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THREE-DIMENSIONAL NONLINEAR STABILITY ANALYSIS Oﬁ THE
SUN-PERTURBED EARTH-MOON EQUILATERAL POINTS

* .
Hans B. Schechter, Research Scientist
The RAND Corporation, Santa Monica, California

Abstract

This paper presents the results of a nonlinear
analytic study of the long period features of the
motion of a particle in the Earth-Moon system, near
the L, libration point. Such long term effects
stem from the excitations close to the particle's
natural frequencies, which are introduced by the
presence of resonance terms in the internal (Earth
and Moon) and external (direct and indirect solar)
force fields., Nonlinearities up to the fourth or-
der in the displacements from L,, and solar terms
of comparable magnitude, were retained in the anal-
ysis. The importance of the nonlinear coupling of
the out-of-plane motion with the in-plane motion
was investigated. The existence of some equilibri-
um solutions was established, and some insight re-
garding the geometry of motion along the correspond-
ing periodic elliptic particle orbits was obtained.
Qualitative and quantitative information concerning
the stability of these orbits was obtained by study-
ing the slow variations around these periodic equi-
librium motions,
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I. Introduction

The problem of the stability of motion of a small
particle in the vicinity of the L, and Lg points of
the Earth-Moon system in the presence of the Sun
has been studied in a number of recent papers.(1'5)

Attempts to study the problem by means of formal
perturbation techniques applied to the complete non-
linear system of equations of motion near L,, or to
assess the effect of the solar force field on the
motion,(3) have proven unsuccessful because of the
occurrence of small divisors in many terms of the
assumed series solution, These small divisors re-
sult from the presence of small combination or "de-
tuning' frequencies in the nonlinear forcing terms
of the differential equations, when the latter are
evaluated along the nominal solution to the linear-
ized set of equations., Such near-resonance condi-
tions lead to poor, or at best questionable, conver-
gence of the terms in the attempted series solution,
and prevent its truncation after a reasonable num-
ber of terms. Analytic approaches using standard
perturbation methods based on series expansions are
thus unable to resolve in a satisfactory manner the
question of boundedness of the motion near the equi-
lateral points, with or even without the perturba-
tive effects of the Sun,

Another more straightforward approach pursued by
a number of researchers has consisted in the direct
machine integration of the complete set of Langran-
gian equations of motion. The resultant numerical
solutions available to date are rather limited in
that they were generated only for restricted sets
of initial conditions and initial Earth-Moon-Sun
configurations, Consequently, they do not shed
much new light on the question of the possible ex-
istence of domains of initial conditions and config-
urations for which bounded motions may exist and
they are also unable to provide deeper insight into
the dynamics of this nonlinear motion from which
more general conclusions could be drawn,

The necessity and usefulness of further theoret-
ical analysis prompted Breakwell and Pringle(s) to
propose a theoretical approach to the two-dimen-
sional case, which was based on Hamiltonian mechan-
ics and took into account the dominant nonlinear
near resonances by examining only the slowly vary-
ing terms.

The present paper extends the analysis of Ref. 5
to the three-dimensional case and analyzes in
greater detail the stability of slow variations




around the two periodic equilibrium solutions which
were found to exist in the Sun-perturbed model.

One of the equilibrium solutions was found to be
stable, and the second unstable, Short-period
terms are removed from the Hamiltonian via von
Zeipel's method which results in an expression for
a slowly varying Hamiltonian that describes the
long-period features of the motion, The long-period
behavior of the system is determined by its re-
sponse to excitations which occur at or close to
the particle's natural frequencies., These excita-
tions are introduced by the presence of resonance
terms in the nonlinear parts of the "internal"
force field due to Earth and Moon, and by similar
terms in the "external" force field due to the Sun,
Some errors in the expression for the long-period
Hamiltonian of Ref, 5 have been corrected in the
present paper,

II. The Hamiltonian H Near L,

The geometry of the present physical model is
shown in Figure 1, '

LuNar ORBIT (SOLAR
EFFECTS INCLUDED)

® Sun

Line OF NODES
(REGRESSION . DUE TO SUN)

