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NOTATION

area

A ,B , C ,<t , D ,E expansion coefficientsran mir mn mn mn mn

C, , Cp,C,,C, , CL,C/- constants, , CL,C/-

D extensional rigidity

E,E Young's modulus

E dissipated energy (Chapter X)

E~ pressure dependent term in Young's modulus

F body force per unit area

J see chapter IX

K flexural rigidity

K function of cp

L see chapter IX

L., linear differential operator
iK

M apparent mass (sec. .̂3)

M mass of piston (sec. 7-2)

N stress resultant

P non-dimensional intraocular pressure

P associated Legendre polynomial of 1 kind
n

Q associated Legendre polynomial of 2 kind

R radius of curvature

(ft function of r

S .described surface of eye

ix



T surface tension; kinetic energy

U,V,W functions of 9 and cp

V potential energy

V volume of eye

f frequency (cps)

h wall (scleral) thickness

i imaginary number N/-l"

k see (it-.lA); spring constant

£ arc length

&,n axisymmetric mode number

m asymmetric mode number; apparent mass

p pressure
p

Ap intraocular pressure (dynes/cm )
—*
q velocity vector

r radius

r external radius
o

t time

u.,v,w displacements in the cp/9,r directions

0 function of 0

A see (3.2.3)

summation

velocity potential

solid angle



e strain

e,,e2 functions of pressure (see (7-1.2))

£ radial displacement

t] cos 0; physiologic constant

0 colatitude measured from the pole

H apparent density; viscosity coefficient

v Poisson's ratio

p density

a eigenfrequency squared

T time constant

cp longitude

\|r function of r,0,cp

Subscripts:

1,2 internal and external; principal directions

10,20 internal and external initial conditions

e eye

,̂m,n function of ̂ ,m,n

Ap component due to Ap

s shell

t,r,0,cp differentiation with respect to t,r,0,cp

v vibrator

^ component due to radial displacement

XI



I. INTRODUCTION

1.1 General Remarks

The eye, long recognized as being interdisciplinary in nature, has

traditionally been examined only with regard to its biological, physio-

logical, and optical behavior. Recently it has been realized that many

of its functions and disorders (e.g., retinal detachment) are mechanical

and should be analyzed as such. Nickerson and his collaborators studied

the damaging effects on ocular structures by rectilinear sinusoidal

forces applied to the whole body of normal dogs. They determined the

fundamental frequency of the eyes of these dogs to be 32-35 cycles per

second, depending on the direction of the oscillatory force, and also

found that these vibrations temporarily reduced the intraocular pressure.

No quantitative results were reported but qualitatively they observed that

larger stresses were accompanied by greater tissue damage. Anliker,

2 3
Hayashi , and Silvis investigated the feasibility of using dynamic

loading (e.g., vibrational, rotatory, and centrifugal) to resettle

detached retinas. Their experimental results indicated that certain

rotatory and centrifugal force fields considerably improved the normal

resettling times.

Space flight has placed man in a hazardous dynamic environment

which is pushing the limits of his tolerance level. It has been found

that the low frequency, high-g vibration level that is associated with

large boosters may be a major constraint in the exploration of the solar

Ij.
system. Short-time tests of human tolerance to sinusoidal vibrations

from one to fifteen cps indicated that the lower levels of tolerance was



found to be between one and two -g at three to four cps and seven to

eight cps. The highest tolerance level of seven to eight -g was found

at fifteen cps.

The intraocular pressure is a significant diagnostic parameter in

clinical ophthalmology. It is the primary parameter used in diagnosing

glaucoma, a major cause of irreversible adult blindness, presently

afflicting about two per cent of all people over UO years of age. Glau-

coma is an ocular condition in which the intraocular pressure is so

elevated as to jeopardize the cellular integrity of the retina upon which

vision depends. The pressure level that may be tolerated without damage

to the eye varies widely among individuals but it is agreed that a nominal

value of 20 mm Hg is normal for a healthy eye. Instrumental measurement

of the intraocular pressure began about one hundred years ago with the

impression tonometer of von Graefe. Since then, many tonometers have

been devised using mainly the principles of indentation or applanation.

