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ABSTRACT

The end-wall thermal boundary layer behind a reflected shock has been
analyzed to determine the thermal conductivity of argon over the tempera-
ture range from 3150 to 92250K. Pressures behind the reflected shock,
assumed constant through the thermal layer, were chosen sufficiently high
to suppress non-eqQuilibrium and side-wall effects. Temperature profiles,
computed from interferometric measurements of density, were compared with
a numerical solution of the full non-linear thermal boundary layer equa-
tions assuming a temperature dependence for thermal conductivity of the
form K & TV. Typically, 10 to 12 points were obtained in a thermal layer
which was approximately 1.5 mm thick, with the nearest points approaching
0.2 mm from the wall. Refraction effects and related optical distortion
precluded measuring closer to the surface. Values for the exponent v in
the power law were obtained by minimizing the root-mean-square deviation
between the theoretical and experimental profiles. From 18 temperature
profiles the average value obtained for v was 0.668 £ ,02. This value
was compared with existing theoretical predictions and with other measure-
ments. The results offer encouragement for similar studies at even higher

temperatures where free electrons will affect the thermal transport.
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NOMENCLATURE

a&b pover series expansion coefficients
1,2,3

cP specific heat at constant pressure

D,D_y test section depth; distortion

d total deviation of refracted ray

£(n),T(n) non-dimensional density

h enthalpy per unit mass; focal plane location

K Gladstone-Dale constant

M Mach number

MZT Mach-Zehnder interferometer

N usable number of fringes

n index of refraction; fringe number

ng index of refraction of exit window

P gas pressure

éw wall heat transfer rate

S fringe shift

T temperature

t time; thickness of exit window

Vi incident shock velocity

VE reflected shock velocity

v gas velocity normal to end wall

W deviation of refracted light ray

N distance from end wall

ix



a,B parameters in refractive error analysis; angle for end

wall alignment procedure

o] boundary layer thickness
€ angle in refractive error analysis
1 similarity transformation
0 normalized temperature
K atomic thermal conductivity
A wavelength of light
v power law exponent for thermal conductivity
p gas density
g standard deviation
T ionization relaxization time
SUBSCRIPTS
1 initial shock tube conditions
2 conditions behind incident shock
5 conditiong behind reflected shock
W conditions at end wall surface
B conditions in thermal boundary 1ayer
E light ray entrance station
opPT optical path
RMS, M root-mean~-square and mean deviation
R,BL,BS fringe shift error notations, R - refractive error,

BL -~ boundary layer error, BS - beam splitter error



1. INTRODUCTION

Fundamental to the understanding of most phenomena involving the
flow of gases is a knowledge of the transport coefficients. These coef-
ficients relate the flux of mass, momentum, and energy in a gas to
gradients of some physical property through the gas. At the low gas
temperatures (lOOOOC or lower), it is possible to measure with direct
equilibrium type experiments most of the coefficients with accuracies of
+ O.l% or even better. . However, at much higher temperatures it is not
possible to contain a gas for long periods of time, and it becomes much
more difficult to measure transport coefficients. For this reason it has
been necessary to rely almost exclusively on theoretical predictions of
(2)

the coefficients especially in dissociating and ionized gases. Although

there have been some measurements of electrical and thermal conductivities

(3)

in partially ionized argon the poor precision of these measurements
does not enable one to choogse between different theoretical predictions

of these properties. It is of obvious importance to seek new and possibly
more accurate experimental methods for measuring transport coefficients

in high temperature gases.

This report describes a quantitativevoptical technique for measuring
the thermal conductivity of hot gases which can be generated in the end
wall region of a shock tube. The technique utilizes the Mach-Zehnder
interferometer (MZI) to analyze the flow field and the thermal boundary
layer at the end wall after reflection of the incident shock wave. The

process of reflecting a shock wave by a solid wall creates a slug of hot

guiescent gas in thermal contact with a cold wall. At the interface



between the wall and the hot gas a thermal boundary layer develops and
grows with time. This hot gas is well suited for studying thermal
transport becaﬁse it is essentially at rest and the effects of viscosity
and mass diffusion are very small and generally negligible.

In this experiment the MZI is used to obtain density and temperature
profiles through the thermal boundary layer in a guantitative manner.
These profiles are then compared with theoretical predictions obtained
from a numerical solution for the complete thermal boundary layer equa-
tions, assuming a relationship between thermal conductivity and tempera-
ture of the form K & 7.

The concept of using the quiescent body of hot gas behind the
reflected shock wave to deduce thermal conductivity has been recognized
for some time. Several investigators have performed experiments at the
end wall surface as a means of deducing thermal conductivity. Smiley(u)
was the first to use this region in his measurements of the total heat
flux to the end wall surface and from these experiments he deduced values
for the thermal conductivity of argon over the temperature range from
1000 to SOOOOK. Hansen, Early, Alzofon and Witteborn(S), and Peng and
Ahyte(6), made similar measurements in dissociated air. However, their
analysis of the experiments was incorrect since they neglected the con-
vection of gas toward the end wall induced by the cooling of the gas by

(7)

heat transfer to the solid. Thomson pointed out this error and gave

the correct formulation of the equations. Ahyte and Peng(B) also corrected

(9)

their analysis in a later publication. Collins and Menard

(10)

and Collins,
Greif, and Bryson measured thermal conductivities of several noble

gases for temperatures up to 67000K with this same heat transfer technique.



(11)

Camac and Fienburg were able to deduce the thermal conductivity of
atomic argon at temperatures up to 75OOOOK by measuring the heat flux at
very early times after shock reflection where the gas ionization has not
taken place. They also compared theoretical and measured heat transfer
at later times when the ionization process was complete.

A completely different technique for deducing thermal conductivity
was reported by Sturtevant and Slachmuylders.(lg) They were able to
measure the effect of heat transfer to the end wall on the reflected
shock trajectory. That is, as the gas adjacent to the wall is cooled by
heat transfer, the density near the wall increases. In order to supply
the necessary mass a displacement velocity toward the wall is induced in
the hot gas. This motion perturbs the trajectory of the reflected shock
and the magnitude of this perturbation is related to a Reynolds number
based on time after shock reflection. The thermal conductivity can then
be deduced from the Reynolds number correlation between theory and ex-
periment.

The alternative approach proposed in this study has been used for

(13)

experiments in air by Smeets , where he obtained a profile of refractive

index in the outer portion of the thermal layer with a differential inter-

(1k)

ferometer. His results extend over a temperature range from 1140 to
60750K where the effects of oxygen and nitrogen dissociation appear at
gbout 2000 and hOOOOK respectively. His experimental results were com-
pared with a theoretical profile obtained from a solution of a linearized
form of the governing eguations which is accurate only in the outer region

of the thermal layer.

The optical interference technique used here, although similar to



that of Smeets, is different in two important respects: First, a numeri-
cal solution of the full end wall boundary layer equations is used to com-
pare theory with experiment and second, the MZI allows more freedom in
fringe orientation than does the differential interferometer. This fea-
ture of the MZI can be used to good advantage in resolving the density

and temperature profiles in the thermal layer. The experiments presented
here use argon as a test gas and the temperature ranges from 3150 to
92250K, where the degree of ionization is still negligible. RExperimental
temperature profiles are compared with theoretical predictions and a value
for v 1is obtained by minimizing the root-mean-square deviation between
the two.

This discussion is divided into seven chapters. The second chapter
describes the shock tube and associated optical equipment. Chapter 3
gives a brief outline of the end wall boundary layer theory followed in
Chapter 4 by a discussion of the experimental parameters important in
designing this type of experiment. Chapter 5 presents the results of the
initial calibration experiments and describes the final method used to
resolve the boundary layer profiles. In Chapter 6 the refractive error
analysis derived in Appendix B is applied to the specific case of the end
wall boundary layer. The final chapter contains the conclusions based
on the results presented in Chapter 5. 1In Appendix A the method used for
aligning the end wall with the MZI test beam is described while Appendix C

contains a discussion of the side wall boundary layer effects.



2. EXPERIMENTAL APPARATUS

2.1 Shock Tube
The general features of the operation of a shock tube have been dis-

(15-17)

cussed extensively in the literature and will not be repeated here.
However, some aspects of the instrumentation and shock tube design which

are important for these studies will be discussed. The basic facility,

shown schematically in Fig. 1, has been described in some detall by ang.(lB)
The driven section, made from extruded aluminum, is 6.7 meters long with
a 5 cm by 5 em square interior cross section. The square cross section
is particularly convenient for interferometric studies because it provides
an essentially two dimensional flow field which simplifies the analysis

of interferograms. The driver section of the tube is made of stainless
steel with a 7.6 cm internal diameter and 3.8 cm walls. A short transi-
tion section is located just downstream of the diaphragm station to pro-
vide a smooth transition from the circular driver section into the square
driven section. The driver chamber is designed for use with either com-
bustion heated drive or pure pressure drive. For these experiments the
pure pressure drive feature was used with helium as the driver gas.

Prior to a run each chamber of the tube was evacuated with separate
mechanical vacuum pumps. The pressure in the driven chamber, before
filling with argon, was lower than 2 X 10-3 Torr as measured by a Pirani
vacuum gauge (CEC). The initial loading pressure of the test gas was
monitored with a Wallace and Tiernan vacuum gauge which was calibrated

pericdically with a standard Mcleod gauge. The leak rate of the driven

tube and its associated hardware was 0.2 micronsg per minute; thus, for a
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typical elapsed time of five minutes between filling the driven chamber
and firing the tube the impurity level is 1.0 microns or 0.0l% for 10
Torr initial pressure.

Three stations 125 mm apart are provided for measuring the initial
shock velocity with the last station located 134 mm from the end wall
surface. When thin-film gauges were used for shock detection, the signals
were amplified before display on the oscilloscope. The initial
calibration experiments were conducted with barium titanate pressure
transducers as shock detectors. These proved unsatisfactory for the low
shock Mach numbers desired (M < 8) Tbecause pressure signals traveling
in the walls of the tube reach the gauge before the shock wave. Some of
the later calibration experiments and all of the boundary layer experi-
ments were conducted using thin film heat transfer gauges as shock
detectors. Transit times between the gauges were measured to within
+ 1 usec on an oscilloscope that was calibrated against a Time Mark
Generator accurate to 0.001%. The distance between two gauges is known
to within + 1 mm which corresponds to the width of a gauge filament.
These two contributions give rise to an uncertainty in initial shock
Mach number of slightly less than 2%. This uncertainty in Mach number
results in a 2 to 3% uncertainty in the predicted temperature behind the
reflected shock. The three pickup stations are used to give independent
checks on the shock velocity as well as shock attenuation. No attenuation

was detectable for these experiments.



2.2 MZI* and Associated Equipment

The construction and operation of the Mach-Zehnder interferometer
is conventional and will not be discussed in detail as there are many
excellent descriptions of the problems of design, construction, and

adjustment of this type of instrument.(l9’20)

Figure 2 shows a photograph
of the test equipment and the MZI which is mounted with its plane of cen-
ters perpendicular to the axis of the shock tube. The upper beam passes
through two windows mounted at the shock tube test section and the lower
beam passes through a matched pair of windows in the compensating beam.
Both the test section windows and the compensating windows are made of
optically flsgt (K/M) schlieren quality quartz with faces parallel to
within 0.0005". The lens (focal length 71 cm ’) shown mounted

next to the beam splitter on the interferometer framework is used to
collimate the light from the light source.

