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ELECTROMAGNETIC SCATTERING FROM ABSORBING SPHERES
George W. Kattawar and Gilbert N. Plass

Abstract

A very efficient method for the calculation of Mie cross sections
for absorbing particles is discussed. It is used to calculate an extensive
set of curves which illustrate the dependence of the efficiency factors
Q for absorption, scattering, and extinction on the size parameter x
and on n; and ny (the real and imaginary parts of the index of refraction).
Other curves show the height and width of the first resonance in Qext as a
function of x as well as the average cosine of the scattering angle and
the half-width of the angular intensity function as it depends on x,nj,
and ny. Among the interesting features shown are the following: (1) as
n, increases, QSca decreases to a minimum value before increasing, when
X > 1 and for most values of nj; (2) the maximum value of Q¢ 2t the
first resonance decreases rapidly when a small amount of absorption is
introduced; (3) over a considerable range of the parameters the width

"

of the first resonance of Qext is proportional to n; ' when there is no

2

absorption and to nyn; 2 when there is absorption; (4) when n;>>1, the

scattered intensity near the first resonance is predominately forward,
symmetrical, or predominately backward when x is respectively somewhat
smaller than, equal to, or larger than the resonance value; (5) as np
increases, the forward scattered intensity first increases before it
decreases, when x > 1 and for most values of nj;; (6) the half-width of

1

the angular intensity function varies as x ' when x > 10 and is relatively

insensitive to the value of n; and nj.

George W. Kattawar is with North Texas State University, Denton, Texas,
76203 and the Southwest Center for Advanced Studies, P.O. Box 30365, Dallas,
Texas 75230. :

Gilbert N. Plass is with the Southwest Center for Advanced Studies,
P.O. Box 30365, Dallas, Texas 75230.



Introduction
The interaction of an electromagnetic wave with an absorbing sphere
is described by the Mie theory and is discussed in detail in Van de Hulst's
classic book!. Unfortunately this book was published before the wide-
spread use of modern computers. At that time the available results for
absorbing spheres consisted of some asymptotic equations and a few isolated
numerical results. Since the publication of the book, a large number
of laboratories have developed computational programs applicable to the
case of an absorbing sphere. However, the majority of these investigations
have been concerned with a particular substance, such as water droplets
(the literature on this subject has been reviewed by Deirmendjian EE.E&?)'
Although these calculations for particular substances are most
interesting, it is difficult to gain an understanding of the behavior of
the cross sections for absorbing particles from results for isolated
values of the index of refraction. Aside from the general discussion in

Van de Hulst's bookl, Deirmendjian gz_gl?, Brockes® and Plass

seem to
have made the only attempts at understanding the general behavior of
these cross sections.

First we present our computational scheme for the calculation of
Mie cross-sections of absorbing particles. This scheme is valid for all
values of the size parameter which occur in the theory regardless of
whether they are very small or very large. Our scheme is both very

stable numerically and is easy to program. We believe that it contains

improvements over previously reported procedures.



Next, some new studies are presented of the variation of the Mie
cross-sections as a functions of ny, the complex part of the index of
refraction. The efficiency factors for absorption, scattering, and
extinction are shown as well as the average value of the scattering
angle over a wide range of the parameters.

The efficiency factor for extinction has a resonance whose maximum
value increases and whose half-width decreases as nj, the real part of
the index of refraction, increases. The variation of these quantities
with both n; and n, is discussed.

The scattered intensity as a function of scattering angle decreases
from its value of 0° more and more rapidly as the size parameter increases.

This effect is discussed together with its dependence on both n; and nj.

Computational Scheme

A computational scheme is presented in this section for the calcu-
lation of the Mie cross-sections. It is based on the Ricatti Bessel
functions and appears to have some advantages over other schemes which

8

have been described.!l” The basic equations can be found in many places

in the literature, but their validity should be checked. We shall adopt

the notation of Van de Hulst.:

The scattering, absorption, and radiation
cross-sections can be calculated from various combinations of the sum

and products of the coefficients a, and bn". The usual expressions for

a, and bn are (reference 1, p. 123)

“See reference 1, p. 127-128. It should be noted that the expression

is i i . e quantities R a _+b b and
for cosGQSca is incorrect as printed The qu iti e (an nt1Pn n+l)

