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ABSTRACT

The use of variable lift control to obtain maximum velocity

reduction through aerodynamic braking for Mars entry is considered.

The method of lift control used is that of rolling the lift vector about

the vehicle's stability axis so that the lift vector may either point

upward or downward in the vertical plane. Through this method of

lift control, it is shown that the maximum allowable ballistic coefficient

which may be used to obtain a specific terminal velocity can be

doubled over that which may be used with a constant L/D lifting

vehicle. Also it is shown that the minimum velocity attainable for a

given ballistic coefficient and atmosphere is the same for all entry

conditions.
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NOMENCLATURE

2
B = ballistic coefficient (m/C^A), slugs/ft

c D

a = total deceleration, earth g's

2
A = frontal area, ft

C T , C = . lift, drag coefficient, respectively
2

g = acceleration of gravity at surface of Mars, ft /sec
m t\

12.1 ft/sec

h = altitude, ft

L/D - lift-drag ratio

m = mass of vehicle, slugs

2
q = convective heating rate, BTU/ft -sec

\*

2
Q = total convective heating, BTU/ft

c

R = radius of Mars, ft
m

11,200 ,000f t

v = velocity, ft/sec

j3 = inverse scale height of Martian atmosphere, ft

7,7 = flight path angle, skip out angle, respectively, deg.
s

p,p = density, surface density of Martian atmosphere,
respectively, slugs/ft

VI



INTRODUCTION

One of the main problems in accomplishing a soft landing

on Mars is that of decreasing the extremely high velocity of entry to

a velocity at which parachutes and crushable impact absorbers can

be employed. Aerodynamic braking can accomplish a large part of

this velocity reduction, but due to the extremely thin atmosphere of

Mars (surface pressure as low as 5 mb according to Mariner IV)

the selection of the entry trajectory is extremely critical if one is to

avoid having to use an extremely low ballistic coefficient, resulting

in a low payload, in order to accomplish the necessary velocity

reduction.

1 2Several papers ' have discussed the use of a lifting

vehicle with constant L/D in order to increase the amount of aero-

dynamic braking obtained over that using a simple ballistic entry

capsule. The next step is thus to investigate the possibility of using

variable lift control to further increase the efficiency of the aero-

dynamic braking. This problem is amenable to solution using the

optimization techniques of modern control theory, and this approach

will be considered in this paper.

In considering the direct entry problem, i. e., entry without

first going into orbit, the terminal guidance accuracy (the accuracy

in entry angle, primarily) becomes a problem. For the constant L/D

lifting vehicle, this problem is solved by designing for the steepest

possible entry angle, and this design will thus work for all other

possible entry angles. For example, if the terminal guidance accuracy

is ±5 , and the skip out angle (the minimum entry angle for which

the vehicle is captured by the planet's atmosphere, or, to be more

specific, the minimum angle for which the vehicle, after initial pull

up, skips up to no higher than a specified altitude) is 7 , the ballistics
coefficient is determined so that, for the given L/D, at an entry angle

of 7 + 10 , the desired terminal velocity is reached at the desired
S



terminal altitude. Then, at any other entry angle between y and
s

7 + 10 , the terminal velocity will be at least as small as the desired

terminal velocity, since for the constant L/D trajectories, the

shallower the entry, the smaller is the terminal velocity. However,

if we use some controlled lift program, it does not follow that a lift

program designed for the steepest entry angle will work for a shallower

entry angle. Therefore, in this paper, rather than finding an optimal

lift program for some specific entry angle, we will determine a sub-

optimal lift program which will work for all entry angles within the

entry corridor.

FORMULATION OF THE PROBLEM

The equations of motion for a vehicle entrying the atmosphere

of Mars are given by

2
v = g sin 7 - pv /2B (1)

C

o

h = -v sin 7

where a spherical, non-rotating planet, two-dimensional planar motion

and R » h have been assumed. We will further assume an
na o-

exponential atmosphere, p = p e .

