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Summary

The additive property of modal density for composite structures is
discussed. It is demonstrated analytically that the property is valid
for a particular system. The composite structure analyzed consists of
two beams joined at right angles to form an L-shaped frame. The receptance
approach is used to determine the frequency equation and its asymptotic
representation is presented. Graphical presentation of the cumulative
number of modes for the composite and its constituents give rise to a
verification of the additive property of modal density for a composite

structure.
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Additive Property of Modal Density for a Composite Structure

F. D. Hart

Introduction

The problem of finding the number of natural frequencies of an
elastic structure that are contained in a given frequency interval
occurs in»the analysis of structural vibration under the action of a
random load with broad spectral content [1, 27]. Knowledge in this
problem area has been contributed by several investigators [3, &4, 5].

The studies that have been reported on the determination of the
density of the distribution of natural frequencies (or what is also
termed the modal density) have been concerned with classic structural
shapes such as beams, plates, and cylinders. However, these shapes
rarely occur in a real application in engineering as separate elements.
Thus in applying, for example, the statistical energy analysis to a
complex system, the modal density of composite structures must be con-
sidered.

A composite structure is composed of a number of substructures or
components each of which may be identified (ideally) with some classic
shape. Assuming the modal density of each substructure is known, it is
postulated that the modal density of the composite structure is equal to
the sum of the modal densities of its components [2]. If the jth com-
ponent of the composite exhibits Nj modes within the frequency interval

Aw»> then its modal density at the center of the band Ay is defined as

n, () = —— (1)



Thus the modal density of the composite at  would be given by
m
. .
n (y) = — E; N, (2)
AW i=1 J

where the summation extends over the total number of elements, m, that
give rise to the composite structure.

The additive property of modal densities expressed by equation (2)
has not been proven analytically in a general form nor has it been de-
monstrated analytically for particular composite structures [2]. Several
experiments, however, have indicated general agreement with the postulate
[6]. The physical reasoning reported in [2] serves as a basis for accep-
tance of the concept.

If a lumped mass system with k degrees of freedom is joined to another
lumped mass system that has X degrees of freedom, then the resulting lumped
mass system will in general possess m = k + X degrees of freedom. Since
a resonant frequency exists for each degree of freedom, the combined system
will exhibit m resonant modes. The frequencies at which resonant modes
occur for the combined system will be different from those of the subsystems.
In a given frequency interval the combined system will contain modes equal
in number to the sum of the modes in that same frequency interval for the
separate lumped mass systems - according to the additive postulate.

A consideration of two simplified subsystems further illustrates the
point. If the two single mass systems shown in Figure 1l are connected, a
two degree of freedom system is obtained, Figure 2. The resonant fre-

quencies of the subsystems are w) and Wy and for the combined system the



natural frequencies can be expressed as
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where 5 is the mass ratio m2/m If 4y =1 and w; = w,» equation (3) gives

B

the following for the resonant frequencies of the system of Figure 2.

wSl = 0.667w1 sy W = l.65w1 (4)

s2

It is noted from (4) that one of the natural frequencies for the
combined system is above that for either of subsystems while the other
is below. Thus combining the systems causes an upward and downward shift
for the resonant frequencies as compared to the values for the individual
systems. ILf this observation is extrapolated to systems with many degrees
of freedom, it would be expected that an equal number of modes would be
shifted into and out of a given frequency interval upon combining two
systems so that on the average the total number of modes in this interval
would remain unchanged.

.While a general proof of the additive property of modal densities is
not given here, it is demonstrated below that it holds true for a particular

composite structure,



The Composite Structure

In order to investigate the postulate (3) for a particular system,
the modal density of the composite as well as its subsystems must be
amenable to analytical treatment. Thus the resonant modes must be
determined for the composite and its constituents and this requires
consideration of a relatively simple system. One system that can be
treated is illustrated in Figure 3, This structure can be imagined to
be constructed by bending a single beam at a right angle to form the two
lengths L 1 and §~2 and cantilevered at one end. Alternatively, two beams
of lengths &.1 and §v2 may be welded at right angles to form the composite
structure. The subsystems may then be supposed to be two beams as illus-
trated in Figure 4.

In Reference [7], the frequency equation for the composite structure
of Figure 3 is obtained through a consideration of the two beams shown in
Figure 4 with the two coupling coordinates Q5 Gy- The boundary conditions
for the two subsystems are fixed-free and pinned-free. These details are
not important insofar as the modal densities of the individual beams are
concerned since the boundary conditions only affect the modal spacing for
the first few modes. The modeling of the composite structure of Figure 3
as illustrated in Figure 4 is convenient in determining the frequency equa-
tion through the receptance procedure and gives very close agreement between
theoretical and experimental results as observed by the writer and also
reported in [7] for the low modes.

If the composite structure, Figure 3, is excited vertically in the
plane of the paper at the anchor point, then longitudinal vibrational modes
can occur in the vertical member. However, since the purpose of this

exercise is to compare spacing of the bending modes for the substructures
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with those for the composite, the vertical member is considered to be a

rigid body insofar as longitudinal motion is concerned [7]. Thus in
subsequent analysis, only bending modes in the plane of the paper will

be examined for the composite and for the two substructures as well,

Frequency Equations and Modal Spacing

In order to determine the modal densities of the structures under
consideration, the modal spacing must be found as a function of frequency.
This can be accomplished by solving the frequency equations to ascertain
the total number of modes that can occur up to some frequency (3 and
allowing  to vury‘from zero to an arbitrary upper limit. When this
information is presented in graphical form, an examination of the slopes
of the resulting curves will yield the modal densities.

