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ABSTRACT

The question of how to obtain an analytic description of the merging
of several waves is studied. It is assumed that the wave structure is given
as a complex integral (say a Fourier integral) and an asymptotic approximation
is desired. Motivated by the work of Ursell we study the asymptotic
properties of integrals of the form S'exp ip (t) dt where p(t) is a polynomial
in t. Explicit asymptotic formulas are obtained for the two types of
n-1

polynomials p(t) = zt + tn+1/n+l and p(t) = a, t+ 2, t2 +.o.ta gt

+ 27 (ne1).




Section 0 - Previous Work

In studying the problem of wave propagation in various media, the
solution is often written as an inverse Fourier transform. If the problem
is somewhat complex the transform must often be evaluated by the
methods of steepest descent or stationary phase. In this paper we wish
to investigate a problem which can arise in the use of these methods,
namely the case where the integrand has several saddle points at approx-
imately the same point. The situation we have in mind is one where several
waves are interacting to give some form of cancellation.

A case of two waves interacting, of the kind we have in mind, has

been thoroughly studied by Urse11(1964).

The particular case he considers
is the Kelvin ship wave problem, where in an arc of angle 39 1/2

degrees astern of a ship there are two waves. At an angle of 19 3/4 degrees
either side of the stern line the two waves merge in a strange fashion, and
outside this angle there are no waves. Ursell, following previous work by

Chester, Friedman and Urse11(1957)

, showed that this phenomenon can be
adequately described by the use of a modification of the method of steepest
descent, which is now briefly described.

In the methods of steepest descent or stationary phase one is

interested in evaluating integrals of the form

3
f(\) =§ g(z) exp {)\ f(z)j'dz (1)
c
where the path c is sufficiently long (compared to something) to be con-
sidered infinite, and X is large. The procedure is to look for points
z in the complex z plane such that f' (zo) = 0. The path ¢ is then deformed

to pass through the points z (if this can be done) so that the major con-

tribution to the integral is given by the values of the integrand near z




In this way the exponential is given essentially by

£'" (z ) 2

exp{h f (z)}z exp )\{f(zo) + —'2—9— (z-z )" (2)

e

In the ship wave problem there are two such points, whose location is
dependent on the angle ¢ astern of the ship. (Thus f = f(z;¢)) . However,
as @ approaches the critical angle ®, of 19 3/4, the two saddle points z
approach each other and the second derivative in (2) vanishes. Thus at

the critical angle ¢, we have

f"'(z ) )
exp {)\ f(z;goo)}zexp N {f(zo;¢o) + ___?%-—9- (z_zo)3 } (3)

Thus the exponent is no longer a quadratic of the form a + bx2 but a cubic
of the form a + cx3.

The question answered by Chester, Friedman and Ursell, and in
more detail by Ursell was that of how to obtain one representation of the
exponential which reduces to the two separated waves of the form (2) for

@~ 7° and which reduces to the single cubic (3) as s Their solution

was that f(z;¢) could be adequately represented in the entire region by

fl(z;M)=a + bx + x3 (4)

This is perhaps a bit surprising because the essential nature of both (2)
and (3) is that the first order term is missing. They show that it is not
only adequate but extremely convenient to use the form (4).

In this paper we consider what is the logical extension of their

ideas to the case of several saddle points merging at some point.

Section 1 ~ Generalized Airy Functions

The apparent extension of the idea of Chester, Friedman and Ursell




would be to consider approximating (1) by an integral of the form
1 )
In(z) = S‘ exp {zt - tn+ /[(n+1) }dt (5)
c

where ¢ is some contour in the complex plane for which the integral
converges for all z. We investigate the functions defined by (1) which are
generalizations of the Airy functions.

First we have
Lemma 1l Let c be any path such that (5) converges absolutely. Then (1)

satisfies the equation

J Ly =0 (6)

Proof Under the hypothesis differentiation under the integral sign is

valid. Then if y = Irl

y(n) - zy S'(tn - z) exp {zt - tn+1/(n+1) }dt

C

-exp {tz - tn+1/(n+ 1)}

:0,

b
a

where a and b are the end points of the path ¢, since the integrand must
vanish at the end points. Thus the lemma is proved.