In determining the method of lift control to use, we want

a fairly simple control program, and also one which can be designed

to work for a range of entry angles. The lift control to be used here

will be to allow the vehicle to be rolled about its stability axis so that

the lift vector is either positive upward or negative downward. That

is, for any specific lifting vehicle configuration, there is a stability

angle between velocity vector and axis of symmetry at which the

vehicle will tend to fly. The axis through the velocity vector is thus

the stability axis. The vehicle can be rolled about this stability axis,



and each orientation around the stability axis is stable. Thus by

rolling about the stability axis, we can roll the lift vector and change

its direction without changing its magnitude or the direction or

magnitude of the drag vector. For this paper, we assume that the lift

vector may either be kept in the positive upward direction or rolled

to the negative downward position, but we will not make use of any of

the other possible orientations. Mathematically, this amounts to

allowing the sign of the L/D term in the first of Equations (1) to be

changed to plus or minus in the form of a bang-bang control (we will

assume this change can be made instantaneously, although future

studies will have to take into account the finite time required to roll

the vehicle). This method of control is fairly simple, since we will

only have to determine a few switching points, as opposed to using a

continuously varying lift control. Also, we can determine the

switching points as a function of the state variables, and thus more

readily find a control program that will work for a whole range of

entry angles.

The initial conditions for Mars entry will be taken to be

VQ = 26,000 ft/sec, hQ= 360,000 ft, -yQ unspecified. The terminal

conditions will be h = 20, 000 ft, y unspecified, v. to be minimized.

That is, we want to initiate the terminal maneuver (releasing para-

chutes) at h = 20, 000 ft. , and we want to make the velocity low enough

to allow the performance of the desired terminal maneuver. In order

to be able to use subsonic parachutes, we need v. at least as low as

1,000 ft/sec. For any given ballistic coefficient B we can obtain a
\*

certain minimum v. . We want to determine the largest B for which
I C

the minimum v is below 1, 000 ft/sec. Eventually we will want to

use a B which will give us a v. enough below 1, 000 ft/sec that we can
C* A

choose a suboptimal control program which, for a range of 7., will

still give v < 1,000 ft/sec. We will also eventually have to consider

the uncertainties in the density of the Martian atmosphere. However,

initially we will consider the basic optimization problem of minimizing

v. given B and p(h).



THE OPTIMIZATION PROBLEM

We are given the state variable equations (1), with initial

conditions h = 360,000 ft. , v = 26,000 ft/sec, and terminal con-

dition h = 20, 000 ft. The control variable L/D will be taken to be

of constant magnitude | L /DJ = 0. 5, but may assume either a positive

or negative sign, with a finite but unspecified number of switching

points. The admissible set of the control variable is thus a closed

set. Since the possible switching times vary continuously over a

finite interval, there are an infinite number of admissible control

programs. Among all those trajectories with admissible control

programs which start out at v = 26, 000 ft/sec and h = 360, 000 ft. ,

and reach h. = 20, 000 ft. at some unspecified final"time T, we want

to choose that one which has a minimum vf. We will use Pontryagin's
3maximum principle to solve this optimization problem.

We first must derive the Hamiltonian defined by

H =JT • p =PI 7 + P2 v + p3h (2)

where _£ is the three-dimensional state variable derivative vector

x = ̂ (x,u),x = JT,v,h} , _f = {7, v, h }, u = L/D, the control variable,

and p is the three-dimensional adjoint variable defined by

QTT

Pi = ' 8T" * = 1 '2 '3 (3)

We thus have six differential equations, three state variable equations

(1) and three adjoint equations (3). We have three state variable

boundary conditions v , h and h.. We thus need three additional ad-
o o f

joint boundary conditions. Since 7 and 7. are unspecified, the

corresponding adjoint conditions p1 and p are zero. Since v is
0 lf t

the quantity to be minimized, the corresponding adjoint condition is
4

p = -1. This completes the necessary boundary conditions.
2f

According to Pontryagin, the optimal control L/D is that

control as a function of time which minimizes the Hamiltonian as a



function of time. If we substitute (1) into (2), we see that H is

maximized over all admissible L/D (L/D = ± 0. 5) if

L/D =- 0.5 sgn (PI) (4)

For our first results, we will assume the 10 mb atmosphere shown

in Figure 1 (obtained from Reference 1). This atmosphere will be

approximated by the two straight lines segments shown; thus, for

our exponential approximation p - p e , we have p = 4 x 10

slug/ft2, p = 2.4 x lO'^t"1 (for h< 70, 000 ft .) , and p Q = . 7 8 x l O ~ 5

slug/ft2, /3 = 4. 8 x I0"5ft"1 (for h >70, 000 f t . ) . We will initially
2

assume B = 1 . 0 slugs/ft .
V_»

The problem we are now confronted with is a two-point

boundary value problem. Among the many existing techniques for

solving this problem, quasilinearization will be employed in this

paper. Since adequate discussion of the application of this technique
5

exists in the literature, no details on its application will be given

here.

