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ABSTRACT 

This report  d i scusses  the  development and use of a d i g i t a l  computer 

program fo r  t he  ana lys i s  and design of l i n e a r  s ta te  v a r i a b l e  feedback 

systems. 

r e t a i n s  the gene ra l i t y  and f l e x i b i l i t y  of t h i s  approach. The program 

has been successfu l ly  used on a l a r g e  number of  p r a c t i c a l  problems. 

Because the  program is based on the  matr ix  formulation, i t  
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I INTRODUCTION 

Although the  computations involved i n  l i n e a r  state v a r i a b l e  design 

are a lgeb ra i c ,  such ca lcu la t ions  can s t i l l  be laborious i f  t he  order  of 

t h e  system is g rea t e r  than th ree  and/or i f  the  numerical values involved 

are not  of the  simple textbook va r i e ty .  

t o  have a d i g i t a l  computer program t o  reduce o r  e l imina te  the  computa- 

t i o n a l  load i n  analyzing and designing state v a r i a b l e  feedback sys t e m s .  

This r e p o r t  p resents  t he  development and use of such a program. 

Although i t  is  assumed t h a t  the reader is f ami l i a r  with the  b a s i c  

For t h i s  reason, i t  is  h e l p f u l  

concepts of the state va r i ab le  feedback methods 

formulation of t he  problem is presented below i n  order  t o  acquaint the  

reader  wi th  the  s p e c i f i c  formulation which i s  used here and i n  the  pro- 

gram. This presenta t ion  has been divided i n t o  two p a r t s :  t h e  represen- 

t a t i o n  of t he  open-loop p l a n t  and the  closed-loop system. 

’ l2 , t he  b a s i c  matrix 

Open-Loop Plan t :  

i n  matrix no ta t ion  as 

The nth-order p lan t  i s  assumed t o  be represented 

and 

where 5 is the  s ta te  vec tor ,  u is t h e  sca l a r  input  and y is t h e  scalar 

output.  (See Fig. 1 )  I n  terms of t h i s  representa t ion ,  t he  open-loop 

p l a n t  t r a n s f e r  func t ion  is given by 

* 

[11’r21 is  t o  be  used, i t  It is assumed t h a t  i f  s e r i e s  compensation 
* 

has a l ready  been incorporated i n t o  the  plant descr ip t ion .  
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where !(s) is the  resolvent  matr ix  given by 

!(s) = (sI-A)-' -., (4) 

It is a l s o  convenient t o  represent  G(s) as a r a t i o  of polynomials i n  s of 

the form 

m-1 n + n s + * * *  + nms 
(5) 

1 2  
G(s) = # = 2 n-1 + sn d + d2s + d3s + * * *  + dns 1 

The b a s i c  problem assoc ia ted  wi th  the  open-loop p l an t  is the  deter-  

mination of t he  p l a n t  t r a n s f e r  funct ion G ( s )  from the  matrix representa t ion .  

The use of Eqs. (3 )  and (4) becomes tedious i f  the order  is g r e a t e r  than 

two. 

t h i s  a l s o  becomes laborious i f  there  are many i n t e r n a l  feedback o r  feed- 

forward loops,  as the re  o f t en  are i n  p rac t i ca l  problems. I n  addi t ion  t o  

Although block diagram manipulations may a l s o  be used t o  f ind  G(s),  

determining G(s),  one may a l s o  wish t o  determine some of the  i n t e r n a l  

t r a n s f e r  func t ions  x ( s ) /u ( s ) .  i 

One might quest ion why G(s) and the  i n t e r n a l  t r a n s f e r  funct ions are 

necessary if one is simply in t e re s t ed  i n  t h e  design of a closed-loop system. 

It is t h e  au thor ' s  conviction t h a t  one cannot i n t e l l i g e n t l y  undertake the  

design of any closed-loop system without a knowledge of t he  open-loop t rans-  

f e r  funct ion.  I n  addi t ion ,  the use of in t e rna l  t r a n s f e r  funct ions has  been 

shown to  be a valuable  design aid[31 i n  the  design of closed-loop systems. 

Closed-Loop System: The closed-loop form f o r  the  cont ro l  input  is 

given by 

where r ( t )  is the  reference input ,  K i s  the  forward path gain of t he  con- 

t r o l l e r  and k is the  feedback coe f f i c i en t  vector.  (See Fig. 1 )  I n  terms of 
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t h i s  con t ro l l e r  s t ruc tu re ,  the matrix representa t ion  of t he  closed-loop 

sys t e m  becomes 

$ ( t )  E (&-KbkT)x(t) -... - + K!r(t) (7) 

and the closed-loop t r a n s f e r  funct ion is given by 

where 

(10) 
T -1 

Q ( 8 )  (SI-A + Kbk ) -k - . "  -.. 

I f  w e  make use of the  f i c t i t i o u s  H ( 8 )  representa t ion  t o  f ind  
eq 

y (e ) / r ( e>  then 

where 
T k ys)! 

Heq(s) = (12) - -  cT@(s)b -, 

AB a r a t i o  of polynomials i n  8 ,  y ( s ) / r ( s )  may be w r i t t e n  as 

J. L 

Here use has been made of t h a t  f a c t  t h a t  the  

t o  the zeros  of G(s). [I1 On the  o the r  hand, 

t o  the zeros  of G(s) so t h a t  H ( 8 )  becomes 
eq 

zeros of y ( s ) / r ( s )  are i d e n t i c a l  

the  poles of H ( 8 )  are equal 
eq 

Nh(s) (hl + h2s  + * * *  + h sn-l)  

Heq(S) E ~ ( s )  (n + n2s + . * *  + n sm-') 
(14) n 

1 m 

I n  terms of Heq(s), therefore ,  y ( s ) / r ( s )  may be expressed as 
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so t h a t  

Dk(s) = D ( s )  + KNh(s) = (dl + Khl) + (d2 + Kh2)s + + 

+ (dn + Khn)sn-' + sn 

The computational problems assoc ia ted  with the  closed-loop system may 

be divided i n t o  two phases: ana lys i s  and design. The ana lys i s  problem is 

t o  determine y ( s ) / r ( s )  f o r  a given p lan t  i f  K and k are given. 

is similar t o  the  open-loop problem, and once again,  the  use of the  mat r ix  

approach, Eqs. ( 9 )  and (lo), o r  the  block diagram approach, Eq. (ll), can 

become extremely tedious.  

This problem 

The design problem is assoc ia ted  wi th  t h e  determination of K and - k i n  

order t o  achieve a des i red  y(s )  / r ( s )  . 
problems r e l a t e d  t o  t h i s  design task.  F i r s t ,  the  closed-loop t r a n s f e r  

func t ion  must be found. I n  t h i s  case the  task is even more d i f f i c u l t  than 

i n  the  ana lys i s  problem s ince  l i t e r a l  coe f f i c i en t s  involving the unknown 

values of K and k are involved. Second, once y ( s ) / r ( s )  is determined i n  

terms of K and IC, the  var ious coe f f i c i en t s  must be  equated and the  r e s u l t i n g  

equat ions must be solved. Since these equations are, i n  general ,  a set of 

n simultaneous l i n e a r  a lgebra equat ions,  the  labor  is not t r i v i a l .  

There are two b a s i c  computational 

The purpose of t h i s  s ec t ion  has been to  introduce t h e  reader  t o  the 

nota t ion  and formulation t h a t  is used through t h i s  r epor t  while  a t  t he  

same t i m e  t o  o u t l i n e  the  computational problems assoc ia ted  with the  l i n e a r  

state v a r i a b l e  feedback method. The program discussed i n  t h i s  r epor t  

e l imina tes  all of the  computational problems discussed above and a l s o  
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provides add i t iona l  valuable  design information. The bas i c  approach of the 

program is discussed i n  the  next  sec t ion .  

I1 METHOD OF SOLUTION 

Two poss ib le  so lu t ions  of t he  computational problems of state va r i ab le  

feedback were discussed b r i e f l y  i n  the preceding sec t ion :  

 manipulation^'^] and the  d i r e c t  matr ix  aporoach. 

these  techniques is w e l l  s u i t e d  t o  machine computation. 

diagram manipulation, although w e l l  s u i t e d  t o  hand ca lcu la t ions ,  are not  easy 

t o  program. Because of t h i s  f a c t ,  one must normally force  the  problem t o  be 

formulated i n  terms of spec ia l  configurat ions before  r e s u l t s  can be obtained. 

In  addi t ion,  both the  block diagram and matr ix  methods necess i t a t e  the  hand- 

l i n g  of polynomials i n  s whose c o e f f i c i e n t s ,  i n  the case of closed-loop 

design problems, may be funct ions of K and $. 

l a r l y  d i f f i c u l t  t o  treat with a d i g i t a l  computer. 

block diagram 

Unfortunately n e i t h e r  of 

The r u l e s  of block 

Such operat ions are par t icu-  

To the c r e d i t  of the block diagram approach i s  i ts  c lose  t i e  with 

c l a s s i c a l  engineering Procedures and the  a t tendant  engineering i n t u i t i o n  

associated with these procedures. The advantage of the  matr ix  technique, 

on the o the r  hand, is t he  genera l i ty  of i ts  formulation of t he  problem. 

An i dea l  method of so lu t ion  might, therefore ,  incorporate  the  gene ra l i t y  

of the matr ix  formulation and the  s ign i f i cance  of the block diagram method 

while  e l iminat ing the programming problems discussed above. 

