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SOUND RANGING COMPUTATIONS
FOR SOUNDING ROGKET
REGCOVERY

Tohan Martin-Lo6f

ABSTRACT

An acoustic method to locate an object that enters into the earth’s
atmosphere at supersonic speed is presented. The direction to the
object is computed from shock wave arrival times observed with

the aid of infra-sonic microphones. A numerical method for the
computations is described. This method gives a least squares esti-
mate of the direction of the normal to an idealized plane shock wave.
It has been successfully used in a computer program to reduce data
collected during the sounding rocket experiments in northern Sweden
in 1964, ’




FOREWORD . -

The Kronogdrd reports

During the summer of 1942, 1963 and 1964 a series of sounding -
rocket expcriments 'vere performed at Kronogdrd in northern
Sweden under a couoperative agrec;x;nent between the US National
Aeronautics-and Space Administration {(NASA) and the Swedish
Space Research Comrmittee. The main experimenter on the
Swedish side was the Irscitute of Meteorology, University of
Stockholm and on the US side groups from USAF Cambridge
Research Laboratories (AFCRL) and NASA Goddard Space Flight

Center.

The Swedish Space Research Committee set up a technical group

to take care of the technical aﬂ&/operational parts of the experiments.
While the scientific results from the experiments have been and will
be published by the experimenters, this group is preparing a special

series of reports covering its activities during the campaigns.

The group is since the lst of July 1965 a division of TUAL, Teleut-
redningar AB under the name of Space Techrology Group.
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_parachute which gives a moderate descent rate. The impact can

INTRODUCTION

- In many sounding rocket expe-iments it is necessary to recover -
A

the instrumént::ition after the flight for' excmination, Usually the
t . M by .

payload is separated from the rocket and is slowed down by a

be located by means of radar or, if radar is not available, by
some active homing system ia the payload. In case of separation
or power failure in the rocket, these systems might give no data, -

however, ard a back-up sistem is dés,irable. 7

Sound ranging is very well suited for this purpose. During réentry

a sounding rocket creates one or .mo.re shock waves which propagate
through the atmosphere, Tl;ey can easily be detected by means of
low-freqt‘iency microphone systems located in surveyed positions on
the grouad. F;‘om the observed arrival times, it is possible to
estimat: the direction to the origin of the shock waves from each
micropaone system and thus by extrapolétion to get a fix on the
impact point., The minimum number of microphones in each system
1s three, but it is preferable to have more in order to get redundancy

and an estimate of errors in the result,

This report deals with the numerical problem of computing the
direction of incidence of a plane sound wave from observed arrival
times to 2 microphone system. It will be shown that it is a linear

least squares problem with a quadratic constraint.” The problein is
often .ll-conditioned especially for low elevation angles of the wave
normal. Additional difficulties arise because the problem degenerates
when the microphones lie in a common plane. A method will be presen-
ted which gives a unique solution in all practical cases, also where
previous methods (1, 2) have failed. In the presentation will be used a

geometric interpretation to visualize the numecrical problem.

THE MATHEMATICAL PROBLEM

The aim is to obtain an estimate of the direction of the normal and
the time of arrival of a plane sound wave from observations of the

arrival to a system of microphones.




.

The speed of sound is assumed constant in the lowest part of
atmosphere over the microphones. Wind influence on the speed
‘of sound is neglected. These'idealizations are tolerable as will

be discussed below in paragraph 3.

The number of rhicrophones is m. Their positions are given - - -~ — — . =~

relative to an arbitrary cartesian coordinate system: by the

column vectors:

B . : .
I = rizi ) .oifl,...m |
| Ti3 | k S

i }

In order to obtain a solution it is necessary that m > 3.

n is the unit wave normal pointing in the direction from which the
wave is coming.
c is the speed of sound.

tys +.. tare the observed arrival times at the microphones,

In practice it is possible tc determine the microphone position
coordinates with an accuracy that is one order of magnitude better
than the accuracy in the determination of the arrival times, This

is due to tie fact that the sound recordings are made with the aid

of low -frequency microphones which are disturbed by the general
noise i-n the atmosvhere. We will thus here neglect the errors in the

microphone positions L.