Solution of the two-point boundary value problem given above

for a few values of final time T points to a further problem in solving

the practical velocity minimization problem. With no bounds placed

on the state variable, the optimal trajectory for a sufficiently large

final time T is one which descends to as low an altitude as possible,

not only below h = 20, 000 ft . , but below h = 0 for the mathematical

formulation given, and then skips back up to h = 20, 000 ft. at the end

of the trajectory. This stands to reason since the trajectory would

seek to make use of as high a density as possible. However, for our

practical problem, we must put some lower bound on the altitude.

That is, the trajectories will make one or more pull ups or skips, and

we must constrain the depth of the pull ups. The bound must at least

be greater than zero, and it could also conceivably be greater than

20, 000 ft. , except for the final descent to the terminal condition.
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However, in this paper, a state variable constraint of h £ 20, 000 ft.

will be used.

According to Pontryagin, for the bounded state variable

problem, the optimal trajectory consists of segments for which the

trajectory is inside the constraint, in which case the optimal control

satisfies the maximum principle, and segments for which the tra-

jectory is on the constraint, in which case the optimal control is

determined to hold the trajectory on the constraint. In our problem

since the control can only have two values (L/D ±0. 5) the control

cannot hold the trajectory on the constraint, i. e., fly at constant

altitude, for a finite time. Thus for our method of control, the optimal

bounded state variable trajectory will merely touch the constraint at

at least one point in between the initial and final point, and immediately

come off the constraint. Also according to Pontryagin, there is a

jump in the value of the adjoint vector at the point where the trajectory

touches the constraint, and for our problem, the jump condition is

indeterminate.

Thus it becomes impossible to apply the optimization pro-

cedure to the entire trajectory at once. However, according to Bellman's
o

principle of optimality, any segment of an optimal trajectory from

any point on the trajectory to the end of the trajectory is the optimal

trajectory from that point to the end point. Therefore, we can opti-

mize the last segment of the trajectory, from the last point at which

the trajectory touches the constraint to the end point, and then match up

the first part of the trajectory to this last segment. That is, since we

know that at the point where the trajectory touches h = 20, 000 ft. ,

7 must be zero (in order for the trajectory to be tangent to h = 20, 000 ft.

and immediately pull up), we can apply the maximum principle to the

problem with initial conditions hn = 20, 000 ft . , 7 = 0, v unspecified,

final condition h = 20, 000 ft. , final time T unspecified, and minimize

v,, and this will be the last segment of our trajectory for the given



entry conditions (assuming the v determined for the problem starting

at 20, 000 ft. is attainable from the initial conditions for entry).

We can also make an intuitive guess at what the optimal con-

trol for this final segment will be, i. e., that L/D will be positive

(equal to +0. 5) for the entire last segment, because it stands to

reason that the vehicle should hold above 20, 000 feet for as long as

possible after the last pull up to allow the velocity to decrease as

much as possible. Or, to follow another line of reasoning, the last

segment of the trajectory will be the optimal trajectory for the un-

bounded state variable problem, even though the trajectory all lies

above 20, 000 ft., for if there were an optimal trajectory starting at

h = 20, 000 ft. and 7 = 0 which dropped below 20, 000 ft. at some

point, then the optimal bounded state variable trajectory would touch

h = 20, 000 ft. at some point in between, which conflicts with the

segment's being the last segment after touching 20, 000 ft. Thus, for

the last segment, the optimal trajectory for bounded state variable

is the same as that for unbounded state variable. However, if L/D

is not +0. 5 for this full last segment, i. e., if L/D = -0. 5 for any

part of the last segment, it stands to reason that the way to obtain the

lowest v. would be to have L/D = -0. 5 during the first part of the last

segment of the trajectory and allow the vehicle to take advantage of

the lower densities, and then hold L/D = +0. 5 for the remainder of

the trajectory. Then, of course, the trajectory falls below 20, 000 ft.

which is not allowable. This again would lead one to believe that the

L/D holds the constant value of+0. 5 over the entire last segment of

the optimal trajectory. Of course this reasoning does not rigorously

prove this, it only serves as a good guess, a guess which will later

prove to be correct.