The method developed i n  t h i s  r epor t ,  which is re fe r r ed  t o  as the  2- 
-- d i r e c t  matr ix  o r  phase va r i ab le  8pproach, does s a t i s f y  these  requirements 

reasonably w e l l .  

is represented i n  phase va r i ab le s ,  then both the open- and closed-loop 

computational problems l i s t e d  i n  the  previous sec t ion  may be solved by 

This method is  based on the r e a l i z a t i o n  t h a t  if the  p l an t  
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inspection. In order to illustrate this feature, consider the phase variable 

- e  

0 

0 

0 

1 - 

representation"] of the open-loop plant described by the transfer function 

P -  

1 n 

n 

0 

m 
and cp = 

0 
i -  

* 
of Eq. (5). 

p p  = 

b 

0 1 0 

0 0 1 

. . . . . . . . . .  

3 -dl -d2 -d - 

b 

0 1 0 

0 0 1 

. . . . . . . . . .  

3 -d 

A comparison of Eq. (5) and Eqs. (17) and (18) reveals that the plant transfer 

function may be determined by inspection from the phase variable representation. 

In terms of the closed-loop calculations, the task may be similarly 

accomplished by inspection. If the closed-loop expression for the control 

where k P is the feedback coefficient vector in terms of phase variables, 

then the system representation becomes 

2' E .. . . . . . . . . . . . . . . . . .  I 
k(dl+Kky) - (d2+Kk!) * * -  - ( dn+Kk:) 

XP+ 

* 
The superscript "p" is used throughout to indicate phase variable 

quantities. 
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and 

* a *  n o * * *  01zP(t> y ( t )  - K[nl n2 m 

Therefore the closed-loop t r a n s f e r  func t ion  is given by 

K(nl + n2s + * * .  + nrnsm-l) 
(21) p n-1 

X k L I  
'(') (dl+Kky) + (d2+Kk;)s + + (dn+Kkn)s + sn 

A simple comparison of Eqs. (13) and (21) reveals t h a t  t he  coe f f i c i en t s  of 

t h e  denominator of y ( s ) / r ( s )  may be determined from the  simple equation 

e - di + Kki i 5 1,2,.. . ,n (22) i 

Hence, if kp and K are known, y ( s ) / r ( s )  may be determined d i r e c t l y  from 

Eqs. (21) o r  (22). S imi la r ly  i f  the  d i t s  and ei's are known then K and 

kp may a l s o  be  obtained d i r e c t l y .  

and kp unique, it is assumed t h a t  zero s teady-s ta te  pos i t i on  e r r o r  is 

desired so t h a t  K is given by 

I n  order  t o  make the  so lu t ion  f o r  K - 

el 

"1 
K = -  

In add i t ion  t o  the  above advantages of t h e  phase v a r i a b l e  representa- 

t i o n ,  it is  easy t o  show t h a t  H 
eq 

variable elements by the following equat ion 

( 8 )  is a l s o  e a s i l y  r e l a t e d  t o  the  phase 

p n-1 

Heq(s) E m- 1 
k i  + k;s + * * *  + kns 

n + n2s  + * * *  + n s  1 m 
(24) 

The above discussion e s t ab l i shes  t h e  f a c t  t h a t  t h e  so lu t ion  of the  open- 

and closed-loop computational problems become t r i v i a l  i f  phase va r i ab le s  

are used. Since t r a n s f e r  func t ion  expressions f o r  G(a) and H ( 8 )  may 
eq 

8 



a l s o  be obtained using the method, the  technique r e t a i n s  i n  p a r t  a t  least  

the  appeal of the  block diagram approach. 

However, most p l an t s  are not na tu ra l ly  o r  e a s i l y  described i n  phase 

var iab les .  

use phase va r i ab le s  t o  representa t ion  the  plant  s i n c e  t h i s  would destroy 

the gene ra l i t y  of the  matrix formulation. Because of these  f a c t s ,  i t  is 

obvious t h a t  i f  the  phase va r i ab le  approach is t o  be used i t  is necessary 

t o  f ind  a technique f o r  transforming the plant  t o  phase va r i ab le s  and 

then t rausf  orming the  feedback coe f f i c i en t s  back t o  the  o r i g i n a l  systems 

of state va r i ab le s .  

easy t o  program on a d i g i t a l  computer. 

I n  addi t ion ,  i t  is not  recommended t h a t  an at tempt  be  made t o  

Fortunately such a procedure e x i s t s  and is r e l a t i v e l y  

KalmanrS1 has  shown t h a t  it is poss ib le  t o  transform any con t ro l l ab le  111 

p lan t  t o  phase var iab les  by means of a nonsingular l i n e a r  transformation of 

va r i ab le s  of the  form 

P 
?! = Px 

o r  s i n c e  P is nonsingular 

P -1 P 'P x 
I n  terms of the  transformation matrix p, the elements of the  phase v a r i a b l e  

r ep resen ta t ion  may be  determined from t h e  following equation 

I n  add i t ion ,  the  feedback coe f f i c i en t s  i n  phase va r i ab le  and the  o r i g i n a l  

va r i ab le s  are r e l a t e d  by the  following expressions 

k - ( P )  T -1 k p kp - PTk and - -  - - - 
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Therefore once the matr ix  P is known, the complete transformation problem 

is solved. 

- 

A number of recent  art icles [61-[101 descr ibe a simple algori thm f o r  

determining P -, i f  the  coe f f i c i en t s  of the c h a r a c t e r i s t i c  polynomial of 4, 

i.e. the d ' 8 ,  are known. This algorithm ind ica t e s  t h a t  i f  the  vec tors  p 

are defined by the  recursion formula, 

i 
i 

and 

then 

This 

b i - 1,2,.. . ,n-l ?n-i - _qFi+l + dn-i+l- 

P is given by 

procedure is simple and extremely easy t o  program. 

Fortunately,  there  are a number of simple methods f o r  determining the  

coe f f i c i en t s  of the  c h a r a c t e r i s t i c  polynomial. Two of these methods were 

invest igated:  the Leverier algorithm[61 and the principal-minor method [Ill . 
Although the  Leverier algorithm i s  easier t o  program and uses less computer 

s torage and time than the principal-minor method, unfortunately i t  does no t ,  

i n  general ,  y i e l d  answers which are as accura te  as the  principal-minor 

method. 

sequent ia l  na ture  of the  algorithm, i.e. each c o e f f i c i e n t  depends on the  

previously computed coe f f i c i en t s .  

vary widely, e spec ia l ly  i f  t he  later c o e f f i c i e n t s  are much smaller than the  

e a r l i e r  ones, round-off e r r o r  can propogate and cause l a r g e  e r r o r s  t o  arise 

i n  the results. Due t o  t h i s  problem with the  Leverier  algorithm, the  pr in-  

cipal-minor method w a s  s e l ec t ed  f o r  use i n  the  program. 

The inaccuracy of the  Leverier  a lgori thm is a r e s u l t  of the  

Whenever the  values  of t he  c o e f f i c i e n t s  

The principal-minor 
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method determines t h e  c o e f f i c i e n t s  of t h e  c h a r a c t e r i s t i c  polynomial of the  

matr ix  A by means of the  following expression - 

= (-l)n-i 1 [of the 6 -i+ 9 (n-i+l) -order ' 1 (31) 
p r i n c i p a l  minors of di 

Once again,  t h i s  expression is q u i t e  easy to program. 

Af t e r  t h e  di 's have been ca lcu la ted ,  can be  determined from Eqs. ( 2 9 )  

and (30) and any of the  open- or closed-loop a n a l y s i s  o r  design problems 

may be solved by using Eqs. (27) and (28). This procedure has been tested 

on a wide v a r i e t y  of problems 13' with very success fu l  r e s u l t s .  

I11 CAPABILITIES 

I n  t h i s  s e c t i o n ,  the  general  c a p a b i l i t i e s  of the  computer program are 

presented and compared t o  t h e  computational problems posed i n  Sect ion I. 

A more d e t a i l e d  discussion of t h e  u t i l i z a t i o n  of t h e  p r o g r m i s  presented 

i n  the  nex t  two sec t ions  which are concerned with t h e  preparat ion of  t h e  

ihput  d a t a  and the i n t e r p r e t a t i o n  of the output r e s u l t s .  

abbreviated flow char t  of the  program is contained i n  Appendix B. 

I n  addi t ion ,  an 

Open-Loop Computations : The bas ic  problem as soc ia t ed  with the  open- 

loop p l a n t  is t h e  determination of t h e  open-loop t r a n s f e r  funct ion G(s) . 
This problem is automatical ly  solved when the  p l a n t  is transformed i n t o  

the phase v a r i a b l e  presentat ion.  I n  addi t ion t o  determining G(s), t h e  

program f a c t o r s  the  numerator and denominator polynomials of G(s) so t h a t  

the  l o c a t i o n s  of t h e  open-loop poles  and zeros a r e  known. 

The program can determine i n t e r n a l  t r a n s f e r  funct ions of t h e  form 

I f ,  f o r  example, X,(~)/U(S)  by simply def ining a f i c t i t i o u s  c matrix.  
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t h e  t r a n s f e r  funct ion %(E)/u(s) is des i r ed  then c is se l ec t ed  wi th  ck = 1 

and c Any number of these  i n t e r n a l  t r a n s f e r  func t ions  may 

be determined a t  the same t i m e .  However, t h e  c f o r  the  a c t u a l  output  y must 

always be used las t  so t h a t  t h e  forward ga in  K is se l ec t ed  properly. The 

denominator polynomial of a l l  t h e  t r a n s f e r  funct ions is always D ( s ) .  