Let a . be the angle associated with the ith member (counting
counterclockwise from the positive real axis) of the (n+1) roots, n+1,\/—1-‘
Let c; be a path from infinity to infinity starting on a ray with angle @il
and ending on a ray with angle a .- Then these (n+1) paths define (n+1)
functions In i

3

Lemma 2 These (n+1) functions are linearly dependent.




Proof The sum In, of In,l + . 'In,n+1 form an integral around a closed

contour. The integrand is everywhere analytic. Thus by Cauchy's
theorem the sum is zero.

Thus the functions In,i form at most n linearly independent
solutions of (6). To prove that they form exactly n solutions we need the
following:

Lemma 3 All solutions of (6) are entire functions of z.

Proof We need only note that (6) has no singular points except z = «.

We now proceed to show that the first n of these solutions have,
on some ray, distinct different asymptotic behaviors. Our contention

will then be proved. We consider

a
1 = S‘ k exp {zt-tn+1/(n+1) 1‘ dt (7)
n, k b . J
k
where ak = ® e2"1k/(n+ 1) and bk =ap . and the path is shown in figure 1.

The integrand has saddle points at

d—f— (t - 2 2me1)) =1 - %2 = 0,
n
or tk =Nz . (8)
We must distinguish I and I from the others. In these special
n,o n,n+1

two cases the saddle point (8) is on the boundary of the region defined
by the rays at the end points. In the remaining cases the saddle point (8)
is essentially on the path defining the function (for real positive z). The

path of steepest descent is given by

Im(zt—tn+1/(n+1) = Im zn+1/n( =) (9)
n+l
For z real and positive this reduces to
n+1 n 1/n
Im (t-t /(n+l) z2) = ——— Im 2z . (9a)

n+l




FIGURE |. CURVES DEFINING SOLUTIONS TO EQUATION
FOR REAL, POSITIVE Z.




The actual calculation of the path defined by (9a) is not necessary. One

can show trivially that the paths must necessarily be near to the rays

@, , by writing t = re'?

kl

—0, for fixed z.

and observing in (10) that as r — ®©, sin (n+1)p must

n
r [ sin ¢ - ?(':Tl)' sin (n+1)@] = n?-l Imzl/n. (10)

In the vicinity of the saddle point we must inspect the second derivative of

the exponential,

- n
h' = -ntn_l/z n = -n/Nz (11)

tsNz

Then the direction of the steepest descent path through the saddle point t

k
is given by the requirement that the angle P be such that the exponent
2 Z n igk,2
F=-z1/2-n—(t-t) = - ( pe )
¥z K 7wy
be real and negative. Thus if
n .
Na = rl/nelek '
then
¢, = ©9,/2 (12)
From figure 2 it is clear that, for k % 0, (n+1), the direction given by
(12) is essentially that of the original path near the saddle point. Thus
the original path of integration s fori # 0, (n+1), can be deformed
into the path of steepest descent. Thus we obtain the result, for real
positive z,
N J (n+1l)/n, n . / 2
In,k exp {z (n+1 ) + 1/216k '\/nlzl CENE (13)

where the kth root of z (counterclockwise) is taken for Irl K’ Fork =0




n
Saddle points: t_= Nz

Angle of steepest descent = 1/2 arg(to)

FIG. 2 SADDLE POINTS AND STEEPEST
DESCENT CURVES FOR n=5




or (n+1) the saddle point is on the real axis, and from (12) the path of
steepest descent goes through this point along the real axis, and in fact,
is the entire real axis. (If n is even, this path goes through the saddle
point on the negative real axis and is a path of steepest ascent for that
point. Otherwise it is a path of pure descent.) Thus the path defining
the integral In’ o °F In,n+1 can not be deformed into a path of steepest
descent with negligible contribution from the deformation. However, the
path of definition can be deformed into a path through the saddle point at

