plant is obviously
dependent on the numerical inversion scheme used, a wide variety of pro-
grams for inversion have been tried with only minor changes in the results.
As in the case of pure uncontrollability, all computations are still com-
pleted, and as before, one must be cautious in using these results. 1In the
numerical uncontrollability however, if the maximum deviation is quite small
but greater than 10_5, then the results may still be completely satisfactory.

In order to assist in determining the validity of the results in the
numerically uncontrollable situation discussed above and to uncover any
other numerical problems that might arise, although none have occurred so
far in numerous examples of order as high as seventh, a double-checking
feature was added to the program. This computational double-check is
based on the fact that Dk(s) may be determined by either of the following

(1]

two expressions.

*
This number was selected somewhat arbitrarily and may be easily
altered 1f desired by the user.




Dk(s) = D(s) + KNh(a) (16)
or

D, () = det(sI-A+Kbk") (32)

The computer program determines Dk(s) by both of these equations, even

when KEY = 2 and Dk(s) is given, and compares the results. A normalized
error is obtained by dividing the difference between the two values of a
coefficient of Dk(s) as determined from Eqs. (16) and (32) by the value of
the coefficient. The maximum, over all of the coefficients of Dk(s), of

the absolute values of this normalized error is printed at the end of each
closed~loop calculation. Because of the dissimilarities of the mathematical
techniques involved in Eqs. (16) and (32), this procedure provides a simple
and yet meaningful check on the accuracy of the results. The program always
lists the coefficients as determined by Eq. (32) since the use of Eq. (16)

may be easily accomplished by hand,

IV INPUT FORMAT

The general input and output formats for the program are discussed in
this and the following section respectively. While reading these sections,
it is suggested that the reader refer often to the specific example problem
presented in Appendix A, especially Tables A-1 and A-2.

A primary consideration in the selection of the input format was to
make thg program as simple as possible to use while still retaining suffi-
cient flexibility. Because of this consideration, the format selected and
described in this section contains more cards than necessary to provide the
program with input data. On the other hand, the input format is easy to remem-
ber since the large majority of the cards have identical forms. In addition,

the input deck is closely related to the matrix formulation of the

17



state variable feedback problem so that it is extremely simple to make
modifications in the problem if desired.

The program can be used to solve more than one problem in a single run
by simply placing the various input decks one after another. In other
words, an input deck is prepared for each problem using the format presented
in this section and these decks are then added together to form a composite
input deck for the program. In addition, it is possible to execute a number
of open- and closed-loop calculations as part of one basic problem as long
as the plant is not changed.

The operation of the program (See Appendix B) is divided into three
phases: 1) basic, 2) open-loop and 3) closed-loop. During the basic
phase, the A and b matrices are read and controllability is checked. The
open-loop phase consists of the open-loop computations discussed in the
previous sections and include the determination of D(s), P and N(s). The
closed-loop phase varys depending on which types of closed-loop calculations
are desired. In addition, the double check on accuracy is made during the
closed-loop phase of operation.

The input and output formats fall into three similar divisions. Because
of this fact and in order to simplify the treatment, the discussion of the
input and output formats is divided along these same lines.

Basic Input: The input for the basic phase of the programs consists of
a set of cards which specify the elements of A and b. 1In addition, a card
is included which gives problem identification information for easy referenc-
ing of the problem and the order of the plant,n. These cards are included
for all problems independent of what open- or closed-loop computations are
to be made. A detailed description of the preparation of the basic input

cards is shown in Table 2.

18




TABLE 2

CARD DESCRIPTION FOR BASIC INPUT

Card Column Description Format(l)
No. Nos. type
1 1-20 | Problem identification (any alpha- 4A5,12

numeric characters) to be printed
out for reference.

21-22 |n = order of the plant, an interger-
right justified in the field.(2)

2 1-10 |ay, 8E10.0
11-20 a12
ete see

(3)

3 1-10 |ay, 8E10.0
11-20 |a,
etc [ .-

a2 1-10 | b, 8E10.0
11-20 |b,
etc as e

Notes: 1) The format type is listed for those readers familiar with FORTRAN
2) At present, n must be < 10, however, this number may be easily
increased by altering the dimension statements
3) Cards numbers are correct if n < 8, see text

19



Note that the elements of A are read one row at a time so that numbers
appear much as they do in the original array. The numbers are placed in
ten column fields in floating point format. If the order of the plant, n,
is greater than eight, the elements continue on the next card. The elements
of the next row, however, start on a new card. If n < 8, there are n + 2
cards in the basic input as shown in Table 2 while if 9 < n < 16, there are
2n + 3 cards and so forth. Note that elements of the control vector, b, are
read in column form in order to minimize the number of input cards. All
vectors, viz. b, ¢ and k, are read in the same manner.