- 0 f o r  j # k. 
j 

Closed-Loop Computations: The program is capable of performing th ree  

types of closed-loop ca l cu la t ions  which are ind ica t ed  by s e t t i n g  the symbol 

KEY as 1, 2 o r  3 respec t ive ly .  One of these  th ree  computations (KEY = 1) 

is f o r  closed-loop ana lys i s  whi le  the  o t h e r  two (KEY = 2 and 3) are f o r  

design. Any number of these  th ree  types of computations i n  any combination 

may b e  accomplished a t  one t i m e .  

I n  t h e  ana lys i s  mode, KEY = 1, t h e  program must be given K and as 

input .  From t h i s  input  t he  program determines the  c o e f f i c i e n t s  of the  

closed-loop c h a r a c t e r i s t i c  polynomial, Dk(s), and the  numerator of H 

%(s). 

displayed. 

s tud ie s .  

of such changes on y ( s ) / r ( s ) .  

roo t  locus of 1 + KG(s)H ( 8 )  versus K. I n  addi t ion ,  s i n c e  G(s) and H ( 8 )  

are known i n  fac tored  form, the  r o o t  locus may be e a s i l y  sketched by hand. 

( 8 )  , 
eq * 

In addi t ion ,  both Dk(8) and N h ( s )  are fac tored  and t h e i r  roo t s  are 

This mode of opera t ion  is perhaps most u se fu l  f o r  s e n s i t i v i t y  

By varying the  values  of  K and k ,  - i t  is poss ib le  t o  see the  e f f e c t  

One may use  t h i s  procedure f o r  p l o t t i n g  the  

eq eq 

The i npu t  f o r  the f i r s t  of t he  two design modes, KEY 2,  is the  

From t h i s  informa- des i red  closed-loop c h a r a c t e r i s t i c  polynomial, D,(s) . 
t i o n ,  the program computes K and k and determines the  numerator poly- 

nomial of H ( 8 ) .  I n  the second design mode, KEY = 3, the  input  is 
eq 

* 
The reader  w i l l  recall t h a t  t he  denominator polynomial of Heq(s)  is 

equal  to t h e  numerator of G ( s ) ,  i .e .  N ( s ) .  



the  des i r ed  closed-loop pole  loca t ions  and output  i s  aga in  K ,  5 and H 

As i n  the  ana lys i s  mode, t he  polynomial D ( 8 )  and N ( 6 )  are always given 

i n  f ac to red  as w e l l  as unfactored form. 

(e). 
eq 

k h 

The reader  is reminded t h a t  K i s  always s e l e c t e d  so t h a t  zero steady- 

state e r r o r  f o r  a s t e p  input  r e s u l t s .  I f  it is des i red  t h a t  some o t h e r  

condi t ion be used t o  select K,  then one may always rescale K and k t o  m e e t  

such a r e s t r i c t i o n  by hand. Suppose, f o r  example, t h a t  i t  is des i red  t h a t  

the  d.c. ga in  be t en  r a t h e r  than one, then one would simply mul t ip ly  K by 

... 

ten and d iv ide  

unchanged b u t  m u l t i p l t i p l i e s  t he  numerator by t e n  as desired.  

5 by ten.  This procedure leaves the  denominator of y ( s ) / r ( s )  

Which of the two designmodes i s t o  be used depends on whether the  des i red  

y ( s ) / r ( s )  is  known i n  f a c t o r  o r  unfactored form. 

t h a t  t he  second design mode, i.e. y ( s ) / r ( s )  given i n  fac tored  form, is t h e  

more usefu l .  Since the  inc lus ion  of  the  f i r s t  design mode required only  a 

minor add i t ion  t o  the  coding, i t  is included f o r  added f l e x i b i l i t y .  A sum- 

mary of t h e  th ree  modes of closed-loop ca lcu la t ions  is given i n  Table 1. 

It is t h e  au thor ' s  opinion 

Spec ia l  Computations: In  addi t ion  t o  the  s tandard  open- and closed- 

loop computations discussed above, the  program a l s o  makes two spec ia l  com- 

puta t ions  t o  assist the  use r  i n  evaluat ing the  a p p l i c a b i l i t y  and accuracy 

of t he  program. 

Since the  program involves  transforming the  p l a n t  t o  phase va r i ab le s ,  

it is  necessaryr5]  t h a t  t he  p l a n t  be  cont ro l lab le .  I n  addi t ion ,  t he  p l a n t  

must be  con t ro l l ab le  before  any t r a n s f e r  funct ion techniques can be  sens i -  

b l y  u t i l i z e d .  

p l a n t  t o  in su re  t h a t  the  r e s u l t s  obtained are  meaningful. C o n t r o l l a b i l i t y  

should be  checked even i f  t he  physical  p lan t  is known t o  be  con t ro l l ab le  

Hence i t  is  important t o  check t h e  c o n t r o l l a b i l i t y  of t he  



TABLE 1 

KEY TYPE 

SUMMARY CLOSED-LOOP COMPUTATIONS 

Input output 

1 Analysis 

2 Design 

3 Design 

K and k Nh(S) and Dk(s) 

D,(s), unfactored Nh(s), K and 5 

Dk(s), factored Nh(s), K and k 
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since t h e  mathematical modeling, e spec ia l ly  i f  l i n e a r i z a t i o n  has been 

involved, may have destroyed the  property. 

The easiest method f o r  determining c o n t r o l l a b i l i t y  is t h e  test ,  

o r i g i n a l l y  proposed by Kalmar~'~' ,  which states t h a t  the p l a n t  

g = A x + b u  -- - (1) 

is c o n t r o l l a b l e  4f and only i f  t h e  c o n t r o l l a b i l i t y  matr ix  

is nonsingular. 

the computational labor  involved can, once again,  become excessive if the  

order  of t h e  p l a n t  is g r e a t e r  than three.  

i nc reas ing ly  important t o  make t h e  c o n t r o l l a b i l i t y  test as the order  of 

t h e  p l a n t  i nc reases  s i n c e  i t  becomes more d i f f i c u l t  t o  determine con t ro l l -  

a b i l i t y  by inspect ion.  

Although t h e  app l i ca t ion  of t h i s  test is straight-forward, 

On t h e  o t h e r  hand, i t  becomes 

The obvious s o l u t i o n  t o  t h i s  problem is t o  include the  c o n t r o l l a b i l i t y  

test  a s  p a r t  of the  d i g i t a l  program. 

and by including t h e  test an i n t e g r a l  p a r t  of t h e  program, one is assured 

t h a t  c o n t r o l l a b i l i t y  is always checked. 

appl ied by f ind ing  t h e  determinant 

the  det(uc) - 0 then p l a n t  is indicated as being uncontrol lable  (See 

Section V); however a l l  computations, both open- and closed-loop continue t o  

be performed, 

r e s u l t s  obtained f o r  an uncontrol lable  plant .  

The addi t iona l  coding is very minor, 

The c o n t r o l l a b i l i t y  test is 
* 

of t h e  c o n t r o l l a b i l i t y  matrix F . I f  
C 

Extreme caution should be applied i n  i n t e r p r e t i n g  any 

** 
Even when t h e  det(5c) # 0 problems may s t i l l  a r i s e  i f  the  matr ix  Mc 

is i l l - cond i t ioned  and therefore  d i f f i c u l t  to i n v e r t .  I n  order  t o  check 

* 
Both t h e  determinant and inversion subroutines a r e  a l ready requ i r ed  

Note t h a t  the  exact  value of det(gc) is unimportant s ince  i t  may be 

t o  determine P and P-1. 

set a t  any va lue  by s c a l i n g  the o r i g i n a l  plant  equations.  

** 



t h i s  p o s s i b i l i t y ,  t he  matr ix  is inver ted ,  as w e l l  as poss ib le ,  by the  

numerical inversion subrout ine included i n  the  program. I f  t h i s  inverse  

matr ix  @ 

I. The degree t o  which t h i s  product devia tes  from is a measure of t he  

uncon t ro l l ab i l i t y  of the p lan t .  I f  the maximum value of absolu te  deviat ion 

is grea te r  than the system is i d e n t i f i e d  as being numerically uncon- 

t ro l l ab le .  This terminology w a s  chosen t o  ind ica t e  t h a t  while the  p l an t  is 

C 

-1 is mult ipl ied with Mc, the  r e s u l t  should be the  i d e n t i t y  matr ix  
C 

t heo re t i ca l ly  cont ro l lab le ,  i t  is uncontrol lable  i n  a numerical sense s ince  

M cannot be inver ted  by the program. 
‘C 

Although the numerical c o n t r o l l a b i l i t y  of the p l an t  is obviously 

dependent on the  numerical invers ion  scheme used, a wide v a r i e t y  of pro- 

grams fo r  inversion have been t r i e d  with only minor changes i n  the  r e s u l t s .  

As i n  the case of pure uncon t ro l l ab i l i t y ,  a l l  computations are s t i l l  com- 

p l e t ed ,  and as before ,  one must be caut ious i n  using these r e s u l t s .  I n  the 

numerical uncon t ro l l ab i l i t y  however, if t he  maximum deviat ion is q u i t e  emall 

but  grea te r  than lf5, then the  r e s u l t s  may s t i l l  be completely sa t i s f ac to ry .  

