
https://ntrs.nasa.gov/search.jsp?R=19670025341 2020-03-12T11:11:04+00:00Z



MOTION OF A SPACECRAFT NEAR A 

TRIANGULAR LIBRATION POINT 

OF THE EARTH-MOON SYSTEM 

BOB EWALD SCHUTZ 

TCR - 6 JANUARY 1966 



MOTION OF A SPACECRAFT NEAR A TRIANGULAR LIBRATION J 

POINT OF T H E Y A R T H ~ W N  SYSTEM b 

*I L BOB EWALD SCHUTZ, B.  S. A. S. E. 

THESIS 

Presented to the Faculty of the Graduate School of 

The University of Texas in Partial Fulfillment 

of the Requirements 

For the Degree of 

MASTER OF SCIFNCE IN AEROSPACE ENGINEERING 



This report was prepared mder 

NASA MANNED SPACE FLIGHT CENTER 
.. - < '- 

- - Contract! 9-2619 -- ,F 

Dr. Byron D. Tapley 

Associate Professor of Aerospace Engineering 

and Engineering Mechanics 



Page xiv 

Page 28 

Page 35 

Page 60 

Page 84 

Page 87 

Page 99 

Page 108 

Page 118 

Second linq from bottom - (:) should be ( ' )  

Eq. (7) should read 
. . - 

msr OS = etc. 

Eq. (30) should read 

Line 5 - Eqs. (43) should read Eqs. (44) 

Gm. (I< - X ) 
The term - C Pi S Pi in the expression 

i 3 r 
P? 

. . Gm (XS - X ) 
for XS should read - Z Pi Pi 

i- r 
pis 

Eq. (68) should read 

X = X  e 

?? = ?? cos r + ge sin r 
e 

= - Ye sin c + q cos c 

5 Line A - 1 x 10 should read 1 x 

Ordinate should read hS 

Ordinate should read hS 



Page 132 

Page 143 

Page 159 

Page 167 

Page 167 

Ordinate should read hS 

Ordinate should read hS 

Line 5 - Quantity in brackets should be 

The FB component of VS should read 

r~~ * - tS sin 4 + )s cos 4 

Eq. (C- lo), the second row of the matrix on the 

right side should read 

r b* - i s  sin + f S  cos + BL 

Eq. (D-6) should read 



ABSTRACT 

The motion of a spacecraft near the triangular earth-moon libration 

points i s  studied to  determine the nature of the long term motion. Two differ- 

ent mathematical models a re  used. In one model, it i s  assumed that the 

earth and the moon move in circular orbits around their barycenter, the bary- 

center moves in a circular orbit around the sun, and the earth-moon plane re- 

gresses with a constant rate of one revolution in 18.6 years. Two initial 

orientations of the earth-moon-sun system a re  used. In the other mathematical 

model, ephemeris information is used to represent the physical world to  a 

much greater extent than the model with circular orbits. The sun and all 

planets except Uranus, Neptune, and Pluto, a re  included in this "real world" 

h model. Two initial dates a re  used, viz. , January 10, 1967, 12 GMT, and 

November 2, 1907, 5. '64 GMT. The equations of motion for each of the two 

models a re  numerically integrated and the results of the models for approxi- 

mately the same initial orientation a r e  compared. The results of the study lead 

to.the conclusions that 1. ) the modified four-body model with circular orbits 

and nodal regression does not simulate very well the 'Ireal world" model which 

uses ephemeris information; 2. ) the initial date and the initial velocity specifi- 

cation have an important effect on the subsequent motion; 3, ) long-term sta- 

bility of greater than five years i s  found to exist in the "real world" model. 
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PREFACE 

With the realization of the age old dream of journies to  other celestial 

bodies, researchers  have begun to investigate many facets of celestial me- 

chanics a s  applied to  man-made bodies. Many of the problems under investiga-. 

tion today would not only have been formidable to the researcher only a score 

of years past, but it i s  doubtful that such research would have been undertaken 

because of either lack of funds or lack of application. Today, however, it i s  

not uncommon to seriously discuss flights to  other members of the solar sys- 

tem and even beyond the solar  system. Man i s  now technologically capable of 

making journies to  nearby celestial bodies. However, such undertakings r e -  

quire vast financial support, hence, it  is necessary to investigate every possi- 

ble scheme for some practical application which may produce results similar 

to  another scheme, but with either l e s s  expenditure of resources or with more 

effective results. 

The so-called "libration points" of the Restricted Three Body Problem 

may have practical applications in space flight. The investigation reported 

herein is a study of the triangular libration points of the earth-moon system. 

If the motion of an artificial body i s  such that the vehicle remains in the vi- 

cinity of an earth-moon triangular libration point for a reasonable length of 

time, then these points may have many uses in space flight operations. The 

p o s ~ i b l e  uses of the region and'z more detailed statement regarding the 



investigation a r c  discussed in Chapter I in the sections entitled llApplication" 

and "Statement of the Problem. " 
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CHAPTER I 

INTRODUCTION 

Classical Three-Body Problem 

The system of n-bodies, in which each body at tracts  every other body 

in accordance with Newton's Law of Gravitation, has been used as  the basic 
# 

mathematical model for bodies in the solar  system for over two centuries. 

Unfortunately, a closed-form solution (i. e . ,  ar. analytical solution for which 

the position of each body i s  specified for all epochs of time) hab been found 

only for the two-body case  and for a special case of the three-body problem. 

The only means available for solving the differential equations of motion for 

the gereral  n-body case i s  through the numerical integration of the equations 

of motion with the digital computer or  by using the analog computer. 

T h e  solution of a special case in the three-body problem i s  of consid- 

erable interest. In the year 1772, J. L. Lagrange, a mathematician, pre-  

sented to  the Par i s  Academy a memoir entitled Essai  su r  l e  ~ r o b l e m e  des --- - 
Trois Corpa (Essay on the Problem of Three Bodies). Lagrange had studied -- -- 
a three-body problem in which each body attracted the others in accordance 

with Newton's Law of Gravitation, the mass  of one body was infinitesimally 

small, and the two large mauses moved in circular orbits around their mutual 

center of mass. This special case of the three-body problem has become 

known as the "Restricted Three-Body Problem. '' Lagrange mentioned as a 

1 



curiosity the prediction of five equilibrium points in the vicinity of the two 

large bodies which possessed the property that the infinitesimally small body, 

when placed at one of these points with zero velocity relative to  the point, 

would remain indefinitely a t  that point. These equilibrium points will subse- 

quently be referred t o  as libration points (they a r e  also known a s  Lagrangian 

Points and Trojan Points). The general location of the libration points is  il- 

lustrated in Fig. l. The libration points L1, La, and Lg  occur on a-line 

joining the two bodies of finite mass.  The actual location of the points is de- 

pendent on the mass  rat ic of the two bodies. Libration points L4 and L5 oc- 

cur a t  the vertices of two equilateral triangles whi6h have a s  a common base 

the line joining the two bodies of finite mass  (Refs. 1 and 2). 

Further studies of the restricted three-body problem have been car -  

ried out since Lagrangets initial investigation. Arnong the individuals asso- 

ciated with these investigations a r e  Liouville, Laplace, Jacobi, and ~ o i n c a r d .  

One of the most important results obtained during these investigations has been 

the demonstration of the stability of the triangular libration paints for certain 

mass  ratios and of the instability of the straight-line libration points for all 

mass  ratios. That i s ,  if the infinitesimal third body IS placed at one of the 

straight-line libration points and displaced slightly from the exact point, i t  

will depart from the vicinity of that p0ir.t. However, in the case  of a triangu- 

l a r  libration point, if the ratio of the mass  of the smaller  body tc, the mass  of 

the larger  body i s  l e s s  than 0.0385, then the infinitesimal mass  when dis- 

placed slightly f rom the libration point will oscillate about that point indefi- 

nitely. 

It is of some interest t o  note that Lagrange's analysis was made at 

the time when only s ix  of the planets (including earth) were known and none of 



the minor planets had as  yet been discovered. Therefore, it was not then 

known that the triangular configuration actually exists in the solar system. 

More than a century after Lagrange's prediction, an astronomer named Wolf 

at the ~ S n i ~ s t u l  Observatory in Heidelberg, Germany, discovered a minor 

planet located a:: approximately the L4 position of the sun-Jupiter system 

(see Fig. 2). It was named 588 Achilles. In October of the same vear, 1906, 

a nliaor planet was discovered near the L location and was named 617 5 

Patr.xlus. Durir,g the next two years, two additional minor planets were dis- 

covered and nameQ Hector and Nestor. Subsequent investigations have rs- 

vealed a total of 15 boCieb (known at this writing) locateO at the t w ~  libration 

points. I:. .-as deciaad to  name the L asteroids after the Greek heroes of 4 

the Trojan War; thereiort, they have become known a s  the Greek planets. 

Among those occupying the L4 position a re  Agamernnon, Ulys ses  , Nestor, 

Ajax, and Dirmedes. One might note that the first  asteroid found at L4, viz., 

Achilles, is a member of the Trojan camp and not the Greek. The asteroids 

which occupy the L position a re  named after the Trojan heroes. Conse- 5 

quently, they a re  called the Trojan Planets and among their members a re  

Priam, Anchises, Aeneas, and Troilus (Ref. 3). 

Statement of the Problem -- 
The ratio of the lunar mass to  the earth's mass is 0.0123. Hence, 

the stability criteria of the triangular libration points is satisfied and if all 

the assumptions of the restricted three-body problem were satisfied also, 

then the motion of a spacecraft (a body with mass very much less  than either 

the earth or the moon) near either the L4 or the L5 point would be stable in 

the sense previously stated. Obviously, the earth-moon-spacecraft system 





5 

cannot be treated as  a three-body problem in the physical world. There a re  

external forces on the system due to the gravitational attraction of the sun, 

planets, and other bodies. With the inclusion of these external forces on the 

system, the restricted three-body assumption i s  no longer valid and it i s  un- 

known whether or not the spacecraft would have a stable motion near the t r i -  

angular points. A Itstable" motion if defined a s  one in which the spacecraft 

remains within some prescribed distance of the libration point during the time 

of interest. In this investigation the word ttstablett is used in the same sense 

as  "libration-point-centered motion. " 

The Trojan and the Greek Planets in the sun-Jupiter system have ex- 

ternal forces on them due to the gravitational attraction of the other planets 

and yet they oscillate about their respective libration point in an apparently 

stable motion. One might be tempted to conclude that this would also be the 

case in the earth-moon system; however, this has not been sho-an to  be true. 

The perturbing forces on a spacecraft in the earth-moon system would be 

much greater than those acting on the Trojan or the Greek Planets in the sun- 

Jupiter system. The sun and Jupiter would have a much stronger influence on 

the motion of a spacecraft in the earth-moon system than Saturn and the other 

planets would have on the aforementioned asteroid groups. 

Therefore, the primary purpose of the study presented in the subse- 

quent discussion i s  to investigate the stability of spacecraft motion in the 

vicinity of the earth-moon'triangular libration points. The definition of a 

libration point i s  a consequence of the restricted three-body problem. Fur- 

thermore, a true equilibrium point in the actual earth-moon system would 

not, in general, correspond to the L4 or L5 position. However, in the sub- 

sequent study, the libration points defined in the restricted three-body problem 
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will be used a s  reference points and the effects of the remaining bodies will 

be included a s  perturbing forces on the spacecraft. The resultant motion will 

represent the deviation from the restricted three-body case. 

The straight-line iibration points will not be considered since, as  

stated previously, these points a r e  unstable in the restricted three-body prob- 

lem. Furthermore, it ha s  been shown that the sun produces a disturbance 

which forces the infinitesimal bb-ly to  move away from the straight-line l ibra-  

tion point and an unstable motion resd:. 7 (Ref. 7). 

Previous investigations into the statiility of motion a t  the triangular 

libration points a r e  given by Refs. 4 to  16. References 4 and 5 assume a 

mathematical model in which the earth and the moon move in circular orbits 

around their mutual center of mass  (barycenter), the barycenter moves in a 

circular orbit around the sun, and the earth-moon orbital plane maintains a 

fixed orientation in space. Reference 6 reports an investigation which includes 

both the effects of the time ra te  of change of the inclination of the earth-moon 

orbital plane and the regression of the orbital plane. The equations of motion 

a r e  linearized by expanding all  the forces on the spacecraft in a Taylor Series 

about the libration point. A solution i s  then obtained to  these equations; how- 

ever, the results presented must be viewed with a degree of caution because 

of the linearization. Results of the evaluation of the linearized equations xp 

to 1500 days a r e  presented for position coordinates, and one finds that the 

particle does not exceed 50,000 to  60,000 miles displacement from the l ibra-  

tion point. It appears that this small  d.isplacemcnt over such a long period 

may be the result of the linearizatioc. With allowance for the difference in 

models, other results a r e  presented in Ref. 6 which agree with those of 

Ref. 5. References 7 and 8 discuss motion near the triangular points and 
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the straight-line poiuts. The problem af launching from the earth and 

injecting into a librction-pointcentered orbit is considered also. Numerical 

integration of the differential equations i s  employed; however, the integrations 

are  carried out for a period of only 180 days in one model and 475 days in an- 

other model. It i s  interesting to note that in Ref. 7, the results of numerical 

computations with a mathematical model which includes the ephemeris posi- 

tions of the sun, moon, and earth a r e  given. This will be discussed further in 

Chapter IV rmder the heading "Mathematical Model. 'I  Results of other investi- 

gations a re  reported in Refs. 9 to 16. All of these references, with the excep- 

tions of Ref. 9 and Kef. 14, a re  concerned with some aspect of an analytical 

solution of a simplified mathematical model. Both of these references report 

numerical results obtained with a general n-body model which uses ephemeris 

input for the planetary positions. The results of Ref. 14 a r e  particularly in- 

teresting in that they treat the initial condition effects for the general n-body 

problem. 

The investigation presented in the sub3equznt discassion considers two 

different mathematical models. One is a mathematical model which extends 

the work of Refs. 4 and 5 by the inclusion of the effects of tne nodal regres- 

sion. The other i s  a mathematical model which assumes a general n-body 

problem formulation and utilizes the Jet  Propulsion Laboratory Epnemeris 

Tapes to obtain the positions of the sun, tb moon and the appropriate planets. 

This latter model is, therefore, a much more realistic model than the former 

and will be referred to a s  the "real world" model. Furthermore, this entire 

investigation appr~aches  the problem from the standpoint of deriving the dif - 
ferential equations of motion of the spacecraft and numerically integrating 

them with specified .nitial conditions. It i s  realized that this may not be the 
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"best" approach for investigating the question of long t e rm stability. There 

a re ,  of course, an extremely large number of initial conditions available, and 

to  t ry  a representative sample would require prodigious amounts of computer 

time. Therefore, only certain cases  a r e  investigated and in~plications ad- 

vanced to other cases. 

Obviously, closed form solutions for studying stability a r e  preferred 

to numerical solutions. But closed form solutions a r e  extremely difficult to 

obtain, even fox the restricted four-body problem. Fo r  a model including the 

sun and the planets, one requires a solution to a twelve-body problem. Ob- 

taining such a solution would be a formidable task. 

The problem of stabilizing the motion by applying thrust to the space- 

craft at intervals in such a manner that the spacecraft would remain very 

close to the libration point i s  not considered in  the investigation reported 

herein. Instead, the primary interest of this investigation is t o  determine 

the natural motion of the spacecraft subsequent to its placement at o r  near 

the libration point of interest. 

Application 

Although the problem may at f i rs t  appear to be of academic interest  

only, i t  appears that the earth-moon triangular libration po-Lnts could be 

utilized in several ways. Sometime in the near future, lunar exploration bases 

will be established on the side of the moon which cannot be seen f rom the 

earth, i. e. , the "far side of the moon. Undoubtedly, communications be- 

tween the earth and these lunar bases will be desirable; however, communica- 

tion could not be achieved directly from the earth since the moon itself would 

block reception and transmission of radio signals. If, however, a 
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communications spacecraft were placed at the L and L5 points of the 4 

earth-moon system, communication with a large portion of the far  side of the 

moon could be maintained over a considerable period of time provided the 

spacecraft stayed in the vicinity of the libration point. Figure 3 illustrates an 

approximation of the possible communication coverage. Obviously, commun- 

ication is possible with a larger area via the libration spacecraft than with 

straight-line earth-moon communications. Another alternative would be to use 

a lunar satellite. However, a near lunar satellite could provide communica- 

tion for only a short period of time and this method would require a network of 

such satellites to provide direct communication at  all times. In Ref. 17, a 

system of five equally spaced lunar satellites at a circular orbit radius of 3500 

miles i s  suggested. However, the libration point satellites of which there 

would be only two, may provide sufficient coverage at a more favorable cost. 

In addition, a synchronous satellite similar to  that of the earth i s  not possible. 

In fact, the five libration points of the restricted three-body problem a re  the 

lunar equivalent of a terrestrial  synchronous orbit. 

Another possible use for the triangular libration points would be the 

establishment of an astronomical observatory, either manned or unmanned. 