The arrival time at the origin of the coordinate system can be

calculated from each observation by

.o T .
ti—ti+(£ir_x)/(: i=1, ... m

Che observations are given equal weight and the average of these
quantities, t_, is taken as estimate of the time of arrival at the

origin,




Intreducing the average values- : -
m “m
t=L5s ¢ r=L ¢ 1.
m.7, i ="m .= o
i=1 =i 7 - -
weget R
1 . —T
to * m ifl t;=t +(z n)/c

We- choose our estimate of n so that the mean square deviation ~
from t_ is minimized. ' - L

Thus we seek the minimum of the error function -

T (n) = -‘El e, = ifl (ti -:to) =

B R R CHEFS &

with the subsidiary condition |n| =1

introduce new coordinates

i=1, ... m

N r,
21. -1

and the matrix

$m1°m2°m3

Our problem is equivalent to obtaining the least squares solution

HFHIRT

i
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of the system of linear equations

Sn=-u

with the quadratic constraint-

%= ot

n=1
We have two cases depending on the rank of the matrix S.

If the vectors
8100 o :

span the whole 3-dimensional space the rank is 3, otherwise it
is 2 and we have a degenerate problem.

As the coordinates s; have the property

the vectors span the whole space only if m > 4 and if the microphones
are not located in 2 common plane. For numerical reasons it is also
necessary that the microphones are not even very close te a common

plane,

Non-degenerate case

Ne can write the error function
2 T .
F(n) = |u+8Sn|" = (@+5n)" (u+5z)

The symmetric matrix S° S is positive definite and can thus be

inverted. The function F can then be written:

Fo) = (m+ (878) 'sTwTsTs(m + (sTs) tsTu) +

+ul (1-s(s7s)  sTyu




The second term is conltant.

As S S is positive deﬁmte the set. of surfaces

F(n) = const. T 7 ST

s

Our problem is equivalent to fmd‘ng the tangent pomt between :

the unit sphere

aln=1

and the smallest ellipsoid.in the set that touches this sphere. In
this point the normal to the ellipsoid is also rnormal to the .,phere.
The normal to an ellipsoid is parallel to the gradient

grad F = ZST(E + Sn)

Thus tangent point is the solution of the non-linear equation

grad F ST3+ STSE

n=z* =&
- |grad F| |STy_+ STSEI

The plus sign is used if the center C of ! € ellipsoids is outside the

unit sphere and the minus sign if it is inside. In the special case that

it is exactly on the surface of the sphere we havz the immediate solution
n=g

which is the well known solution to the problem without the constraint.

Generzlly it is necessary to make an iterative solution to the problem
and we will here {irst discuss the previous methods that have been

used and why they often fail in recovery applications.

Our microphone system is for practical reasons placed on the ground

so that the vertical separation between microphones is much smaller




than the horisontal, This lsads 'to'p‘éar accufacy in elevation and
consequently the error. ellipsoidé are long and cig rahaped 'with their ™
long axis roughly along the vertical.- For hlgh elevatzons the equi-

error contours on the unit sphere ar: essentlally c1r ular wzth me '

minkinumn point in the middle. For 1ower elevations tht equ1 -error contoure T

get more :-md more oval and the mininmum 1s located ina ”valley" thaL
is very sharp in the azimuth direction and bhallow int 7he elevation

direction.

In prevmus reyorts (i, 2) dealing with this problem the’ followmg B
iterative method has been used to find the m1mmum Startmg from an
approxiruate point-on the unit spnere the minimum pomt in the tangent
plane is located. This latter point is ro longer un the unit 'sphere, -but
normalizing its position vector gives a new and better approximation of
the minimum on the sphere, The:.methoct has bzen successfully used

by the author of this report in connection with the rocket grenade
expéfixnent, where the elevaticn is arounda 80°.

Yhen trying to use this method {or recovery computations, however,

it was {requently found that no convergence could be obtained due to

the fact that the minimum is in a narrow valley.

Therefore a quite different inethod has been devised. Let us study the
locus of all points on the error ellipsoids from which the normal passes
through *he origin. Introducing a parameter k, the points on this locus

are the solutions to the equation
grad F(n) +kn=0

or

(sTg+ STSQ +kn=0

or

n(k) = - (sTs + k1) st

7=

The function ni{k) is a continuous function of k ard traces all points
on the locus as k passes from +» to -», Let us study its general shape

(see fig, 1). For k = 0 we have




n(0)=¢

That is the center of the ellipsoids. As k increases towards +=

the traicctory approaches the crigin. As k decreases towards -}.3
where 3.5 is the smallest of the (positive) eigenvalues of STS the
trajectory goes towards infinitv along the direction of tb~ correspun-
ding eigenvector. As k passes -ig the trajecteory comes back from
infinity along the opposite direction. As k further passes -i, and -i,

where -, and ., are the next larges. and the largest eigcnvalue of

. i
S5, the trajectory shows a similar behaviour with respect to the
corresponding eigenvectors. Finally, as k approaches -= the tra-

jectory approaches the origin again.