Re (anbn) should be replaced by Re (anan+l tbobog ) and Re (anbn).
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where m is the complex index of refraction, n is a positive integer, and

Y and ¢ are the Ricatti Bessel functions defined by

wn(z)=zjn(z)=(%ﬂz)#Jn (z) , (3)

+4

;n(z)=zhn(2)(z)=(§nz)’{.Hn (2)(2) (%)

+% >

(2)

with J__, and H_ | the Bessel functions of first and third kind and j
n+i n+i n
and hn the corresponding spherical Bessel functions. The prime denotes

differentiation with respect to the argument of the function and

2ra/x (5)

”
u

y = mx (6)

where a is the particle radius and * is the wavelength.
These expressions can be written in a much more convenient form for
computational purposes, as was first discovered by Aden." Introduce the

logarithmic derivative of the Ricatti Bessel functions,

Dn(y)= [4n u%(y)]' R (7)

Gn(x)z [ cn(x)]' . (8)



Then Egs. (1) and (2) may be rewritten after some elementary algebraic

manipulation in the form

P

1bn(x) Dn(y)—m Dn(x)

Cn(x) Dn(y)—m Gn(X)J

-

¢ (x) {mD (y)- D_(x)
b =2 |\-n- 0 . (10)
En(x) mDn(y)- Gn(X) _J

This is the most convenient expression for the calculation of the
coefficients a and bn' The expression outside the brackets involves
only the ratio of Ricatti-Bessel functions of real argument. The brackets
themselves depend on only two functions: (1) Gn (x), where the argument
is always real; (2) Dn (y), where the argument may be complex. The
method for the computation of these functions is discussed in the remainder
of this section.