The light source used for this study is an exploding tungsten wire
which is located at the focal point of the collimating lens. Figure 3
shows a circuit diagram of the essential features of its design. It con-
sists of a 0.005" diameter tungsten wire supplied by a 7.5 microfarad
fast discharge capacitor charged to 20 kv. A 50 volt pulse from the time
delay generator (shown in Fig. 1) initiates a trigger unit which produces
a 15 kv pulse to break down a sealed spark gap switch. This type of light

(18,21,22) for inter-

source has been used by several other investigators
ferometric studies. The rise time, for the particular circuit used here,
has been established from photomultiplier signals as 2 psec while the radi-

ation persists for longer than 200 p sec.

¥
This interferometer was on loan through the courtesy of Lockheed Missiles
and Space Company Research Laboratory, Palo Alto, California.
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Fig. 3. B8chematic of Exploding Wire Circuit

As can be seen by the light intensity fluctuations in Fig. 6 this
arrangement has a characteristic ringing fredquency due to the natural
self ringing of the capacitor and assoclated circuit. TFor this set up
this frequency was 145 kc/sec as compared with 300 kc/sec for the natural
self ringing frequency of the capacitor. That the observed ringing fre-
quency is lower than that of the supply capacitor is to be expected be-
cause of the incfeased inductance produced by the copper strap leads
necessary to form a complete circuit.

The large burst of light from the exploding wire is localized by
means of a slit (or circular aperture in some experiments), which
is mounted approximately 2 mm from the tungsten wire. The significance
of the use of a slit instead of the circular aperture is explained in
the discussion of the experiments. In effect the slit (or aperture) de~
fines the location of the light source and it must be located at the foecal
point of the collimating lens. Two different types of interferograms
were taken during the course of this investigation. The initial calibra-

tion experiments were performed using time-resolved interferograms

10



recorded with a rotating mirror camera (shown in the photograph of Fig. 2).
Later experiments to resolve the boundary layer profile used snap-shot
records. The snap-shots were taken using the exploding wire in conjunc-
tion with a Kerr-cell electro-optical shutter. Exposure times of 1 and
2 u secs were used for the latter records.

The technique of time-resclved interferometry, using a rotating mir-
ror camera, have been used often in the past for studying the time history

)
of transient phenomena,(21:25,_4)

The idea is to sweep a very narrow
image of the test section slit together with the fringes, focused in the
test section, across a stationary strip of film by rotating a mirror at
very high speeds. Resolution times for this technique are determined by
the width of the image and the writing speed at the film plane. With a
typical writing speed of 3 mm/usec and a slit width of 0.5 mm one obtains
a resolution of 0.16 u sec. This particular camera has a hexagonal stain-
less steel mirror with each face polished flat to 1/2 wavelength. The
mirror is mounted on a dynamically balanced shaft and driven by an air
turbine motor to speeds of 700 rps.

A single 3" diameter £/2.5 lens was used to focus the fringes at the
desired location in the test section. This is not an optimum situation
since one would prefer to use a separate camera lens in conjunction with
the field lens in order to make the magnification of the optical system
less sensitive to the distance between the focal plane of the test section
and the field lens. However, when a single camera lens is used it is
difficult to magnify the test section image and a third lens must be used
to obtain reasonable magnifications (~'2). Light source limitations pre-

cluded the use of two additional lenses.

11



The one feature not shown in the photograph (see Fig. 2) but used
in all experiments is the interference filter mount. The physical
location of the filter was not critical but it was convenient to locate
it between the field lens and the film plane. The time-resolved cali-
bration experiments were performed with narrow band pass (lOOﬁ) inter-
ference filters. These filters have a transmission of approximately 25%
of the incident light intensity. This transmission, although satisfactory
for the time-resolved experiments, was not adequate for the snap-shot
records because of the additional light attenuation at the Kerr-cell. In
order to increase the transmission 1t was necessary to use a combination
of two interference filters (each having an 80% transmission) where one
transmits only low wavelengths and the other only high wavelengths. By
choosing two filters where the transmissions overlap it is possible to
construct a high transmission (60%) filter with subsequent increase in
transmitted band width (8004).

The effective wavelength to be used for a particular com-
bination was determined in the following manner: First an interferogram
is taken with a known monochromatic light source (Hg arc, 5460&) and the
fringe spacing is carefully measured. From this the angle of apparent
intersection between the two interfering beams canvbe computed from the

relation
A
W o= 3 (2.1)

where W is the fringe spacing and A the known wavelength of the light
source. Next without disturbing the interferometer or optical system an
interferogram is taken with the exploding wire substituted for the mono-

chromatic light and a filter inserted in the light path. The

12



new fringe spacing is then measured and since ¢ is constant an effective
value of A can be computed from Eq. (2.1). By this method a value of
4690 + 504 was obtained for the combination used here and this

value 1s well within the expected value given by the manufacturers trans-
mission curves for the separate elements. The usable number of fringes
which one can expect with a broad band-pass filterkof this type can be

. (e5)

obtained from an expression given by Tanner. For an effective wave-
length given by A = AO + l/E(Kl) the usable number of fringes is given

by

e
= lo

N =C (2.2)

The constant C has a value of 1.06 if the band pass distribution is
assumed rectangular and 0.76 for a CGaussian distribution. Thus, some-
where between 18 and 25 usable fringes can be expected and this agrees

very well with the 20 fringes actually obtained.

2.3 End-Wall Alignment

Special care was taken to align the upper light beam of the inter-
ferometer with the end wall surface. This was done by making use of the
spurious fringes which are formed when slight misalignment occurs (see
Appendix A for details). An estimate of the accuracy of this technique
shows that the main source of error due to misaligned light rays is
actually a result of the finite size light source aperture. For the
light source aperture (O.h4 mm) collimating lens (71 cm focal length)
combination used in these experiments the possible angular deviation of

the nominally parallel beam of light is 5 X lO_LL radians. With a 50 mm

13



test section width this deviation gives rise to a 0.02 mm uncertainty in

resolving any point in the boundary layer.

2.4 Focus and Magnification Jig

In order to minimize the errors in the fringe shift pattern due to
refraction of light rays, it was necessary to focus the fringes at the
2/5 span of the test section, measured from the entrance window (see
Appendix B and Chapter 6 for a detailed analysis). This was accomplished
with a carefully machined Jjig which had two conical tips mounted on it.
The separation of the tips was carefully measured on an optical comparator
and when the Jjig was placed in the test section they located the 2/5 span.
The film plane was located by placing a bright diffuse light behind the
Jig and then moving the film holder until these tips were sharply focused.
After establishing the film plane the fringes were focused at this plane
by suitable adjustment of the MZI plates. Magnification of the test
section at the film plane was established from a photograph of the jig

with the known separation of the two conical tips.

14



3. END-WALL THERMAL, BOUNDARY LAYER THEORY

Following reflection of the initial shock wave there exists a body
of hot stationary gas in contact with & cold wall where both the hot gas
and the cold wall can be idealized as semi-infinite in extent. A transi-
tion or buffer layer develops between the two, and this layer grows with
time. When the shock wave is incident upon the end wall surface, there
is a period of a few nanoseconds (at the pressures used here), described
by kinetic theory, during which the reflected shock is formed. Subse-
quently, because of the perturbation to the shock velocity caused by the
heat transfer to the wall, there is a transient period before the shock

(26)

velocity obtains its equilibrium value. It has been shown theoretically

and experimentally(lE’EY)

that this latter process requires only a few
microseconds. Figure 7 of reference (27) shows that for Mach numbers
less than 10 and initial shock tube pressures of 10 Torr the end wall
pressure has reached 95% of its ideal value in less than one microsecond.
Neglecting viscous dissipation and assuming constant gas pressure

across the boundary layer as a first order approximation the continuity

and energy equations can be written as follows:(7)

% + —E—a(pv) =0, | (3.1)
PR =L (kD) (3.2)

where p is the gas density, h the enthalpy per unit mass, y the

distance from the wall, v the gas velocity normal to the wall, and K

15



thermal conductivity. With the aid of the similarity transformation

1/2 ¥
p.C
5 D> P
N = (———) f — dy , (3.3)
2K5t A p5

and the definition of specific heat at constant'pressure cp, one can

transform these equations into a single ordinary differential equation

0" + A(T)(6')% + B(T)ne' = O , (3.4)
where
T-T
9 = m———t
TS - T ’
_ - [ Ko
AMT) = (7 T ) 3 [1n (3 )1
575
c p K
PS5

Here the subscripts 5 and w refer to the assumed uniform region outside
the thermal boundary layer and the conditions at the end wall. The primes
in BEq. (3.4) denote differentiation with respect to 7.

The boundary conditions are taken as follows:

8 =0 at 1 =0, (3.5)

6 -1 as 1 o, (3.6)

Equation (3.5) expresses the constancy of the wall temperature, while
Eqg. (3.6) states that the temperature must approach T5 far from the

wall. There is, in fact, some rise in the wall temperature, but it is

small for all practical purposes, and will be neglected.

16



A good first approximation to the thermal conductivity of an

un-ionized atomic gas over the temperature range of interest here is
K T .
K - () > (3.7)

where Vv is a parameter which generally lies between 1/2 (hard sphere
interaction) and 1 (Mexwellian particles¥*), but usually has a value near
3/4. The 3/L4 power law gives values of thermal conductivity that are in
excellent agreement (within 1% over the temperature range from 1000 to
lOOOOOK) with the theoretical valueg of Amdur and Mason.(28) Their compu-
tations were based on an exp.-6 potential at the lower temperatures and
an inverse power potential at higher temperatures. They did not indicate
where the transition between the two potentials was made. They did how-
ever, indicate that the repulsive exponential potential would be more
suitable than the inverse power potential for the higher temperatures.
The thermal conductivity was recomputed over the same temperature range
for a repulsive exponential potential and the results should be better
than the Amdur and Mason values at higher temperatures. Actually these
values are 6% lower at 8000°K than the value given by the 3/4 power but
converge to Amdur and Mason's results at lower temperatures. This would
indicate that v at the higher temperatures for these experiments should
be somewhat lower than the S/M value indicated by comparison with Amdur
and Mason's results.

Using Eq. (3.7) in Eq. (3.4) one finds:

T V-1

8" + (v - 1) 5 R (o! ) (T ) ne' =0 . (3.8)

*See page 543 of Ref. 29.
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An exact solution of this equation corresponding to v =1 1is given by

® = erf (JTQ——) ’ (3.9)

where erf represents the error function.

The differential Eq. (3.8) was rewritten as two first order
differential equations in 6 and 6'. A value was assumed for 6' at
the wall and used in conjunction with the boundary condition 6(0) = 0
to initiate a Kutta-Mersgon procedure(so) for solving systems of first

order differential equations. The integration was continued until 6

changed by less than a prescribed value (usually 10_5) with a step in

- * -
1 of 10 2, 1 AJ(l—e)g-(e')g was less than 107> at this point the
integration was terminated. The profile was then transformed back to

the physical variables (y,t) with the relation

2Kt 1/2 T T A
570, 5 5 %

The integral here was evaluated with Simpson's rule. In the special

case Vv =1, Eq. (3.10) becomes

2K_t T 2
y = ( 5 ) T + (l - ".:'[TT"I') _'2"" (e-n /2 "l) -1 erfc .._11_. E
P5%p UV V2

5
(3.11)

1/2

where erfc is the complimentary error function.

