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ABS TRACT 

The question of how to obtain a n  analytic description of the merging 

of s eve ra l  waves is studied. It is  assumed that the wave s t ruc ture  is given 

a s  a complex integral  ( s ay  a Four ie r  integral)  and an asymptotic approximation 

is des i red .  

p roper t ies  of integrals  of the fo rm 

Motivated by the work of Urse l l  we study the asymptotic 

exp ip  ( t)  d t  where  p ( t )  is a polynomial s 
in  t .  

polynomials p(t) = z t  t t 

t tn+ l / ( n t  1). 

Explicit asymptotic formulas a r e  obtained f o r  the two types of 

n t l  2 tn-l 
"n-1 / n + l  and p(t) = a t t a 2  t t . . . 

1 
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Section 0 - Previous Work 

In studying the problem of wave propagation in various media,  the 

solution is often wri t ten a s  an  inverse F o u r i e r  t r ans fo rm.  If the problem 

i s  somewhat complex the t ransform must  often be  evaluated by the 

methods of s teepes t  descent  o r  stationary phase.  

to  investigate a problem which can a r i s e  in the use  of these methods,  

In this paper  we wish 

namely the case  where the integrand has seve ra l  saddle points a t  approx-  

imately the s a m e  point. The situation we have in  mind is one where seve ra l  

waves a r e  interacting to give some f o r m  of cancellation. 

A case  of two waves interacting, of the kind we have in mind, has  

been thoroughly studied by Urse l l  (1964) . 
is the Kelvin ship wave problem, where in  an  a r c  of angle 39 1 /2  

deg rees  a s t e r n  of a ship there  a r e  two waves.  

The par t icular  c a s e  he  considers  

At an angle of 19 3 / 4  degrees  

e i ther  s ide of the s t e r n  line the two waves merge  in a s t range fashion, and 

outside this angle there  a r e  no waves.  Urse l l ,  following previous work by 

Ches t e r ,  F r i edman  and Urse l l  (19 5 7) , showed that this  phenomenon can be 

adequately descr ibed by the u s e  of a m-odification of the method of s teepes t  

descent ,  which is now briefly descr ibed .  

In the methods of s teepest  descent  o r  s ta t ionary phase one is 

in te res ted  in evaluating integrals  of the f o r m  

c 

w h e r e  the path c is sufficiently long (compared to something) to be con- 

s ide red  infinite,  and A i s  large.  The procedure is to look fo r  points 

z 

to pass  through the points z o  (if  this can be done) s o  that the ma jo r  con- 

tr ibution to the integral  i s  given by the values of the integrand nea r  z . 

in the complex z plane such that f '  (z ) = 0 .  The path c i s  then deformed 
0 0 

0 
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In this way the exponential i s  given essentially by 

In the ship wave problem there a r e  two such points, whose location i s  

dependent on the angle cpastern of the ship.  

a s  cp approaches the c r i t i ca l  angle cpo of 19 3 / 4 ,  the two saddle points z o  

approach each other and the second derivative in ( 2 )  vanishes .  Thus a t  

the c r i t i ca l  angle cp we have 

(Thus f = f(z;cp)) . However, 

0 

Thus the exponent is no longer a quadratic of the f o r m  a t bx2 but a cubic 

of the f o r m  a t cx . 3 

The question answered by Ches te r ,  F r i edman  and Urse l l ,  and in  

more  detail  by Urse l l  was that of how to obtain one representat ion of the 

exponential which reduces to  the two separa ted  waves of the f o r m  ( 2 )  f o r  

cp cc, 0 

was that f(z;cp) could be adequately represented  in  the ent i re  region by 

0 
and which reduces to the single cubic ( 3 )  a s  cp-q . Thei r  solution 

0 

(4) 
3 f(z;X ) = a t bx t x 

This is perhaps a bi t  surpr is ing because the essent ia l  nature  of both ( 2 )  

and ( 3 )  i s  that  the f i r s t  o r d e r  t e r m  is mis s ing .  They show that  it  is not 

only adequate but extremely convenient to u s e  the f o r m  (4). 

In this paper we consider  what is the logical extension of the i r  

ideas to the case of s eve ra l  saddle points merging  a t  some  point. 