In  order  t o  assist i n  determining the  v a l i d i t y  of the  r e s u l t s  i n  the 

numerically uncontrol lable  s i t u a t i o n  discussed above and t o  uncover any 

o ther  numerical problems t h a t  might arise, although none have occurred so 

f a r  i n  numerous examples of order  as high as seventh,  a double-checking 

f ea tu re  w a s  added to  the  program. This computational double-check is 

based on the  f a c t  t h a t  Dk(s) may be determined by e i t h e r  of the  following 

111 two expressions. 

* 
This number w a s  s e l ec t ed  somewhat a r b i t r a r i l y  and may be easi ly  

altered i f  desired by the user.  
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o r  

(32) 
T 

.,- ) Dk(s) = det(s1-AiiCbk ., .. 

The computer program determines D (a) by both of these equations,  even 

when KEY = 2 and D,(s) is given, and compares the  r e s u l t s .  A normalized 

e r r o r  is obtained by d iv id ing  the  d i f fe rence  between the  two values of a 

c o e f f i c i e n t  of %(a) as determined from Eqs. (16) and (32) by the  value of  

the coe f f i c i en t .  

the  absolu te  values  of t h i s  normalized error is pr in ted  a t  the  end of each 

closed-loop ca lcu la t ion .  Because of the d i s s i m i l a r i t i e s  of t he  mathematical 

techniques involved i n  Eqs. (16) and (32) ,  t h i s  procedure provides a simple 

and y e t  meaningful check on the accuracy of the  r e s u l t s .  

lists the  c o e f f i c i e n t s  as determined by Eq. (32) s i n c e  the  use  of Eq. (16) 

may be e a s i l y  accomplished by hand. 

k 

The maximum, over a l l  of t he  c o e f f i c i e n t s  of Dk(s), of 

The program always 

IV INPUT FORMAT 

The genera l  input  and output  formats for  the  program are discussed i n  

t h i s  and the  following sec t ion  respect ively.  While reading these sec t ions ,  

i t  is suggested t h a t  the reader  r e f e r  o f t en  t o  the  s p e c i f i c  example problem 

presented in Appendix A, e spec ia l ly  Tables A-1 and A-2. 

A primary considerat ion i n  the se l ec t ion  of the  input  format was  t o  

make the  program as simple as poss ib le  t o  use while  s t i l l  r e t a in ing  s u f f i -  

c i e n t  f l e x i b i l i t y .  Because of t h i s  considerat ion,  the format s e l ec t ed  and 

described i n  t h i s  s ec t ion  conta ins  more cards than necessary t o  provide the  

program wi th  input  data .  

ber  s i n c e  the l a r g e  major i ty  of the  cards have i d e n t i c a l  forms. 

t he  input  deck is c lose ly  r e l a t e d  t o  the matrix formulation of the 

On the  o the r  hand, the  input  format is easy t o  remem- 

I n  addi t ion ,  



state var iab le  feedback problem so t h a t  i t  is  extremely simple t o  make 

modifications i n  the problem i f  desired.  

The program can be used t o  so lve  more than one problem i n  a s i n g l e  run 

by simply placing the  var ious input  decks one a f t e r  another.  

words, an inpu t  deck is prepared f o r  each problem using t h e  format presented 

i n  t h i s  sec t ion  and these decks a r e  then added together  t o  form a composite 

input  deck f o r  the program. I n  addi t ion ,  i t  is poss ib le  t o  execute a number 

of open- and closed-loop ca lcu la t ions  as p a r t  of one b a s i c  problem as long 

as the  p lan t  is not changed. 

I n  o ther  

The operat ion of the program (See Appendix B) is divided i n t o  th ree  

phases: 1 )  bas i c ,  2) open-loop and 3) closed-loop. During the  b a s i c  

phase, the 4 and 

open-loop phase cons i s t s  of the  open-loop computations discussed i n  the  

previous sec t ions  and include the determination of D(s),  p and N ( s ) .  

closed-loop phase varys depending on which types of closed-loop ca l cu la t ions  

are desired.  

closed-loop phase of operation. 

matrices are read and c o n t r o l l a b i l i t y  is checked. The 

The 

I n  addi t ion ,  t he  double check on accuracy is made during the  

The input  and output  formats f a l l  i n t o  three  similar d iv is ions .  Because 

of t h i s  f a c t  and i n  order  t o  s impl i fy  the  t reatment ,  the  discussion of the  

input  and output  formats is divided along these same l i n e s .  

Basic Input:  The input  f o r  the  b a s i c  phase of t he  programs cons i s t s  of 

a set of cards  which spec i fy  the  elements of 4 and b. 
is included which gives problem i d e n t i f i c a t i o n  information f o r  easy referenc- 

ing of the problem and the order  of t he  p lan t ,n .  These cards  are included 

f o r  a l l  problems independent of what open- o r  closed-loop computations are 

t o  be made. 

cards  is shown i n  Table 2. 

I n  addi t ion ,  a card 

A de t a i l ed  descr ip t ion  of the preparat ion of the bas i c  input  



~ 

Card 
No. 

Description 

?roblem i d e n t i f i c a t i o n  (any alpha- 
tumeric characters)  t o  be p r in t ed  
)u t  f o r  reference.  

I - order  of t he  p lan t ,  an in te rger -  
r ight  j u s t i f i e d  i n  the f i e l d .  (2) 

1 

(1) Format 
type 

4A5, I 2  

2 

n+2 (3)  

COlUmn 
Nos. 

1-20 

21-22 

1-10 

11-20 

e tc  

1-10 

11-20 

e tc  

1-10 

11-20 

etc 

TABLE 2 

CARD DESCRIPTION FOR BASIC INPUT 

I 
51 

12 a 

8E10.0 

... 

a21 

a22 

8E10.0 

I ... 

bl 

b2 

81110.0 

... 
Notes: 1) 

2) 

3) 

The format type is l i s t e d  f o r  those readers  f ami l i a r  with FORTRAN 
A t  present ,  n m u s t  be 5 1 0 ,  however, t h i s  number may be e a s i l y  
increased by a l t e r i n g  the  dimension s ta tements  
Cards numbers are co r rec t  i f  n 5 8 ,  see text 



Note that the elements of A are read one row a t  a t i m e  so t h a t  numbers ,. 

appear much as they do i n  the o r i g i n a l  array.  

ten column f i e l d s  i n  f loa t ing  poin t  format. 

is grea ter  than e igh t ,  the elements continue on the  next  card. The elements 

of t he  next row, however, s ta r t  on a new card. 

cards i n  the  bas i c  input  as shown i n  Table 2 while i f  9 5 n 5 16, t he re  are 

2n + 3 cards and so fo r th .  

read i n  column form i n  order  t o  minimize the  number of input  cards.  A l l  

vec tors ,  v i z .  b, E and k, are read i n  the same manner. 

The input  f o r  the  open-loop phase cons i s t s  s o l e l y  of 

The numbers are placed i n  

I f  t he  order  of the p lan t ,  n ,  

I f  n 2 8, there  are n + 2 

Note t h a t  elements of the cont ro l  vec tor ,  b ,  are 

Open-Loop Input:  

c matrices which spec i fy  f o r  which t r a n s f e r  funct ions the  numerator poly- 

nomials are desired.  The reader  should recall t h a t  f i c t i t i o u s  $ matrices 

may be used t o  obta in  i n t e r n a l  t r a n s f e r  funct ions.  

matr ix  are  placed on one o r  more cards,  depending on the  value of n, i n  the  

same manner as b, i.e. c i n  column 1-10, c2 i n  column 11-20, and so for th .  1 

(See Table 3) 

as  two simple ru l e s  a r e  followed. 

The elements of each c 

Any number of c matrices can be included i n  any order  as long ,. 

F i r s t ,  the  l as t  c matrix must be completely zero, i.e. c = 0;  t h i s  c 
matrix of zeros is used only t o  s i g n a l  the  end of the  open-loop ca lcu la t ions  

and no computationsare made with it. 

accomplished by placing one o r  more blank cards  i n  the  deck depending on the  

va lue  of n. The second r u l e  is t h a t  t he  c matr ix  f o r  the  real, phys ica l  

output  m u s t  always appear j u s t  before  t h e  blank c matrix.  This last  r u l e  

is necessary i n  order  t h a t  K be  computed properly f o r  zero s teady state 

pos i t ion  e r r o r .  

S e t t i n g  c equal t o  zero may be e a s i l y  

* 
., 

* 
For n 8, one card is used; f o r  9 ~n 2 16, two cards are used and 

so for th .  
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TABLE 3 

Card 
No. 

1 

CARD DESCRIPTION FOR THE OPEN-LOOP INPUT 
(NOL - number of open-loop ca lcu la t ions  desired)  

column 
Nos. 

1-10 

11-20 

etc 

Dee c r ip t ion  

c1 - f i r s t  element of the  f i r s t  
f i c t i t i o u s  c matrix 

1 c2 = second element of the  f i r s t  
f i c t i t i o u s  c matrix 

... 

Format 
type 

8ElO. 0 

S imi la r ly  f o r  each remaining f i c t i t i o u s  5 matrices  

1-10 

11-20 

e t c  

1-80 

( 3) c1 = f i r s t  element of t he  r e a l  c 
matrix 

c2 ... 