Open-Loop Input: The input for the open-loop phase consists solely of

¢ matrices which specify for which transfer functions the numerator poly-
nomials are desired. The reader should recall that fictitious ¢ matrices
may be used to obtain internal transfer functions. The elements of each ¢
matrix are placed on one or more cards, depending on the value of n, in the
game manner as b, i.e. ¢y in column 1-10, ¢, in column 11-20, and so forth.
(See Table 3) Any number of ¢ matrices can be included in any order as long
as two simple rules are followed.

First, the last ¢ matrix must be completely zero, i.e. ¢ = 0; this ¢
matrix of zeros is used only to signal the end of the open-loop calculations
and no computationsare made with it. Setting c equal to zero may be easily
accomplished by placing one or more blank cards in the deck depending on the
value of n.* The second rule is that the c matrix for the real, physical
output must always appear just before the blank ¢ matrix. This last rule

is necessary in order that K be computed properly for zero steady state

position error.

*
For n < 8, one card is used; for 9 < n < 16, two cards are used and
so forth.




TABLE 3

CARD DESCRIPTION FOR THE OPEN-LOOP INPUT
(NOL = number of open-loop calculations desired)

Card Column Description Format
No. Nos. type
1 1-10 ci = firgt element of the first 8E10,0

fictitious ¢ matrix

11-20 c; = gecond element of the first
fictitious ¢ matrix

ete vee

e « s o s o o o - Similarly for each remaining fictitious c matrices

nor (1)

1-10 | ¢, = first element of the real ¢ | smo.0
matrix
11-20 <,
etc oo e
wor+1 (1) 1-80 | BLANK caro(s)?

Notes: 1) NOL for n < 8, 2NOL for 9 < n < 16, etc
2) One blank card for n < 8, two cards for 9 < n < 16, etc
3) The real c matrix always be included just before the blank
card(s)

21



Closed-Loop Input: Each closed-loop calculation is represented by a

set of two or more cards whose format depends on which of the three types
of closed-loop calculations is desired. (See Tables 4, 5 and 6) These
sets, one for each calculation, in any order and of any number, are combined
to form the input for the closed-loop phase of the program. For example,
if one wished to make three analysis mode (KEY = 1) and two second design
mode (KEY = 3) calculations, then he would make up five sets of cards, one
for each calculation, using the format appropriate for each calculation.
These cards would then be combined by placing the three sets of the analyz-
ing calculations first, the two design sets first, or the analysis and
design sets could be intermixed in any order as long as the individual sets
mmalined together as units.

Note that the first card in the format for each type of closed-loop
calculation has only one number which is punched in the first column to give
the value of KEY. The remaining cards in each set depend on the input that
is required for the desired type of calculation.

A single blank card is placed in the input deck after the desired closed-
loop calculation sets to signal the end of fhe closed-loop input. When this
blank card is read, the program finds that the value of KEY is zero and
returns to the basic input éection to find if another problem remains to be
solved. The program is stopped by the end-of-file indicator. Even if no
closed-loop calculations are desired, this blank card must still be included.
In this case, there are two or more blank cards at the end of the input
deck since one or more blank cards appear at the end of the open loop
input.

In this section, the method of preparing the input deck for state

variable feedback program has been discussed in detail. Appendix A contains
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TABLE 4

CARD DESCRIPTION FOR THE CLOSED-LOOP INPUT-ANALYSIS MODEL

(KEY = 1)

Card Column Description Format
No. Nos. type
1 1 KEY = 1 II
2 1-10 K = Forward path gain E10.0
3 1-10 kl 8E10.0
11-20 k2
etc s

TABLE 5
CARD DESCRIPTION FOR THE CLOSED-LOOP INPUT - FIRST DESIGN MODE
(KEY = 2)
Card Column Description Format
No. Nos. type
1 1 KEY = 2 11
2 1-10 e 8E10.0
11-20 e,
etc(l) vee
Note: 1) The coefficient, egy; of s" 1is always assumed to be one and 1is

not included on the input cards.
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TABLE 6

CARD DESCRIPTION FOR THE CLOSED-LOOP INPUT-SECOND DESIGN MODE

(KEY = 3)

Card Column Description Format
No. Nos. type
1 1 KEY = 3 II
2 1-10 real part of the first pole of the 2E10.0

desired y(s)/r(s){(1)

11-20 imaginary part of the first pole of
the desired y(s)/r(s)

3 1-10 real part of the second pole of the 2E10.0
desired y(s)/r(s)

11-20 imaginary part of the second pole of
the desired y(s)/r(s)

ete LY LY

Note: 1) The pole locations have positive signs 1f they are in the left
half of the s-plane. Only one card is needed for each complex
conjugate pair; the program automatically supplies the complex
conjugate.




an example illustrating the preparation of the input deck for a specific

problem.