¥
This error criteria was given by R. R. Nachtsheim and P. Swigert,

NASA TN D-300%, (1965).
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Equations (3.9) and (3.11) serve as one check on the convergence of
the numerical procedure used to solve Eq. (3.8). A second independent
check was obtained by comparing the end wall heat transfer rate for all
values of v with a very good approximate analytical solution by Kemp.(5l)
Agreement for the first check was very good and for the second case
the computed heat transfer rates were within 0.5% of the values given

by the Kemp formula,

(3.12)

[ 5]1/2 1-(z, /)" 1-(T /1 )+ He
= 1,13 >

v+l
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L, EXPERIMENTAL PARAMETERS

The experimental test conditions for this type of study must be
chosen very carefully, keeping in mind that for best resolution it is
desirable to work with the boundary layer of maximum thickness. For this
purpose it is convenient to look at the characteristic thickness © of

the boundary layer given in the similarity parameter of Eq. (3.3) by

1/2

K
5 oz( 5" ) ) (4.1)

P55

From this expression it is clear that one would like to wait for long
times after shock reflection (t) and use as low a value for initial pres-
sure (hence low p5) as possible. Uségble times after reflection are
limited by considerations of shock tube test time and ionization relaxa-
tion times. The latter is especially true at the higher temperatures
where appreciable ionigzation can occur behind the reflected shock. At
the lower temperatures this is not important because no ionization can
occur. Iikewise, lower limits for initial pressure are imposed by inter-
ferometer sensitivity, which decreases with decreasing density, and non-
ideal shock tube behavior that occurs in small tubes operating at low

initial pressures.(52’35)

(3k)

Experiments performed by Dunn in air at the end wall region,
under conditions corresponding to the worse case considered in this work,
indicate that the uniform slug of hot gas, predicted by ideal theory,
persists for at least 400 p sec after shock reflection. Two time-resolved

interferograms were taken in this study, for incident shock Mach numbers

of approximately 7, which substantiate this conclusion in that the fringe

20



spacing is very uniform up to 500 p sec after shock reflection.

A method for estimating the ionization relaxation time behind the

(35)

reflected shock (75) is given by Friedman and Fgy. By extrapolating

(36)

the experimental results of Petschek and Byron , for relaxation times

behind the incident shock, they show that TS scales with Py according

to

)

= 0.156 (5—
1

P
P, 7 )(Ei) exp(87000/T;) . (4.2)

A plot of Py 75 for initial shock Mach numbers to 10 is shown in Fig. k.
For the experiments used to deduce Vv in this work (see Table 3) the

typical minimum value of T is 400 p sec. This minimum corresponds to

>
an incident shock Mach number of 6.3 into 10 Torr argon. All of the snap-
shot interferograms in this study (see Table 3) were taken before the

onset of ionization.
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5. EXPERIMENTAL RESULTS

5.1 Interferogram Evaluation

Consider a situation where the refractive index is uniform in both
the test section and reference leg of a Mach-Zehnder interferometer. In
this case the field of view, as observed at the film plane of a perfect
MZI, where the two beams of light make a small angle with each other, will
be filled with a band of straight equidistant interference fringes (the
so-called wedge fringes). If the refractive index is uniform only in the
reference leg, but is a function of the spacial coordinates x, y, z in
the test section (see Fig. 5), then the difference in fringe order between

(x,y,z) and some reference point in the test section (xo,yo,zo), the

so-called fringe shift, is given by(lg)
£ §/
S(x,y) = z n(x,y,z)ds - Z n(x ,y ,z )ds ' (5.1)
2 7\ J 2 7\ O) O’ o P4 . .
0 0 ;

where A is the wavelength of light and the integral is the optical
path evaluated for the particular light ray passing through the test
section. For an un-ionized gas the refractivity (n-1) is directly

related to the density through the Gladstone-Dale constant given by

K=“—;}- , (5.2)

where K is a constant for a given gas and wavelength of light over a

wide range of pressures.(37) If the deviation of the light ray from a
straight line is not great, then we can replace ds by dz. Equations

(5.1) and (5.2) then yield
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LIGHT BEAM

FIG.5 COORDINATE SYSTEM FOR INTERFEROGRAM
EVALUATION.
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P )/
S(xy) = % b/‘p(x,y;Z)dz - \/Pp(xo,yo,zo)dzo (5.3)
0 0

Equation (5.5) is a general integral expression for evaluating the
density field from a messured fringe shift distribution. It is implied
in writing Eq. (5.3) that all media, except the inhomogeneous test medium,
possess constant refractive indices.

Further simplification of Eq. (5.3) is possible if one assumes that
the flow field variables depend only on the coordinates (x,y). In this

case the basic evaluation equation becomes

p(x,y) = %Z 8(x,y) + o > (5.1)

where p_ 1is the known density at (xo,yo).

For the case of the end wall boundary layer where the physical
varigbles depend only on y there are two separate considerations which
must be made before using Eq. (5.4) to compute the density from the
measured fringe shifts. First the gradient of density, and hence refrac-
tive index, normal to the light rays may be large enough to curve (refract)
them gppreciably. If so, the density computed by evaluation of the inter-
ferogram on the basis of unrefracted rays will in general be in error.
Second, there is a boundary leyer which forms on each of the test section
windows which can contribute to the measured fringe shift. The first
of these problems is considered in detail in Chapter 6 and Appendix B.

The general approach to the problem is similar to that of Wachtell(38)
where he considered the case of an interferometric analysis of the bounday

layer over a flat plate in a supersonic flow. Appendix B is a review of

this work. Chapter 6 shows how this analysis can be applied to the end
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wall boundary layer problem. The latter problem of the window boundary
layer is considered in Appendix C where it is concluded that, for the
measurements made in this study the indicated density in the presence

of side wall effects is at maximum only 2% different from the true value.
This maximum difference occurs for the fringe profile nearest the wall
and decreases rapidly for the profiles further from the wall. Thus, no
correction was made since it would only effect the last one or two data

points on the temperature profile.

5.2 Time Resolved Interferograms

The first series of experiments were conducted, using time-resolved
interferometry, with the objective being to establish the thermodynamic
state of the gas behind the reflected shock wave. For this purpose the
slit of the rotating mirror camera was oriented normal to the end wall
and focussed at the camera film plane. A typical record is shown in
Fig. 6. Knowing the gas conditions ahead of the incident shock one can
compute, using Eq. (5.4), the density in region 2 from the measured
fringe shift across the incident shock. In a similar manner one obtains
the density behind the reflected shock from the fringe shift across it
and the computed density behind the incident shock.

Teble 1 is a summary of the results obtained from six such experi-

ments. IListed are the initial conditions (pl, T. = 298°K) used for

1
the experiments and the measured fringe shifts based on two different
assumptions for the flow conditions. The first three columns of the
theoretical section are based on the assumption of frozen flow throughout

the field and the last three columns are based on the assumption of

complete equilibrium. By comparing the measured fringe shifts with the
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Time-Resolved Interferogram of End Wall Region
(M = 7.4k, P =5 Torr)
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theoretical values it is clear that the predictions for frozen flow are
in better agreement with the experiments than are the predictions for
complete equilibrium. This is to be expected because; although some
ionization is expected under these test conditions (o0~ .01), +the time
required for ionization relaxation is much longer (~ 5004 sec) than the
time recorded on the interferogram. It should be pointed out that the
agreement between experiment and theory (frozen flow assumption) is not
very good in this table. This disagreement was traced to two sources

of experimental error. First, the shock velocity Vi was measured using
the unreliable pressure transducers and second, the initial pressure pl
was obtained from an uncalibrated pressure gauge. In all cases the
initial shock velocity obtained from the rotating mirror record is
greater than the value obtained from the pressure transducers. Figure Tb
shows a typical oscillogram of the output from the pressure transducers.
From this record it is clear that the signal-to-noise ratio is very low
and hence accurate measurements of the shock transit time can not be
obtained. The oscillogram in Fig. Tb can be contrasted with the one in
Fig. T7a which shows a typical output from a thin film heat transfer gauge.
These records are for approximately equal incident shock velocities and
it is clear that the thin film gauge must be used here.

The disagreement'between the measured and computed fringe shifts in
this table is also consistant in the sense that the measured fringe
shifts are always greater than the computed values. This would indicate
that the initial shock tube pressure was higher than the value indicated
by the Wallace and Tiernan. Subsequent calibration of this gauge did

indeed show that it was reading approximately 8% low at this pressure.
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Fig. 7. Typical Oscillogram Records from Shock Detectors.
a) Thin Film Gauges (10 usec/cm, 2v/cm).
b) Pressure Transducers (10 us/cm, 20 mv/cm).
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When this is taken into account the agreement between theory and experi-
ment is within the experimental uncertainty.

Because of theée discrepancies it was considered necessary to make
further checks on the state of the gas behind the reflected shock. This
was done by taeking several snap-shot interferograms of both the reflected
and the incident shocks. These tests were conducted using thin film
gauges for shock detection and a new (calibrated) Wallace and Tiernan
pressure gauge for measuring py- Two typical interferograms are shown
in Fig. 8. The results from six experiments are shown in Table 2. Two
different types of interferograms were necessary in this check because
it was not possible, from a monochromatic interferogram, to trace the
fringe profile through the reflected shock (see Fig. 8a). That is, one
could be in error in reading the fringe shift by an integer number of
fringes. To decide the correct value for the integer number of fringes
a white-light interferogram (Fig. 8b) was taken where a particular fringe
profile can be traced through the shock front. The agreement between
experiment and frozen flow calculations as shown in Table 2 is considered
very good. On this basis it was concluded that the thermodynamic state
of the hot gas behind the reflected shock can be predicted using the

. (39)

simple shock tube relations for an ideal gas. It is further concluded,
based on the uniformity of the fringe pattern behind the reflected shock
in the time resolved records, thaﬁ the hot slug of gas in the end wall
region is very uniform.

At the beginning of this study it was hoped that the detailed
structure of the end wall boundary layer could be obtained from the

time-resolved records. In this way it would have been possible to study
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b)

Fig. 8. Typical Snap-Shot Records Showing Reflected Shock.
a) Monochromatic Interferogram (M = 6.62, py =11 Torr).

b) White-Light Interferogram (M = 6.55, p, = 11 Torr).
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the growth of the boundary layer profile with time.

Unfortunately it

was not possible to achieve this goal because of poor resolution of the

fringes near the wall.

Because of this it was necessary to resort to

snap-shot interferograms of the entire end wall region at a particular

time after reflection of the initisl shock.

6.11
6.16
6.20
6.30
6.45
6.62

6.10

Table 2.

Torr
10.6
10.6
10.6
10.6
10.6

10.6

Py
Torr

10.6

Reflected Shock

gl 825(i.07)

K Experimental
298 1.65

298 1.77

298 1.62

298 1.70

298 1.77

298 1.78

Incident Shock

! 512
K Experimental
298 0.85

25
Frozen
Theory
1.696
1.693
1.697
1.709
1.721

1.726

SlE

Frozen
Theory

0.869

Comparison of Experimental Fringe Shifts with Computed

Frozen Flow Fringe Shifts.
Across Reflected Shock and
Incident Shock.