Section 1 - Generalized Airy  Functions 

The apparent extension of the idea of C h e s t e r ,  Fr  edman and Urse l l  
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would be to consider  approximating (1) by an integral  of the f o r m  

> 
In(z) = 1 exp {zt - t n f l / ( n t l )  [dt 

where  c is some contour in the complex plane f o r  which the integral  

J 
C 

( 5 )  

converges f o r  all z. 

generalizations of the Airy  functions. 

We investigate the functions defined by (1) which a r e  

F i r s t  we have 

Lemma 1 

sat isf ies  the equation 

Le t  c be any path such that (5) converges absolutely. Then (1) 

Proof 

valid.  

Under the hypothesis differentiation under the integral  s ign is 

Then if  y = I n 

J J 

= 0 ,  

where  a and b a r e  the end points of the path c y  since the integrand mus t  

vanish a t  the end points. Thus the lemma is proved. 

Le t  ani be the angle associated with the ith member  (counting 

counterclockwise f r o m  the positive r ea l  ax is )  of the ( n t l )  roo ts ,  nt fi. 

L e t  c. be a path f r o m  infinity to infinity s tar t ing on a r ay  with angle 

a n d  ending on a r ay  with angle a . 
functions I 

1 

Then these ( n t l )  paths define ( n t l )  ni 

n ,  i '  

L e m m a  2 These ( n t  1) functions a r e  l inear ly  dependent 
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Proof The sum I 

contour.  The integrand i s  everywhere analytic.  Thus by Cauchy’s 

t I n , o  n , l  t . . I n ,n t l  f o r m  an integral  around a closed 

theorem the sum is ze ro .  

Thus the functions In, i  f o r m  a t  mos t  n l inear ly  independent 

solutions of ( 6 ) .  To prove that they f o r m  exactly n solutions we need the 

following: 

Lemma 3 All solutions of ( 6 )  a r e  ent i re  functions of z. 

Proof We need only note that (6 )  has  no singular points except z = a. 

We now proceed to show that the f i r s t  n of these solutions have, 

on some ray ,  distinct different asymptotic behaviors .  Our contention 

will  then be proved. We consider  

and the path is shown in figure 1. z.rrik/(ntl) and b. = a 
IC k t l ’  where  a = ~ e  

k 
The integrand has  saddle points a t  

o r  
n 

t k = G - .  

We mus t  distinguish I 

two cases  the saddle point (8) is on the boundary of the region defined 

by the rays  a t  the end points. 

is essentially on the path defining the function ( fo r  r e a l  positive z ) .  

path of steepest  descent is given by 

and InYnt l  f r o m  the o the r s .  In these special  
n ,  0 

In the remaining c a s e s  the saddle point (8)  

The 

n t l  n t l / n  n (x) I m  (z t - t  / ( n t l )  = Im z 

F o r  z r ea l  and  positive this reduces to  

n t l  n 1/ n Im ( t - t  / ( n t l )  z )  = - Im z . 
n+ 1 

( 9 )  
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FIGURE I. CURVES DEFINING SOLUTIONS TO EQUATION 
FOR REAL, POSITIVE 2. 
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The actual calculation of the path defined by (9a) is not necessa ry .  

can show trivially that the paths must  necessar i ly  be nea r  to the rays 

cx 

'0, for  fixed z. 

One 

by writing t = reiq and observing in  (10) that a s  r -c a, s in  ( n t  l ) q  must  k '  

r [ sin 

In the vicinity of 

the exponential, 

l / n  . 
n r n s in  ( n t l ) q ]  = - Imz cp - ,m n t l  

the saddle point we must  inspect the second derivative of 

n 
h" = -nt n-1 / z  1 n = - n / G  (11) 

t = G  

Then the direction of the s teepest  descent  path through the saddle point tk 

is given by the requirement  that the angle c,o be such that the exponent k 

( pei*)2 
n 2 z n  F = - Z  1 / 2  - ( t - t  ) = - z - 

G- k K 
be r ea l  and negative. Thus i f  

k=  r l / n e i 8 k  Y 

then 

qk = ek/Z 

F r o m  f igure 2 i t  i s  c l e a r  that, f o r  k 3 0 ,  ( n t l ) ,  the direction given by 