91. or Gn respectively plus a path through the saddle point at 90 on the

-1
real axis. The path through the saddle point at 91 or en_l is a path of
stationary phase. We shall follow this path to its intersection with the
real axis, then turn and proceed on the path of steepest descent. That
this can be done is obvious from the following. From (12) it follows that
the contribution of the saddle point at 91 or en-l is smaller in amplitude
than that of the saddle point on the real axis. A path of stationary phase
is one of constant amplitude, so that somewhere the path of steepest
descent reaches the same amplitude as the pathes of stationary phase
through the points at ©

and Bn The path of stationary phase form an

1 -1

angle of 45° with the path of steepest descent through the saddle point,
and thus there is a path of stationary phase through the points at 61 and
6 which proceeds to the real axis. Thus the integrals I and I

n-1 n, o n,n+l1
have two contributions. We chose to take as a fundamental function a

linear combination of these two which eliminates some of the second

contribution. Let

fn,n (z) = In,o - In,n+1 (14)

then

£ (z)~ - / 2m exp{z(n+1)/n (0 i }

) + 0
n,n n+l 2 1
n lz' (n-1)/n




n |z
2 (n+1)/ i » (15)
¥ Jn Iz‘ T%n-ﬁ/n °*p {z : )t 3 On+ 1}
2 - (n+1)/ i
* Jn Izl ?n—l)/n exp {Z : ’ (nrl )+ —12' 6n }

The middle two terms add, and, for real positive z, the first and last

2 (n+1)/ i
T T exp L7 s oo, )

terms have the same real part, and opposite signs on their imaginary

parts. Now if we define
{ =1 1€ k € n-1 (16)

we have
Theorem 1 The n functions fn,k given by (14) and (16) form a linearly
independent set of solutions to (6), and thus all solutions.
Proof The fact that they form no more than n follows from Lemma 2.
The fact that they form exactly n independent ones follows from the
asymptotic expansions (13) and (15). The fact that they form all solutions
follows from the fact that (6) is linear.

Our results may be put on a form more useable for analytic
continuation if we agree to the following: any root of z will be the

principal root, and © is the corresponding angle. Then we may write

. r .
fn k(z) N e-rrlk/n exp I _n Z(n+1)/n e21r1k/n } (142)

n zln—li n L n+l

1€k€n -1
2T n (n+l)/n
fn,n( '\/-—(——T)—-/rﬁ— [Zexp {m— zZ }
+ e-ni/n exp {nil Z(n+1)/n e—Z-rri/n } (162)

) e1Ti/n exP{nfl z(n+1)/n e.?.-rri/n }]
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Having shown that these integrals represent all solutions of (6)
we may use the results of Turritin (1950) or Heading (1957) which es-
tablishes Stokes' multipliers for the connection of the different asymptotic
solutions in various regions of the complex plane to various series
solutions about the origin. The computations involved are rather tedeous,
and from the point of view of applications, not very informative. The
integral representations give much simpler and more useful forms for
the answer.

Of particular interest for many applications is the behavior of a
given solution for negative z, when its behavior for positive z is known.
This information is needed for boundary value problems. As we shall
see, one must distinguish between n even or odd. A change of variable
z— -z rotates the saddle points counterclockwise by w/n. For most of
the functions fn,k the new position of the saddle points are such that the
calculations proceed exactly as before. The exceptions are those func-
tions whose defining curves go through, or are tangent to, the real
axis.

The path of steepest descent, from (12), goes through the saddle

point at an angle given

o = (8 + m/n -m)/2, (17)

where Gk is the angle of the saddle point for z real and positive. It is
clear, see figure 3, that the direction of the path of steepest descent
is essentially that of the curve defining the function, except for certain

cases listed below.

The exceptional cases are, for n even, f and { , and for
n,n/2 n, o

b4

n odd, f and { For f the defining curves
n n,o

]

n, (n-1)/2" fn, (n+1)/2

H
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n=5
Z 1S NEGATIVE

-t

FI1G.3 LOCATION OF SADDLE POINTS AND
DEFINING CURVES FOR FiG.2 IF Z IS
REAL AND NEGATIVE
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now have only a single saddle point to determine their behavior, and
for the other integrals there are two saddle points instead of one.