2
12

5.3 Snap-Shot Interferograms

Represents Fringe Shift
the Shift Across the

One of the main virtues of using the MZI for boundary layer

investigations 1s the fact that it is easy to change the fringe orientation
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and spacing over a very wide range. In this way one can attempt several
different fringe orientations and spacings in order to ascertain which
gives the most precise resolution for a particular application. In this
regard there are several guidelines which have been set by previous
investigators studyiﬁg various types of boundary layers. For example,

(40)

Howes and Buchele in their investigation of the boundary layer over

a flat plate in a supersonic wind tunnel suggest that the most accurate
technique is to orient the fringes normal to tﬁe surface. In principle
this method gives a complete density distribution through the boundary
layer because fringes oriented parallel to the gradient in refractive index
are shifted in a continuous manner when a continuous change in refrac-
tivity occurs. On the other hand, Smeets,(ls) in his work at the shock
tube end wall, used fringes inclined at approximately 450 to the wall.
Bershader and Marlow (in private communication) suggest that very narrow
fringes oriented parallel to the wall (and hence normal to the gradient
of refractive index) give accurate boundary layer profiles.

In this study a variety of different fringe configurstions were
used to ascertain the most desirable fringe spacing and orientation for
regolving the end wall boundary layer profile. Four typical configurations
are shown in Fig. 9. The extent (or thickness) of the thermal layer is
readily visible in Figs. 9a,b,c. However, in each of these cases and
especially in Fig. 9c it is clear that rapid changes occur in the
individual fringe widths as one approaches the wall. Because of this
changing fringe width 1t was not possible to make an accurate determination
of the thermal layer profile by fringe shift measurements. For each of

the first three cases shown in Fig. 9 different fringe widths were attempted
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at the same orientations but here again the above conclusion were still
valid.

The final orientation and spacing Judged as the one which would
give optimum resolution is shown in Fig. 9d. The most striking difference
in this record as compared to the previous attempts is that the extent of
the boundary layer is not at all clear. Thus, the record which shows the
overall effect best is not the one from which the best resolution can be
obtained. The initial fringe spacing, for the narrow fringe case, was
4-1/2 fringes per millimeter. The MZI was adjusted such that for an
increase in density the fringe shift would be into the field of view.

In this way the fringes were compressed in the boundary layer and typically
10 to 12 data points were obtained on a profile less than 2 mm thick. This
adjustment of the MZI is critical because if the fringe shift is reversed
for the same increase in refractive index the fringes would separate in
the boundary layer resulting in only 4 or 5 data points over the 2 mm
distance. The h-l/2 fringes per millimeter spacing represents a practical
limitation rather than a desirable one because in principle a much closer
spacing would give even more points on a profile. Such a practical
limitation is due mainly to the grain structure of the fast response film
availeble. An illustration of this point is shown in Fig. 10. This
photograph is an enlargement (mag. ~ 100) of these narrow fringes.

The photograph in Fig. 10 shows that the image of the end wall surface
is not well defined in this type of record but it is readily visible in
the no flow pictures which were taken prior to each run. In order to
establish the location of the wall in the flow record a reference point

was established which would be clearly visible in each photograph. Two
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a)

c)

~4 k- 2 mm

Fig. 9. Four Typical Snap-Shots of the End-Wall Thermal Boundary Layer.

a) Wide Fringes Normal to Surface (M = 6.06, p, = 11 Torr,
t =22 psec)

b) Wide Frlnges Inclined at 30° to Surface (M
Torr, t = 24 usec).

c) Wide Frlnges Inclined at 65° to Surface (M
Torr, t = 480 psec).

a) Narrow Fringes Parallel to Surface (M = 5.51, p; = 11 Torr,

= 488 usec).

11
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6.21, Py
6.48, P,

1
N
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crossed wires mounted on the window framework served this purpose and
all measurements on the flow interferogram were made from this point.
With this technique the location of the end wall could be established to
within #0.03 mm. This uncertainty in wall location is the main contri-

bution to the distance error flag which will be presented later.

5.4 Data Reduction Technique

One of the attractive features of using the narrow fringes parallel
to the end wall is the relative simplicity of the data reduction process.
The procedure consists of measuring in from the reference marks to each
fringe maximum and minimum. This distance is then subtracted from the
measured wall distance as seen in the no flow record. In this way one
obtains the location of each fringe profile relative to the wall. Then,
starting at the closest fringe profile to the wall each maximum of light
intensity is numbered consecutively (n = 1,2,3,...) and each minimum is
likewise assigned one half integrals (n = 1/2, 1-1/2, 2-1/2,...). In
this way a plot of distance from the wall vs. fringe number gives a con-
venient means for determining the fringe shift. This numbering system
is arbitrary since only the difference in fringe numbers is used to compute
the fringe shift.

Figure 11 is a graphical illustration of this technique showing the
data for one run. If the flow field were undistrubed the points on a
plot of this type would lie on a straight line. However, in the boundary
layer the fringes are disturbed and deviate from this line. This deviation,
that is, the difference in fringe number from undistrubed position to
disturbed position, is the fringe shift corresponding to that particular
location. This concept is illustrated in Fig. 1l for a point approximately

1l mm from the end wall.
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On a large scale plot of this data it is possible to distinguish
those points which lie outside the boundary. WNote in Fig. 11 that these
points do not lie exactly on a straight line so an averaging process
(least squares) was used to establish the undisturbed fringe location.
This was done on the computer which then computed the fringe shift for
each fringe location in the boundary layer.

Figures 12 and 13 are two examples of normalized temperature profiles
obtained in this way. The continuous curves on these plots are for
numerical solutions of the thermal boundary layer equation for two dif-
ferent values of v. As shown in these figures each experimental profile
has more than 15 points and in Fig. 12 the last point is 0.2 mm from the
wall. Because of refraction of the light rays and other optical problems
such as, large grain size of the recording film and excessive "squeezing"
of the fringes near the wall it was impossible to measure distinet profiles
closer to the wail. The refraction of the light rays of course increases
with increasing refractive index gradient (or density gradient) and a
consequence of this effect can be seen by comparing Figs. 12 and 13. In
Fig. 12 the last visible fringe corresponds to a fringe shift of 2.98
giving a normalized temperature of 0.52. 1In Fig. 13 the density gradients
are much steeper, i.e., the boundary layer is much thinner, and hence the
light rays are refracted more. For this case the last visible fringe
corresponds to a fringe shift of 1.89 and a normalized temperature of 0.76.

The value of v which best fits the experimental data was deter-
mined by computing the root-mean-square deviation between experiment
and theory. Figure 14 shows the mean deviation and the root-mean-square

deviation for the data shown in Fig. 12. An uncertainty in v of +£.02
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was assigned on the basis of the error flags shown in Figs. 12 and 13.
That is, for the data shown in Fig. 12 a value of 0.65 for v is a
lower limit which encloses the error flag and a v of 0.69 is a upper
limit which encloses the error flag. Teble 3 is a summary of the results
for nineteen runs showing the experimental parameters and the value of v

as established by this technique.

M Pl Zs t

Run s TORR K usec v

164 3.67 26 3149 459 N
162 3.67 31.2 3149 369 .66
163 3.89 20.8 3522 383 .65
161 4,18 20.8 4050 409 .65
160 4,37 20.8 4409 hoo .66
159 4.63 20.8 4933 227 e
156 4.68 20.8 5049 330 .66
155 k.92 20.8 5558 502 .65
154 5.25 20.8 6315 488 .66
153 5.44 20.8 6754 265 67
1k9 5.51 20.8 6943 488 .65
150 5.55 20.8 7040 510 6k
152 5.59 20.8 7139 402 .67
146 5.93 20.8 8020 389 .66
145 6.17 20.8 8658 Lo1 .64
1hh 6.27 20.8 893k 395 .65
157 6.32 20.8 9078 396 67
1h3 6.37 20.8 9225 398 .70

166 T7.27 5.8 11949 21 .70

Table 3., Summary of Basic Experimental Data and Calculated Results
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6. REFRACTIVE ERROR ANALYSIS

When the MZI is used for studying regions where there are large
density gradients, it is necessary to consider the possibility of an
error in the measured fringe shift which occurs as a result of refraction
of the light rays. That is, the gradient in density will cause a light
ray to bend in the direction of increasing density and hence follow a
curved path through the test section rather than the straight path which
is assumed in simple interferometer theory. This phenomenon results in
two main effects: First each ray will travel over a longer optical path
and along this path the refractive index (and hence density) is constantly
changing. Second the location of the fringe profile with respect to the
end wall may be distorted because the ray does not actually pass through
the point from which it appears to originate. Thus, an interferogram
evaluated on the basis of unrefracted light rays will in general be in
error.

The obJject of this section is to apply the results -of a general
method for computing refractive errors to the specific problem of light
refraction within the end wall thermal boundary layer. The general
problem of refraction has been treated for the case of supersonic flow

over a flat plate for wind tunnel applications by several authors includ-
(41), Bershader(ug), Wéyl(AB)
(40,45-L7)

(38)

ing Blue s DeFrate(hu), Wachtell(38), and,

Howes and Buchele. The method to be utilized here was first
derived by Wachtell and a complete review of his analysis is given
in Appendix B. The work of the first four authors was completed Jjust
prior to Wachtell's and in an appendix he compares their results with

his own conclusions. Howes and Buchele's work was completed subsequent

to that of Wachtell and the last reference listed for these authors is
L5



a very recent summary and extension of their work which was substantially
completed prior to 1955. In Appendix B the general results of Wachtell,
expressed as a power series expansion, are compared with two limiting
cases presented, for the more general integral formulation of the problem,

by Howes and Buchele.(AY)

It is shown that for these two specific cases
the different formulations are identical. Unfortunately, the most
general expression for refractive error correction of Ref. 47 is not
in a form convenient for comparison with the full Wachtell series
expansion.

Another completely different method for evaluating refractive errors

(k)

was given in DeFrate. Basically his approach is to assume a density
distribution and with this numerically integrate the differential equation
for the trajectory of a light ray (see Eq. (B.7)). Once the trajectory,
corresponding to an assumed density distribution, is known,the expected
fringe shift, including the effects of refraction, can be computed. Thus,
the DeFrate procedure is to guess the true density distribution, compute
for this guess what the measured fringe shift distribution should be, and
compare it with the fringe shifts actually measured. A new guess will be
suggested by any discrepancy and this process is repeated until good
agreement is obtained. The advantage of this procédure as compared to
the Wachtell method is that it appears to be valid when the Wachtell
approach breaks down because of lack of convergence of the power series
expansion., This iterative approach is not used here primarily because

it does not show explicitly how to minimize refractive errors and also
because it involves the numerical solution of a differential equation
while the Wachtell method gives the solution in a power series expansion.

Another important reason for using the Wachtell method is that
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it separates the refractive error and the distortion effects from the
main fringe shift contribution attributed to the density field being
studied. DeFrete's method does not consider the effects separately but
rather incorporates the entire problem into the iterative scheme.

The problem of refractive errors for supersonic flow over a flat
plate in the wind tunnel is somewhat different from the present case.
There the density increases toward the free stream causing a particular
light ray to bend away from the plate, whereas, for the thermal boundary
layer, the density increases near the wall causing the rays to bend
toward the wall. This difference 1s a fundamental one because each
entrance ray that bends sufficilently to hit the end wall surface is
lost for purposes of forming interference fringes. That is, a "blind"
region will exist near the wall. The extent of the region will be at
least as large as the distance from the wall out to the first entrance
ray which just hits the edge of the surface. Most likely this blind
area will extend even further because of interference between the rays
that re-reflect from the surface and those which do not hit the surface
but nevertheless are still refracted appreciably.

