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RECOVERY

Tohan Martin-L6f

ABSTRACT

An acoustic method to locate an object that enters into the earth's
atmosphere at supersonic speed is presented. The direction to the
object is computed from shock wave arrival times observed with
the aid of infra-sonic microphones. A numerical method for the
computations is described. This method gives a least squares esti-
mate of the direction of the normal to an idealized plane shock wave.
It has been successfully used in a computer program to reduce data
collected during the sounding rocket experiments in northern Sweden
in 1964.



FOREWORD

The Krono¢Ard reports

During the stunmer of 191 . 2; 1963 and 1964 a series of sounding -
rocket experiments were performed at Kronog&rd in northern
Sweden under a cooperative agreement between the US National
Aeronautics-and Space Administration (NASA) and the Swedish
Space Research Committee. The main experimenter on the
Swedish side was the Irfcitute of Meteorology, University of
Stockholm and on the US side groups from USAF Cambridge
Research Laboratories (AFCRL) and NASA Goddard Space Flight
Center.

The Swedish Space Research Committee set up a technical group
to take care of the technical and operational parts of the experiments.
While the scientific reeults from the experiments have been and will
be published by the experimenters, this group is preparing a special
series of reports covering its activities during the campaigns.

The group is since the 1st of July 1965 a division of TUAB, Teleut-
redningar AB under the name of Space Technology Group.



3.

CONTENTS
page

1. Introduction 4

2. The matheinatical problem 4

_2.1.	 Non-degenerate case, _ 7

2.2.	 Degenerate case 13

2. 3.. Numerical difficulties 15

3. Effect of the idea'izatu,ns 16

4. Practical experience 17

5. Conclusicne 18

6. References 18

Figures 19



l .	 IFTRODU CTION

In many sounding rocket expe-iments it is necessary to recover
the instrumentation after the flight for exerrination. Usually the
payload is separated from the rocket and is slowed down by a
parachute which gives _a moderate descent rate. The impact can
be located by fneans of radar or, if radar is not available, by
some active homing system iii the payload. In case of separation
or power failure in the rocket, these systems might give no data,
however, and a back-up system is desirable.

Sound ranging is very well suited for this purpose.. During reentry
a sounding rocket creates one or more shock waves which propagate
through the atmosphere. They can easily be detected by means of
low-frequency microphone systems located in surveyed positions on
the ground. From the observed arrival times, it is possible to
estimat:! the direction to the origin of the shock waves from each
microniione system and thus by extrapolation to get a fix on the
impact point. The minimum number of microphones in each system
is three, but it is preferable to have more in order to get redundancy
and an estimate of errors in the result.

This report deals ,,%ith the numerical problem of computing the
direction of incidence of a plane sound wave from observed arrival
times to a microphone system. It will be shown that it is a linear
least squares problem with a quadratic constraint. The problem is
often .11-conditions l especially for low elevation angles of the wave
normal. Additional difficulties arise because the problem degenerates
when the microphones lie in a common plane, A method will be presen-
ted which gives a unique solution in all practical cases, also where
previous methods (1, 2) have failed. In the presentation will be used a
geometric interpretation to visualize the nturcrical problem.

2.	 THE MATHEMATICAL PROBLEM

The airy, is to obtain an estimate of the direction of the normal and
the time of arrival of a plane sound wave from observations of the
arrival to a system of microphones.
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The speed of sound i's assumed constant in the lowest part of
atmosphere over the microphones. Wind-influence on the speed
of sound is neglected. These'idealizations are tolerable as will
be discussed beiow in paragraph 3.

The number of microphones is m Their positions aregiven
relative to an arbitrary cartesian .coordinate system by the
column vectors:

r il i
ri = rig i	 -	 i - 1,	 m

r 	 I

In order to obtain a solution it is necessary that m > 3.

n is the unit wave normal pointing in the direction from which the
wave is coming.
c is the opeed of sound.
t l , ... t  are the observed arrival times at the microphones.

In practice it is possible to determine the microphone position
coordinates with an accuracy that is one order of magnitude better
than the accuracy in the determination of the arrival times. This
is due to tt.e fact that the sound recordings are made with the aid
of low-frequer,cy microphones which are disturbed by the general
noise in the atmoi:vhere. We will thus here neglect the errors in the
microphone positions ri.

The arrival time at the origin of the coordinate system can be
calculated from each observation by

ti = ti + (rTn)/c	 i = 1, ... m

fhe observations are given equal weight and the average of these
quantities, to t is taken as estimate of the time of arrival at the
origin.