8E10.0 

Notes: 1 )  
2) 
3) The r e a l  

NOL f o r  n 5 8, 2NOL f o r  9 5 n 5 16, e t c  
One blank card f o r  n 

card ( 8 )  

8 ,  two cards f o r  9 5 n 5 16, e t c  
matr ix  always be included j u s t  before  the  blank 
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Closed-Loop Input:  Each closed-loop ca lcu la t ion  is represented by a 

set  of two o r  more cards whose format depends on which of the  th ree  types 

of closed-loop ca lcu la t ions  is desired.  (See Tables 4, 5 and 6) These 

sets, one f o r  each ca lcu la t ion ,  i n  any order  and of any number, are combined 

t o  form the input  f o r  the closed-loop phase of the program. For example, 

if one wished t o  make th ree  ana lys i s  mode (KEY = 1 )  and two eecond design 

mode (KEY = 3) ca lcu la t ions ,  then he would make up f i v e  sets of cards ,  one 

f o r  each ca lcu la t ion ,  using the  format appropr ia te  f o r  each ca lcu la t ion .  

These cards would then be combined by placing the th ree  sets of the  analyz- 

ing ca lcu la t ions  f i r s t ,  the  two design sets f i r s t ,  o r  the  ana lys i s  and 

design s e t s  could be intermixed i n  any order  as long as the ind iv idua l  sets 

lemained together  as un i t s .  

Note t h a t  the f i r s t  card i n  the format f o r  each type of closed-loop 

ca lcu la t ion  has only one number which is punched in the  f i r s t  column t o  give 

the  value of KEY. 

is required f o r  the  desired type of ca lcu la t ion .  

The remaining cards i n  each set depend on the  input  t h a t  

A s ing le  blank card is placed i n  the  input  deck a f t e r  t he  desired closed- 

loop ca lcu la t ion  sets t o  s i g n a l  t he  end of the  closed-loop input .  

blank card is read, the  program f inds  t h a t  the  value of KEY is zero and 

r e tu rns  t o  the bas i c  input  s e c t i o n  t o  f ind  i f  another  problem remains t o  be 

solved. 

closed-loop ca lcu la t ions  are des i red ,  t h i s  blank card must s t i l l  be included. 

I n  t h i s  case,  there  are two o r  more blank cards  a t  the  end of the  input  

deck s ince one o r  more blank cards appear a t  the end of the open loop 

input  . 

When t h i s  

The program is stopped by the  end-of-fi le i nd ica to r .  Even i f  no 

I n  t h i s  s ec t ion ,  the  method of preparing the  input  deck f o r  s ta te  

var iab le  feedback program has been discussed i n  d e t a i l .  Appendix A contains  
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TABLE 4 

Description 

m = 1  

K = Forward path gain 

CARD DESCRIPTION FOR THE CLOSED-LOOP INPUT-ANALYSIS HODEL 
(KEY - 1 )  

Format 
tme 

I1 

E10.0 

Card 
NO 

1 

2 

3 

Column 
Nos. 

1 

1-10 

1-10 

11-20 

etc 

kl 

k2 ... 

8E10.0 

TABLE 5 

CARD DESCRIPTION FOR THE CLOSED-LOOP INPUT - FIRST DESIGN MODE 
(KEY - 2) 

I 1-1° 
11-20 

etc (1) 

Description 

K E Y - 2  

Format 
type 

I1 

8E10.0 

n 
Note: 1) The coe f f i c i en t ,  e,,+l of s is always assumed t o  be one and is 

- not  included on the input  cards. 
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TABLE 6 

CARD DESCRIPTION FOR THE CLOSED-LOOP INPUT-SECOND DESIGN MODE 
(KEY - 3) 

Card 
No. 

1 

2 

3 

e t c  

co lumr 
Nos. 

1 

1-10 

11-20 

1-10 

11-20 

... 

Descript ion 

KEY = 3 

real  p a r t  of the f i r s t  pole  of the  
desired y ( s )  / r ( s )  (1) 

imaginary p a r t  of the  f i r s t  pole of 
the  desired y(s)  / r ( s )  

real p a r t  of the  second pole  of the  
des i red  y ( s ) / r ( e )  

imaginary p a r t  of t h e  second pole  of 
the  des i red  y(s )  / r ( s )  

... 

Format 
type 

I1 

2E10.0 

2E10.0 

Note: 1 )  The pole  loca t ions  have p o s i t i v e  s igns  i f  they are i n  the  l e f t  
ha l f  of the e-plane. Only one card is needed f o r  each complex 
conjugate p a i r ;  the  program automatical ly  suppl ies  the complex 
conjugate . 

24 



an  example i l l u s t r a t i n g  the preparat ion of the inpu t  deck f o r  a s p e c i f i c  

problem. 

V OUTPUT INTERPRETATION 

Although the  output  of the  program is almost self-explanatory,  a few 

comments may be des i r ab le  t o  avoid any confusion i n  i n t e r p r e t i n g  the  re- 

s u l t s .  

input ,  v iz .  bas i c ,  open-loop and closed-loop. 

t o  t h e  s p e c i f i c  example discussed i n  Appendix A e spec ia l ly  Table A-2 

while  reading t h i s  sec t ion .  

The output  format is divided i n t o  t h e  same th ree  phases as the  

The reader  is urged t o  r e f e r  

Basic Output: The b a s i c  output  is composed, i n  the  main, of simply 

a pr int-out  of t he  information contained i n  the  b a s i c  input ,  i.e. the  

alphanumeric problem i d e n t i f i c a t i o n ,  and the A and b matrices. The elements 

of 4 are l i s t e d  one row pe r  l i n e  as they would normally appear i n  wr i t i ng  4. 

The elements of b are a l s o  pr in ted  on one l i n e  as they would appear i f  one 

were w r i t i n g  b . 

.. .. 

T This material is provided s o l e l y  as re ference  information 

f o r  t he  use r  s ince  no new r e s u l t s  are included. 

items are t h e  e n t i r e  bas i c  output.  However, f o r  problems which are e i t h e r  

uncont ro l lab le  o r  numerically uncontrol lable ,  an add i t iona l  i t e m  is added 

For most problems, these 

* 

t o  the  b a s i c  output  i n  order  t o  ind ica t e  th i s  complication. The reader  

should remember t h a t  even i f  the  p l an t  is found to  be uncontrol lable  t h a t  

a l l  open- and closed-loop ca l cu la t ions  are s t i l l  performed. 

numerical uncon t ro l l ab i l i t y  , t he  maximum deviation of the  matrix McVc 

t he  i d e n t i t y  matr ix  is a l s o  l i s t e d  f o r  the  information of t he  user .  

I n  the  case of 

-1 from 

Open-Loop Output: The open-loop output is composed of the  denominator 

of t he  p l a n t  t r a n s f e r  funct ion,  D ( s ) ,  and the var ious  numerator polynomials 

~~ * 
See Sect ion 111 f o r  a d e f i n i t i o n  of numerical uncon t ro l l ab i l i t y .  



associated with the p l an t  t r a n s f e r  funct ion and any i n t e r n a l  t r a n s f e r  func- 

t i ons  desired. The coe f f i c i en t s  of D ( s ) ,  as w e l l  as those of a l l  o the r  

polynomials, are l i s t e d  with the  c o e f f i c i e n t  of the  constant  term f i r s t .  

I n  addi t ion to  the coe f f i c i en t s  of D(s),  t he  f a c t o r s  of D(s) are a l s o  l i s t e d .  

The var ious numerator coe f f i c i en t s  are i d e n t i f i e d  by p r i n t i n g  the  c - 
matrix associated with each. 

one would w r i t e  the  elements of $ . 
i t s  factored as w e l l  as its unfactored form. 

Once again the elements of f are p r in t ed  as 

Each numerator polynomial is l i s t e d  i n  T 

Closed-Loop Output: The output of the  closed-loop phase of the  program 

has exact ly  the same form f o r  each of the th ree  poss ib le  types of  closed-loop 

ca lcu la t ions .  The f i r s t  i t e m  i n  the closed-loop output ,  however, is the  value 

of KEY which i d e n t i f i e s  the type of computation performed. The next  four  i t e m s  

i n  t he  output are the  numerator polynomial of H 

coe f f i c i en t s ,  IC, t he  gain K ,  and the  denominator of y ( s ) / r ( s ) ,  Dk(8). 

N ( 8 )  and Dk(s) are given i n  both fac tored  and unfactored form. 

the  coef f ic ien t  of so is l i s t e d  f i r s t .  

form with kl as the f i r s t  element. 

( e ) ,  Nh(e), the feedback 
eq 

Both 

Once again h 

The vec tor  k is l i s t e d  i n  transposed 

The last i t e m  in the  closed-loop output  is the  value of t he  maximum 
* 

normalized e r ro r .  The reader  w i l l  remember t h a t  t h i s  number is an indica- 

t i o n  of t he  numerical accuracy of the program and is obtained by comparing 

the matrix and t r a n s f e r  funct ion methods f o r  f ind ing  Dk(e). 

closed-loop computation has been requested,  then the output  discussed is 

I f  more than one 

l i s t e d  fo r  each computation. 

