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ABSTRACT

The motion of a spacecraft near the triangular earth-moon libration
points is studied to determine the nature of the long term motion. Two differ-
ent mathematical models are used. In one model, it is assumed that the
earth and the moon move in circular orbits around their barycenter, the bary-
center moves in a circular orbit around the sun, and the earth-moon plane re-
gresses with o constant rate of one revolution in 18. 6 years. Two initial
orientations of the earth-moon-sun system are used. In the other mathematical
model, ephemeris information is used to represent the physical world to a
much greater extent than the model with circular orbits. The sun and all
planets except Uranus, Neptune, and Pluto, are included in this '"real world"
model. Two initial dates are used, viz., January 10, 1967, IZhGMT, and
November 2, 1967, 5. h64 GMT. The equations of motion for each of the two
fmodels are numerically integrated and the results of the models for approxi-
mately th; same initial orientation are compared. The results of the study lead
to'the conclusions that 1.) the modified four-body model with circular orbits
and nodal regression does not simulate very well the '"real world' model which
uses ephemeris information; 2.) the initial date and the initial velocity specifi-
cation ha:;/e an iﬁxportant effect on the subsequent motion; 3.) long-term sta-

bility of greater than five years is found to exist in the ''real world' model.
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PREFACE

With the realization of the age old dream of journies to other celestial
bodies, researchers have begun to investigate many facets of celestial me-
chanics as applied to man-made bodies. Many of the problems under investiga-
tion today would not only have been formidable to the researcher only a score
of years past, but it is doubtful that such research would have been undertaken
because of either lack of funds or lack of application. Today, however, it is
not uncommon to seriously discuss flights to other members of the solar sys-
tem and even beyond the solar system. Man is now technologically capable of
making journies to nearby celestial bodies. However, such undertakings re-
quire vast financial support, hence, it is necessary to investigate every possi-
ble scheme for some practical application which may produce results similar
to another scheme, but with either less expenditure of resources or with more
effective results.

The so-called '"libration points'' of the Restricted Three Body Problem
may have practical applications in space flight. The investigation reported
herein is a study of the triangular libration points of the earth-moon system.
If the motion of an artificial body is such that the vehicle remains in the vi-
cinity of an earth-moon triangular libration point for a reasonable length of
time, then these points may have many uses in space flight operations. The
possible uses of the region and'z more detailed statement regarding the

iv



investigation are discussed in Chapter I in the sections entitled ""Application'
and '""Statement of the Problem."
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CHAPTER 1

INTRODUCTION

Classical Three-Body Problem

The system of n-bodies, in which each body attracts every other body
in accordance with Newton's Law o,f Gravitation, has been used as the basic
mathematical model for bodies in the solar system for over two centuries.
Unfortunately, a closed-form solution (i.e., an analytical solution for which
the position of each body is specified for all epochs of time) has been found
only for the two-body case and for a special case of the three-body‘problem.
The only means available for solving the differential equations of motion for
the gereral n-body case is through the numerical integration of the equations
of motion with the digital computer ot by using the analog computer.

‘The solution of a special case in the three-body problem is of consid-
erable interest. In the year 1772, J. L. Lagrange, a mathematician, pre-

sented to the Paris Academy a memoir entitled Essai sur lg_Probléme des

Trois Corps (Essay on the Problem of Three Bodies). Lagrange had studied

a three-body problem in which each body attracted the others in accordance
with Newton's Law of Gravitation, the mass of one body was infinitesimally
small, and the two large masses moved in circular orbits around their rautual
center of mass. This special case of the three-body problem has become

known as the ""Restricted Three-Body Problem.' Lagrange mentioned as a
1



curiosity the prediction of five equilibrium points in the vicinity of the two
large bodies which possessed the property that the infinitesimally small body,
when placed at one of these points with zero velocity relative to the point,
would remain indefinitely at that point. These equilibrium points will subse-
quently be referred to as libration points (they are also known as Lagrangian
Points and Trojan Points). The general location of the libration points is il-
lustrated in Fig. 1. The libration points Ll’ LZ’ and L3 occur on a line
joining the two bodies of finite mass. The actual location of the points is de-
pendent on the mass ratic of the two bodies, Likration points L4 and L5 oc-
cur at the vertices of two equilateral triangles which have ag a common base
the line joining the two bodies of finite mass (Refs. 1 and 2).

Further studies of the restrictedhthree-body problem have been car-
ried out since Lagrange's initial investigation. Among the individuals asso-
ciated with these investigations are Liouville, Laplace, Jacobi, and Foincare.
One of the most important results obtained during these investigations has been
the demonstration of the stability of the triangular libration points for certain
mass ratios and of the instability of the straight-line libration points for all
mass ratios. That is, if the infinitesimal third body 18 placed at one of the
stra:ight-line libration points and displaced slightly from the exact point, it
will depart from the vicinity of that poirt. However, in the case of a triangu-
lar libration point, if the ratio of the mass of the smaller body tc the mass of
the larger body is less than 0, 0385, then the infinitesimal mass when dis-
placed slightly from the libration point will oscillate about that point indefi-
nitely,

It is of some interest to note that Lagrange's analysis was made at

the time when oniy six of the planets (including earth) were known and none of



the minor planets had as yet been discovered. Therefore, it was not then
known that the triangular configuration actually exists in the solar system.
More than a century after Lagrange's prediction, an astronomer named Wolf
at the Konigstul Observatory in Heidelberg, Germany, discovered a minor
planet located a: approximately the L4 position of the sun-Jupiter sysiem
(s2e Fig. 2). It was named 588 Achilles. In October of the same vear, 1906,
a miJoor planet was discovered near the L5 location and was named 617
Patraclus. Durirg the next two years, two additional minor planets were dis-
covered and namea Hector and Nestor. Subsequent im;estigations have re-
vealed a total of 15 bodies {known at this writing) located at the tw> libration
points. I. ras decia>d to name the L4 asteroids after the Greek heroes of
the Trojan War; therefore, they have become known as the Greek planets.
Among those occupying the L 4 position are Agamemnon, Ulysses, Nestor,
Ajax, and Dicmedes. One might note that the first asteroid found at L4, viz.,
Achilles, is a member of the Trojan camp and not the Greek. The asteroids
which occupy the L5 position are named after the Trojan heroes. Conse-
quently, they are called the Trojan Planets and among their members are

Priam, Anchises, Aeneas, and Troilus (Ref.‘ 3).

Statement ci the Problem

The ratio of the lunar mass to the earth's mass is 0.0123. Hence,
the stability criteria of the triangular libration points is satisfied and if all
the assumptions of the restricted three-body problem were satisfied also,
then the motion of a spacecraft (a body with mass very much less than either

the earth or the moon) near either the L, or the L5 point would be stable in

4

the sense previously stated. Obviously, the earth-moon-spacecraft system
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5
cannot be treated as a three-body problem in the physical world. There are
external forces on the system due to the gravitational attraction of the sun,
planets, and other bodies. With the inclusion of these external forces on the
system, the restricted three-body assumption is no longer valid and it is un-
known whether or not the spacecraft would have a stable motion near the tri-
angular points. A ''stable' motion if defined as one in which the spacecraft
remains within some prescribed distance of the libration point during the time
of interest. In this investigation the word '"'stable' is used in the same sense
as ''libration-point-centered motion."

The Trojan and the Greek Planets in the sun-Jupiter system have ex-
ternal forces on them due to the gravitational attraction of the other planets
and yet they oscillate about their respective libration point in an apparently
stable motion. One might be tempted to conclude that this would also be the
case in the earth-moon system; however, this has not been shown to be true.
The perturbing forces on a spacecraft in the earth-moon system would be
much greater than those acting on the Trojan or the Greek Planets in the sun-
Jupiter system. The sun and Jupiter would have a much stronger influence on
the motion of a spacecraft in the earth-moon system than Saturn and the other
. planets would have on the aforementioned asteroid groups.

Therefore, the primary purpose of the study presented in the subse-
quent discussion is to investigate the stability of spacecraft motion in the
vicinity of the earth-moon”triangular libration points. The definition of a
libration point is a consequence of the restricted three-body problem. Fur-
thermore, a true equilibrium point in the actual earth-moon system would
not, in general, correspond to the L4 or L5 position. However, in the sub-

sequent study, the libration points defined in the restricted three-body problem



will be used as reference points and the effects of the remaining bodies will
be included as perturbing forces on the spacecraft. The resultant motion will
represent the deviation from the restricted three-body case.

The straight-line libration points will not be considered since, as
stated previously, these points are unstable in the restricted three-body prob-
lem. Furthermore, it has heen shown that the sun produces a disturbance
which forces the infinitesimal bu1y to move away from the straight-line libra-
tion point and an unstable motion resui-=: (Ref. 7).

Previous investigations into the stability of motion at the triangular
libration points are given by Refs. 4 to 16. Refctences 4 and 5 assume a
mathematical model in which the earth and the moon move in circular orbits
around their mutual center of mass (barycenter), the barycenter moves in a
circular orbit around the sun, and the earth-moon orbital plane maintains a
fixed orientation in space. Reference 6 reports an investigation which includes
both the effects of the time rate of change of the inclination ot the earth-moon
orbital plane and the regression of the orbital plane. The equations of motion
are linearized by expanding all the forces on the spacecraft in a Taylor Series
about the libration point. A solution is then obtained to these equations; how-
ever, the results presented must be viewed with a degree of caution because
of the linearization. Results of the evaluation of the linearized equations up
to 1500 days are preseunted for position coordinates, and one finds that the
particle does not exceed 50, 000 to 60, 000 miles displacement from the libra-
tion point. It appears that this small displacement over such a longrperiod
may be the result of the linearizatior. With allowance for the difference in
models, other results are presented in Ref. 6 which agree with those of

Ref. 5. References 7 and 8 discuss motion near the triangular points and



the straight-line points. The problem of launching from the earth and
injecting into a libration-point-centered orbit is considered also. Numerical
‘int.egration of the differential equations is employed; however, the integrations
are carried out for a period of only 180 days in one model and 475 days in an-
other model. It is interesting to note that in Ref, 7, the results of numerical
computations with a mathematical model which includes the ephemeris posi-
tions of the sun, moon, and earth are given. This will be discussed further in
Chapter IV under the heading '"Mathematical Model.'" Results of other investi-
gations are reported in Refs. 9 to 16. All of these references, with the excep-
tions of Ref. 9 and Ref. 14, are concerned with some aspect of an analytical
solution of a simplified mathematical model. Both of these references report
numerical results obtained with a general n-body model which uses ephemeris
input for the planetary positions. The results of Ref. 14 are particularly in-
teresting in that they treat the initial condition effects for the general n-body
problem.

The investigation presented in the subzequent discussion considers two
different mathematical models. One is a mathematical model which extends
the work of Refs. 4 and 5 by the inclusion of the effects of the nodal regres-
sion. The other is a mathematical model which assumes a general n-body
problem formulation and utilizes the Jet Propulsion Laboratory Epnemeris
Tapes to obtain the positions of the sun, th moon and the appropriate planets.
This latter model is, therefore, a much more realistic model than the former
and will be referred to as the ''real world' model. Furthermore, this entire
investigation approaches the problem from the standpoint of deriving the dif-
ferential equations of motion of the spacecraft and numerically integrating

them with specified .nitial conditions. It is realized that this may not be the



""best'' approach for investigating the question of long term stability. There
are, of course, an extremely large number of initial conditions available, and
to try a representative sample would require prodigious amounts of computer
time. Therefore, only certain cases are investigated and implications ad-
vanced to other cases.

Obviously, closed form solutions for studying stability are preferred
to numerical solutions. But closed form solutions are extremely difficult to
obtain, even for the restricted four-body problem. For a model including the
sun and the planets, one requires a solution to a twelve-body problemm. Ob-
taining such a solution would be a formidable task.

The problem of stabilizing the motion by applying thrust to the space-
craft at intervals in such a manner that the spacecraft would remain very
close to the libration point is not considered in the investigation reported
herein. Instead, the primary interest of this investigation is to determine
the natura) motion of the spacecraft subsequent to its placement at or near

the libration point of interest.

ABEIic ation

Although the problem may at first appear to be of academic interest
only, it appears that the earth-moon triangular libration points could be
utilized in several ways. Sometime in the near future, lunar exploration bases
will be established on the side of the moon which cannot be seen from the
earth, i.e., the '"far side of the moon.'" Undoubtedly, communications be-
tween the earth and these lunar bases will be desirable; however, communica-
tion could not be achieved directly from the earth since the moon itself would

block reception and transmission of radio signals. If, however, a



communications spacecrait were placed at the L4 and L5 points of the
earth-moon system, communication with a large portion of the far side of the
moon could be maintained over a considerable period of time provided the
spacecraft stayed in the vicinity of the libration point. Figure 3 illustrates an
approximation of the possible communication coverage. Obviously, commun-
ication is possible with a larger area via the libration spacecraft than with
straight-line carth-moon communications. Another alternative would be to use
a lunar satellite. However, a near lunar satellite could provide communica-
tion for only a short period of time and this method would require a network of
such satellites to provide direct communication at all times. In Ref. 17, a
system of five equally spaced lunar satellites at a circular orbit radius of 3500
miles is suggested. However, the libration point satellites of which there
would be only two, may provide sufficient coverage at a more favorable cost.
In addition, a synchronous satellite similar to that of the earth is not possible.
In fact, the five libration points of the restricted three-body problem are the
lunar equivalent of a terrestrial synchronous orbit.

Another possible use for the triangular libration points would be the
establishment of an astronomical observatory, either manned or unmanned.
A major advantage would be the accessibility for observation of any portion
of the universe except the very small sectors blocked by the earth, the moon,
and the sun. The observational accessibility would be much greater than that
available to a terrestrial observatory or even a lunar observatory. Both the
lunar and terrestrial-based observatories are limited in their observations by
the body on which they are located, FEarth-based observations can occur only
during hours of darkness (except solar observations) and then these observa-

tions are sometimes hampered by moonlight. Therefore, the period a:vailable
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for observaticn is about 12 hours per day. The possible observation period is
greater on the moon; the entire universe can be observed in a four-week period
and observations can be made even when the sun is overhead, However, the
section of the sky observable is constrained by the rotation of the moon, and it
could be as much as two weeks before the moon rotated sufficiently for a cer-
tain portion of the universe to be visible. At the libration points L4 and LS’
any portion of the sky could be observed at any time by merely rotating the ob-
servatory. An astronomical observatory in a near-earth orbit could also be
just as useful. However, photographic plates must be exposed for extended
periods of time in stellar photography. Therefore, the telescope must main-
tain a fixed orient.ation in space, at least within certain limits to avoid
""'smudging'' of the plate. It may be somewhat simpler to maintain an orienta-
tion at the libration points, since it would take about four weeks to complete
one revolution around the barycenter. One possible hazard to the use of the
libration points for this purpose lies in the possibility of cosmic debris col-
lecting at the libration pointsf either hampering observations or damaging
delicate optical equipment. Optical sightings of such dust clouds at both the
L4 and L5 points have been reported in Refs. 18 and 19. Such debris could
be of lunar origin having been ejected from the moon by a meteor impact on
the lunar surface (Ref, 20) or it ¢ uld be virgin galactic material trapped
during an encounter with the libration point.

Additional possible applications are noted in Ref, 16. These include
the use of the triangular libration points for long term solar-flare observa-
tions. By its very location, the libration point would be essentially free from

perturbations on charged particles due to the geomagnetic field. Information
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obtained by observing the motion of a vehicle at the triangular points could be
used to refine the value of the earth-moon mass ratio.

Still other possibilities of application would be the establishment of
facilities to assemble, check out, and launch interplanetary spacecraft. In
addition, it may be useful to establish navigation buoys at these locations as an

aid in earth-moon and interplanetary flight operations.

Procedure

In the subsequent study, the equations of motion for the spacccraft were
derived for each of the mathematical models examined. These equations, viz.,
three second-order nonlinear differential equations expressing the rectangular
components of the spacecraft acceleration were numerically integrated utiliz-
ing a standard computer program available at The University of Texas Compu-
tation Center Library (Ref. 21). This program is capable of numerically inte-
grating up to 100 simultaneous, first-order, nonlinear differential equations.
Therefore, the equations of motion are rewritten 2s a system of six first-
order differential equations. The program is written in FORTRAN 63 lan-
guage and uses the Runge-Kuttz method for obtaining three starting values in :
addition to the initial conditions which must be provided. After the three values
for each variable have been obtained, control is switched to an Adams-Moulton
procedure. The Adams-Moulton procedure requires four values to predict the
next value; this value is then corrected using all five values, i.e., includiag
the predicted value. While most computations in the program are carried out
with single precision arithmetic (approximately 12 digits), certain additions in
Runge-Kutta and Adams-Moulton are carried out in double precision (approxi-

mately 24 digits). It was found during the course of this research that if all
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computations were carried out in double precision, the computer time was in
some cases tripled with no appreciable change in thc results. In some cases,
the initial conditions were computed in double precision. If they are computed
in single precision, there will be some round-off error introduced. Since the
subsequent trajectory is extremely sensitive to the initial conditions, it is im-
portant to supply initial conditions which are accurate. In addition, the program
computes the so-called ''single-step error, ' i.e., the error existing at the
point of interest using the Adams-Moulton Predictor-Corrector as if all the
previous values had been exact solutions to the differential equations. Although
this does not give a 'true error,'" it does allow some control of the inherent
error in the numerical integration procedure. If the single-step error is out-
side a range specified by the program user, the step size can be halved to re-
duce the error. If the single-step error is lower than the minimum error
specified, the step size can be dcubled to reduce the computation time. Addi-
tional information on the numerical integration procedure will be provided in
the discussion of results of the numerical studies.