Thus, proceeding under the assumption that L/D = +0. 5 over

the last segment, our only unknown is the initial velocity for the last

segment, since we know h , 7 , and L/D. Thus, we can simply guess

several values of v , integrate Equations (1) from h = 20,000 ft . ,

8



y = 0, and stop when h returns to 20, 000 ft., and by trial and

error, choose the trajectory which results in the lowest v . This

eliminates the problem of having to determine the final time T,

since T is automatically determined by when the trajectory falls

back to hf = 20, 000 ft.

Figure 2 shows the final velocity v plotted as a function

of the initial velocity v at h = 20, 000 ft. , 7 = 0 (for both B = 1. 0

and 105 slug/ft ). The minimum v. of 738 ft/sec for B = 1.0
2 C

slugs/ft occurs at approximately vn = 2650 ft/sec. The final time

T for this trajectory is approximately 102 seconds. We can now

verify our assumption of L/D = +0. 5 for the entire last segment by

applying our optimization technique with h = 20, 000 ft. , 7 = 0,

h = 20, 000 ft. , T = 102 sec, and v unspecified. The optimal tra-

jectory should have L/D = +0. 5 over the entire segment with

v = 2650 ft/sec. The terminal conditions on the adjoint equations

are the same as for the full trajectory (p-^ = 0, pg = -1) but the initial

condition p-i = 0 is replaced by p? = 0, since here vn instead of 7
0 0 u u

is unspecified.

Solving the resulting two point boundary value problem

using quasilinearization, the optimal trajectory does indeed turn out

to have a control program of L/D = +0. 5 over the whole segment,

with v = 2636 ft/sec and v = 738 ft/sec. If we increase T from 102

seconds to 102. 5 seconds, the optimal trajectory turns out to have a

very short initial segment with L/D =-0.5 (thus dropping below

20, 000 ft.), and then the remainder of the trajectory has L/D = +0. 5.

For T < 102 seconds, L/D =+0.5 over the whole trajectory. Thus

our original assumption has been verified. Although this does not

rigorously prove that the optimal last segment of the trajectory has

L/D =+0. 5 for all atmosphere density profiles and all B , we will

assume this is the case and calculate optimal last segments by trial

and error variation of v at h = 20, 000 ft. and 7 = 0. It is interesting

to note that the nature of the final last segment is completely
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independent of the initial conditions of entry for the full trajectories,

i. e., regardless of the initial entry conditions all optimal trajectories

have the same final segment, and thus the same minimum v , as

long as the point h = 20,000 ft. , TQ= 0, and VQ = 2636 ft/sec (for

B = 1. 0 slugs/ft ) is attainable from the initial entry conditions,
c

which is probably the case for all possible direct entry and orbital

entry cases. Also, the determination of the first portion of the tra-

jectory is no longer an optimization problem, but merely a two-point

boundary value problem, since merely assuring the final boundary

conditions hf = 20, 000 ft . , y » 0, and v = 2636 ft/sec on the initial

portion yields an optimal full trajectory. Thus there are probably

several ways of solving the two point boundary value problem for the

initial segment all constituting optimal trajectories for the full

trajectory.

This situation only occurs when the function to be minimized

is a function of the terminal state. If it were an integral of a function

of the state variables over the whole trajectory the situation would be

quite different. This multiplicity of solutions is the reason for the

fact that the adjoint conditions at the constraint boundary is indetermi-

nate, that is, there are several values of the jump in adjoint con-

ditions which will yield optimum trajectories for the given boundary

conditions.

Figure 3 shows a graph of the minimum final velocity versus

ballistic coefficient obtained by determining the final segment of the

trajectory assuming L/D =+0. 5 over the entire segment. It can be

seen that in order to insure v. < 1, 000 ft/sec, the maximum allowable
2 * ~

B is 1.7 slugs/ft . However, since we are going to try to find a
C

suboptimal control program which will work for all trajectories of an

entry corridor of 10 , we will use a B of 1. 5 slug/ft in our search
c 2

for suboptimal controls. A B of 0. 75 slug/ft is the maximum attain-
C

able B using a constant L/D =.5 over the whole trajectory for

atmosphere 1 of Figure 1. Thus if we can find a suboptimal control

11
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program which works for a 10 entry corridor for a B = 1 . 5 slugs/ft ,c
we will have achieved a 100% increase over the B attainable using

a constant L/D entry vehicle.