For both odd and even n to find fn o We take the contribution

3

from the two saddle points and obtain, for z = ret™ - . 3
o s o 2T mi/n -n (n+1)/n wi/n wi
f, o2 ™ - pt@-07n {exp 77 ¢ e -]

(18)

g(n+1)/n e-Tri/n N i ] 1’

-n
+ exp [n +1 2n

J
For fn,n/2 the principal domain of the defining curve contains no
saddle points. The defining curve may be deformed into the curve of
steepest descent only from the two saddle points of the adjoining region
outward (to the left). However, the two saddle points can be joined by

paths of stationary phase. Thus we obtain

fn,n/z ~ J__(_TT _J' mi-wi/2n exp [n+1 z(n+1)/n e(n-Z)-n-i/n]
(19)
¢ emi/2n xp|[ +1 Z(n+l)/n] }

where again the prinicpal root is meant. If we write
i
z=e" &,

so that £ is real and positive, then

f (-z) ~ -i ZWe“i/n {e [ n g(n+1)/n 11'1/n i ]
n,n/2 W Xp Zn_
- exp [;11—1§(n+1)/n .-mi/n _2r_rx_i__] }
Thus
.fn,n/Z (-z) ~ N %‘e(z—i_/f;; exp(e £t D/0y i (8 glnt1)/n 5= ), (19a)

n
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= e . Since o is positive
n+1 p

where o = em/na dp a mi/n

n+l

this solution is exponentially growing, and also oscillatory.

We may then conclude that
Theorem 3 The only functions of this class which change from purely
exponential to purely oscillatory upon a change of z to minus z are the
Airy functions (n = 2).

We are also able to study the small arguement properties of

these functions very easily. It is well known that there exists a set

of solutions

vy = (1 + alxn+1 + [31x2n+1+ ces)

yp=x 1+ apx™ iy p®0th (20)
_ .n-1 n+1l Z2n+1

v, =X (1+oznx +ﬁnx + ...),

which solutions may be found by the classical method of Frobenius.
From lemma 3 these series have infinite radii of convergence. The
question is how do these solutions connect with our solutions fn,k'
This problem has been answered by Turritin (1950). We show how to

rederive his answers in a much easier fashion. In each integral we

let
1:n+1
vy (21
so that
. O 1
e2m(k+l)/(n+1) S‘ 2mi(k+1) ]n+1 e "du
In,k= ST exp z [ (n+l) e u T7nrl
(n+1) ® ) u (22)
[e0]
eka/(n+1) [(nt1) 2mik al n+ e Ydu
+ 7o+l exp zi\n n/n+1
(n+1) o u

We now expand the exponential in (22) in powers of z and integrate.
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From (20) it is clear that only the first n terms must be obtained.
The remaining terms may be obtained more easily by the method of
Frobenius and a uniqueness arguement. Each of the integrals in (22)

are Gamma functions and thus the coefficient of the nth power of z in

(22) is (Ltm
1 - eZTri 1+n
m . 1+m 1+m
z . exp [2wik (1+n )] )(n-m)/(n+1) r <1+n ) (23)

m! (n+l

Thus, for example,

- eZTrid{l i eZTrid} a4+ ze41rid{ | . 4mid } a-24 1 (2q)

LS { ] - bmid }d'3d r(3d) + ... (24)
where d ='?11T1— . By comparison to (20) we see that
L -  2wid {1 ) lerid} a4r @y,
, JAmid {n _ 2mid } a2 g V) (24a)
+ .

Thus the Stokes' multipliers may be calculated out for each solution.
The results agree with those of Turritin (1950) and Heading (1957).

For the purpose of studying the merging of several waves,
theorem 3 shows that these solutions are inappropriate. Only one or
at most two of the saddle points of (5) are on the imaginary axis, where

they must be for steady waves. Thus another integral is appropriate.
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Section 2 Merging Waves

It is fairly clear that the correct extension of the Airy function which

represents several waves is

F (z) = S; exp i {A +z t+a2t2/2'. + a, t3/3! tooota 5 tn_z/(n-Z)!

