Technical Report 32-928

Revision 1

Power Spectral Density Analysis

Technical Report 32-928

Revision 1
 Power Spectral Density Analysis

Charles D. Hayes

Approved by:

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA
March 15, 1967

TECHNICAL REPORT 32-928

Copyright © 1967
Jet Propulsion Laboratory California Institute of Technology
Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

Contents

I. Introduction 1
II. Theory 1
III. Summary of Equations 5
Appendix. Special Case Values 6
Tables

1. Values of $0.3322 A$ versus A for common PSD decibel/octave slopes 4
A-1. Summary for special case of Fig. 1 6
Figures
2. Generalized PSD function 2
3. PSD function with constant decibel-per-octave slopes 2
A-1. PSD function for example solved in Appendix 7

Abstract

This Technical Report develops the generalized techniques for determining the equation describing the power spectral density function (G^{2} / cps versus frequency, etc.) and the equation for determining the root mean square of a power spectral density function. Examples of both types of equations are included in the Appendix.

Power Spectral Density Analysis

I. Introduction

Environmental test specifications require an understanding of the theory and the functional (testing) techniques of power spectral density (PSD) analysis. These specifications will define a PSD function over some given frequency band. The ordinate of this function will be some quantity which is proportional to power, such as V^{2} / cps or G^{2} / cps (where $V=$ the voltage and $G=$ the ratio of the test acceleration to the acceleration of gravity).

In order to define accurately the actual tests from the test specifications and to evaluate the test results, a general procedure will be given that covers all possible present and future test specifications.

II. Theory

Figure 1 represents a generalized PSD function $Y=$ Y (frequency), where Y is a quantity that is proportional to power. In this particular analysis, the PSD function will have the form Y (decibels) versus \log (frequency). (Note that no particular scale is shown, since this figure
represents only the most generalized case.) In terms of V or G, the expressions for Y are:

$$
\begin{equation*}
Y=10 \log _{10}\left[\frac{\left(G^{2} / \mathrm{cps}\right)}{\left(G_{0}^{2} / \mathrm{cps}\right)}\right] \tag{la}
\end{equation*}
$$

or

$$
\begin{equation*}
Y=10 \log _{10}\left[\frac{\left(V^{2} / \mathrm{cps}\right)}{\left(V_{0}^{2} / \mathrm{cps}\right)}\right] \tag{1b}
\end{equation*}
$$

Note that ($G_{0}^{2} / c p s$) and ($V_{0}^{2} / c p s$) are the reference levels for their corresponding PSD function. The decibel scale is based on this reference level; therefore, the reference must always be given for any absolute level measurements or calculations, as seen in Eqs. (lc) and (ld).

A graph of Y versus f is therefore made on log-log paper; the following derivations are based on a graph consisting of straight line segments, as plotted on log-log paper (Fig. 2). The derivations will be done in terms of $Y=\log y$, and the derivation will be the same for a PSD of any power-like quantity.

FREQUENCY, cps
Fig. 1. Generalized PSD function

Fig. 2. PSD function with constant decibel-per-octave slopes

- It should be noted that the value of $G^{2} / \mathrm{cps} \equiv G_{i}^{2} / \mathrm{cps}$, corresponding to a particular decibel reading Y_{i}, would be given by [starting with Eq. (1a)]

$$
\begin{equation*}
Y_{i}(\mathrm{db})=10 \log \left[\frac{\left(G_{i}^{2} / \mathrm{cps}\right)}{\left(G_{0}^{2} / \mathrm{cps}\right)}\right] \tag{lc}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
G_{i}^{2} / \mathrm{cps}=\left(G_{0}^{2} / \mathrm{cps}\right) 10^{(0.10) Y_{i}(\mathrm{db})} \tag{ld}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{i}^{2} / \mathrm{cps}=\left(V_{0}^{2} / \mathrm{cps}\right) 10^{(0.10) Y_{i}(\mathrm{db})} \tag{le}
\end{equation*}
$$