Although the integration was carried out numerically on the Control
Data Corporation (CDC) 1604 digiial computer at The University of Texas
Computation Center, it is feasible to carry out the integration on an analog
computer. Because of the complexity of the equations and the limited cap-
ability of the anaiog facilities at The University of Texas, the project of per-
forming the integration on the analog computer was abandoned. In addition,
it would not be feasible to use the present analog computer at The University
of Texas for the mathematical model utilizing ephemeris infoi'mation. Plane-
tary position and velocity information is stored on magnetic tapes in eight-day
records and in order to use these tapes on the analog, a hybrid digital-analog

computer system would be required.



CHAPTER 1I

MATHEMATICAL MODEL

In order to predict the motion of a spacecraft near the libration point
of interest, it is necessary to define a mathematical model. It seems rea:ca-
able to suppose that if the mathematical model represents very accurately the
actual physical system, viz., the inotions of the members of the solar system
and their noncentral gravitation fields, then the prediction of the acceleration
of the spacecraft will be accurate also. Unfortunately, if all the features ..
the actual physical system are incorporated into the model to a high degree of
accuracy, the problem can become exceedingly complex and rnay require
prodigious amounts of computer time. On the other hand, if the model has too
many simplyfying assumptions, it may not accurately predict the motion of the
vehicle, As Richard Bellman stated (Ref. 22): '. . ., the Scientist [or Engi-
neer] like the Pilgrim, must wend a straight and narrow path between the Pit-
falls of Oversimplification and the Morass of Overcomplication.' To prove
that he understands the physical phenomenon he observes, the scientist must
be able to predict the recurrence of that phenomenon. To predict it, he defines
a mathematical model to represent the phenomenon under consideration and
then proceeds to study the matliematical model in an effort to understand the
phenomenon. The objective of the investigation reported here is to determine
the nature of the motion of a spacecraft near the triangular libration points.

14



15

In order to predict this motion, it is necessary to define a mathematical
model. Furthermore, the accuracy of the prediction will depend on how well
the model represents the physical world. Unfortunately, as more effects of
the physical world are included in the mathematical model, the more complex
the mathematical model becomes, and the more extensive the calculations for
the nume . ‘ical solution become. Some of the physical world effects can be neg-
lected in certain cases and still have a fairly accurate prediction of the space-
crait motion. In order to establish a mathematical model for the motion of a

spacecraft at the L, - or L_- points of the earth-moon system, it is necessary

4
to understand the motions and effects of the natural bodies of the solar system
so that certain simplifying assumptions can be justified. The motion of the in-
dividual members of the solar system, particularly the earth-moon system, is
the subject of the following section. Another section will state the physical
characteristics of the natural bodies which have an effect on the motion of the

spacecraft. Finally, the simplifying assumptions incorporated in the specific

mathematical inodels will be stated.

Motion of the Planets and the Solar System

The motion of the earth-moon system, and for that matter, all of the
members of the solar system, is very complex. As an aid to understanding
the total motion, the motion can be divided into several different components.
In effect, a model of the physical system which is comprised of several sepa-
rate motions is defined.

Probably the most noticeable moticn to an observer on the earth is the
daily motion, i.e., the motion of the earth which creates the day-night cycle.

It is convenient to define an axis of rotation for the earth, calling the
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intersections of this axis with the surface of the earth the North Pole and the
South Pole. For most purposes, the axis of rotation (defined by the angular
velocity vector) can be assumed to nave a fixed direction in space. The direc-
tion of the angular velocity vector is very nearly toward Polaris, the North
Star, i.e., toward the North Celestial Pole. However, this vector does not
actually have a fixed direction. There is a long-term motion, called preces-
sion, in which a point on the axis desc.ibes a conical path. This path is not
quite circular; furthermore, about 26,000 years are required for this vector
to make one revolution. In addition to precession, there is a short-term mo-
tion, called nutation or nodding of the poles. To complicate this motion even
further, the poles of the earth are not at fixed points on the earth, i.e., the
earth shifts about the axis of rotation. There also are variations in the rate
of the earth's rotation. All of these effects (some of which cannot be pre-
dicted) will affect the motion of a spacecraft at the libration point only by
changing the earth's noncentral gravitational field components (see Physical
Characteristics of the Natural Bodies).

A second motion is the revolution of the eartk-moon mass center around
the sun, the nearest star to the earth. Because of the size of the moon i com-
parison to the size of the primary body, viz., the earth, the system has the
characteristics of a double planet. The center of mass of the earth-moon sys-
tem, o:r barycenter, describes a near elliptical path around the sur. Astrono-
mers generally define the ecliptic as the apparent annual path of the sun's
center on the celestial sphere. An accurate definition would be that the ecliptic
is a plane perpendicular to the barycenter's angular momentum vector which
includes the barycenter. The orientation of this plane in space is not fixed,

and for most purpoeges some reference ecliptic must be selected. '1he motion
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of the ecliptic with respect to some reference ecliptic fixed in space is less
than one degree. It should be pointed out that in two-body motion this plane
would remain fixed in space. This is not the case for the physical world be-
cause of the gravitational attractions of other bodies both in and external to
the solar system.

Another motion is that of the earth and moon around the barycenter.
These orbits deviate somewhat from an elliptical path. The earth-moon orbit
plane, defined as a plane which is perpendicular to the angular momentum
vector of the earth-moon system and which contains the earth, moon, and
their barycenter, does not maintain a fixed direction in space. First of all,
the inclination between some reference ecliptic ard the earth-moon orbital
plane varies. Secondly, the line of nodes between the ecliptic and the earth-
moon orbital plane does not remain fixed, but moves in a westerly, or retro-
grade, direction alorg the ecliptic.

In additicn, the other planets (both minor and major) and their satel-
lites move in near elliptical orbits around the mass center of the solar system.
The sun, of course, also moves around the center of mass of the entire solar
system. In Fig. 4, the center of mass location relative to the center of the

sun is shown for the period from January 10, 1967, OhGMT to June 2, 1974,

OhGMT. It is of interest to note that the center of mass is over 400, 000 miles
from the center of the sun for several months during this period. The informa-
tion shown in Fig. 4 was computed from information storecd on the Jet Propulsion
Laboratory Ephemeris Tapes.

The center of mass of the solar system is also in motion. It is revolv-

ing about the center of the Milky Way Galaxy at a distance of perhaps 30, 000

light-years It takes 230 million years to complete one revolution. The solar
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FIGURE 4. SOLAR SYSTEM CENTER OF MASS
LOCATION FOR PERIOD
JD 24395005 (JAN. !0, 1967; 0" GMT)
TO JD 2442200.5 (JUNE 2, 1974; OP GNT)
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system center of mass is also moving toward the constellation of Hercules

with a relative velocity of about 12 m’les per second. Finally, the entire

Milky Way Galaxy is in motion with respect to the external galaxies.

Physical Characteristics of the Natural Bodies

None of the natural bodies are homogeneous spheres. The earth, in
fact, is sornewhat flattened at the poles and bulged near the equator, In some
mathematical models it has been treated as an oblate spheroid. This bulge
causes artificial satellites to deviate from the two-body conic predictions even
if the effects of the other bodies are not included. Due to this bulge, the earth's
gravitational field is not a central force field. In a central field there is no
angular component of force; hence, the force has only a radial component.
However, in the noncentral force field, there is an angular component of
force in addition to a radial component. The potential function & of the oblate

spheroid which is used to represent the earth, is expressed as

2 3
Gm J. R J, R
R, ¢) =—-R§[1 + £ -i-—z- (1 - 3 sin®9) +—- -53-—
(3-5 sinz(b) sin ¢ - J4 Re4 (3 - 30 sin2¢ + 35 sin4¢) ] (1)
Ly -
or
(}me

J., and J, are constants, R is the radial dis-

3 4
is the mean radius of the earth (Ref. 23).

where ¢ is the latitude, JZ’

tance to some mass, and Re

The moon also deviates from a homogeneous sphereﬁ. In some mathe-

matical models the moon is represented by a triaxial ellipsoid; again, as in
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the case of the earth, the gravitational field is noncentral. For the triaxial

ellipsoid representing the moon, the potential function is

G R 2 R_2
™y > 1 2 3 2
.(R, T X) = T 1+ JT(? - $in p) + L-—z— COS U Ccos 2\ (3)
R R
or
Gm) *
‘(R' p‘»x)= T[l+f (p’a X, R)] (4)

where p is the selenographic latitude, \ is the selenographic longitude, J and
L. are constants, and R» is the mean radius of the moon (Ref. 23).

In addition, the other planets and the sun are not true spheres. Because
of the noncentral force fields of these bodies, they produce forces on a space-
craft in addition to the Newtonian gravitational attraction for a point mass.
However, at planetary distances the noncentral force components are negligible

and the planetary bodies can be treated as mass points.

Assumptions

In the subsequent analysis, Newton's Laws of Motion and Newton's Law
of Gravitation will be accepted as postulates. The latter law expresses tre
force of attraction between two point masses as

- Gmm,r,

12 © 3 (5)

12

where F._ is the force exerted on m, by m,, G is the universal gravita-

12
tional constant, and ?12 is the radius vector between the two masses ml
and m,. As can be seen from Eq. (5), the direction of the gravitational

force F is along the vector -1712. The differential equations of motion of a
spacecraft in the earth-moon system are expressed by Newton's Second Law,

viz.,
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F - mS.-;S (6)

where mg is the mass of the spacecraft and .-{:S is the acceleration of the
spacecraft v:ith respect to an inertial coordinate system. Obviously, the mag-
nitude and direction of the acceleration is dependent on the magnitude and di-
rection of the resultant force or the spacecraft. The forces on the spacecraft
which can be predicted are the gravitational forces and those forces due to
solar radiation pressure. In an actual flight, of course, these would not be
the only forces acting on the spacecraft; there would also be forces due to
propulsion systems, reaction controls, and impact forces due to meteor
strikes. However, the occurrence of the latter force cannot be predicted.
With the aforementioned set of postulates, the assumptions common to both
mathematical mo-els studied are stated as follows:
1. All the bodies under consideration will be treated as point
masses. Since the libration points of interest are approximately
240, 000 miles from the earth and moon, the effect of the noncentral
force fields of these two bodies will be small, however, they would
probably have a noticeable effect on the long-term motion, i.e.,
motion over many years. Figure 5 shows the magnitude of the non-
central component of the earth's gravitational force, i.e., f(¢, R),
as defined in Eq. (2), for a body at a distance of 240, 000 miles from
the earth, i.e., R = 240, 000 miles. The moon's declination varies
from about 28.5% to -28.5°. A spacecraft in the earth-moon orbital
plane will have the same range in declination or latitude. The

7 t0 3.69 %1078 for

* -
this range in latitude. The termx f (u, X\, R) of Tq. (4) is 10 1 or

f($, R) term of Eq. (2) varies from 1.48 X 10~
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smaller than (¢, R). This indicates that the effect of the
terrestrial and lunar noncentral gravitational fields is on the same
order of magnitude as the point mass gravitational attraction of
Uranus, Neptune, and Pluto as can be seen from Table A-1 in Appen-
dix A. In addition, the noncentrz! force fields of bodies other than the
earth and moon have a negligible effect on a spacecraft in the earth-
moon system.

2. The spacecraft will be assumed to be a particle of very
small mass, i.e.,it produces no effect on the motions of the earth,
méon, etc,

3. External forces on the soiar system will be neglected.
Even the nearest stars to the solar system are more than four light-
years away and their gravitational attractions will certainly be very
small. By this assumption, the center of mass of the solar system
will move on a siraight line with constant velocity relative to a true
inertial coordinate system. This assumption allows use of the center
of mass of the solar system as the location of an inertial coordinate
system.

4. Relativistic effects will be excluded.

5. Solar radiation pressure on the spacccraft will be neglected,
i.e., the area to mass ratio of the spacecraft is assumed to be very

small.

These assumptions form the basis for the derivation of the differential equa-

tions of motion. Further assumptions will be stated as they are necessary in

defining a particular mathematical model. There will be two different mathe-

matical mndels considered here. In one model, a modified restricted
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four-body model, certain assumptions will be made regarding the orbits of
the earth, moon, and sun in order to express the positions of these bodies
algebraically. The other raodel will utilize the Jet Propulsion Laboratory
Ephemeris Tapes for the positions of the natural bodies. These tapes provide
ephemeris infermation to the highest degree of accuracy available at this
time.

In the modified restricted four-body mathematical model, only the li-
bration point L4 is considered. Preliminary studies found that the motion
near L5 is very similar to the motion near L4 for scme initial orientations
of the earth-moon-sun system. However, consideration of motion near the
L5 point has not been thorough. Hence, additional consideration ¢f the mo-
tion at L. using ephemeris information is warranted. Such a study is in-

5

cluded here,



CHAPTER III

A MODIFIED RESTRICTED FOUR-BODY PROBLEM

Mathematical Model

Since computations with the general n-body model are quite time
consuming, efforts to define a model which is more realistic than the re-
stricted four-body problem, but less complicated than the general n-body
model seems warranted. In the model discussed in the present chaptex, tne
restricted four-boudy - a10del is modified to the effects of the regression of the
earth-moon plarne. The assumptions made in this model (in addition to those
already stated in the section entitled '"Assumptions'' of the previous chapter)
are as follows:

1. Since the sun is the largest mass in the solar system, and
has several thousand times greater effect on a spacecraft at a triangu-
lar libration point in the earth-moon system than any of the planets
(see Table A-1, Appendix A) with the exception, of course, of the earth
and the moon, the gravitational attractions of the planets are neglected.
Therefore the problem reduces to a four-body problem, viz., sun,
moon, earth, and spacecraft.

2. Since forces due to bodies external to the solar system are
neglected, the center of mass of the four-body system will move with

constant velocity relative to an absolute coordinate system. The

25
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center of mass of this four-body system is approximately 50 miles
from the center of the sun; however, this is a small fraction of the
total distance from the solar center to the earth-moon barycenter,
and it will be assumed that the four-body center of mass is at the
center of the sun.

3. The barycenter moves in a circular orbit around the sun; the
earth and moon move in circular orbits around the barycenter, As
stated previously, these bodies actually move in near elliptica. ‘bitz.
In effect, the earth and the moon are being constrained to move in
circular orbits around the barycenter. The indirect action of the sun
on the earth and the moon would actually cause these bodies to move
in non-circular orbits.

4. The ecliptic plane is assum< - io have a fixed orientation
in space,

5. The earth-moon plane, a plane in . .ich the circular mo-
tion of the earth and moon occurs, is inclined to the ecliptic at a con-
stant angle of 5°9 minutes.

6. The line of nodes of the earth-moon plane and the ecliptic
regresses at the constant rate of one revolution in about 18. 6 years.

In effect, part of the sun's indirect action on the motion of the moon is
being included.
The first five assumptions are incorporated in Rex3, 4 and 5, Therefore, this
investigation differs from the inve.tigation reported in these references only
by the inclusion of the nocdal regression. One important point to note here is
that the earth-moon plane as defined in the fifth assumptior. 1s not the earth-

moon orbital plane as defined by the angular momentum. Instead, it is simply
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a plane in which the circular motion occurs. If there were no nodal
regression, arbital plane defined by the aigular momentum would coincide
with the earth-moon plane.

Utilizing these assumptions, four cases will be investigated., The first
of these will present the equations of motiun in a libration-point-centered
rotating coordinate system. This was done in order to permit a comparison
with the studies reported in Refs. 4 and 5. In the second case, the equations
of motion are derived in the barycentered nonrotating coordinate system and the
integration is carried out. The results are compared with the case in which the
libration-point-centered rotating coordinate system was used. In both of these
cases, it was assumed that the triangular libration points lie in the 2arth-moon
plane. In the third case, it is assumed that the libration point exists in the
earth-moon orbital plane as defined by the angular momentum vector. The
same initial conditions are used in the first three cases and the result; are
compared. In the last case, an initial earth-moon-sun configuration is used
which correspords to the configuration existing on Julian Date 2,439, 501. 0
(Januz ry 10, 1967; IZhGMT). This latter case will be used as a comparison

tr the '"real -vorld' model with the same initial date.