V_OUTPUT INTERPRETATION

Although the output of the program is almost self-explanatory, a few
comments may be desirable to avoid any confusion in interpreting the re-
sults. The output format is divided into the same three phases as the
input, viz. basic, open-loop and closed-loop. The reader is urged to refer
to the specific example discussed in Appendix A especially Table A-2

while reading this section.

Basic Qutput: The basic output 18 composed, in the main, of simply
a print-out of the information contained in the basic input, i.e. the
alphanumeric problem identification, and the A and b matrices. The elements
of A are listed one row per line as they would normally appear in writing A.
The elements of b are also printed on one line as they would appear if one
were writing bT. This material is provided solely as reference information
for the user since no new results are included. For most problems, these
items are the entire basic output. However, for problems which are either
uncontrollable or numerically uncontrollable,* an additional item is added
to the basic output in order to indicate this complication. The reader
should remember that even if the plant is found to be uncontrollable that
all open- and closed-loop calculations are still performed. 1In the case of
numerical uncontrollability, the maximum deviation of the matrix Mcuc-l from

the identity matrix is also listed for the information of the user.

Open-Loop Output: The open-loop output is composed of the denominator

of the plant transfer function, D(s), and the various numerator polynomials

*
See Section III for a definition of numerical uncontrollability.
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associated with the plant transfer function and any internal transfer func-
tions desired. The coefficients of D(s), as well as those of all other

polynomials, are listed with the coefficient of the constant term first.

In addition to the coefficients of D(s), the factors of D(s) are also listed.
The various numerator coefficients are identified by printing the ¢
matrix assoclated with each. Once again the elements of ¢ are printed as
T

one would write the elements of ¢'. Each numerator polynomial 1s listed in

its factored as well as 1its unfactored form.

Closed-Loop Output: The output of the closed-loop phase of the program

has exactly the same form for each of the three possible types of closed-loop
calculations. The first item in the closed-loop output, however, is the value
of KEY which identifies the type of computation performed. The next four items
in the output are the numerator polynomial of Heq(s), Nh(s), the feedback
coefficlents, k, the gain K, and the denominator of y(s)/r(s), Dk(s). Both
Nh(s) and Dk(s) are given in both factored and unfactored form. Once again

the coefficient of s° is 1isted first. The vector k is listed in transposed
form with kl as the first element.

The last item in the closed-loop output is the value of the maximum
normalized error.* The reader will remember that this number is an indica-
tion of the numerical accuracy of the program and is obtained by comparing
the matrix and transfer function methods for finding Dk(s). If more than one
closed-loop computation has been requested, then the output discussed is

listed for each computation.

*
See Section III for a complete discussion.




CONCLUSIONS

This report contains the description of a digital program which per-
forms most of the analysis and design calculations associated with the
state variable feedback method. The program, which uses the matrix form-
ulation of the state variable feedback problem, is based on the simpli-
fications achieved by transforming the plant to phase variables. The use
of the matrix formulation provides complete flexibility in the type of
problems which the program can solve. On the other hand, most of the
program results are stated in terms of transfer functions so that the
great wealth of classical control theory may also be applied to the problem.

By eliminating the computational labor associated with the state
variable feedback method, the program takes the state variable feedback
method out of the textbook and makes it available as a powerful tool to
the practicing engineer. The program has been employed by the author and
numerous other people to solve a wide variety of practical problems. To

date, no difficulties have been encountered in the operation of the program.
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APPENDIX A - EXAMPLE PROBLEM

This appendix discusses the application of the state variable feedback

* program to a simple, but not trivial, third-order example. This example is
presented in order to clarify the details of preparing the input deck for

and interpreting the print-out of the program. It is suggested that the
reader refer often to the main bedy of the report while reading this appendix

in order to achieve maximum understanding.

The state variable representation of the plant for the example is given

by
-1.0 1.0 0 0
k= 0 0 1.0 x+ 0 u (A-1)
0 -3.0 0 1.0
y=[1.0 1.0 0]x (A-2)

The block diagram of the plant is shown in Fig. A-1. From this information
it is possible to prepare the basic input portion of the input deck. (See
Table A-1) This information must be provided no matter what open~ or closed-
loop calculations are to be performed.

In terms of open-loop calculations, it is desired to obtain the internal
transfer functions xl(s)/u(s), xz(s)/u(s) and x3(s)/u(s) in addition to the
plant transfer function y(s)/u(s). Therefore it is necessary to form three
fictitious ¢ matrices which may be used to find these internal transfer
functions. These c matrices are given by

¢! = col (1.0, 0, 0)
92 = col (0, 1.0, 0)

93 = col (0, 0, 1.0)



s+l

Fig. A-I Block Diagram of the Plant
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and the open-loop input takes the form shown in Table A-1. Note that the
real ¢ matrix, ¢ = col (1.0, 1.0, 0), is placed just before the blank card
indicating the end of the open-loop input.