Figure 1, Geometry of the Four-Body Problem

A suitable nondimensionalization is introduced
by defining the E-M distance r_, (t) and angular ve-
locity n(t) by the relations rgy = 1 + p(t), a(t) =
1, + B(t); p(t) and_3(t) are available from classi-
cal lunar theory(6,7) in terms of lunar eccentri-
city e, the Earth's angular velocity around the Sun
m, and the angular variables £, ¢, M, Q, i.
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p(t) = -0,0079 cos 2S5 - 0,00093 - e cos ¢

+-% e2(1 - cos 29) . em cos(2% - ¢) + -

8
(1)

Ct) =[O sin 1 sin M + i cos m-{x

+[Qsinicos N- {sin T\]?.’
+ [0.0202 cos 2t + 2e cos ¢

1 2 ¥y
+—Z em cos (25 - ¢) +§ e” cos 2¢ + ,,,]iz

=y i+ vi +0v I

E=(1-mt+e- ¢ m = 0.074801
pg=ct+e-w c 2 0_.99155
N=gt+e-0 g = 1.0040212

Q0 =-§%§—% (1L +p)W I = (1 + p)W cos 7
W denotes the solar acceleration coeponent normal
to the E-M plane at the Moon's position (see page
404 of Ref, 8); 1, i, 1, denote umit vectors in
the x,y,z directions, respectively. We shall con-
sider here only the case of a lunar orbit with a
mean eccentricity e = 0,

Because of the near resonance wj = 3y9 of the
coplanar natural frequencies w; = + 0,95459,
w, = + 0,29791, we must retain fourth-order terms
in the Taylor expansion of the Hamiltonian H around
L4. In order to be consistent in our retention of
comparable order of magnitude terms in the solar
perturbation, we consider the quantities m,x,y,z,
Px,Py,Pz,vﬁ;JG: and i as being of the first order
of smallness; Py ,Py,P, denote, respectively, the
momenta conjugate ¥o X,¥,2, and are introduced by
the relations

p :-a—. =P +3 (2)



where L denotes the Langrangian of the system. In
matrix notation H = p_f - L, where p_ is the row
matrix obtained from Eq (2) and £ is the column
matrix of velocities %,¥,2 It is convenient to
split H into the parts

g =00 +n’ 3)

where

4

H =H,+H

3 4
and where H(o) contains the second- and third-order
linear and quadratic terms in the displacements and
momenta, and the perturbation Hamiltonian H’ con-
tains the third-order (H3) and the fourth-order
(HQ) perturbing terms shown below:

1@ {% (Pi + Pi + P2> (yP - xPy)

+%<x2—5 +4z) I(l-zu)xy

36 )
-prx+ﬁpy +

+-!;:—3H (33xy2 - 7x3 - 12x22) - éig—yzz} (5)

16 4
503 (1 - 2u) 3 3 37 4
H4 { 32 (5x7y - 9%y~ + 12xyz Y + 55 128 ¥
+‘_§ x222 +_§§ 222 _ 123 2 2 3 4
16 16 6~’+ XY “71287
- 3 4} { pkx - 5y + 422
- 6vr_(1 - Zp)xy) + uz(ny - xPy)
+u (@, - 7B + v (R - yP)
- mz[ 32 (xx +y y)2 - % (x2 + y2 + 22)] }
2r s s
ES
- m2 7 (x + Vf"y )z z +-— (Vr-u + v )z
2r ES

+.% (Uy - VG—Ux)Pz + o(m ,m ) etc,.. (6)
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The terms XgrVgoZy denote the solar coordinates:

xg = rES cos § Yo = “Tgg sin €

Zg = Tpg sin 1 sin (Q - v') ™
and v’ is the solar longitude, The solution to the
linear nonhomogeneous differential equations gov-
erned by H(°) consists of a complementary part, X,
y,Z, and a forced response, X,§, No Z arises be-
cause the terms linear in z were included in H,.