Case I: Rotating Coordinaie System at L

4

Fquations of motion. With the ssumptions stated in the previous

secticn, the coordinate systems and geomr=try of the mathematicil model can
be illustrated as shown in Fig. 6. The (¥-, ¥, Z)-coordinate system is lo-
cated at the center cf the sun. The * -axis poiunts in a fixea direction and was
chosen for conv. ience to bte the vernal equinox, tl.e ¥-axis lies in the eclip-

tic, and the 2Z-axis is per sendicular to the ecliptic. At the barycenter, the
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axes of the nonrotating (X, Y, Z)-coordinate system are parallel to their
counterparts in the sun-centered coordinate system. The (§ n, {)-
coordinate system is oriented such that th> origin is at the barycenter, the
£-axis lies along the earth-moon line, the n-axis lies in the earth-moon
plane, and the l-axis is perpendicular to that plane. The (x, y, z)-coordinate
system is centered at the L, point (assumed to be in the earth-moon plane)
and the (x, y, z)-axes are parallel to the (§, n, L)-axes, respectively.

Thé differential equations of motion for a spacecraft referred to the
sun-centered inertial coordinate system are expressed by application of

Eqs. (5) and (6), i.e.,

..;. . GmOerOS ) Gmemsres
Mg es ~ 3 3
oS Tes
Gm)er)S
T3 (7)
Tys

Equation (7) is valid for the mathematical model under consideration with the
assumptions stated previously. In this particular study, the acceleration with
respect to a coordinate system located at one of the triangular libration points,
viz., L4, is desired. It is therefore necessary to relate the motions in a sun-
centered inertial coordinate system to the motions in a rotating libration-point-
centered coordinate sysiem.,

The position of the spacecrafi with respect to the inertial coordinate

system is, as shown in Fig. 7,

Tos = ToB ' "BS (8)
whkere ;GB is measured in the (X, ¥, Z)-inertial coordinate system and ?BS
is measured in the (X, Y, Z)-nonrotating coordinate system located at the bary-

center. The inertial velocity and acceleration of the spacecraft is then
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FIGURE 6. COORDIMATE SYSTEMS AND GEOMETRY OF THE
MATHEMATICAL WODEL

FIGURE 7. VECTOR REPRESENTATION OF POSITION
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Tos = ToB * Bs (9)
T =F _+%F .
os=TeoB * TBs (10)

The term ;BS is the acceleration of the spacecraft as observed in the
(X, Y, Z)-nonrotating system. The ter.u. ?BS expressed in the rotating
t§, n, L)-coordinate system is given by the following cxpression (Ref. 24): -

e -

rBSrax(Gx;BS)+G x;BS+‘lTBS+2;x}-BS (11)
where all quantities on the right are expressed in the (§, n, {)-coordinate
system; T and ¥ are the velocity and acceleration ob-served in the rotating
(£, n, L)-system. The relation between positions measured in the (§, n, {)-
coordinate system and the (X, Y, Z)-system is derived in Ref. 25. Ex-

pressed in matrix notation, the relation is

X! - £
Y| =A n (12)
z 4
where
(cosSlcos0-sinflsinBcosi) (-cosRsin®-sinf2cosBcosi) (sinSdsini)
(sinf2c0s0+co0sf2sin@cosi) (-sinf2sinB@+cosSlqcosOcosi) (-cosflsini) (13)
(sin®sini) (cosbtsini) (cosi)
Then,
-g - <
-1
n = A Y (14)
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Note that A is an orthogonal matrix and hence (Ref. 25)

A"l =AT | (15)

The total angular velocity vector, w, can be expressed as

Wz W, £, +W €& +0, €,
3 Tt B N A 4 (16)
where
wg = & gin O sin i
W, = Q cos 0 sin i 17
= f.l i+ é .
wg cos i
Furthermore, by differentiating Eq. (16) it follows that
© w5 +tw T +w 5 18
@0 T T (18)
where
a)g = sin 0 sini + Q 9 cos 0 sin i
@ =% cos ©sini -6 sin 0 sin i (19)
G = ﬁ + '9.
wg cos i
h is

Since the motion is assumed to be circular, & = 0. Also, by assumpiion,

constant, therefore, Q = 0. Hei:e, Eqs. (19) reduce to the following expres-

sions.
ég Q 9 cos O sin i
-0 sin O sin i (20)

eo
n
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In the (§, n, l)-rotating coordinate system,

Tpg = §Se€+ nsen + LSCS
Tpg © §S cn+ nSE'n + {,Ssg (21)
“ug = §s£n + nScn + LSEQ

Substituting Eqs. (16), (16), and (21) into Eq. (1l) and carrying out the indicated

operation leads to the following expression:
= . . 2 2 .
rpg © [ES + Z(wnLS - g‘115) - gs(wn + @ ) + 'qs(wgwn - wg)
+ gs(m& + d)n)];§+ [ns + Z(u)ggs - wés)
. 2 2 .
+ %(wgwn + wg) - ns(mg + wp ) + l;s((.o“wg - wg)]}':n
+leg + 2ugng - @ 65) + Elogoy - @)
Faclw o +o) - Lol +w %] (22)
S''nt ¢ S'E Y L
The acceleration expressed in the rotating (§, 7n, {)-coordinate system can be

expressed in the (x, y, z)-coordinate system by noting that

gS = xS-’-gp
ns=vs+np (23)
ts = 2zg

It should be pointed out that the origin of the (x, y, z)-coordinate system lies
in the earth-moon plane. Turthermore, by differentiating Eqs. (23) with re-

spect to time yields
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€s=;cs+ép , §S=xs+é;)

ng=Y¥g* M, » Tig =Yg+ T

Since the locations of the triangulzar libration points are defined by the earth-
moon distance which is constant because oi ithe circular orbit assumption, it

follows that

and

(24)

=% » Ng=¥g » bg=zg
Since the barycenter moves in a circular orbit around the sun, the accelera-

tion of the barycenter with respect to the sun is

+2 - 2 . =
top = (- Rgp ¥ cos 4) T+ (- R g 47 sin 4j j (25)
as shown in Fig, 8, where R@B = lr@BI. The coordinates of the sun, ex-

pressed in the barycentered (X, Y, Z)-system are

on - R@B cos
YO = - R@B sin (26)
Z®= 0 .

Therefore Eq. (25) reduces to the following:

Top = (X ¥ T+(Y 4T (27)

The acceleration vector expressed by Eq. (27) can be rewritten in the

(x, y, z)-coordinate system as
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XoB Xo
YoB | = 42AT |Yo
_zOB - i 0

where xoB, YG)B’ z@B

are the components of the absolute acceleration, ?OB'

35

(28)

expressed in the rotating (x, y, z)-coordina:e system. The coordinatec: of

the sun expressed in the (x, y, z)-system are

— - 3 T r -
*o Xo &
T
= h'4 -
Yo |=4A Yol - |
zZ 0 0
| ©_ IR I A

Now combining Eq. (29) with Eq. {28), the following expression can be

obtained
— - [~ 9
XoB X + Ep
*2
YeB =9 Yo + n,p
z@BJ z@

Furthermore, Eq. (27) can now be expressed as

ToB

* *oB*x T YoB®y * Z0BS:

Substituting Eqs. (22), (23), (24), (30), and (31) into the right hand side of

(29)

(30)

(31)

Eq. (10) and Eq. (7) into the left hand side of Eq. (10) and collecting compo-

nents in the respective (x, y, -)-directions will lead to the three following

scalar equations:



. . . 2 2
xs = - Z[wnzs - ngs] + (xs + gp) (wn + wg )

- lyg * np) (wéwﬂ - &sg) - zslwgwg + 0'0“‘)

.2 Gmm Gm®
- \p (XG + &p) -—;T—(xs - XO) - ;3——(XS - xe)
S @S
Gm» 1
- T3 xg - x)
ys

yS = - Z[wg;cs - wg'zs] - (xg + §p) (wgwn + [og)

2 2 }
+ (ys + np) (wg + wg ) - zS (wﬂw§ - wg)
Gm Gm
+2 ® ®
- Vilyg + ) - ;—3——(3'5 - Y - —r-g——-(ys - Vg
®S a@s
Gm
-2 lye - ¥v,)
3 s = ¥
ys

.z.S = -2 [wg'ys - wn:';s] - (xS + gp) (wgwg - d)n)
‘ 2 2
- (ys + np) (wnwg + ug) + zs(wg + wn )
Gm Gm
+2 0] ®
- b (zG) - ;-3——(25 - zg) - :3-—(7-5 - ze)
eS @S
Gm
- 2 (2o - z,)
3 S ) ’

s

36

(32)
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where

ros = Lt - %) + (yg - vg) + lag - 51/

[ixg - xg)° + (yg - vg)° + (g - 2212 (33)

2 2 2.1/2
+ (YS = y») + (zs = z») / .

Tes

ryg = lixg - x;)

Equations (32) are the differential equations of motion referred to the
(x, y, z)-rotating coordinate system whose origin is located at the libration
point L4. They are a system of simultaneous, second order, nonlinear, dif-
ferertial equations. As statsd previously, this system of equations was inte-
grated numerically using the Adams-Moulton method with a Runge-Kutta
starter. To use these computation techniques, it is necessary to have a sys-
tem of first-order differential equations. Equations (32) can be rewritten as

a system of six first-order equations by noting that

Ug = Xg » Vg = ¥g » Wg T Zg
(34)
Xg = 4g » Y¥g = Vg 1 Zg T Wg

Constants in the mathematical model. Constants such as the planetary

masses are not known exactly, and revisions of these constants take place with
the acquisition of additional data. The mass constants used in the mathemat-
ir-" model of this chapter are those generally accepted by and used in the Jet

Propulsion Laboratory trajectory programs (Ref. 23). They are as follows:

—&® - 813015
m

? 5 km>
Gmg, = 3.986032 » 10 (35)
sec )
Gm_ = 1.32715445 x 10!} km >
0=t o '

sec
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Because of the circular orbit assumptions, it is necessary to obtain from the
actual physical model ''constants' for the mathematical model which are repre-
sentative of the range of values i1n iie puysical model. This task is more diffi-
cult than it may at first appear to be. For example, if the moon moved in an
elliptical orbit around the barycenter, then the semimajor axis of that orbit
could be used as the radius of the circular orbit in the mathematical model
under discussion. Since the moon does not move in an elliptical orb:t (in fact,
neither its perigec radius nor apogee radius is the same from month to month),
the choice of representative values btecomes more difficuit. In addition, the
lunar sidereal period varies from month to month, These variatioas are, of
course, the result of solar and planetary perturbations on the two-body motion.
A possible choice of '""constants' would be to use the osculating elements at
some epoch, e.g., 1900 or 1950. In fact, it is these elements that are com-
monly quoted in tables of constants. Another choice is to use the sidereal
period ai an epoch for the purpose of calculating.an average angular velocity.
This latter method was selected since the sidereal periods are esseniially
constant. It should be noted that the value selected for the average angular
velocity will depend on the metlod selec;ted.

The period of th= barycenter's revolution around the sc.: was taken to
be 365.256 days and the period cf the earth-moon revolution around the bary-
center was taken to be 27. 322 days (Ref. 2). For circular motion, the angu-
lar velocity is constant and can be computed by dividing the period by 2.

&

Therefore, the following values were adopted for the angular velocities:

U = 1.990986¢ x 10" ' rad/sec
(36)

8 = 2.6616995 x 10’6rad/sec.
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Because of the circular orbit assumption, the radius of each of the circular

orbits can be computed from the two-body expression for velocity V, viz.,

1/2
V = (___Gm / = Wr
r
Therefore,
1/3
r = (_G;ﬂ (37)
w
Using Eq. (37), the circular orbit radii are computed to be
- 8
|r®B| = Rop = 1.4959885 x 10" km
= 9.29607 x 10 ' mi ,
(38)
- - 8
qu»l = 3.847488 x 10 km

2.39083 x 10> mi.

From the distance between the earth and moon, the barycenter is computed to
be 4674.87 km or 2907.45 mi from the center of the earth. Also, the §p and

f'p distances are calculated to be

%

1.876995 x 10° km

1.16631 x 105 mi

(39)

3.33202 x 10° km

=3
1}

2.07052 x 105mi.

The value of the inclination of the earth-moon plane to the Ecliptic of the Epoch

1900 is given in Ref, 2 as
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In Ref. 26, the longitude of the ascending node is given as

3

Q = 259°10'59". 79 - 57134%08'31"". 23T + 7"'. 48T + 0". 008 T (40)

where the superscript r represents revolutions and T is the time expressed

as a fraction of Julian Centuries since the Epoch 1900, viz.,

_ Julian Day No. - 2415020

T 36525

(41)

This expression is an approximate relation for the location of the ascending

node. Differentiating once with respect to time yields

Q@ = - 57134%08'31". 23 + 2(7". 48)T + 3(0". 008)T% . (42)

Neglecting the last two terms, since the first term will be affected only

slightly and also because of the sixth assumption , it follows that

© = - 57134%8'31". 23 /century

= - 19.341420 degrees/year (43)

- 1.0696994 x 10°8 rad/sec.

The minus sign simplyv indicates that the node moves in a retrograde direc-
tion, i.e., regresses westward along the ecliptic.

Evaluation gf_fequations o_f motion for Q = 0. FEquations (32) differ

from the equations of motion in Refs. 4 and 5 only by the inclusion of the nodal
regression, 5.7, in the present analysis. Therefore, if Q is placed equal to
zero in Eds. (32), these equations should reduce to the equations of Ref. 4.

Setting Q equal to zero in Eqs. (17) and Eqs. (20) vyields the following expres-

sions.

Do

w§=0, w =0 , wg=
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Therefore, Eqs. (32) will reduce to the following

+20yg + (xg +£ )02 - (xy + £

xs =
Gm Gm
® ®
"3 (xg - %) - 3 (x5 - xg)
I'OS rw
Gm
)
- =5 (x5 - x,)
Tys
Vo = - 20 x. + (yo + 1 )éz-(y + ‘;q';z
s Xg s 7 Mp o7
Gm Gm
o) ®
-3 lyg - vo) - 35— lvyg - Vg
ros rm
Gm
)
-3 (Ys - Y))
Y5
.. . Gm Gm
Zg = - 2o’ - = (zg - zg) - —x— (zg - 2z¢)
res .l'%
Gm)
-—3— (zg = z,)
ys

The above equations are the same as those given in Refs. 4 and 5.

It is also important to note some differences in the initial orientation
of the mathematical model of Ref. 4 and the model of this chapter. If all
variable angles, viz., 0 and {§, are set equal to zero in Ref. 4, one will ob-
serve that the initial orientation of the earth, moon, and izun for that model

corresponds to an orientation of
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Q=180° , o0 =-180°, ¢ =180°

A -~
in the model discussed in this chapter. If the angles 6 and ¢ are measured
from the orientation which corresponds to that of Ref 4, the position of the

sun measured in the (x, y, z)-rotating coordinate system, as given by Eq. (29),

becomes
- - - e - -
&
Xg RQBcos Y .
Yo =AT ReBsinlll - ‘l‘|p
zZ
L o | L 0 ] _0 |
where
B ~ ~ ~ ]
cos 6 sin@® cosi - sin O sin i
'I‘ ~ -~ . S
A = |- 8in 0 cos B cosi- cos 0 sini
0 sin i cos i
or

o~
1

X = ROB(COS 0 cos ¢ + sin 0 sin ¢ cos i) - §p

= - RoB(sm O cos ¢ - cos O sin ¢ cos i) - np

N
1"

RGB sin ¢ sin i ,

and again these are the same equations as those given in Ref. 4.

Case I results and comparison with Ref. 5. Equations (32) were nu-

merically integrated using the Adams-Moulton method with the Runge-Kutta
starter. The integration was carried out with a maximum step size of 6000
seconds. In some instances, it was necessary for the program to reduce the
step size to 3000 seconds or 1500 seconds. The maximum single step error

was set at 1 x 10-5 and the minimum single-step error was set at 5 x 10-11 .
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In order to make a comparison with the results of Ref, 5, initial
conditions were used in this study which yield the same initial orientation of
the earth-moon-sun system. These initial conditions are 90 = 180° ,
9°= 180° , and \po = 180° or ¢° = 225° . In Ref. 5, the spacecraft was as-
sumed to be placed at the libration point with zero velocity relative to the
rotating (x, y, z)-system. These initial positions and velocities are also
used in this study and are xg = yg = zg = 0 and Xg = ;'S = 2zg = 0. The
results of the integration giving the projection of the motion on the (x, y)-
plane are shown in Figs. 9 to 10. The case in which the initial solar position
is along the earth-moon line, i.e., 4;0 = 189°, is represented by Figs. 9.

The case in which L|lo = 225° is represented by Figs. 10.

For the case in which q;o = 1800, the spacecraft maintains a libration
point centered motion for the 2500 days studied. As shown in Figs. 9e and 9f,
the envelope of motion for the spacecraft increases to a maximum distance of
about 220, 000 miles in the period from 1000 days to 1250 days after insertion.
After this time, the envelope of motion steadily decreases until it reaches a
value of about 26, 700 miles (Fig. 9k). This ''puisating behavior' was observed
in Ref. 5 in which tire model excluded the nodal regression. It sho:-'d be noted
that the motion in this case is considerably difierent than that of Ref. 5 for the
same initial orientation of the earth-mocn-sun system and the same initial
displacement and velocity of the spacecraft.