A major advantage would be the accessibility for observation of any portion 

of the universe except the very small sectors blocked by the earth, the moon, 

and the sun. The observational accessibility would be much greater than that 

available to a terrestrial  observatory or even a lunar observatory. Both the 

lunar and terrestrial-based observatories a re  limited in their observations by 

the body on which they a re  located. Earth-based observations can occur only 

during hours of darkness (except solar observations) and then these observa- 

tions are  sometimes hampered by moonlight. Therefore, the period available 
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for observatict; i s  about 12 hours per  day. The possible observation period i s  

greater  on the moon; the entire universe can be observed in a four-week period 

and observations can be made even when the sun is overhead. However, the 

section of the sky observable is constrained by the rotation of the moon, and it 

could be as much as two weeks before the moon rotated sufficiently for a cer -  

tain portion of the universe to  be visible. At the libration points L4 and L5, 

any portion of the sky could be observed at any time by merely rotating the ob- 

servatory. An astronomical observatory in  a near -earth orbit could also be 

just as  useful. However, photogrbphic plates must be exposed for extended 

periods of time in stel lar  photography. Therefore, the telescope must main- 

tain a fixed orientation in space, a t  least  within certain limits t o  avoid 

"smudging" of the plate. It may be somewhat simpler to  maintain an orienta- 

tion at the libration points, since i t  would take about four weeks t o  complete 

one revolution around the barycenter. One possible hazard to the use of the 

libration points for t h ~ s  purpose l ies in the possibility of cosmic debris col- 

lecting at the libration points: either hampering observations o r  damaging 

delicate optical equipment. Optical sighting8 of such dust clouds a t  both the 

L4 and L5 points have been reported in Refs. 18 and 19. Such debris could 

be of lunar origin having been ejected from the moon by a meteor impact on 

the lunar surface (Ref. 20) or it  c uld be virgin galactic material trapped 

during an encounter with the libration point. 

Additional possible applications a r e  noted in  Ref. 16. These include 

the use of the triangular libration points for  long t e r m  solar-f lare observa- 

tions. By i ts  very location, the libration point would be essentially f ree  from 

perturbations on charged particles due t o  the geomagnetic field. Information 
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obtained by observing the motion of a vehicle at the triangular points could be 

used t o  refine the value of the earth-moon mass  ratio. 

Stil.1 other possibilities of application would be the establishment of 

facilities to assemble, check out, and launch interplanetary spacecraft. In 

addition, it may be useful to establish navigation buoys at  these locations a s  an 

aid in earth-moon and interplanetary flight operations. 

Procedure 

In the subsequent study, the equations of motion for the spackcraft were 

derived for each of the mathematical models examined. These equations, viz., 

three second- order nonlinear differential equations expressing the rectangular 

components of the spacecraft acceleration were numerically integrated utiliz- 

ing a standard computer program available at  The University of Texas Compu- 

tation Center Library (iief. 21). This program i s  capable of numerically inte- 

grating up to 100 simultaneous, f i rs t -  order,  nonl.inear differential equations. 

Therefore, the equations of motion a r e  rewritten 2s a system of six f irst-  

order differential equations. The program i s  written in FORTRAN 63 lan- 

guage and uses the Runge-Kutte method for obtaining three starting values in . 

addition to  the initial conditions which must be provided. After the three values 

for each variable have been obtained, control is switched to an Adams-Moulton 

procedure. The Adams-Mrtitlton procedure requires four values to  predict the 

next value; this value is then corrected using all  five values, i. e. , includiiig 

the predicted value. While most computations in the program a r e  ca r r ied  out 

with single precision arithmetic (approximately 12 digits), certain additions in 

Runge-Kutta and Adams-Moulton a r e  carr ied  out in double precision (approxi- 

mately 24 digits). It was found during the course of this research that if all 
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computations were ca r r ied  out in double precision, the computer time was in 

some cases tripled with no appreciable change in thc results.  In some cases,  

the initial conditions were computed in double precision. If they a r e  computed 

in single precision, there will be some round-off e r r o r  introduced. Since the 

subsequent trajectory is extremely sensitive to the initial conditions, it i s  im- 

portant to supply initial conditions which a r e  accurate. In addition, the program 

computes the so-called "single-step e r r o r ,  i. e. , the e r r o r  existing at  the 

point of interest using the Adams-Moulton Predictor-Corrector a s  if all  the 

previous values had been exact solutions to  the differential equations. Although 

this does not give a "true e r r o r t  " i t  does allow some control of the inherent 

e r r o r  in the numerical integration procedure. If the single-step e r r o r  is out- 

side a range specified by the program user ,  the step size can he halved to r e -  

duce the e r ror .  If the single-step e r r o r  is lower than the minimum e r r o r  

specified, the step size can be doubled to reduce the computation time. Addi- 

tional information on the numerical integration procedure will be provided in 

the discussion of results of the numerical studies. 

Although the integration was carr ied  out numerically on the Control 

Data Corporation (CDC) 1604 digital computer a t  The University of Texas 

Computation Center, i t  is feasible to  ca r ry  out the integration on an analog 

computer. Because of the complexity of the equatioils an6 the limited cap- 

ability of the anarog facilities at  The University of Texas, the project of per- 

forming the integration on the analog computer was abandoned, In addition, 

it would not be feasible to use the present analog computer a t  The University 

of Texas for the mathematical model utilizing ephemeris information. Plane- 

tary  position and velocity information i s  s tored on magnetic tapes in eight-day 

records and in order to  use these tapes on the analog, a hybrid digital-analog 

computer system would be required. 



CHAPTER I1 

MATHEMATICAL MODEL 

In order to pledict the motion of a spacecraft near the libration point 

of interest, i t  i s  necessary to define a mathematical model. It seems reatc.1- 

able to suppose that if the mathematical model represents very accurately the 

actual physical system, viz., the lnotious of the members of the solar system 

and thgir noncerrtral gravitation fields, then the prediction of the acceleration 

of the spacecraft will be accurate also. Unfortunately, i f  all the features .L 

the actual physical system a re  incorporated into the model to a high degree of 

accuracy, the problem can become exceedingly complex and may require 

prodigious amounts of computer time. On the other hand, i f  the model has too 

many simplyfying assumptions, it may not accurately predict the motion of the 

vehicle. As Richard Bellman stated (Ref. 22): ". . . the Scientist [or  Engi- 

neer] like the Pilgrim, must wend a straight and narrow path between the Pit- 

falls of Oversimplification and the Morass of Ovezcomplication. " TG prove 

that he understands the physical phenomenon he observes, the scientist nrust 

be able to predict the recurrence of that phenomenon. To predict it, he defines 

a mathematical model to represent the phenomenon under consideration and 

then proceeds to  study the matl,ematical- model in an effort to understand the 

phenomenon. The objective of the investigation reported here i s  to determine 

the nature of the motion of a spacecraft near the triangular libration pointe. 

14 
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In order to predict this motion, it is necessary to define a mathematical 

model. Furthermore, the accuracy of the prediction will depend on how well 

the model represents the physical world. Unfortunately, as more effects of 

the physical world a re  included in the mathematical model, the more complex 

the mathematical model becomes, and the more extensive the calculations for 

the nume:ical solution become. Some of the physical world effects can be neg- 

lected in certain cases and still have a fairly accurate prediction of the space- 

crait motion. In order to establish a mathematical model for the motion of a 

spacecraft at the L4- or LC- points of the earth-moon system, it is necessary - 
to understand the motions and effects of the natural bodies of the solar system 

so  that certain simplifying assumptions can be justified. The motion of the in- 

dividual members of the solar system, particularly the earth-moon system, is 

the subject of the followinp section, Another section will state the physical 

cha~acterist ics of the natural-bodies which have an effect on the motion of the 

spacecraft. Finally, the simplifying assumaptions incorporated in the specific 

mathematical models will be stated. 

M~t ion  of the Planets and the Solar System -- --- 
The motion of the earth-moon system, and for that matter, all of the 

members of the solar system, is very complex. As an aid to  understanding 

the total motion, the motion can be divided into several different components. 

In effect, a model of the physical system which i s  comprised of several sepa- 

rate motions i s  defined. 

Probably the most noticeable motion to  an observer dn the earth is the 

daily motion, i. e., the motion of the earth which creates the day-night cycle. 

It is convenient to define an axis of rotation for the earth, calling the 
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intersections of this axis with the surface of the earth the North Pole and the 

South Pole. For most purposes, the axis of rotation (defined by the angular 

velocity vector) can be assumed to nave a fixed direction in space. Tile direc- 

tion of the angular velocity vector is very nearly toward Polaris, the North 

Star, i. e. , toward the North Celestial Pole. However, this vector doe7 not 

actually have a fixed direction. There i s  a long-term motion, called preces- 

sion, in which a point 01.1 the axis desc.ibes a conical path. This path i s  not 

quite circular; furthermore, about 26,000 years a re  required for this vector 

to make one revolution. In addition to precession, there i s  a short-term mo- 

tion, called nutation or nodding of the poles. To complicate this motion even 

further, the poles of the earth a re  not at fixed points on the earth, i. e . ,  the 

earth shifts about the axis of rotation. There also a re  variations in the rate 

of the earth's rotation. All of these effects (some of which cannot be pre- 

dicted) will affect the motion of a spacecraft s t  the libration point only by 

changing the earth's noncentral gravitational field components (see Physical 

Characteristics of the Natural Bodies). 

A second motion i s  the revolution of the earth-moon mass center around 

the sun, the nearest s tar  to the earth. Because of the size of the moon ir. com- 

parison to the size of the primary body, viz., the earth, the system has the 

characteristics of a double planet. The center of mass of the earth-moon sys- 

tem, o2 barycenter, describes a near elliptical path around the s w .  Astrono- 

mers generally define the ecliptic as the apparent annual path of the sun's 

center on the celestial sphere. An accurate definition would be that the ecliptic 

is  a plane perpendicular to the barycenter's angular momentum vector which 

includes the barycenter. The orientation of thie plane in space i s  not fixed, 

and for most purpoees some reference ecliptic must be selected. 'I he motion 
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of the ecliptic with respect to same refezence ecliptic fixed in space is less 

than one degree. It should be pointed out that in two-body motion this plane 

would remain fixed in space. This is not the case for the physical world be- 

cause of the gravitational attractions of other bodies both in and external to  

the srrlar system. 

Another motion is that of the earth and moon around the barycenter. 

These orbits deviate .;ornewhat from an elliptical path. The earth-moon orbit 

plane, defined as a plane which is perpendicular to the angular momentum 

vector of the earth-moon system and which contains the earth, moon, and 

their barycenter, does not maintain a fixed direction in space. F i rs t  of all, 

the inclination between some reference ecliptic and the earth-moon orbital 

plane varies. Secondly, the line of nodes between the ecliptic and the earth- 

moon orbital plane does not remain fixed, but moves in a westerly, or retro- 

grade, direction along the ecliptic. 

In additicn, the other planets (both minor and major) and their satel- 

lites move in near elliptical orbits around the mass center of the solar system, 

The sun, of course, also moves around the center of mass of the entire solar 

system. In Fig. 4, the center of mass location relative to the center of the 

h 
sun i s  shown for the period from January 10, 1967, 0 GMT to June 2, 1974, 

h 
0 GMT. It i s  of interest to  note that the center of mass is over 400,000 miles 

from the center of the sun for several months during this period. The informa- 

tion shown in Fig. 4 was computed from information stored on the Jet Propulsion 

Laboratory Ephemeris Tapes. 

The center of mass of the solar system is also in motion. It is revolv- 

ing about the center of the Milky Way Galaxy at a distance of perhaps 30,000 

light-yoara It takes 230 million years to complete one revolution. The solar 
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system center of mass i s  also moving toward the constellation of Hercules 

with a relative velocity of about 12 m:les per second. Finally, the entire 

Milky Way Galaxy i s  in motion with respect to  the external galaxies. 

Physical Characteristics of the Natural Bodies -- - -- 
None of the natural bodies a re  homogeneous spheres. The earth, in 

fact, i s  somewhat flattened at the poles and bulged near the equator. In some 

mathematical models ii; has been treated a s  sn oblate spheroid. This bulge 

causes artificial satellites to deviate from the two-body conic predictions even 

if  the effects of the other bodies a re  not included. Due to  this bulge, the earth's 

gravitational field is  not a central force field. In a central field tbere is no 

angular component of force; hence, the force has only 'a radial component. 

However, in the noncentral force field, there is an angular component of 

force in addition to  a radial component. The potential function @ of the oblate 

spheroid which i s  used to  represent the earth, is expressed as 

Gm e J2 R,' *R. 4) =-[1 + T  2 J3 R,' 
7 (1 - 3 sin 4) +- 7- 

2 2 
(3 - 5 sin 4) sin 4 (3 - 30sin + + 35 sin 

R 

where + i s  the latitude, J2, J3, and Jq a re  constants, R is the radial dis- 

tance to some mass, and R is the mean radius of the earth (Ref. 23). 
40 

The moon also deviates from a homogeneous sphere. In some mathe- 

matical models the moon is represented by a t r i ax iq  ellipsoid; again, as in 



the case of the earth, the gravitational field i s  noncentral. For  the triaxial 

ellipsoid representing the moon, the potential function i s  

2 4(R, 8, 1) = cos cos 2 1 
R 

where )L is the selenographic latitude, A is the selenographic longitude, J and 

L a re  constants, and R is the mean radius of the moon (Ref. 23). 
D 

In addition, the other planets and the sun a r e  not true spheres. Because 

of the noncentral force fields of these bodies, they produce forces on a space- 

craft in addition to the Newtonian gravitational attraction for a point mass. 

However, at planetary distances the noncentral force components a r e  negligible 

and the planetary bodies can be treated as  mass points. 

Assumptions 

In the subsequent analysis, Newton's Laws of Motion and Newton's Law 

of Gravitation will be accepted a s  postulates. The latter law expresses rke 

force of attract? on between two p o i ~ t  masses a s  

where F12 i s  the force exerted on ml by m2, G i s  the universal gravita- 

tional constant, and r is the radius vector between the two masses m 
12 1 

and m As can be seen from Eq. ( 5 ) ,  the direction of the gravitational 2' 

force P is along the vector?l2. The differential equations of motion of a 

spacecraft in the earth-moon system a r e  expressed by Newton's Second Law, 

viz., 
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where m i s  the m a j s  of the spacecraft and i s  the acceleration of the S S 

spacecraft v::th respect to an inertial coordinate system. Obviously, the mag- 

nitude and direction of the acceleration is dependent on the magnitude and di- 

rection of the resultant force or, the spacecraft. The forces on the spacecraft 

which can be predicted a r e  the gravitational forces and those forces due to  

solar radiation pressure. In an actual flight, of course, these would not be 

the only forces acting on the spacecraft; there would also be forces due to  

propulsion systems, reaction  control^, and impact forces due to meteor 

strikes. However, the occurrence of the latter force cannot be predicted. 

With the aforementioned set of postulates, the assumptions common to both 

mathematical mo-lels studied a re  stated as  follows: 

1. All the bodies under consideration will be treated a s  point 

masses. Since the libration points of interest a r e  approximately 

240,000 miles from the earth and moon, the effect of the noncentral 

force fields of these two bodies will be small, however, they would 

probably have a noticeable effect on the long-term motion, i. e. , 

motion over many years. Figure 5 shows the magnitude of the non- 

central component of the earth's gravitational force, i. e. , f t$, R), 

as  defined in Eq. (2), for a body at  a distance of 240,000 miles from 

the earth, i. e., R = 240,000 miles. The moon's declination varies 

from about 28.5O to -28.5'. A spacecraft in the earth-moon orbital 

plane will have the same range in declination or latitude. The 

f ( +, R) term of Eq. (2) varies from 1.48 X lo-') to 3.69 X 1 0 ' ~  for 

* 1 
this range in latitude. The tern? f ( )I, k, R ) of Tq. (4) is 10- or 





smaller than f ( 4, R ). This indicates that the effect of the 

terrestrial  and lunar noncentral gravitational fields i s  on the same 

order of magnitude ab: the point mass gravitational attraction of 

Uranus, Neptune, and Pluto a s  can be seen from Table A- l in Appen- 

dix A. In addition, the noncentr?.: force fields of bodies other than the 

earth and moon have a negligible effect on a spacecraft in the earth- 

moon system. 

2.  The spacecraft wi l l  be assumed to be a particle of very 

small mass, i. e.,  it produces no effect on the motions of the earth, 

moon, etc. 

3, External forces on the solar system will be neglected. 

Even the nearest s tars  to the solar system are  more than four light- 

years away and their gravitational attractions will certainly be very 

small. By this assumption, the center of mass of the solar system 

will move on a straight line with constant velocity relative to  a true 

inertial coordinate system. This assumption allows use of the center 

of mass of the solar system as  the location of an inertial coordinate 

system. 

4. Relativistic effects will be excluded. 

5. Solar radiation pressure on the spacecraft will be neglected, 

i. e . ,  the area to mass ratlo of the spacecraft is assumed to be very 

small. 