4
g = 2.902«/011 cos wla’: + 8.003J072' cos wze’;
§ = 2.103/0, cos (wls’f + 123.57%)
+ 4.793J5;'cos (w23§ + 154.82°)
z = 2a3 cos Bé
£ = 0,01016 cos (2% - 67.2°) (8)

+1.697m° cos (25 - 127.7%)
§ = 0.00867 cos (2% + 38.3%)
+ 1.43n> cos (2% - 20.83%)
z =0
where
# , # . #

Except for Z, Eqs. (8) are the same ones found
in Ref. 5; ai,Bi (i =1,2,3) form a polar set of
integration constants, canonical with respect to a
Hamiltonian H = 0, Further details regarding the
derivation of the above or any other equations of

this paper can be found in Refs. 9 or 10,

III. The Slowly Varying Hamiltonian

The inclusion of the additional terms Hj and H,
in the Hamiltonian can be handled by a method
equivalent to the customary technique of variation
of constants.

We shall require ¢,B to become fumctions of time
which then satisfy Hamilton's equations with a Ham-
iltonian H’. Inasmuch as we are not concerned in
the present investigation with an exact or detailed



determination of the particle's trajectory, but
rather in the overall broad features of the motion,
we shall desire to obtain only the slowly varying
components of «o ané 8 which will arise from the
secular terms in H , and those terms containing low
combination frequencies which arise from the near
resonances,

This can be accomplished by means of a suitable
canonical transformation of coordinates from the
polar canonical set o,8 to a new slowly varying
canonical set o' B associated with 2 new slowly
varying Hamlltonlan k'. k' will contaln only the
lowest frequency terms which arise in H' as a re-
sult of the above transformation, all other faster
terms having been suitably eliminated It is rea-
sonable to assume that for relatively small dis-
placements x,y,z of the particle, the effect of "’
would be in the nature of a slow chamge of the lin-
earized solution found earlier. With this assump-
tion in mind we may now consider a stationary con-
tact transformation

’

o T
: .
By = B; + 884

+ 601

(9

that may be 1ntroduced with the aid of a generating
function G(B,o’)

6(B,a’) = B’ + 5(B,a") (10)
which satisfies the relations(ll)
B’ =% -pg+s,
30" o
(11)
- Sg

The first term By’ in G generates the identity
transformation, while the function S(B,o’) =S, +
S, denotes an additional suitably selected gener-
ating function which is introduced for the specific
purpose of e11m1nat1ng all the short-period terms
which occur in H’ ;3 S 1s selected to eliminate the
terms of o(m ), and S, those of o(ma)

Since S does not depend explicitly on time t, we
can write

tont 2 _l_f’l ’ Vot 1
K(B s ¢ )t)" (B O at)+H(B 1o ’t) (12)

where H above is evaluated in terms of the new co-
ordinates and new momenta,




When all the required steps of the transforma-
tion are carried out, one arrives at the following
relation for K' (see Note at end of References)

PF . w .= 1l e
K" = H3 + H4 + H4 -3 [H3,SI] (13)

where H, and H, are the secular and long-period
terms resulting from the Taylor series expansions

(et
|
b
|
4
!
L
N
|
| I—
o

Py (14

n:

evalgated at X,y¥,z., For the present case e = 0
and H 0.

The term H 81 denotes the long-period part of
the Poisson bracket of Hy with Sy; H, results from
the substitution of the homogeneous solutions X,y,z
into H, and consists of an internal part H41nt and
an external part H4e ¢ which contains both the di-
rect and indirect solar effects, The nearly reso-
nant terms arising from z and P, in ﬁ&ext cancel
out, i,e, there is no long period ocut-of-plane
forced motion,

The above K’ differs from the expression on page
63 of Ref. 5, where only one part of the Poisson
bracket [H S 1 appeared in the function 3. Now
the transformatlon of a Hamlltonlan from one canon-
ical set (o,8) to another set {a 3’) should give
rise only to polynomial terms( i(l e., terms
which arlse from a binomial expansion such as
(x + y) with n being some finite integer). This
clearly is the case when K’ contains a Poisson
bracket, but not for the function 3 which intro-
duced an 1ncorrec% ?onpolynomlal long-period term
such as o 1(3/2) 1/2) jn Eq. (10). Dr. Breakwell at-
tributed the presence of this term to his use of
mixed variables in the determination of the gener-
ating function S;, which would yield a correct re-
sult only for linear Hamiltonians, and suggested
here that one transform 1mmed1ate1y to the set (o',
B ) before one chooses a relation for Sj.