This trajectory can have 2, 4 or 6 intersections vith the unit sphere
and thus there exists 2 corresponding number of points irom which
2 unit ncrmal can be drawn from an ellipsoid to the origin. In half
of these points the error function F is smaller, in the others it is

greater than in 2 neighbourhood on the unit sphcre,
The n-values corresponding to these poinis are the solutions of the
equation

- l-\lz_q
po{kij = i

which is of order 6.

To simplify the ~quation le. us rc:ate the coordinate system with
. .. . T

an orthogonal matrix QQ that diagozalizes S°S.

atsTsa=b ¢t -t

The columns of Q are the eigernvecters of STS. The diagonal e¢lements
of D are the corresponding eigenvalues 3;, X, and A,. Suppose they
are o:dered: i3 >a, A g Multiplying the expressions for nfk) from the

left with Q@ we get:

aTnk) = -2T(sTs + kntae™sTy -

10.



-1 /(k+3y) o 0 -v, /()

= 0 -1/(k+h,) ¢ v-= -\-2/(k+xz)
0 0 -1/(k+2;). _-v3/(k+}\3) |
and
-v. /i t
‘ L |
Qr-(_:, = - Z/':
V3ihs

where we have introduced the vector
T_.T
¥x=Q 'Sy

Now the subsidiary condition

2
ini =1  is cguivalentto
T
Q' n|l =1 asdetQ =1
Put
- 3 v,
T (2 = i
gk)= Q@ n{" -1= Z —=— -1
i} (ku\l,

Thus our equation is transformed into g{k) = O.

The general behaviour of g(k) 1s sketched in fig. 2 which shows

a case where the equation has 4 solutions. There wili always be two
solutions, one to the right of -i5 and one tc the left of -i ;. There
may be 2 or 4 more depending on the position of the middle branches
of the curve. To find the solutions the method of Newton-Raphson

can be emnployed. Thus we need the derivative

3 2v,
1

gk) - - o ——%
k) i=1 (k+)\i)3

Starting from a first approximation k'Y a sequence k "/, k' 7 ...

is formed where

i



(3
. . glkM")

This sequence will converge towards the solutions and it can be

broke.a oftf when the desired accuracy is reached.

is

L R i=1,2,3

From these points the sequence will monotonously converge to
the corresponding solutions, if any. When no solution exists

on the branch in question there will be a jump to another brancn,
and thus in the results we will find the same solution repcated

several times,

The normal vector n is then easily obtained by rotating back to

the original coordinate system.

"
+
-~ v
SO

From this we find the azimuth and the elevation of the vave normal.

The arrival time at the origin is

- =T

= +r n/fc
tp=t T n/

and the errors in the microphone arrival times

= -D (e ~E/ ¢

12.




The value of

F(n) =t el
1

gives a measure of the goodness of fit in the plane wave approximation.

Degenerate case

In case that {1e microphones are all in a common plane the rank

of the matrix S is 2. This is always the fact when the number of
microphones is 3. Even if there are more microphones they may
come so close to a common plane that numerical difficulties with
the previously described method arise. In this case the microphone
configuration should also be treated as planar. (We will here not
treat the problem when the microphones are on a common straight

line).

In the planar case the matrix STS is positive semidefinite. One of

the eigenvalues is zero and the set of surfaces
. 2
F(n) = [u + Sn| = const.

degenerates to a set of elliptical cylinders with their common
axis perpendicular to the plane of the microphones. The matrix

STS does not have a regular inverse and thus there no longer exists

a2 unique centervector
-1 T
c=-(s7s)'stu

L. . T
This is obvious as the matrix S~ S maps all vectors parallel to the
cylinder axis on the zero vector and so there can be no inverse with
respect to such vectors. We can however define a generalized

inverse
-1
(sTs)

that behaves like an inverse with respect to vectors in the two-
dimensional subspace which is orthogonal to the cylinder axis and

that maps vectors parallel to the cylinder axis on the zero vector.

This 1nverse has the foliowing representaiion in a coordinate system

13,




that has been rotated as before
r .
l/)‘l 0 0
QlsTs)la= | o an,
0 0 0

The vector
c=-ss) sy

is now well defined and represents the point on the cylinder axis

which is closest to the origin.

We must now distinguish between two different solutions depending
on whether the cylinder axis is completely outside the uwnit sphere

or not.

As before the coordinate system is rotated so that the coordinate

axes are parallel to the principal axes of the cylinders.