In a practical problem, one would normally run the program one time
with no closed-loop calculations, i.e. only a blank card for the closed-
loop input, in order to have the open-loop information available for the
specification of y(s)/r(s). For the sake of illustration, it is assumed
that this open-loop information has been obtained and that the desired

y(8)/r(s) has been chosen to be

y(s) _ 2(s+2) o —_2(s+2)
r(s) [(s+1)2+12](|+2) (s3+492+6s+4)

Since Dk(s) is known in both factored and unfactored form, either of the
closed-loop design modes could be used to find K and k. In order to illus-
trate the preparation of the input deck, both of the design modes are used.

In addition, the closed-loop analysis mode is utilized by letting

K=2.0 and k = c0l(0.5, 0, 1.5)
These values for K and k are selected, with the advantage of foresight, so
that they yield the desired y(s)/r(s). The complete input deck is shown in
Table A-1.

This problem is obviously somewhat artificial since both of the design
modes are used when only one 1s necessary and the analysis mode is being
run at the same time., The use of all three of the closed-loop modes is
strictly for illustrative purposes and should not be construed as typical
utilization of the program.

The complete output for this problem is shown in Table A-2. Since

there is no indication of uncontrollability in the basic output, it can
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TABLE A-2

PROGRAM OUTPUT
(see attached sheets)
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PROBLEM IDENT.

THE A MATRIX
-1.0000000E 00 1.0000000E 00 0.0000000E 00
0.0000000E 00 0.0000000E 00 1.0000000E 00
0.0000000E 00 -3.0000000E 00 0.0000000E 00
THE B MATRIX
0.0000000E 00 0.0000000E 00 1.0000000E 00

Fedde g vk v o s ok ok e e sk e v v 2k vk e ok vk e vk e e e o gk e e ok vk e ek e ok ek ek ke ek ok

OPEN-LOOP CALCULATIONS

DENOMINATOR COEFFICIENTS

3.0000000E 00 3.0000000E 00 1.0000000E 00 1.0000000E 00
THE ROOTS ARE REAL PART IMAGINARY PART
~0.0000000E 00 -1.7320508E 00
-0.0000000E 00 1.7320508E 00
-1.0000000E 00 0.0000000E 00

THE C MATRIX  kkik
1.0000000E 00 0.0000000E 00 0.0000000E 00
NUMERATOR COEFFICIENTS

1.0000000E 00

THE C MATRIX  ®kk#k
0.0000000E 00 1.0000000E 00 0.0000000E 00

NUMERATOR COEFFICIENTS

1.0000000E 00 1.0000000E 00
THE ROOTS ARE REAL PART IMAGINARY PART
-1.0000000E 00 0.0000000E 00

THE C MATRIX  *¥&kxX
0.0000000E 00 0.0000000E 00 1.0000000E 00

NUMERATOR COEFFICIENTS

0.0000000E 00 1.0000000E 00 1.0000000E 00
THE ROOTS ARE REAL PART IMAGINARY PART
-1.0000000E 00 0.0000000E 00
0.0000000E 00 0.0000000E 00

3k




THE C MATRIX  ®*&#&*

1.0000000E 00 1.0000000E 00
NUMERATOR COEFFICIENTS

2.0000000E 00 1.0000000E 00

THE ROOTS ARE REAL PART
-2.0000000E 00

Fe ek sk v o o e v vk oo e e v e ok e ok ok ok v ok ok ok vk ke ok o o e ok o ok ok e e ok e e e ik
CLOSED-LOOP CALCULATIONS
KEY = 1 kok Rk
THE NUMERATOR OF H-EQUIVALENT
5.0000000E-01 1.50000000E 00
THE ROOTS ARE REAL PART
-5.0000000E-01
-5.0000000E~01
THE FEEDBACK COEFFICIENTS
5.0000000E-01 0.0000000E 00
THE GAIN = 2.0000000E 00
THE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL
3.9999999E 00 6.0000000E 00
THE ROOTS ARE REAL PART
-1,0000000E 00
-1,0000000E 00
~1.9999999E 00

MAXTIMUM NORMALIZED ERROR = 2.50E-08

KEY = 2  %kkkk
THE NUMERATOR OF H-EQUIVALENT
5.0000002E-01 1.50000000E 00
THE ROOTS ARE REAL PART
-5,0000000E-01

-5.0000000E~01
THE FEEDBACK COEFFICIENTS

5.0000002E-01 0.0000000E 00

THE GAIN = 1.9999999E 00

0.0000000E 00

IMAGINARY PART
0.0000000E 00

1.50000000E 00
IMAGINARY PART

-2.8867512E~01
2.8867512E-01

1.50000000E 00

4.0000000E 00 1.0000000E

IMAGINARY PART
~1.0000000E 00
1.0000000E 00
0.0000000E 00

1.50000000E 00
IMAGINARY PART

-2.8867514E-01
2.8867514E-01

1.50000000E 00

00
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THE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL

3.9999999E 00 6.0000000E 00 4.0000000E 00 1.0000000E 00
THE ROOTS ARE REAL PART IMAGINARY PART
~1.0000000E 00 ~1.0000000E 00
~1.0000000E 00 1.0000000E 00
~1.9999999E 00 0.0000000E 00

MAXTMUM NORMALIZED ERROR = 5.00E-08

KEY = 3  hkkdk

THE NUMERATOR OF H-EQUIVALENT

5.0000002E~-01 1.5000000E 00 1.5000000E 00
THE ROOTS ARE REAL PART IMAGINARY PART
~5.0000000E-01 -2.8867514E-01
~5.0000000E-01 2.8867514E-01

THE FEEDBACK COEFFICIENTS
5.0000002E~-01 0.0000000E 00 1.5000000E 00
THE GAIN = 1.9999999E 00

THE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL

3.9999999E 00 6.0000000E 00 4.0000000E 00 1.0000000E 00
THE ROOTS ARE REAL PART IMAGINARY PART
-1.0000000E 00 -1.0000000E 00
-1.0000000E 00 1.0000000E 00
-1.9999999E 0O 0.0000000E 00

MAXTMUM NORMALIZED ERROR = 5.00E-08




be safely assumed that the plant is controllable and therefore the use of
the program is justified. The open-loop portion of the output provides all

of the desired open-loop transfer function. The plant transfer is seen to
be

s+2 s+2

83+82+3S+3 [sz+(/§)2](s+l)

G(s) =

while the internal transfer function, x3(s)/u(s), for example is

x3(S)

u(d)  34e%43s43 (64D

sz+s 8

The closed-loop output of the two design modes (KEY = 2 and 3) indicates

that the K and k necessary to produce the desired y(8)/r(8) are

K= 2.0 and k = col(0.5, 0, 1.5)
The output of the analysis mode, on the other hand, confirms that these values
for X and k do, in fact, provide the desired results. The maximum normalized
error for each of the design mode is extremely small indicating that the

accuracy of the results are acceptable.
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APPENDIX B

FLOW CHARTS OF THE PROGRAM OPERATION

This appendix contains three flow charts which illustrate the operation
of the program for each of its three phases: basic, open-loop and closed-
loop. No attempt has been made to make these flow charts contain every
detail of the program. However, it is hoped that these flow charts with the
complete listing given in Appendix C will enable the interested reader to

understand the operation of the program.




PLANT IS

UNCONTROLL-
ABLE

PLANT IS
NUMERICALLY

UNCONTROLL -
ABLE

Fig. B-l Flow Chart for the Basic Phase
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PRINT

CALC
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PRINT
@

Fig. B-2 Flow Chart for the Open-Loop Phase
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D(s)

[

CALC.

Ak, Dk(s)

K

CHECK
ACCURACY,
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Fig. B-3 Flow Chart for the Closed-Loop Phase
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APPENDIX C

PROGRAM LISTING




STATEVARFDBK
DIMENSION A(10+10)9B(10)9oH(10)+Cl10)sNAME(4) sAA(10+10)9E(10)
DIMENSION D(10)sP(105101»CCL10) sMH(10) sPIN{10s10)2U(10)9sVI(10)
2000 FOR“AI (QSHO (I 2 221 2223222222212 E L2 LR ZNNY 2 )
2001 FORMAT (4A5912)
2002 FORMAT(B8E1Qe0)
2003 FORMAT (1H1»5X9s14HPROBLEM IDENTe +5Xs4AS5)
2004 FORMAT(1HO+5X912HTHE A MATRIX/)
2005 FORMAT(1P6E20.7)
2006 FORMAT(1HO¢5X9s12HTHE B MATRIX/)
2007 FORMAT{1HO 95X s41HTHE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL/)
2008 FORMAT(1HO+5X925HTHE FEEDBACK COEFFICIENTS/)
2009 FORMAT(1MHOs5X910HTHE GAIN =1PE16.7)
2010 FORMAT(1HO¢5X912HTHE C MATRIXoSX oSH#NNNS/ )
2011 FORMAT(1HO95X926HDEMONINATOR COEFFICIENTS/)
2012 FORMAT (1HO¢5X s 22HNUMERATOR COEFFICIENTS/)
2013 FORMAT(1HOs5X¢s29HTHE NUMERATOR OF M~EQUIVALENT/)
2014 FORMAT({1HO+s5X922HOPEN~LOOP CALCULAT IDNS)
2015 FORMAT(1HOs5X 926 HMAXIMUM NORMALIZED ERROR = 1PE10+2/)
2016 FORMAT(11)
2017 FORMAT(1HO+5X 924 HCLOSED=LOOP CALCULATIONS)
2018 FORMAT(1HOsSXs6HKEY 3 193X S5HERSRR)
2019 FORMAT(1HOe5Xs 23HPLANT 1S UNCONTROLLABLESX s JOH®® %304
2020 FORMAT({1HOsaXs 35HPLANT IS NUMERICALLY UNCONTROLLABLE1OX
1 16HMAXe DEVIATION = 1PE1042¢5X o JOH#RR%ERERRRR)
2021 FORMAT(1HO95X914HTHE ROOTS ARE +13Xs9HREAL PART 10X 914HIMAGINARY P
1ART)
2022 FORMAT (25X ¢1P2E2047)
2023 FORMAT(1HO)
READ INPUT DATA
1 READ 20019109 (NAME(I)9I=194) 0N
PRINT 2003 (NAME(1)sl=104)
PRINT 2004
DO 2 I=] N
READ 20029 (Al14J)eJ=1eN)
2 PRINT 2005+(A(IsJ)eJd=1eN)
PRINT 2006
READ 2002+(B(1)sl=1eN)
PRINT 2005¢(B(I)sI=1sN)
NKEY=0
CHECK CONTROLLABILITY
DO 7 1=]1sN
T AA(T+1)eB( 1)
DO 8 I=24N
Lz]-1
DO 8 J=1,N
AA(Je1)=0,
00 8 K=] N
8 AA(Jel)=AALJs I )+A(JIK)HAA(K 4L}
CONTR=DET(AAN)
IF{CONTR) 39443
&4 PRINT 2019 :