The algebralc work needed to express K' in terms
of o’ ,B’, and t is rather formidable and is one of
the major stumbling blocks in what would otherwise
be a relatively straightforward solution, If all
the manipulations have been successfully carried
out, one does eventually come up with the expres-
sion for K’



r _ 12 ) ) 2
K {0.1266&1 6.0000102 + 3.82902

2
- 29.040{(1/ )a£(3/2) cos [0.06086t + wlai

¢ o ?
+ 3w,B, + 14.27] + a 05[0.09316

+ 0.08608 cos 2A13 - 0.03934 sin 2A13]
12

7 7 4
+ 0.7554&203 - 0.0022310/3 }. - {0.005394&/1

int

+ 0.008208c, + 0.02685x; cos [0.05878t + 2w, B/

2
+29.4% + 2¢" - 2¢] + o.oo4193a5} (15)
ext.
where
-— ’ ! = { !
Byg = wy(t +3;) - (t +B3) =-0.04541t + w8, - By

The first bracket contains all the internal
terms, while the second bracket includes all the ex-
ternal (solar) terms. The long-period contributions
to the coplanar (a{, aé) terms resulting from the
periodic parts of the indirect p(t) and v(t) terms
in H’ were found to cancel exactly the indirect pe-
riodic terms generated by the first term in the lin-
ear forced response X and ¥ of Eq. (8). The exter-
nal terms displayed in Eq. (15) which are left after
the above cancellations, stem from the contribution
of the indirect constant component -0.00093 in p,
from the direct m2 terms in H, and from the m? terms
in the forced response X and § of the linear system,

The explicit presence of time t in K can be elim-
inated via a coordinate transformation to a new
canonical set Qfs*

.
B, = 0.02939t + wlB{ +14.7° - e+ ¢’

* _ ’ [o] ’
Bz = 0.03146t + 3w282 - 0.50 + ¢ - €

* ’ o (16)
By = 0.074801ct + 8. +2.42° - ¢ + ¢
1 4
* 9 * % * ,
oy = Gy = — o, = o
1 w; 2 w, 3 3

which results in the time-independent Hamiltonian K*




{o 115407 - 5. Loja,

_ *(1/2) *(3/2
23.97a1 @, )CB*+S§

+ 3, 059&

+ 0, 09035a * + 0.08893at

193°2(3}-5)

*

o

w

* *
+ 0. 6751&/2 3" 0.002231:13 + 0.02939&1

+ 0.03146a2 + 0.07480102} + {0.004193a§

int
* *

- 0.007336q, - « [0.005149 + 0.02563C,, *
2 1 281

(17)

where

*
* =
C281 cos 281

IV, Equilibrium Points and Their Stability

It can be shown, on the basls of an analysis of
only the internal terms in K* that an appreCLable
coplanar internal coupling exists between oF and

This analysis disclosed on the other hand that
tge internal coupling between Gl and a3 did not
lead to any measurable transfer of energy from the
out-of-plane mode to the coplanar mode of motion,
The major long term solar effect causes mainly an
excitation of the Ql mode. The of mode does not
experience any external excitation to the order of
magnitude of the terms retained,

Determination of Equilibrium Points

If a stable motlon 1n the presence of the Sun is
possible in which 01’02 and o% remain small, 1t
would suffice to retain only ?lnear terms 1n K* in
order to determine long term effects, To linear
terms we have the simpler Hamiltonian

o.ozazsat'+ 0.0241205 + 0.07899q, - 0.025630 C

3 1 281
(18)
which is of the Mathieu type, and leads to para-

metric resonance in the &] motion. Since 0.02563 >
0.02425 the motion falls into the unstable region
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of the Mathieu plane and therefore no motion can
exist for which Ol remains very small,

From a physical point of view this means that
the libration point L, is not stable with respect
to small perturbations, when the solar force field
is included, and that the higher order terms in K;
must be retained in any analysis.

The lack of stability exhibited by the linear-
ized Hamiltonian does not preclude the existence
of equilibrium points in the o space for the com-
plete Hamiltonian. 1In view of the negligible

effect of oy on the coplanar motion, it is of in-
terest to look for equlllbrlum points for oX = 0,
Such points in the (al,az) plane are determined by
looklni for solutions to Hamilton's equations of the
form o =0
Once sucﬁ points are located, it is then neces-
sary to investigate the type of equilibrium which
exists there, and to identify the stable ones.