CONTROL PROGRAM DETERMINATION

In determining the first segment of the trajectory, we

want to find a series of switching points for the control as a function

of the state variables which will result in a final segment with a

final velocity less than 1000 ft/sec for a range of entry angles over

an entry corridor of 10 . From Figure 2, for B = 1.5 slugs/ft ,
Crf

we see that at the beginning of the final segment, and thus at the end

of the initial segment, i. e., at h = 20, 000 ft and 7=0, we need a

velocity of between 2500 and 4200 ft/sec to insure a vf of no more

than 1000 ft/sec. Also, if we assume the final segment starts at

h = 25, 000 ft and 7 = 0, and determine final segments for various

initial velocities and L/D =+0. 5 over the entire segment, we find

that v < 1000 ft/sec for initial velocities between 2500 and 3700

ft/sec. Thus, vf is not too sensitive to the values of h and v at the

last pull up (7=0), i.e., while v and h at the last pull up vary

between 2500 and 3700 ft/sec and between 20, 000 and 25, 000 ft,

respectively, v. varies only between 930 and 1000 ft/sec. Thus, in

determining an L/D program for the first segment, we need only

insure that the end of the first segment goes through a pull up at 7=0

in the region around and above h = 20, 000 ft and v around 2500-

4000 ft/sec.

In the first form of control program we will try, we will

use three switching points in L/D, i.e., L/D will start out at -0. 5,

at some point will change to +0.5, then back to -0. 5, and finally back

to +0. 5. Using L/D =-0.5 at the start, we can use smaller initial

entry angles, since the skip out angle for a constant L/D =-0. 5 is

less than 10 , compared to around 24 for constant L/D =+0.5.

13



After some trial and error manipulation of switching points,

the following control program was determined:

Initial Entry Conditions: L / D = - 0 . 5

h = 80,000 ft. : L/D =+0.5

7 = - 0. 1 rad. : L/D =-0.5

v = 5200/ft/sec or

7 = . 2 7 5 rad.: L/D =+0.5
(whichever conies first)

Thus, at the beginning of entry, L/D =-0. 5. When the vehicle descends

to h = 80, 000 ft . , L/D is switched to +0. 5. This causes the vehicle

to make its first pull up at an altitude below 80, 000 ft. , but con-

siderably above 20, 000 ft. When the vehicle pulls up and reaches

an angle 7 = -0.1 rad. (7 measured positive below horizontal, negative

above), L/D again switches to -0, 5, causing the trajectory to reach

a peak and start down again. When either the velocity falls below

5200 ft/sec or the angle exceeds 0. 275 rad., L/D switches to +0. 5,

initiating the final pull up and leading to the final segment of the tra-
' O

jectory. For this control program, for entry angles between 14

and 24°, the final pull ups occur between h = 25, 000 and 27, 000 ft

and v = 2500 and 3000 ft/sec, and v is less than 1000 ft/sec for all

angles in the range. Thus we can employ this control program for a

nominal entry angle of 19 and a terminal guidance accuracy of ±5 ,

and all possible entry trajectories will have a v. < 1000 ft/sec (for

atmosphere 1 of Figure 1). Figure 4 gives the altitude versus time

profiles for this control program for 7 = 14 and 24 . The slashes

on the trajectories indicate the switching points, and the signs in

parenthesis indicate whether L/D is +0.5 or -0.5.

It is also possible to determine a control program for the

first segment of the trajectory using only two switching points, i. e.,

with the vehicle starting with L/D = +0. 5 at the initial conditions, at

some point switching to L/D =-0. 5, and then back to L/D =+0. 5.

The following program was determined by trial and error:

14
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Initial Entry Conditions: L/D =+0.1?

7 = -0.1 rad.: L/D =-0. 5

[(h < 45, 000 ft) AND (7 > 0. 3 rad.)]
L/D =+0.5

OR [ (h < 40, 000 ft) AND (7 > 0. 25 rad.)]

In this program the final switching point is more complex

than for the first program, but this is to be expected due to the

smaller number of switching points in this program. However, the

main difficulty in mechanizing these control programs is in measuring

the current values of the state variables; once one is able to generate

the values of the state variables, the design of the switching circuits

is fairly straightforward.

This control program will produce a v < 1000 ft/sec for

7 between 16 and 26 . The final pull up points for this range of

7 occurs between h = 20,000 and 27,000 ft and v = 2500 and 2800

ft/sec. The altitude versus time curves for 7 = 16 and 26 are

given in Figure 5.