I

m	 _
= lEl t(t l - t ) + (r i - rT)nl cf 2

v3ith the subsidiary condition 1 n1 = 1
introduce new coordinates

ui = ti - t

i = 1, ... m

s  = (ri -:D/c.

and the matrix

s ll s 12 s13
s21 s 22 s23

S

sml sm2sm3

Our problem is equivalent to obtaining the least squares solution



of the system of linear equations

S11 - u

with the quadratic constraint.,

In^ 2- nT n = 1

We have two cases depending on the rank of the matrix S. 	 -
If the vectors

El ... M

span the whole 3-dimensional space the rank is 3, otherwise it
is 2 and we have a degenerate problem.
As the coordinates s i have the property

m
s.=0

i=1

the vectors spat. the whole space only if m > 4 and if the microphones
are not located in a common plane. For numerical reasons it is also
necessary that the microphones are not even very close to a common
plane.

2.1.	 Non-degenerate case

Ne can write the error function

F(n) = , a+ Snl 2 = (u + S jnT (u + L" r')

The symmetric matrix S TS is positive definite and can thus be
inve. ted. The function F can then be written:

F(n) = (n + (S TS) -1 S T .jT
S T S(n + (ST S ) -I S T uj +

+ uT (I - S(sTS) -1ST )u



grad F = ZS T (u + SP)

'Thus tangent point is the solution of the non-linear equation

grad F	 STu + STSn
n= 

t I grad F  - } IS T u + STSnI

The plus sign is used if the center C of ' .e ellipsoids is outside the
unit sphere and the minus sign if it is inside. In the special case that
it is exactly on the surface of the sphere we hava the immediate solution

n= C

which is the well known solution to the problem without the constraint.

Generally it is necessary to make an iterative solution to the problem
and we will here first discuss the previous methods that have been
used and why they often fail in recovery applications.

Our microphone system is for practical reasons placed on the ground
so that the vertical separa; .on between microphones is much smaller



q;

than the horisontal. This leads to-pc,3r accuracy in elevation and
consequently the error 	 are long and -ciga rshaped with their
long axis roughly along the vertical. For high elevations the equi-
error contours on the unit Sphere ;a* z essentiahy cir,.0 lar with tae
minLnum point in the middle. For lower elevations the equi-error contours
get more and more oval and the mininium is located in <<. "valley"-that
is very sharp in the azimuth direction and shallow in the elevation
direction.

In previous reR s.. j!.,_ 2) dealing with this problem the - following

iterative method has been used to find the minimum: Starting from an
approximate point ^ on the unit sphere the minimum point in the tangent
plane is located. This latter point is no longer:,r. the unit sphere, but
normaiizing its position vector gives a new and better approximation of
the minimum on the spl -Lere. The method has been successfully used
by the author of this report in connection with the rocket grenade
experiment, where the elevaticn is around 800.

'When trying to use this method for recovery computations, however,
it was Ir-equently found that no convergence could be obtained due to
the fact that the minimum is in a narrow valley.

Therefore a quite different method has been devised. Let us study the
locus of all points on the error ellipsoids from which the normal passes
through `he origin. Introducing a parameter k, the points on this locus
are the solut lins to the equation

grad F(n)+kn= 0

or

(ST u + STSO + kn = 0

or

R(k) = - (S TS + kI)-1STu

The function nkk) is a continuous function of k and traces all points
on the locus as k passes from +m to -m. Let us study its , g eneral shape
(see iig. 1). For k = 0 we have



n (0) = C

That is the center of the ellipsoids. As k increases towards +-
the tra iectory approaches the c,rigin. As k decreases towards -`3
where	 is the smallest of the (positive) eigenvalues of S TS the
trajectory goes towards infinit y along the direction of th-

-	
correspun-

ding eigenvector. As k gasses - 3 µh_. a -ye: -...to_y	 -es lack from

infinity along the opposite direction. As k further passes -:s2 and `1
where '`2 and -.. I are the next largess and the largest eigenvalue of
S L S, the trajectory shows a similar behaviour with res pect to the

corresponding eigenvectors. Finally, as k a pproaches -= the tra-
jectory approaches the origin again.

This trajectory can have 2, 4 or o intersections with the unit sphere
and thus there exists a corresponding r--mber of points from which
a unit ncrmal can be drawn from an ellipsoid to the origin. In half
of these points the error function F is smaller, in the others it is
grouter than in a neighbourhood on the unit sphere.

The _'-values corresponding to these points are the solutions of Oe
equation

....2
1 nlK ► I	 `

wraith is of order o.