The logarithmic derivative of the Ricatti-Bessel function, Dn’ satisfies

the recurrence relation

1

t
~~~
3
f—
it
N3
|

(11)
n-1 Dn(z)+nz-1

The function Gn (z) satisfies an identical recurrence relation. These
relations were first derived by Infeld® and have been used by several
investigators. However, this relationship has always been used in the past
to calculate Dn by an upward recurrence relation. Unfortunately this
becomes numerically unstable when n>]z[, a region of particular importance
for large values of x. On the other hand the downward recurrence formula

for Dn is always numerically stable and is the one which should be nsed.




Let

fn(z) = Dn(z)+en(z) . (12)

where fn is an approximate numerical value of the true value of Dn and
€, is the error in this value. If the approximate value fn is used in

Eq. (11) in order to compute f then

n-1°

1
D + € =2 . (13)
Z

D (z)+e (2)+nz !
n n

If Dn—l is replaced by its value from Eq. (11), it is found that

€n
€ = . (14)

n-1 (D +nz 1) (D +e +nz 1)
n n n

When n>>|z|, it follows from the series expansion of Dn that

Dn(z) = (p+l)z 1., (15)
Thus,
le 1| =le |/[(2nt1)z"4]? (16)
or
Ien_l|<< 1en| . (17)

Thus the computational error decreases at each step if Dn(z) is
calculated from Eq. (11) by downward recurrence in the order n and the
calculation is started at some value n>>|zl. The calculations are
insensitive to the assumed starting value and rapidly converge to the

correct value., In practice zero is a convenient starting value for Dn'



In the regions where n<‘zl, the function Dn becomes oscillatory and
hence there is no problem in the use of the recurrence relations in this
region.

Although the function Gn always has a real argument, the value of the
function is complex. A similar analysis to that given above shows that
an upward recurrence process may always be used with these functions. The
function GO (x) = -1 for all x. Thus the recurrence is always started with
this remarkably simple value.

The ratio dﬁ(x) /Cn(x) in Egs. (9) and (10) can be expressed in
terms of Jn(x) and Yn(x), the Bessel functions of first and second
kind. These functions are computed from their well-known recurrence
relations. Jn is computed by downward recursion and Yn by upward
recurrence, as has been discussed by several authors.®28

A numerically satisfactory method has been presented in this section
for the computation of all the functions which occur in Egs. (9) and
(10). This method has been tested in over a thousand cases covering a
complete range of values of x and m. The results agreed in all cases
with previously published results and various asymptotic equations
where applicable. All calculations were performed on an IBM Model

360-50 computer using double precision arithmetic.

Cross Sections
The complex index of refraction m is the physical parameter which

describes the interaction of an electromagnetic wave with an absorbing



particle. Let us write m = n; - in,. The absorption and scattering

cross sections vary with the absorbing power of the particle, which is
represented mathematically by the imaginary part of the index of refraction.
The variation of the cross sections as a function of n, has not been
extensively investigated before the availability of electronic computers,
because of the computational difficulties involved. Deirmendjian EE.E&)Z

Brockes,3

and Plass" have given results for particular values of ny.
Further results are given in this section which more completely illustrate
the dependence of these cross sections on nj.

In Figs. 1-3, the efficiency factor for absorption Qabs (absorption
cross section divided by cross-sectional area of the particle) is shown

as a function of n, for various particular values of n; and x. 1In Fig. 1,

where x = 0.1, the limiting equation

Q = (constant) np, , (18)

abs

is found to be valid when nx 1. The curves do not depend markedly on
n) until n;>2. The value of Qabs decreases as n; increases for nx 1.
For the intermediate value x = 1, it is seen from Fig. 2 that Eq.
(1) is valid for ny,< 0.1. The curves are very insensitive to the value
of ny except near the maximum. The value of Qabs first increases slightly,
and then decreases, as n; increases, when nx 1.
When x = 10, Fig. 3 shows that Eq. (18) is only valid for nx 0.01l.
The maximum of the curves is broader than before. However, the curves

are still relatively insensitive to the value of n; except near the maximum.
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The value of QabS first increases, and then decreases, as n; increases,
when np; <0.01.

The efficiency factor for scattering, Qsca’ is shown in Figs. u4-6.
QSca is independent of np until np exceeds some critical value. As
would be expected the absorption properties of a sphere have no influence
on the scattering until they are sufficiently large. When x = 0.1, it
is seen from Fig. 4 that QSca is independent on nj; when np < 0.0l provided
n;>1.333. For very small values of n;, such as n; = 1.001, it is
found that Qsca is proportional to ny? over a region between the point
where Qsca first begins to increase and the maximum of the curve. When
1 >5, the curves show very little variation with n; over the range calcu-
lated. For small values of x, the value of Qsca always increases as njp

increases until the maximum of the curve is reached.

When x = 1, Fig. 5 shows that QSca is not influenced appreciably by