These assumptione iorm the basis for the derivation of the differential equa- 

tions of motion. Further assumptions will be stated a s  they a re  necessary in 

defining a particular mathematical model. There will be two different mathe- 

mati-a1 mndels considered here. In one model, a modified restricted 
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four-body model, certaijl assumptions will be made regarding the orbits of 

the earth, moon, and sun in order to express the polritions of these bod:.es 

algebraically. The other model will utilize the Je t  Propulsion Laboratory 

Ephemeris Tapes for the positions of the natural bodies. These tapes provide 

ephemeris information to the highest degree of accuracy available at  this 

time. 

In the modified restr icted four- body mathematical model, only the li- 

bration point L4 i s  considered. Preliminary studies found that the motion 

near L i s  very similar  to  the motion near L for  some initial orientations 
5 4 

of the earth-moon-sun system. However, consideration of motion near the 

L point has not been thorough. Hence, additional consideraticin ci the mo- 5 

tion at  1, using ephemeris information i s  warranted. Such a study is in- 
5 

cluded here. 



CHAPTER 111 

A MODIFIED RESTRICTED FOUR-BODY PROBLEM 

Mathematical Model 

Since computations with the general n-body model a r e  quite timc 

consuming, efforts to define a model which is  more  realistic than the r e -  

stricted four-body problem, hut l e s s  complicated than the general n-body 

m ~ d e l  seems warranted. In the model discussed in the present c h a p t e ~ ,  t t ~ e  

restricted f o u r - L d Y  ~ ~ d 6 :  is inodified to the effects of the regression of the 

earth-moon plane. The assumptions made in this model (in addition to those 

already stated in the section entitled "Assumptions" ~f the previous chapter) 

a r e  a s  fo1lo~-a: 

1. Since the sun is the largest  mass  in the solar system, and 

has several  thousand t imes greater  effect on a spacecraft at  a triangu- 

l a r  libration point in the earth-moon system than any of the planets 

(see Table A-1, Appendix A) with the exception, of course, of :he earth 

and the moon, the gravitational attractions of the planets a r e  neglected. 

Therefore the problem reduces to a four-body problem, viz., sun, 

moon, earth, and spacecraft. 

2 .  Since forces due to bodies external to  the solar system a r c  

neglected, the center of mass  of the four-body system will move with 

constant velocity relative to an absolute coordinate system. The 

25 
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center of mass  of this four-body system i s  appxoximately 50 miles 

f rom the center of the sun; however, this i s  a small fraction of the 

total distance from the solar center to the earth-moon barycenter, 

and it will be assumed that the four-body center of mass  i s  at the 

center of the suc. 

3. The barycenter moves in a circular orbit around the sun; the 

earth and moon move in circular  orbits around the barycenter. As 

stated previously, these bodies actually move in Tear elliptica. .bit>. 

In effect, the earth and the moon a r e  being constrained to move in 

circular orbits around the barycenter. The indirect action of the sun 

on the earth and the moor, would actually cause these bodies to  move 

in non-circular orbits. 

4. The ecliptic plane is assilme. -0 have a fixed orientation 

in space. 

5. The earth-moon plane, a plane in - ',ich the circul3r mo- 

tion of the earth and moon occurs, i s  inclined to the ecliptic at  a con- 

0 stant angle of 5 9 =:nutes. 

6. The line of nodes of the earth-moon plane and the ecliptic 

regresses  at  the constant ra te  of one revolution in about 18.6 years. 

In effect, part of the sun's indirect action on the motion of the moon is 

being included. 

The f i rs t  five assumptions a r e  incorporated in Res 3. 4 and 5. Therefore, this 

investigation differs f rom the inve >tigation reported in these references only 

by the i n c l u s i o ~  of the nodal regression. One impmtant point to note here  is 

that the earth-moon plane a s  defined in the fifth assum;?tior, 1s not the earth- 

moon orbital plane a s  defined by the angular momentum. Instead, it i s  simply 
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a plane in which the circular motion occurs. If there were no nodal 

regression, ~ r b i t a l  plane defined by the ai~gular momentum would coincide 

with the earth-moon plane. 

Utilizing these assumptions, foxr cases will be investigated. The first 

of these wil l  present the equations of motion in a libration-point-centered 

rotating coordinate system. This was done in order to  permit a comparison 

with the studies reported in Refs. 4 and 5. In the second case, the equations 

of motion a re  derived in the barycentered nonrotating coo~dinate system and the 

integration is carried out. The results a r e  compared with the case in which the 

libration-point-centered rotating coordinate system was used. In both of these 

cases, it was assumed that the triangular libration points l ie in the earth-moon 

plane. In the third case, it i s  assumed that the libration point exists in the 

earth-moon orbital ?lane as  defined by the angular momentum vector. The 

same initial conditions a re  used in the first  three cases and the result; a re  

compared. In the last case, an initial earth-moon-sut configuration is used 

which corresponds to the configuration existing on Julian Date 2,439,501.0 

h (Januzry 10, 1967; 12 CMT). This latter case will be used as  a comparison 

tc  the "real -.iiorldW model with the same initial date. 

Case I: Rotating Coordina~e System at L 
-- 4 -- 

Equations .- of motion, With the P ss-amptioris stated in the previous 

secticn, .the coordinate systems and geomstry of the mathematlcll model can 

be illustrate6 as shown i l  Fig. 6. The (X, *, 35)-coordinate system is lo- 

cated at the center cf the sun. The X-axis poiilts in a fixe6 direction and was 

chosen for conv - .Lence to be the vernal equ;nox, tl,e Y-axis lies in the eclip- 

tic, and the 2 -axis i s  pz.-lendicular to the ecliptic. At the barycenter, the 



axes of the nonrotating (X, Y, 2)-coordinate system a re  parallel to their 

counterparts in the sun-centered coordinate system. The ( & q, S )- 

coordinate system is  oriented such that tk .-. origin is  at the barycenter, the 

6-axis lies along the earth-moon line, the q-axis lies in the earth-moon 

plane, and the &-axis i s  perpendicular to that plane. The (x, y, 2)-coordinate 

system is centered at the L4 point (assumed to be in the earth-moon plane) 

and the (x, y, z taxes  a r e  parallel to the (c, q ,  c)-axes,, respectively. 

The differential equations of motion for a spacecraft referred to the 

sun-centered inertial coordinate system a r e  expressed by application of 

Eqs. (5) and ( 6 ) ,  i. e., 

Equation (7) is valid for the mathematical model under consideration with the 

assumptions stated previously. In this particular study, the acceleration with 

respect to  a coordinate system located at one of the triangular libration points, 

viz., L4, is  desired. It is therefore necessary to relate the motions in a sun- 

centered inertial coordinate system to the motions in a rotating libration-point- 

centered coordinate system. 

The position of the spacecrafii with respect to the inertial coordinate 

system is, as shown in Fig. 7, 

wf.e.ere f is measured in the (X, Y, 2)-inertial coordinate system and YBS OB 

is ~ l e a s u r e d  in the (X, Y, 2)-nonrotating coordinate system located at the bary- 

center. The inertial velocity and acceleration of the spacecraft is then 
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. . 
The term r is the acceleration of the spacecraft as  observed in the B3 

- - - 
(X, Y, 2)-nonrotating system. The ter.-LA r expressed in the rotating BS 

15, '1, &)-coordinate system i s  given by the following zxpression (Ref. 24): 

where all quantities on the right a re  expressed in the ( 6 ,  q , 5 )  -coordinate 

- 
system; i. and a re  the velocity and acceleration observed in the rotating 

(5, q , &)-system. The relation between positions measured in the ( 6 ,  q , 5 )  - 
coordinate system and the (X, Y, 2)-system is  derived in Kef. 25. Ex- 

pressed in matrix notation, the relation is 

where 

(cosQcose-sinnsinecosi) (-cosnsine-sinQcosecosi) (sinnsini) 

A =  [ (s in~os0+cos~sinf3cosi)  ( -  s in l2s in0 tcos~os~cos i )  ( -cosnsini) 

(sinosini) (cosbsini) (cosi) 

Then, 



Note that A i s  an orthogonal matrix and hence (Ref. 25) 

- 
The total angular velocity vector, w ,  can be expressed as  

where 

= sin 8 sin i 

w = Q cos 8 sin i 
'1 

Fxrthermore, by differentiating Eq. (16) it follows that 

where 
. 
9 = 

a sin 8 sin i + f2 6 cos 8 sin i 
. . 

& = cos 8 sin i - 52 8 sin 8 sin i 
'l 

Since the motion i s  assumed to be circular. = 0. Also, by assumpiion, h is 
. . 

constant, therefore. Q = 0. Hel-:e, Eqs. (19) reduce to the following expres- 

sions. 
. . 

S = Q 8 cos 8 sin i 

& = - fi 6 sin 8 sin i 
'l 



In the (&, q , &)-rotating coordinate system, 

Substituting Eqs. (16), ( I&) ,  and (21) into Eq. (11) and carrying out the indicated 

operation leads to the following expression: 

2 + qS(wfi  +be) - cS(05 + a  'l 2, 1~~ (22) 

The acceleration expressed in the rotating ( 6 ,  q, 5)-coordinate system can be 

expressed in the (x, y, 2)-coordinate system by noting that 

s = x s + g  

"IS = YS + 'l 
P 

- 
5s - =s 

It should be pointed out thzt the origin of the (x, y, z)-coordinate system l ies  

in the earth-moon plane. Turthermore, by differentiating Eqs. (23) with re -  

spect to  time yields 



. . . . 
5s = ZS , 5s = 

Since the locations of the trianguler libration points a r e  defined by the earth- 

moon distance which i s  constant because of the circular  orbit assumption, it 

follows that 

and 

Since the barycenter moves in a circular orbit around the sun, the accelera- 

tion of the barycenter with respect to the sun i s  

a s s h o w n i n F i g ,  8, where R = )FOBI. Thecoord ina tesof thesun ,  ex- oB 
pressed in the barycentered (X, Y, Z)-system a r e  

X g = - P .  OB C O S J I  

- Yg - - ROB sin JI 

zg = 0 

'Therefore Eq. (25) reduces to the following: 

The acceleration vector expressed by Eq. (27) can be rewritten in the 

(x, Y, z)-coordinate system a s  





. . . . . . - 
where '2 OB, yOB, zOB a r e  the components of the abrolute acceleration, r OB ' 
expressed in thc rotating (x, y, 2)-coordina,e system. The coordinate,- of 

the sun expressed in the (x, y, 2)-system a r e  

Now combining Eq. (29) with Eq. (28), the followicg expression can be 

obtained 

Furthermore, Eq. (27) can now be expressed as  

Substituting Eqs. (22), (23), (24), (30), and (31) into the right hand side of 

Eq. (10) and Eq. (7) into the left hand side of Eq. (10) and collecting compo- 

nents in the respective (x, y, -)-directions will lead to  the three following 

scalar  equations: 





where 

Equations (22) a r e  the differential eq~a t ions  of motion referred to  the 

(x, y, 2)-rotating coordinate system whose origin i s  located at  the libration 

point L4.  They a r e  a system of simultaneous, second order,  nonlinear, dif- 

ferert ial  equations. As statsd previously, this system of equations was inte- 

grated numerically using the Adams -Moulton method with a Runge -Kutta 

s tar ter .  To use these computation techniques, it. i s  necessary to  have a svs-  

tem of f irst-order differential e q ~ a t i o i ~ s .  Equations (32) can be rewritten a s  

a system of six f irst-order equations by noting that 

Constants in the mzthematical model. Constants such a s   he planetary -- 
masses  a r e  zot known exactly, and revisions of these constants take place with 

the acquisition of aaditional data. The mess  constants used in the mathemat- 

ic-' model of this chapter a r e  those generally accepted by and used in the Jet  

Prvpulsion Laboratory trajectory programs (Ref. 23). Yhey a r e  a s  follows: 

5 km' Gm = 3.986032. x 10 ,-3 e sec 

11 km 3 Gm = 1.32715445 x 10 .-$ 
Q sec 
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Because of the circular o ~ b i t  assumptions, it i s  necessary to obtain from the 

actual physical model "constants" for the mathematical mode: which a r e  repre-  

sentative of the range of values in Lire  g ; ~ ~ a i ~ d l  model. This task i s  mor2 diffi- 

cult than it may at  f i rs t  appear to be. For  example, if the moon moved an 

elliptical orbit around the barycenter,  then the semimajor axis of that orbit 

could be used a s  the radius of the circular  ~ r b i t  in the mathematical model 

under discussion. Since the moon does not move in an elliptical 0rb.t (in fact, 

neither i ts  perigec radius nor apogee radius i s  the same f rom month to m ~ n t h ) ,  

the choice of representative values becomt s more  difficult. In addition, the 

lunar sidereal period varies from month to month. These variations a re ,  of 

course, the result of solar  and planetary perturbations on the two-body motion. 

A possible choice of "constants" would be to  use the osculating elements at  

some epoch, e. g . ,  1900 or  1950. In fact, i t  i s  these elements that a r e  com- 

monly quoted in tables of constants. Another choice i s  to  use the sidereal 

period a $  an epoch for  the purpose of calculating.an average angular velocity. 

This lat ter  method was selected since t h e  sidereal periods a r e  essenl'ially 

constant. It should be noted that the value selected for the average angular 

velocity will depend on the metllod selected. 

The period of th?  ba;.ycenterls revolution around the S L - L  was ~ d k e n  to 

bc 365.256 days and the period cf the earth-moon revolution around the bary- 

center was taken to be 27.322 days (Ref. 2). For  circular motion, the angu- 

l a r  velocity is constant and can be computed by dividing the period by 2rr. 

Therefore, the following values were adopted for  the angular velocities: 
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Because of the circular orbit ossurnption, the radius of each of the circular 

orbits can be computed from the two-body expression for velocity V, viz., 

Therefore, 

Usirq- Eq. (37), the circular orbit radii a r e  computed to  be 

5 = 2.39083 x 10 mi. 

Frorrl the distance between the earth and moon, the barycenter is computed to  

be 4674.87 km or 2907.45 mi from the center of the earth. Also, the 5 and 

'P 
distances a re  calculated to be 

5 
9~ 

= 3.33202 x 10 km 

5 = 2.07052 x 10 mi. 

The value of the inclination of the earth-moon plane to  the Ecliptic of the Epoch 

1900 is given in Ref. 2 a s  

i = 5O9' 



In Ref. 26, the longitude of the ascending node i s  given as  

where the superscript r represents revolutions and T i s  the time expressed 

as  a fraction of Julian Centuries since :he Epoch 1900, viz., 

T = Julian Day No. - 2415020 
36525 

This expression i s  an approximate relation for the location of the ascending 

node. Differentiating once with respect to  time yields 

Neglecting the last two terms, since the first  term will be affected only 

slightly and also because of the sixth assumption , it follows that 

The minus sign simply indicates that the node moves in a retrograde direc - 

tion, i. e. , regresses westward along the ecliptic. 

Evaluation - ofrequations - of motion - for Q = 0. Equations (32) differ 

from the equations of motion in Refs. 4 and 3 only by the inclusion of the nodal 

regression, Q,  in the present analysis. Therefore, if S2 i s  placed equal to 

zero in Eqs. (32), these equations should reduce to the equations of Ref. 4. 

Setting b equal to zero in Eqs. (17) and Eqs. (20) yields the following expres- 

sions. 



Therefore, Eqs. (32) will reduce to the following 

The above equations a re  the same a s  those given in Refs. 4 and 5. 

It i s  also important to note some differences in the initial orientation 

of the mathematical model of Ref. 4 and the model of this cbnpter. If. all 

variable angles, viz. , 8 and 9, a re  set equal to zero in Ref. 4, one will ob- 

serve that the initial orientation of the earth, moon, and :?un for  that model 

corresponds to an orientation of 



t A 
in the model discussed in this c h a ~ t e r .  If the angles 8 and Jy are  measured 

from the ~rientation which corresponds to that of Ref 4, the position of the 

sun measured in the (x, y, 2)-rotating coordinate system, a s  given by Eq. ( 29 ) ,  

becomes 

where - 
A .CI h 

cos 6 sin 0 cos i - sin 8 sin i 
A & A - sin 8 cos 8 cos i - cos 8 sin i 

0 sin i cos i 

A A A A 

x = R (cos 8 cos + + sip. 8 sin r;l cos i) - 5 0 OB P 
A A A h 

yO = - RaB(sin 8 cos JI - cos 8 sin + cos i) 
- "P 

z = ROB sin 8 sin i , 
O 

and again these a re  the same equations a s  those given in Ref. 4. 

Case I results and comparison with Ref. 5. Equations (32) were nu- -- - -- - 
merically integrated using the Adams-Moulton method with the Runge-Kutta 

starter. The integration was carried out with a maximum step size of 6000 

seconds. In some instances, it was necessary for the program to reduce the 

step size to 3000 seconds or 1500 seconds. The maximum single step e r ro r  
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In or?er to make a comparison with the results of Ref. 5, initial 

conditions were used in this study which yield the same initial orientation of 

the earth-moon-sun eystem. These initial conditions a r e  8 = 180' , 
0 

Q = 180' , and $o = 180° or  $ = 225' . In Ref. 5, the spacecraft was as -  
0 0 

sumed to be placed a t  the libration point with zero velocity relative to  the 

rotating (x, y, 2)-system. These initial positions and velocities a r e  also 

used in this study and a r e  x = yS = zS = 0 and xS = is = is = 0 . The 

results of the integration giving the projecti.~n of the motion on the (x ,  y)- 

plane a r e  shown in Figs. 9 to  10. The case  in which the initial solar  position 

is along the earth-moon line, i. e. , +o = 18!J0, is represented by Figs. 9. 