Without loss in generality of results, a simplification in the
analysis can be effected by assuming that X 1= S 5 = Q_ and that both

members are of the same material. With these simplifying conditions, the

frequency equation for the composite structure, A, becomes

F (3 ) = [coggli - sin 3 Cosh 3L ! ] N

cos 3 L Cosh . +1 & |
[cos 3% Sinh 32 + sin 3% Cosh 3L + cos 3% Cosh 3 & + 1 j
cos AL Cosh i +1 cos A% Sinh 2 & - sin 2Q Cosh A&
. [sin 3% Sinh 3 & J -0 (5)

cos A& Cosh & +1

The resonant frequencies are then determined according to the relation

(1, L)?2
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where K 1s the radius of gyration and C; is the longitudinal wave velocity.

The frequency equations for the substructures are

(free-pinned) cos 30 Sinh AL = sin 3§ Cosh 3§ =0 (7

It
o

(clamped-free) cos A& Cosh i +1 (8)

Equation (6) may be used again to compute the natural frequencies corres-
ponding to the eigenvalues as reckoned from equations (7) and (8).

An examination of equation (5) shows that the values of () L) which
satisfy either equation (7) or (8) correspond to the occurrence of én
infinite value in the frequency equation for the composite. This condition
can pose a slight inconvenience if equation (5) is simply programmed to
determine F (3 %) = 0, according to an observation in a sign change
followed by a finer iterative process. If this procedure is followed it
is found that sign changes occur under three conditions: (1) for the
true eigenvalues, (xj&,), for the composite, (2) for the eigenvalues .of
the free-pinned beam, and (3) for the eigenvalues of the clamped-free
beam. Since the values for the second and third cases can be computed
accurately, these are discounted and the remaining (Xj‘Q) that cause a sign
change are the real roots to equation (5). This scheme is satisfactory
up through about the first ten modes for the composite and the results
are listed in Table 1. Beyond the tenth mode, the eigenvalues for the
composite are close to those values which gives rise to an infinite

value for F (AL ) and the iterative process becomes inefficient.




The cigenvalues that correspond to the higher modes for the composite
can be determined by rearranging equation (5) and using the approximations

that

Tanh ) § a1 s Sech » ) ~ O (9)

With these observations implemented, equation (5) can be written as

tan2 Gy -2
L - tan (, &)

2 (Zd) = (10)

Equation (10) is essentially an asymptotic version of equation (5) and it
is shown graphically in Figure 5. 1In Figure 5, the intersection points

of the equations G, (L) = 2 (, L) and G, (A-&) defined by (1ll) repre-

1

sent the solutions to equation (10).

2
_tan” (L) - 2
G2 d = 1 - tan g

(1)

With the information gained from equation (10) and Figure 5, the
listing of eigenvalues in Table 1 can be completed. As x_i increases,

the regularity in modal spacing becomes apparent.

Cunmulative Number of Modes and Modal Density

The cumulative number of modes that exist up to an arbitrary value
for (3.} ) can be ascertained for the composite and the substructures
J

from Table 1. This gives rise to the mode tabulation given in Table 2.
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The information in Table 2 has been illustrated graphically in Tigure 6.

In Figure 6 the cumulative number of modes for the composite and the sub-

structures have been plotted against the cigenvalues (j.0).

®
additive postulate holds, then it must be true that

N, (k) = Ng 0+ N, D)

(12)

An examination of Figure 6 shows that equation (12) is satisfied so

that the additive property of modal densities for the particular composite

under consideration is verified. From Figure 6, it is found that the re-

lation between N, and (n.1) is given by

(13)

Introducing the quantities N = NA\/ ﬁ /L and v = , £ /C; , equation (13)

becomes

[}
—
O

¥ (W) 1/2

]
&l
<

Thus the modal density for the composite is given by

be written as

(14)

(15)

(16)
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Since the composite is constructed of two identical beams, the sum of the

modal densities of the substructures is

172

a, (W) o (W) =}T

Observation shows that the coefficient (1l/7) in (17) compares Zavorably

with the

coefficient (8/25) in equation (15). Equations (14) and (15)

are shown graphically in Figures 7 and 8, respectively.

Conclusion

The
has been
true for

additive property of modal densities for composite structures
discussed. It is verified analytically that this property is
a particular structure composed of two identical beams welded

angles.
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Table 1. Tabulation of eigenvalues for the composite structure and
the substructures

Frece-pinned beam Clamped-free beam Composite frame
3.9266 1.8751 1.0823
7.0686 4.6941 1.7864

10.2102 7.8548 3.9691
13.3518 10.9955 4. 8049
16.4934 14,1372 7.0984
19.6363 17.2800 7.9126
22.7791 20.4229 10.2318
25.9219 23.5657 11.0386
29.0648 26.7086 13.3688
32,2076 29.8514 14,1706
35.3505 32.9943 16.4997
38.4933 36.1372 17.2854
41.6362 39. 2800 19.6425
44.7790 42.4228 20.4282
47.9219 45.5657 22.7853
51.0647 48.7085 23.5710
54,2076 51.8514 25,9281
57.3504 54.9942 26.7138
60.4933 58.1371 29.0709
63.6361 61.2799 29. 8566
66.7790 64.4228 32.2137

69.9218 67.5656 32,999
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Table 2. Tabulation of the number of modes for the composite and
substructures
Eigenvalue Number of modes Number of modes Number of modes
free~pinned beam clamped-free beam composite

A i NC NB NA
11 3 4 7
20 6 7 13
30 9 10 20
40 12 13 26
50 15 16 32
60 18 19 39
70 22 22 45
80 25 25 51
90 28 29 58

100 31 32 64

125 39 40 80

150 47 48 96

175. 55 56 112
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