The equation of the "line segment" (between Frequencies 1 and 2) of Fig. 2 is given by

$$
\begin{equation*}
Y-Y_{1}=M\left(X-X_{1}\right) \tag{2a}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\left(\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}\right) \tag{2b}
\end{equation*}
$$

Since Y is plotted in decibels, then the value of Y which corresponds directly to a power quantity is given by ${ }^{1}$

$$
\begin{equation*}
Y=\log _{10}(y) \quad \text { and } \quad X=\log _{10} f \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
y=G^{2} / \mathrm{cps} \quad \text { or } \quad V^{2} / \mathrm{cps}, \text { etc. } \tag{4}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\log y-\log y_{1}=\left(\frac{\log y_{2}-\log y_{1}}{\log f_{2}-\log f_{1}}\right)\left(\log f-\log f_{1}\right) \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\log \left(\frac{y}{y_{1}}\right)=\left[\frac{\log \left(y_{2} / y_{1}\right)}{\log \left(f_{2} / f_{1}\right)}\right] \log \left(\frac{f}{f_{1}}\right) \tag{6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
y=y_{1}\left(f / f_{1}\right)^{M}=\left(y_{1} f_{1}^{-M}\right) f^{M} \tag{7a}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\frac{\log \left(y_{2} / y_{1}\right)}{\log \left(f_{2} / f_{1}\right)} \tag{7b}
\end{equation*}
$$

${ }^{1}$ For the remainder of this report, the following notation will be used: $\log _{10} N=\log N$.

Equations (7a) and (7b) represent the general expressions for describing the PSD function.

For the special case where the slope (M) is given in terms of A in decibels/octave (where A may be positive, negative, or zero)

$$
\begin{equation*}
10 \log \left(\frac{y_{2}}{y_{1}}\right)=A_{1}, \quad \text { db/octave } \tag{8}
\end{equation*}
$$

We obtain the following expressions for Eqs. (7a) and (7b). For the octave condition given in Eq. (8)

$$
\begin{equation*}
f_{2}=2 f_{1} \tag{9}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
M=\frac{(0.10) A_{1}}{\log (2)}=(0.3322) A_{1} \tag{10}
\end{equation*}
$$

Thus, Eq. (7a) becomes, in terms of the lower limits

$$
\begin{equation*}
y=\left(y_{1} f_{1}^{-0.3322 A_{1}}\right) f^{0.3322 A_{1}} \tag{11}
\end{equation*}
$$

The relationship between y_{1} and y_{2} is given by

$$
\begin{equation*}
y_{2}=y_{1}\left(\frac{f_{2}}{f_{1}}\right)^{0.3322 . A_{1}} \tag{12}
\end{equation*}
$$

Therefore, Eq. (11) may be given, in terms of the upper limits, as

$$
\begin{equation*}
y=\left(y_{2} f_{2}^{-0.3322 A_{1}}\right) f^{0.3322 A_{1}} \tag{13}
\end{equation*}
$$

Equation (11) represents any of the line segments of Fig. 2 with the following values for y_{1}, f_{1}, and A_{1} :

$$
\left.\left.\begin{array}{rl}
f_{1}= & \text { lowest frequency over which the particular line } \\
& \text { segment is defined }
\end{array}\right] \begin{array}{rl}
(14 \mathrm{a})
\end{array}\right)
$$

Any of the line segments of Fig. 2 may also be represented with the following values for y_{2}, f_{2}, and A_{1} in Eq. (13):
$f_{2}=$ highest frequency over which the particular line segment is defined
(15a)
$y_{2}=$ value of the ordinate ("power-like" quantity) which corresponds to f_{2}
$A_{1}=$ same value as in Eq. (14c)