(12) i s  essentially that of the original path n e a r  the saddle point. 

the original path of integration c 

into the path of s teepes t  descent .  

positive z, 

Thus 

for  i f 0,  ( n t l ) ,  can be deformed 

Thus we obtain the r e su l t ,  fo r  r e a l  

i '  

where the kth root of z (counterclockwise) is taken f o r  In,  k .  F o r  k = 0 
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j / n = 5  

\ 
\ 
\ 

n 
Saddle points: to= &- 

Angle of steepest descent = 1/2 arg(to) 

FIG.2 SADDLE POINTS AND STEEPEST 
DESCENT CURVES FOR n = 5  
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i s  the ent i re  rea l  ax i s .  (If n i s  even, this path goes through the saddle 

point on the negative r ea l  axis and i s  a path of s teepest  ascent  f o r  that  

point. Thus the path defining 

the integral  I o r  I can not be deformed into a path of s teepest  

descent with negligible contribution f r o m  the deformation. 

path of definition can be deformed into a path through the saddle point a t  

8 

r ea l  ax i s .  The path through the saddle point a t  o r  8 i s  a path of 

s ta t ionary phase.  

r e a l  ax i s ,  then turn and proceed on the path of s teepest  descent .  

this can be done is obvious f r o m  the following. 

the contribution of the saddle point a t  O1 o r  

than that of the saddle point on the r e a l  ax i s .  

is one of constant amplitude, s o  that somewhere the path of s teepest  

descent  reaches the same  amplitude a s  the pathes of s ta t ionary phase 

through the points a t  8 

angle of 45' with the path of s teepes t  descent through the saddle point, 

and thus there  is  a path of stationary phase through the points a t  el and 

and I n , n + l  'n-1 n ,  0 

have two contributions. We chose to take a s  a fundamental function a 

l inear  combination of these two which eliminates some of the second 

contribution. Let 

Otherwise i t  is a path of pure descen t . )  

n ,  0 n , n t l  
I 

However, the 

o r  On - 1 0 
respectively plus a path through the saddle point a t  8 on the 

n-1 

We shall  follow this path to i ts  intersection with the 

That 

F r o m  (12) i t  follows that 

is sma l l e r  in amplitude 

A path of s ta t ionary phase 

and en The path of s ta t ionary phase f o r m  an 1 - 

which proceeds to the r ea l  ax i s .  Thus the integrals  I 

f ( z )  = I n , n  n ,  o - I n , n + l  

f (2) * - exp{ii(n+l)/n (m- n 
n , n  

~ 

then 
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The middle two t e r m s  add, and, f o r  r ea l  positive z ,  the f i r s t  and l a s t  

t e r m s  have the s a m e  rea l  par t ,  and opposite signs on their  imaginary 

p a r t s .  Now i f  we define 

- 
fn ,  k - In,k 1c k n-1 

we have 

Theorem 1 

independent s e t  of solutions to ( 6 ) ,  and thus all solutions.  

Proof The fact  that they fo rm no more  than n follows f r o m  Lemma 2 .  

The fac t  that they f o r m  exactly n independent ones follows f r o m  the 

asymptotic expansions (13) and (15). 

follows from the fac t  that  (6)  is l inear .  

The n functions f given by (14) and (16) f o r m  a l inearly 
n , k  

The fac t  that they f o r m  a l l  solutions 

Our resul ts  may be put on a f o r m  m o r e  useable f o r  analytic 

continuation if we a g r e e  to the following: 

principal root,  and 9 is the corresponding angle.  

any root  of z will be the 

Then we may wr i te  

1 L k L - n  - 1 

-rri/n ( n t  l ) / n  -2rri/n t e  e 
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Having shown that these integrals  represent  all solutions of (6 )  

we may use  the resul ts  of Turr i t in  (1950) o r  Heading (1957) which e s -  

tablishes Stokes' multipliers for  the connection of the different asymptotic 

solutions in various regions of the complex plane to various s e r i e s  

solutions about the origin. 

and f r o m  the point of view of applications, not very  informative.  

integral  representations give much s impler  and m o r e  useful fo rms  fo r  

the answer .  