k3



43

46

45
44

47

11

12
T2

70
71

49

13

100

Lk

GO 10 9

CALL SIMEQLAAICoNsPINC)
DO 43 1=14N

DO 43 J=1sN

P(1eJ)=0oe

DO 43 K=1leN
Plle)=P (T oJ)+AA(]T+KI#PINIK 4 J)
ERROR=0,o

DO A4 I=19N

DO &4 J=lN

IF(l=d) 45446945

ERR = ABSF(P(IeJ)~1e0)
GO TO 44

ERR = ABSF(P(l:+J))
ERROR = MAXF(ERRsERROR)
IF(ERROR=1¢E=~5) 9047947
PRINT 2020+ERROR
OPEN-LOOP CALCULATIONS
PRINT 2000

PRINT 2014

NN=N+1

PRINT 2011

CALL CHREQ(ANyD)

PRINT 2005, (D(I1)sI=]1sNN)
CALL PROOT(NsDoUsVe+]l)
PRINT 2021

PRINT 2022+(U(I)eVII)sIz1leN)
DO11 I=1N

P(IsN)=BI(1])

DO12JJ=2N

D012 I=1sN

JuN=-JJ+]

KnJj+]

P(leJ)=D(K)*B(I])

D012 L=1N
Pllsd)=sP{IoJ)+A(IoL)®P (LK)
READ 2002+(Cl1)esI=10oN)
DO 70 I=14N

IF(CILIYTY T1s70,71
CONTINUE

GO TO 104

PRINT 2023

PRINT 2010

PRINT 20055 (ClI)el=]1eN)
DO13 I=1¢N

CCl1)=0,

D013 J=1N
CCII=P(Je 1) EC(J)+CCHLT)
DO 100 1I=1eN

M=NN~-1

IF(CCtM) 110141005101
CONT INUE




101

103

105
104
40
120
121
21

41

42

22
23

3

3
30

35
50

20
25
19

18

PRINT 2012

PRINT 2005, (CC(I)sI=) M)
MsM-1

IF(M) 105+105,103

CALL PROOT{MeCColUsVe+l)
PRINT 2021

PRINT 20220 (UlTI)eV(1)sIn]leM)
GO TO 72

CLOSED=-LOOP CALCULATIONS
READ 2016+ KEY

1IF (KEY) 4041940
IF(NKEY) 12051200121
NKEY=]

PRINT 2000

PRINT 2017

PRINTY 2018+KEY

GO TO (21+2022)sKEY
READ 2002+GAIN

READ 20029 (HH(I)»I=1oN)
DO 41 I=1N

H{I)=0,

D0 Al J=19N
HEI)=M{TI+P(Jo 1 ¥ #HN(DY
DO 42 I=1sN

DO 42 J=1sN
AA(SoJ)sA(]eJ)=GAIN®B(1)®HN(J)
CALL CHREQ(AAsNSE)

GO TO 24

DO 23 I=1+N

DO 23 J=)lsN

AA(19J)20,

120

Is]el

READ 2002+RReRI

IF(RI) 30931430
AA(1o1)==RR

GO TO 35

AA(1+1)==RR

Julel

AA(]1¢J)==R]

AA(Je1)=RI

I=J

AA(1s]1)==RR

IF{1-N) 34950050

CALL CHREQU(AASNE)