These trajectories have all been determined for the 10 mb

atmosphere 1 in Figure 1. However, our best measurements to date

on the density of the Mars atmosphere indicate that the atmosphere

is between 5 and 10 mb. Thus, we should design our control program

to take into account this uncertainty in density. If we assume that the

5 mb atmosphere has the same shape, i.e., the same jS's, as the

10 mb atmosphere, with simply half the density values at each point,

and all atmospheres in between 5 and 10 mb also have the same jS's,

we can simply design for the lowest density and the control program

will still work for the higher densities. For example, p is always

divided by B wherever it occurs in Equations (1), i.e., p/B =

p e p /B . Thus, if p is only half as large as for the previously

used atmosphere, if we also take B only half as large, the trajectories
c

for the control programs determined earlier will be unchanged. (Also,

the maximum B attainable using constant L/D =+0. 5 will be only
c

16
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half as large, so that our relative increase in B obtained using
O

L/D =±0. 5 will be the same). Thus, the B for the 5 mb atmosphere
2 °

will be B =0. 75 slugs/ft . If we use this B for any atmospherec c
greater than 5 mb, but with the same jS's, the terminal velocity will

still be less than 1000 ft/sec. The 5 mb atmosphere is shown as

atmosphere 2 in Figure 1.

However, there are also uncertainties in the values of /3.

For example, Reference 7 gives these two possibilities for a 5 mb

atmosphere

pQ = 1. 32 x 10"5 slugs/ft3, 0 = 2.15 x lo"5 ft"1

p = 2.56 x 10"5 slugs/ft3, |3 = 6.07 x 10"5 ft"1

These atmospheres are given as atmospheres 3 and 4, respectively,

in Figure 1. Of course, the plot of atmosphere 1 is probably a more

accurate representation of the shape of an atmosphere than the single

straight lines of atmospheres 3 and 4, but these latter atmospheres

do give some indication of the possible variations in the j3's.

Since the /3 for atmosphere 3 is approximately the same as

for the low altitudes of atmosphere 1, we can assume that the maximum

B for atmosphere 3 is proportional to the p , as we did for
C " U

atmospheres 1 and 2. Thus, since p for atmosphere 3 is approxi-

mately 1/3 of that of atmosphere 1, we can assume that the maximum
2

allowable B for atmosphere 3 is 1/3 x 1. 5 or 0. 5 slugs/ft .
C

However, if we apply either of the two control programs
2

derived earlier to atmosphere 3 with B = 0. 5 slugs/ft , we do not
\*

get v < 1000 ft/sec, due to the fact that for higher altitudes
I

atmosphere 3 does not have the same shape as atmosphere 1. Thus

we must vary our original control program, using more complicated

switching points, so that the control program will work for atmospheres

of the shape of both atmosphere 1 and 3. By trial and error, the

following varied version of the first control program was obtained
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Initial Entry Conditions: L/D =-0. 5

(h < 80, 000 ft.) OR (7 > 0. 45 rad.): L/D =+0. 5

7 =-0.1 rad.: L/D =-0.5

[(v< 5200 ft/sec) AND (7^0.17 rad.)]}:
 ; L / D = + 0 5

OR (7> 0.275 rad.)

This program will result in v < 1000 ft/sec for 7 between 14 -24 ,

the same as for the first control program for atmosphere 1. The

variations from the first control program derived earlier are in

the first and third switching points (not counting the initial conditions

as a switching point). Owing to the higher densities at higher

altitudes for atmospheres shaped as atmosphere 3 over atmospheres

shaped as atmosphere 1, the L/D =-0.5 causes the trajectory to

dive more rapidly. Thus we add the upper bound on 7 in the first

switching point. Also, a lower bound on 7 has been added to the last

switching point. It should be noted that a term such as (7 > 0. 45 rad.)

in a switching point means only that when 7 becomes greater than

0.45, the control switches; it does not mean that if 7 then falls below

0.45, the control switches back. The control doesn't switch back

until the next indicated switching point.

Atmosphere 4 of Figure 1 has approximately the same

density values in the neighborhood of h = 20, 000 ft as atmosphere 3,
2

and thus the same maximum B of 0. 5 slugs/ft should be applicablec
to this atmosphere. However, due to the high value of j3 and thus

the extremely rapid fall off in density with altitude, it is much more

difficult to shape the first segment of the trajectory than for the other

atmospheres. Therefore, a further decrease in B would be necessary
C

to obtain v. < 1000 ft/sec. (Also, the maximum B for constant
X C

L/D =+0. 5 would be less than it would for atmospheres with similar

surface density but smaller j3's.) However, determining a final

control program for this atmosphere was not attempted in this paper,

since the intention here is merely to demonstrate the advantages and
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feasibility of using variable lift control; more detailed studies will be

left to future investigators, presumably equipped with better data on

the range of uncertainties in the Martian atmosphere.