n, when n, 3.10_2. However, a new feature appears in these curves. When
n; > 2, the value of Qca first decreases as np increases. It passes
through a minimum value before finally increasing.

For a large value of x, such as x 8 10 as shown in Fig. 6, the
scattering may be influenced by the absorption of the particle unless
n, i_lo'”. When n; > 1.33, a striking feature of these curves is the
very considerable decrease in QSca as ny increases. A minimum is reached

around np = 0.1 and then Q ca increases again. A maximum in the curve
s

may occur beyond n, = 1.
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First Resonance of Extinction Cross Section

The curve of the efficiency factor for extinction as a function of
the parameter x first increases from zero to a maximum value at
X ax - 2.05(n1—l)—1, when ny < 1.5 and the particles are non-absorbing!.

It is known that this first resonance becomes very narrow as nj increases;

at the same time the value of QeX at the maximum becomes very large.

t

The following approximate formulas are valid when nj; is largel.

X = ﬂnl-l (19)
max

and

-2_ 2 ~
= 6T “n 20
Qext,max 6 1> (20)

where x and 0 are the values of x and Q at the maximum.
max ext ext

>
The above approximate equations are valid only for real values of m.

The behavior of this resonance when the particles are absorbing has not
been reported, except for the case n; = 50 (Fig. 18, reference 3).

The present code was used to calculate the values at the maximum; a
special code was developed which calculated the total width of the
resonance at half maximum.

The calculated values of X ax are compared in Table I with those
obtained from the approximate Eq. (18). The values obtained from Eg. (1%)
are always too high, but approach the correct value more closely as nj
increases. The position of the maximum is amazingly insensitive tc the

value of n,; the value of x increases slightly as n, increases.
max



n)

10

10

10

20

20

20

50

50

50

70

70

100

100

100

Table

nz
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I. Value of x at first resonance

X
max

X
max

calculated from from Eq. (19)
exact equations

0.6106

.1 .6109

.6279

L3113

1 L3114

.3115

.156696

A .156706

.156725

.062807

.1 .062808

.062819

.ouug71

.1 LOHUBTL

. 044877

.031413

.1 .031413

.03141Y

0.6283

.3142

.157080

.062832

.031416
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The value of Qext at the first maximum is shown in Fig. 7 as a
function of ny. The approximate Eq. (20) 1s quite accurate for non-

absorbing particles when n}; > 10. The maximum value of Qext increases

as n12. However, the value at this resconance is greatly reduced when

the particles are even slightly absorbing. For a particular value of
Ny, the value of Qext at the first resonance apprcaches a limiting value
as nj increases.

The total width of the first resonance at half maximum was calculated
by a computer routine which searched for the x values on both sides of

the resonance which had Qex equal to come-half the value at the maximum.

t
This resonance becomes very sharp as nj3 increases and the half-width
becomes correspondingly small. The width at half-maximum is shown in

Fig. 8 as a function of n;. When n, = 0, the half-width decreases as
nl_q. When n; @ 100, the half-width is 2.1 (lO)_7 compared to the value
of % at the resonance of 3.14 (10)"2. On the other hand the half-width

is much larger when the particle has any appreciable absorption. As

shown in Fig. 8, there is a region in the upper right part of the diagram
where the half-width for absorbing spheres is proportional to np; and nl_z.

The ability of a relatively small amount of absorption both to broaden the

resonance and to reduce its peak value is very striking.

Influence of Absorption on Angular Distribution

The variation of the angular distribution for the scattered intensity

"

has been given by Plass' for some particular cases over a wide range of
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values of ny when x = 1, 5, and 8. The average value of the cosine

of the scattering angle over both directions of polarization (as defined
by Van de Hulst , p. 128) contains a considerable amcunt of information
about the predominant scattering directions in a single numerical value.
It then becomes possible to present this information in graphical form for
a wide range of values of the other parameters of the problem.

In Figs. 9-11 the average value of the cosine of the scattering
angle 1is given as a function of n,. The curves in Fig. 9 are for x = 0.1.
For this small value of x, the scattering is given closely by the
Rayleigh scattering [function which i1s symmetric about € = 90°. Ftor
np < 0.1, the average scattering angle is slightly in the forward direction;
the average value of the cosine, <bos 6>av’ is around ©.002. Thus,
<6>Eﬂzis of the order £m - 0.002 radians. The engular distribution is
not appreciably influenced by the absorption of the spherical particle
until n, 1s of the order of unity. Then the scattering distribution
changes rapidly as n; increases still further; the <cos e;>av becomes
negative, which indicates a slight preponderance of backward scattering
when n, is large. For example, <cos E%>av = -0.0287 when n; = 1.33 and
n, @ 10.

The curves in Fig. 10 for x B8 1 exhibit a considerably more complex
behavior. In the first place the value of <§os 6>év in the limit of small