For the special case where $y=\mathrm{G}^{2} / \mathrm{cps}$, we obtain the following expressions:

$$
\begin{align*}
& G^{2} / \mathrm{cps}=\left[\left(\mathrm{G}_{1}^{2} / \mathrm{cps}\right) f_{1}^{-0.3322 A}\right] f^{0.3322 A} \tag{16a}\\
& G^{2} / \mathrm{cps}=\left[\left(\mathrm{G}_{2}^{2} / \mathrm{cps}\right) f_{2}^{-0.3322 A}\right] f^{0.3322 A} \tag{16b}
\end{align*}
$$

with

$$
\begin{equation*}
\left(G_{2}^{2} / \mathrm{cps}\right)=\left(G_{1}^{2} / \mathrm{cps}\right)\left(\frac{f_{2}}{f_{1}}\right)^{0.3322 A} \tag{17}
\end{equation*}
$$

Equations (16a), (16b), and (17) summarize the equations describing the PSD functions. (See the Appendix for special cases of A.) Table 1 gives values of 0.3322 A versus A for common PSD slopes.

The following derivation describes the method of determining the RMS of a PSD graph.

The generalized form for the (RMS) of a value of $G=H(f)$ is given by (Fig. 2).

$$
\begin{equation*}
G(R M S)=\left\{\int_{t_{1}}^{s_{\mathrm{N}+1}}\left[G^{2}(f) / \mathrm{cps}\right] d f\right\}^{1 / 2} \tag{18}
\end{equation*}
$$

with an equivalent form for $V_{R M S}$ etc. For simplification, Eqs. (16a) and (16b) will be rewritten:

$$
\begin{equation*}
G^{2} / \mathrm{cps}=\left[\left(G_{1}^{2} / \mathrm{cps}\right) f_{1}^{-4_{1} / 3.01}\right] f^{4_{1} / 3.01} \tag{19}
\end{equation*}
$$

in terms of the lower limit values and

$$
\begin{equation*}
G^{2} / \mathrm{cps}=\left[\left(G_{2}^{2} / \mathrm{cps}\right) f_{2}^{-A_{1} / 3.01}\right] f^{A^{4} / 3.01} \tag{20}
\end{equation*}
$$

Table 1. Values of 0.3322A versus A for common PSD decibel/octave slopes

A, db/octave	0.3322 A
0	0
± 3	± 0.9966
± 6	± 1.9932
± 9	± 2.9898
± 12	± 3.9864
± 15	± 4.9830
± 18	± 5.9796
± 21	± 6.9762
± 24	± 7.9728
± 48	± 15.9496

in terms of the upper limit values. Therefore, Eq. (18) becomes

$$
\begin{equation*}
G(R M S)=\left(\sum_{N=1}^{P} B_{N}\right)^{1 / 2} \tag{21}
\end{equation*}
$$

where $P=$ the number of line segments of the PSD curve, and

$$
\begin{equation*}
B_{s}=\int_{f_{v}}^{f_{N+1}}\left[\left(G_{N}^{2} / \mathrm{cps}\right) f_{N}^{-A N / 3.01}\right] f^{A_{N / 3} .01} d f \tag{22a}
\end{equation*}
$$

Therefore

$$
\begin{align*}
B_{N}= & \left.\frac{3.01}{A_{N}+3.01}\right)\left(G_{N}^{2} / \mathrm{cps}\right) \\
& \times\left(f_{N}^{-4, / / 3.01}\right)\left[f_{N+1}^{\left(A^{N+3.01) / 3.01}-f_{N}^{(A N+3.01 / / 3.01}\right]}\right. \tag{22b}
\end{align*}
$$

which is in the terms of the lower limit values, or

$$
\begin{align*}
B_{N}= & \left(\frac{3.01}{A_{N}+3.01}\right)\left(G_{N+1}^{2} / \mathrm{cps}\right) \\
& \times\left(f_{N+1}^{-A_{N+3} / 31}\right)\left[f_{N+1}^{\left(A_{N+3} .01\right) / 3.01}-f_{N}^{(A N+3.01) / 3.01}\right] \tag{22c}
\end{align*}
$$