* 
See Sect ion 111 f o r  a complete discussion.  
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CONCLUSIONS 

This r e p o r t  contains  t h e  desc r ip t ion  of a d i g i t a l  program which per- 

forms most of t h e  ana lys i s  and design ca lcu la t ions  associated with the  

s ta te  v a r i a b l e  feedback method. 

u l a t i o n  of t h e  state v a r i a b l e  feedback problem, is based on the  simpli- 

f i c a t i o n s  achieved by transforming t h e  p lan t  t o  phase var iab les .  

of the  matrix formulation provides complete f l e x i b i l i t y  i n  the type of 

problems which the  program can solve. On t h e  o t h e r  hand, most of the  

program r e s u l t s  are s t a t e d  i n  terms of t r a n s f e r  funct ions so t h a t  the  

g r e a t  wealth of classical cont ro l  theory may a l s o  be appl ied t o  the problem. 

The program, which uses t h e  matrix form- 

The use 

By e l imina t ing  t h e  computational labor  a s soc ia t ed  with the  state 

v a r i a b l e  feedback method, the  program takes t h e  s ta te  v a r i a b l e  feedback 

method out  of the  textbook and makes it ava i lab le  as a powerful t o o l  t o  

t h e  p r a c t i c i n g  engineer. 

numerous o t h e r  people t o  solve a wide var ie ty  of p r a c t i c a l  problems. 

da te ,  no d i f f i c u l t i e s  have been encountered i n  t h e  operat ion of t h e  program. 

The program has been employed by t h e  author and 

To 
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APPENDIX A - EXAMPLE PROBLEM 

This appendix discusses  the  appl icat ion of the  state va r i ab le  feedback 

This example is program t o  a simple, bu t  no t  t r i v i a l ,  third-order example. 

presented i n  order  t o  c l a r i f y  the  d e t a i l s  of preparing the  inpu t  deck f o r  

and i n t e r p r e t i n g  the print-out of t h e  program. 

reader  r e f e r  o f t en  to  the  main body of the r e p o r t  while  reading t h i s  appendix 

i n  order  t o  achieve max imum understanding. 

It is suggested t h a t  the  

The s ta te  va r i ab le  representa t ion  of the p l a n t  f o r  the  example is given 

by 

1.0 

i s -  0 5 + u 

-3.0 

(A-1) 

y = [1.0 1.0 015 (A-2) 

I The block diagram of t h e  p l a n t  is shown i n  Fig. A-1. From t h i s  information 

i t  is  poss ib le  t o  prepare the b a s i c  input  port ion of t h e  input  deck. 

Table A-1) This information must be provided no matter what open- o r  closed- 

loop ca l cu la t ions  are t o  be performed. 

(See 

I n  terms of open-loop ca lcu la t ions ,  i t  is desired t o  obta in  the i n t e r n a l  

t r a n s f e r  funct ions x,(s) /u(s) ,  x2(s ) /u(s )  and x3(s) /u(s)  i n  addi t ion  t o  the  

p l an t  t r a n s f e r  func t ion  y(s ) /u(s ) .  Therefore i t  is necessary t o  form th ree  

f i c t i t i o u s  c matrices which may be used to  f i n d  these i n t e r n a l  t r a n s f e r  

funct ions.  These c matrices are given by 

g1 - co l  (1.0, 0, 0) 

$2 - c o l  (0, 1.0, 0) 

53 - c o l  (0, 0, 1.0) 



Fig. A - I  Block Diagram of the Plant 



1'1 



and the  open-loop input  takes  the  form shown i n  Table A-1. 

real matrix, E = col  (1.0, 1.0, O), is placed j u s t  before  the  blank card 

ind ica t ing  the end of the open-loop input .  

Note t h a t  t he  

I n  a p r a c t i c a l  problem, one would normally run the  program one t i m e  

with no closed-loop ca l cu la t ions ,  i.e. only a blank card f o r  the  closed- 

loop input,  i n  order  t o  have the  open-loop information ava i l ab le  f o r  the  

spec i f i ca t ion  of y ( s ) / r ( s ) .  For the  sake of i l l u s t r a t i o n ,  i t  is assumed 

t h a t  t h i s  open-loop information has been obtained and t h a t  the  des i red  

y ( s ) / r ( s )  has been chosen t o  be 

Since Dk(s) 

closed-loop 

is known i n  both factored and unfactored form, e i t h e r  of the  

design modes could be used t o  f ind  K and k. I n  order  t o  i l l u s -  .. 
t ra te  the preparat ion of the input  deck, both of the  design modes are used. 

In  addi t ion ,  the  closed-loop ana lys i s  mode is u t i l i z e d  by l e t t i n g  

K = 2.0 and k = col(O.5, 0,  1.5) 

These values f o r  K and k are se l ec t ed ,  with the  advantage of fo re s igh t ,  so 

t h a t  they y i e l d  the desired y ( s ) / r ( s ) .  

Table A-1. 

The complete input  deck is shown i n  

This problem is obviously somewhat a r t i f i c i a l  s i n c e  both of the design 

modes are used when only one is necessary and the  ana lys i s  mode is being 

run a t  the  same t i m e .  The use of a l l  t h ree  of the closed-loop modes is 

s t r i c t l y  f o r  i l l u s t r a t i v e  purposes and should not  be construed as t y p i c a l  

u t i l i z a t i o n  of the  program. 

The complete output  f o r  t h i s  problem is  shown i n  Table A-2. Since 

the re  is no indica t ion  of uncon t ro l l ab i l i t y  i n  the  b a s i c  output ,  i t  can 
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TABLE A-2 

PROGRAM OUTPUT 
(see attached sheets) 
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0. OOOOOOOE 00 
1.0000000E 00 
0.0000000E 00 

PROBLEM IDENT . 
THE A MATRIX 

-1. OOOOOOOE 00 1 . 0 0 0 0 0 0 0 E  00 
0. OOOOOOOE 00 0.0000000E 00 
0. OOOOOOOE 00 -3 .  OOOOOOOE 00 

THE B MATRIX 

0 .  OOOOOOOE 00 0 . 0 0 0 0 0 0 0 E  00 1 . 0 0 0 0 0 0 0 E  00 

............................................... 
OPEN-LOOP CALCULATIONS 

DENOMINATOR COEFFICIENTS 

3. OOOOOOOE 00 3.  OOOOOOOE 00 1. OOOOOOOE 00 1. OOOOOOOE 00 

THE ROOTS ARE 

THE C'MATRIX ***** 
1. OOOOOOOE 00 

NUMERATOR COEFFICIENTS 

1. OOOOOOOE 00 

THE C MATRIX ***** 
0. OOOOOOOE 00 

NUMERATOR COEFFICIENTS 

1. OOOOOOOE 00 

THE ROOTS ARE 

THE C MATRIX ***** 
0. OOOOOOOE 00 

NUMERATOR COEFFICIENTS 

0. OOOOOOOE 00 

THE ROOTS ARE 

REX, PART 
-0.0000000E 00 
-0. OOOOOOOE 00 
-1. OOOOOOOE 00 

0.0000000E 00 

1. OOOOOOOE 00 

1 . 0 0 0 0 0 0 0 E  00 

REAL PART 
-1.00000OOE 00 

0.0000000E 00 

1 . 0 0 0 0 0 0 0 E  00 

REAL PART 
-1. OOOOOOOE 00 

0.  OOOOOOOE 00 

IMAGINARY PART 

1.73205083 00 
0 .  OOOOOOOE 00 

-1.73205083 00 

0. OOOOOOOE 00 

0.0000000E 00 

IMAGINARY PART 
0 . 0 0 0 0 0 0 0 E  00 

1. OOOOOOOE 00 

1. OOOOOOOE 00 

IMAGINARY PART 
0 . 0 0 0 0 0 0 0 E  00 
0.0000000E 00 
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THE C MATRIX ***** 
1. OOOOOOOE 00 1. OOOOOOOE 00 

NUMERATOR COEFFICIENTS 

2.0000000E 00 1. OOOOOOOE 00 

THE ROOTS ARE REAL PART 
-2. OOOOOOOE 00 

IMAGINARY PART 
0.0000000E 00 

............................................ 
CLOSED-LOOP CALCULATIONS 

THE NUMERATOR OF H-EQUIVALENT 

5.0000000E-01 1.50000000E 00 1.50000000E 00 

THE ROOTS ARE REAL PART 
-5.0000000E-01 
-5.0000000E-01 

IMAGINARY PART 
-2.8867512E-01 
2.88675123-01 

THE FEEDBACK COEFFICIENTS 

5.0000000E-01 0.0000000E 00 1.50000000E 00 

THE GAIN - 2.0000000E 00 

THE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL 

3.99999993 00 6.0000000E 00 4. OOOOOOOE 00 1. OOOOOOOE 00 

THE ROOTS ARE REAL PART 
-1. OOOOOOOE 00 - 
-1. OOOOOOOE 00 
-1.99999993 00 

IMAGINARY PART 
.1. OOOOOOOE 00 
1. OOOOOOOE 00 
0.0000000E 00 

MAXIMUM NORMALIZED ERROR E 2.503-08 

THE NUMERATOR OF H-EQUIVALENT 

5.0000002E-01 1.50000000E 00 1.50000000E 00 

THE ROOTS ARE REAL PART 
-5.0000000E-01 
-5.000OOOOE-01 

THE FEEDBACK COEFFICIENTS 

IMAGINARY PART 
-2.8867514E-01 
2.88675143-01 

0. OOOOOOOE 00 1.50000000E 00 5.0000002E-01 

THE GAIN = 1.99999993 00 
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THE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL 