+ t%/n! } dat (1)
The function F (z) satisfies the differential equation

y(n_l) (z) + a o y(n_3) t.oootag y' + a, y'+2zy=0 (2)

if ¢ is any path whose end points eventually follow a radial path to infinity
in a sector such that t" has positive imaginary part. The real axis is the
limit of such a path in the sense that the axis is taken as the limit as ¢ —~ot
of a path from r exp i{mr + (—1)n €), where n is the exponent in t?, to r exp ie.
Then the problem of representing several waves by (1) is reduced basically
to the question of studying the real roots of the derivative of the polynomial
in the exponent of the integrand of (1).

The use of (1) as the basic tool for an asymptotic expansion can be
.approached in several ways. One can try to obtain a uniformly valid
approximation to a system of several waves simultaneously. This is
basically the approach of Chester, Friedman and Ursell for the case of
two waves. The idea proceeds basically as follows. Given that we have a
system of several waves described by

W(zr) = S‘ G(x)exp(izf (x, r))dx (3)

c

where of has several real zeros, f tends to @ as z tends to @ and ¢ is
ok
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some path deformable to the real axis, we ask how we can uniformly write
W (z), asymptotically for large z, as a series of terms involving (1) and

its derivatives, taking (1) as a known function. The answer obtained by
Chester, Friedman and Ursell for two waves was that the desired repre-
sentation could be obtained by chosing the coefficients in (1) so that the zeros

of -gf—{ corresponded to the zeros of the derivative of the polynomial

3
ao+alt+t/3

In this manner the implicit change of variables from x to t, as given by

2f(x, T)=a_(r) +a t+ /3, (4)

1
is a one-to-one change of variables uniformly for all x and t, which they
showed in detail.

It is fairly clear that for the case of n nearby saddle points the

appropriate change of variables is given by

a tz an—l -1 tn+1
z f (x, r)=a0(1') tajtt —— +... 4 o) ¢ + (n+1) (5)

where the change of variables would be uniformly one-to-one if the
coefficients in (5) were chosen so that the zeros of -g-i would agree with the

zeros of the polynomial

t +...+a2t+z=0. (6)

The proof that (4) is one-to-one and the computation of the coefficients is
quite tedeous. The corresponding calculations for (5) would be even more
difficult. In fact, for n>3 the problem is unsolvable, in general, for no
explicit formula exists for the zeros of an arbitrary quadratic polynomial
in terms of the coefficients. However, there is no reason to believe that

the transformation would not be one-to-one, despite the computational
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difficulties. For the case of three merging waves (n = 3) the known formulas
for the roots of a cubic would enable one to determine the coefficients of (6)
in terms of the zeros of -‘?ri .

There is, however, an inherent disadvantage in using the approach of
Chester, Friedman and Ursell from the standpoint of relating the expansions
thus obtained to the properties of the original function f(x, r). First, for
widely separated saddle points, the usual expression for W(r) is in terms of
the sum of several integrals, whereas only one integral is obtained (to first
order) in this uniform approach. Second, the usual steepest descent methods

give the answers directly in terms of the second (or higher) derivatives of f

at each saddle point. This uniform approach gives the answers directly in

terms of the values of f only,at several different points. While it is possible
to then derive expressions for the various derivatives, the calculations are
tedeous.

For the purpose of studying the wave behavior as the waves merge
it is more convenient to adopt a non-uniform approach. In the vicinity of
n merging saddle points the ideas of the uniform approach show that the
function f must be approximated by an (n + 1)th order polynomial. The
question is how to chose the coefficients. The uniform approach is to fit
the slope of the polynomial to that of f at n points. We chose instead to
match one point as well as possible, by matching the Taylor series expansion.
We may thus study the behavior of that particular wave.

Let the saddle point be at the origin x = 0. Then we have

£1(0) 3

2f(x, r) = z (£ (0) + EQZQXZ + =

... (7)
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We wish to approximate this by

#n-1 n-1 (t- to)n+1

Our approximation procedure is to close the variable t, the expansion point

t, and the coefficients a to match the first n terms of (7) exactly. Expanding

n+l and t" give

n+1 )
t= /zf[ ) (0) x, (9)

n.