In order to evaluate the coefficients for the power series expansion
for refractive error fringe shift contribution given by Eg. (B.20) one
must first express bl, b2, and bS in terms of the parameters of the
thermal boundary layer. Equations (B.21), (B.22), and (B.23) give
expressions for the first three bi coefficients in terms of density
gradients evaluated at the entrance station of the particular light ray
under consideration. These gradients can be expressed in terms of the
thermal boundary layer parameters by defining a non-dimensional function

of density f(n) as
b



., ~ p(ﬂ)

£(n) = Eghjf;%;—- (6:1)

where 7 1is the similarity parameter given in Eq. (533). From the

definition of © given in Eq. (3.4) it can be shown that

e(n) = 20 o(q) .
P

Now using the chain rule of differentiation one obtains

28 5
b, =C" — —=%= &, (6.2)
D° T
E
3 1-v
o2 T T T T
C w5 5w 2 E .
b, = L 85 | (ez) ( )(ew ; (—) 2o | (63)
2" P TEE T i 5 E
and
" 2
2 T T T_-T
_C 1 W 5 2 5w V2
b, =g ——-D26 m o (av +7v+6)( n ) (eE)
E
1-v l-v
T_-T T T T_~T
B 2 5 "w
(BV+7)( 2 w)(—E) ne; + (-—-) n- - n(l-V)( ) 6.
Ty T i T5 Ty E

T \1-v
-1 (%) } (6.4)

where the subscript E denotes values at the entrance station of the

light ray and C and © are defined as

C = D(;%E%i> v K(pW-pE) 3 (6-5)
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and

8° = —2 (6.6)
P5%p5

In writing the expressions for b2 and. b5 the governing equation
for the thermal boundary layer, Eq. (3.8), was used to express the higher
order derivatives of © in terms of the first'order derivative 6'. The
nondimensional parameter C defined by Eq. (6.5) represents the ratio of
the test section width to the thermal boundary layer thickness multiplied
by the square root of the total change in refractive index from region 5

to the wall.

If one now defines a new nondimensional density

p, = o(n)
() = 5 pm"‘*s : (6.7)
W

where p(n) is the value of density computed from the interferogram,
MEAS
then the difference between f (see Eq. (6.1)) and T will be given by

_ P - P
8f = £-F = Iﬁ%ﬁ = Sfp (6.8)
where p denotes the true value of density. Now this difference in meas-
ured and true density ©&p i1s due to the refractive error and one can write
A
KD (p,=5)
where SR is the additional fringe shift due to refraction as given by

the power series expansion in Eq. (B.20). Considering, for simplicity,

only the first two terms in the power series for ASR one can write
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b2 b2

2
1.3 a 1 1 1
Mg =70 ('2"6) *{8"%"‘2”2‘“&6

2
b. bR
33_5_(;.5 ) P (6.10)
ng

In this expression & 1is a parameter which defines the focal plane
for the fringes in the test section and B is a parameter containing
the thickness and refractive index of the test section exit window. From
this form of the equation.oné can conclude that to first order the con-
tribution of refractive errors will be zero if O = 1/3. This value of O
corresponds to a focal plane loacted at 2/5 the test section span meas-
ured from the entrance window. This conclusion was &also drawn by
Wachtell(58) and is,din fact, independent of the particular problem under
consideration. This conclusion is the single most important point of
this analysis and all of the interferograms teken in this study were
for fringes focussed at this plane.

There are some further general conclusions which can be drawn from
Eg. (6.10) and to see this one must inspect the order of magnitude of
the b, coefficients given for the thermal boundary layer by Egs. (6.2),
(6.3) and (6.4). Consider first the ratio of > to b. which can be

1 2

written as:

2
b T =T T 1-v
Lo o®? 2 5" w °E
= = 2(D) C oy [ (v +2) o! + (=)

T E T

-1
1 ] . (6.11)
E 5

The limits of this expression can be determined by considering three

separate points in the boundary layer correéponding respectively to the
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outer edge where 6 = 1, a point midway on the non-dimensional termperature
profile where 06 = 1/2, and a point at the end wall where 6 = 0. Consider
first the limit at the outer edge of the boundary layer where 6 — 1. For

this condition T, = T el -0, and m - 4. The above condition on Ta

5° 'E
is obvious and the conditions on eé and 1 are obtained from the
numerical solution of the governing differential equation given by Eq. (3.8).
Thus in the limit 8 — 1 +the expression given in Eg. (6.11) becomes

. 2
lim El . (§)2 02
6 -1 B D

!-ali:l—J
.dltquz

(6.12)

o

>

Next consider the limit as 6 - O. For this case TE - TW, n— 0, and

eé is a number less than 1/2. Again the conditions on IE

obvious and the result stated for eﬁ was observed for the numerical

and 7 are
solution of the governing differential equation. Under these conditions
the 1limit of Eq. (6.11) becomes

2
1im b 2
1 5,2 ¢
s o =2 @) S . (6.13)

N

Now finally consider the mid point for 6 = 1/2. For this case Qé ~1/2
and N ~ 2. Both of these conditions are‘again obtained from the numerical
solution for typical conditions used in this work. In order to find the
maximum limit one must find the minimum limit for the bracket term in

Eq. (6.11). Noting that the ratio eﬁ/e is of order unity the minimum
value of the bracket term becomes

(V+2)(;-5-—1) +

E
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This quantity is greater than unity and does not go to zero hence one

can write

1im

2
b 2
1 (8 w5 1
= = 2(g) 2 . (6.14)

0 - 1/2 o T
/ 2 "’ Tg [:(v+2) (T_S' - 1)]+ 1
E

From the three cases one can now write a conservative condition for which

b2 will always be much less than b

1 This condition is given by

o
2
(—g—) cgeﬁ «<1. (6.15)

In this same way one can also show that if the above condition is true

the
B> << b (6.16)
1 37

and
b,b, << Dby . (6.17)

As a guide in choosing experimental parameters Fig. 15 shows values
of C computed for different values of initial pressure (pl), time
after reflection (t), and exponent in the power law dependence for
thermal conductivity v (see Eq. (3.7)). Figure 13a shows the varia-
tion of C with temperature at the outer edge of the boundary layer
(T5) for various times after reflection and two different initial pres-
sures while holding v fixed at its minimum value of 1/2 (see Sec. 3).
Likewise, Fig. 15b shows the variation of C with T5 at a fixed time

after reflection (400 u sec) and different initial pressure and v's.

In order for the condition given by Eg. (6.15) to be satisfied, and indeed
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Fig. 15. Variation of C with Temperature in Region 5.
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in order to have minimum refractive errors as will be shown later, one
should choose experimental parameters that give minimum C if at all
possible. The choice of such parameters to give minimum C (viz. low Pl
and long time after reflection) is consistent with the discussion of
Sec. 4 where the same conclusions were drawn for completely different
reasons.

It is now possible, assuming experimental conditions consistent with
Eq. (6015), to simplify the expression for RSR by neglecting the lower order
terms indicated by the order of magnitude analysis for the bi coefficients.

Doing this the complete expression given by Eq. (B.QO) becomes

2.3 (o4 1 2 1 2
7\SR=le (§-g>+ [(-04 +C¥—-§)'b2]D
PRSP
+ BN T T R
2 2 kL 2 .k
+<-g o + "9—" - Bg)bg D + --- l (6018)

where P no longer appears as a parameter. This means that the exit window
has no influence, at least to this order, on the refractive error con-
tribution. This conclusion is consistent with the findings of both
Wachtell(58) and Howes and Buchele.(h7)

As was mentioned previously O was taken as 1/3 in this study in order
to eliminate the first order contribution to S_ and for this choice the

R
next two higher order terms of Eg. (6.18) become:

2
b b.Db 2b .
23l P2) 2 (13 2) I
7\SR- le l(E)D + o + Ig—é D

Written in this form one can now see that the choice O = 1/3 while elim-

. (6.19)

inating the first order contribution to SR also gives reasonably small
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coefficients for the remaining higher order contributions. In principle
one could choose & such that the entire three term expansion given by
Eg. (B«20) would be minimized. No attempt was made to do so here.
Equation (6.19) can also be written in terms of the non-dimensional
constant C by substitution of the expressions for the bi coefficients

given in Egs. (6.2), (6.3), and (6.4). Doing this and after some simpli-

fication one finds

7
82 IO [p s
7\SR=F' —-—T—a {ugb-CE+
E
3
T T )
w5 Q P =k
= [35+_5'"{'8] CE+"'} (6.20)
E
where
Ts - T\ Ty 1-v
P =(v +2) % eE+<—) N, (6.21)
E 5
2
T_ - T
QE(2v2+7v+6)< 5TE W> (€)% +
1~y
T_ - T T
(3v+7)<5 W><—E—) n &, +
T T 6x
l-vy 1=y
T\ T_ - T T
B 2 5 W T
(—— n - n(l-v)(———————) - l](——> 3 (6.22)
l 5) T b T
and
= oy ‘
Cp = C%6 (6.23)
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Thus we see that for fringes focused at the 2/3 span of the test section
and under experimental conditions such that Edq. (6.15) is satisfied one
can express the refractive errors as a power seriles in the non-dimensional
parameter C. For completeness the non-dimensional change in density (ﬁf)

given by Eq. (6.9) will now be expressed as a power series iIlEﬁ. Doing

this one finds

37 3
T T T 2
- Y2 |lP g, w5 |9 P |55,  __
6f-TlO % % CE+TT {86’“"837]0}«3* (6.24)
E R

where P and Q are defined by Egs. (6.21) and (6.22).

In summary it has been shown that the refractive error contribution
to fringe shift (SR) Tor the thermal boundary layer problem can be ex-
pressed ag a power series in Eﬁ. The form this power series takes in
Eq. (6.20) assumes only that the interference fringes are focused at the
2/3 span of the test section and that the experimental parameters are
chosen such that Eq. (6.15) is satisfied. This power series was then
used to express 6f in terms of the parameters of the thermal boundary
layer and here it turned out that the terms in the power series for 6f
were one order lower in.Eﬁ than the terms in the expansion for SR. The
non-dimensional grouping given by‘Eﬁ, which appears naturally in the
derivation of Egs. (6.20) and (6.24), at first does not seem like a wise
choice for the power serles expansion parameter because as the subscript
E indicates it is dependent on the distance from the wall. However, this
choice is preferable over the other alternative available (viz. C) be-

cause as Fig. 15 clearly demonstrates C can be greater than unity for the

particular parameters used in this study. It is also clear from Fig. 15
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that C is no larger than 2 and experience with the numerical solution of
the full thermal boundary layer equation shows that Qé is always less
than 1/2. Thus it is reasonable to conclude that 6ﬁ is a better parameter
for the power series expansion of the thermal boundary layer refractive
error than the more satisfying choice €.