3.99999993 00 6.0000000E 00 4. OOOOOOOE 00 1. OOOOOOOE 00 

THE ROOTS ARE REAL PART IMAGINARY PART 
-1.0000000E 00 -1.0000000E 00 
-1.0000000E 00 1.0000000E 00 
-1.99999993 00 0.0000000E 00 

MAXIMUM NORMALIZED ERROR 5.00E-08 

m y  P 3 ***** 
THE NUMERATOR OF H-EQUIVALENT 

5.0000002E-01 1.5000000E 00 

THE ROOTS ARE 

THE FEEDBACK COEFFICIENTS 

REAL PART 
-5.0000000E-01 
-5.0000000E-01 

5.0000002E-01 0.0000000E 00 

THE GAIN = 1.9999999E 00 

THE CLOSEPLOOP CHARACTERISTIC POLYNOMIAL 

1.5000000E 00 

IMAGINARY PART 
-2.88675143-01 
2.88675143-01 

1.5000000E 00 

3.99999993 00 6. OOO~OOOE 00 4.0000000E 00 1.0000000E 

THE ROOTS ARE REAL PART IMAGINARY PART 
-1.0000000E 00 -1.0000000E 00 
-1. OOOOOOOE 00 1. OOOOOOOE 00 
-1.99999993 00 0.0000000E 00 

MAXIMUM NORMALIZED ERROR 5.00E-08 

00 



be s a f e l y  assumed t h a t  the p l an t  is  cont ro l lab le  and therefore  the  we of 

the  program is j u s t i f i e d .  

of the  des i red  open-loop t r a n s f e r  funct ion,  

be 

The open-loop portion of the output provides a l l  

The p lan t  t r a n s f e r  is seen t o  

s+2 
I 

s+2 
G(s) 

s +s +3s+3 [s2+(J5i21 (s+l) 

while the  i n t e r n a l  t r a n s f e r  funct ion,  x (s)/u(s), f o r  example is 3 

S 
X3(d 2 

u(s) s +s +3s+3 [s2+(Jj;>21 
-I P 

3 2  

The closed-loop output  of t he  two design modes (KEY = 2 and 3) ind ica t e s  

t h a t  the K and k necessary t o  produce the desired y ( s ) / r ( s )  are - 

K = 2.0 and k = col(0.5, 0,  1.5) 

The output of the  ana lys i s  mode, on the other  hand, confirms t h a t  these values 

f o r  K and k do, i n  f a c t ,  provide the  desired r e s u l t s .  

e r r o r  f o r  each of the design mode is extremely small i nd ica t ing  t h a t  the  

accuracy of the  r e s u l t s  are acceptable.  

The maximum normalized 
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APPENDIX B 

FLOW CHARTS OF THE PROGRAM OPERATION 

This appendix contains t h r e e  flow c h a r t s  which i l l u s t r a t e  the  opera t ion  

of the program f o r  each of i ts  t h r e e  phases: 

loop. 

d e t a i l  of the  program. However, i t  is hoped t h a t  these  flow c h a r t s  wi th  the  

complete l i s t i n g  given i n  Appendix C w i l l  enable the  i n t e r e s t e d  reader  t o  

understand the  opera t ion  of t he  program. 

bas i c ,  open-loop and closed- 

No attempt has been made t o  make these  flow c h a r t s  conta in  every 



+ 

PRINT 
I 0. 

PRINT 
A and 8 

CALC. 

CALC. 
vc-' 

UNCONTROLL- I L \ ABLE 1 + 
I 1 

fig. B-I now Chart for the Basic Phase 
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,-, 
PRINT 

CALC. 

(:)-e PRINT 

Fig. 6-2 Flow Chart for the Open-Loop Phase 



CALC.  

CALC. 

CALC. 
K 

a 

CHECK 
ACCURACP 

L - 

Fig. 8-3 Flow Chart for the Closed-Loop Phase 
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APPENDIX C 

PROGRAM LISTING 
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C STATEVARFDBK 
OIMENSION A ~ l ~ ~ 1 0 ~ ~ B ~ 1 0 ~ ~ H f 1 O ~ ~ C ~ l O ~ ~ N A ~ E f 4 ~ ~ A A ~ l O ~ ~ O ~ ~ E f l O ~  
D I M E N S I O N  0 ~ 1 ~ ~ * ~ f 1 0 ~ 1 0 ~ r C C f 1 0 ~ r H H f l O ~ ~ P I N ~ l O ~ l O ~ r U f l O ~ 1 V f l O ~  

2000 F m M A T ( 4 s H O  * * + + * ~ ~ + * * + * * * * * ~ * o * * * * ~ * * * * * * * * * * ~ * * ~ ~ ~ * )  
2001 FORMAT f 4 A S r 1 2 )  
2002 FORMAT(BE10oOI  
2003 FORMAT f lH l *SX,14HPROBLEM IDENTO r S X r 4 A S )  
2004 F O R M A T ( I H O I S X ~ ~ Z H T H E  A M A T R I X / )  
2005 FORHATf lP6EZO.71 
2006 F O R M A T ( ~ H O I S X ~ ~ ~ H T H E  B M A T R I X / )  
2007 F O R M A T ~ ~ H O ~ ~ X I ~ ~ H T H E  CLOSED-LOOP CHARACTERISTIC POLYNOMIAL/)  
2008 F O R M A T ~ ~ H O + S X I ~ S H T H E  FEEDBACK C O E F F I C I E N T S / )  
2009 F O R M A T ~ ~ H O I S X I ~ O H T H E  G A I N  t l P E 1 6 . 7 )  
2010 F O R W A T ( ~ H O I S X ~ ~ ~ H T H E  C MATRIXISX~SH*+***/) 
2011 F O R M A T ~ l H O ~ S X ~ 2 4 H D E N N I N A T O R  C O E F F I C I E N T S / )  
2012 F O R M A T ~ ~ H O I ~ X ~ ~ ~ H N U M E R A T O R  CO€FFfC IENTS/ )  
2013 F O R M A T ( ~ H O I ~ X , ~ ~ H T H E  NUMERATOR OF H-EQUIVALENT/)  
2014 FOR#AT~lHO,SX~22HDPEN,LOOP CALCULATIOWS) 
2015 FORMATflHO,SX~26HMAXIMUM NORMALIZE0 ERROR 1 P E I O o 2 / )  
2016 FORMAT( I1 1 
2017 FO(N1Af(lHOc5Xr24HCtOSEO=L~P CALCULATIONS) 
2018 P ~ R H A T ( ~ H O I S X , ~ H K E Y  I 11,3X,SH**+**! 
2019 FORMAT(~HOISXI 23HPLANT IS lJNCONTROLLABLESX~lOH**********) 
2020 F O R M A T ~ ~ H O I ~ X ~  3SHPLANT IS NUMERICALLY UNCONTROLLABLElOX, 

2021 FORMAT(1HOrSX*14HTHE ROOTS ARE r l3X,9HREAL PART, lOX,14HIMAGI~ARY P 

2022 F O R M A T ( 2 5 X i l P 2 E 2 0 . 7 )  
2023 FORMAT(1HO) 

1 16HMAXo D E V I A T I O N  * ~ P E ~ O O ~ ~ ~ X I ~ O H * * * + * * * * * * )  

l A R T  ) 

C READ INPUT DATA 
1 READ 2 0 0 1 ~ 1 0 ~ ~ N A M E f I ~ r I ~ 1 ~ 4 ) ~ ~  

P R I N T  2003rtNAME(I)rImlr4) 
P R I N T  2004 
DO 2 I = l * N  
READ 2 0 0 2 o f A f I + J ) , J = l r N 1  

2 P R I N T  2 0 0 5 , ( A ( I * J ) , J = l , N )  
P R I N T  2006 
READ 2 0 0 2 1 ( 8 t I ) e I * l ~ N )  
P R I N T  2 0 0 5 r ( B 4 1 ) r I ~ l ~ N )  
NKEY -0 

DO 7 I = l * N  
7 A A ( I r l ) = B ( I )  

DO 8 I t P r N  
L= 1-1 
DO 8 d=I*N 
AAfJeI)=O. 
DO 8 K - l p N  

CONTRtOETfAA,N) 
I F f C O N T R )  3,493 

C CHECK COfUTftOLLABIL1TY 

8 A A f J r I ) - A A f J i I ) + A ( J , K ) * A A ( K r L )  

4 P R I N T  2019 
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GO TO 9 

DO 43 I - l r N  
DO 43 J=l*N 
P( IwJ)=Oo 
DO 43 K=lrN 

3 CALL SIWEQfAAtC*NtPINtC) 

43 P(ItJ).P(ItJ)+AA(ItK)*PIN(U~J) 
ERROR t 0 
00 44 I=l+N 
DO 44 J*l*N 
IF(1-J) 45r46s43 

60 TO 44 
46 ERR = ABSF(P(IrJ)-leO) 

45 ERR = ABSFfP(1rJ)) 
44 ERROR = MAXF(ERRtERROR1 

47 PRINT 202OtERROR 
IF (ERROR-1 .E05 1 9 @4?#47 

C OPEN-LOOP CALCULATIONS 
9 PRINT 2000 
PRINT 2 0 1 4  
NN=N+l 
PRINT 2011 
CALL CHREQfAtNwD) 
PRINT 2 O O S t ~ D f I ) t I ~ 1 t N N ~  
CALL PROOT(NtDtUwVw+l) 
PRINT 2021 
PRINT ~ 0 2 2 ~ ~ U ~ I ~ r V f I ~ t I ~ l t N )  
DO11 I = l * N  