The case in which = 225' is represented by Figs. 10. 

For  the case in which $o = 180°, the spacecraft maintains a libration 

point centered motion for the 2500 days studied. As shown in Figs. 9e and 9f, 

the envelope of motion for the spacecraft increases to a maximurx distance of 

about 220,000 miles in the period from 1000 days to  1250 days after insertion. 

After this time, the envelope of motion steadily decreases until it reaches a 

value of about 26, 900 miles (Fig. 9k). This "puisating behavior" was observed 

in Ref. 5 in which t;:e model excluded the nodal regression. It sho;:ld be noted 

that the motion in this case i s  considerably different than that of Ref. 5 for the 

same initial orientation of the earth-moon-sun system and the same initial 

displacement and velocity of the spacecraft. 

The motion for JI = 225' is somewhat different than $ = 180'. The 
0 0 

spacecraft continues on a libration-point centered motion for approximately 

1200 days. As can be seen from Fig. 10e, the spacecraft appears to be It .iv- 

ing this libration-pcint centered motion. In Fig, 10f, it i s  obvious that the 

spacecraft has taken up an entirely different type of motion than heretofore 



FIGURE 9 a .  L q  ROTATING ( x , ~ ) - R E S U L T S  FOR ), = 180' 
FROM 0  DAYS TO 2 5 0  DAYS 

F I G U R E  gb.  L R O T A T I N G  ( x , y ) - R E S U L T S  FOR yo = 180' 
F ~ O M  2 5 0  DAYS TO 5 0 0  DAYS 



CURE 9 ~ .  L  ROTATING (x,Y)-RESULTS FOR lo = 180' 
d o n  s o o  o n y s  T O  750  D A Y S  

FIGURE 9 d .  L q  ROTATING (x ,y ) -RESULTS FOR lo = 180' 
FRON 7 5 0  D A Y S  TO 1 0 0 0  D A Y S  



FIGURE 9e .  Lq ROTATING ( x , y ) - R E S U L T S  FOR 1, = 180' 
FROM 1 0 0 0  DAYS TO 1 1  2 5  DAYS 

FIGURE g f .  LL ROTATING ( x , y ) - R E S U L T S  FOR 4, = 180' 
FROM 1 1 2 5  DAYS TO 1 2 5 0  DAYS 



F G U R E  9 9 .  L  ROTATING (x,y)-RESULTS FOR Y,, = 180' 
F#OH 1 2 5 0  DAYS TO 1 5 0 0  DAYS 

Y 
~60,000 $.Mi 

F l  GURE 9h.  L ROTATING ( X , ~ ) - R E S U L T S  FOR to = 180' 
F ~ O H  , 5 0 0  DAYS TO 1 7 5 0  DAYS 



FIGURE 91.  L4  ROTATING (x ,y ) -RESULTS FOR I, = 180' 
F R O M  1 7 5 0  D A Y S  T O  2 0 0 0  D A Y S  

FIGURE 9 j .  L ROTATING (x,y)-RESULTS FOR Vo = 180' 
F ~ O M  ZOO0 DAYS TO 2 2 5 0  DAYS 



F I G U R E  9k. Lq R O T A T I N G  ( x , Y ) - R E S U L T S  F O R  yo .= 1 8 0 '  
F R O M  2 2 5 0  D A Y S  T O  2 5 0 0  D A Y S  



observed, i. e., an unstabie motion. Between 1334 and 1335 days, the 

spacecraft makes a close pass of the moon and subsequently leaves the earth- 

moon system to take up a heliocentric orbit separate from the earth-moon 

system. It must be remembered that in  the period f rom 0 days to 1335 days, 

the spacecrait i s  already in a heliocentric orbit since it  is moving within the 

earth-moon system. The heliocentric motion is shown in Fig. 11 for abcut 

one year after the lunar encounter. The data for Fig. 11 were obtained by 

making a coordinate transformation from the rotating (x, y, z)-system to  the 

(X, Y; %-)-heliocentric coordinate system. 

For  comparison purposes, the magnitude of the displacement from L4 

was determined and plotted versus time. The results of Ref. 5 a r e  shown in 

Figs. 12 to  13. The resclts  of the investigation reported in this chapter a r e  

shown in Figs. 14 to  15. It should be pointed out that there ?.re some slight 

differences in constants used in the mathematical model of Ref. 5 and those 

used in this chapter. In Ref. 5, the earth-moon distance is taken to  be 

238,855 miles, the sun-barycenter distance is 92,913,600 miles, and the 

earth-moon ratio is 81.53. The corresponding constznts used in this chapter 

a re ,  respectively, 239,083 miles, 92,960,700 miles, and 81.3015. There 

a r e  also slight differences in the angular velocities in addition to  the inclusion 

of the nodal regression of the model discussed previously. Accounting for  

the slight differences in the constants used in the two mathematical models, 

i t  appears ihat the nodal regression has an important effect on the motion. 

For  the case  in which 4 = 180°, the absolute value of the z-component 
0 

of the motion does not exceed 3500 miles. The absolute value of the 

z- c~mponent  for 4 = 225O does not exceed 3700 miles prior  to  1335 days. 
0 



F I G U R E  I Ob. L ROTATING (x,y)-RESULTS FOR qo = 225' 
F ~ O H  250  DAYS TO 5 0 0  DAYS 



F I G U R E  1 0 s .  L~ R O T A T I N G  ( x , y ) - R E S U L T S  FOR *, = 225 '  
FROM 5 0 0  DAYS TO 7 5 0  DAYS 

FIGURE I O d .  L  ROTATING (x,y)-RESULTS FOR 9,  = 225 '  
F ~ O H  7 5 0  DAYS TO 1 0 0 0  DAYS 



0 
FIGURE 1 0 e .  L  ROTATING (x,y)-RESULTS FOR $ = 2 2 5  

F ~ O H  1 0 0 0  DAYS TO 1 2 5 0  DAYS o  

F I G U R E  lo*. L~ R O T A T I N G  ( x , Y ) - R E S U L T S  FOR 
= 225' FROM I 2 5 0  DAYS TO 1 3 4 0  

!BY s 
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Case 11: Nonrotating Coordinate System -- - 
Equations - of motion, Because ephemeris idormat ion will be used in a 

subsequent mathematical model, it would be extremely difficult to use a rotating 

coordinate system for the equations ,of tnotion with such data. It would be nec- 

essa ry  to determine f rom the ephemeris data items such a s  angular velocity and 

acceleration. This could be achieved, but the results would be subject to  the 

inaccur:rcies associated with the numerical differencing of the position and 
. . 

velocity information. However, i f  the equations of motion a r e  expressed with 
C - ,  t & 

respect to  a ncnrotating c'oordinatl? system, the heed for  angular velocities i s  

eliminated. The numerical integ ation was carr ied  out in a nonrotating coordi- " 

nate system and the results compared with those of Case I. 

By combining Eqs. (7), ( l o ) ,  (25), and (26), the components of the 

equations of motion can be expressed in the nonrotating (X,  Y, 2)- coordinate 

system a s  follows: 

. . Gma(YS - Y,) GmJYS - Y 3  CmD(YS - Y D )  
Y s =  -3 - 2 

3 -- - Y &  r 0s rs r DS 



where 

Integration of the Eqs.(43) yields the position of the spacecraft in the (X, Y, 2)- 

nonrotating coordinate system. 

Initial conditions. The initial conditions in this study will be snch that 

when a coordingte transformation of the initial conditions i s  made from the 

(X, Y, Z)-coordinate system to the rotating (x, y, z)-system, the result will 

be the same a s  the initial conditions used in Case I. In Gasz I ,  the lnitial posi- 

tion and velocity relative to the (x, y, 2)-coordinate system was zero, i. e . ,  

the spacecraft was placed at  the libration point L4 with the same velocity a s  

L4. I herefore, the initial conditions relative t o  the nonrotating (X,  Y, Z)- 

system are ,  from Eq. (12), 

where the matr ix  A i s  expressed by Eq. (13). Furthermore,  since both 

sets  of initial condition8 in Case I a r e  similar,  i. e . ,  = 180' and 
0 

0 8 = 1Gd , the matr ix  A becomes 
0 



c o s i  s i n i  

- sin i cos i I 
for the initial conditions only. Then 

Xs = 5 , Ys = 5 cos i , Z s  - - - qP sin i 

The velocity of the spacecraft will be the same in the (E, q, 5 ) -  

coordinate system as  in the (x, y, 2)- system since, as  shown in Eq. (24), 

The components of the total velocity expressed in the rotating (6,  q , 5)- 

coordinate system a r t  a s  follcws: 

rTsing the matrix A evaluated for the initial conditions, viz., Eq. (46), and 
. 

the initial values of S, qS, cS, &., qS, and SS, the following expressims 

can be obtained: 

X, = - (h cos i + 4 'b . . 
TS = %(Q+ 0 cos i) 

ZS = - $ e sin i 

The initial conditions a re  ccmputed in double precision to  avoid as much 

rm~nd-off e r ror  as possible. The initial conditions for S2 = 180° and 
0 

0 8 = 780 a re  
0 



Case i I  results and comparison with c7ase I. The integration of -- 7 --- .- - 
Eqs. (44) was carried out using the same s;?gle-step e r ro r  range as in Case I. 

Although the integration was made in the barb-c?ntered (X, Y, 2)-coordinate 

system, the data were transformed to the (x, y, 2)-libration-point-centered 

coordinate system to facilitate comparison with C ~ s e  I. Tables 1 and 2 show 

the results of this comparison for the two different i-~it ial  orientations used. 

For tha case in which + = 180° (Table 1), the so1utior.s: of the two different 
0 

sets of differential equations a r e  in good agreement throughout the 2500-day 

study. In fact, at 2500 days, where one might expect the largest disagree- 

ment, there is  a difference of 1.76 miles in over 4000 miles. For +o = 225O, 

there i s  good agreement until approximately 1200 days with a difference of 24 

miles in 175,000 miles. As the spacecraft leaves the libration-point -centered 

motion, the discrepancy between tke two coordinate systems becomes more 

noticeable, and i s  6411 miles in 270,000 miles 5 days after the lunar encounter. 

0 Since 4 = 180 exhibits very good agreement over a long time span 
0 

(2500 days), it appears that the discrepancy in the 61 = 223" is  not a result 
0 

of a numerical instability. There a re  a number of possible causes for the 

0 discrepancy in the JI = 225 case. First  of all, the discrepancy could be 
0 

a result of inaccurate specification of initial conditions. The initial conditions 

in the rotating case were zero relative displacement and zero relative velocity; 

however, in the nonrotating case the initial conditions a r e  computed. Since 

the trajectory which a spacecraft will follow is determificd b y  the initial 





Table 2. Comparison of Rotating and Nonrotating Data (Mi le s )  for 9, = 225' 

J 

Absolute 
Difference 

2.0 

0.7 

0.0178 

24.0 

4.5 

0. 132 

17.0 

19.5 

0.08 

470.55 

874.6 

15.0 

641 1.0 

5872.0 

1121.9 

Nonrotating 

-157.663 

-1282.68 

22.8080 

-27,972.0 

15,246. 1 

149.047 

- 19, 156. 5 
2288.72 

-747.020 

36, 677.9 

- 14,940.2 
-959.703 

13,560.5 

23,063. 1 

1051.91 

Rotating 

-157.663 

-1282.68 
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conditions, slightly inaccurate initial conditions will result in a trajectory 

differing from the accurate initial conditions. This problem was anticipated, 

however, and the initial conditions were computed in double precision. 

On observing that the large discrepancy occurs when the spacecraft 

leaves a libration-point-centered motion, another possibility accounting for 

the discrepancy involves round- off ex ror during thi.3 period. In any numerical 

integration method there will be some truncation e r ro r  and round-off error.  

For the ccmparison under discussion, two sets of differential equations were 

integrated using the same numerical integration technique. These equations 

differ only in that they express the acceleration in rotating and nonrotating 

coordinate systems. Furthermore, since the form of the equations i s  differ- 

ent (even though the numerical integration should yield the same point in 

space), the round-off e r ro r  encountered by numerically integrating these 

equations will not, in general, be the same for both sets of equations. One 

might note that the differential equations of motion referred to  the rotating 

coordinate system a re  somewhat more complex than those for t1.e nonrotating 

coordinate system [compare Eqs. (32) and (44)]. During periods after which 

the spacecraft has left the libration-point-centered motion, one might be de- 

termining small changes in a large distance, particularly when the spacecraft 

trajectory forms a cusp in the rotating system. Such is not the case in the 

nonrotating system. In the nonrotating system, there a re  no cusps and, fur- 

thermore, the trajectory i s  near elliptical. Thus, it is possible that round- 

off e r ror  of sufficient magnitude i s  being accumulated prior to  and after de- 

parting from the libration-point-centered motion that the results in the 

rotating system a re  somewhat inaccurate. 
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From the considerations of the two previous paragraphs, it appears 

that the results in the rotating system a r e  somewhat l ess  accurate than those 

in the nonrotating system during the period in which the spacecraft i s  no 

longer on a libration-point-centered motion. I hus, the nonrotating system 

probably offers the more accurate results. Again, during the period of a 

libration-point-centered motion, the results of the two coordinate systems a r e  

much the same. 

A check of the numerical integration procedure was made also by 

numerically integrating the differential equations of motion expressed in a 

nonrotating coordinate system for a particle in the two-body case. The primary 

body was taken to  be a body with the mass  of the earth. Since approximately 

36,000 steps were necessary to get to  the 2500-day mark in the mathematical 

model under discussion, the integration of the two-body case was carried out a 

comparable number of steps. By comparing the results with those obtained 

from the closed form solution of the two-body probiem, it was found that the 

numerical integration results differed with the exact solution l e s s  than . 1 

mile in 4000 miles after 36,C;9r! steps. From this comparison, it  appears 

that the numerical integration procedure does give quite accurate results 

over long time periods. 

Case 111: Earth-Moon Orbital Plane Defined by Angular Momentum -- 
Equations of motion and initial conditio3s. The equations of motion - - -- 

derived in Case 11, Fqs. (44), will be used in this section, however, the 

initial conditions of position and velocity will differ from those used in Case 11. 

It will be assumed that the libration points a r e  in the earth-moon 

orbital plane, i. e., the plane normal to  the angular momentum vector and 



passing through the earth-moon mass center. The total angular momentum 

of the earth-moon system with respect to the barycentered coordinate system 

is the sum of the earth's angular momentun1 and the angular momentum of the 

moon. However, it i s  shown in Appendix B that the total angular momentum 

of the system can be computed from the angular momentum of the moon, viz., 

Eqs. (B-13). Furthermore, a s  also shown in Appendix B, the inclination and 

longitude of the ascending node can be computed from the angular momentum 

per unit mass of the moon, viz., Eqs. (B-15) and (B-16). The position of the 

* 
moon in th.3 orbital plane, viz., the angle 9 (see Fig. B-1), i s  given by 

Eqs. (B-5). The position and velocity of the moon can be determined from 

In order to compare the results, the same initial angles will be used in this 

case as in the two previous cases, viz., a = 180° and BO = 180° . 
0 

The initial position and velocity of the moon a r e  

Z) = o '3 = r~~ 8 sin i . 
The initial orientation and velocity a r e  illustrated in Fig. 16. It i s  important 

to note that the velocity of the moon i s  composed of the velocity due to  circu- 

l a r  orbit motion and that due to the regressional motion. The angular mo- 

mentum per unit mass of the moon is ,  for the specified initial conditions, 



hy = - rgD Q sin i 
n 

h = r  2 ( h t ~ c o s i )  
z~ BD 

- 2  l/2 
h~ ' r~~ 2 ( i 1 2 + 2 b i c o s i + ~  

* 
Then the inclination of the earth-moon orbital plane, i , i s  (from Eq. (B-15) 

* 
cos i = i2 iI cos i - 

-2 1/2 (Q2 + 2 ~ i  (, cos i + n 

rlr 
It is important to note that i is not equal to  i. The situation i s  illustrated 

* 
in Fig. 17. If, however, equals zero, the case of Ref. 4, then i is equal 

to  i, i. e. ,  the earth-moon plane in Ref. 4 is the plane defined by the angular 

momentum. 

Since the inclinations of the orbital plane and the earth-moon plane a r e  

not equal, the question a r i ses  a s  to which plane should contain the libration 

point. Since the libration point was assumed to be in the earth-moon plane in 

Case I and Case 11, it  seems logical to determine the resultant motion dssuming 

that the libration point i s  in the orbital plane. Only one set of initial conditions 

will be used in this case, namely 

Also, it will be assumed that the spacecraft will be initially placed at  the l ibra-  

tion point L4 where L i s  assumed to  l ie  in the earth-moon orbital plane. The 4 

primary reason for using this se t  of initial conditions i s  because of the instabil- 

ity observed in the previous cases  for this set. Evaluation of Eq. (50) yields 

* 
i = 5. 17075'. Recall that i was selected a s  5.15'. 