(5a) and equating like powers, the coefficients of t

n+l (n)
t = WE £ (0) , (10)
o n' [f(n+1)(0)]nf(n+1)

The expressions for the coefficients a; are more complicated. We note that

for a we
o

n+l
t2 + + (-1) n+1‘

20 7 Tl to (11)

ao=zf(o)+z -a

1 to
Thus from (10) we see that if the nth derivative vanishes, to = o and so (11)
reduces to the usual simple form a_ = zf(o). It is clear that the coefficients
a can be computed iteratively and thus any degree polynomial can be solved
for. (This is in contrast to the uniform approach which requires that the

roots of an nth degree polynomial be found -- a procedure generally impossible

forn > 5.) We exhibit these coefficients explicitly for n = 4.

a, =3 (3r 1z {an giv) (f...)Z} (£1vy-6/4

)
t

=2 (_35‘__)3/4 {3fn f(iv) - (flll)z} £ (fiv) '9/4 (12)

)
I

2
1 (£'") n ¢(iv) 111y 2
o z{f(o)+g W3[4f AR (AL T }
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Thus the study of (3), to first order, reduces to the study of (for these waves)

h(z) = § expi{a°+a1t+ a, t2/2+ t4/4} %t}f' dt (13)
31 .1/4 o . 2 2. 4

z(w) exp ia_ Sexp1{a1t+ -t +t/4}dt.
A closed form evaluation of the integral on the right hand side of (13) is not
known. However, from (12) we can see what are the various possible limits
which will give expressions such that the integral can be evaluated conveniently.

First we note that if {'" (o) and {f''"(0) are both zero, that is the three
waves have merged, then we have a; =a, = 0, a =z f (o) and thus we have the

expected answer,

h(z)zc(;(%m-) 1% exp iz £ (o), (14)
4

4,1/4 r (Zl') ) gotten by evaluating gexp(%—)dt.

where ¢ is the constant (=21- (i—

in terms of the gamma function.

For sufficiently small f'"' (o) and "' (o) (measured against powers of

z according to (12) ) we may evaluate

3 2 .4
F(z)zj‘expl {alt+ - t o+t /4 } dt (15)
by
a1 t iazt it4
F(Z)z§{1+lalt-——z—+-.+ T+..}GXPT dt .
Letting

. t4__u
lz-—
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then
\5/4 3/2
F(z )~2'(4 1/4 {F(Zl)+(—14—14)—— 1"(2-) ‘("il)“——(az‘*'ialz)r(%)-l'..-}

We have then

Theorem 4 For sufficiently small f' and ',

1 1" 1 111
h(2) =5 ()% expli 2 ) { T (}) -8 ta£")3/4 [0 ffw)af T (e
. v i
-6 (__+1::f 1/2 [an - (fHI)Z] 1"(3/4) (16)

(V)

. [RE 2
-32(+—1,:£—3/2[3f"f S22 & (f’ivf(3/4)+...} .

For the case {'"(o) = 0 then (16) reduces to

1 1/4 4
h(z)"‘-‘-zl-(.‘li' i/ 4 {expla }{r(Z +6(1(z LI S0 N, )I/Zr(%)
izf 4! (£)

1v, 3

|||4
+ (1( £) )3/4r(1/2)+...} (17)
4 (£

It is clear that the approach to the strictly merged case goes as a power of
1/4 ..,4
f !

the ratio ((—Z—-—i—‘7—3—)— ). And from (12) the expression for a, depends also

()

upon this ratio. This is our measure of smallness referred to above. If
f'"" tends to zero fast enough so that this ratio remains less than 1l as z
gets large then (17) is an adequate approximation.
On the other hand, consider the case where two saddle points approach

the third symmetrically so that f'"'(0) = 0. Then (16) reduces to

h(z)zé( 4;\, /4 exp i2£(0) ; r(zl) ~12 (

izf 4' f

2
iz(f"° \1/2 _,3
=l F(Z)’L"} (18)

1/4

In contrast to the previous case where f'"' = o(2 ) for an adequate
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1/2). Also, for real values of f(n), the

approximation, we need f" = o(z"~
initial correction to the strictly merged value was independent of the sign
of f''"" in the previous case. For this case the correction depends upon the
sign of f''.