. which is in terms of the upper limit values. Note that Eqs. (22b) and (22c) hold for all values of A except $A=-3.01$. The equation for this case follows. Starting with Eq. (22a) with $A=-3.01$:

$$
\begin{align*}
B_{N} & =\int_{f_{N}}^{f_{N+1}}\left[\left(G_{N}^{2} / \mathrm{cps}\right) f_{N}\right] f^{-1} d f \\
& =\left[\left(G_{N}^{2} / \mathrm{cps}\right) f_{N}\right] \int_{f_{N}}^{f_{N+1}}\left(\frac{d f}{f}\right) \tag{23}
\end{align*}
$$

Therefore

$$
\begin{align*}
B_{N} & =\left[\left(G_{N}^{2} / \mathrm{cps}\right) f_{N}\right] \log _{\varepsilon}\left(\frac{f_{N+1}}{f_{N}}\right) \\
& =\left[\left(G_{N}^{2} / \mathrm{cps}\right) f_{N}\right] 2.30 \log _{10}\left(\frac{f_{N+1}}{f_{N}}\right) \tag{24}
\end{align*}
$$

which is in terms of the lower limit values, or

$$
\begin{align*}
B_{N} & =\left[\left(G_{N+1}^{2} / \mathrm{cps}\right) f_{N+1}\right] \log _{\varepsilon}\left(\frac{f_{N+1}}{f_{N}}\right) \\
& =\left[\left(G_{N+1}^{2} / \mathrm{cps}\right) f_{N+1}\right] 2.30 \log _{10}\left(\frac{f_{N+1}}{f_{N}}\right) \tag{25}
\end{align*}
$$

which is in terms of the upper limit values.

III. Summary of Equations

This section of this Technical Report consists of a summary of the equations needed to:
(1) Describe the PSD function (given in terms of G^{2} / cps as a representative "power-like" quantity).
(a) The general equation for a straight-linesegmented PSD curve on log-log graph paper:

$$
\begin{equation*}
G^{2} / \mathrm{cps}=\left[\left(G_{1}^{2} / \mathrm{cps}\right) f_{1}^{-M}\right] f^{M} \tag{1}
\end{equation*}
$$

in terms of lower limit values, or

$$
\begin{equation*}
G^{2} / \mathrm{cps}=\left[\left(G_{2}^{2} / \mathrm{cps}\right) f_{2}^{-M}\right] f^{M} \tag{2}
\end{equation*}
$$

in terms of upper limit values, where

$$
\begin{equation*}
M=\log \left[\frac{\left(G_{2}^{2} / \mathrm{cps}\right)}{\left(G_{1}^{2} / \mathrm{cps}\right)}\right] \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}^{2} / \mathrm{cps}=\left(G_{1}^{2} / \mathrm{cps}\right)\left(f_{2} / f_{1}\right)^{M} \tag{4}
\end{equation*}
$$

is the relationship between G_{1}^{2} / cps and G_{2}^{2} / cps for a given line segment.
(b) The special case of the slope of a straight-linesegmented PSD curve expressed in $A_{1}, \mathrm{db} /$ octave, on log-log graph paper:

$$
\begin{equation*}
G_{i}^{2} / \mathrm{cps}=\left(G_{0}^{2} / \mathrm{cps}\right) 10^{0.10 Y_{i}(\mathrm{db})} \tag{1}
\end{equation*}
$$

where $G_{0}^{2} /$ cps is the decibel reference level.

$$
\begin{equation*}
M=0.3322 A \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
G^{2} / \mathrm{cps}=\left[\left(G_{1}^{2} / \mathrm{cps}\right) f_{1}^{-0.3322 A}\right] f^{0.3322 A} \tag{3}
\end{equation*}
$$

in terms of lower limit values, or

$$
\begin{equation*}
G^{2} / \mathrm{cps}=\left[\left(G_{2}^{2} / \mathrm{cps}\right) f_{2}^{-0.3322 A}\right] f^{0.3322 A} \tag{4}
\end{equation*}
$$

in terms of upper limit values.

$$
\begin{equation*}
G_{2}^{2} / \mathrm{cps}=\left(\mathrm{G}_{1}^{2} / \mathrm{cps}\right)\left(f_{2} / f_{1}\right)^{0.3322 A} \tag{5}
\end{equation*}
$$