The computations involved a r e  ra ther  tedeous, 

The 

Of par t icular  in te res t  f o r  many applications is the behavior of a 

given solution for  negative z ,  when i t s  behavior fo r  positive z is  known. 

This information is needed fo r  boundary value problems.  

s e e ,  one must  distinguish between n even o r  odd. A change of var iable  

z - )  - z  rotates the saddle points counterclockwise by r / n .  F o r  most  of 

the functions f the new position of the saddle points a r e  such that the 

calculations proceed exactly as before.  The exceptions a r e  those func- 

tions whose defining curves go through, o r  a r e  tangent to,  the r e a l  

ax is .  

A s  we sha l l  

n ,  k 

The path of s teepest  descent,  f r o m  (12), goes through the saddle 

point a t  an  angle given 

where 8 k 

c l e a r ,  s ee  figure 3 ,  that the direction of the path of s teepes t  descent  

is essentially that of the curve defining the function, except f o r  cer ta in  

cases  l isted below. 

is the angle of the saddle point for z r ea l  and posit ive.  It is 

and f , and fo r  
f n ,  n / 2  n ,  0 

The exceptional ca ses  a r e ,  for  n even ,  

and f . For f the defining curves  
n ,  (n-1)/2' f n ,  ( n t  1)/2 n ,  0 n ,  0 

n odd, f 
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n = S  
2 IS NEGATIVE = - c  

/ ' L  

FIG.3 LOCATION OF SADDLE POINTS AND 
DEFINING CURVES FOR FIG.2 IF Z IS  
REAL AND NEGATIVE 
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. .  

now have only a single saddle point to determine their  behavior,  and 

f o r  the other integrals there a r e  two saddle points instead of one. 

F o r  both odd and even n to find f we take the contribution 
n ,  0 

f r o m  the two saddle points and obtain, f o r  z = r e  + T i  = - 5 

1 ( n t  l ) / n  e r i / n  T i  ,/T- 5 -Zn 
f ( -2 )  ,,, -i erri/n 
n ,  0 

(18) 

5 ( n t  1) / n  e -.rri/n + 2 n ,  1 ) .  -n 
+ exp [x 

For f 

saddle points. 

the principal domain of the defining curve contains no n ,  n / 2  

The defining curve may be deformed into the curve of 

s teepest  descent only f r o m  the two saddle points of the adjoining region 

outward ( to  the lef t ) .  However, the two saddle points can be joined by 

paths of stationary phase.  Thus we obtain 

,,, J 2 r  
n z(  

J e r i - r i / 2 n  exp [x Z ( n t  l ) / n  e (n-Z)r i /n  1 n 

(19) 
)'n 1 n-1 f n ,  n /2  

-n ( n t l ) / n  7 
Ii Z 

r i / 2 n  
t e  exp[ ntl 

where again the prinicpal root i s  meant .  If we wr i te  

so  that 5 is real  and positive, then 

Thus 
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n T i  /n  n T i  /n  
n t l  n t l  where CY =- e and (3 = - e . Since a i s  positive 

this solution is exponentially growing, and a l s o  oscil latory.  

We may then conclude that 

Theorem 3 The only functions of this c l a s s  which change f r o m  purely 

exponential to purely oscil latory upon a change of z to minus z a r e  the 

Airy functions (n = 2 ) .  

We a r e  a l so  able to study the smal l  arguement  propert ies  of 

I t  is well known that there exists a s e t  these functions very  easily.  

of solutions 

n t l  
y1 = (1 t CY 1 x 

y2 = x (1 t CY2x 

yn = x (1 t anx t pnx * * ) ,  

t p1x2nf1 t . . . )  

n t l  t p2x2n+l t . . . )  

n-1 n t l  2 n t l  

reder ive his answers  in a much eas i e r  fashion. 

le t  

In each integral  we 

which solutions may be  found by the c lass ica l  method of Frobenius .  