The motion for ¢ = 225° is somewhat different than b, = 180°. The
spacecraft continues on a libration-point centered motion for approximately
1200 days. As can be seen from Fig. 10e, the spacecraft appears to be leav-
ing this libration-pcint centered motion. In Fig, 10f, it is obvious that the

spacecraft has taken up an entirely different type of motion than heretofore
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BARYCENTER

FIGURE 9c. L, ROTATING (x,y)-RESULTS FOR y, = 180°
FROM 500 DAYS TO 750 DAYS

FIGURE 9d. Ly ROTATING (x,y)-RESULTS FOR y, = 180°
FROM 750 DAYS TO 1000 DAYS
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FIGURE 9g. L, ROTATING (x,y)-RESULTS FOR y, = 180°
FROM 1250 DAYS TO 1500 DAYS
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FIGURE 9h. L, ROTATING (x,y)-RESULTS FOR.y, = 180°
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FIGURE 9i. L, ROTATING (x,y)-RESULTS FOR y_ = 180°
FROM 1750 DAYS TO 2000 DAYS
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observed, i.e., an unstabie motion. Between 1334 and 1335 days, the
spacecraft makes a close pass of the moon and subsequently leaves the earth-
moon system to take up a heliocentric orbit separate from the earth-moon
system. It must be remembered that in tiie period from 0 days to 1335 days,
the spacecrait is already in a heliocentric orbit since it is moving within the
earth-moon system., The heliocentric motion is shown in Fig. 11 for abcut
one year after the lunar encounter. The data for Fig. 11 were obtained by
making a coordinate transformation from the rotating (x, y, z)-system to the
(¥, ¥; &)-heliocentric coordinate system.

For comparison purposes, the magnitude of the displacement from L 4
was determined and plotted versus time. The results of Ref. 5 are shown in
Figs. 12 to 13. The results of the investigation reported in this chapter are
shown in Figs. 14 to 15. It should be pointed ocut that there ~re some slight
differences in constants used in the mathematical mbdel of Ref. 5 and those
used in this chapter. In Ref. 5, the earth-moon distance is taken to be
238,855 miles, the sun-barycenter distance is 92,913, 600 miles, and the
earth-moon ratio is 81.53. The corresponding constants used in this chapter
are, respectively, 239,083 miles, 92,960, 700 miles, and 81.3015. There
are also slight differences in the angular velocities in addition to the inclusion
of the nodal regression of the model discussed previously. Accounting for
the slight differences in the constants used in the two mathematical models,
it appears that the nodal regressiox; has an important effect on the motion.

For the case in which ¢o = 1800, the absolute value of the z-component
of the motion does not exceed 3500 miles. The absolute value of the

z- component for Lpo = 225° does not exceed 3700 miles prior to 1335 days.
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FIGURE 10a. Lj ROTATING (x,y)-RESULTS FOR y, = 225°
FROM 0 DAYS TO 250 DAYS

FIGURE 10b. L, ROTATING (x,y)-RESULTS FOR y, = 225°
FROM 250 DAYS TO 500 DAYS
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FIGURE 10c. Lj ROTATING (x,y)-RESULTS FOR y, = 225°
FROM 500 DAYS TO 750 DAYS

FIGURE 10d. L, ROTATING (x,y)-RESULTS FOR y_ = 225°
FROM 750 DAYS TO 1000 DAYS
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¥o = 225° FROM 1250 DAYS TO 1340
DAYS



54

¥ (5. WLES)

FIGURE LI. SPACECRAFT MOTION SUBSEQUENT TO LUNAR
ENGCOUNTER AT 1334 TO 1330 DAYS WnITH ¢-228°



nuge)

WMABIMTUDE OF SPACECRAFY DiSPLAGEMENT (8.

WAGNITUDE OF SPMUEORAFT DISPLACEMENT (8. MILES)

woo

FIQURE 120, MAGNITUDE OF DISPLACEMENT VECTOR V8. TIME

TIE(DNre)

55



140,000
@
2 fiso
. WHTIAL  CONDITIONS :
e 1:0 w0
y20 vxQ
§ 120 ws0
g [ 33 -1
100 .‘-mo
3 o.-e0° s
a
5t ¥ :
] i
i |
&0 h Lk
.3 ” ; !
R :i
g '.‘i:
20 it
400 800 §
. T T
FIGURE 13a. MAGNTUDE OF DISPLACEMENT VECTOR VS. TIME
a
140,000
=
; i
[ ; . i
5 il
s K N H ! '
8] i !
; ]! !’ i
s .
[ Bt
g | i l?” T l
% 20 Ui
00 1800 28200 _—
TWME (DAYS)

MAGNITUDE OF ODISPLACEMENT

56



¢ 4
' -
-
P
'y
0,000
- figo
.l INITIAL CONDITIONS:
; 250 us0 ’ . ‘R |
y20 w0 1l 1 |
¢ 140 w0 ,
Al @ 180° 3 |
F 60 ...m- . i
. . .
o, 180* .
i | ,
; ’ E \‘? !
i i
g ' H I
©
’ i ! ;
I'y , ¥
- H H
s | HRAN i
>
800 1200
d——
TIME DAYS)

FIGURE 14a. MAGMITUDE OF DISPLACEMENT VECTOR VS. TIME

140,000

) w0 Y Y
art
FIGURE b MAGNITUDE OF OISPLACEMENT VECTOR V3. TiME




MILES)

MAGNITUOE OF SMMCEORAFT  DISPLACEMENT (S.

- 400, a#o0
g0 INITMAL  CONDITIONS :

210 w0
350 w0
3%0 wsd
228

! &
Q.0 w0

z
3

T

MMM A AMMMM W

i | Lf

i

FIOURE 15. MASNITUDE OF OISPLACEMENT VECTOR vs. Timg

Ting (Oars)

58



59

Case II: Nonrotating Coordinate System

a

Equations of motion. Because ephemeris information will be used in a

subsequent mathematical model, it would be extremely difficult to use a rotating
- coordinate system for the equations ,of motion with such data. It would be nec-
essary to detefmine from the ephemeris data vitems such as angular velocity and
acceleration. This could be achieved, but the results would be subject to the
inaccuracies associated with the numerical differencing of the position and
velocity in‘f.ormation. However, if the equations of motion are expressed with
) res;ect fo a n;nroltating c'oordir;até system, the need for angular velocities is
eliminated. The numerical iﬁtegﬁ;ation was carried oﬁt in a nonrotating coordi-
nate system and the result; compared with those of Case I.

By combining Eqs. (7), (10), (25), and (26), the combonents of the

equations of motion can be expresséd in the nonrotating (X, Y, Z)- coordinate

system as follows:

* _ GmO(XS - XG)) ] Gme(.‘(s - Xe) ] G:m»(XS - X») x q';z
S 55,3 r3 r3 o)
eS @S S
.Y . GmQ(Ys - YO) ) Grne(Ys - YQ) ) ('Em»(YS -~ Y») Ly ‘LZ
S r3 r3 r3 0]
S &S S
.Z. ) C'm@(ZS - ZO) Gme(ZS - Ze) Gm»{ZS - Z»)

s - B 3 B 3
r o - T r
®S ™ as S

(44)
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where /
1/2
Fos = [(xS - X2+ (¥g - Y + (zg - ze)?“
11/2
res = [(xs - xe)z + (Y - Ye)z +(2Zg - zg)"‘
. 11/2
P = [(Xs - X)% + (Yg - Y+ (2g - 2,0

Integration of the Eqs.(43) yields the pusition of the spacecraft in the (X, Y, Z)-
nonrotating coordinate systein.

Initial conditions. The initial conditions in this study will be such that

when a cuordingte transformation of the initial conditions is made from the

(X, Y, Z)-coordinate system to the rotating (x, y, z)-system, the result will
be the same as thé initial conditions used in Case [. In Case I, the initial posi-
tion and velocity relative to the (x, y, z)-coordinate system was zero, i.e.,
the spacecraft was placed at the libration point L4 with the same velocity as
L4. Therefore, the initial conditions relative to the nonrotating (X, Y, Z)-

system are, from Eq. (12),

. T .

XS fp

YS = A ‘l’]p (45)
_st _0 4

where the matrix A is expressed by Eq. (13). Furthermore, since both

sets of initial conditions in Case I are similar, i.e., 90 = 180° and

90 = 1800, the matrix A becomes
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1 0 o ]

4 = 10 cos i sin i {46)

0 -sini cos 1

for the initial conditions only. Then
XS = ép . YS = qpcos1 , ZS = -npsmx

The velocity of the spacecraft will be the same in the (§, n, {)-

coordinate system as in the (x, y, z)- system since, as shown in Eq. (24),

xg = & » Vg =TMg » 2zg =g

The components of the total velocity expressed in the rotating (§, n, 0)-

coordinate system are as follocws:

- = - e
XS I (wT]LS = wgns + gs)
Yol = A (065 - ©Lg + ng) (47)
-is -(wgns = wngs + is) i

T'sing the matrix A evaluated for the initial conditions, viz., Eq. (46), and

the initial values of gs, g LS’ §s, ;'S’ and iS’ the following expressions

can be obtained:

-(flcosi+ an

YS gp(n + 0 cos i)

-§Pésini

The initial conditions are ccmputed in double precision to avoid as much

n
]

round-off error as possible. The initial conditions for Qo = 180° and

0 = ,'!80o are
o
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116, 630,86 mi X - .5489 mi/sec

"

S s~
Yg = 206,206.07 mi irs = .3080 mi/sec
Zg = 18,584.80 mi Z = - .0278 mi/sec .

Case il results and comparison with Case I. The integration of

Eqs. (44) was carried out using the same s.ngle-step error range as in Case I.
Althocugh the integration was made in the bary~:ntered (X, Y, Z)-coordinate
system, the data were transformed to the (x, y, z)-libration-point-centered
coordinate system to facilitate comparison with Case I. Tables 1 and 2 show
the results of this comparison for the two different i.iitial orientitions used.
For the case in which \iJo = 180° (Table 1), the solutions of the two different
sets of differential equations are in good agreement throughout the 2500-day
study. In fact, at 2500 days, where one might expect the largest disagree-
ment, there is a difference of 1, 76 miles in over 4000 miles. For ¢0 = 2250,
there is good agreement until approximately 1200 days with a difference of 24
miles in 175, 000 miles. As the spacecraft leaves the libration-point-centered
motion, the discrepancy between tire two coordinate systems becomes more
noticeable, and is 6411 miles in 270, 000 miles 5 days after the lunar encounter.
Since ¢° = 180° exhibits very good agreement over a long time span
(2500 days), it appears that the discrepancy in the \po = 225o is not a result
of a numerical instability. There are a number of possible causes for the
discrepancy in the q;o = 225° case. First of all, the discrepancy could be
a result of inaccurate specification of initial conditions. The initial conditions
in the rotating case were zero relative displacement and zero relative velocity;
however, in the nonrotating case the initial conditions are computed. Since

the trajectory which a spacecraft will follow is determined by the initial



Time (Days) Rotating |Nonrotating| Absolute Time (Days) Rotating |Nonrotating| Absolute
Difference Difference
x | -9270.09 | -9270.09 0 x 16,045.1 | 16,044.8 0.3
100 Yy 4537. 35 4537. 35 0 1800 y -23,713.1 -23,712.8 0.3
z -1049.77 | -1049.77 0 z -1572.04 | -1572.01 0.03
x | 11,301.2 | 11,301.2 0 x | 17,872.6 | 17,872.7 0.1
400 y | 3598.06 3598. 04 0.02 2000 y | -4569.96 | -4570.25 0.29
z -560.903 | -560.904 0.001 z | 3040.08 3040. 04 0.04
x | -53,455.2{ -53,454.8 0.4 x | 676.415 677. 662 1.247
800 y | 515.571 515. 621 0.05 2200 y | 3240.97 3240.06 0.91
z | 497.841 497. 842 0.001 z -215.638 | -215.615 0.023
x | 65,871.2 | 65,870.7 0.5 x | -8115.63 | 8114.59 1.04
1200 y | 3027.65 3027. 65 0 2400 y | 5954. 66 5955, 21 0.55
z -1627.22 | -1627.20 0.02 z -2662.14 | -2662.13 0.01
x | -70,031.3] -70,031.4 0.1 x | -1777.06 | -1776.78 0.28
1600 y 13,840.6 | 13,840.6 0 2500 y | -4053.45 | -4055.21 1.76
z -1182.80 | -1182.78 0.02 z -506. 352 | -506.337 0.015
Table 1. Comparison of Rotating and Nonrotating Data (Miles) for Lpo = 180°
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NonrotatinJ

Time (Days) Rotating Absolute Time (Days) Rotating [NMonrotating| Absolute
Difference Difference
-157.663 | -157. 663 0 X -115,480 | -115,478 2.0
5 -1282.68 | -1282. 68 0 1000 y 32,719.6 | 32,718.9 0.7
22.8080 22. 8080 0 z 37.4331 37.4509 0.0178
-27,972. 1 -27,972.0 0.1 X -175,293 | -175,317 24.0
200 15, 246. 1 15, 246. 1 0 1200 y -22,339.4 -22,343.9 4.5
149. 047 149. 047 0 z -463.374 | -463. 242 0.132
-19,156.5| -19,156.5 0 X -140,456 | -140,473 17.0
400 2288. 63 2288. 72 0.09 1250 y -86,974.9] -86,994.4| 19.5
-747.020 | -747.020 0 z -2429. 65 | -2429.57 0.08
36,678.3 | 36,677.9 0.5 X 1792.50 1321.95 470. 55
600 -14,940. 4| -14,940.2 0.2 1300 y -65,908.4] -65,033.8| 874.6
-959.706 | -959.703 0.003 z -1183.59 | -1198.59 15,0
13,560.1 13,560.5 0.4 X 270, 148 263, 137 16411.0
800 23,063.8 | 23,063.1 0.7 1340 y -313,821 | -319,693 5872.0
1051.92 1051.91 0.01 z 11, 315.5 | 10, '193.6 1121.9

Table 2. Comparison of Rotating and Nonrotating Data (Miles) for b, = 225°
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conditions, slightly inaccurate initial conditions will result in a trajectory
differing from the accurate initial conditions. This problem was anticipated,
however, and ihe initial conditions were computed in double precision,

On observing that the large discrepancy occurs when the spacecraft
leaves a libration-point-centered motion, another possibility accounting for
the discrepancy involves round-off error during this period. In any numerical
integration method there will be some truncation error and round-off error.
For the ccmparison under discussion, two sets of differential equations were
integrated using the same numerical integration technique. These equations
differ only in that they express the acceleration in rotating and nonrotating
coordinate systems. Furthermore, since the form of the equations is differ-
ent (even though the numerical integration should yield the same point in
space), the round-off error encountered by numerically integrating these
equations will not, in general, be the same for both sets of equations. One
might note that the differential equations of motion referred to the rotating
coordinate system are somewhat more complex than those for tl.e nonrotating
coordinate system [compare Eqs. (32) and (44)]. During periods after which
the spacecraft has left the libration-point-centered motion, one might be de-
termining small changes in a large distance, particularly when the spacecraft
trajectory forms a cusp in the rotating system. Such is not the case in the
nonrotating system. In the nonrotating system, there are no cusps and, fur-
thermore, the trajectory is near elliptical. Thus, it is possible that round-
off error of sufficient magnitude is being accumulated prior to and after de-
parting from the libration-point-centered motion that the results in the

rotating systemn are somewhat inaccurate,
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From the considerations of the two previous paragraphs, it appears
that the results in the rotating system are somewhat less accurate than those
in the nonrotating system during the period in which the spacecraft is no
longer on a libration-point-centered motion. Thus, the nonrotating system
probably offers the more accurate results. Again, during the period of a
libration-voint-centered motion, the results of the two coordinate systems are
much the same.

A check of the numerical integration procedure was made also by
numerically integrating the differential equations of motion expressed in a
nonrotating coordinate system for a particle in the two-body case. The primary
body was taken to be a body with the mass of the earth. Since approximately
36, 000 steps were necessary to get to the 2500-day mark in the mathematical
model under discussion, the integration ot the two-body case was carried out a
comparable number of steps. By cumparing the results with those obtained
from the closed form solution of the two-body probiem, it was found that the
numerical integration results differed with the exact solution less than .1
mile in 4000 miles after 36, (N steps. From this comparison, it appears
that the numerical integration procedure does give quite accurate results

over long time periods.