To simplify the -quation le, us re-ate the coord i nate system with
an orthogonal matrix Q that diago:alizes S S•

QTS TSQ = D	 QT = Q-I

The columns of Q are t Le eigenvecters of S TS. The diagonal elements
of D are the corre sponding eigenvalues '- I . X` and l 3 . Suppose they
are o_dered: hI>k2>),3' Multiplying the expressions for n(k) from the
left with QT we get:

Q Tn(k) = _Q T (S TS + kI)-1QQ1STu =

10.



-vl,(k+Xl)

0	 -11(k+k7)	 0	 v =	 v2/(k+)LZ)

0	 0	 -1%(k+)L3)±
	 -v 3/(k+ A3)

and

QTC

` 3' ^' 3

where we have introduced the vector

V = Q T S T u

Now the subsidiar y condition

is	 toc.

IQTnl = 1 as det Q = 1

Put

	

3	 v2

g (k) = IQ i n, Z - 1 =	 1 2 -1
i-1 (k:"1)

Thus our equation is transformed into g(k) = 0.

The general behaviour of g(k) is sketched in fig. 2 which shows
a case where the equation has 4 solutions. There wili always be two

solutions, one to the right of -k 3 and one to the left of -k l . There
may be Z or 4 more depending on the position of the middle branches
of the curve. To find the solutions the method of Newton-Raphson
can be employed. Thus we need the derivative

3	 V.
o ,(k) _ - `	 i

i=1 (k+ki)3

"I

Starting from a fi: st approximation k (U) a sequence k,i) , kk " I ...
is formed where



k(j)

S •^ )

This beauence wil' converge towards the solutions and it can be
broke.t oft when the desired accuracy is reached.

k suitable choice of starting points k (o) is necessary. It should
huve the property

g(k(o)) > Q

to avoid that the sequence jumps between the branches. A good choice
is

k(0) - - .i = i i l	 i = 1, 2, 3

From these points the sequence will monotonously converge to
the corresponding solutions, if any. When no solution exists
on the branch in question there will be a jump to another branch,
and thus in the results we will find the same solution repeated
several times.

The normal vector n is then easily obtained by rotating back to
the original coordinate system.

--vi —
i 	-

'
k+11 1
_v2

n=Q k+?.2

	

-v3	
j

k+)L3
L

From this we find the azimuth and the elevation of the wave normal.
The arrival time at the origin is

to = t +rTn/c

and the errors in the microphone arrival times

ei=(ti- t)+(r -r )Jc

I L.



The value of

i

gives a measure of the goodness of fit in the plane wave approximation.

Z. Z.	 Degenerate case

In case that t_ie mtc. o?hones are all in a common plane the rank
of the matrix S is Z. This is always the fact when the number of
microphones is 3. Even if there are more microphones they may
come so close to a common plane that numerical difficulties with
the previously described method arise. In this case the microphone
configuration should also be treated as planar. (We will here not
treat the problem when the microphones are on a common straight
line).

In the planar case the matrix S TS is positive semidefinite. One of
the eigenvalues is zero and the set of surfaces

F(n) = i u + Snj Z = const.

degenerates to a set of elliptical cylinders with their common
axis perpendicular to the plane of the microphones. The matrix
S TS does not have a regular inverse and thus there no longer exists
a unique centervector

C = - (STS)-1STu

This is obvious as the matrix S TS maps all vectors parallel to the
cylinder axis on the zero vector and so there can be no inverse with
respect to such vectors. We can however define a generalized
inverse

(STS ) -1'

that behaves like an inverse with respect to vectors in the two-
dimensional subspace which is orthogonal to the cylinder axis and
that maps vectors parallel to the cylinder axis on the zero vector.

This inverse has the following reprabentaLion in a coordinate system

13.



that has been rotated as before

F
1X1	0	 0

QT (S S)T-1Q =	 0 1)	 0

0	 0	 0

The vector

C = -(STS)-1STu

is now well defined and represents the point on the cylinder axis
which is closest to the origin.

We must now distinguish between two different solutions depending
on whether the cylinder axis is completely outside the ui.it sphere
or not.

As before the coordinate system is rotated so that the coordinate
axes are parallel to the principal axes of the cylinders.

In this rotated system the representation of C is

-vl/^1
QT C = -v2A2

0

In the case that

C = IQT CI > 1

a 2-dimensional analogy to the previous method can be used. Thus,
the solutions lie on the trajectory.

E(k) = -(S TS + M)-1STu

As before the k-values corresponding to the possible solutions can
be found from

2	 v?

g(k)= IQ T nI 2 -1= E — 1 2 -1=0
i=1 (k+a 1-- •-i.