OOlZJJ=ZrN 
DO12 I=l*N 
JaN- JJ+ 1 
K=J+1 
P(ItJ)=D(KJ*B(I) 
DO12 L-ltN 

11 P( 1rN)rBf 1 )  

1 2  P(IwJ~=P(ItJ)+A(IrLI~P(LrK) 
72 READ 2002~fC(I)tf=lrN) 

DO 70 1-1tN 
IFfC(11) 71 t7Ow71 

70 CONTINUE 
GO TO 104 

71 PRINT 2023 
PRINT 2016 
PRINT 2005*(C(I)rI=lsN) 

49 0013 I=l*N 
CC( 11.0. 
0013 J-lrN 

DO 100 IfltN 
MtNN-f 
IF(CCfM))l01w100e101 

13  CCft)-P(J,I)+C(J)+CC(I) 

100 CONTINUE 
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101 PRINT 2012 
PRINT ZOOSr(CCtI)~I=lsM~ 
M tH-1 
I F t U )  105rlO5rlO3 

PRINT 2021 
PRINT 2022,tUfI~,Vf~~wI~l~M) 

103 CALL PftOOt(MrCCdJsVr+l) 

105 GO TO 72 

104 READ 20169 KEY 

120 MKfY=l 
PRINT 2000 
PRINT 2Oll 

121 PRINT 2018dEY 
GO TO (21~20oZZ)rKEY 

21 READ 2OOtrGAIN 
REA0 2O02~fWt1)91=19M1 
DO 41 I m l r N  
Ht I toow 
00 41 J=l ,N 

DO 42 I-leN 
DO 42 J=lrN 

CALL CHREO(AA,W9E) 
GO TO 24 

22 DO 2 S  I=l*N 
DO 23 J=l*N 

23 AAf1,J)=Oo 
1 =o 

34 I=f+l 
REA0 2002+RReRI 
I F t R I )  30,31930 

31 A A (  IrI)=-RR 
GO TO 35 

30 A A (  191 1r-M 
J=I+l 
AAfIrJ)=-RI 
A A ~ J I I  ) = R I  
I-J 
AA( I r I  )=-RR 

C CLOSED-LOOP CALCULATIOHS 

If (KEY)  4 0 r 1 ~ 4 0  
40 If(NKCY1 l Z O ~ l 2 0 ~ 1 2 1  

41 H~~)=H~!)+P(JII)*HH~J) 

42 A A ~ l ~ J ) ~ A f 1 s J ) - C A I N * B f I ~ * ~ ~ J ~  

35 IffI-N) 34r50r50 
50 CALL CHREO f AA rW e€ 

20 READ ~ 0 0 2 9 f E ~ 1 ~ ~ 1 ~ 1 ~ N ~  
25 DO19 I-lmN 
19 HfI)=€(I)-DfI) 

18 DO14 I t l r N  

GO TO 25 

CALL SIMEQfPeCvN*PIN,C) 

HHI I )=O. 
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DO16 J = l * N  

DO 5 I = l * N  
DO 5 J+1 eN 

CALL CHREQfAAnNeE) 
G A I N  = E ( l ) / C C ( l )  
DO26 I = l r N  
HHfI)=HHfI)/CAIN 

2 6  H(I)=H(I)/GAIN 
2 4  PRINT 2013 

PRINT 2 0 0 5 r ( H ( ! ) e I ~ l * N )  
Nl W-1 
CALL PROOT(Nl rH*U.Vr+ l )  
PRINT 2 0 2 1  
PRINT 2 0 2 2 r l U ( I I e V ( I ) r I ~ l s ~ l ~  

17 PRINT 2008 
PRINT 2 0 0 5 * ( H H ( I ) r I = l r N )  
PRINT 2009eCAIN 
PRrNT 2007 
PRINT 2 0 0 5 r ( E ( I ) s I ~ l c N N )  
CALL PROOTtNeEeU,Vs+l) 
PRINT 2021 
PRINT 2022 r (Uf I 

C CHECK ACCURACY 
ERROR -0 .  
DO 6 I r l o N  
E R R = ~ E ~ I ~ = C A I N * H ~ I ) - D ~ f ) ) / E ( f )  
ERR= ABSFfERRl 

16 H H f I ) r H H f I ) + P I N ( J * I ) + H ( J )  

5 A A ( l r J ) . A f I e J ) - B ( I ) * H H ( J )  

* V (  1 )  9 111 rN j 

6 ERRORPMAXF(ERROR~ERR) 
106 PRINT ZOlSrERROR 

GO TO 104 

EN0 
10 STOP 
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GOT049 
36 PtQ+~Bf2)*C13)-8fl)*Cf4)~/0 

O r ~ f - B ( 2 ) s C B A R + B ( l ) * C ( 3 ) ) / 0  
49 CONTINUE 

E m E * l O o  
GO1020 

50 NC-NC-1 
V t NC B 10 

51 Uf NC1=1o/R 
ir ( r ~ ~ v 1 5 r  9 52 *52  

601053 
52 UfNC)=R 
53 0054l~l*NC 
54 Hf I )=E( I+l) 

c0t04 
70 NC-MC-2 

IF t 1 REV 17 1 72 e72 
71 QPsl0IQ 

PP=Ptf0*2.0) 
Cot073 

72 QP=Q 
PPSP / 2 .O 

73 F=fPP)-2-QP 
IFfF)74r73*75 

74 U f NC+l) =-PP 
Uf NC)=-PP 
VfNC+lIeSQRTF(-F) 
VtNC)r-VfNC+lJ 
GOT076 

V f  NC+l)+Oo 

V I  NC )=Om 

75 U(NC+ll=-fPP/ABSFfPP))~~A8SFtPP)+SQRfF(F)) 

UfNC)=QP/UfNC+l) 

76 DO77 1-1 *NC 
77 Hf I)-Bl1*2) 

60104 
100 RETURN 

E NO 

C SUBROUTINE CHREQ(A*N*C) 
SUBROUTINE CHREOfAeNeC) 
OfMENSlON J f l l ~ ~ C f l 1 ) ~ B ~ l O ~ l O ~ ~ A ~ l O ~ l O ~ ~ D f 3 O O ~  
HW-N+ 1 
0020 I=l*NN 

20 C(1)PO. 
CfNN) 10 
DO14 M = l t N  
K=O 
L=1 
Jfl)=l 
GO TO 2 

1 Jf L) =JfL  )*1 
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2 IF(&.-M) 3e5e50  
3 MM-H-1 

DO 4 I=L.rMM 
I I-I+l 

4 J ( l I l = J ( I ) + l  

K = U + l  
DfK)=DfTtBeU) 
00 6 I - l e H  
L=M-1+1 
IF(J(LI - (N44+L))  1 e 6 s 5 0  

6 CONTINUE 
MI = N44*1 
0014 1 - 1 . K  

RE TURN 
50 PRINT 2000 

5 CALL FORHI J+MsAsB) 

14 C ( M 1 ) ~ C ( W l ) + D ~ I ) * ( - l . ) + * M  

2000 FORMAT ( IH0,SXelWERROR IN CHREQ) 
RETURN 
€NO 

C FUNCTION DE1 DETERMINES THE DETERMINATE OF THE MATRIX @ A @  
FUNCTION DET(AeN1 
DIMENSION A ~ 1 0 s l O ) r B ~ l O e l O ~  
DO 1 I K - l r N  
DO 1 J K = l r l Q  

MN * N-1 
D = l a 0  
DO 100 L~ I IN IY  
LL = L+l 
AMAX A(L*L)  
IM = C 
JM = L 
00 15 I=LeN 
DO 15 J-L*H 
IF tAMAX-ABSF(AfI ,J) ) )  1 O e l S e 1 5  

10 I M  = I 
JM - J 
AHAX = A B S f ( A ( 1 s J ) )  

15 CONTINUE 
IF(1M-I.) 1 6 e Z O e 1 6  

16 DO 17 J = l , N  
T A ~ I M I J )  
AtIMoJ) A ( L e J )  

0 = -0 

1 B t I K e J K )  A(1KeJK) 

17 A ( t e 4 )  T 

20 lf(3M-L) 21,25921 
2 1  DO 22 1 = l d 4  

T A t I e J M )  
A ( 1 e J M I  = A ( I s L )  

22 A I I e L I  = T 
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0 * -0 
25 DO 30 K l - L L p N  
30 A l t r K 1 )  A ( L * K l ) / A ( L , L )  

DO 50  J - L L e N  
DO 50 K - L L e N  

50 A ( J * K )  = A ( J e K ) - A ( J * L ) * A ( L s K )  
100 CONTINUE 

DO 200 I r l v N  
200 D f D*A(I*I) 

OET = 0 
DO 2 I K - l e N  
00 2 J K = l * N  

RETURN 
END 

2 A ( 1 K r J K )  B t I K e J K )  

C 

1 

SUBROUTINE FORN(J*MoAoB) 
SUBROUTfNE FORM(JeMsAv81  
DIMENSION A ( 1 0 ~ 1 0 ) r B ( 1 0 e 1 0 ~ ~ J ~ l l ~  
DO1 ItlrM 
DO1 K - l * M  
NR-3 ( 11  
NC=J ( I C  1 
8 (  I * K ) = A ( N R * N C I  
RE TURN 
END 



AINV I N '  
10 AINV ( N 4 4  1 =TEMP 

N* 

NASA-Langley, 1967 - IO CR-850 