Case III: Farth-Moon Orbital Plane Defined by Angular Momentum

Equations of motion and initial conditions. The equations of motion

derived in Case II, Fqs. (44), will be used in this section, however, the
initial conditions of position and velocity will differ from those used in Case II.
It will be assumed that the libration points are in the earth-moon

orbital plane, i.e., the plane normal to the angular momentum vector and
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passing through the earth-moon mass center. The total angular momentum
of the earth-moon system with respect to the barycentered coordinate system
is the sum of the earth's angular momentum and the angular momentum of the
moon. However, it is shown in Appendix B that the total angular momentum
of the system can be computed from the angular momentum of the moon, viz.,
Eqs. (B-13). Furthermore, as also shown in Appendix B, the inclination and
longitude of the ascending node can be computed from the angular momentum
per unit mass of the moon, viz., Eqs. (B-15) and (B-16). The position of the
moon in th: orbital plane, viz., the angie 9* (see Fig. B-1), is given by

Eqs. {B-5). The position and velocity of the moon can be determined from

ANAEANEE
X B )

'Y) = A 0 . Y» = A wl;rB»
;Z 0 Z wr

L )_. b _J | DJ - n B»J

In order to compare the results, the same initial angles will be used in this
case as in the two previous cases, viz., 90 = 180° and 6, = 180° .

The initial position and velocity of the moon are

X =r }.(.:0

) B> 3
Y» =0 Y) = rB»(Q + 0 cos i) (48)
Z) =0 Z) =rB)981n1 .

The initial orientation and velocity are illustrated in Fig. 16, It is important
to note that the velocity of the moon is composed of the velocity due to circu-
lar orbit motion and that due to the regressional motion. The angular mo-

mentum per unit mass of the moon is, for the specified initial conditions,
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h =0
XD
hY = - Ty 6 sin i
)
h = r 2(5.7+'9cosi)
ZD B)
hy = rB»Z(éZ + 200 cos i + 522)1/2 (49)

E3
Then the inclination of the earth-moon orbital plane, i , is (from Eq. (B-15)

cos i* = R+6cosi (50)

(9‘2 + 290 ) cos i+ QZ)I/Z

It is important to note that i* is not equal to i. The situation is illustrated
in Fig. 17. If, however, Q equals zero, the case of Ref. 4, then i* is equal
to i, i.e., the earth-moon plane in Ref. 4 is the plane defined by the angular
momentum,

Since the inclinations of the orbital plane and the earth-moon plane are
not equal, the question arises as to which plane should contain the libration
point. Since the libration point was assumed to be in the earth-moon plane in
Case I and Case II, it seems logical to determine the resultant motion assuming
that the libration point is in the orbital plane. Only one set of initial conditions

will be used in this case, namely

Q =180° , ¢ =225°, o =180°
0 (o] o

Also, it will be assumed that the spacecraft will be initially placed at the libra-
tion point L4 where L4 is assumed to lie in the earth-moon orbital plane, The
primary reason for using this set of initial conditions is because of the instabil-

ity observed in the previous cases for this set. FEvaluation of Eq. (50) yields

*
i = 5.17075°. Recall that i was selected as 5.15°,



FIQURE 8.  INITIAL ORIENTATION OF THE EARTH-MOON
SYSTEM WITH Lg ASSUMED TO EXIST IN THE

EARTH-MOON PLANE

SMOMEN
OF ZARTH~MOON SYSTEM

FISURE I7. OMENTATION OF THE EARTH—MOON
ORBIT PLANE DEFINED BY THE ANGULAR
MOMENTUM
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Using the results for the angular momentum expressed by Eqs. (49), it
folldws{ fhat cos 9’: ’= -1 and tan 9: = 0. Therefore, Q’: = Qo = 180°
where Q: is the ascending node location of the earth-moon orbital plane.

In a similar mnanner, 9: = 90 = 180°. The initial position of the spacecraft
is given by Eq. (C-3), in which §p and 'qp have the same numerica% value as
in Cases I and II and the matrix A is evaluated at 6:, Q:, and i*. Fbr the

initial position of the spacecraft, i.e., Xg = 0, 0, zg = 0, it follov(rs

¥g =
that X, = Y, = i*, and Zo = n_sini. Th lar velocity of

at Xg = §p, g = 'qpcos1 » and Zg = npsmx . The angular velocity o
the earth-moon line in the orbital plane is given by Eq. (C-6) and can be used

to determine the following condition:

K I
rB».G = Y» cosi - Z» sin i (51)

The libration point L4 is an angle ¢ ahead of the earth-moon line, i.e.,

n

tan ¢ = i— (52)

Also, the barycenter - L4 distance is a constant and is determined from
2] 1/2

rnp = [gpz +n (53)

The initial velocity of the spacecraft is expressed by Eq. (C-10), in which

4 distance, is a constant and i'B» = 0. Fur-

thermore, the initial velocity components ;CS = 0, ;rs = 0 and iS = 0 will

TRy, i.e,, the barycenter -1L

lead to the following conditions:



. o X
S -sm¢(rBL9 )

x.
n

.
"

X% é*
g =cos ¢cos i (rgp, )

.Uk * %
- cos ¢ sin i (rBLe)

wn
n

Equations (51), (52), and (53) yield

o -
8 = 2.651045902 x 10 6 rad/sec
rg; = 382, 432. 8 km
= 237,632.3 mi
& = 60.60656°

The initial position and velocity of the spacecraft computed from Egs. (C-3)

and (C-10) are

Xg = 187,699.5 km 5(8 = - .88333448 km/sec
= 116, 239. 6 mi = - .5488775 mi/sec
Y¢ = 331,846, 3 km s'zs = .49558 km/sec
= 206,199, 3 mi = ., 30794 mi/sec
Zg = - 30,029, 6 km 'zs = - .04485 km/sec
= - 18,659, 5 mi = - .02787 mi/sec.

Assuming that L, lies in the circular orbit plane, that is, Case II, the

4

initial conditions were
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Xg = 187, 699. 5 km xS = - ,.88333442 km/sec
= 116, 239. 6 mi = - .54887750 mi/sec
Yo = 331,857.2 km Yg = . 49558 km/sec
= 206, 206, 1 mi = . 30794 mi/sec
Zg = - 29,909. 4 km }zs = - .04485 km/sec

I,

- 18,584,8 mi -.02787 mi/sec.

The initial velocity is much the same in the two cases with only a difference in
the eighth decimal place in X. There is a difference of approximately 6 miles
(10 km) in the initial Y displacement, but there is a difference of approxi-

mately 75 miles (120 km) in Z.

Case III results and comparison with Case I. The integration was per-
formed in the barycentered coordinate system, however, a coordinate trans-
formation to the (x, y, z)-system located in the earth-moon plane was rnade at
the printout for comparison with Case I. The results differed only clightly
from Case I prior “0 1200 days, in fact, it was impossible to discern a differ-
ence in the plots for both cases. After 1200 days, the two trajectories begin to
noticeably diverge and the motion for the period from 1250 days to 1500 days is
shown in Fig. 18. Note that although the spacecraft does cocme almost as close
to the moon as in Case I, it does not leave the earth-moon system, but con-
tinues on 4 trajectory which keeps it in the earth-moon system. It is impor-
tant to note that even with this set of initial conditions in the orbital plane
defined by the angular momentum, the motion is unstable. There has not been

a significant change in the motion throughout the stable period.



FIGURE 18.

L, ROTATLHG (x,y) -RESULTS FOR
v = 225° FROM 1250 DAYS TO
1200 DAYS USING THE EARTH-MOON
ORBITAL PLANE
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Case IX_ Orientation Correspondi_r}g_ toJD 2,439,501.0

Using the computer program for the integration of the differential
equations expressed in the rotating (x, y, z)-coordinate system, viz.,
Egs. (32), an initial orientation of the earth-moon-sun systerm was supplied

which corresponded to the orientation of the system on Julian Date 2,439, 501. 0

(January 10, 1967; IZhGMT). This corresponds to the initial values for the

o]

angles 2, 6, and ¢ of @ = 43% 0 = 242° and ¢ = 109°. The results are
o O o

displayed in a total displacement irom L, versus elapsed time plot in Fig. 19.

4
The spacecraft is in a libration-point-centered motion throughout the 1770 day
period considered in this four-Lody model. These results are compared to

the '""real world'" model in a later section.
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CHAPTER IV

MATHEMATICAL MODEL UTILIZING EPHEMERIS INFORMATION

Mathematical Model

In the previous analysis, assumptions concerning the orbits of the sun,
moon, and earth were made, viz., the orbits were assumed to be circular.

As stated previcusly, these orbits are not in reality circular, nor are they
exactly elliptical. In fact, they are not really closed orbits, i.e., they do

not return to the same point in space afier each revolution around the sun or
the barycenter. Rather than make an assumption regarding two-body elliptical
motion in this mathematical model, ephemeris information will be used to ob-
tain, to a very good degree of accuracy, the actual positiocn of the members of
the solar system. This information is stored on the Jet Propulsion Labora-
tory (JPL) Ephemeris Tapes for use on digital.computers. These ephemeris
tapes will be discussed more fully in a subsequent section.

As stated previously, Newton's Three Laws of Motion and the Law of
Gravitati.on will be accepted as postulates, it will be assumed that all the bodies
under consideration are point masses, the mass of the spacecraft is very small,
that there are no external forces on the solar system, and that there is no solar
radiation pressure on the spacecraft. Relativistic effects will also be excluded.

The Jet Propulsion Laboratory Ephemeris Tapes directly provide the

geometric position and velocity of all the major planets (except earth), the
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barycenter, and the moon. Therefore, all the major planets could be included
in this analysis since the information is readily obtainable. It seems reason-
able to assume, however, that certain bodies will have a much smaller effect
than others and can be neglected in order to prevent unnecessary computations
which would needlessly increase the computer time required.

Study of Table A-1 in Appendix A reveals that the sun is the major per-
turbirg influence on a spacecraft at the triangular libration points in the earth-
moon system. The planets Venus, Jupiter, and Saturn exert a stronger influ-
ence than the other planets. The effects of Mercury and Mars are similar and
can be as small as the effects of Uranus or Neptune and as large as Venus;
however, the effect of Pluto is about one-onehundredth that of Uranus cr Neptune
Further study would show that the effects of Uranus or Neptune are approxi-
mately the same order of magnitude as the effect of the noncentral gravitational
field of the earth at the triangular point. Therefore if the planets Uranus and
Neptune are included, then the noncentral gravitational fields of the earth and
moon should be included also. Inclusion of the noncentral effects would prob-
ably become noticeable only after many years and it would also complicate the
mathkematical model to a considerable extent. Therefore, the three outer
planets Uranus, Neptune, and Pluto, will be excluded along with the noncentral
force components due to gravitational attraction. The effects ~f all other
bodies, e.g., sun, Mercury, etc., will pe included.

In this mathematical model, the triangular libration points are assumed
to exist in the earth-moon orbital plane, i.e., the plane defined by the angular
momentumn of the earth-moon system. It is necessary to define an earth-moon
orbital plane in order to locate the triangular libration points under investiga-

tion. In the restricted three-body problem, the libration points exist in a
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plane defined by the angular momentum of the system. Furthermore, since
the libration points of the restricted three-body problem are considered herein
with the addition of perturbing forces, i.e., forces which cause the motion to
deviate from the three-body case, it seems logical to use the earth-moon or-
bital plane for the location of the libration points in the mathematical model
under discussion. It is important to note at this point tiat angular momentum
plays an important, although often unrecognized, part in orbital mechanics.
Two-body motion takes place in a piane defined by the angular momentum, a
plane which has a fixed orientation in space since there are no external forces
on the two-body system. In addition, the orbit elements used in the expres-
sions for the time rates of change of the orbit elements locate the instanta-
neous orientation of a plane defined by the angular momentum of the body under
consideration.

In Ref. 7, ephemeris positions are used in a 180-day study beginning
October 27, 1963, and also in a 475 day study beginning July 2, 1964 (the data
are also presented in Ref. 16). The spacecraft coordinates are presented in a
libration-point-centered coordinate system. The numerical integration was
carried cut using the General Electric N-Body Trajectory Program with an
initial velocity equal in magnitude to that of the moon. However, the orienta-
tion of the earth-moon system is determined by computing the cross product
of two consecutive lunar position vectors., It appears from the considerations
of the previous paragraph that determining the orientation by the angular mo-

mentum vector is preferred to using two consecutive radius vectors,
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Equations of Motion

If the equations of motion in the ''real world" model were expressed in
a rotating coordinate systemn located at the libration point of interest, it would
be necessary to determine angular velocities and angular accelerations [see
Eq. (11)]. Furthermore, these quantities would have to be computed from
the position-velocity information stored on the ephemeris tapes and would in-
crease the necessary computer time considerably. However, expressing the
equations of motion in a nonrotating coordinate system eliminates the need for
angular velocities and angular accelerations. It was found in Case II of the
modified restricted four-body model that the nonrotating and rotating equations
of motion gave results which compared very well during the period in which
the spacecraft continued on a libration-point-centered motion. Furthermore,
it was concluded that after the spacecraft departed from the libration-point-
centered motion, the nonrotating equations of motion yielded results which
were more accurate than the results of the rotating equations of motion. With
these considerations, the differential equations of motion in the '"real world"
model of this chapter will be derived in a nonrotating barycentered coordinate
system.

Because of the assumption regarding external forces on the solar sys-
tem, viz., that they do not exist, the center of mass of the solar system will
move in a straight line with constant velocity relative to an absolute coordi-
nate system. Since the center of mass is moving with constant velocity,
Newton's Second Law will be valid if referenced to a nonrotating coordinate
-system at the center of mass of the solar system. In Fig. 20 the (X—c, X .,

-Z.C)—nonrotating coordinate system is shown with origin at the solar system
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centef of mass. The vector distances involved are alsa shown. The. -

equations of motion, with respect to the (X-C, Y-C, ZC)-system are

- ? . (JmCDerOS ) GQOSrGS
s'Ccs r3 'rT
- Gm_m.r
Gm»msr)S P; S p;S
B B 3
Tys i rpis
Gmpi@srpis_
where % - indicates the summation of all forces on the spacecraft
i r
p.S

1
due to bodies other than the earth, the moon, and the sun. The position of

the spacecraft can be expressed as

Tes = T'CR + Thg (55)

where the components of the vectors are expressed in the (XC, _.¥-C, Zrc)-'
coordinate system or in a nonrotating (X, Y, Z)-barycentered system, the
axes of which are parallel to their counterparc¢s in the (X-C, Y-C, ZC)-system.

Therefore,

rss = *ce * TBs (55)

=T

Teg © + T (57)

CB BS

FEquation (57) can also be written as

r :.“-.-'rcs - T

BS (58)

CB ’

LX)

Since ;CS is given by Eq. (54), knowledge of the acceleration of the bary-

center with respect to the solar system mass center permits determination of
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the spacecraft acceleration with respect to the barycenter. The mass times

acceleration of the moon is given by

Gm.m._r
- _ ) @ @)
m)rC) = re - — (59)
» T@)

where Fe is the sum of all forces on the moon except the earth. The mass

b
times acceleration of the earth is given as

Gm m._r

= = B
mefec = }E‘ee + - (60)
@)

where Fe is the sum of all forces on the earth except that due to the moon,
®
Adding Eqgs. (59) and (60) yields

my Ty 4+ m_r =F +F (61)

The location of the barycenter in the (X-C, ¥-C, ZC)-coordinate system is, by
definition,
+ m_r

m.T
_ » C)y @ Ce (62)

CB ' rn)> + me

T

Taking the second derivative with respect to time yields

Therefore by combining Eqs. (61) and (63), the following expression can be

obtained:

T =——-1-—-(F +F ) (64)

€ e
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Combining Eqs. (54), (58), and (64) yields

. - - - Gm_r
.?. . GmOrQS ) GmGrQS ) Gm»rbs ) Py piS
BS r3 rj r r§
S @S S piS
- Gm.m
- 1 GQOGrO@ ® p; p®
m, + m - 3 - 3
@ ) rO@ i rpie
- Gm.m T
_GmymeTey s __ 2 P i? (65)
3 ] r
o) i pi)

Rearranging Eq. (65) will lead to the following result:

- — Gm T
.;. _ Gmoros ) Gmeres ) Gm»’i')S s P; piS
BS rr 13 r3 i r3
©S @S 3S p;S
N Gm,, meF o ' My For
m» + me r3 r3
0] 0))]

(66)

All vectors in Eq. (66) are expressed in the (X, Y, Z)-barycentered coordi-

nate system. Expressing Eq. (66) in component form yields
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Gm@(}(s - XQ) ) Gme(xs - Xe) ) Gm1’>(xs - X))
r3 r3 r3
®S @S S
Gm_ (X.-X_)
5N S p ' Gm,, mg(Xg - Xo)
i 1_3_ m, + mg r3
p;? lor:
m, (X, - X ) Gm me(Xg - X, )
+ = : i
r? il my + mg r3
o) p;®
(X -
my ‘X» Xpi)
r3
p;?
GmO(YS - YO) ) Gme(YS - Ye) ] Gm»(YS - Y»)
1_3 rT r3
©S @S »S
Gm_ (Y- -Y ) ‘ _
= p; S i, Gm, mg(Ye - Yo
i r3 m» + me r3
p;S o
m (Y, - Y ) Gm / mg(Ye - ¥,)
+ = : !
r3 R m) + me \ r3
0)) ' pie
m»(Y» -Y i)
r3
/
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. (me(ZS - ZQ) Cirne(Zs - ZO) Gm)(zS - Z»)
A - - -
S r3 r3 r3
oS &S S
Gm (Z2.-2 ) r .
s B S ' Gmy, mglZg - Z o)
: ?3 m, + Mg r3
h piS 10.:)
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0) ] piG
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where
r 11/2
: 2 . 2 2
fo5 © lxs - xo) + (&S - YQ) + (ZS - Zo)
[ 2 2 2]1/2
Tes L(XS - X@' + (Ys - YQ) - (ZS - Z®) |
- . 1/2
_ 2 2 2
Ty T L(XS - X)) + (YS - Y;) + (LS - Z)) ‘
1/2
_ 2 2 2
rp_S = [(XS -X ) + (YS -Y .) + (ZS - Zp.) }
i i i i
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Numerical integration of Eqs. (67) with specified initial conditions yields the
position of tne spacecraft in the (X, Y, Z)-barycentered coordinate system.
The coordinates of the natural bndies are provided b the ephemeris tape.