This search is more easily carried out if one
switches over to a set of normal coordinates (Q* ,P *)
defined by

* I * * * _
Qi = /2ai sin Si Pi = Zai cos Bi i=1,2
(19)
* .
After setting o3 =0, the two dimensional part
of K*, which we denote here by KZ’ becomes

€ =0 (7 o) - 3 O+ o)+ )

+ 3. 059 (P*z Qz )

23.97 ( * % * % ( *2 *2>
-4 \P{F2- Q1Q2> P, *Q

+ 0.02425 (?* + Q1 ) 0. 02412 (P*z + Qz )
_ 0.02563 02563 \? 2) (20)

The equilibrium points (Q Pe) are obtained from
the solution of the equatlons

* : *

Q (1] I KZP*T

N * =0 (21)
P -1 0 KZQ*T

From Eqs, (21) we have
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* *( %2 *2) 5.1 % )
% = =
K2P1 0 = 0.1154p (P +Q1 5= P, Q2
2 %
- 3 7 (Q ) - 0.001379P1 (22a)
* 5.1 ( *2 ( *2 *2)
* = = o ——
szz 0 5= PA\P," + Q1 ) +3.059P,\P," +Q,
23.97 ( *2 *2 *
- =5 3PP, + P1Q2 - 2P2Q1Q2) + 0.02412P,
(22b)
*
K- % =0 = 0.1154Q*<P*2 . Q*z) 5.1 Q*( %2 Q*2>
2Q; 1 2 2
23, 97 *
+ == P + Q2 + 0. 04988Q1 (22¢)
; ot ) HE + )
* = =
KZQZ 0 QZKP + Q1 +3.059Q,\P," + Q2

23,97 (2 *_k_k % %2

*2> *
A + 0.02412Q2

QPP - P, - 31
(22d)

Equations (22¢) and (22d) are identically satis-
fied if we choose Q] = Q2e = 0. For simplicity we
shall therefore restrict our search to those equili-
brium points for which

* *
Qe = Qe =0 (23)
For the above Q*'s, Eqs. (22a) and (22b) give
*3 % %2 *3 *x
0.1154P1 - 2.55P1P2 - 5.810P2 - 0.001379P1 =0
(24a)
*2 % *3 * %2 *
-2.55P1 P2 + 3.059P2 - 17.43P1P2 + 0.02412P2 =0
(24b)

One equilibrium point can be obtained by setting
Poe = 0 (which automatically satisfies Eq. (24b))
and then solving for Ple from the relation

*2
0.11541’1 - 0.001379 = 0 (25)
or
.
P, =0,1093 (26)

which corresponds to
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*
%, = 0.005975

The first equilibrium point, which we denote by

EI’ is thus specified by the coordinates

Q* = Q* = Q* = P* = P* =0 P* = 0,1093
1 2 3 2 3 1 27
* * *
@ = 0.005975 o, = 0 oy = 0

Another equilibrium point can be found for which
P; and P2 # 0, all other coordinates remaining
zero, The values of Pl and P§ result from the so-
lution of Eqs. (24a) and (24b) after P% is factored
out from the latter. The coordinates 6f the second
equilibrium point Eyy were found to be

% _ * _ * _ P* -0
Q= =0 =Py
* *
P} = 0.1106 o} = 0.006116 (28)
* -
P’; = -0.003675 oy = 6.753 x 10 6

The two points E1 and Egp were the only ones
readily found for the present simplified condi-
tions., A machine search might reveal the existence
of additional roots of the complete set of Egs.
(21). The periodic elliptic particle trajectory of
mode close to w, corresponding to conditions at E;
is shown in Fig. 2, It has a semimajor axis of
about 60,000 mi and a semiminor axis of half this
value These values were determined by computlng

[x +3 ]1/ , where the w; modes of X and ¥
of Eq (8) were used, and the maximum was deter-
mined with respect to w B{. It can be shown that
this requires that t

8.422s, B;IK + 4.42352w1571£+247.140
and results in a value w B# 15.62 deg, The di-
mensionless expression fo Tmax then becomes
Tmax = 3.2011/ and at o] = 0.006 amounts to
roughly 3.2°,0.955-006 x 2.4 x 10° = 58,128 =
60,000,