(2) Determine the RMS of a PSD function.
(a) General equation for RMS:

$$
\begin{equation*}
G_{R M S}=\left\{\int_{f_{1}}^{f_{N+1}}\left[G^{2}(f) / \mathrm{cps}\right] d f\right\}^{1 / 2} \tag{6}
\end{equation*}
$$

(b) The special case of the slope of a straight-linesegmented PSD curve cxpressed in A, db/octave, on \log-log graph paper:

$$
\begin{equation*}
G_{R M S}=\left(\sum_{N=1}^{P} B_{N}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

where $P=$ the number of sections (line segments); therefore

$$
\begin{align*}
B_{N} & =\left(\frac{3.01}{A_{N}+3.01}\right)\left(G_{N}^{2} / \mathrm{cps}\right) \\
& \times\left(f_{N}^{-A_{N / 3} / .01}\right)\left[f_{N+1}^{\left(A_{N}+3.01 / / 3.01\right.}-f_{N}^{\left(A_{N}+3.01\right) / 3.01}\right] \tag{8}
\end{align*}
$$

in terms of lower limit values, or

$$
\begin{align*}
B_{N} & =\left(\frac{3.01}{A_{N}+3.01}\right)\left(G_{N+1}^{2} / \mathrm{cps}\right) \\
& \times\left(f_{N+1}^{-A_{N-1} / 3.01}\right)\left[f_{N+1}^{\left(A_{N}+3.01\right) / 3.01}-f_{N}^{\left(A_{N+3}+3.01\right) / 3.01}\right] \tag{9}
\end{align*}
$$

in terms of upper limit values. The special case of the slope $=-3.01$:

$$
\begin{align*}
B_{N} & \left.=\left[G_{N}^{2} / \mathrm{cps}\right) f_{N}\right] \log _{\varepsilon}\left(\frac{f_{N+1}}{f_{N}}\right) \\
& =\left[\left(G_{N}^{2} / \mathrm{cps}\right) f_{N}\right] 2.30 \log _{10}\left(\frac{f_{N+1}}{f_{N}}\right) \tag{10}
\end{align*}
$$

in terms of lower limit values, or:

$$
\begin{align*}
B_{N} & =\left[\left(G_{N+1}^{2} / \mathrm{cps}\right) f_{N+1}\right] \log _{\varepsilon}\left(\frac{f_{N+1}}{f_{N}}\right) \\
& =\left[\left(G_{N+1}^{2} / \mathrm{cps}\right) f_{N+1}\right] 2.30 \log _{10}\left(\frac{f_{N+1}}{f_{N}}\right) \tag{11}
\end{align*}
$$

in terms of upper limit values.

Appendix Special Case Values

I. Special Case Values for Fig. 1

$$
\begin{gather*}
G_{0}^{2} / \mathrm{cps}=1.00 \tag{1}\\
f_{1}=50 \mathrm{cps} \tag{2}\\
f_{2}=100 \mathrm{cps} \tag{3}\\
f_{3}=1000 \mathrm{cps} \tag{4}\\
f_{4}=2000 \mathrm{cps} \tag{5}\\
A_{1}(\text { db/octave })=+3 \tag{6}\\
A_{2}(\text { db/octave })=0 \tag{7}\\
A_{3}(\mathrm{db} / \text { octave })=-12 \tag{8}
\end{gather*}
$$

The examples of equations on p .8 will be given with reference to Fig. A-1.