absorption depends on the value of njy; it is positive when nj < 2
<o,
(s

1.29 radians or 74° when nj = 2) and negative when n) = 5 and 10

1.60 radians or 103° when n; = 5). The angular distribution is
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first influenced by njy at a value of approximately 0.01; <cos (3>av
increases to a maximum value and then decreases again as np increases. The
value of <éos 6:>av is positive for n; = 5 over a narrow range near np = 1.
When np>»>1, <cos 6>8V is negative. It is interesting to compare these
curves for ny; = 1.33 with Fig. 16 of reference 3.

The curves for x = 10 are shown in Fig. 11. For large values of x
the scattering is strongly forward; thus all values of <pos ‘3>av shown
in this figure are positive. TFor small values of nj, <e:>av = 0.238
radians or approximately 14° when n; < 1.0l. As n, increases all of
the curves for n; > 1.33 pass through a broad maximum 4nd then decrease.
The maximum forward scattering usually occurs for np; in the range from
0.1 to 1 (compare with Fig. 17 of reference 3). Except for very small
values of np, the forward scattering is less pronounced for weakly
absorbing spheres. It is instructive to compare these results with the

very interesting curves of Irvine.}©

Angular Distribution Near a Resonance
The angular distribution exhibits an anomalous behavior near the

resonances of Qex This is illustrated in Figs. 12-14 when n; = 10, ny, = 0.

e
For comparison purposes QeXt is also plotted in Figs. 12 and 13. The
values of x at the resonances shown on these figures are given in Table II
together with the maximum value of Qext at each resonance.

For small values of x the scattering might be expected to follow the

Rayleigh distribution and to be symmetric around 90°. The actual scattering
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Table II. Value of x and Qext at resonance for n; @ 10, ny, = 0.

Value of n Type of X Q
(see Egs. (1) and (2)) multipole ext
1 magnetic 0.31131 61.9
1 electric 0.44404 30.5
2 magnetic 0.44775 50.0
2 electric 0.57330 30.7
3 magnetic 0.57516 42.3

pattern is very far from this simple distribution. The value of {cos eﬁgv
is small when x <0.l1. However as shown in Fig. 12, as % increases toward
the first resonance, <cos e;>av increases to a maximum value of 0.50 at
x = 0.275, Its value then decreases rapidly and passes through zero
at nearly the same value of x at which the resonance occurs. The value
of:<@os (3>;V then becomes increasingly negative and reaches a minimum
at x = 0.360 when {cos 6>__ = -0.50.

The same type of behavior occurs at each of the higher multipole
rescnances as is shown in more detail in Fig. 13. At each resonance
<kos ej?av passes through zero at nearly the resonance point. For values
of % slightly smaller than the magnetic dipole resonance (n = 1), the
scattering is predominately forward; for the higher magnetic multipoles,
the scattering as influenced by the resonance is predominately backward
for n = 2 and forward for n = 3 (where the interaction is not sufficiently

strong to entirely alter the general trend of the curve) when x is



- 29 -

slightly smaller than the resonance value. Similarly for the electric
multipoles when x is slightly smaller than the resonance value, the
scattering is predominately backward for n = 1 and forward for n = 2.
The influence of the multipole resonance on the scattering oscillates
in this manner as each higher resonance is encountered.

The electric and magnetic multipole resonances tend to occur in
closely spaced pairs. As the order of the multipole increases these
pairs tend to become closer together and the resonances become sharper.
The magnitude of Qext for both the magnetic and electric multipole
resonances are predicted quite closely by the approximate equation given
on p. 157 of Van de Hulst!.

The value of <cos <3>%V in the immediate vicinity of the first
resonance is shown in Fig. 14 for n; = 10 and 100 and np = 0 and 0.1.
This figure shows in more detail that <ﬁos e;>av is zero at a value of
x that is extremely close to the resonance value for x. These curves
are only very slightly influenced by the value of n,. The values of
<Eos e>€v for n; = 100 are the same as those for n; = 10 on the scale
of Fig. 12 up to x = 0.4 (except for some very minor variations such as
crossing the axis at the first resonance at a slightly larger x value),
provided the x values for n; = 100 are multiplied by 10 before comparison.

The angular intensity patterns are so unusual near a resonance that
three examples of the complete patterns are given in Fig 15 for n; = 10, n, = O.
The values of x chosen for this graph (x = 0.275, 0.31131, 0.360)

correspond to the maximum forward scattering, scattering at the resonance
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point, and the maximum backward scattering. When x = 0.275 the intensity
functions ij and i, as defined by Van de Hulst! are 1.85 x lO_3 in the

forward direction (8 = 0°) and 2.78 x 10’ in the backward direction

(6 = 180°). At the resonance point for magnetic dipole scattering x = 0.31131.
The intensity iz is constant and equal to 2.25 to three significant figures
at all angles; the intensity i; has a sharp minimum at 90° and is very
nearly symmetrical about 90°. This is the Rayleigh scattering pattern
expected for small values of x, except that the roles of i; and i, are