Maklakov, in 1885, invented the first applanation tonometer. This

device is still in use today. It consists of a cylindrical weight with

a flat base of opal glass. If the footplate is coated with a thin film

of dye and the tonometer is made to rest on the cornea, a white ring is

produced which corresponds to the area of the flattened corneal surface.

In clinical use, the Maklakov tonometer gives readings which are as

valid and of the same order of accuracy as those given by most other

tonometers. The most commonly used contemporary applanation tonometer

was invented by Goldmann . It is used in conjunction with a biomicroscope

to measure the force required to flatten a segment of the cornea that is

3.06 mm in diameter. (TJiis 3.06 mm diameter corresponds to an area over



which 1 gram applied load is equivalent to an average pressure of

10 mm Hg. )

The Schiotz tonometer (Fig. l.l) is the most popular indentation

tonometer which is used today. Here, the intraocular pressure is esti-

mated by the depth of corneal indentation which a plunger of known

weight produces. Because of the complicated geometric shape of the

indentation, a reasonable analytical description of this device is not

in evidence, and since its inception the conversion curves (from tono-

meter reading to pressure) have been changed several times.
o

The Mackay-Marg applanation tonometer is one of the most recently

developed instruments. With this device, the cornea is flattened by a

guard ring and a sensitive, centrally located transducer measures the

radial force produced by the intraocular pressure.

With all of these instruments, except the Mackay-Marg tonometer, it

is necessary to anesthetize the cornea so that the patient can tolerate

the apparatus which is placed in contact with the eye. This anesthesia

may affect the measurement. Also, these instruments are inherently

inaccurate.

If it is assumed that the natural frequencies of the eye are a

function of the intraocular pressure, then it should be possible to make

use of the vibrational modes to infer the intraocular pressure. In

addition, it should be possible to excite the eye without contacting it

by making use of pressure or sound waves, and detect the oscillatious
"i

optically. A device of this sort should eliminate many of the disadvan-

tages of the eye-contact instruments previously described. It would also

have the advantage that ocular contact and anesthesia will be unnecessary.



The former is extremely important since an instrument that requires

ocular contact necessitates operation by an ophthalmologist. If the

ocular contact constraint is removed the intraocular pressure could be

measured by any moderately trained individual. This makes it extremely

attractive for space use, that is, measuring the effects of space flight

on the ocular system. It should also be noted that by making use of the

eigenvibrations of the eye it should be possible to study the effects of

the surroundings of the eye (e.g., muscles, optic nerve, etc.).

The object of this dissertation is to study the dynamic behavior of

the eye both analytically and experimentally. The analytical investigation

consists of developing a simple dynamic model of the eye from which the

eigenfrequency dependence on intraocular pressure can be obtained. In

addition, experiments were performed to validate this model and to give

insight into possible modifications to the model.

1.2 Anatomy of the

There are four basic coats on the eyeball (Fig. 1.2):

a. The fibrous tunic consists of the sclera or "white tunic"

posteriorly and the cornea anteriorly. The sclera occupies

about 5/6 and the transparent cornea about 1/6 of the horizontal

circumference of the eyeball.

b. The vascular tunic or uvea consists of the choroid, the ciliary

body, and the iris.

c. The pigment epithelium of the retina.

d. The retina.



The sclera is a dense, fibrous, relatively avascular structure.

Anteriorly it comprises the "white" of the eye. Its thickness (Fig. 1.3)

varies from approximately 1.0 mm at the posterior pole to about O.h to 0.5 mm

at the equator. It is only 0.3 mm thick below the tendons of the rectus

muscles. The sclera is made up of three ill-defined layers called (l) the

episclera, (2) the sclera proper, and (3) the lamina fusca.