Returning now to a consideration of only the refractive error fringe
shift SR it is clear from the leading coefficient of Eq. (6.20) that SR

increases with decreasing TE° Not only does the leading term increase

as the wall is approached but also Eﬁ increases due to the increase in
eéo At the outer edge of the boundary layer where TE *-T5 and 6ﬁ =0

the value of SR mist approach zero. This is consistent with the physical
situation where the density gradients at the outer edge of the boundary
layer are very small hence the light refraction should be negligible; as
the density gradients increase further into the boundary layer the re-
fraction increases and hence the refractive error increases.

The above conclusions can best be demonstrated from an illustrative
example where second and third order contributions (first order is zero
for O = 1/5) to SR are computed for a typical example. This has been
done for the experimental parameters of run 152 (data shown in Fig. 12)
using the value of v obtained from the method described in Section 5.
Table 4 is a list of the values obtained for the second (SRg) and third

order (SR ) terms using the full expression for KSR as given by Ed. (B.20).
3
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By Rs
nm
.088 ;268 1.15 5.67
.115 .318 2.4 x 107t 6.1 x 107
147 .368 6.3 x 1072 8.3 x 1072
.182 418 1.7 x 1072 1.k x 1072
222 467 5.6 x 107 2.5 x 10"
279 .516 1.9 x 107° 5.5 X 107"
.357 .650 1.2 x 107 1.0 x 1077
.526 .793 6.1 x 1070 1.4 x 1077
716 .889 4.8 x 1077 4.0 x 1077
.952 947 5.5 x 1070 1.5 x 1071°
1.32 .985 1.2 x 1077 1.2 x 1072

Table 4. Second and Third Order Contributieons to Refractive Error
Fringe Shift for Run 152.
In this example it appears that this method breaks down somewhere between
.115 and 147 mm's from the wall because SRS becomes greater than SRE.
However, as Fig. 12 shows, the last visible fringe for this particular
run is at a value of Vg = .251 mm. At this point, as Table L shows, the
refractive fringe shift error is much less than the uncertainty (0.025)
in measuring the full fringe shift and hence can be neglected.
In order to estimate the extent of the "blind"
region near the end wall, which was assumed to be due to light rays bend-

ing sufficiently to hit the wall, the value of Vg corresponding to the

last light ray to miss the wall was computed from Eq. (B.5). Since

58



it has already been shown that this method, at least for the SR series
expansion, breaks down as y — 0 +this calculation of a ray trajectory

for small y can at best be expected to give only a rough estimate of

the extent of the "blind" region. The value of Y vas computed by starting at the
Wallc%f=0)andcomputing W, from Eq. (B.5) for small steps in Vg The

first point at which Vg 2 W, corresponds to the location of the first

c
entrance ray which misses the wall. Three terms were included in this
calculation (O(Z6)) end the a, coefficients were expressed in terms
of the bi's by using Egs. (B.9). This computation was made for each of
the runs listed in Table 3 and in all cases the location of the first ray
to miss the wall was between 0.11 and 0.15 mm. This order of magnitude
for the region of confusion near the wall is consistent with the experi-
mental observations.

As was discussed in Appendix B there are distortion effects
caused by the refraction in the test section. It was shown there that the
magnitude of the distortion depends on the distance from the wall surface.

This dependence on entrance ray location appears in the bi coefficients

and Eq. (B.26) gives the distortion as

‘ 2
b + 2b\
2/,1 1 2 2
Dy = - Db D (5 - @) *‘(**—Eﬂf-—) (1 - ho)D
)y (6.25)
2 2
b, + 22b5b_ + 18b.b, + bb
+( 1 1 2720 1°3 2) (1 - 6t + o(xf) Y .

Here one should note that O = 1/3 does not eliminate the first order
contribution to distortion as it did for the refractive error fringe

shift. However, the second and third order terms of Eq. (6.25) are
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negative and tend to decrease the main first order contribution. Again
the distortion increases close to the wall and falls off rapidly near

the outer edge of the boundary layer. Table 5 lists the distortion com-
puted for run 152 (data shown in Fig. 12) using the full expression given

by Eq. (6.25) with « = 1/3.

y 0 Distortion
mm mm
Olily .169 -2.55 X 10%
.085 264 -3.06 x 107t
.182 418 2.16 x 107°
.222 467 -1.77 x 1072
.279 .516 -1.38 x 1072
337 .650 -6.56 x 107>
.526 793 2,75 x 1070
716 .889 1.2k x 1070
.952 LOkT -5.75 X 107"

1.32 .985 -1.69 x 207

Table 5. Variation of Distortion with Distance from End Wall
for Run 152.

The last visible data point for run 152 corresponds to 6 = 0.52 and

Table 5 shows that the distorion for this point is less than 0.013 mm.

Since this distortion is much less than uncertainty in locating the

correct position for any fringe profile (.03 mm) it is neglected in

reducing the data. Because of the rather complicated way in which the

bi coefficients dependent on the parameters of each experiment the
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distortion corresponding to the last data point is computed for each run

listed in Table 3. Table 6 lists these results.

RUN ¥y 6 Distortion
# mm
164 .368 765 -9.53 x 1073
162 .380 .839 -9.63 X 1072
163 . 370 757 -1.19 x 1072
161 .368 .76k 29.50 x 107°
160 .366 71k -1.11 x 107
159 .296 732 -1.10 x 107°
156 .519 766 -5.99 x 107>
155 .58k 710 -6.26 x 107°
154 .548 .651 7.65 x 107°
153 407 .688 7.70 x 107°
| 1ko .355 .561 -1.17 X 1072
150 .100 .587 -9.29 x 1073
146 495 .69 Tk x 1070
145 138 .633 -6.65 x 10
1k 406 .609 -7.95 x 107°
157 .689 751 -3.16 x 107>
143 .623 .66k ~4.83 x 107°
166 .157 .682 -1.11 x 1072

Table 6. Distortion for All Runs Computed for the Last Visible
Fringe Profile.
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Here it is clear that the distortion for all runs is much smaller than
the reading uncertainty and hence can be safely neglected.

Table 7 shows a similar listing of all of the different contri-
butions to fringe shift error calculated for the last visible data point
for each run given in Table 3. 332 and SRS in the table are the fringe
shift error due to refraction as previously discussed. SBL is the

equivalent fringe shift error for the side wall boundary layers derived

in Appendix C and S is the fringe shift error due to the test beam

BS

passing through the last beam splitter of the MZI. Thils contribution is

computed from the formulas given by Kahl and Mylin.(h8)

The last column

in Table 7 is for the total refractive error fringe shift given by the

sum of the four separate contributions. From this column it is clear

that the combined effect of the three separate fringe shift errors is still
much less than the reading error (i.025) and hence can be neglected. This

conclusion is not true for run 166 which was recorded 21 psec after

reflection and this data is not included in the present compution of wv.
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7. DISCUSSION AND CONCLUSIONS

The main result obtained in this study is the exponent v of the
assumed power law temperature dependence for thermal conductivity. Experi-
mental temperature profiles, obtained interferometrically, were compared
with & numerical solution of the full thermal boundary layer equation and
a value of v is established statistically from this comparison. As a
prerequisite to the thermal boundary layer measurements the thermodynamic
state of the gas behind the reflected shock was investigated in a series
of time-resolved and snap-shot interferograms. From these experiments it
was concluded that the state variables were adequately described with
simple shock tube theory assuming frozen flow conditions.

As discussed in Section 3 the approximation of a power law temperature
dependence for thermal conductivity over the temperature range 1000 to
10000%K is in good agreement with the theoretical predictions (taking
Vv o= 5/4), of Amdur and Mason.(28) This type of power law has been used
to deduce values of v from the end wall heat transfer experiments(9-ll’49)
and the reflected shock perturbation experiment of Sturtevant and Slach-
muylders.(le)

At least squares fit for the data obtained in the present experiments

indicates that the exponent in the power law temperature dependence for

argon should be 0.668. That is,

K (T >0.668i.02

X “\T
W W

where

KW = k.05 x 10-5 cal. cm-l .':*.ec_l OK-l

6k



and

T = 300°K .
W

Figure 16 shows a comparison between values of thermal conductivity
computed with the 5/4 power law and the experimental value given gbove.
The values are shown on a logarithmic scale where the slope is v. The
two other curves on this figure are the smoothed experimental results of

(9)

Collins and Menard and the theoretical results using a Lennard-Jones
6-12 potential, after Hirschfelder, Curtiss, and Bird.(29)ﬁ For the
experiments in argon there is a considerable range in the final reported

12)

values of v. Thus, Sturtevant and Slachmuyldérs( found good agree-
ment between theory and experiment for v = 0.81 + .02, whiie Camac and
Feinberg(ll) reported v = 0.76 + .03 and Collins and MEnard(9) give

v = 0.703. In the later two cases the final value of v is obtained as
a mean of a large number of experiments where the individually determined

values vary between 0.60 and 0.90. As Lauver(5o)

points out the reason
for this large scatter is that an error of O.2OK in measuring the surface
temperature rise (at 1 atm. pressure) or an error of 100°K in T5 at
BOOOOK is equivalent to a 20% change in thermal conductivity. Figure 17
shows the scatter for the individual values of v obtained from each of
the present experiments. The scatter here is approximately i?% and this
represents a considerable improvement over the values reported from
measurements of total heat flux at the end wall surface.

The value of Vv obtained here is 5% lower than the lowest value

(19)

reported for argon from the end wall heat transfer measurements.

However, at the lowest free stream temperature used here (SlSOOK) good
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agreement exists between the present values for thermal conductivity and

(%)

those reported by Smiley. There are a number of possible sources

of error in this experiment as indicated in the four appendices and one
separate chapter devoted to a discussion of different types of inter-
ferometric error. In all cases the interferometric errors were larger
approaching the end wall but they were still much smaller than the
uncertainties in data reduction and hence would not explain the lower
value of v. It is felt that this lower value of v in quantitative
agreement with the Collins and Menard experiments gives additional con-
fidence in concluding that the interaction potential assumed by Amdur
and Mason does underestimate the short range potential. That 1s, the
short range potential assumed in their work seems to weak. No conclusion
can be drawn about the long range part of the potential because at the
higher temperature this part of the potential has little influence on
thermal conductivity.

In conclusion this method does reduce considerably the scatter in
individual values of Vv from one run to another, but, some further
investigation will be required before it can be concluded that the average
value of v reported here is indeed in géod agreement with the theory
based on the best known interaction potentials. The method as outlined
here and most of the techniques developed should be directly applicable
to the case of ionized gases. It is straightforward to modify the snap-
shot techniques to simultaneously record at twdswavelengths. As has been

(51,52)

demonstrated elsewhere it is then possible to obtain simultaneous
profiles of both electron density and mass density. In the present case,
because of the constant pressure in the thermal layer, the two measure-~

ments can be combined to yield the profiles of degree of ionization and
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temperature in the thermal layer. If the gas is in equilibrium in this
layer then the present program could be used to analyze such profiles.
Because of the contributions of the electrons and reactive components to
the thermal conductivity it would not be possible to assume such a simple
law for the variation of thermal conductivity with temperature. It would
probably be preferable, in this case, to use a thermal conductivity
theoretically computed as an initial approximation and to attempt to
adjust the thermal conductivity to yield the correct profiles. Alterna-
tively, one could use a function of temperature containing several param-
eters and vary these until good agreement with experiments is obtained.
Of course, it would be necessary to use a function which is capable of
reproducing the features of the theoretical thermal conductivity, in par-

ticular the maximum (vs. temperature ) which occurs near 50% ionization.
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APPENDIX A

A-1. Aligmment Procedure

The accuracy of interferometric measurements near an extended solid
surface depends to a large extent on knowing that the collimated light of
the interferometer test beam does indeed pass parallel to the surface. The
method most often used for accomplishing this alignment is to observe the
diffraction patterns produced on two sides of some object. Alignment is
assured when the diffraction lines on each side of the object are equal in
number, intensity, and spacing. A complete discussion of this technique
is given in Refs. bk, 45, and 46.