It is also desirable to look at the heating and deceleration

problems for the Mars entry vehicle. The deceleration is given by

(i)2
The convective heating rate is given by

q /RT7 = ( 2 0 . 4 x 10"9) P
1/2 v3 (6)

C IN

2
where q is in units of BTU/ft -sec and R , the nose radius, is in

\^ J.N

feet. The total heat input Q is the integral of q with respect to
c c

time.

For the first control program for atmosphere 1, with
, 2 ,

B = 1. 5 slug/ft , the maximum values of a , q vR-. , and Q
c 1 c JN • c i\

over all values of 7 within the 10 entry corridor are 50 earth g's,
3/2 3/2

630 BTU/ft ' -sec, and 11,000 BTU/ft ' , respectively. The

maximum a_ and q occur for the steepest entry, the maximum Q
J. C C

for the shallowest entry (since the total time is longer for the

shallower entries). For the second control program, the respective
3/2 3/2

maximum values are 46 g's, 620 BTU/ft -sec and 12,500 BTU/ft
2

For a constant L/D =+0. 5 and B = 1. 5 slug/ft , over an entry corridor
C

of 24-34 (7 =24 for constant L/D =+0. 5) respective maximum
s 3/2 3/2

values are 60 g's, 730 BTU/ft -sec, and 9170 BTU/ft ' . (For the

latter case, vf was as high as 1500 ft/sec). It can be seen that there

is little difference between the maximum values of a_, q ^R-, and
_ 1 c N

Q 'VR.-T for the two control programs, and there is improvement in

obtaining low a and q over that for constant L/D =+0. 5 for the

same B . The reason why Q ^R-^ is less for constant L/D is that
C C IN

the variable L/D programs hold the vehicle at low densities for a

larger time to get the greatest velocity reduction, and thus the constant
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L/D program, which gets less velocity reduction, also gets less total

heating. However, the maximum heating rate, which always occurs

before the first pull-up, is greater for constant L/D, since the entry

angles are steeper. However, the results for constant L/D data are

only presented for comparison purposes for heating and deceleration;

since the v 's are too high, the constant L/D trajectories for B = 1 . 5
2 c

slug/ft are not admissible trajectories.

Since the peak heating and deceleration occur before the

first pull up, it is not possible to obtain too much improvement in

heating and deceleration by varying the control program. That is,

before the peak heating and deceleration occur, there is only a period

of about ten seconds in which the density is high enough to obtain sub-

stantial lift control, and thus the trajectories can't be shaped too

much in this period. Thus, for the two control programs, even

though one has negative lift and one positive lift over much of the period

before the first pull up, there is still not too much difference in the

maximum heating and deceleration. These maxima are more

determined by entry angle and ballistic coefficient than by control

program. However, since the optimum v. is entirely determined by

the final segment of the trajectories, and the first segment is only a

two-point boundary value problem, it is possible to optimize the first

segment in terms of heating and deceleration and still get the minimum

v, for the last segment, if a small improvement in deceleration and

heating is desirable.

SUMMARY AND CONCLUSIONS

We have shown how a simple scheme of variable lift control

can be used to double the magnitude of the ballistic coefficient which

can be used to obtain a given terminal velocity for a given atmosphere

density profile. We have also been shown that by determining the

control program as a function of altitude, velocity and flight path angle,

control programs can be designed to take into account some of the
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uncertainties in the Martian atmosphere; however, further studies on

the possible variation in the atmosphere are needed. Also, obtaining

a more precise knowledge of the Martian atmosphere will of course

facilitate the design of the control program. Although the control

programs in this paper were determined as a function of 7, v, and h,

if it is decided that the on board measurement of these variables is

too difficult, it is likely that control programs can be determined just

as readily as a function of other variables, such as deceleration,

dynamic pressure, and derivatives of the state variables. Finally,

although an entry velocity of 26, 000 ft/sec was used for the studies in

this paper, the procedures developed may very easily be applied to

other entry velocities, including orbital velocity, and some of the

results, such as the minimum terminal velocity for a given ballistic

coefficient and atmosphere, were shown to be the same for all entry

velocities.
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