We now consider what happens if the saddle points are not too close.
We may evaluate (13) itself by a simple saddle point method. ILet

k(t) = a, t + a, t2/2 + t4/4 (19)

1
Then the saddle points of k(t) are at
3

ajta,t+t =0 (20)

Using standard methods for solving a cubic we see that the nature of the

roots depend upon the sign of the discriminant

a 2 a23
_ 1
D=7+ 27
- (?Zr )3/2 (f(iV))-5/2 { g £ f(iV) _ 3(f1|l)2} (fu)z . (21)

If the quantities in (21) are real, then it is well known (see any algebra text)
that (20) has 3 real unequal roots if D<O0, three real roots -- at least two of
which are equal -~ if D = 0 and one real root (2 complex) if D>0. A

complex root gives an exponentially varying solution. The quantity (19)
represents an expansion of f(t) about one of the three waves. Thus initially
we must have D<0. One of these three roots represents the point about
which the expansion is made, and accurately represents the wave in question.
As shown in the case of two waves in Comstock (1966), the other two roots

represent the other two waves, much less accurately. At the merging we
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have ' and "' both vanishing and thus D vanishes. We may ask what happens
after the merging. The answer depends upon whether the derivatives change

sign or not. Curiously enough, a change in sign of (f'"') alone does not, from
(21), change the nature of the results. There are still 3 real roots. Itis

the sign of f'' and the relative magnitudes of f' and {f'"' which determine

whether ''after'' the merging there will be three waves or one. Since
21
k(to) =3zt (3a1 +a, to), (22)

then as long as any of the saddle points are on the real axis, that axis is a
path of stationary phase. If two of the saddle points are complex, then the
major contribution to the integral is just from the one real root and there

is just one wave. By tracing the roots through zero one can determine

which of the waves survives. In this case

30 \1/4 . 3 1 2 { -2
h{z)=( v )/ expl(ao+za1 ’co+21--a2 to) ___1_T_r_2 (23)
zf a +3tO

2

where ty is the real solution of (20). Since a, and toz both behave as Nz
then (23) behaves as ('\/E)—l, as expected.

We have seen how, after the merging of the three waves, there may
emerge one wave or three, depending upon the values of the derivatives of
f near the merger point.

If D does not change sign at the merging point, then all three waves
survive. However, there may be an interchange of energy. One can trace
the three waves by following the roots through the zero. The necessary
formulas to do so are given below in (24). One must remember that only
one of the roots represents accurately the amplitude of the wave, since

the expansion is about one of the waves.
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Is it possible that no wave will emerge? For this to happen, all

three roots of (20) must be complex. This can happen only if the coefficients
of (20) are complex. Since the formula (23) is valid for any of the saddle
points, we look at it. The combination of the coefficients a; and the saddle
point to in the exponent are such that the exponent is proportional to z.
Thus while a change in sign of z makes ai complex, it still does not make
the exponent complex. Complex values of the derivatives of f are sufficient.
It is unlikely, however, that this would happen. Thus one would not expect
a complete cancellation of all of the waves.

To see in more detail the behavior for the waves, one needs the

complete formulae for the saddle point. We give them here.

4 . ) . :
A= NET3T (£V)"3/4 «/f"'{3f"f1"-(f"')2 }+f"f?v Neg e J3ené |

4 . ( . . -
B = ,.[‘7“!‘Z 3T (flV)'3/4 flll{3f!lf1v_(f|1l)2} _fvvflv 8fl|f1v_3(flll)2 ,

A+ B ] - B A-B. .
=4+ B, -(252) + &R)iv3, A+B, &Byivm (24)

These formulae are sufficiently complicated that an analysis for general
functions f is not particularly valuable. We have discussed those aspects
which are readily amenable to discussion, and have indicated how one
might study the merging of several waves. We have the further details to

a reader who has a specific case to investigate.
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