The integration of Fqs. (67) could be performed in an equatorial co-
ordinate system centered at the earth-moon barycenter provided, of course,
that it is nonrotating. However, in this particular study, it is advantageous to
compute in the (X, Y, Z)-coordinate system since the motion takes place very
nearly in the ecliptic. This allows one to display the (X; Y)-motion as repre-
sentative of the total motion since the Z-cormaponent of the displacement is
much less than (X2 + YZ)I/Z. In the equatorial coordinate system, such dis-
plays could not be made since all three components of the displacement would
be large.

It should be noted that large amounts of computer tirne were required
for integration of Eqs. (6 7). This is largely attributable to reading the tape

and interpolation of the tape data.

Jet Propulsion Laboratory Ephemeris Tapes

Acquisition of the Jet Propulsion Laboratory Ephemeris Tapes has pro-
vided The University of Texas with a valuable research aid. The Ephemeris
Tapes consist of a set of anine magnetic tapes for the time span between the
year 1950 and the year 2000 (Kef. 27). The heliocentric positions and ve-
locities of all the planets except the earth are stored on the tapes in double
precision {(about 24 decimal places). In addition to these bodies, the position
and velucity of the barycenter is included. The positions and velocities are
geometrical, i.e., the 2ffects of aberration have been remcved. The posi-

tions and velocities are stored in Astronomical Units and Astronomical Units
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per day in increments varying from one day to two days. The second and
fourth differences are also included on the tapes for interpolation to a date not
stored on the tape. The interpolation is accurate to twelve decimal places.
Furthermore, the information is stored as a function of the Julian Date, i.e.,
given a Julian Date,the position and velocity of any body can be determined
either directly from the position and velocity data stored on the tape or by in-
terpolation. The positions of the moon are stored on the tapes at half-day
intervals in a geocentric equatorial coordinate system in which the distances
are given in earth radii. From the heliocentric position of the barycenter and
the geocentric position of the moon, the heliocentric position of the earth can
be determined from Eq. (B-7) in Appendix B. The heliocentric coordinate sys-
temn used is a rectangular system in which the -X—e-axis points in the direction
of the vernal equinox of 1950, the ¥ - axis lies in a plane parallel to the equa-
torial plane of the earth at Epoch 1950, and the -Z-e-axis is mutually perpen-
dicular. The orientation of the axis system is shown in Fig. 21. Since, as
stated previously, it is somewhat more convenient to use a coordinate system
in which the ¥ axis is in the Ecliptic of Epoch 1950, the transformation to

this system is made by

X=X-°
X - -Y—e cose+ Z_ sine (68)
£ =

Z2 sine+ Z cos ¢
e e

as shown in Fig. 22. 1t is important to note that the vernal equinox of Epoch

1950 and the Ecliptic of Epoch 1950 are fixed, and, therefore, the (X; ¥, Z)-

coordinate system is nonrotating. If the vernal equinox of date and ecliptic
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of date were used, the (X, ¥, Z)-coordinate system would be rctating since
the vernal equinox moves westward along the celestial sphere. The value for

€, given by Ref. 28, is
e = .40920619 radians .

This is the obliquity of the ecliptic at the Epoch 1950.

Constants

Since the ephemeris data are stored on the tapes in Astronomical Units
and Astronomical Units per day, the integration was made in the units of
Astronomical Units and days. Therefore, it was necessary to use compatible
units with the gravitational parameter of the bodies involved (the gravitational
parameter is the product of the universal gravitational constant and the mass
of the body). The gravitational parameters which were used in this investiga-
tion are given in Ref, 23 and have been generally accepted for use in trajectory
calculations. These constants are given in Table 3. Although the integration
is performed in Astronomical Units, a conversion to customary engineering
units is made at the printout. In order to make the conversion, it is necessary
to know the value of the Astronomical Unit; the value given by Ref. 23 is
1 A U. = 149,599,000.0 km and is the value used in this study. The conver-
sion from kilometzrs to miles is 1 km = . 62136996 mi. Since the lunar data
stored on the tape are in earth radii, rather than Astronomical Units, the
value of earth radii suggested for use with the Ephemeris Tapes, as given by
Ref. 28, is 1 Earth Radii = 6378.327 k. This value does disagree slightly

with that of Ref., 23.



Gravitation Parameter (Gmp )

1

Body A.U. 3/day2 km3/5ec2
Sun .959122093 x 10™% | 1.32715445 x 10
-11 4
Mercury .835167 x 10 2.168553 x 10
-10 5
Venus . 2431725 x 10 3.2485340 x 10
-10 5
Earth . 887552 x 10 3.9860320 x 10
Gme
Moon Gm, = 313015
-11 4
Mars . 582649 x 10 4.297780 x 10
. -7 . 8
Jupiter .825234 x 10 1.267106 x 10
-8 K
Saturn .454635 x 10 3.791870 x 10
-8 6
Uranus .293945 x 10 5.803292 x 10
Neptune . 566585 x 1075 7.026072 x 10°
-10 5
Pluto .397895 x 10 3.317886 x 10
Table 3. Gravitation Parameters of the Major

Bodies in the Solar System
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Transformation to Libration-Point-Centered Rotating System

It is informative to observe tne motion in a coordinate system which is
centered at the iibration point of interest. In order to do this, it is necessary
to make a coordinate transformation from the (X, Y, Z)-system data which re-
sults from the nurmnerical integration of the equations of motion. Assuming
that an (x, y, z)-coordinate system has its origin at the libration point of inter-
est (as shown in Fig. C-1 in Appendix C) with the x-axis being parallel to the
earth-moon line and lying in earth-moon orbital plane, the z-axis being perpen-
dicular to the orbital plane, the y-zais being mutually perpendicular, then the
relation between the (X, Y, Z)-position and the (x, y, z)-position is given by

Eqs. (C-3) for L4, viz.,

- - - -
XS xg + §p
YS = A yg * 11p
| Zs | . %s
_ * %
where the transformation matrix A given by Eq. (13) is evaluated at 2, 0 ,
VX
and i .

The (X, Y, Z)-spacecraft coordinates are known from the numerical

* * * .
integration procedure and the angles 2, 6 , and i , necessary to determine
the transformation matrix A, are determined from the angular momentum of

the earth-moon system. Then for the L4-1ibration point

-
xs X1 1%,
vg | = A YS - 'np
75 | | Zs) 191 (69)
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Assuming the libration point of interest to be defined by the instantanecus
earth-moon distance, then gp and np are time depcndent since Ted varies
with time. In addition, the angles Q* and i* are also time dependent since
the earth-moon orbital plane does not have a fixed orientation in space. The

transformation to an (x, y, z)-rotating coordinate system at L_ will be the

5
same as Eq. (69) with the exception that n, is replaced by 'S

Case I: Initial Date JD 2,439, 501.0 (January 10, 1967; 12"GMT)

Orientation of the solar system and the earth-moon system. In the pre-

vious mathematical model, it was necessary to choose an initial orientation of
the model in addition to supplying the initial position and velocity of the space-
craft. In the '""real world'" model considered in this chapter, choosing the
initial date, i.e., the date at which the spacecraft is placed at the L4— or LS-
position of the earth-moon system, will fix the orientation of the model. The
date chosen for this study was Julian Date 2,439, 501. 0 or January 10, 1967,
12 hours Greenwich Mean Time. This date was chosen because of its location
on the tape and not because of any particular aspect of the solar system orien-
tation., This is the first record on tne tape; the final record begins in June,
1974. The configuration of the solar system when the spacecraft is assumed
to be placed at the triangular libration point is shown in Fig. 23.

For the assumed spacecraft insertion date, the orientation of the earth-
moon system is computed from the ~ngular momentum of the system. Using
the angular momentum per unit mass of the moon in Fgs. (B-15) and (B-16}
yields i* and o of the earth-moon orbital plane. The angle 9* is deter-
mined from Eqs. (B-5). The orientation of the earth-moon system is shown

*
in Fig. 24. The inclination, i , of the earth-moon orbital plane at insertion
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. . *
is 5.04°. The longitude of the ascending node, &, is 43, 8° and the angle
%
6 , locating the moon in the orbital plane, is 242. 6°. The distance between

the earth and the moon at insertion, Tap’ is 241, 008. 5 miles. The lunar

velocity component in the radial direction, , is 2248.13 miles/day and the

)
lunar velocity component in the tangential direction, i.e., the E"‘I- component
as shown in Fig. C-2 or rB»é*, is 54, 001.02 miles/day. Furthermore, the
value of &p is 117,575.9 miles and the value of np is 208, 719. 5 miles. The
lunar in-plane angular velocity, é*, is 13°/day and the barycenter-sun dis-
tance, TBe’ is 91,414, 830 miles.

Since, as stated previously, the earth-moon orbital plane does not have
a fixed orientation in space, the angles i* and o vary with time. To illustrate
how they vary, and, in turn, the motion of the (x, y, z)-coordinate system, Q*
is plotted versus time i1 Fig, 25 and i* is shown versus time in Fig. 26. In

addition, §p and np are plotted versus time in Figs. 27 and 28 respectively.

Initial conditions and results with inclusion of }BL' If I.'BL is included,

i.e., the radial- velocity component of the libration point necessary to main-
tain the equilateral configuration in the three-body sense (see Appendix C),

then ;.BL is computed from the radial velocity component of the moon,

Eq. (C-8), and is 2262. 08 miles/day. Also, the tangential-velocity
. %
component in the earth-moon orbital plane rBLG - 54,336, 17 miles/day

where TRL is the distance to the triangular point and is 239,558 miles. The
initial poéition and velncity relative to the (x, y, z)-libration-point-centered
coordinate. system is assumed to be xg = yg = zg = 0 and 5:5 = }'rs = és = 0,
The initial (X, Y, Z)-position and velocity of the spacecraft were computed

from Eqgs. (C-3) and C-10) and yield
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x.
"

232,851 mi i4, 531 mi/day

Xs = s
Yg = -53,461 mi Yg = 52,349 mi/day
Zo = -17,610 mi Zg = 2,444 mi/day.

Equations (67) were numerically integrated sing the Adams-Moulton
method with the Runge-Kutta starter. The step size used throughout the integra-
tion was either . 15 days or . 075 days until 725 days aftcr spacecraft insertion
into the libration orbit. After 725 days, the step size was reduced considerably.

The single-step~error range was specified to be a maximum value of 1 x IOF5

and a minimum value of 5 x 1071,

The results of the integration are shown in Figs. 29. As can be seen
from Fig. 29a and 29b, the trajectory of the spacecraft is much the same after
each revolution around the barycenter. In Fig. 29c the trajectory is consider-
ably different and has expanded to a much larger envelope of moction. Fig. 29d
shows that the spacecraft makes a close lunar pass between 729 days and 730
days, after which time it appears that the spacecraft may leave the earth-moon
system. The closest approach to the moon occurs at 729. 895 days when the
spacecraft is approximately 2100 miles from the lunar surface. Obviously,

the spacecraft is no longer on an L  -point-centered orbit. The absolute

4
value of the Z-component of spacecraft displacement does not exceed 30, 000
miles in the 750-day period considered.

A coordinate transformation of the barycentered position data was
made to the (x, vy, z)-L4-centered coordinate system. It should again be
pointed out that this coordinate system does not remain a fixed distance from

the barycenter. It is both translating and rotating; it is translating because §p

and qp are functions of time. Equatiuns (69) arc the transformation equations
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and the results of the transformation are given in Figs. 30. The shape of the
trajectory relative to the (x, y, z)-system is quite similar to those observed
in the previous mathematical model, viz., the modified restricted four-body
model. Again, ‘s in previous casges, the envelope of motion expands consider-
ably with each 250-day period as seen in Figs. 30a and 30b. Note in Fig. 30c
tl.at the spacecraft leaves a libration-point-centered motion and experiences a
near encounter with the moon as expected from the (X, Y, Z)-data. The abso-
lute value of the z-component does not exceed 2500 miles prior to 730 days. In
the period from 730 to 750 days. it does attain a maximum value of about 8100
miles.

Figure 31 shows the total displacement of the spacecraft from the L4
point versus time. This plot is quite similar to those in the restricted four-
body models as one would expect because of the similarity between the (x, y)
motion.

The magnitude of the spacecraft angular momentum vector is shown
in Fig. 32. Note that the close lunar pass causes a very large reduction of the
magnitude of the angular momentum vector. As the spacecrafi nears the moon,
the gravitational force of the moon produces a very large torque about the bary-
center. Since the time rate of change of the angular momentum vector is equal
to this torque, there is a very large time rate of change of the angular momen-
tum vector. The data show that not only is there a very large slope of the angu-
lar mcmentum versus time curve (Fig. 32), but there is also a very rapid
change in the direction of the angular momentum vector. At some time during
the pass, the torque wi’l be zero, i.e., the slope is zero, al*er which time the
torque is in the opposite direction. Because of insufficient data, the mini-

mum may have a magnitude less than that shown.
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FIGURE 29c. L, NONROTATING (X,Y)-RESULTS FOR INITHAL
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Initial conditions and reasults with ;BI = 0. To determine the effect

4

which r has on the subsequent motion, the equations were integrated with

BL

the same initial orientation and the same initial conditions relative to the

(x, y, z)-coordinate system as in the previous section. In this case, however,

£BL was set to zero. The spacecraft will have the same initial position as in

the previous section, but the velocity will be different. The initial velocity of

the spacecraft in tke (X, Y, Z)-coordinate system is

Xg = 12,332 mi/day
Yg = 52,854 mi/day
zg = 2611 mi/day .

The step size for the first 100 days of the integration was .3 days.
The step size was reduced to . 15 days after 100 days in order to stay within -
the specified single-step-error range which was the same as the previous case.

The results of the integration are shown ir. Figs. 33. The trajectory in
the (X; Y)-plane is quite similar to the previous case which included }BL’ ex-
cept that the envelope of motion throughout the first 250 days (Fig. 33a and
33b) is slighily larger with ;'BL equal to zero. In Fig. 33c, which illustrates
the motion for the period from 250 days to 500 days, the envélope of motion
expands considerably, and, in Figs. 33d and 33e it is seen that the spacecraft
is in an orbit with an orbital period which is smaller than during the first 250
days. In fact, the spacecraft orbit in the period after 500 days takes the space-
craft within 60, 000 miles of the barycenter during the 500-day to 600-day
period (see Fig. 33d). The barycenter orbit of the spacecraft has a radius at

closest approach of about 50, 000 mi during the 600-day to 698-day period,

whereas, the farthest approach does not change considerably. The radius at
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farthest approach is between 210, 000 miles and 200, 000 miles. It seems
conceivable that at some later date the spacecraft may make a close pass of
the moon because of the difference in the orbital periods of the moon and
spacecraft and because the spacecraft has a farthest approach of 200, 000 mi.

The (x, y)-components of the spacecraft motion are shown in Figs. 34.
Note that in Fig. 34b the spacecraft begins to leave the libration-point-
centered motion near the end of the 500-day period. In Fig. 34c one can see
that the spacecraft has definitely begun to move on an entirely different trajec-
tory within the earth-moorn system and is no longer on 2 libration-point-
centered motion.

The magnitude of the angular momentum vector relative to the bary-
center is shown in Fig. 35. Note the correspondence between the sudden de-
crease in the angular momentum magnitude and the spacecraft's departing
frorn a libration-point-centered motion.