F r o m  lemma 3 these se r i e s  have infinite radii  of convergence. The 

question is how do  these solutions connect with our solutions f n ,  k '  

This problem has been answered by Turr i t in  (1950). W e  show how to 

tn t  1 

n t l  
u = -  

s o  that 

-U 
1 

2 ~ i ( k t  1) / ( n t  1) 2 ~ r i ( k t l )  n x  e du exp z [ ( n t l )  e e 
U I  7 7 5 1  

( 2 2 )  
U 

- U  
1 

27rik n T  e du 

- - 
In, k (nt l )n /n+ l  

2 ~ i k /  ( n t  1) 
co 

U I  .n/n+l 
( n t  I ) ~ ' ~ ~ ~  0 U 

t e 1 exp z [ ( n t l b e  

We now expand the exponential in  (22)  in powers of z and integrate .  
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F r o m  (20)  i t  i s  c l ea r  that  only the f i r s t  n t e r m s  must  be obtained. 

The remaining t e r m s  may be obtained m o r e  easi ly  by the method of 

Frobenius and a uniqueness arguement.  Each of the integrals  in (22 )  

a r e  Gamma functions and thus the coefficient of the nth power of z in  

(22 )  is :1tm . . .  
2 r i  ‘ i T T  1 -  e 

m 1 t  m z : exp [2 r ik  (-)] n - m ) / ( n t  1) l t n  m!  ( n t l ) ‘  

Thus, fo r  example, 

] d-d r ( d )  t ze 2r id  2r id  I = e  - e 
n,  1 

t z  e 6rid },-3d (3d 

rid i 
t . .  

1 t m  r (-1 1 t n  

4rid - e  

By comparison to (20) we s e e  that 1 where  d =- n t l  e 

t e4rid {li - e2rid } d-2d (2d) y2 

t . . .  

Thus the Stokes’ multipliers may be calculated out for  each  solution. 

The resul ts  agree  with those of Turr i t in  (1950) and Heading (1957). 

F o r  the purpose of studying the merging of s e v e r a l  waves,  

theorem 3 shows that these solutions a r e  inappropriate .  

a t  most  two of the saddle points of ( 5 )  a r e  on the imaginary  ax i s ,  where  

they must  be fo r  steady waves.  

Only one o r  

Thus another  integral  is appropr ia te .  
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, Section 2 Merging Waves 

I t  is fa i r ly  c l ea r  that the co r rec t  extension of the Airy function which 
~ 

represents  severa l  waves is 

/ (n-2)  ! F ( z ) = S , e x p i { A t z  t t a 2 t  2 / 2 ! t  a 3 t  3 / 3 ! t  . . .  tn - 2 

t tn/n! } dt 

The function F ( z )  sat isf ies  the differential equation 

if c i s  any path whose end points eventually follow a radial  path to infinity 

in a s ec to r  such that t has  positive imaginary pa r t .  The r ea l  axis  is the 

t limit of such a path in the sense that the axis i s  taken a s  the l imit  a s  E - 0  

of a path f r o m  r exp i(rr  t (-l)n E ) ,  where n i s  the exponent in tn, to r exp i E  

Then the problem of representing seve ra l  waves by (1) is reduced basically 

n 

to the question of studying the real  roots of the derivative of the polynomial 

in the exponent of the integrand of (1). 

The use of (1) as the basic tool fo r  an asymptotic expansion can be 

.approached in seve ra l  ways.  One can t r y  to obtain a uniformly valid 

approximation to a sys t em of severa l  waves simultaneously.  

basical ly  the approach of Ches te r ,  F r i edman  and Urse l l  f o r  the case  of 

This i s  

two waves .  The idea proceeds basically a s  follows. Given that we have a 

s y s t e m  of s eve ra l  waves described by 

G (x)  exp (i zf ( x ,  r )  ) dx 

has seve ra l  rea l  z e r o s ,  f tends to Q) a s  z tends to  Q) and c is af 
ak w h e r e  

(3)  
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some path deformable to the r ea l  ax is ,  we a sk  how we can uniformly wr i te  

W ( z ) ,  asymptotically f o r  la rge  z ,  as a s e r i e s  of t e r m s  involving (1) and 

i t s  der ivat ives ,  taking (1) a s  a known function. 