An alternative method used in this study makes use of the spﬁrious
interference fringes which form adjacent to the solid surface when slight
misalignment 1s present. The method was first proposed by Howes and
Bucheléuo)in‘their work on practical considerations of gas flow inter-
ferometry. The fringes which are observed in this technique can be char-
acterized by the angle B illustrated in Fig. 18. For B<O the spurious
fringes are produced by a combination of the reflected beam and the edge
diffraction at the camera edge of the surface. Likewise for B>0 they are
due to edge diffraction at the light source edge of the solid surface. In
all cases the spurious fringes are a result of interference between the
reference beam of the interferometer and the edge diffraction (B>0) or the
edge diffraction combined with the refracted beam (B<0).

FPigure 19 shows four photographs :which illustrate the observed spurious
fringes. Figure 19a shows the end wall region for B>>0 when only the test

beam is transmitted. The diffraction patterns, visible near the wall
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Fig. 19.

Spurious Fringes Used in Alignment Procedure.
Transmitted for B >> 0.

Magnification ~ 30.

Magnification ~ 30. d) Both Beams Transmitted for p ~ O,
Magnification ~ 2.3.

a) Test Beam
b) Both Beams Transmitted for B < O,

¢) Both Beams Transmitted for B > 0,
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image, are formed by the light diffracted at the light source edge of the
wall. The absence of any spurious fringes in this type of photograph

gives assurance that they must be formed by interference with the reference
beam. |

Figure 19b shows the spurious fringes formed for B<O when both beams
of the interferometer are transmitted. This skewed pattern of fringes
near the surface is probably caused by the light diffracted at the wall
edge nearest the camera. This conclusion is based on two observations:
First the skewed fringes are curved which would indicate that they are
formed by light coming from several different angles and combining to form
one curved fringe. Second,when B<<0 a completely different pattern of
interference is observed. This new pattern shows a smeared series of very
closely spaced fringes inclined at a very small angle with the wall. This
type of interference is attributed to the reflected beam interfering with
the compensating beam in a manner very much analogous to Lloyd's mirror
fringes. When B>>0 there is no reflected beam and indeed this type of
pattern does not occur.

Figure 19c¢ shows the spurious fringes formed when P>0. In this case
the same type of characteristic pattern which appéars for B<O is observed.
The intensity of the skewed fringes is somewhat 1éss in this case indi-
cating the absence of the light contributed by the reflected beam.

When the light beam and the surface are aligned the skewed fringes
disappear giving a pattern as shown in Fig. 19d. Notice here that at the
root of each fringe a kind of periodic discontinuity is observed. Actually
this same effect is visible before alignment is achieved. This efféct
was first attributed to the finite size of the light source and later this

conclusion was confirmed by actually decreasing the light source aperture
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until the discontinuities were no longer visible.

An estimate of the accuracy of this technique was obtained in the
following manner. PFirst the MZI was adjusted for B =0 (no visible
spurious fringes). Then the slide mechanism used to rotate the inter-
ferometer table was moved until the first visible spurious fringes appear.
By knowing the linear travel of the slide mechanism and the pivot arm of
the table support one finds that a misalignment of +2.5 x ].O-)+ radians is
clearly visible. Such a misalignment would result in a linear uncertainty
of * 0.01 mm for a given ray over the width of the test section. Thus a
known misalignment results in a linear error of a given light ray which is
smaller than the same type of error resulting from the use of a finite

light source aperture.
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APPENDIX B

B-1. Refractive Error Analysis

As described in Section 6, the method of Wachtell(38) has been used
to compute the errors in the fringe shifts due to refraction of the light
rays. This method will be reviewed and extended in this appendix. Fur-
then, a limited comparison will be made of the results of this method with
the recently published analysiskof Howes and Buchele(h7). Although these
authors do not refer to Wachtell the two approaches are very similar but
the method of presenting the results are quite different.

The fringes which are formed at the image plane (film plane) of
the optical system can be thought of as the real image of virtual fringes
located at an object plane within the test section of the shock tube.
Assume now that the image plane of the optical system is focussed on the
object plane P, shown in Figure 20, located at a distance h from the
exit window. The object of this analysis is to find the value of h which
minimizes the error in fringe shift caused by refraction and to compute
the higher order corrections for the refractive errors.

A schematic diagram showing the paths of three different light rays,
is shown in Fig. 20. When conditions in the test section are uniform,
the light entering at E and F (all incident rays are assumed to be on the
same wave front normal to the entrance window which 1s perpendicular to
the end wall), will follow the straight paths FGH and EIM (shown dashed
in Fig. 20 ). If however, there is a density gradient normal to the end
wall the light ray entering at E will bend towards the wall and follow
the curved trajectory ECD instead of the straight path EIM. If the

fringes are focused on the plane P then the ray ECD will appear to
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originate from point A. This point is found by constructing a tangent
to the ray EC at C and extending this line until it intersects the plane P.
The ray FGH is an undeviated ray passing through point A which will arriwve

at the same point (A") on the image plane as the refracted ray ECD. Thus,

11

to a viewer at the image plane, ray ECDA" appears to follow the straight

path FGHA". The error in fringe shift SR caused by thisg effect is given
by the optical path difference, in wavelengths, between these two rays
measured from the light source to A".

Assuming the light enters perpendicular to the entrance window,
there is no optical path difference for the two rays from the source up
to the ingide edge of the entrance window. Then the fringe shift error

SR is given by the difference in optical path between the actual ray

ECDA" and the ray which would reach point A" on the screen if there were

no refraction FGHA",

A8y = (ECDA") - (FeHA") (B.1)

OPT OPT

=(EC) - (FG) + (CD) CH) + (DA") - (HA")

OPT OPT OPT ~ ( OPT OPT OPT

where the subscript OPT refers to the optical path. Here (DA")OPT and

(HA")OPT depend on the particular optical system used but the difference

- (HA™) is independent of the camera optics. This result can

(D ")OPT

be demonstrated in the following way: TImagine the shock tube evacuated

OPT

and replace the exit window with a material having a refractive index of
unity. Plane P' will now be the object plane and h', the distance from

the plane P' to the exit window, will be given by

h' +t = h + §~ (B.2)
g
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where ng is the refractive index of the exit window and t is the thickness
of this window. Under these conditions &' will be the image of A' (located
by a backward extension of the exit ray DA") and the rays leaving A' in
any direction will arrive at A". That is, the optical distance from A’

to A" will be independent of the direction in which rays leave A' and

one can write

A'H + (HA") = A'D + (DA")

OPT OPT

or
1 - 1" = 1 - 1 .
(D )OPT (HA )OPT A'H - A'D (B.3)
which when substituted into Eq. (B.l) gives

ASp = (EC) - (Fa) + (cD) - (GH)GPT +A'H - A'D (B.4)

OPT OPT OPT

Note here that details of the camera optics no longer remain in the
expression for SR.
In order to compute the quantities in this expression the following
assumptions are made:
(A). Density and hence n in the boundary layer depend only on the
distance from the wall y.
(B). The deflection of a light ray from a straight line can be

expressed as a power series in Z, the distance from the

entrance window,

= 2
W=a +a Z+a) (B.5)

As it turns out all the odd coefficients in this series
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(al, as, a5,) as well as ao are zero. Thus, the deviation
W from a straight line is a parabola in the lowest approxi-
mation. In the present analysis the first three non-vanishing
terms will be included (i.e., up to Z6) in this series.

(C). n can be expressed as a power series in the deviation W from
an unrefracted ray,

n

B 1

Here the expression for n is normalized with the value of n
at the entrance station nE. Thus, the first term in the
expression is unity because at the entrance station the ray
is unrefracted and W is zero.

The path of a light ray through the boundary layer can be calculated

from the law of refraction for a non-homogeneous medium which is given by

dn w"

ooy (W')2

where the prime denotes differentiation with respect to Z. The boundary

conditions for this equation are taken as

n=n, W=W'=0,atZ=0

which state that the refractive index at the entrance station E is just
np and the deviation of the ray at this point is zero. The condition
W' = 0 is a result of assuming the entrance ray normal to the window.
The solution for Eg. (B.7) subject to the above boundary conditions is

i
2

O
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The boundary conditions for W show that a, must be zero and by
combining Egs. (B.5), (B.6), and (B.8) one can show that

b

1
%2 =
b3S + b.b
1 1°2
8, = ", (B.9)
5 3 2
b7 + 220, + ;|.8b12b3 + b b2

8, =
6 720

and that a, a3, a5 are all zero.
Now each term in Eq. (B.L4) can be expressed as a power series in
the test section width D by making use of assumptions (A), (B), and (C).

Each term will be considered separately starting with (EC)OPT which is

defined as
(EC) =f n ds (B.10)
OPT EC

where ds is given by
o 1
ds = [1 + (W')"]2 dz.

With this expression for ds and Eq. (B.8) the integral in Eq. (B.10) can

be Integrated from O to D giving

)
ha 16a_a
(EC)OPT=nE D+—-§§ D3+——-§—£D5

l6a§ + 2ha2a6 7

+ = D

.. (B.11)
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The next term to evaluate in Eq. (B.%) is (FG) which is given by

OPT

(FG) n,D

OPT -~ “A

where n, is the value of n at the point A. With the aid of Fig. 20b one

can write

<

tan € = W!
c n

(B.12)

1l
(on——
{n}
b=
no
i
—
oj=

which gives a relationship between the value of n at point C and the
value of n at the entrance station of ray ECD. Equation (B.8) was used
to write the last term in Eg. (B.12).

Again referring to Fig. 20b one can write

Wy =W, +ttan o - (h' + t)tan o, (B.13)

which, with the aid of Snell's law, can be expressed as

14
(h +t) n W'
Wy =Wy - - Ec (B.14)

e
ng

where (h' + t) is given by Eq. (B.2), W, is the deviation to

point A, and Wc is the deviation at point C.

Substituting the expression for W, into Eg. (B.6) gives n, as a

power series in D when one notes that WC and Wé can be expressed in terms

of D through Eq. (B.5). Doing this and collecting terms the following

power series for (FG)OPIII is obtained
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(FG)

PT
_—EEQ—- =D - (2b;hn a2)D + (bya, + bb h nEa 2y 3
3.3
4bb. tnla
1E2 [ 1 3.3
+{ T <.n_2 - > - ublhnE 5 - hblhnEah
g

333 | & | 2
- ltaghnEbg - 8b3h npas l D+ ‘blalp + b2a2

b Loy 223

+ 16 byh'nga, + 12 b3h nay - 4 bh nga,
lL‘cn3a3 ;

B2 1 3.3 5

= ( 2—.’L>--1’1nEILLaE—lkhnEa.lL D

g n

g
+ 0 (D6).
Next consider the term (CD)OPT - (GH)OP'I‘ which, with the aid of

Fig. 20b, can be written as

1
(CD)OPT - (GH)OPT = ngt (cos 6€-- %) .