It is important to note that the spacecraft leaves the libration-point-
centered motion with r equal to zero approximately 200 days prior to the

BL

case in which ;BL is computed from the lunar radial velocity. In both cases,

viz., the case in which }BL is zero and the case in which .rBL is not zero,
the spacecraft leaves the libration-point-centered motion. However, the
period in which the spacecraft has a libration-point-centered motion is ex-

tened by the inclusior of the TaL"

Case II: Initial Date JD 2,439, 796. 735 (November 2, 1967; 5", 64 GMT)

Method b_f determining initial date. In the previous chapter, the case

i which \llo = 180° exhibited a stable motion for a period of 2500 days. The
initial orientation of that model was such that the sun, moon, and earth were

along the same line in that order. It would be of interest to determine the
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FIGURE 33a.
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FIGURE 33c. L, NONROTATING (X,Y)-RESULTS FOR INITIAL
JD 2439501.0 AND FBL=0 FROM 250 DAYS TO 500 DAYS
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resultant motion in the model of this clL.apter with that initial orientation.
Note that this initial orientation corresponds to either the orientation during a
solar eclipse or of new moon. However, the earth, moon, and sun will not, in
general, be exactly colinear. Furthermore, one can approximate the colinear
orientation with the solar eclipse better than with the new moon orientation. It
is possible for the earth, moon, and sun to be colinear during either a total or
an annular eclipse. This cannot occur with the new moon orientation unless a
solar eclif ;e also occurs. The eclipse will be annular or total depending al-
most entirely on how far the moon is from the earth. With these considera-
tions, it was decided to use the solar eci.pse orientiation to approximate the
4:0 = 180° case of the previous chapter. In addition, the solar eclipse chosen
must be one in which the sun is at the ascending node, i.e., the sun is moving
into the northern hemisphere of the .arth-moon orbital plane. This is the
situation for \po = 180° in the previous chapter. To facilitate matters, it was
necessary to choose a date on the ephemeris tape which is near the beginning
of that tape. A list of solar eclipses can be fourd in Ref. 3. During the year
1967 (the first year on the echemeris tape used), two soiar eclipses occur,
viz., May 9 and November 2. The May 9 eclipse occurs when the sun is at
the descending node, however, the November 2 eclipse occurs when the sun
is at the ascending node.

As stated previously, when solar eclipses occur, the centers of the
sun, the moon, and the earth are not, in general, precisely along the same
line. However, an eclipse--total, annular, or partial--can occur when these
bodies are not along the same line. To simulate as accurately as possible
the initial orientation oif the ¢o = 180° case in the previous chapter, it was

necessary to determine when the sun, the moon, and the earth were
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approximately colinear. Since three points define a plane, one can define an
earth-moon-sun plane. Extending the sun-moon line past the earth, there
will be a perpendicular distance between the terrestrial center and the sun-
moon line (see Figz. 36). This perpendicular distance, d, can be determined

by first noting that

r =r +1‘2-2

& >0 10 Teo Tyo €05 ¢

@’ rm, and Tyo 2TC known at any instant of time since the coordi-

nates of the sun, the moon, and the earth are known at any time from the

where r

ephemeris tapes. Then

2 2
- T + r +r x +r

N &0

g

o}
-

where x is the distance from the moonr to the point of intersection, P, of the

line from the earth which is perpendicular to the sun-mioon line (see Fig. 36).

Then
X = erOS a - r)o
.2 2,1/2
d = (re» -x)

where cos a is given by Eq. (70).

A program was written to compute the distance d in addition to the
latitude and longitude of the sun and moon as measured in the (X, Y, Z)-
coordinate system. This information was computed at .01 day increments
beginning at Julian Date 2, 439, 795. 5 (November 1, 1967; 0h GMT). At this

date the distance d is 67, 645 miles. The moon is .7° above the (X, Y)-plane

and the sun is .00166° above that plane. Since d is so large, nbviously the
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longitude of the sun and moon are quite different. The moon is, in fact, at a
longitude of 200° measured from the X-axis in the (X; Y)plane; the sun is at a
longitude of 217. 6°. At Julian Date 2,439,796.0, d is 40, 787 miles while
the latitude and longitude of the moon are, respectively,. 0135% and 207. 6°.
The latitude of the sun is .00168° and longitude is 218.1°. Note that the
latitude of the moon is decreasing while that of the sun is increasing. From the
earth-moon orbital plane, the sun will appear to be quite near to this orbital
plane, but moving in a direction which will take it into the northern hemisphere
of the plane. This is the aforementioned condition that the sun be at the as-
cending node. The distance d is plotted in Fig. 37 for the period from Julian
Date 2,439, 796. 7 to Julian Date 2,439, 796.78. As expected, the sun-moon
line does not pass through the center of the earth. However, the minimum
distance which d attains is apprcximately at Julian 2,439, 796. 735 (see
Fig. 57). At this time, the latitude of the moon is -1° with a longitude of
218°. The solar latitude is . 0017° and a longitude of 218°. It is of interest
to note that the length of the moon's umbral cone is approximately 231, 000
miles during this eclipse orientation. The diameter of this cone at the
earth's distance is approximately 800 miles or radius of 400 miles. However,
the earth center is approximately 3950 miles from the sun-moon line. The
radius of the earth is approximately 3960 miles, therefore, a locus of points
on the surface of the earth will be along the sun-moon line, and, furthermore,
these are in the umbra. Therefore, a total solar eclipse has occurred, con-
firming the data in Ref. 3.

Orientation of the solar system and the earth-moon system. The

orientation of the solar system on the chosen initial date of Julian Date

2,439, 796. 735 or November 2, 1967, 5.64 hours Greenwich Mean Time, is
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shown in Fig. 38. For this initial date, the inclination, i*, between the
Ecliptic of the Epoch 1950 and the instantaneous earth-moon orbi:t al plane is
5. 280, the longitude of the ascending node, 9*, is 27. 7°, and the angle 9*
locating the moon in the orbital plane is 191. 1°. The distance between the

earth and the raoon at insertion, r_., is 221, 825. 7 miles. The lunar ve-

e
locity component in the radial direction, ?B»’ is 196. 25 miles/day and the

lanar velocity component Thy

108, 217. 6 miles and 'qp is 192, 106. 7 miles. The lunar in-plane angular ve-

» %
0 is 58,480.5 miles/day. Also, gp is

locity, 9*, is 15. 3°/day and the barycenter-sun distance, B’ is
92,236,915 miles. The variation of o* and i* with time are shown in
Figs. 25 and 26, respectively, where Julian Date 2,439, 795,735 is at
295 days elapsed time from Julian Date 2,439,501.0.

Note that the moon is slightly past perigee since i‘B» is positive.
Therefore, although the initial orientation of the sun, the moon, and the earth
is such that it very nearly coincides with that of 4:0 = 180° in the previous
chapter, the earth-moon distance for Julian Date 2,439, 796. 735 is approxi-

mately 20, 000 miles less than the 4&0 = 180° case.

Initial conditions and results in nonrotating and rotating coordinate

systems for spacecraft placement at L4. The velocity component iBL is

included in this case and is 197.5 miles/day. The in-plane tangential veiocity

«
component of L 6 , is 58,843.5 miles/day. The distance from the

4’ TBL

barycenter to L, is 220,490 miles. The initial position and velocity of the

4
spacecraft is assumed to be zero relative to the (x, v, z-)-L4-centered
coordinate system. Thus, the initial (X, Y, Z)-position and velocity of the

spacecraft were computed from Eqs. (C-3) and C-10), and were
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Xg = 35,641 mi Xg = 58,047 mi/day
Yo = 216,735 mi Yo = 9,497 mi/day
Zg = 19,279 mi zZg = 1,719 mi/day

Equations (67) were numerically integrated as in Case I. The initial step
size was .2 days which was subsequently halved about 100 days later.

The results of the in‘egration are shown in Figs. 39. Note how the
orbit changes with each revolution around the barycenter in Fig. 39c. In
Figs. 39¢, it can be seen that the spacecraft is in a near elliptical orbit with
a radius of closest approach to the barycenter of approximately 70, 000 miles.
This sudden change in the orbit is caused by a close lunar pass between 579
days and 580 days. The absolute value of the Z-component of spacecraft
displacement does not exceed 30, 000 niles.

The motion as it appears in the rotating (x, y, z)-coordinate system
is shown in Figs. 40. Figure 40b exhibits an unusual character between 400
days and 450 days. In Fig. 40c it is seen that the spacecraft has begun an
entirely different type of motion than in the 0 to 500 day period. The space-
craft has left the libration-point-centered motion and, as indicated by the
(X,Y)-data, experiences a close pass of the moon between 579 days and 580 days.
The absolute value of the z-component of displacement does not exceed
3000 miles during the stable motion; it does not exceed 20, 000 miles during
the unstable period (after about 575 days).

The magnitude of the angular momentum vector relative to the bary-
center is shown in Fig. 41. Note the sudden decrease in angular mom;ntum
between 579 to 580 days during the lunar pass. This was observed also in

Fig. 32 for the Julian Date 2, 439,501. 0 case during the near lunar pass.
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Initial conditions and results in nonrotating and rotating coordinate

systems for spacecraft placement ai_l:s. Using the same initial date of

Julian Date 2,439, 796. 735, the spacecraft was assumed to be placed at LS

with zero relative velocity. The radial velocity component i'BL and the in-

*
plane tangential velocity component, rBLG , is the same as for placement

L 4 The barycentered initial position and velocity are different. In this case

the spacecraft is 60° behind the moon. The (X, Y, Z)-position and velocity

for placement at L5 are
Xg = - 204,388 mi Xg = = 22,113 mi/day
Y = 81,25¢ mi Y = - 54,418 mi/day
Zg = 15,445 mi Zg = - 3,505 mi/day.

The initial step size used was .2 days. This was halved at 106 days and in-
creased later. Throughout the computer run, the step size increased and
again halved as required by the single step error bounds.

The results of the numerical integration are shown in Figs. 42. The
computations were carried out to 2000 days, however, only the first 750 days
are shown in the (X, Y)-plots. Figures 42a and 42b show the barycentered
orbit for the first 250 days. For the 250 to 500 day period (Fig. 42c) the en-
velope of motion has expanded out considerably. It might be noted how the
line joining the point of closest approach and farthest approach on each revolu-
tion rotates in a counterclockwise direction. In Fig. 42d, the orbit has con-
tracted to a near elliptical orbit which is much the same with each revolution
(period from 650 days to 750 days). After 750 days, the orbit again expands
and contracts in the same manner zs the 0 to 750 day period. The Z-component

of displacement does not exceed 35, 000 miles in the 2000-day period.
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The rotating (x, y;-results are shown in Figs. 43. Note how the orbit
expands to 2 maximum displacement from LS of approximately 240, 000 miles
(Fig. 43b) at slightiy after 425 days. Note that the envelope of motion contracts
in Fig. 43c and again begins to expand in Fig. 43d. The (x, y)-motion for the
period from 1000 days to 2000 days is much the same. During this 2000 day
period, the z-componeni of displacement does not exceed 10, 000 miles. The
expansion-contraction can be observed from Figs. 44a through 44b, the mag-
nitude of the displacement vector from L5 versus time. The expansion-
contraction over almost three cycles is illustrated. The period of this pulsa-
tion is approximately 700 days. Thus, the motion is stable for a period of 2000
days and, in fact, one can extrapolate.this to 2500 days by noting thzt the enve-
lope of motion is beginning to contract at 2000 days. With a period of pulsa-
tion of 700 days, it thus appears that the motion will be stable through 2500
days.

The magnitude of the angular momentum vector relative to the bary-
center is shown in Fig. 45. Note that the magnitude has only slight variations
during the periods in which the spacecraft is near the L5 point, e.g., the
period from 750 days to 850 days. During periods of wide displacement from

L5, the angular momenturn varies quite noticeably.

Accuracy

It is extremely difficult to make a definite statement regarding the
accuracy of the results. One can estimate the truncation error involved in
the numerical integration process, however, estimation of the round-off error
presents a formidable problem. As stated in the previous chapter, the Adams-

Moulton-Runge-K itta procedure was used to integrate the differentiai equations
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FIGURE L2a. L NONROTATING (X,Y)-RESULTS FOR INITIAL
3B 2439796.735 FROM O DAYS TO 125 DAYS
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FIGURE 42d, L NONROTATING (X,Y)-RESULTS FOR INITIAL
JD 2439796.735 FROM 500 DAYS TO 750 DAYS
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of the two-body case and then compared with the closed form solution. After
36, 000 steps there was a difference of .1 mile in 4000 miles. This, obviously,
does not inform one of the error involved in the ''real world" model of this
chapter. It does show that the procedure gives good results over a long time
period. Since there is no closed form solution available for the ''real world"
model, no direct comparison of results can be made as was done in the two-body
case. The method of Richardson {Ref. 29), sometimes called "Richardson's
extrapolation, ' was applied to the Julian Date 2,439, 796. 735 case at L4. Two
computer runs of 100 days elapsed time were made with fixed step sizes of .1
day and . 05 days. Richardson's extrapolation was then used to obtain an im-
proved value of the displacement and velocity in the barycentered system.

The extrapolated values were compared with the data of the L4 computer run
with variable step size. It was found that there was a difference of no more
than 2 miles in 200, 000 miles. The velocity data agreed as well. It should be
pointed out that the drawback in applying Richardson's extrapoclation is that the
formulas are derived assuming that there is no round-off error. Until better
techniques are available for estimating error, it will remain difficult to say
precisely what the error involved in the '"real world' model integration is.
One final point should be added. The single step error control is an effective
device for controlling the error even though it is not an absolute error control.
Since the Adams-Moulton method is unconditionally stable, it appears
that the data of the preceding sections represent to 4 or 5 decimal places the
actual value. This opinion is derived from the considerations of the previous
paragraph and the belief that round-off error, while existing, is not signifi-

cant to affect the results in the first 4 or 5 dezimal places.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Certain very important conclusions can be drawn from the results of

the two different mathematical models presented in Chapters III and IV.

These conclusions are as follows:

1.

When the modified restricted four-body mathematical model with
nodal regression has an orientation corresponding to the earth-
moon-sun orientation on Julian Date 2, 439,501. 0, the results dif-
fer widely from the results of the ''real world'" model beginning at
that Julian Date (compare Figs. 19 and 31). For insertion into the
libration orbit on Julian Date 2,439, 796. 735 which simulates the
case of ¢o= 180° of the simplified model discussed in Chapter III,
the results of the '"'real world" model again differ widely from those
of the modified restricted four-body model. For this latter inser-
tion date, at L4., the spacecraft left a libration-point-centered
motion at approximately 575 days in the '‘real world'" model,
whereas the motion was stable for 2500 days at L4 in the modified
restyvicted four-body model. Thus, it appears that the model as-
suming circular orbits and constant nodal regression does not rep-
resent the long termm motion very well. Perhaps a model which in-
cludes a mean eccentricity for the moon would approximate more

accurately the ''real world'" results.
14F
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2. The initial date has an important effect on the subsequent motion.
This conclusion was made in Ref. 5 and can also be drawn from
the data in Chapter III. From the results of these studies, it can
be inferred that there will be an important effect due to the initial
configuration in the ''real world" model. However, as pointed out
in Ref. 14, it is difficult to discern the initial configuration ef-
fects even though the qualitative effects are certainly present.
Even so, from examination of the L4~ and Ls-results of the
""real world'" miodel for the initial Julian Date 2,439, 796. 735, it
appears that the marked difference between the two orbits can be
attributed primarily to the initial position and subsequent motion
of the sun relative to the L4- and Ls-points.
3. Long terrn stability of greater than five years does exist in the
""real world'" model. For spacecratt placement at LS on Julian
Date 2,439, 796. 735, the spacecraft remained on a libration-point-
centered motion (stable motion) for 2000 days (5. 48 vears). One can
confidently extrapolate this motion to 2500 days (6. 85 years) as
shown by Figs. 44. ¥or the same initial date, the spacecraft leaves a

libration-point-centered motion after approxirmately 575 days when

placed at .. Thus, while one triangular libration point exhibits

4
a long term stability, the other triangular point does not for the
same initial date. This does not imnply that L5 is stable and L4
is unstable for all initial orientations. Initial orieatations can
probably be determined in which the situation will be reversed,

possibly when the sun, the earth, and the moon are nearly colinear

in that order (a lunar eclipse or full moon).
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The initial velocity specification has an important effect on the
subsequent motion. This is evidenced by the data for Jjulian Date
2,439,501. 0 with rp, = 0 and with g, # 0.

sible that initial velocities could be found for this date which would

It is certainly pos-

extend the period of stable motion. The great sensitivity of the
model to the initial velocity is indicated also in Ref. 14.

Only for the L_-point on Julian Date 2,439, 796. 735 does one ob-

5
serve the expansion-contraction of the envelope of motion which
has been observed in previous simplified models (Ref. 5 and
Chapter III of this report). The period of this pulsation appears to
be about 700 days in the '"real world'' model at L5.

Considering the angular momentumn plots, Figs. 32, 35, 41, and
45, a tentative conclusion can be drawn that if the angular momen-
turmn is maintained at the initial level during the libration-point-

centered motion, perhaps by using a seriec of thrusts on the

spacecraft, a stable motion may possibly be maintained.

It should be pointed out that the ''real world' model of this report is

only an approximation to the physical world. There are still some unknowns

which wili affect the results, however, the extent of the effect is not known.

For example, the earth-moon mass ratio used was 81, 3015 which is accurate

to +. 0033. It is conceivable that refinemr .nts of constants such as mass

ratios could be made from the orbit determination of a spacecraft placed at

either L 4

or LS'

As is often the case, this investigation has either answered or given

insight to some questions, but it has also raised many more questions. This
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problem is by no means completely solved and there are several areas for
further research. They are as follows:

1. Consideration of the motion at different times of the month and year
in an extended study of the effects of the initial ccnfiguration. There
may be certain pericds in which very long term stability or stability
with a small envelope of motion can be achieved. As pointed out
previously, stability was found to be a function of the initial orien-
tation of the earth-moon-sun system in the model with circular
orbits and nodal regression as well as in the ''real world'' model.