reversed for magnetic dipole resonance scattering. When x 8 0.360 the
pattern has changed to strong backward scattering with an intensity of

1.35 x 107> at © = 0° and 1.01 x 102 at 8 = 180°.

When x < 0.1 the intensity i; is nearly constant and i, has a sharp
minimum near 90° as expected for Rayleigh scattering. As x increases the
angular pattern is distorted by the magnetic dipole resonance as shown in
Fig. 15. The higher multipoles similarly change the scattéring pattern
in a more and more complicated manner as the order of the multipole increases.
The oscillations in <cos e;>av near the first five multipoles are shown
in Figs. 12 and 13. The actual angular distributions near these multipoles
are so interesting that they are shown in Fig. 16. The angular distribution
at the electric dipole resonance (x = 0.44404) is the same as for the
magnetic dipole, except the roles of i; and i, are reversed.

The magnetic and electric quadrupole resonances at x = 0.44775 and
x = 0.57330 respectively have similar angular intensity functions except
for the interchange of 11 and iy. For the magnetic quadrupole, it is

seen from Fig. 16 that the minimum of i, occurs at 90° and the minima of
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i, occur at 45° and 135°,.

The magnetic octopole resonance at x = 0.57516 is also shown in Fig. 16.
The following electric octopole resonance has a similar pattern with i
and ip interchanged. Calculation shows that the minima of i, occur at
31°5', 90°, and 148°55' and those of i, at 63°26' and 116°34'. All of
these curves are very nearly symmetrical around 90°.

The general shape of these resonance scattering curves can readily
be explained from the general equations for angular Mie scattering
(e.g. p. 125 Van de Hulstl). At the magnetic dipole resonance the coefficient
by is much larger than any of the others. It follows from the equations
that i) = cos 8 and i, = constant. This angular dependence is slightly
modified by the other terms in the series with the result that i) is
different from zero at 6 = 90° and the distribution is very slightly
asymmetric around 6 = 90°.

At the magnetic quadrupole resonance, the coefficient b, 1s dominant
and the same equations show that i; « cos 28 and i2 * cos 6. The
observed pattern as shown in Fig. 16 follows from this dependence.

Similarly the coefficient b3 dominates at the magnetic octopole
resonance; thus i} = cos 6 + 15 cos 36 and i, = 5 cos?6 -1. Again the
observed angular pattern follows from these functions as slightly modified
by the other terms in the summation. At resonance <Eos e;>av would be
exactly zero, except for the contribution from other terms in the series.
We have already remarked in comnection with Fig. 14 that <cos 6;>av is
zero for a value of x nearly equal to, but slightly different from the

resonance value.



The electric multipole resonances occur when a coefficient a, is
dominant. The fundamental equations show immediately that the angular
dependence is the same as for the magnetic multipole resonance for the
same value of n as far as the contribution from the leading terms is
concerned, provided the roles of i} and i, are interchanged. The actual
curves may be somewhat different quantitatively, because of the contri-
bution from other terms in the series. This can be seen by comparing the
curves for the magnetic and electric quadrupole resonance shown in Fig. 16.
The electric gquadrupole resconance at 90° is broader and shallower than
the corresponding curve for the magnetic quadrupole.

The angular intensity curves have been discussed in great detail
for the case n; = 10 and n, ® 0, because all of the resonances considered
here occur at a value of x<1l. Thus, the additional effects due to
interference between the various reflected and refracted rays which are
introduced when x > 1 are avoided. However, the angular variation at
the resonance points is qualititively the same for any non-absorbing
sphere.

One can better understand the angular variation for moderate values
of n; by thinking of the superposition of the angular patterns discussed
here on the patterns caused by interference between the various reflected
and refracted rays. Tor example, the angular patterns for ny; = 2 are
given on p. 152 of Van de Hulst!. When x = 1, the curves are those
expected for Rayleigh scattering. At x = 1.5, the magnetic dipole resonance

at x = 2.2 modifies the curves and they look like the upper set in Fig. 15.
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At x = 2 and ® = 2.5,1; is less than i, at almost all angles. Calculation
shows that the expected resonance scattering curve (similar to the middle
curves in Fig. 15) occurs at the resonance. The additional wiggles in
these curves are caused by the superposition of the interference effects
mentioned previously on the resonance scattering.
The magnetic dipole resonance occurs at the smallest value of x
of any resonance. After this the resonances occur in pairs. The electric
multipole resonance of order n-1 always occurs at a slightly smaller
value of x than the magnetic multipole resonance of order n. The half-
width of the rescnances becomes narrower as the order increases and can
easily be missed unless very fine intervals are taken in the calculations.
Strong forward scattering occurs on one side of a resonance and strong
backward scattering on the other side. This effect may be obscured by