Using the results for the angular momentum expressed by Eqs. (49), it 
* * 

follows that cos !J = - 1 and tan G? = 0. Therefore, Q* = S2 = 180' 
0 0 0 0 

f 
where 52 i s  the ascending node location of the earth-moon orbital plane. 

0 
f 

In a similar  manner, 9 = 9 = 180°. The initial position of the spacecraft 
0 0 

i s  given by Eq. (C-3), in which 5 and I) have the same numerical value a s  
P 

t * 
in Cases I and I1 and the matr ix  A i s  evaluated at 6 Q* and i . For the 

0' 0)  

initial position of the spacecraft, i. e . ,  xS = 0, yS = 0, zS = 0, it follows 

* * 
that XS = $, YS = q cos i , and ZS = q sin i . The angular velocity of 

P P 
the earth-moon line in the orbital plane is given by Eq. (C-6) and can be used 

to determine the following condition: 

* t 
r~ D, 6* = Y cos i - Z sin i 

3 D 

The libration point L4 is an angle + ahead of the earth-moon line, i. e. , 

tan + = 6 
Also, the barycenter - L distance i s  a constant and is  determined from 

4 

The initial velocity of the spacecraft i s  expressed by Eq. (C- lo) ,  in which 

r BL' i. e. ,  the barycenter - L distance, i s  a constant and ; = 0. Fur -  4 BD 

S 
- 0 and zS = 0 will thermore,  the initial velocity components x = 0, yS - 

lead to the following conditions: 



XS = - sin 4 (rBL i*) 
* bs = coe 4 cos i ( r L  it) 

% 
Equations (51), (52), and (53) yield 

The initial position and velocity of the spacecraft computed from Eqs. (C-3) 

and (C- 10) are 

Assuming that L4 l ies  in the circular orbit plane, that i s ,  Case 11, the 

initial conditions were 



The initial.velocity i s  much the same in  the two cases with only a difference in 

the eighth decimal place in X. There i s  a difference of approximately 6 miles 

(10 km) in the initial Y displacement, but there is a difference of approxi- 

mately 75 miles (120 km) in Z. 

Case 111 results and comparison with Case I. The integration was per-  -- -- --- 
formed in the barycentered coordinate system, however, a coorclinate trans-  

formation to  the (x, y, 2)-system located in the earth-moon plane was made at 

the printout for comparison with Case 1. The results differed only slightly 

from Case I prior  '0  1200 days, in fact, it was impossible to discern a differ- 

ence in the plots for  both cases. After 1200 days, the tv:a trajectaries begin to 

noticeably diverge and the motion for the period f rom 1250 days to 1500 days i s  

shown in Fig. 18. Note that although the spacecraft does csme almost a s  close 

to the moon a s  in Case I, i t  does not leave the earth-moon system, but con- 

tinues on a trajectory which keeps i t  in the earth-moon system. It i s  impor- 

tant to note that even with this set  of initial conditions in the orbital plane 

defined by the angular momentum, the motion is unstable. There has not been 

a significant change in the motion throughout the stable period. 



FIGURE 18. Lq R0TATI:lG (x,y)-RESULTS FOR 
$ = 225' FROH 1 2 5 0  DAYS TO 
1y00 DAYS USING THE EARTH-HOON 
ORBITAL PLANE 



Case IV: Orientation Corresponding to JD 2,439,501.0 -- - 
Using the computer program for the integration of the differential 

equations expressed in the rotating (x, y, 2)-coordinate system, viz. , 

Eqs. (32), an initial orientation of the earth-moon-sun system was supplied 

which corresponded to the orientation of the system on Julian D:,te 2,439,501.0 

h (January 10, 1967; 12 GMT). This corresponds to the initial values for the 

angles a ,  0, and JI of a = 43O, go = 242O and JI = 109'. The results a r e  
0 0 

displayed in a total displacement i'rom L versus elapsed time plot in Fig. 19. 4 

The spacecraft is in a libration-point-centered motion throughout the 1770 day 

period considered in this four-tody model. These results a r e  compared to  

the "real world1' model in a la ter  section. 





CHAPTER IV 

MATHEMATICAL MODEL UTILIZING EPHEMERIS INFORMATION 

Mathematical Model 

In the previous analysis, assumptions concerning the orbits of the sun, 

moon, and earth were made, viz., the orbits were assumed to be circular. 

As stated previously, these orbits a r e  not in reality circular ,  nor a r e  they 

exactly elliptical. In fact, they a r e  not really closed orbits, i. e. , they do 

not return to the same point in space after each revolution around the sun or 

the barycenter. Rather than make an as sumption regarding two-body elliptical 

motion in this mathematical mode?, ephemeris information will be used to  ob- 

tain, t o  a very good degree of accuracy, the actual positir~n of the members of 

the solar system. This information is stored on the Je t  Propulsion Labora- 

tory (JPL)  Ephemeris Tapes for use on digital.computers. These ephemeris 

tapes will be discussed more fully in a subsequent section. 

As stated previously, Newton's Three Laws of Motion and the Law of 

Gravitation will be accepted a s  postulates, it will be assumed that al l  the bodies 

under consideration a r e  point masses,  the mass  of the spacecraft is  very small,  

that there a r e  no external forces on the solar  system, a.nd that there i s  no solar  

radiation pressure on the spacecraft. Relativistic effects will also be excluded. 

The Jet  Propulsion Laboratory Ephemeris Tapes directly provide the 

geometric position and velocity of all the major planets (except earth), the 

76 
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barycenter, and the moon. Therefore, all the major planets could be included 

in this analysis since the information i s  readily obtainable. It seems reaeon- 

able to assume, however, that certain bodies will have a much smaller effect 

than others and can be neglected in order to prevent unnecessary computations 

which would needlessly increase the computer time required. 

Study of Table A-1 in Appendix A reveals that the sun is the major per- 

turbing influence on a spacecraft at the triangular libration points in the earth- 

moon system. The planets Venus, Jupiter, and Saturn exert a stronger influ- 

ence than the other planets. The effects of Mercury and Mars a r e  similar and 

can be as small as the effects of Uranus or Neptune and as  large as  Venus; 

however, the effect of Pluto i s  about one-onehundredth that of Uranus c r  Nept~ne 

Further study would show that the effects of Uranus or Neptune a re  approxi- 

mately the same order of magnitude as  the effect of the noncentral gravitational 

field of the earth at the triangular point. Therefore if the planets Uranus and 

Neptune a re  included, then the noncentral gravitational fields of the earth and 

inom should be included also. Inclusion of the noncentral effects would prob- 

ably become noticeable only after many years and it would also complicate the 

mathematical model to a considerable extent. Therefore, the three outer 

planets Uranus, Neptune, and Pluto, will be excluded along with the noncentral 

force components due to gravitational attraction. The effects ,-f all other 

bodies, e. g., sun, Mercury, etc.,  will oe included. 

In this n~athematical model, the triangular libration points a re  assumed 

to exist in the earth-moon orbital plane, i. e.,  the plane defined by the angular 

momentum of the earth-moon system. It i s  necessary to  define an earth-moon 

orbital plane in order to locate the triangular libration points under investiga- 

tion. In the restricted three-body problem, the libration points exist in a 
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plane defined by the angular momentum of the system. Furthermore,  since 

the libration points of the restricted three-body problem a r e  considered herein 

with the addition of perturbing forces, i. e. , forces which cause the motion to  

deviate from the three-body case, it  seems logical to use the earth-moon or-  

bital plane for the location of the libration points in the mathematical model 

under discussion. It i s  important to note a t  this point that angular momentum 

plays an important, although often unrecognized, part in orbital mechanics. 

Two-body motion takes place in a ~ ; a n e  defined by the angular momentum, a 

plane which has a fixed orientation in space since there a r e  no external forces 

on the two-body system. In addition, the orbit elements used in the expres- 

sions for the time rates of change of the orbit elements locate the instanta- 

neous orientation of a plane defined by [he angular momentum of the body under 

consideration. 

In Ref. 7, ephemeris positions a r e  used in a 180-day study beginning 

October 27, 1963, and also in a 475 day study beginning July 2, 1964 (the data 

a r e  also presented in Ref. 16). The spacecraft coordinates a r e  presented in a 

libration-p 3int - centered coordinate system. The numerical integration was 

carried out using the General Electric N-Body Trajectory Program with an 

initial velocity equal in magnitude to that of the moon. However, the orienta- 

tion of the earth-moon system i s  determined by computing the c ross  product 

of two consecutive lunar position vectors. It appears from the considerations 

of the previous paragraph that determining the orientation by the angular mo- 

mentum vector i s  preferred to u s k g  two consecutive radius vectors. 
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Equations - of Motion 

If the equations of motion in the "real worldt1 model were expressed in 

a rotating coordinate system located at the libration point of interest, it would 

be necessary to determine angular velocities and angular accelerations [see 

Eq. (1 l)]. Furthermore, these quantities would have to be computed from 

the position-velocity information stored on the ephemeris tapes and would in- 

crease the necessary computer time considerably. However, expressing the 

equations of motion in a nonrotating coordinate system eliminates the need for 

angular velocities and angular accelerations. It was fnund in Case I1 of the 

modified restricted four-body model that the nonrotating and rotating equations 

of motion gave results which compared very well during the period in which 

the spacecraft continued on a libration-point - centered motion. Furthermore, 

it was concluded that after the spacecraft departed from the libration-point- 

centered motion, the nonrotating equations of motion yielded results which 

were more accurate than the results of the rotating equations of motion. With 

these considerations, the differential equations of motion in the "real worldl1 

model of this chapter will be derived in a nonrotating barycentered coordinate 

~ y s  tern. 

Because of the assumption regarding external forces on the solar sys- 

tem, viz., that they do not exist, the center of mass of the solar system will 

move in a straight line with constant velocity relative to an absolute coordi- 

nate system. Since the center of mass is moving with constant velocity, 

Newton's Second Law will be valid if referenced to a nonrotating coordinate 

system at the center of mass of the solar system. In Fig. 20 :he (XC, Sc, 

Z ) -  nonrotating coordinate system is shown with origin at the solar system C 





center of mass. The vector distances involved are  aleo shown. Thb 

equatiws of motion, with respect to the (Sc, YC, 2C)-system a re  

- 
Gm m r 

Pi s pis 
where C --- indicates the summation of all forces on the spacecraft 

due to bodies other than the earth, the moon, and the sun. The position of 

the spacecraft can be expressed as  

where the components of the vectors a re  expressed in the (gC, YC, gC) - 
coordinate system or in a nonrotating (X, Y, Il) -barycentered system, the 

axes of which a re  parallel to their coiinterparrs in the (Xc, i3 ) -system. %c' C 

Therefore, 

Equation (57) can also be written as 

Since 7 i s  given by Eq. (54), knowledge of the acceleration of the bary- CS 

center with respect to the solar system mass center permits determination of 



the spacecraft acceleration with respect to  the barycenter. The mass times 

acceleration of the moon i s  given by 

where Fe i s  the sum of all  forces on the moon except the earth. The mass  
D 

t imes acceleration of the earth is  given a s  

where $ i s  the sum of all  forces on the earth except that due to the moon. 
@ 

Adding Eqs. (59) and (60) yields 

The location of the barycenter in the (XC, YC, B )-coordinate system is, b;, C 

definition, 

Taking the second derivative with respect t o  time yields 

Therefore by combining Eqs. (61) and ( 6 3 ) ,  the following expression can be 

obtained: 



Combining Eqe. (54), (58), and (64) yields 

Gm m i G m m  F 
D 00) _ C  D, Pi piD 
-3 r aD i r ~ i ~  1 

Rearranging Eq. (65) will lead to the following res-dt: 

All vectors in Eq. (66) are expressed in the (X,  Y,  Z)-barycentered coordi- 

nate system. Expressing Eq, (66) in component form yields 





where 
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Nltmerical integration of Eqs. (67) with specified initial conditions yields the 

position of tne spacecraft in the (X, Y, Z)-barycentered coordinate system. 

The coordinates of the natural bqdies a re  provided b the ephemeris tape. 

The integration of Eqs. (67) could be performed in an equatorial co- 

ardinate system centered at the earth-moon barycenter provided, of course, 

that it i s  nonrotating. However, in this particular study, it is  advantageous to 

compute in the (X, Y, 2)-coordinate system since the motion takes place very 

nearly in the ecliptic. This allows one to  display the (X Y)motion as  repre- 

sentative of the total motion since the Z-component of the displacement is  

2 21/2  much less  than (X + Y ) . In the equatorial coordinate system, such dis- 

plays could not be made since all three components of the displacement would 

be large. 

It should be noted that large amounts of computer time were reqcired 

for integration of Eqs. ( 6 7 ) .  This i s  largely ateibutable to reading the tape 

and interpolation of the tape data. 

Jet Propulsion Laboratory Ephemeris Tapes - 
Acquisition of the Jet Propulsion Laboratory Ephemeris Tapes has pro- 

vided The University of Texas with a valuable research aid. The Ephemeris 

Tapes consist of a set of nine magnetic tapes for the time span between the 

year 1950 and the year 2000 (Ref. 27). The heliocentric positions and ve- 

locities of all the planets except the earth a re  stored on the tapes in double 

precision (about 24 decimal places). In addition to these bodies, the position 

and velucity of the baxycenter is  included. The positions and velocities a re  

geometrical, i. e. ,  the zffects of aberration have been removed. The posi- 

tions and velocities a re  stored in Astronomical Units and Astronomical Units 
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per day in increments varying from one day to two days. The second and 

fourth differences a re  also included on the tapes for interpolation to a date not 

stored on the tape. The interpolation i s  accurate to  twelve decimal places. 

Furthermore, the information is stored a* a fxnction oC the Julian Date, i. e., 

given a Julian Date,the position and velocity of any body can be determined 

either directly from the position and velocity data stored on the tape or  by in- 

terpolation. The positions of the moon a r e  stored on the tapes at half-day 

intervals in a geocentric equatorial coordinate system in which the distances 

a re  given in earth radii. From the heliocentric position of the barycenter and 

the geocentric position of the moon, the heliocentric position of the earth can 

be determined from Eq. (B-7) in Appendix B. The heliocentric coordinate sys 

tem used is a rectangular system in which the X -=is ~ o i n t s  in the direction 
e 

of the vernal equinox of 1950, the +axis lies in a plane parallel to the equa- 

torial plane of the earth at Epoch 1950, and the -axis is mutually perpen- 
e 

dicular. The orientation of the axis system is  shown in Fig. 21. Since, a s  

stated previously, it is somewhat more convenient to  use a coordinate system 

in which the Y axis is  in the Ecliptic of Epoch 1950:. the transformation to 

this system is  made by 

Y = qe cos c + Ze s i n r  

Z = Ze sin c + Ze cos c 

as shown in Fig. 22. !t is  important to note that the vernal equinox of Epoch 

1950 and the Ecliptic of Epoch 1950 a r e  fixed, and, therefore, the (X, Y, i3)- 

coordinate system is nonrotating. If the vernal equinox of date knd ecliptic 
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of date were used, the (24, Y, Z)-coordinate system would be rctating since 

the vernal equinox moves westward along the celestial sphere. The value for 

6 ,  given by Ref. 28, i s  

E = .409206 19 radians 

This i s  the obliquity of the ecliptic at  the Epoch 1950. 

Constants 

Since the ephemeris data a re  stored on the tapes in Astronomical Units 

and Astronomical Units per day, the integration was made in the units of 

Astranomical Units and days. Therefore, it was necessary to  use compatible 

units with the gravitational parameter of the bodies involved (the gravitational 

parameter is the product of the universal gravitational constant and the mass 

of the body). The gravitational parameters which were used in this investiga- 

tion a re  given in Ref, 23 and have been generally accepted for use in trajectory 

calculations. These constants a re  given in Table 3. Although the integration 

is performed in Astronomical Units, a conversion to  customary engineering 

units i s  made at  the printout. In order to make the conversion, it is necessary 

to know the value of the Astronomical Unit; the value given by Ref. 23 is 

1 A. U. = 149,599,000.0 km and is the value used in this study. The conver- 

sion from kilometzrs tomiles  i s  1 km = .62136996 mi. Since the lunar data 

stored on the tape a re  in earth radii, rather than Astronomical Units, the 

value of earth radii suggested for use with the Ephemeris Tapes, a s  given by 

Ref. 28, i s  1 Earth Radii = 6378.327 km. This value does disagree slightly 

with that of Ref. 23. 