Ches t e r ,  Fr iedman and Ursel l  for  two waves was that the des i red  r ep re -  

sentation could be obtained by chosing the coefficients in (1) s o  that the zeros  

The answer obtained by 

af corresponded to the zeros  of the derivative of the polynomial 
Of Ei 

a t a l t t t / 3  3 
0 

In this manner the implicit change of variables f r o m  x to  t ,  a s  given by 

(4) 
3 z f (x ,  r )  = a. ( r )  t al t t t / 3  , 

is a one-to-one change of variables uniformly for  a l l  x and t ,  which they 

showed in  detail .  

It i s  fa i r ly  c lear  that for  the case  of n nearby saddle points the 

appropriate change of variables i s  given by I 
a2 tL a t n t  1 n-1 tn-l 

(n-l) (n+l) z f ( x ,  r ) = a o ( r )  t a l t t  - t . . . t  2 (5 )  

where the change of variables would be uniformly one-to-one i f  the 

coefficients in (5)  were chosen s o  that the zeros  of 

zeros  of the polynomial 

af would a g r e e  with the -ax 

( 6 )  
n n-2 t . . . t  a 2  t t z = 0 .  + an-1 t 

The proof that (4) is one-to-one and the computation of the coefficients is 

quite tedeous. 

difficult .  

explicit formula exists for  the zeros  of an a r b i t r a r y  quadrat ic  polynomial 

in t e r m s  of the coefficients. However, there  is no r eason  to  believe that 

the transformation would not be one-to-one, despi te  the computational 

The corresponding calculations f o r  ( 5 )  would be even m o r e  

In fac t ,  for n > 3  the problem is unsolvable, in genera l ,  fo r  no 

~~ 
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difficulties. 

for  the roots of a cubic would enable one to determine the coefficients of (6) 

in  t e rms  of the zeros  of 

F o r  the case  of three merging waves (n = 3 )  the known formulas  

af 
E .  

There is , however, an inherent disadvantage in  using the approach of 

Ches te r ,  Fr iedman and U r s e l l  from the standpoint of relating the expansions 

thus obtained to the propert ies  of the original function f (x, r ) .  

widely separated saddle points , the usual expression f o r  W ( r )  is in t e r m s  of 

the s u m  of several  integrals ,  whereas only one integral  is obtained ( to  first 

o rde r )  in this uniform approach. Second, the usual s teepest  descent methods 

give the answers  direct ly  in  t e rms  of the second ( o r  higher) derivatives of f 

- a t  each saddle point. 

t e r m s  of the values of f only,at several  different points. 

to  then der ive expressions fo r  the various der ivat ives ,  the calculations a r e  

tede ous . 

F i r s t ,  for  

This uniform approach gives the answers  direct ly  in 

While i t  is possible 

F o r  the purpose of studying the wave behavior a s  the waves merge  

In the vicinity of i t  is more  convenient to adopt a non-uniform approach. 

n merging saddle points the ideas of the uniform approach show that the 

function f must  be approximated by an (n t l)th o r d e r  polynomial. 

question is how to chose the coefficients. 

the slope of the polynomial to that of f a t  n points. 

match one point a s  well  as possible, by matching the Taylor s e r i e s  expansion. 

We may thus study the behavior of that par t icular  wave. 

The 

The uniform approach is to f i t  

We chose instead to 

Le t  the saddle point be a t  the origin x = 0.  Then we have 

f " ( 0 )  2 f " ( 0 )  3 x t... ) 31 z f ( x ,  r )  = z( f  (0)  t 2'x ( 7 )  
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We wish to approximate this by 

Our approximation procedure i s  to close the variable t ,  the expansion point 

t and the coefficients a to match the f i r s t  n t e r m s  of ( 7 )  exactly.  Expanding 

(5a) and equating like powers ,  the coefficients of tntl  and tn give 

0 n 

n+* f y  0) t =  
0 ET Lf(nt 1) (o )  ] n / ( n t  1) 

The expressions for  the coefficients ai a r e  m o r e  complicated.  We note that 

for  a we 
0 I 

2 (-1)"+l n t l  a 0 = z f ( o )  t z l t o - a Z  t 0 t. ..t n t l  to 

Thus f r o m  (10) we see  that i f  the nth derivative vanishes ,  t 0 = o and s o  (11) 

reduces to the usual simple f o r m  a. = z f (o )  

a n 

f o r .  