other factors for high multipole resonances, but is very prominent for
the first few resonances. The scattering is very nearly symmetric around

90° at the resocnance.

Half-width of Angular Intensity Function

The angular intensity functions for the two directions of polarization
i; (8) and i, (6) (as defined by Van de Hulst!) have their maximum values
in the forward direction, 6 = 0°, in most cases. The only exception is
when x 1s small and n, is large. Whenever x >> 1, there is a strong
maximum in the forward scattering. This maximum becomes stronger and
sharper as x increases and 1s largely due to diffraction effects from the

scattering sphere. Thus the half-width of the intensity maximum should
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be proportional to %! when x>>1. The actual variation of this half-width
as a function of x, ny, and n, has not been reported previously.

A computer program was developed which searched for the value of
nearest 0° that resulted in a value of i, (6) equal to one-half the value
of i, (0°). The functions 1; and i, are equal at 6 = 0° and are nearly
equal near the forward direction. The half-widths calculated from either
of these functions were identical on the scale of these graphs, except
in a few cases when x << 1. Since we are primarily interested in the
half-widths for large values of x, only the results calculated from
i, are shown.

In Fig. 17 the half-width in degrees 1s plotted as a function of x
for ny = 0 and various values of n;. When x<<1l, the half-width is
nearly 45° in all cases. As X increases, the half-width starts to decrease

around x = 1. The half-width is nearly proportional to x !

when x>>1;
this indicates that the principal cause of the strong forward scattering
for this range of x is diffraction effects by the sphere. There are
moderate variations in the curves as n; is varied, but the general
similarity of all the curves is a noteworthy feature.

The dependence of the half-width on n, is shown in Figs. 18 and19.
Again the curves show that the half-width 1s nearly proportional to x !
whenever x>>1. The changes in the half-width as n, is varied between
zero and unity are surprisingly small. From these results it is possible

to estimate the extent of the forward scattering with considerable

precision.
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Captions for Pigures

Fig. 1. Efficiency factor for absorption as a function of n, for
x = 2ma/A= 0.1 and various values of n;.

Fig. 2. Efficiency factor for absorption as a function of n, for
x = 1 and various values of nj.

Fig. 3. Efficiency factor for absorption as a function of np for
x = 10 and various values of nj.

Fig. 4. Efficiency factor for scattering as a function of n, for
x = 0.1 and various values of n;.

Fig. 5. Efficiency factor for scattering as a function of nj; for
x = 1 and various values of n;.

Fig. 6. Efficiency factor for scattering as a function of n, for
x = 10 and various values of ni.

Fig. 7. Maximum value of Quxt 2t the first resonance as a function of
n; for various values of nj;.

Fig. 8. Width at half-maximum (in units of x) as a function of n,
for various values of ny.

Fig. 9. Average value of the cosine of the scattering angle as a
function of ny for x = 0.1 and various values of n;.

Fig. 10. Average value of the cosine of the scattering angle as a
function of n, for x = 1 and various values of nj.

Fig. 11. Average value of the cosine of the scattering angle as a

function of ny for x = 10 and various values of nj.



Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
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Average value of the cosine of the scattering angle and
Qext as a function of x for nj = 10 and n» = 0. The scales

for the cosine and for QeX are on the left and right respectively.

t
Average value of the cosine of the scattering angle and

Qext as a function of x for n; = 10 and ny, = 0 in the vicinity
of the second and third resonances. The scales for the cosine
and for Qext are on the left and right respectively.

Average value of the cosine of the scattering angle as a
function of the size parameter x for n; = 10 and 100. These
values of x are in the immediate neighborhood of the first
resonance in Qext'
The scattered intensity as a function of the scattering angle

for x = 0.275, 0.31131, and 0.360 and ny; = 10, ny = 0. The

values of the intensity at 0° and 180° are indicated above the
curves near each margin. The solid curve is the intensity i1

(as defined by Van de Hulst!) and the dashed curve is the intensity
i,. The logarithm of the intensity is plotted; each division
indicated on this scale represents a factor of ten.

The scattered intensity as a function of the scattering angle

for x = 0.44u404, 0.44775, 0.57330, and 0.57516 which corresponds

to the electric dipole, magnetic quadrupole, electric quadrupcle,
and magnetic octopole resonances respectively and for

n; 8 10, n, = 0. See legend for Fig. 15.

Half-width of angular intensity function in degrees as a

function of size parameter x for n, = O.
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Fig. 18.

Fig. 19.
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Half-width of angular intensity function in degrees as a
function of size parameter x for n; = 1.01.
Half-width of angular intensity functions in degrees as a

function of size parameter x for n; = 1.33.
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