It is of interest to observe that this result
indicates the particles mean motion is synchro-
nized with that of the Sun such that their angular
positions coincide closely whenever the particle
crosses one of the axes of the ellipse To see
this we recall that at equillbrlum Q and
hence 51 =n7 with n =0,1... For n = 0 Eq. (16)
gives
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ei = 0 = 0.02939t + wB] + 14.7 - ¢ + ¢

and from here

wlsf = wt - 0.02939t - 14,7 + ¢ - ¢’

ghen the particle crossed the major axis, we had
w151 = 15.62, and from the commensurability of angu-

lar velocities at Ei, (ml - 0.02939) =1 - m, Sub-
stitution above gives

15.62 + 14,7 =30.32° = 1 -m)t +e- ¢’ =¢
as defined below Eq. (1). From the definition of
xg and yg preceding Eq. (8), this then shows the Sun
to be located 30.32 deg below the x-axis, and there-

fore closely aligned with the major axis of the par-
ticle's orbit,

~

Periops - = 28.6 pavs
12 ELLIPSE '

Figure 2, Periodic Orbit Corresponding to

Equilibrium Point EI

Stability of the Equilibrium Points

The stability of the slow variations around the
above periodic equilibrium motions in the x-y plane
can be determined by setting up the expression for
the variation 8K*, which results from taking small
displacements 60* and 6P* around the equilibrium
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values Qj, = 0 and P{,. Clearly, since E; and E
are equilibrium points, the coefficients of the lin-
ear terms in 8K* must vanish. The expression for
8K* at point EI becomes
* * * *
8" = 0.00138068}% + 0.025638Q) > - 0.0031746P

*2

. 0.0031746Q;2 + 0.040086P}

+ 0.039496Q§2

(29)

Since for‘svery value of i = 1,2,3 the coeffi-
cients of 6B} have the same sign as the coeffi-
cients of 6Q*2(i.e., 6K 1is either positive or nega-
tive definite irrespective of the signs of 8§P* or
GQ*), we can conclude that point Ey is stable for
small disturbances in all principal directions, The
period of the slow variations in §P¥, 8Q* is approx-
: 1 1
imately 83 months, *

At point Ejy we have for 6K

* * *
K- = 0.0014115p12 + 0.025635Q12 + 0.0018385PT6P;

* -
+ 0.0036526P22 +7.847 x 10 Saqfaqz

*
- 0.0011505Q22 + 0.040086P§2 +0.039498Q5
(30)

Equation (30) indicates that the in-plane varia-
tional equations are decoupled from the out-of-
plane equations, and that the latter lead to a
stable solution, The nature of stability at E;g
can thus be determired by writing down the com-
plete system of £irst-or2er linear differential
equations for 6Q; and 8P (i = 1,2) obtaiped from
8k* of Eq. (30), and by examining the roots of the
appropriate characteristic equatioms. We find
that

0 0 0.002822 0.001838
0 '0 0.001838 0.007304
= -5
-0.05126 -7.85°10 0 0
-7.85-107° -0.0023 0 0

A trial solution of the form eSL leads to the
characteristic equation
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s* +1.282-107%2 - 2.031-10°8 = 0 (32)

which has one positive root because of the negative
constant term, Ejy is therefore unstable,.

A simple geometrical description of the stable
and unstable regions in the six-dimensional P ,Q*
space is of course not feasible. On the other
hand, it is possible to take advantage of the fact
that the stable point Ej happens to lie very close
to the unstable point EII’ and to determine the ex-
tent of the stable reglog around E by expanding K
up to cubic powers in 8P" and Q" around E;. (The
cubic terms arise from the internal resonant terms
in (15).)

The intersection of surfaces of constant K with
the (PZ,Qg) plane, for a value of Pi 0.11, is
shown in Fig. 3. The dashed curve shows the sepa-
ratrix which passes through E;g and separates the
stable from the unstable regions,

>y 10
Maxivum PERTHSSIBLE 10
VARIATION 3P ok 39, T2450 mi \
(CORBESPONDS > MAXIMUM  _ 20
SEMIMAIOR Ax!S OF
), MOOE)

C-Ck*0e,Re)

Conveesion SCALE
1071450 ™

* R
Figure 3, Stability Regions in the (P2-Q2) planpe
Near the Coplanar Equilibrium Points
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In the physical x-y plane, a point in the stable
region gives rise to slow variations of the elements
of the periodic particle orbit corresponding to E_.
A point in the unstable region of the (Pf,Qz) plane
would lead to large particle departures from the
equilibrium orbit, and thus would indicate a pos-
sible divergence. 1In other words, the slower free
mode, unless almost absent, is unstably excited by
the faster mode which is present due to the Sun.