GO TO 25

READ 2002+ (E(I)el=1sN)
DO19 1=1eN
H(I)=EL(1)~DI(1)

CALL SIMEQ(PsCoNsPINSC)
D016 1=1N

HH{])Y=0,
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26
24

17

106
10

1002
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D016 J=1eN
HH(I)sHH(TI+PIN(J 1) RKH(J)
DO 5 I=1eN

DO S J=1N
AA(ToJ) oAl od)~B(I)#HH(J)
CALL CHREQUAANIE)

GAIN =E(1)/CCl(1)

D026 I=1e¢N

HHC I =HM (1) /GAIN
H(I)¥=H(1)/GAIN

PRINT 2013

PRINT 20054(H(1)sI=]leN)
NlsN-1

CALL PROOT(NIsHoUsVse+]l)
PRINT 2021

PRINT 2022+1U(1)eVIiI)eI=1sN1)
PRINT 2008

PRINT 20059 (HH(]I)sI=]1sN)
PRINT 2009¢GAIN

PRINT 2007

PRINT 2005+(E(1)elI=]1sNN)
CALL PROOT{NsEsUeVe+]l)
PRINT 2021

PRINT 2022+(U(1)eV(TI)el=1N)
CHECK ACCURACY

ERROR =0,

0O 6 I=1eN
ERR=(E(1)~GAIN®H(1)-D(1})/E(])
ERR= ABSF(ERR}

ERROR=MAXF (ERROR+ERR)
PRINT 2015+ERROR

GO TO 104

STOP

END

SUBROUTINEPROOT (NsAsUsVeIR)
SUBROUTINEPROOT(NsAsUsVsIR)
DIMENSION A(20)sU(20)sV(20)o#(21)9B(21)+C(21)
IREV=IR

NC=N+1

DO 1=14¢NC

H{1)sA(])

P'o.

Q=0,

R'o.

IFIHt1))Ae204

NC=NC=~]1

V(NC)=0,

UINC)=0,

D010021=] ¢+NC

HiI)=H(1+])

GOT03
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11
12
13
15

16
19

20

21

24
22

23
30
37
31
32

33
34

35

IFINC=1)5¢100+5
IFINC=2)T9697
Re=pH(1)/HL2)
GOTOS0
IFINC=3)9+8+9
PaHIZ2)/HI3)
Q=H(1) /H(3)
GOTO70

IFCABSFIHINC~1)/H(NC) )=ABSF(H(2)/H(1)))10+19+19

IREV==]REV

MaNC/2

D0111=1eM

NL=NCel -1

FsM(NL)

HI(NL)sH{T)

H(L)=F

IF(G)113512013

P'OQ

GOTO1S

PsP/Q

Q=1,/Q

IFIR)16+19416

R-l.lR

E=B,E~-10

BI{NC)Y=H(INC)

CINC)=H{INC)

3!“(*1)‘0.

CI(NC+1)=0,

NPsNC~1

DOA9J=] 41000

D02111=1 NP

1=NC~11

BlI)=HII)+R*B(]+])
CtI)=B(l)+REC(]I+1)
IFIABSFIBIY)/HI1))=E)B0+50+24
IF(C(2))23922423

R-RQIQ

GOT030

RaR-B{})/C(2)

O03711=) oNP

I=NC-11.
BlI)=N(1)1~PRB(I+1)~QRB(]+2)
Cltl)=B(1)~PHC{I+1)-Q®C(1+2)
TF{H{2)132+31032
IF(ABSF(B(2)/8(1))1~E)33933:34
IF(ABSF(BI2)1/H(2))~E)33033:34
IF(ABSF{B(1)/H(1)1<E1T70s70s34
CBAR=C(2)~B(2)
D=C(3)0#22=-CBAR#C (&)
I1F(D)36435436

PxpP~2,

Q=Q+ (Qel,)

u7
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49

50

51
52
53
54
70

71

72
73
T4

75

76
T7

100

20

48

GOT049
P=P4+(BL2)#C(3)~-Bl1)1%Cl4))/D
Q=Q+(~B(2)%RCBAR+B(1)2#C(3))/D
CONTINUE

E=E*#10,

GOT020

NC=NC~1

VI(NC)=0,
IF(IREV)IS1e52¢52
UINCI=1,/R

60T053

UINC)=R

DOS41=1 ¢NC
H(l)=B(]+]1)

GOTOA

NC=NC~=2
IFCIREV)IT1e72+72
QP=14/Q
PP=P/{(Q#2,0)
GOTO73

QP =Q

PP=P /2,0
F=(PP)%22-QP
IFLF)Tas 75075
U(NC+1)=~-PP
UINC)=~-PP ,
VINC+1)=SQRTF (~F)
VINC)I=~=V{NC+1)
GOTO076
U(NC+1)s=(PP/ABSF (PP ) )% (ABSF(PP)+SQRTF(F))
VINC+1)=0,
UINCI=QP /U(NC+1}
VINCY=O0,
DO771I=1sNC
H(1)=B(1+2)