The episclera is the outermost superficial layer. It is composed of

loosely intertwined fibrous tissue strands connected to Tenon's capsule.

The sclera proper is composed of bundles of connective tissue and

elastic fibers. The bundles are randomly arranged except around the

optic nerve where they are more circular.

The lamina fusca is the innermost layer of the sclera and is very

rich in elastic fibers. It is this layer which might well control

(elastically) the dynamic behavior of a vibrating eye.

The eyeball is not exactly a sphere but is a very good approximation

(see Fig. 1.4). It is slightly asymmetrical and this asymmetry is called

"temporal bulge."

The vitreous body is a transparent, avascular, gelatinous material

which fills the vitreous cavity between the lens and the optic nerve.

The vitreous body is 99-8$ water.

The bony orbits are the sockets which contain the eyeballs, the

extraocular muscles, connective tissue fascia and ligaments, fat, blood

vessels, and nerves (Fig. 1.5)- The eyeball occupies only 20% of the

orbital volume. It is situated anteriorly in the orbit just within the

fascial attachements, and Tenon's capsule, with an extramuscular fat pad.



The intraocular pressure of the normal eye is about 20 mm Hg, a

higher pressure than is found in any other organ of the body. This

pressure depends upon the volume of the contents of the eye and the

elasticity of its coats. The maintenance of the normal intraocular

pressure depends mostly on the amount of aqueous humor present at any one

moment in the eye. The aqueous humor is constantly being formed, and

constantly being eliminated so that a quasi-equilibrium maintains a con-

stant intraocular pressure in a healthy eye.

From the aforementioned description of the eyeball and its surround-

ings, a simple mathematical model can be conceived in the form of a

spherical shell (corneo-scleral membrane) containing an incompressible

liquid (vitreous body) and surrounded by an incompressible liquid (fat,

muscle, etc.). The viscosity of the vitreous body will be neglected

(see Appendix C). The variation in the diameter and the variation in the

thickness of the cornea and sclera will also be neglected.

With this description in mind the eye was first treated as a

spherical droplet held together by surface tension. This was refined

slightly by adding an external medium to simulate the surrounding tissue.

Elastic properties were then added to the sclera and, still in the one-

degree -of -freedom realm, the effects of bending were examined. Continuing

along this vein two-degree-of-freedom membrane (elastic) and later shell

(bending) models were examined. And finally the complete shell model

with internal and external media was constructed. At every step the

newest effect was examined, evaluated, and compared to the less refined

models. Thus the three-degree-of-freedom shell model of the-eye has, in

effect, evolved from a water droplet.



II. BASIC EQUATIONS

2.1 Fluid Mechanics

For any fluid (assuming that fluid is neither created nor destroyed)

the equation of continuity is

|r + ? ' (pq) = 0, (2.1.1)

where p is the fluid density, t is time, and q is the fluid velocity.

If it is assumed that the fluid density is constant then from (2.1.1)

V • q = 0 . (2.1.2)

If it is assumed that the flow is irrotational, this implies that

V X q = 0, (2.1.3)

and therefore q may be expressed with the aid of a potential as

q s - TO • (2.1.U)

In addition the incompressible equation of continuity reduces to

V - q = - V - ^ = - V 2 $ = 0 , (2.1.5)

that is, the velocity potential satisfies Laplace's equation.

For an invicid fluid Euler's equation can be written as (neglecting

body forces)
•v

(q • V)q = -ivp , (2.1.6)

where p is the pressure.

By making use of the identity

(q • V)q = \ V(q-q) - q x(V X q), (2.1.?)

7



and the assumption of irrotationality (V X q = 0), Euler's equation

becomes

^ + o v(q • q) = - - Vp . (2.1.8)
Ot d. P

If it is assumed that the flow velocities are small (q ~ 0) and when

making use of the velocity potential, (2.1.8) becomes

V|o? " p ] = ° ' (2.1.9)

Integration of (2.1.9) produces

P - p £ , (2.1.10)

where the integration constant is absorbed in $.