The maximum allowable participation of the w
mode in the particle's motion, before instability
sets in, is limited by the least distance of the
separatrix of Fig. 3 from the origin. This occurs
at its intersection with the positive Pg axis, and
results in an elliptic orbit with a maximum semi-
ma jor axis.

- - % 5_ .
T oax - [(9.1 M6.8937/v2)P2max « 2.4 x 1077] = 2450 mi

V. Summary and Conclusions

In the present paper, the three-dimensional sta-
bility of the motion of a particle near the equilat-
eral libration points of the Earth-Moon system, in
the presence of the Sun, has been investigated.

Because the inclusion of lunar eccentricity would
have introduced into the problem a larger number of
internal and external resonances than could have
been handled by the present method of approach, it
was found necessary to restrict the stability analy-
sis to a lunar orbit perturbed by the Sun but with-
out eccentricity,.

Four major conclusions emerge from the present
study. First, small coplanar motions near L, or L
will grow large because of parametric excitation by
the Sun, as a result of nonlinear resonance. In
fact, the growth of the energy in the faster normal
mode of the linearized theory is found to be gov-
erned by a Mathieu equation.

Second, the out-of-plane motion is not seriously
excited by the Sun, and has a negligible effect on
the coplanar motion, which is the dominant factor as
far as stability is concerned,

Third, a stable periodic coplanar orbit can exist
in the presence of the Sun. It consists of a west-
ward (clockwise) motion along the 1:2 ellipse around
L, corresponding to the first (or faster) normal
mode and has a semimajor axis of approximately
60,000 mi. The external nonlinear excitation causes
the mean angular motion of the particle to become
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synchronized with that of the Sun., Thus to an ob-
server located at L, and looking continuously in the
direction of the Sun, the particle would appear to
move back and forth across his line of sight in the
manner of a simple harmonic oscillator. The times
of crossing of the line of sight coincide closely
with the times at which the line of sight is aligned
with the major or minor axis of the ellipse.

Fourth, the presence of the internal resonant ex-
citation, resulting from the near commensurability
(3:1) of the two coplanar normal modes, makes the
stability somewhat delicate. As a consequence, the
semima jor axis of the second mode is limited to mag-
nitudes less than approximately 2450 mi. For larger
values the motion becomes unstable and may result in
very large displacements, which would exceed the
range of applicability of the present theory.
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Note for Eq, (13): The following key steps lead to
the expression presented. Introduce a generalized
canonical set ,3,P and transform to a new slowly
varying set q ,p by using a scleronomic generating
function S = S(q,p Y = S +85,. At the end we will
identify q and p with B and o respectively Using
Taylor series expansions around the new variables
q’,p’ we can write

q’q'-S IT-Spqul b + ...

P
’
= + S + 38 + ...
Pp=p ql']: q/rqr Aq
=-S 4T +S S i+ ...
29 P’T P’Tq' p'T
AP = SqIT - Sq/quSplT + .

R=Hap)|, ,~HB+HE.aq+H, 2+

_]-_"],'a Ta:}zll
+ Z!LAq -S;7T + Ap S;7T H(q',p") + ...
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All functions and partial derivatives are evaluated
at q',p'. In the present notation S_+T denotes the
column matrix of partials of S, which is obtained by
transposition of the row matrix of partials S_-.
When all the algebraic manipulations in K are car-

ried out and the terms suitably combined, one can
obtain the expression

k=0 + H, + { [Hm’sl] - H3}
- [H(o)’sz -3 Slq'slp'T] - 3 (3.5,

Short period terms in H; and the two terms in the
brackets can be eliminated by proper choice of §
and S,. Introduction of the forced linear response
then leads to Eq. (13). ©Note that 1(0) win drop

out if the set ¢,8 is used since they are canonical
with respect to H = 0,