GOTO4

RETURN

END

SUBROUTINE CHREQ(AsNC)
SUBROUTINE CHREQ(AIN.C)

DIMENSION J(11)sC(11)+8(10s120)¢A(10+10}+D(300)

NN=N+1

D020 Is=)sNN
CI(NN) = 1.
D014 M=1N
K=0

L=1

Jil1=]1

GO TO 2
JiLy=J(L )+l




2 TF{L-M) 345,50

3 MMaM~-1
DO & I=L oMM
11=1+1

4 JUII1=J(1})+]

S CALL FORM{JsMsA,B)
K=K+l
DIK)=DET(BoM)
DO 6 I=1eM
LaM=1+]
IFCJIL)=-{N=M+L)) 196050

6 CONTINUE
Ml = N-M+)
DOl14 I=1eK

14 CUMII=CIMLI4DIT IR (=1,)08M
RETURN

50 PRINT 2000

2000 FORMAT (1HO»5Xe14HERROR IN CHREQ)

RETURN
END

FUNCTION DET DETERMINES THE DETERMINATE OF THE MATRIX 'A?
FUNCTION DET(AWN)
DIMENSION A(10+10)¢8(10+10)
DO 1 IKX=}leN
DO 1 JK=1»N
1 B(IR9JK) = A(IK9JIK)

NN = N~}

D = 1.0

D0 100 L=l NN

LL = L}

AMAX = AlLsL)

IM = L

JM = L

00O 15 I=LsN

DO 15 J=lL N

IF (AMAX~ABSF(A(LeJ))) 10015918
10 IM = |

M = )

AMAX = ABSF(ALL9J))
15 CONTINUE

IF(IM=L) 16420416
16 DO 17 J=1sN

T o A(IMyI)

AtIMeJ) = AlLsJ)
17 AlLoed) = T

D = =
20 IF(UM=L) 21425421
21 DO 22 1s1sN

T o A(leJM)

Al(T+JM) = A(IsL)
22 AtleLY = T

49



25
30

50
100

200

O o~ W "0

D = =D

DO 30 KXl=LL N

AtLoK1) = A(LIKLII/ZA(L LY}
DO 50 J=LLeN

00 S0 KzLLeN

AlJoK) = A(JoK)=AlJoLI®RALLK)
CONTINUE

DO 200 I=1,N

D = DEA(I+1)

DET = D

DO 2 1X=1sN

DO 2 JK=]1+N

A(IKeJKY) = BlIK9JK)
RETURN

END

SUBROUTINE FORM(JsMeAsB)
SUBROUTINE - FORM(JeMsA98)
DIMENSION A(10510)9B(10510)9J(11)
DOl I=1.M

DOl K=1loM

NR=J (1)

NC=J (K)

B(IsK)=A{NRNC)

RE TURN

END

SUBROUTINE SIMEQ

SUBROUTINE SIMEQ (AsXDOTesKCsAINVeX)
DIMENSION A(10610)¢8(10010)+XDOT(10)sX(10)9AINV(10+10)
D01 I=1,yKC

D01 J=19KC

AINV(IeJ)=0

BlleJ)=AllosJ)

D02 1=14KC

AINV(I,1)=]

X({1)=xXDOT(1}

D03 I=1,4KC

comMp=0

K=]
IF(ABSF(B(Kos1))~ABSF(COMP) )ISs5+4
COMP=B (K1)

Ne=K

K=K+]

IFIK=KC)6+697

IF(BI(Ns1))Bes51+8

IF(N-1)15191299

D010 M=} ¢KC

TEMP=B {1 oM)

BtIoM)=B(NM)

B(NsM)=TEMP

TEMP=AINV ]I M)
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12

13

14

15

17
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AINV(1oM)=AINVINsM)
AINV(NsM)=TEMP

TEMP=X(1)

X{I)y=X{(N)

X{N)=sTEMP
X{I1)=Xt1)/8(1s1)

TEMP = B(Is1)

D013 M=]¢KC

AINVIIsM) = AINV(IsM)/TEMP
BUIsM) = Bl1eM)/TEMP
D016 J=1KC
1IF(U-1)14+16914
IF(BL{Je1))15016015
X{JY=XtJ)=BlJIs I I¥X(1)
TEMP=B(Js1)

D017 N=1sKC
AINVIJoN)=AINV(JsN) ~TEMPRAINV(T oN)
BlJsN)=B(JsN)~TEMP*B(I N}
CONT INUE

CONT INUE

RETURN

PRINTS52+1+KC

FORMAT( 18HO ERROR IN COLUMN 12+2Xs9HOF MATRIX +5Xe3HKC=12/7)

RETURN
END

NASA-Langley, 1967 — 10 CR-850
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