I t  is c l e a r  that the coefficients 

can be computed i teratively and thus any degree  polynomial can be solved 

(This is in contrast  to the uniform approach which requi res  that the 

roots of an nth degree polynomial be found - -  a procedure generally impossible 

f o r  n - > 5 . )  We exhibit these coefficients explicitly for  n = 4 .  

= 314 { 3 f l l  
a1 = 2 

0 
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i 

Thus the study of (3) ,  to f i r s t  o rder ,  reduces to  the study of ( for  these waves) 

h(z)  = 1 exp i{ a t a l t  t a2 t 2 / 2  t t4/4 } dt  
0 

0 j' e x p i { a l t t  7 a2 t 2 t  t 4 / 4  } dt  . 

A closed f o r m  evaluation of the integral  on the right hand s ide of (13) i s  not 

known. However, f r o m  (12) we can see  what a r e  the various possible l imits  

which will  give expressions such that the integral  can be evaluated conveniently. 

First we note that i f  f " (o)  and f"'(o) a r e  both ze ro ,  that  is the three  

waves have merged,  then we have al  = a2 = 0 ,  a. = z f (0) and thus we have the 

expected answer ,  

4 i t  
e x p ( T ) d t ,  s 1 where  c is the constant (=  

in t e r m s  of the gamma function. 

( :)1/4 r (z) ) gotten by evaluating 

F o r  sufficiently sma l l  f"(o)  and f " '  (0) (measured  against  powers of 

z according to (12) ) we may evaluate 

F ( z )  = S e x p i  { a l t  t -z a2 t2 t t4 /4  } dt  

4 
by 2 

i t  ia t 

> 4  
a12 t2 2 F ( z ) =  S { l + i a l t -  .-t...+ 2 t . . .  exp-  

(15) 

d t  . 

Letting 
4 t i a= - u  
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We have then 

Theorem 4 F o r  sufficiently smal l  f "  and fill, 

t izfiv)3 /2 [ 3f f iv  - ( f" ' )  2 ] 2 r ( 3 / 4 )  + . . . } a  

4! ( f i y  
-32 ( 

F o r  the case  f"(o) = 0 then (16) reduces to 

1 /4  f111)4  
h(z)E z (-) 4! { exp i a. } { r(i)  t 6 ( i ( a  )ll2 r (i) 

i z t V  4! ( f iv )3  

It is c l ea r  that the approach to the s t r ic t ly  merged  case  goes a s  a power of 

the rat io  ( 

upon this ra t io .  

f " '  tends to z e r o  fast  enough so  that this ra t io  remains  l e s s  than 1 a s  z 

gets la rge  then (17) i s  an  adequate approximation. 

(z1/4 f111)4  
) .  And f r o m  (12) the expression f o r  a 0 depends a l s o  

If 
(f iv)3 

This i s  our measu re  of smal lness  r e f e r r e d  to  above. 

On the other hand, consider the case  where  two saddle points approach 

the third symmetr ical ly  so  that f l"(o) = 0.  Then (16) reduces to 

2 
)1/2 r ( z )  t . .  . iz(f") 

4! f iV 

1 h(z)  z z  ( -% )1/4 exp izf( 0) 
izflV 

In contrast  to the previous c a s e  where f" '  = +-'I4) fo r  an  adequate 
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approximation, we need f "  = o ( z - ~ / ' ) .  Also,  f o r  r ea l  values of f ( n ) ,  the 

init ial  correct ion to the s t r ic t ly  merged value was independent of the sign 

of f " '  in the previous case .  

sign of f " .  

F o r  this c a s e  the correct ion depends upon the 

We now consider what happens if the saddle points a r e  not too c lose .  