Table A-1. Summary for special case of Fig. 1

Curve data	Area under curve sections			$\mathbf{G}_{\text {RMN }}$
	$\mathbf{B}_{1}: f_{1}$ tof \mathbf{f}_{2}	$\mathrm{B}_{2}: \mathrm{f}_{2}$ to f_{3}	$B_{3}: f_{3}$ to f_{4}	
$\begin{aligned} \mathbf{G}_{\mathrm{u}}^{2} / \mathrm{cps} & =1.00 \\ \mathbf{f}_{\mathbf{1}} & =50 \mathrm{cps} \\ \mathrm{f}_{2} & =100 \mathrm{cps} \\ \mathrm{f}_{3} & =1000 \mathrm{cps} \\ \mathbf{f}_{1} & =2000 \mathrm{cps} \\ \mathbf{A}_{1} & =+3 \mathrm{db} / \text { octave } \\ \mathbf{A}_{\mathbf{3}} & =0 \mathrm{db} / \text { octave } \\ \mathbf{A}_{3} & =-12 \mathrm{db} / \text { octave } \end{aligned}$	18.80	450.90	146.53	24.8

Fig. A-1. PSD function for example solved in Appendix
A. Examples of Equations Describing the PSD Function for Special Case of Straight-Line-Segmented PSD of Fig. A- 1

1. Line segment between f_{1} and $f_{2}\left(A_{1}=+3 d b /\right.$ octave $)$.

$$
\begin{align*}
G_{i}^{2} / \mathrm{cps} & =\left(G_{0}^{2} / \mathrm{cps}\right) 10^{0.10 Y_{i}(d \mathrm{db})}=(1.0) 10^{+(0.10)(-6)} \\
& =0.251 \tag{la}
\end{align*}
$$

where $Y_{i}=-6 \mathrm{db}$.

$$
\begin{equation*}
\underline{\underline{G_{i}^{2}} / \mathrm{cps} \equiv G_{1}^{2} / \mathrm{cps}=0.251} \tag{lb}
\end{equation*}
$$

$$
\begin{align*}
G^{2} / \mathrm{cps} & =\left[\left(G_{1}^{2} / \mathrm{cps}\right) f_{1}^{-0.3322 A} f^{0.3322 .1}\right. \\
& =(0.251)(50)^{(-0.3329)(3)} f^{(0.3322) 3} \\
& =(5.10) 10^{-3} f^{0.99646} \tag{2a}
\end{align*}
$$

Therefore

$$
\begin{equation*}
G^{2} / \mathrm{cps}=(5.10) 10^{-3} f^{0.996 ; 6} \tag{2b}
\end{equation*}
$$

the equation of the PSD curve between f_{1} and f_{2}.
2. Line segment between f_{2} and $f_{3}\left(A_{2}=0\right)$.

$$
\begin{equation*}
G_{i}^{2} / \mathrm{cps} \equiv G_{2}^{2} / \mathrm{cps}=(1.0) 10^{+(0.10)(-3)}=0.501 \tag{3}
\end{equation*}
$$

where $Y_{i}=-3 \mathrm{db}$. Therefore

$$
\begin{equation*}
\underline{\underline{G_{2}^{2}} / \mathrm{cps}=0.501} \tag{4a}
\end{equation*}
$$

$$
\begin{equation*}
G^{2} / \mathrm{cps}=\left[\left(G_{2}^{2} / \mathrm{cps}\right) f_{2}^{-(0.3322)(0)}\right] f^{(0.3322)(0)}=G_{2}^{2} / \mathrm{cps} \tag{4b}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
G^{2} / \mathrm{cps}=0.501 \text { (constant) } \tag{4c}
\end{equation*}
$$

the equation of the PSD curve between f_{2} and f_{3}.
3. Line segment between f_{3} and $f_{4}\left(A_{3}=-12 d b /\right.$ octave $)$.

$$
\begin{align*}
& G_{i}^{2} / \mathrm{cps}
\end{aligned} \begin{aligned}
G^{2} / \mathrm{cps} & =\left[\left(G_{3}^{2} / \mathrm{cps}=(1.0) 10^{(0.10)(-3)}=0.501\right.\right. \tag{5}\\
& \left.=\left[(4.561) 10^{11}\right] f^{(-0.3322)(-12)}\right] f^{(1.3322)(-12)}
\end{align*}
$$

Therefore

$$
\begin{equation*}
G^{2} / c p s=\left[(4.561) 10^{11}\right] f^{-3.9864} \tag{6b}
\end{equation*}
$$

the equation of the curve between f_{3} and f_{4}, etc.