Table 3. Gravitation Paramete rs  of the Major 
Bodies in the Solar System 

B ody 

Sun 

Mercury 

Venus 

Ear th  

Moon 

hlar s 

Jupiter 

Saturn 

Uranus 

Symbol 

0 

ZI 

0 

@ 

B 

d 

Z 

9 

8 

Gravitation Parameter  (Gm ) 
Pi 

Neptune 

pluto 

3 
A. U. /day 2 

2.959122093 x 

4.835167 x 1 0 - l ~  

7 . 2 4 3 1 7 2 5 ~ 1 0 - ~ ~  

1.566585 x 10 -8 

7.397895 x 10 - 10 

10 

e 

km3/sec 2 

1. 32715445 x 1011 

2. 168553 x lo4 

3 . 2 4 8 5 3 4 0 ~ 1 0  5 

7.026072 x 10 6 

3.317886 x 105 

8.887552 x 10 - 10 3.9860320 x 10 5 

G m  
- 63 

G m ~  - 81.3015 

9.582649 x 10-l1 

2.825234 x 1 0 ' ~  

8.454635 x 

1.293945 x 

I 

4.297780 x 10 4 

1 267106 x 10 8 

3. 791870 x lo7 

5.803292 x 10 
6 '  

-- --- 



Transformation to Libration- Point -Centered Rotating System - - 
It i s  informative to observe tne motion in a coordinate system which is 

centered at the iibration point of interest. In order to do this, it is  necessary 

to make a coordinate transformation from the (X, Y, 2)-system data which re-  

sults from the numerical integration of the equations of motion. -4esumi11g 

that an (x, y, 2)-coordinate system has i ts  origin at the libration point of inter- 

est (as shown in Fig. C-1 in Appendix C) with the x-axis being parallel to  the 

earth-moon line and lying in earth-moon orbital plane, the z-axis being perpen- 

dicular to the orbital plane, the y-cxis being mutually perpendicular, then the 

relation between the (X, Y, 2)-position and the (x, y, zj-position i s  given by 

Eqs. (C-3) for L4, viz., 

* * 
where the transformation matrix A given by Eq. (13) i s  evaluated at Q , 8 , 

* 
and i . 

The (X, Y, Z)-spacecraft coordinates a r e  known from the numerical 

* * * 
integration procedure and the angles Q , 8 , and i , necessary to determine 

the transformation matrix A, a re  determined from the angular momentum of 

the earth-moon system. Then for the L4-libration point 



Assuming the libration point of interest to be defined by the instantaneous 

earth-moon distance, then Sp and q a r e  time depzndent since r varies 
P @D 
9 t 

with time. in adil i t io~,  the anples 52 and i a r e  also time dependent since 

the earth-moon orbital plane does not have a fixed orientation in space. The 

transformation to an (x, y, 2)-rotating coordinate system at L will be the 
5 

same a s  Eq. (69) with the exception that r) i s  replaced by -r) 
P P ' 

Case I: Initial Dare JD 2,439, 501.0 (January 10, 1967; ~ Z ~ G M T )  -- --- - - 
Orientation of the solar  system and the earth-moon system. In the pre-  

--p ---- 
vious mathematical model, i t  was necessary to choose an initial orientation of 

the model in addition to supplying the initial position and velocity of the space- 

craft. In the "real wozld" model considered in this chapter, choosing the 

initial date, i. e . ,  the date at which the spacecraft i s  placed a t  the L4- or  L5- 

position of the earth-moon system, will fix the orientation of the model. The 

date chosen for this study was Julian Date 2,439, 501. 0 or  January 10, 1967, 

12 hours Greenwich Mean Time. This date was chosen because of i t s  location 

on the tape and not because of any particular aspect of the solar  system orien- 

tation. This is the f irst  record on tile tape; the final record begins in June, 

1974. The configuration of the solar  system when the spacecraft is assumed 

to be placed at  the triangular libration point i s  shown in Fig. 23. 

For  the assumed spacecraft insertion date, the orientation of the earth-  

moon system is computed from the rqgular momentum of the system. IJsing 

the angular momentum per unit mass  of the moon in Fqs. (B - 15) and (B - 16) 

* t 
yields i and Q of the earth-moon orbital plane. The angle CI* is deter-  

mined from Eqs. (B-5). The orientation of the earth-moon system i s  shown 

* 
in, Fig. 24. The inclinat:qn, i , of the earth-moon orbital plane at insertion 
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is 5.04'. The longitilde of the ascending node, Q*, i s  43.8' and the angle 
* 

8 , locating the moon in the orbital plane, is 242. 6'. The distance between 

the earth and the moon at insertion, r i s  241,008. 5 miles. The lunar @B ' 
velocity component in the radial direction, r B D ,  i s  2248. 13 miles/day and the 

lunar velocity component in the tangential direction, i. e. , the F - component 
"l 

as shown in Fig- C-2 or rgD6*, i s  54, 001.02 miles/day. Furthermore, the 

value of is 117,575. 9 miles and the value of q i s  208, 719. 5 miles. The B P 
0 lunar in-plane angular velocity, i*, i s  13 /day and the barycenter-sun dis - 

tance, r B Q' 
is 91,414,830 miles. 

Since, as stated previously, the earth-moon orbital plane does not have 

* * 
a fixed orientation in space, the azgles i and vary with time. 'I'o illustrate 

how they vary, and, in turn, the motion of the (x, y, z)-coordinate system, a* 
* 

i s  plotted versus time i r .  Fig. 25 and i i s  shown versus time in Fig. 26. In 

addition, $ and r j  a r e  plotted vsrsus  time in Figs. 27 and 28 respectively. 
P 

Initial conditions and results with inclusion of iBL. If CBL i s  included, - - -- 
i. e. , the radial- velocity component of the libration point necessary to main- 

tain the equilateral configuration in the three-body sense (see  Appendix C),  

then rgL i s  computed from the radial velocity component of the moon, 

Eq. (C-8), and i s  2262.08 miles/day. Also, the tangential-velocity 

component in the earth-moon orbital plane rgL /)* : 54, 336. 17 miles/da)- 

where rgL i s  the distance to the triangular point and is  239,558 miles. The 

initial position and velocity relative to the (x, y, 2)-libration-point-centered 

coordinatr. system is assumed to be xS = yS = zS = 0 and is = is = is = 0. 

The initial (X, Y, Z)-position and velocity of the spacecraft were computed 

from Eqs. (C-3) and C- 10) and yield 





"k 1 0 0  200 300 400 500 600 700 T50 
t - 

E L A P S E D  T I M E  ( D A Y S )  

F I G U R E  26 .  i *  O F  THE E A R T H - Y O O N  O R B I T A L  P L A N E  F O R  7 5 0  D A Y  P E R I O D  
B E G I N N I N G  JD 2 4 3 9 5 0 1  . 0  







Equations (67) were numerically integrcrted sing the Adams-Moulton 

method with the Runge-Kutta starter .  The step s ize  used throughout the integra- 

tion was either . 15 days or .075 days until 725 days after spacecraft insertion 

into the libration orbit. After 725 days, the step size was reduced considerably. 

3 The single-step-error range was specified to  be a maximum v&!ue of 1 x 10 

-11 and a minimum value of 5 x 10 . 
The results of the integration a r e  shown in Figs. 29, As can be seen 

from Fig. 29a and 29b. the trajectory of the spacecraft is much the same after 

each revolution around the barycenter. In Fig. 29c the trajectory i s  consider- 

ably different and has expanded t o  a much larger  envelope of motion. Fig. 29d 

shows that the spacecraft makes a close lunar pass between 729 days and 730 

days, after which time it  appears that the spacecraft may leave the earth-moon 

system. The closest approach to the moon occurs at 729.895 days when the 

spacecraft is approximately 2 100 miles from the lunar surface. Obviously, 

the spacecraft is no longer on an L -point-centered orbit. The absolute 4 

value of the 2-component of spacecraft displacement does not exceed 30,000 

miles in the 750-day period considered. 

A coordinate transformation of the barycentered position data was 

made to the (x, y, 2)-L4-centered coordinate system. It should again be 

pointed out that this coordinate system does not remain a fixed distance from 

the barycenter. It i s  both translating and rotating; it  is translating because i 
and % are functions of time. Equatiuns (69) a r z  the transformation equations 
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and the results of the transformation a r e  given in Figs. 30. The shape of the 

trajectory relative to  the (x, y, 2)-system is quite similar  to those observed 

in the previous mathematical model, viz. , the modified restricted four-body 

model. Again, 3s in previous cases,  the envelope of motion expands consider- 

ably with each 250-day period as seen in Figs. 30a and 30b. Note in Fig. 30c 

t?.at tke spacecraft leaves a libration-point-centered motion and experiences a 

nea2 encounter with the moon a s  expected from the (X, Y, Z)-data. The abso- 

lute value of the z-component does not exceed 2500 miles prior to 730 days. In 

the period from 730 to  750 days, i t  does attain a maximum value of about 8100 

miles. 

Figure 31 shows the total displacement of the spacecraft from the L 4 

point versus time. This plot is quite similar t o  those in the restr icted four- 

body models a s  one would expect because of the similarity between the (x, y) 

motion. 

The magnitude of the spacecraft angular momentum vector is shown 

in Fig. 32. Note that the clase lunar pass causes a very large reduction of the 

magnitude of the angular momentum vector. As the spacecrafi nears the moon, 

the gravitational force of the moon produces a very large torque about the bary- 

center. Since the time rate of change of the angular momentum vector i s  equal 

to this torque, there i s  a very large t ime rate of change of the angular momen- 

tum vector. The data show that not only i s  there a very large slope of the angu- 

lar mcmentum versus time curve (Fig. 32), but there i s  also a very rapid 

change in the direction of the angular momentum vector. At solme time during 

the pass, the torque w;'Z be zero, i. e.,  the slope is zero, af ter  which time the 

torque i s  in  the opposite direction. Because of insufficient data, the mini- 

mum may have a magnitude less  than that shown. 



F l  GURE 29a. Lb  NONROTAT iNG ( x , Y )  -RESULTS FOR I N I T I A L  
J9 2 f i39501 .0  FROM C DAYS TO 125 DAYS 



F I G U R E  2 3 b .  LL N C N R 0 T A T : ; i G  ! X . Y - - R E S ~ L T S  F O R  P L  
.id 2 4 3 9 5 0 1 , O  F R G h  125 D A Y S  '9 250 D A Y S  



F I G U R E  29c. L N O N R O T A T I N G  ( x , Y ) - R E S C L T S  F O R  ! N l T f A L  ~b 2439501.0 FROM 2 5 0  D A Y S  TO 5 0 0  D A Y S  



SMI 

F I G U R E  2 9 d .  NONROTAT ING ( ~ , ' f  j - R E S U L T $  F O R  IN I T  IAL :# 2439501 .3  F R O M  500 D A Y S  TO 750 D A Y S  



FIGURE 3 0 a .  L 4  ROTATlNG ( x , y ) - R E S U L T S  FOR I N I T I A L  
JD 2 4 3 9 5 0 1 ~ 0  FRGM 0  DAYS TO 2 5 0  DAYS 

F IGURE 3 0 b .  L 4  ROTATING ( x , y ) - R E S U L T S  FOR I N I T I A L  
JD 2 4 3 9 5 0 1 , O  F 4 0 M  2 5 0  D A Y S  TO ,500 DAYS 



FIGURE 3 0 c .  L 4  ROTATING ( x , y ) - R E S U L T S  FOR I N I T I A L  
JD 2 4 3 9 5 0 1 . 0  FROM 5 0 0  DAYS TO 7 5 0  D A Y S  
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E L A P S E D  T I ME ( D A Y S )  

F I G a R E  32. M A G N I T U D E  CF S P A C E C R A F T  A N G U L A R  M O M E N T U M  V E C T O R  R E L A T I V E  
T O  ,HE ' A R Y C E N T E P  V S .  T I M E  F O R  I N I T I A L  JD 2 4 3 9 5 0 1 . 0  



Initial conditions and reaults with rgI, = 0. To determine the effect 
-- - - . 

wh;ch r has on the subsequent motion, the equations were integrated with BL 

the same initial orientation and the same initial conditions relative to the 

(x, Y, 2)-coordinate system as  in the previous section. In this case, however, 

; was set to zero. The spacecraft will have the same initial position as in 
BL 

the previous section, but the velocity will be different. The initial velocity of 

the spacecraft in the (X, Y, 2)-coordinate system is 

The step size for the first  100 days of the integration was . 3  days. 

The step size was reduced to . 15 days after 100 days in order to  stay within 
\ 

the specified single-step-error range which was the s a n e  as the previous case. 

The results of the integration a r e  shown i~ Figs. 33. The trajectory in 

the (Xi- Y)plane is quite similar to  the previous case which included ; BL' ex- 

cept that the envelope of motion throughout the first  250 days (Fig. 33a and 

33b) is slightly larger with r equal to  zero, In Fig. 33c, which illustrates BL 

the motion for the period from 250 days to 500 days, the envelope of motion 

expands considerably, and, in Figs. 33d and 33e it is seen that the spacecraft 

is in an orbit with an orbital period which is smaller than during the first  250 

days, In fact, the spacecraft orbit in the period after 500 days takes the space- 

craft within 60,000 miles of the barycenter during the 500-day to 600-day 

period (see Fig. 33d). The barycenter orbit of the spacecraft has a radius at 

closest approach of about 50,000 mi during the 600-day to 698-day period, 

whereas, the farthest approach does not change considerably. The radius at 
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farthest approach is between 210,000 miles and 200,000 miles. It seems 

conceivable that at  some later date the spacecraft may make a close pass of 

the moon because of the difference in the orbital periods of the moon and 

spacecraft and because the spacecraft has a farthest approach of 200,000 mi, 

The (x,y)-components of the spacecraft motion a r e  shown in Figs. 34. 

Note that in Fig. 34b the spacecraft begins to leave the libration-point- 

centered motion near the end of the 500-day period. In Fig. 34c one can see 

that the spacecraft has definitely begun to move on an entirely different trajec- 

tory within the earth-moor, system and is no longer on a libration-point- 

centered motion. 

The magnitude of the angular moment-ixn vector relative to the hary- 

center is shown in Fig. 35. Note the correspondence between the sudden de- 

crease in the angular momentum magnitude and the spacecraft's departing 

frorn a libration-p~int-centered motion. 

It i s  important to note that the spacecraft leaves the libration-point- 

centered motion with ; equal to  zero approximately 200 days prior to the BL 

case in which r is computed from the lunar radial velocity. In both cases, BL 

vie., the case in which ; is zero and the case in which ; i s  not zero, BL BL 

the spacecraft leaves the libration-point-centered motion. However, the 

period in which the spacecraft has a libration-point-centered motion i s  ex- 

tened by the inclusior, of the > BL' 
h 

Case 11: Initial Date J D  2,439,796. 735 (November 2, 1967; 5 .64 GMT) -- ---- - - -- 
Method - bf determining initial date. In the previous chapter, the case -- 

i:. which 9 = 180° exhibited a stable motion for a period of 2500 days. The 
0 

initial orientation of that moael was such that the sun, moon, and earth were 

along the same line in that order. It would be of interest to determine the 



FIGURE 33a.  L NONROTATING (x,Y)-RESULTS FOR I N I T I A L  
~b 2 4 3 9 5 0 1 . 0  AND i g L = O  FROH 0 DAYS TO 125  DAYS 



FIGURE 3 3 b .  L NONROTATING (x ,Y) -RESULTS FOR I N I T I A L  
J f t  2 b 3 9 5 0 1 . 0  AND tgL=O FROH 125  DAYS TO 2 5 0  DAYS 



FIGURE 33c. L 4  NONROTATING (X,Y)-RESULTS FOR I K I T I A L  
JD 2 4 3 9 5 0 1 . 0  AND i g L = O  FROM 2 5 0  DAYS TO 5 0 0  DAYS 



F l  GURE 33d.  L NONROTATING ( x , Y )  - R E S U L T S  FOR I N I T I A L  
~b 2439501 .0  AND i g L = O  FROM 500 DAYS TO 
000 D A Y S  



FIGURE 3 3 e .  L  NONROTATING (x ,Y ) -RESULTS FOR I N l T l A i  
J 11 2 4 3 9 5 0 1 . 0  AND t B L = O  FROM 6 0 0  D A Y S  TO 
698 D A Y S  



Y 

BARYCENTER 

F IGURE 3 4 a .  L4 R O T A T I N G  ( x , y ) - R E S U L T S  FOR I N I T I A L  
JD 2 4 3 9 5 0 1 . 0  AND f g L = O  FROM 0 DAYS TO 
2 5 0  D A Y S  

F IGURE 34b.  L ROTATING ( x , y ) - R E S U L T S  FOR I N I T I A L  
J# 2 4 3 9 5 0 1 . 0  AND fBL=:O FROM 2 5 0  DAYS 
T O  5 0 0  D A Y S  



FIGURE 3 4 c .  L  ROTATING (x,y)-RESULTS FOR 
I ~ I T I A L  JD 2 4 3 3 5 0 1 . 0  AND f B L = O  
FROM 5 0 0  D A Y S  TO 698 DAYS 
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resdtant motion in the model of this chapter with that initial orientation. 