In this rotated system the representation of C is

i -vl/)\1 |
Q 9 = 'vz/)\z
0

In the case that
T
lcl=la cix1

a 2-dimensional analogy to the previous method can be used. Thus,

the solutions lie on the trajectory.

n(k) = -(sTs + kI)_lSTB

As bafore the k-values corresponding to the possible solutions can

be found from

2
gy =@™nl®-1= 1 —io _1-0

14,




2.3.

which can have 2 or 4 solutions. These can be found exactly as

before. They all lie in the plane of the microphones.

If on the other hand

¢l 1

the cylinder axis passes through the sphere and the normal is
chosen on the unit sphere so that its projection on the microphone

plane is C. Its representation in thc original system is then

::l;?l
E:Q 2’ "2

2,2 2,2
=1 - vl/xl - vz/x2 i

There are two solutions, symmetric with respect to the plane of
the micrcphones, as we can not tell from mathematical reasons
from which side the wave arrives and so the sign before the square

root is chosen so that n gets a positive elevation for physical reasons.

Numerical difficulties

A microphone system is normally placed on the ground for practical
reasons, Thus the microphones are fairly close to a plane. The

T . A -
matrix S° S has one eigenvalue )\3 which is 3-5 orders of magnitude
smaller than the others. This means that the ellipsoids previously
mentioned are very oblong and that the solution for the elevation of
the wave normal is very sensitive to errors in the arrival times, at
lecast for low elevations.
it has been shown that there may be up to six solutions to the equation
g(ki)=0 i=1, ,..p where p = 2, 4 or 6.

To each of these is a corresponding wave normal

and also a value of the error function

1&




The value of Fi has been found to increase with i and thus the

smallest value of the error function is assumed fo.

k =k,

that is the solution on the positive side of the asymptot -); for glk)
(see fig. 2). If there is no solution on the other side of this asymptot,
g_(kl) is the solution to our problem. In the case that the next solution
kZ is immediately on the negative side of the same asymptot, an odd
case can occur. Normally, g(kl) has a positive and g(kz) a negative
elevation. In some cases these elevations are reversed due to the
errors in the arrival times and for physical reasons we then have to
accept the solution that gives the next smallest value, FZ, of the

error function.

The solutions associated with the other asymptots have been found to
have a much larger value of the error function and do not come inte
consideration. Thus, when using the analysis described above it is
sufficient to calculate only the best one or two solutions and choose

the one which is physically reasonable.

EFFECT OF THE IDEALIZATIONS

In the model three fundamental idealizations have been made. The
first one is the assumption that the sound wave is planar. This is a
verv good approximation provided the distance to thc sound source

is large compared with the dimensions of the microphone system.
Furthermore it will introduce systematic errors only in the estimation
of the elevation angle of the wave normal as long as the microphone

system is essentially horizontal.

The second idealization is that the speed of sound has a known
constant value in the atmosphere over the microphone system. This

is usually a good approximation as the speed of sound seldom varies

16,



more than 1% over the lowest few hundred raeters of the atmosphere.
The speed of sound at ground level can be accurately determined by
means of 2 thermometer. Again lthe introduced errors only affect

the elevation angle of the wave normai.

The third idealization is that the surface wind is negligible compared
to the sreed of sound. The wind speed is normally a few per cent of
the spee2 of sound. The influence is the same as from an error in
the speed of sound and furthermore it decreases with the cosine of

the elevation angle.

Thus the idealizations in the first approximation have no influence
on the azimuth of the wave normal which is the essential quantity
for recovery purposes, It is evident that the determination of the
elevation angle is fairly uncertain. Especially for low elevations the

error can be considerable.

PRACTICAL EXPERIENCE

An ALGOL -program performing the calculations described above
has been constructed and used on data collected during the experi-
ments at the Kronogdrd range in Northern Sweden during the summer
of 1964,

Three microphone systems were operated. One was located near
the launching site and was equipped with 7 capacitor microphones.
Two systems wer: located at down-range stations and equipped with

4 hot-wire microphones each.

All systems were cperated on all 8 firings and a large number of shock
waves were recorded both from venicles during reentry and from
exploding grenades in the rocket grenade experiment, All data have

been successfully processed by the ALGOL-program,

The distance between the microphone systems was of the order of
20 - 30 km and it was generally possible to locate impacting objects
to within a kilometer at least when the impact point was located so
that the angles in the fix were not too unfavourable, This area is so

small that a final helicopter search is feasible.

17.
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CONC LUSION

w

It has been demonsirated that it is possible to determine the
direction to an impacting rocket by means of sound ranging with

an acciracy that is adequate for recovery purposes. The problem is
numerically cumbersome but it is possible to solve it by means of
a computer. As data transmission over telephone lines is nowadays
easy, it is possible to operate a computer also from a remote
rocket range and thus obtain results so quickly that they can be used

in search operations.
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