B. Example of Determining the (RMS) for Special Case of Straight-Line-Segmented PSD of Fig. A-1

1. Values of $B_{r}(N=1,2,3)$, where

$$
\begin{align*}
B_{N}= & \left(\frac{3.01}{A_{N}+3.01}\right)\left(G_{N}^{2} / \mathrm{cps}\right) \\
& \times\left(f_{N}^{-A, / 3.01}\right)\left[f_{N+1}^{\left(A_{N+}+3.01\right) / 3.01}-f_{N}^{\left(A_{N}+3.01\right) / 3.01}\right] \tag{7}
\end{align*}
$$

Here the "lower limits" equation is being used.
$(N=1):$

$$
\begin{align*}
B_{1}= & \left(\frac{3.01}{A_{1}+3.01}\right)\left(G_{1}^{2} / \mathrm{cps}\right) \\
& \times\left(f_{1}^{-11 / 3.01}\right)\left[f_{2}^{\left(A_{1}+3.01\right) / 3.01}-f_{1}^{\left(A_{1}+3.01\right) / 3.01}\right] \\
= & \left(\frac{3.01}{3.00+3.01}\right)(0.251)\left(50^{-3 / 3.01}\right) \\
& \times\left[100^{(3.00+3.01) / 3.01}-50^{(3.00+3.01) / 3.01}\right] \tag{8a}
\end{align*}
$$

Therefore

$$
\begin{equation*}
B_{1}=18.80 \tag{8b}
\end{equation*}
$$

$(N=2):$

$$
\begin{align*}
B_{2}= & \left(\frac{3.01}{A_{2}+3.01}\right) G_{2}^{2} / \operatorname{cps}\left(f_{2}^{-A_{2} / 3.01}\right) \\
& \times\left[f_{3}^{\left(A_{2}+3.01\right) / 3.01}-f_{2}^{\left(A_{2}+3.01\right) / 3.01}\right] \\
= & \left(\frac{3.01}{0+3.01}\right)(0.501)\left(f_{2}^{0 / 3.01}\right) \\
& \times\left[f_{3}^{(0+3.01) / 3.01}-f_{2}^{(0+3.01) / 3.01}\right] \tag{9a}
\end{align*}
$$

Therefore

$$
\begin{equation*}
B_{2}=450.90 \tag{9b}
\end{equation*}
$$

- $(N=3)$:

$$
\begin{aligned}
B_{3}= & \left(\frac{3.01}{A_{3}+3.01}\right)\left(G_{3}^{2} / \mathrm{cps}\right)\left(f_{3}^{-A_{3 / 3} / .01}\right) \\
& \times\left[f_{4}^{\left(4_{3}+3.01\right) / 3.01}-f_{3}^{\left(A_{3}+3.01 / / 3.01\right.}\right] \\
= & \left(\frac{3.01}{-12.00+3.01}\right)(0.501)\left[1000^{-(-12) / 3.01}\right] \\
& \times\left[2000^{(-12.010+3.0101 / 3.01}-1000^{(-12.41013 .31 / 11 / 3.011}\right]
\end{aligned}
$$

(10a)
Therefore

$$
\begin{equation*}
B_{3}=146.53 \tag{10b}
\end{equation*}
$$

2. Value of $\mathrm{G}_{\text {Rus }}$, where

$$
\begin{align*}
& G_{R U S}=\left(\sum_{i=1}^{N} B_{N}\right)^{1 / 2}=\left(B_{1}+B_{2}+B_{3}\right)^{1 / 2} \tag{11}\\
& G_{R U S}=[(18.80)+(450.90)+(146.53)]^{1 / 2} \\
& =(616.23)^{1 / 2} \tag{12a}
\end{align*}
$$

Therefore

$$
\begin{equation*}
G_{R M S}=24.8 \tag{12b}
\end{equation*}
$$