2. Study the effects of initial position and velocity on the stability. It
was found in Ref. 4 that the envelope of motion could be reduced:
by an initial velocity relative to the libration point. This is also
indicated in Ref, 14. It would be of s ame interes:! to determine
the initial position and velocity relative to the libration point which
would yield a "more stable'' motion in the ''real world' model.

3. A thorough analysis of the effect that the planets and noncentral
gravitational fields of the earth and moon have on the long term
motion should be made. If the nlanets neglected in the '"real
world'" model (viz., Uranus, Neptune, and Pluto) are included in
addition to the noncentral fields of the earth and moon, the model
would be quite complex and would probably require that most calcu-
lations be made in double precision. This would increase the nec-
essary computer time considerably. it should also be noted that
the effects of the planets on the motion of a spacecraft relative to
the barycenter (X, Y, Z)-system is somewhat reduced by the ef-

fects of the planets on the acceleration of the barycenter. This can
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be seen from the differential equations of motion for the ''real
world'" model, Eqs. (67).

A study should be made of means for ''station-keeping, "' i. e., ap-
plying a thrust to the spacecraft at intervals or using a constant
Jow-thrust device to keep the spacecraft near the libration point of
interest, It is possible that solar sails could be used in combina-
tion with the low-thrust propulsion for this purpose.

The equations of motion for the spacecraft should be expressed in
terms of the rates of change of the orbit elements in a barycentered
system. This would provide a ccrparison with the results obtained
by integrating the acceleration components in a rectangular coordi-
nate system. It is quite possible that computer time could be re-
duced by using the orbit elements.

Analytical approaches should be pursued, even though they are ex-
tremely difficult to obtain for sophisticated models. In fact, as
stated earlier, a closed form solution to the '"real world" model of
this report would require a solution to a nine-body problem. How-
ever, it may be possible to obtain certain characteristics of the
long term motion in the '"real world" model using an analytical

approach.



APPENDIX A

ORDER OF MAGNITUDE OF GRAVITATIONAL FORCES

The gravitational attraction of the earth and the moon on a spacecraft in
the earth-moon system is very much larger than the attraction due to the sun
and planets., However, it is very useful to determine the order of magnitude
of the attraction due to the sun and planets on the aforementioned spacecraft.
This was done by making the assumption that all the planets move in circular
orbits around the sun, the radii of which are the semimajor axes of the Epoch

1900. A quantity, F/ms, is computed from Newton's Law of Gravitation

F - Gmgmy 4 F o _ OMyqy
- 2 ' mg - 2

r

for a body in the earth-moon system. For the inferior planets, viz., Mercury
and Venus, the computation is made at inferior conjunction and superior con-
junction., The computation is made at conjunction and opposition for the supe-
rior planets, the planets outside the earth's orbit, The aspects of the inferior
and superior planets are illustrated in Fig. A-1 (Ref. 30). The results of the
_ncomputation are shown in Table A-1. It should be pointed out that these re-

sults do not by any means show exact values for F/m The reason for this

s*
lies in the fact that the distance between the earth and some specific planet
will vary from opposition to opposition or from conjunction to conjunction,

150
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The results are, therefore, representative values and should be considered

on an order of magnitude basis.



i

FIGURE A-l.

RN TIoN

)o

ORMY oF
EARTH

ASPECTS OF THE INFERIOR AND THE

SUPENOR PLANETS

152



. 2 : 2
F k n A.U.
Semimajor /mgin m/sec F/mgin A.U. /day
Axis of
Body Orbit in Inferior Superior Inferior Superior
A. .U, Conjunction or |Conjunction or | Conjunction or |Conjunction or
(Ref. 2) Opposition Conjunction Opposition Conjunction
Sun 5.92 x 10'6 5.92 x 10°% |2.96 x 107% 2.96 x 1074
Mercury 0. 287098 2.58x10°12 | 5.04x107 13 [ 1.29x10710 | 2.51 5 107!
Venus 0. 723331 1.90 x 10710 | 4.89 x 16712 9.46 x10°? | 2.44x 10710
Mars 1.523679 7.00x 10722 | 3.02x10°13]3.49x10710 | 1.51 x 107 }!
- —
Jupiter 5.2027 3.20x10° 1% | 1.47x10°19 | 1.60x10% | 7.34x107°
Saturn 9.546 2.32x10° | 153 x107M [ 1i16x107? | 7.61x10710
Uranus 19. 20 7.84x10°13 | 6.37x10°13 |3.91x107 | 318 x 107 M?
Neptune 30.09 3.72x10°13 | 3.26x10°23 | 1.86 x 1071 | 1.62 x 107 M
Pluto 39.5 9.99x10° 1% [ 9.03x107% [4.99x 1071 | 4.51 x 10713
Table A-1. Order of Magnitude of Gravitational Attraction on Spacecraft

1 A.U, from the Sun

€ql



APPENDIX B

DERIVATIONS OF EQUATIONS FOR DETERMINING THE

ORIENTATION OF THE EARTH-MOON SYSTEM

By definition, the earth-moon orbital plane is a plane perpendicular tu
the angular momentum vector which includes Loth the earth and the moon. The

angular momentum vector of the earth-moon system is determined from

Hie

H=m_r X T + m_r X

® Ba Bo ) BY BY
= Hyt + Hyj + HK (B-1)
where
Hy = mg(YgZg - Zg¥g) + my(Y, 2y - Z,Yy)
= H + H
X$ YD
Hy = mg(Z Xy - XgZg) + m)(Z X - X,Z) (B-2)
= H + H
Y@ Y»
HZ = me(XeYe - YQXd + m»(X»Y) - Y»XD)
= H + H
Zg9 2y

The arn.gular momentum is determined with respect to the (X, Y, Z)-

barycentered coordinate system. The earth-moon orbital plane and the angles
154
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defining its orientation are illustrated in Fig. B-1. The angle o is the
angle measured in the (X, Y)-plane between the X-axis and the ascending
node; the angle i* is the angle between the {X, Y)-plane and the earth:moon
orbital plane. Since the angular momeatum vector H is perpendicular to the
line of nodes, its projection on the (X, Y)-plane is perpendicular also to the

line of n.des. Therefore, from Fig. B-2,

2 2.1/2
(H, ¢ + H,Y)
e X Y * H,
sini1 = H , COS 1 = o ,
(sz + HY2)1/2
%
tani = HZ ’ (B-3)
H H
o X * Y
sin 2 = cos 2 = -
2 2.1/2 °’ 2 2.1/2
(Hy + HS) (Hy® + HY")
H
*
tan @ = - > , (B-4)
Y

where H is the magnitude of H .

The following expressions are determined from Fig. B-i:

TB) sin® =R s
x4
sin i = T >
then
Z
*

sin 0 = 2 ¥

rpy Sini

and
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*
tan 6

*
cos 6

157

* *
X) cos 2 + Y» sin @ ,

Zy

2
sini(X) cos 2 +Y

(B-5)

F 3
in R
p Sin ) .

where R is the component of ?B) which is perpendicular to the line of nodes

and which lies in the earth-moon orbital plaae.

Note that the calculation of

the total angular momentum H requires position and velocity of both the

earth and the moon,

The computation may be simplified by showing that the

angular momentum due to the earth may be determined from the angular mo-

mentum due to the moon.

TeB ~
also,

Ty ~©
therefore,

r@B =

TeB ~©
and

Tod =

oy

The barycenter is, by definition,

Mafoe T ™y op
me +m

(B-6)
>

(B-7)

(B-8)



Also

Therefore,

or

and

Similarly,

or

and

(%]
13
g

oo - ToB t TBo

o - ToB * By
"Be~ "o® -~ ToB

= m, -
B® m) + rne @)
e~ " My Tqy '
TBe = - My Tay

T =T - T

Therefore, by Eq. (B-9),
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(B-9)

(B-10)
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and

But, using Eqs. (B-9), (B-1), and (B-2),

m, m, . m) m) .
Hy = "‘e(‘ g Y)) ‘ g Z») - ( oy Z)) ( o Y»)

m,z .
mel—=2 [Y) Zy - 2, Y»]
Mg,

H = :n._); H
Xe m$ X)
Similarly,
my
HYQ " g HY,
H. =2 g (B-12)
Zg mg 7

Therefore, since

H, = H + H

X X) XG
then
Hy = 1+ -2 | H
X mg X,
Similarly,
H, - (1 Miie 3 (B-13)
Y mg Y»
Hz = (1 + r_nml‘ Hz
® >




Then

and

Similarly

and

e
"
k|
n
o
b
+
XL
<
+
oo

W
-
<]
P
]

sin i

cosi =

160

(B-14)

(B-15)



Also,
* hx
\ h)
sin @ = '
[h 2 2]1/2
+ h
X» Y)
hY
cos Q* = - )
2 2 1/2
hx + hY
> D))
and
h
d&
tan 2 = - _._»_
hY
?
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* %
Therefore, the inclination i and the longitude of the ascending node £ can be

computed using only the angular momentum per unit mass of the moon (or

earth).



APPENDIX C

DETERMINATION OF INITIAL CONDITIONS USING THE

EARTH-MOON ORBITAL PLANE

In order to determine the initial position and velocity of a spacecraft
relative to the (X, Y, Z)-barycentered coordinate system, it is necessary to
determine the positior and veiocity of the triangular libration point under in-
vestigation. Assumning that the triangular libration points lie in the earth-
moon orbital plane, i.e., the plane defined by the angular momentum vector
H of the earth-moon system, the location of L4 is as shown in Fig. C-1.
The (§, n, L)-coordinate system is also shown in Fig. C-1 and is oriented
such that the £-axis lies along the earth-moon line in the direction of the
moon, the n-axis lies in the earth-moon orbital plane, and the {-axis is per-
pendicular to the orbital plane and is, therefore, in the same direction as the
angular momentum vector. The (x, vy, z)-L4-centered coordinate system is
oriented such that the x-axis is parallel to the §-axis, the y-axis is in the
orbital plane, and the z-axis is perpendicular to the earth-moon orbital
Plane.

The triangular libration points .:e at the vertices of equilateral tri-
angles as shown in Fig. C-1. The libration point L4 is shown in Fig, C-2,

the in-plane orientation. The § -coordinate of L4, §p, is determined from
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FIGURE C-I.

LOCATIONS OF COORDINATE SYSTEMS

FISURE C-2.

DISTANCES AND VELOCITIES IN THE
EARTH-MOON ORBITAL PLANE
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r
%= ‘%2 " "Be (C-1)

where TRo is the magnitude of the barycenter-earth distance. The

n-coordinate of L, is given by

_ . o
'qp = Ty sin 60 (C-2)

where Tey is the instantaneous earth-moon distance. Then the initial position

of the spacecraft in the (X, Y, Z)-coordinate system is

XS Xg + §p
Ys = A vg * 'qp (C-3)
LZS - b zs -

where Xgs Vg and zg are the coordinates of the spacecraft expressed in the
(x, v, z)-L4-centered coordinate system, Furthermore, the matrix A is
given by Eq. (13) in which £, 8, and i are replaced by 9*, 9*, and i*, re -
spectively. The quantities Q*, 6*, and i* are determined from Eqgs. (B-15),
(B-16), and (B-5) and are illustrated in Fig. C-1.

The initial conditions for the velocities present a somewhat more diffi-
cult problem. Since the actual motion of the moon is not circular, the lunar
velocity vector will not, in general, be perpendicular to the earth-moon vector
;6)' The problem is then to determine the velocity of the libration point L4
which would maintain the equilateral configuration in the restricted three-body
sense. For example, if the earth-moon-spacecraft system were considered as
a three-body problem in whkich the earth and the moon move in elliptical orbits

around the barycenter, then the libration point L4 will also move in an ellip-

tical orbit (Ref. 31). Therefore, if a spacecraft is placed at L4, it must be
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given a velocity, relative to the (X, Y, Z)-cocrdinate system, equal to that
of the libration point in order to maintain the equilateral configuration. It
appears that there is some relation between the radial velocity of the moon and
the radial velocity of the libration point which would be necessary to maintain
the equilateral configuration in the restricted three-body sense. The velocity

of the moon is

(C-4)

where V'» is known in the (X, Y, Z)-system and { ’ is zero because of the

manner in which the earth-moon orbital plane is defined (see Appendix D for

. .* .
proof). Therefore, TRy and rB)B can be determined from
X5 "By
Y | =a o* C-5)
) 3 :) (C-
| Zy |0 .
or
:}) X
u* T .
rB»G = A Y» (C-6)
-O ] i Z» ] .

Using the absolute magnitudes of the vectors involved (no signs)

r =r + r

o BY B® ’

but, by the definition of the barycenter,

m,Tr

»’By T Mg’

® Be®
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then
i
- _e
"e» © TB m»)+ "Bo
or
§ _ . [ ml> ]
Be ) mg + m,
Now,

n
tan¢=E§— R )

and from Fqs. (C-1) and (C-2)

r . sin 60°

tan ¢ = r@)
e r
2 Bo
_ sin 60°
e
i me +m)
= constant.
Therefore
¢ = constant.
From the law of sines
By TBL

sin(120° - ¢)  sin 60°

as can be seen from Fig. C-2. Takins the first derivative with respect to

time yields
. . gin 60°
r =r . (C-8)
BL ~ "B ;.(120° - ¢)
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That is, considering the triangular configuration as a body which always
maintains * ime configuration, he relaticn between the lunar radial ve-
locity and ‘he L, radial velocity is given by Fq. (C-8). Furthermore, Ly
will have the same angular velocity as the moon. The angular velocity é*

and i'B can be determined from Eq. (C-6). Also,

BL * (%2 * ﬂp?‘)l/z (C-9)

>

The velocity of L4 can be written as

-— i ° . _ -
V, = sin 60 r..&_+r 0 ¢

sin(120° - ¢) By r BL

where s_r is a unit vector along ;BL and -Ee is a unit vector perpendicular to
7;'1_ s shown in Fig. C-2. Assuming that the spacecraft can have a velocity
relative to the {x, 3, z)-coordinate system (see Fig. C-2) at L4 , the velocity

of the spacecraft at insertion is

- . o
V, = |—sin b0 In, + X €98 ¢ + yg sin ¢]‘e
S _sin(lZOo - ¢) B) S S r
+ F o* ind + vy ]" + zoE
.rBL - Xg Sin ] Yg €08 ¢J €9 zZg €,
Therefore,
. ] B . o . . ]
X sin 60 T + xocos ¢ + y. sin ¢
S sin(120° - ¢) B> S S
* * ° % . *
YS = A rppd - Xg sin ¢ + Yg €Os ¢ (C-10)
Zg Zc
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where A* is the same matrix as used'in Eq. .(C-3)"' except that it must be
evaluated at 6* + 4 instead of 0*.

Equations (C-3) and (C-10) represent the initial position and velocity
for spacecraft placement at L4. For placement of the spacecraft at LS’ the
initial position equations are obtained by replacing np by -np in Eq. (C-3).
The orientation of the (x, y)-coordinate system located at L5 is shown in
Fig. C-3. Furthermore, the initial velocity can be obtained by substituting
-¢ for ¢ in Egs. (C-10) in all terms involving ¢ (including the matrix A) except
sin 60?

sin(120° - ¢)

'BY

Substituting -¢ in the above term yields an incorrect result.
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FIGURE C~3. W-PLANE ORIENTATION OF THE L,
AND Ly GOURDINATE STSTEMS



APPENDIX D

PROOF OF é» =0

From Eq. (C-6), one has

. * * * * *
L) = sin & sin i X) - cos R sini Y) + cos i Z) . (D-1)

Combining Eqs. (B-3), (B-4), (B-5), with Eq..(D-1) gives

H H H
- Hy . Yy 7 -
g) el X) t Y» t 4 Z) (D-2)
where HX’ HY’ and HZ represent the total angular momentum components of

the earth-moon system and H is the magritude of the total angular momentum.

Rewriting

S : : :
by = 7 WHxX, + Hy Y, + H;Z,) (D-3)

Using the relations between the total angular momentum and that of the moon

alone, i.e., Fq. /B-13) yields

m
A
me .
L, = (Hx) X, + hY) Y, + HZ)Z)) (D-4)
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Combiring Eqs. (D-3), (B-1), and (B-2) gives

m
(1+;!-)
®

b= m ™ [x)(Y) Zy - ZyYy)

+ Y)(Z)X) = Xa Z))

+ Z)(X, Y) - Y) X)) (D-5)

Combining like terms of Eqs. (D-5),

m\
1 + ")m)
Mo

[0} =0 , (D-6)

T H
i.e., the moon has no component of velocity perpendicular to the earth-moon

orbital plane (the piane defined by the angular momentum). This could also be

shown by consideration of the T x T vector.
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