Note that this initial orientation corresponds to either the orientation during a 

solar eclipse or of new moon. However, the earth, moon, and sun will not, in 

general, be exactly colinear. Furthermore, one can approximate the colinear 

orientation with the solar eclipse better than with the new moon orientation. It 

i s  possible for the earth, moon, and sun to  be colinear during either a total or 

an annular eclipse. This cannot occcr with the new moon orientation unless a 

sofar e c l i ~  ; t also occurs. The eclipse will be annular or total depending al- 

most entirely on how far  the moon is from the earth. With these considera- 

tions, it was decided to use the solar ec;,pse orienzation to approximate the 

$0 
= 180' case of the previous chapter. In addition, the solar eclipse chosen 

must be one in which the sun is at the ascending node, i. e., the sun i s  moving 

into the northern hemisphere of the ,arth-moon orbital plane. This is the 

situation for JI = 1 8 0 ~  in the previous chapter. To facilitate matters, it was 
0 

necessary to choose a date on the ephemeris tape which i s  near the beginning 

of that tape. A list of solar eclipses can be fowd in Ref. 3. During the year 

1967 (the first  year on the ephemeris tape used), two soiar eclipses occur, 

viz., May 9 and November 2. The May 9 eclipse occurs when the sun i s  at  

the descending node, however, the November 2 eclipse occurs when the sun 

is at the ascending node. 

As stated previously, when solar eclipses occur, the centers of the 

sun, the maon, and the earth a re  n ~ t ,  in general, precisely along the same 

line. However, an eclipse- -total, annular, or partial- -can occur when these 

bodies a re  not along the same line. To simulate a s  accurately as  possible 

0 the initial orientation of the Jy = 180 case in the previous chapter, it was 
0 

necessary to determine when the sun, the moon, and the earth were 
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approximately colinear. Since three points define a plane, one can define an 

earth-moon-sun plane. Extending the sun-moon line past the earth, there 

will be a perpendicular distance between the te r res t r ia l  center and the sun- 

moon line (see Fiz. 36). This perpendicular distance, d, can be determined 

by f i rs t  noting that 

where r r 3 '  $0' 
and r a r e  known at any instant of time since the coordi- 

DO 

nates of the sun, the moon, and the earth a r e  known at any time from the 

ephemeris tapes. Then 

where x i s  the distance from the mooc to the point of intersection, P, of the 

line from the earth which is perpendicular to the sun-rr.oon line (see Fig. 36). 

Then 

where cos a is given by Eq. (70). 

A program was written to compute the distance d in addition to the 

latitude and longitude of the sun and rrloon a s  measured in the (X, Y,  Z ) -  

coordinate system. This information was computed a t  . 01 day increments 

h beginning at Julian Date 2,439,795. 5 (November 1, 1967; 0 GMT). At this 

0 date the distance d i s  67,645 miles. The moon i s  . 7  above the (X, Y)-plane 

and the sun is .00166' above that plane. Since d i s  so  large, obviously the 
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longitude of the sun and moon a re  quite different. The moon is, in fact, at a 

longitude of 200° measured from the X-axis in the (X Y)plane; the sun is at a 

longitude of 217. 6'. At Julian Date 2,439,796.0, d is 40,787 miles while 

0 the latitude and longitude of the moon are ,  respectively,. 0 1 3 5 ~  and 207.6 . 
The latitude of the sun i s  .00168O arid longitude is 2 18. lo. Note that the 

latitude of the moon is decreasing while that of the sun i s  increasing. From the 

earth-moon orbital plane, the sun will appear to be quite near to this orbital 

plane, but moving in a direction which will take it into the northern hemisphere 

of the plane. This i s  the aforementioned condition that the sun be at the as-  

cending node. The distance d is plotted in Fig. 37 for the period from Julian 

Date 2,439,796.7 to  Julian Date 2,439,796.78. As expected, the sun-moon 

line does not pass through the center of the earth. However, the minimum 

distance which d attains is apprcximately at Julian 2,439,796. 735 (see 

0 Fig. 37). At this time, the latitude of the moon is -1 with a longitude of 

218O. The solar latitude is .0017O and a longitude of 218O. It is of interest 

to note that the length of the moon's umbra1 cone is approximately 231,000 

miles during this eclipse orientation. The diameter of this cone at the 

earth's distance i s  approximately 800 miles or radius of 400 miles. However, 

the earth center is  approximately 3950 miles from the sun-moon line. The 

radius of the earth is approximately 3960 miles, therefore, a locus of points 

on the surface of the earth will be along the sun-moon line, and, furthermore, 

these a re  in the umbra. Therefore, a total solar eclipse has occurred, con- 

firming the data in Ref. 3. 

Orientation of the solar system and the eartb-moon system. The --- -- 
orientation of the solar system on the chosen initial date of Julian Date 

2,439,796.735 or November 2, 1967, 5.64 hours Greenwich Mean Time, is 
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shown in Fig.  38. Fo r  this initial date, the inclination, i , between the 

Ecliptic of the Epoch 1950 and the instantaneous earth-moon orbit a1 plane is 

* * 
5.28', the longitude of the ascending node, Q , is 27.7'. and the angle 8 

locating the moon in the orbital plane i s  191. lo. The distance between the 

earth and the rloon a t  insertion, r i s  22 1,825.7 miles. The lunar ve- 
@' 

l ~ c i t y  component in the radial direction, - rBD, i s196 .25mi les /dayandthe  

lunsr velocity component r B* is 58,480.5 miles/day. Also, Sp is B) 

108,217.6 miles and q is 192,106.7 miles. The lunar in-plane angular ve- 

* P 
0 locity, 9 , is 15. 3 /day and the barycenter-sun distance, rBB, is 

* * 
92,236,915 miles. The variation of $2 and i with time a r e  shown in 

Figs. 25 and 26, respectively, where Julian Date 2,439, 795. 735 is at 

295 days elapsed time from Julian Date 2,439,501. 0. 

Note that the moon is slightly past perigee since ;' is positive. R) 

Therefore, although the initial orientation of the sun, the moon, and the earth 

0 is such that it  very nearly coincides with that of = 180 in the previous 
0 

chapter, tbe earth-moon distance for Julian Date 2,439, 796.735 i s  approxi- 

mately 20,000 miles l ess  than the + = 180° case. 
0 

Initial conditions and - results in nonrotating and rotating coordinate - - - 
systems for  spacecraft placement a t  L The velocity component i is - 4' -- BL 

included in this case  and is 197.5 miles/day. The in-plane tangential velocity 

component of L r Q*, i s  58,843. 5 miles/day. The distance f rom the 4' BL 

barycenter to L is 220,490 miles. The initial position and velocity of the 4 

spacecraft is assumed tr, b e  zero relative to the (x, y, 2)-Lq-centered 

coordinate system. Thus, the initial (X, Y,  2)-position and velocity of the 

spacecraft were computed from Eqs. (C-3) and C- lo),  and were 





Equations (67) were numerically integrated as in Case 1. The initial step 

size was . 2  days which was subsequently halved about 100 days later.  

The results of the integration a r e  shown in Figs. 39. Note how the 

orbit changes with each revolution around the barycenter in Fig. 3%. In 

Figs. 39c, it can be seen that the spacecraft is in a near elliptical orbit with 

a radius of closest approach t o  the barycenter of approximately 70,000 miles. 

This sudden change in the orbit i s  caused by a close lunar pass between 579 

days and 580 days. The absolute value of the Z -component of spacecraft 

displacement does not exceed 30,000 miles. 

The motion as it  appears in the rotating (x, y, 2)-coordinate system 

i s  shown in Figs. 40. Figure 40b exhibits an unusual character between 400 

days and 450 days. In Fig. 40c it  i s  seen that the spacecraft has begun an 

entirely different type of motion than in the 0 to 500 day period. The space- 

craft has left the libration-point-centered motion and, as indicated by the 

(X,Y)-data, experiences a close pass of the moon between 579 days and 580 days. 

The absolute value of the e-component of displacement does not exceed 

3000 miles during the stable motion; it  does not exceed 20,000 miles during 

the unstable period (after about 575 days). 

The magnitude of the angular momentum vector relative to the bary- 

center i s  shown in Fig. 41. Note the sudden decrease in angular momentum 

between 579 to  580 days during the lunar pass. This was observed also in 

Fig. 32 for the Julian Date 2,439,501. 0 case during the near lunar pass. 



F r G U R E  39a.  L  N O N R O T A T I N G  ( X , Y ) - R E S U L T S  F O R  I N I T I A L  
Jb 2439796 .735  F R O M  0 D A Y S  T O  1 2 5  D A Y S  



FIGURE 3 9 b .  L NONROTATING ( x , Y ) - R E S U L T S  fOR I N I T I A L  
Jb 2 4 3 9 7 9 6 , 7 3 5  FROM 1 2 5  DAYS TO 2 5 0  DAYS 



FIGURE 39c.  L  NONROTATING ( x , Y ) - R E S U L T S  FOR I N I T I A L  
J # 2 4 3 9 7 9 6 . 7 3 5  FROM 2 5 0  DAYS TO 5 0 0  D A Y S  



FIGURE 3 9 d .  L4  NCNROTATING (X ,Y) -RESULTS FOR I N I T I A L  
JD 2 4 3 9 7 9 6 . 7 3 5  FROM 5 0 0  D A Y S  TO 6 9 4  D A Y S  



F l  GURE 4 0 a .  L 4  ROTAT l NG (r  , y )  -RESULTS FOR I N  I T  IAL 
JD 2 4 3 9 7 9 6 . 7 3 5  FROM 0  DAYS TO 2 5 0  DAYS 

F I G U R E  4 0 b .  L~ R O T A T I N G  ( x , Y ) - R F S U L T S  F O R  I N I T I A L  
JD 2 4 3 9 7 9 6 . 7 3 5  FROM 2 5 0  DAYS TO 5 0 0  DAYS 



FIGURE 40c .  L ROTATING (x,y)-RESULTS FOR 
I ~ I T I A L  JG '439796.735 FROM 
5 0 0  D A Y S  TO 6 9 4  D A Y S  
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Initial conditions and - results - in nonrotating -- and rotating coordinate 

systems for spacecraft placement at -- L Using the same initial date of 5' 

Julian Date 2.439.796.735, the spacecraft was assumed to be placed at L5 

with zero relative velocity. The radial velocity component iBL and the in- 

plane tangential velocity component, r~~ 6*, is the same as  for placement 

L4* The barycentered initial position and velocity a r e  different. In this case 

the spacecrafi is  60' behind the moon. The (X, Y. Z)-position and velocity 

for placement at L are  5 

The initial step size used was .2  days. This was halved at 106 days and in- 

creased later. Throughout the computer run, the step size increased and 

again halved as  required by the single step e r ro r  bounds. 

The results of the numerical integration a re  shown in Figs. 42. The 

computations were carried out to 2000 days, however, only the first  750 days 

a re  shown in the (X, Y)-plots. Figures 42a and 42b show the barycentered 

orbit for the first  250 days. For the 250 to 500 day period (Fig. 42c) the en- 

velope of motion has expanded out considerably. It might be noted how the 

line joining the point of closest approach and farthest approach on each revolu- 

tion rotates in a counterclockwise direction. In Fig. 42d. the orbit has con- 

tracted to a near elliptical orbit which is much the same with each revolution 

(period from 650 days to 750 days). After 750 days, the orbit again expands 

and contracts in the same manner 2 s  the 0 to 750 day period. The Z-component 

of displacement does not exceed 35,000 miles in the 2000day period. 
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The rotating ( x ,  y)-results a r e  shown in Figs. 43. Note how the orbit 

expands t o  a maximum displacement from L of approximately 240,000 miles 5 

(Fig. 43b) a t  slightly after 425 days. Note that the envelope of motion contracts 

in Fig. 43c and again begins t o  expand in Fig. 43d. The (x, y)-motion for the 

period from 1000 days to 2000 days is much the same. During this 2000 day 

period, the z-component of displacement does not exceed 10,000 miles. The 

expar-sion-contraction can be observed from Figs. 44a through 44b, the mag- 

nitude of the displacement vector from L versus time. The expansion- 5 

contraction over almost three cycles is illustrated. The period of this pulsa- 

tion is approximately 700 days. Thus, the motion i s  stable for a period of 2000 

days and, in fact, one can extrapolate-this to 2500 days by noting that ;he enve- 

lope of motion is beginning to  contract ai 2000 days. With a period of pulsa- 

tion of 100 days, it  thus appears that the mation will be stable through 2500 

days. 

The magnitude of the angular momentum vector relative to the bary- 

center i s  shown in Fig. 45. Note that the magnitude has only slight variations 

during the periods in which the spacecraft is near the L point, e. g . ,  the 5 

period from 750 days to 850 days. During periods of wide displacement from 

L5, the angular momentum varies quite noticeably. 

Accuracy 

It i s  extremely difficult to make a definite statement regarding the 

accuracy of the results. One can estimate the truncation e r r o r  involved in 

the numerical integration process, however, estimation of the round-off e r r o r  

presents a f ~ r m i d a b l e  problem. As stated in the previous chapter, the Adams- 

Moulton-Runge-K ~ t t a  procedure was usec? to integrate the differentiai equations 



FIGURE 4 2 a .  L  NONROTATING ( x , Y ) - R E S U L I S  FOR I N I T I A L  5 J 2 4 3 9 7 9 6 . 7 3 5  FROM 0 DAYS TO 1 2 5  DAY5 



F I G U R E  4 2 b ,  L N O N ~ O T A T I N G  ( x , Y ) - R E S U L T S  FOR I N I T I A L  
~8 2 4 3 9 7 9 6 . 7 3 5  F R O M  1 2 5  DAYS TO 2 5 0  DAYS 



F I G U R E  4 2 ~ .  L S  NONROTATING ( x , Y ) - R E S U L T S  FOR I N I T I A L  
J D  2 4 5 9 7 9 6 . 7 3 5  FROM 2 5 0  DAYS TO 5 0 0  DAYS 



F I G U R E  42d. L~ N O N R O T A T ~ N G  ( x , Y ) - R E S U L T S  :OR I N I T I A L  
JD 2439796 ,735  FROM 5 0 0  D A Y S  TO 750  D A Y S  



FIGURE 4 3 a .  L ROTATING (x,y)-RESULTS FOR I N I T I A L  
.la 2 4 3 9 7 9 6 . 7 3 5  FROM 0 DAYS TO 2 5 0  DAYS 

FIGURE 4 3 b .  L ROTATING (x,y)-RESULTS FOR I . N I T I A L  
J8 2 4 3 9 7 9 6 . 7 3 5  FROH 2 5 0  BAYS TO 5 0 0  DAYS 



FIGURE 4 3 c .  L R O T A T I N G  ( x , y ) - R E S U L T S  FOR I N  I T  l A L  
J8 2 4 3 9 7 9 6 . 7 3 5  FROM 5 0 0  D A Y S  TO 7 5 0  D A Y S  

F I GURE 4 3 d .  L ROTAT l NG (x ,  y )  - R E S U L T S  FOR i N I T  I A t  
J .  8 2 4 3 9 7 9 6 . 7 3 5  FROM 750"DAYS t o  1000 D A Y S  
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of the two-body case and then compared with the closed I'orm solution. After 

36,000 steps there was a difference of . l  mile in 4000 miles. Thls, obviously, 

does not inform one of the e r r o r  involved in the "real world" model of this 

chapter. It does show that the procedure gives good results over a long time 

period. Since there i s  no closed form solution available for the "real world" 

model, no direct comparison of results can be made as was done in the two-body 

case. The method of Richardson (Ref. 29), sometimes called "Richardson's 

extrapolation, " was applied to the Julian Date 2,439,796.735 case at L4. Two 

computer runs of 100 days elapsed t ime were made with fixed step sizes of . 1 

day and .05  days. Richardson's extrapolation was then used t o  obtain an im- 

proved value of the displacement and velocity in the barycentered system. 

The extrapolated values were compared with the data of the L4 computer run 

with variable step size. It was found that there was a difference of no more 

than 2 miles in 200,000 miles. The velocity data agreed as  well. It should be 

pointed out that the drawback in applying Richardson's extrapolation i s  that the 

formulas a r e  derived assuming that there is no round-off e r ror .  Until better 

techniques a r e  available for estimating e r ro r ,  it will remain difficult to say 

precisely what the e r r o r  involved in the "real world" model integration is.  

One final point should be added. The single step e r r o r  control i s  an effective 

device for c~nt ro l l ing  the e r r o r  even though it i s  not an absolute e r r o r  control. 

Since the Adams-Moulton method i s  unconditionally stable, it appears 

that the data of the preceding sections represent to 4 or 5 decimal places the 

actual value. This opinion i s  derived from the considerations of the previous 

paragraph and the belief that round-off e r ro r ,  while existing, i s  not signifi- 

cant to  affect the results in the f irst  4 or 5 dezimal places. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Certain very important conclusions can be drawn from the results of 

the two different mathematical models presented in Chapters 111 and IV. 