A power series expansion for Eg. (B.16) is obtained with the aid of

Snell's law, Fig. 20b, and Eq. _(B.lE)j where cos Q, can be written as

cos’ e =[ 1l- (-rnl;E-)E (Wé)gl :

2

from which one can write

n_2 n 4

E 1 2 3 E 1
P (wc) NS (Wc)
n n

g g

4.
+ 0 [(Wc) ]85

=1 +

Nf -

(B-15)

(B+16)

(B:17)



Again using Eq. (B.5) to write Wé as a power series in D one can write

Eg. {B.16) as

2 2 2
2n_t a 8 a_a, tn

B 2 2 o iy )

(CD)gpr - (GG pp = — Do [ n
g g

6 l’ll]; t alé l;_ 6
+ —s D +0 (D), (B.18)
n

The final two terms of Eq. (B.4) are written in a power series in

D in a manner similar to that used to write Eq. (B.18). That is, using

Fig. 20b one writes

A'H - A'D = (h' + t) [1__1_]

cos @,

2

which can also be expressed as

22

2t n_a

AH-AD=-(2nn" a8 + —E2 |17
E 2 ng

Iy 2 6t L4 L
- (% h nga, + 8h ng 8,8, F — N,

This now concludes the evaluation of the terms in Eq. (B.4). Each
of the optical paths have been written as power series in D with certain
other quantities which are defined either in Fig. 20 or in assumptions
(A) through (C). Substituting the expressions from Egs. (B.1ll), (B.15),

(B.18), and (B.19) into (B.4) gives the following form for ASp
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2 2
3 3o 3 3 3 ho 250, 1 L
[(O‘ “T+-z‘§8>blb3+("§—+§6-'§5'§>blbg

+(_§a2+g_a_ u)babg +(%—a+%—%->bhba

63/ 71 "2 o 2 12
g
Ta, B B 5) 6]7 9
+(’HIF+ - —7 + b D' + o(D”) (B.20)
1 16 16n 1008/ *
g
where O and B are defined by
h t
O = = I e—
D’ B n D
g
and the a,'s have been written in terms of b,, b,, and b3 from Eq. (B.9).

Tn all of the expressions used in writing Eq. (B.20) n_, appears as a

E
multiplicative factor and since n is always very near unity (differing

by a term of order 10_3) n, has been set equal to 1. This expression is
identical with that given by‘Wachtell(38) as Eq. (IIA-17) if n, = 1. Howes and
Buchele(u7) have also derived an expression similar to Eqg. (B«20) for
evaluating refractive errors. Their results are given by an integral
expression involving the various angles which the refracted ray makes with
respect to the coordinate axis. Unfortunately there doesn't seem to be an
easy way to reduce their result to a form convenient for comparison with

Eq. (B.20). However, it is possible to compare their results with this

work in two limiting cases. These limiting cases are characterized by
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the number of terms utilized in the series given by Eg. (B.6) and this
comparison will be made after a brief discussion of the distortion in
Section B.2.

The by, b, and b, coefficients in Eq. (B+20) can be expressed as

2 3
derivatives of density from Eq. (B.6). That is,

_ 1l dn _ dp
brr @m0 " Fly = v (B.21)
E E
2 2
b, = 2i d"“g = % d—g s (B.22)
Eaw'lw = 0 axr Iy = v,
and
3 3
1
°3 =% - g = %‘ d"% (B.23)

where the second expression is written by using Eg. (5.2) and nE is taken
as unity. Given in this form it is clear that the bi's depend on the
particular light ray under consideration sinceW= o when Y = YE:
B.2 Distortion

When viewed by an observer from the region Z >D the refracted
light ray ECD appears to originate at the apparent object point A' shown
in Fig. 20. If the refractive index were constant ray ECD would follow
ray EIM and A" would be the image of point B. The separation between
these two apparent object points DY’ see Fig. 21, represents a distortion

of the apparent object point associated with ray BECD. This distortion is

due to refraction and a method for evaluating its magnitude follows.
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By inspection of Fig. 21 Dy can be written as
4

D =W +4d~-(h +1%) tan o «2h

g c ( ) tan 3 (Be2k)

where Wb can be expressed as a power series in D by using Eq. (B+5) and
noting that Z = D at the exit window. Assuming small angles of incidence
for the refracted rays, using Eg. (B.2) to express (h' + t), and noting

that a; is equal to e Eg. (B.24) can be rewritten as

D, =Wy - htan e. (B-25)

When this is expressed in a power series in D (refer to method used in

writing Eg. (B.lS))one finds

b b.” + 2b.b
1 2 1 172 )
Dy =<’§ - blo‘>D +(_——27I_""‘)(l - LLO‘>D

5 3 2 2
b.,” + 22b,%b,. + 1807 b + 4b.b
+( 1 1z L3 1 2)(1 ] 6a)D6 +o(?). (B.26)

With this expression for distortion and Eq. (B.ZQ)for the refrac-
tive error correction due to the increased path length the comparison,
mentioned in the previous section, with the Howes and Buchele(h7) results

can now be made.

First consider a one term approximation which corresponds to
n/nE = 1 or a constant refractive index along each ray. Under this con-
dition the rays are straight lines and all the bi's are zero. From Eg.'s
(B.26) and(B.20) Qy and Sp must be zero. This is in agreement with the
one-term approximation given by Eq.'s (52) and (53) of Ref. 47. The

second comparison can be made with the two term approximation n/nE =1 + le
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which corresponds to a linear wvariation of refractive index and keeping

the same order of terms, a parabolic trajectory for each light ray within

the test section. TFor this case

1\.2
}‘SR""‘(%'E) LD (.27)

and
b
1 2
Dy:(—-é—— bla>D (B.28)

where these terms are given by the leading termsin the power series ex-
pansion. From Eg. (B.i27) we see that when O = 1/3 the refractive error
contribution is zero. However, Eq. (BmEB) shows that distortion is zero
for o = 1/2. These conclusions are consistant with Egs. (54) and (55) of
Ref. 47.

For the present experiments & was chosen as 1/3 in order to minimize
the refractive errors due to the light rays bending and traveling over a
a longer path length. However, for each case the higher order contribu-

tions to both SR and Py have been computed and the results are presented .

in Section 6.
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APPENDIX C

C=l. Window Boundary Layer Analyéis

In Section 4.1 it has been shown that the fringe shift at a point
in the boundary layer, defined by coordinates (x,y) is related to con-

ditions in the assumed uniform region 5 by

y
AS(x,y) —f E(x,y,z) - n(x5,y5,z5)] dz. (c.1)
0

If one then assumes that n is independent of z the following expression

for density at the point (x,y) is given by Eq. (4. k4)

o(x,7) = g S(xsy) + Ps, (c.2)

This assumption is not strictly true because, in fact, there are side
wall boundary layers on each of the viewing windows. The objective of
this analysis is to give a method for estimating the total contribution
of these boundary layers to the measured density distribution and then
to express thisvin terms of an equivalent fringe shift (SBL) which

can then be compared to the other fringe shifts errors.

As was shown in Appendix B the gradients of refractive index in
the boundary layer can cause refraction of the light rays which must be
considered when using Eq. (C.2)to compute p(x,y). It was also concluded
in Section 6 that, for the present case, these errors were much less than
the uncertainty in measuring fringe shifts and hence could be negiected.
However, in order to keep this treatment general the possibility of re-
fractive errors will be considered.

The contribution of window boundary layers can be determined by
imagining a hypothetical situation in which refractive errors do con-

tribute to the measured fringe shift but no boundary layers are present.
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For this situation PTND represent the computed density which would be
given by Eq. (C.2) if an additional term is included which accounts for

the refraction contribution. That is,

_ A A (c.3)
Prp < P5 Y k2 S T RISk
where A represents the contribution to the indicated density which

% SR

results from refraction. Next consider the situation where boundary
layers are present and for this case let 5;&5 represent the density ob-
tained from an interferogram for this situation. In this case if we
assume that the refractive errors are identical to those for the hypo-

thetical case and denote the fringe shift by S then

— A5 A
Prp = s Yxz S T g7 SR (c.k)

Now PTID and E;&; will be different and this difference represents
the side wall boundary layer contribution. In order to write an ex- |
pression for this difference consider two rays of light, one traversing
the free stream at the outer edge of the thermal layer and the other
passing through the boundary layer. In this way the average density

traversed by each beam can be expressed as

o)
PAV(ﬂ*ga) + 2./; p(z)dz 3

= AW C.
for the boundary layer and
( G (c.6
£-20_) + QU/\ z) dz C.
oy = p5 T) 0 P( ) )
Y/

for the free stream. In Egs. (C.5) and (C.6) 5T represents the total
thickness of the side wall boundary layer, ® the thickness of the side

wall boundary layer in the region where it interacts with the end-wall
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layer, and pAV is the average value of density across the test section at

the particular station in question. With this an expression for pIND can
be written by noting that the fringe shift (S + SR) in Eq. (C.4), corres-

ponds to a difference in density given by (pB -p Using Egs. (C.5) and

F)'
(C.6) and changing the limits of integration in crder to express the re-
sult in terms of a single integral one obtains:

8
Y
3

T
— 2 2
P = <9AV + 2 SR/ +5 <p5 By = Puy 6) '-'ZL/; p(z)dz (c.7)

>

With this expression the contribution of the window boundary layers (pIND

- pIND) can be expressed as
— A
Poo ~ P _Pav T PS5 TS, 28 [ Pav
- 2
Ps Pg Pg
6y (c.8)
2 [ ey,
£ Y3 Ps

Here one notes that the first term of this equation is always very small as

long as refractive errors are small (see Eq. (C.3)) and in the limit (sRac»

Pay will be identically PIND and the term vanishes., For the present

case where refractive errors are negligible a good first approximation for

the window boundary layer will be given by

- P
°mp ~ Poo _ 25 [ %r T Pav)_ 2 o(z) 4, (c.9)
o - T ® Ps £ v5 Ps '

In order to evaluate this expression one must make some assumption
about the thickness of the side wall boundary layer. A first approximation
would be to gssume that the slde wall boundary layer is identical to the

end wall thermal layer. This is a conservative assumption because the
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actual side wall boundary layer thickness behind the incident shock,

over the region of observation, is much less than the thermal layer thick-

(39)

ness. The integral term in Eg. {C.9 is also conservatively evaluated
by assuming a linear variation of p with distance (z) and a linear de-

crease of p_ in the region where the side wall layer interacts with the

>
end wall layer. Figure 22 shows a sketch illustrating this situation
where ST has a constant value outside the thermal layer.

Strictly speaking Eq. (C.9) is valid only in the case where refrac-
tive errors are small and hence is not valid in the 1limit'®- 0. However,
in the 1imit 6—*8T where refractive errors are indeed small, since the
gradient of refractive index is small, one can show that‘Bzﬁs is just
equal to oIy Thus the contributions to indicated density increase as
one goes deeper into the end wall layer.

In order to be able to compare the window boundary layer contribution
to the refractive error contribution one can define a fringe shift error
SBL which represents the influence of the side wall boundary layers.

Using Eq. (C.9) SBL is given by

A s - Pryp ~ Piwp
or
oK 6 (%5 = B 2K § &

Values for SBL are given in Section 6.
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FIG. 22  ILLUSTRATION OF SIDE WALL BOUNDARY
LAYER.

96