We may evaluate (13) itself by a simple saddle point method. Le t  

2 
k(t) = a l t  t a 2  t / 2  t t4/4 

Then the saddle points of k( t )  a r e  a t  

3 al t a 2 t  t t = 0 

Using s tandard methods f o r  solving a cubic we see  that the 

roots depend upon the sign of the discr iminant  

2 3 
al a2 
+27 D = -  

4 

If the quantities in  (21) a r e  r ea l ,  then it is well known ( see  

that (20) has  3 r ea l  unequal roots i f  D <  0 ,  th ree  r ea l  roots 

(20) 

nature  of the 

any algebra text) 

- -  a t  l ea s t  two of 

which a r e  equal - -  if D = 0 and one r ea l  root ( 2  complex) if  D > O .  

complex root gives an exponentially varying solution. 

r ep resen t s  an  expansion of f ( t )  about one of the three waves.  

we  must  have DCO.  

which the expansion i s  made, and accurately represents  the wave in question. 

As shown in  the case of two waves i n  Comstock (1966), the other two roots 

r ep resen t  the other two waves,  much l e s s  accurately.  At the merging we 

A 

The quantity (19) 

Thus initially 

One of these three  roots represents  the point about 
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have f "  and f " '  both vanishing and thus D vanishes.  

a f t e r  the merging. 

sign o r  not. 

(21), change the nature of the resu l t s .  There a r e  s t i l l  3 r ea l  roo ts .  I t  is 

the sign of f "  and the relative magnitudes of f" and f " '  which determine 

whether "after" the merging there  will be three waves o r  one.  

We may a s k  what happens 

The answer depends upon whether the derivatives change 

Curiously enough, a change in sign of ( f l l t )  alone does not,  f r o m  

Since 

then a s  long a s  any of the saddle points a r e  on the r ea l  ax is ,  that axis is a 

path of stationary phase. If two of the saddle points a r e  complex, then the 

major  contribution to the integral  is jus t  f r o m  the one r ea l  root and there  

is jus t  one wave. 

which of the waves survives .  In this ca se  

By tracing the roots through z e r o  one can determine 

h ( z ) = ( -  3! )1'4 exp i (ao  t 3 a l  t o t  1 a 2  t 2 ,  i y  (23) 
a 2 t 3 t  

0 
zfiV 

where t 

then (23 )  behaves a s  (G)-', a s  expected. 

is the rea l  solution of ( 2 0 ) .  Since a 2  and t both behave a s  +& 
0 0 

We have seen how, a f te r  the merging of the three  waves,  there  may 

emerge  one wave or th ree ,  depending upon the values of the derivatives of 

f nea r  the m e r g e r  point. 

If D does not change sign a t  the merging point, then all th ree  waves 

One can t race  survive.  

the three waves by following the roots through the z e r o .  

formulas  to  do so  a r e  given below in (24 ) .  

one of the roots represents  accurately the amplitude of the wave, since 

the expansion is about one of the waves.  

However, there  may be an  interchange of energy .  

The necessa ry  

One m u s t  r e m e m b e r  that only 
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Is i t  possible that no wave will e m e r g e ?  F o r  this to happen, a l l  

th ree  roots of (20) must  be complex. 

of (20) a r e  complex. 

points, we look a t  i t .  

point t in the exponent a r e  such that the exponent is proportional to  z. 

Thus while a change in  sign of z makes a. complex, i t  still does not make 

the exponent complex. Complex values of the derivatives of f a r e  sufficient. 

This can happen only i f  the coefficients 

Since the formula (23) is valid f o r  any of the saddle 

The combination of the coefficients a .  and the saddle 
1 - 

0 

1 

It is unlikely, however, that this would happen. 

a complete cancellation of all of the waves.  

Thus one would not expect 

To see  in m o r e  detail  the behavior f o r  the waves,  one needs the 

complete formulae f o r  the saddle point. W e  give them h e r e .  

4 
A =  d m  (f iv ) -3 /4  i f 1 1 1  { 3 f l l f i v  - ( f l l l ) 2  } t f l l f i v  & f l l  f iv - 3(flIl)' , 

These formulae a r e  sufficiently complicated that an  analysis fo r  general  

functions f i s  not par t icular ly  valuable. We have discussed those aspects  

which a r e  readily amenable to  discussion, and have indicated how one 

might study the merging of several  waves.  We have the fur ther  details  to 

a r e a d e r  who has  a specific case to  investigate.  
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