These conclusions a re  as  follows: 

1. When the modified restricted four-body mathematical model with 

nodal regression has an orientation corresponding to the earth- 

moon-sun orientation on Julian Date 2,439,501.0, the results dif- 

fer widely from the results of the "real world" model beginning at  

that Julian Date (compare Figs. 19 and 31). For  insertion into the 

libration orbit on Julian Date 2,439.796.735 which simulates the 

case of 4 = 180° of the simplified model discussed in Chapter 111, 
0 

the results of the "real world1' model again differ widely from those 

of the modified restricted four-body model. For this latter inser- 

tion date, at L the spacecraft left a libration-point-centered 4" 

motion at approxitnately 575 days in the ':real world" model, 

whereas the motion was stable for 2500 days at L4 in the modified 

resti-;cted four-body model. Thus, it appears that the model as -  

suming circular orbits and constant nodal regression does not rep- 

resent the long term motion very well. Perhaps a model which in- 

cludes a mean eccentricity for the moon would approximzte more 

accurately the "real u ~ o r l t l ~ ~  results. 

145 
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2. The initial date has an important effect on the subsequent motion. 

This conclusion was made in Ref. 5 and can a lso  be drawn from 

the data in Chapter 111. F rom the results of these studies, it can 

be inferred that there will be an important effect due to the initial 

configuration in the "real world" model. However, a s  pointed out 

in Ref. 14, it  is difficult to discern the iniiial configuration ef- 

fects even though the qualitative effects a r e  certainly present. 

Even so, from examination of the L and L5-results of the 4- 

"real  world" model for the initial Julian Date 2,439,796. 735, it 

appears that the marked difference between the two orbits can be 

attributed primarily to the initial position and subsequent motion 

of the sun relative t o  the L and L -points. 4- 5 

3. Long terrn stability of greater  than five years does exist in the 

"real world" model. F o r  spacecralt  placement at  L on Julian 
5 

Date 2,439, 796. 735, the spacecraft remained on a libration-point- 

centered motion istable motion) fo r  2000 days (5.48 years). One can 

confidently extrapolate this motion to 2500 days (6.85 years)  a s  

shown by Figs. 44. For  the same initial date, the spacecraft leaves a 

libration-point-centered motion after approxirnately 575 days when 

placed at L4. Thus, while one triangular libration point exhibits 

a long t e r m  stability, the other triangular point docs not for the 

same initial dale. This does not irnply that C5 is stable and L 
4 

is unstable for all initial orientations. Initial orientations can 

probably be determined in which the situation will be reversed,  

possibly when the sun, the earth, and the moon a r e  nearly colinear 

in that order (a lunar eclipse or full moon). 
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4. The initial velocity specification has an important effect on the 

subsequent motion. This i s  evidenced by the data for J-dian Date 

2,439, 501.0 with iBL = 0 and with iBL f 0. It i s  certainly pos- 

sible that initial velocities could be found for this date which would 

extend the period of stable motion. The great sensitivity of the 

model to :he initial lelocity is  indicated also in Ref. 14. 

5. Only for the L -point on Julian Date 2,439,796.735 does one ob- 
5 

serve the expansion-contraction of the envelope of motion which 

has been observed in previous simplified models (Ref. 5 and 

Chapter 111 of this report). The period of this pulsation appears to 

be about 700 days iu the "real world1' model at L,. 
9 

6. Considering the angular momentum plots, Figs. 32, 35, 41, imd 

45, a tentative conclusion can be drawn that if the angular momen- 

tum is maintained at  the initial level during the libration-point- 

centered mcihion, perhaps by using a series of thrusts on the 

spacecraft, a stable motion may possibly be maintained. 

It should be pointed out that the "real world" model of this report is 

o d y  an approximation to the physical world. There a re  still some unknowns 

.I 

which will affect the results, however, the extent of the effect i s  not known. 

For example, the earth-moon mass ratio used was 81.3015 which i s  accurate 

to + .0033. It i s  conceivable that refinerr ,nts of constants such as  mass - 
ratios could be made from the orbit determination of a spacecraft placed at 

either L4 or L5. 

As is  often the case, this investigation has either answered or given 

insight to some questions, but it has also raised many more questions. This 
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problem i s  by no means completely solved and there a r e  several a reas  for 

further research. They a r e  a s  follows: 

1. Consideration of the motion at different times of the month and year 

in an extended study of the effects of the initial ccnfiguration. There 

may be certain pericds in which very long t e rm stability o r  stability 

with a small envelope of motion can be achieved. As pointed out 

previously, stability was found to be a function of the initial orien- 

tation of the earth-moon-sun system in the model with circular 

orbits and nodal regression as  well as in the "real world" model. 

2. Study the effects of initial position and velocity on the stability. It 

was found in Ref. 4 that the envelope of motion could be reduced 

by an initial velocity relative to the libration point. This is also 

indicated in Ref. 14. It would be of s m e  interes: to determine 

the initial position and velocity relative to the libration point which 

would yield a "more stable" motion in the "real world" model. 

3. A thorough analysis of the effect that the planets and noncentral 

gravitational fields of the earth and moon have on the long t e rm 

motion should be made. If the ?lanets neglected in the "real 

world" model (viz. , Uranus, Neptune, and Plutoj a r e  included in 

addition to the noncentral fields of the earth and moon, the model 

woald be quite complex and would probably require that most calcu- 

lations be made in double precision. This would increase the nec- 

essary computer time considerably. It should also be noted that 

the effects of the planets or, the motion of a spacecraft relative to 

the barycenter (X, Y, Z)-system is somewhat reduced by the ef- 

fects of the planets on the acceleration of the barycenter. This can 



be seen from the differential equations of motion for the "real 

world" model, Eqs. (67). 

4. A study should be made of means for "station-keeping, ' I  i. e. , ap- 

plying a thrust to the spacecraft at intervals or using a constant 

low-thrust device to keep the spacecraft near the libration point of 

interest. It i s  possible that solar sails could be used in combina- 

tion with the low-thrust propulsion for this purpose. 

5. The equations of motion for the spacecraft should be expressed in 

terms of the rates of change of the orbit elements in a barycentered 

system. This would provide a ccrnparison with the results obtained 

by integrating the acceleration components in a rectangular coordi- 

nate system. It i s  quite possible that computer time could be re-  

duced by using the orbit elements. 

6. Analytical approaches should be pursued, even though they a re  ex- 

tremely difficult to obtain for sophisticated models. In fact, a s  

stated earlier, a closed form solction to the "real world" model of 

this report would require a solution to  a nine-body problem. How- 

ever, it may be possible to obtain certain characteristics of the 

long term motiorl in the "real world" model using an analytical 

approach. 



APPENDIX A 

ORDER OF MAGNITUDE OF GRAVITATIONAL FORCES 

The gravitational attraction of the earth and the moon on a spacecraft in 

the earth-moon system i s  very much larger  than the attraction due to  the sun 

and planets. However, it i s  very useful t o  determine the order of magnitude 

of the attraction due to  the sun and planets on the aforementioned spacecraft. 

This was done by making the assumption that al l  the planets move in circular 

orbits around the sun, the radii of which a r e  the semimajor axes of the Epoch 

1900. A quantity, F/mS, IS computed from Newton's Law of Gravitation 

for a body in the earth-moon system. For  the inferior planets, viz., Mercury 

and Venus, the computation is made at inferior conjunction and superior con- 

junction. The computation is made at conjunction and opposition for the supe- 

r ior  planets, the planets outside the earth's orbit. The aspects of the inferior 

and superior planets a r e  illustrated in Fig. A-1 (Ref. 30). The results of the 

computation a r e  shown in Table A-1. I t  should be pointed out that these r e -  
. .. 

sults do not by any means show exact values for ~ / m  The reason for this S' 

l ies in the fact that the distance between the earth and some specific planet 

will vary from opposition to  opposition or from conjunction to conjunction. 

150 
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The results are, the refore, representative values and sho~lld be considered 

on an order of magnitude basis. 







APPENDIX I3 

DERIVATIONS O F  EQUATIONS FOR DETERMINING THE 

ORIENTATION O F  THE EARTH-MOON SYSTEM 

By definition, the ear th-moon orb2.tal plane i s  a plane perpendicular tc, 

the angular momentum vectoi. which includes Loth the ear th  and the moon. The 

angular momentum vector of the earth-moon sys tem is determined f r o m  

where 

The ar.gular momentum is determined. with respect  t o  the (X,  Y, Z)- 

barycentered coordinate system. The ear th-moon orbi ta l  plane and the angles  

154 
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* 

defining its orientation a r e  illustrated in Fig. B-1. The angle n i s  the 

angle measured in the (X, Y)-plane between the X-axis and the ascending 

* 
node; the angle i is the angle between the [X, Y)-plane and the earth+moon 

orbita: plane. Since the angular momellturn vector i s  perpendicular to  the 

line of nodes, its projection on the (X, Y)-plane is perpendicular also to the 

line of q-des. Therefme, from Fig, B-2, 

2 
(HX + Hy 2,1/2 * * 

sin i = , cos i H =T  , 
2 

(HX + Hy * 
tan i = s 

* Hx * 
sin St = , cos Q = - H~ 

2 2 1/2 2 2 1/2 
(HX + Hy ) (HX + Hy ) 

where H is the magnitude of H . 
The following expressions a r e  determined from Fig. B-A: 

* 
r~~ 

sin 8 = R , 

* 
sin i - zsl - R  , 

then 

* 
sin 8 = z~ * 

rgD sin i 





* * * 
r~~ cos 0 = X c o s Q  + Y D  s i n n  D I 

* 
tan 8 = z~ 

sin i (X) cos n* + Y) sin n*) 8 

where R is the component of FBD which i s  perpendicular to the line of nodes 

and which lies in the earth-moon orbital plane. Note that the calculation of 

the total angular momentum Tf requires position and velocity of both the 

earth and the moon. The computation may be simplified, by showing that the 

angular momentum due to the earth may be determined from the angular mo- 

mentum due to the moon. The barycenter is, by definition, 

also, 

therefore, 

and 



Also 

Therefore, 

and 

Similarly, 

and 

Therefore, by Eq. (B-91, 



But, using Eqs. (B-9), (B-11, and (B-2). 

Similarly, 

Therefore, since 

then 

Similarly, 

(B- 12) 



Then 

and 

2 

* D t Hy 2] l j2  
sin i = b 

- 
* 

sin i = 

Similarly 

* 
cos i = 

2 

and 
1 /2 

* 
tan i = [ h ~  

+ hYD2] 
D 



Also, 

* 
sin Q -- hx) 

[hx + hy 'x]1'2 
D 1 

and 

* 
tan $2 - - - 

* * 
Therefore, the inclination i and the longitude of the ascending node Q can be 

computed using only the angular momentum per unit mass  of the moon (or 

earth). 



APPENDIX C 

DETERMINATION OF INITIAL CONDITiOMS UFING THE 

EARTH-MOON ORBITAL PLANE 

In order to determine the initial position and velocity of a spacecraft 

relative to  the (X, Y, I,)-barycentered coordinate system, it is necessary to 

determine the position and velocity of the triangular libration point under in- 

vestigation. Assuming that the triangular libration points l ie  in the earth- 

moon orbital plane, i. e. , the plane defined by the angular momentum vector 

- 
H of the earth-moon system, the location of L4 is a s  shown in Fig. C- 1. 

The (E, 1 , I;) -coordinate system is a lso  shown in Fig. C- 1 and i s  oriented 

such that the E-axis l ies  along the earth-moon line in the direction of the 

moon, the ?-axis l ies  in the earth-moon orbital plane, and the &-axis i s  per-  

pendicular to  the orbital plane and i s ,  therefore, in the same direction a s  the 

angular momentum vector. The (x, y, z)-L4-centered coordinate system is 

oriented such that the x-axis is parallel to the &axis, the y-axis i s  in the 

orbital plane, and the z-axis i s  perpendicular to  the earth-moon orbital 

plane. 

The triangular libration points l re at  the vertices of equilateral t r i -  

angles a s  shown in Fig. C-1. The libration point L4 i s  shown in Fig. C - 2 ,  

the in-plane orientation. The 6 -coordinate of L4, 5, i s  determined from 





where r i s  the magnitude of the bzrycenter-earth distance. The Be 

I-coordinate of L4 i s  given by 

'P 
= re) sin 60' 

where r i s  the instantaneous earth-moon distance. The?. the initial position 
$) 

of the spacecraft in the (X, Y, Z)-coordinate system i s  

where x S' Ys' and zS a r e  the coordinates of the spacecraft expressed in the 

(x, y, a )  -L4-centered coordinate system. Furthermore,  the matrix A i s  

t *  t  
given by Eq. (13) in which 42, d,  and i a r e  replaced by 42 , 8 , and i , r e  - 

t  * * 
spectively. The quantities 52 , 0 , and i a r e  determined from Eqs. (B- 15), 

(B-16), and (B-5) and a r e  illustrated in Fig. C-1. 

The initial conditions for the velocities present a somewhat more  diffi- 

cult problem. Since the actual motion of the moon i s  not circular ,  the lunar 

velocity vector will not, in general, be perpendicular to the earth-moon vector 

- 
r 

$D. 
The problem i s  then to determine the velocity of the libration point L4 

which would maintain the equilateral configuration in the restricted three-body 

sense. F o r  example, if the earth-moon-spacecraft system were considered a s  

a three-body problem in wkich the earth and the moon move in elliptical orbits 

around the barycenter, then the libration point L4 will also move in an ellip- 

tical orbit (Ref. 31). Therefore, it a spacecraft i s  placed at  L4, it must be 



given a velocity, relative to  the (X ,  Y,  Z)-cocrdinate system, equal to that 

of the libration point in order to maintain the equilateral configuration. It 

appears that there is some relation between the radial velocity of the moon and 

the radial velocity of the libration po'nt which would be necessary to  maintain 

the equilateral configuration in the restricted three-body sense. The velocity 

of the moon i s  

where 5 i s  known in the (X, Y ,  Z)-system and 5 i s  zero  because of the D 

manner in which the earth-moon orbital plane is defined (see  Appendix D for 

.I(( 
proof). Therefore, rB3 and rB)8 can be determined from 

Using the absolute magnitudes of the vectors involved (no signs) 

r = rB3 + rB8 @B 8 

but, by the definition of the barycenter, 



then 

Mow, 

tan 4 = $ 
and from Fqs. (C-1) and (C-2) 

re) sin 60' 
tan 4 = - 

- - sin 60' 

= constant. 

Therefore 

= constant. 

From the law of s ines  

r~~ - - =BL 
sin(120° - +) sin 60' 

aa: can be seen from Fig.  C-2.  T a k i n ~  the first derivative with respect to  

time yields . . - - sin 60' 
'BL rgp Sii l (  120' - 0)  
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That is, considering the triangular configuration as  a body which always 

maintains + Ime configuration, ' he relatier. between the lunar radial ve- 

locity and :he L4 radial velocity i s  given by Fq. (C-8) .  Furthermore. L4 

will have the same angular velocity as  the moon. The angular velocity 6* 
and iB) can be determined from Eq. (C-6) .  Also, 

Thc velocity of L4 can be written a s  

- - - sin 60° - 
r ~ ~ E =  ' r~~ $*.(, V~ sin( 1200 - $1 

where ; is a unit vector a l ~ n g  ; and ;(, is  a unit vector perpendicular to 
r BL - 

5 c s  shown in Fig. C-2,  Assuming that the spacecraft can have a velocity 
r 

relative to the !x, ; , z )  -coordinate system (see Fig. C - 2 )  at  L4 , the velocity 

of the spacecraft at insertion is 

- * 
vs = [ sin 60° 

r~ D 
+ k cos + + y sin + Tr 

sin(120° - 0) S S I 
- - + [iBL6* - xS sin + + ; s cos $ 1 ~ ~  + zS rz  

J 

Therefore, 



* 
where A is  the same matrix a s  psed!in Eq. .(C-3) ' except that it must be 

* * 
evaluated at 9 + $ instead of 0 . 

Equations (C-3) and (C-10) represent the initial position and velocity 

for spacecraft placement at L4. For placement of the spacecraft at L5, the 

initial position equations a re  obtairted by replacing q by - q in Eq. (C - 3). 
P P 

The orients.tion of the (x, y)-coordinate system located at L is shown in 5 

Fig. C-3. Furthermore, the initial velocity can be obtained by substituting 

-+ for + in Eqs. (C- 10) in all terms involving + (including the matrix A) except 

sin 60' 

Substituting -+ in the above term yields an incorrect result. 





APPENDIX D 

From Eq. (C-6), one has 

* * * * * 5 ,  = sin n sin i X, - cos Q sin i Y + cos i > ZD . (D-1) 

Combining Eqs. (B-3), (B-4), (B-S), with Eq. . (D-1) hives 

where HX, Hy, and HZ represent the total angular momentum components of 

the earth-moon system and H is the magnitude of the  total angular momentum. 

Rewriting 

Using the relations between the total angular momentum and that of the moon 

alone, i.e., Eq. !B-13) yields 



Combiting Eqs. (D-31 ,  (B- 1 ) ,  and (B-2) gives 

Combining like terms of Eqs. (D-5), 

i. e . ,  the moon has no component of velocity perpendicular to the earth-moon 

orbital plane (the piane defined by the angular momentum). This could also be 

shown by consideration of the x t vector. 
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