14.



which can have 2 or 4 solutions. These can be found exactly as
before. They all lie in the plane of the microphones.

If on the other hand

1Q'IC1 - 1

the cylinder axis passes through the sphere and the normal is
chosen on the unit sphere so that its projection on the microphone
plane is C. Its re presentation in the original system is then

-vl^^ln _ Q	 -v7 ).2

1-
t
\ 1 - vl/)-i - 

v2/).2

There are two solutions, symmetric with respect to the plane of
the microphones, as we can not tell from mathematical reasons
from which side the wave arrives and so the sign before the square
root is chosen so that n gets a positive elevation for physical reasons.

2.3.	 Numerical difficulties

A microphone system is normally placed on the ground for practical
reasons. Thus the microphones are fairly close to a plane. The
matrix STS has one eigenvalue ), 3 which is 3-5 orders of magnitude
smaller than the others. This means that the ellipsoids previously
mentioned are very oblong and that the solution for the elevation of
the wave normal is very sensitive to errors in the arrival times, at
least for low elevations.

It has been shown that there may be up to six solutions to the equation

g(ki ) = 0	 i = 1, .. , p	 where p = 2, 4 or o.

To each of these is a corresponding wave normal

ni = n(ki)

and also a value of the error function

15.



F  = F(ni) = F(n(ki))

The value of F. has been found to increase with i ane. thus thei
smallest value of the error function is assumed fo.

k=kI

that is the solution on the positive side of the asymptot -X3 for g(k)
(see fig. 2). If there is no solution on the other side of this asymptot,
n(k l ) is the solution to our problem. In the case that the next solution
k2 is immediately on the negative side of the same asymptot, an odd
case can occur. Normally, n(kl ) has a positive and n(k2 ) a negative
elevation. In some cases these elevations are reversed due to the
errors in the arrival times and for physical reasons we then have to
accept the solution t .at gives the next smallest value, F 2 , of the
error function.

The solutions associated with the other asymptots have been found to
have a much larger value of the error function and do not come into
consideration. Thus, when using the analysis described above it is
sufficient to calculate only the best one or two solutions and choose
the one which is physically reasonable.

3.	 EFFECT OF THE IDEALIZATIONS

In 'lie model three fundamental idealizations have been made. The
first one is the assumption that the sound wave is planar. This is a
very good approximation provided the distance to the sound source
is large compared with the dimensions of the microphone system.
Furthermore it will introduce systematic errors only in the estimation
of the elevation angle of the wave normal as long as the microphone
system is essentially horizontal.

The second idealization is that the speed of sound has a known
constant value in the atmosphere over the microphone system. This
is usually a good approximation as the speed of sound seldom varies

16.



more than 1% over the lowest few hundred meters of the atmosphere.
The speed of sound at ground level can be accurateiv detern-iined by
means of a thermometer. Again t'ne introduced errors only affect
the elevation angle of the -,wave normal.

The third idealization is that the surface w?nd is negligible compared
to the sI eed of sound. The wind speed is normally a few per cent of
the speed of sound. The influence is the same as from an error in
the speed of sound and furthermore it decreases with the cosine of
the elevation angle.

Thus the idealizations in the first approximation have no influence
on the azimuth of the wave normal which is the essentiai quantity
for recovery purposes. It is evident that the determination of the
elevation angle is fairly uncertain. Especially for low elevations the
error can be considerable.

4.	 PRACTICAL EXPERIENCE

An ALGOL-program performing the calculations described above
has been constructed and used on data collected during the experi-
ments at the Kronog$rd range in Northern Sweden during the summer
of 1964.

Three microphone systems were operated. One was located near
the launching site and was equipped with 7 capacitor microphones.
Two systems wer , located at down-range stations and equipped with
4 hot-wire microphones each.

All systems were operated on all 8 firings and a large number of shock
waves were recorded both from vehicles during reentry and from
exploding grenades in the rocket grenade experiment. All data have
been successfully processed by the ALGOL-program.

The distance between the microphone systems was of the order of
20 - 30 km and it was generally possible to locate impacting objects
to within a kilometer at least when the impact point was located so
that the angleR in the fix were not too unfavourab l e. This area is so
small that a final helicopter search is feasible.

17.
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i.	 CONC' LUSIONS

It has been d:monstratea that it is possible to determine the

direction to an impacting rocket by means of sound ranging with
au ace ii• acy that is adequate for recovery purposes. The problem is
numerically cumbersome but it is possible to solve it by means of
a computer. As data transmission over telephone Idnes is nowadays
easy, it is possible to operate a computer also from a remote
rocket range and thus obtain results so quickly that they car. be  used
in search operations.
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