The kinematic boundary condition of a fluid may be expressed in

general by

5§ (0,cp,t) = 0 , (2.1.11)

where S = 0 is the equation of the bounding surface and

D o1 -* / \

0 is the colatitude measured from the pole, and cp is the longitude.

2.2 Equation of Motion/Dynamic Boundary Condition

Consider an element of the surface of the eyeball acted upon by an

internal pressure p , an external pressure p , and a radial body

force F (per unit area). Let the stress resultants in the principal

directions be N, and N and the associated radii of curvature R

8



and R~. Then the radial D ' Alembert equilibrium equation can be

written as

W E

In all cases treated F will be an inertia force.

2 . 3 Geometry

When considering only infinitesimal radial disturbances £ from the

equilibrium position at r = R, the equation of the surface of the eye-

ball can be written as

S(r,0,<p,t) = r - [R + £(0,cp,t)] = 0 . (2.3.1)

By applying the kinematic boundary condition (2.1.11) to (2.3.1)

we get

|-| + q . V S = 0 . (2.3.2)

On linearizing and making use of (2. 1.1*), the kinematic boundary

condition becomes

12
Consider a surface whose principal radii of curvature , at a point

on the surface, are R, and R . R, and R are positive, if the surface is

concave. When the surface undergoes an infinitesimal normal displacement

6£, the elements of length d.#, and d£ on the surface in its principal

directions change in length by the amounts (5̂ /R )d^ and (6£/R )d,0 respec-

tively. It should be noted that d^, and d.1 are elements of the



circumference of circles with radii R.. and R respectively. The

area of the surface element before displacement may be written as

dA = ie-jdJ , (2.3

and after displacement as

If (2.3.5) is expanded and linearized it yields

dA = ( 1 + ̂  + _i | M A£ , (2.3.6)
V . 1 . 2 /

and therefore the change in surface area due to the displacement is

6A = fen ~ + i-JdA . (2.3.7)
J \R1 R2/

In spherical coordinates the area of a surface can be written as

2* n -.1/2

A = / I r2 + (|jn + I
2 f||J r sin 9 d9dcp . (2.3.8)

When making use of the equation for the displaced surface of the eyeball

(2.3.1) the area becomes

A = (R + £) sin 0d0dcp .

0 0 U ' Sin a " " -1 (2.3.9)

On expanding the square root term in a Taylor series about the

equilibrium position (£ = 0) and linearizing, (2.3.9) becomes

10



2it
r f. .o i f f*r \* i / > f \ * ]

>sin0dcpd0 . (2.5.10)

The variation of the area 8A when £ changes is

2n it

dcp sin0d0dcp . (2.3.11)
.n LJVf LJU^sin

If the second term is integrated by parts with respect to 0, and

the third term by parts with respect to 9, (2. 3. ll)1 yields

2 ~1

- -hr M
sine dtp J

00 (2.3.12)

In addition, when we divide (2.3.12) by R(R+2£)> expand in a Taylor

series, and linearize, it can be shown that

dSdcpl<R(R+2£)s in0 d S d c p s ^ . (2.3.13)

From (2.3.10) a linearized element of surface area can be written as

dA = R(R+2£)sin9 dQdcp . (2.3.1*0

By comparing (2 .3-7) and (2.3.13), while we make use of (2.3.1*0, we find

that

l 2 R R sin
(2.3.15)

or

11



rEi

2.4 Laplace's Equation in Spherical Coordinates

Laplace's equation in spherical coordinates is

2 +̂
r sin© x ' r sin

\ i a2* _
~̂ ~̂ 2̂ ,'

A solution to this equation can "be obtained by a separation of

variables of the form

«(r,0,q>) = R(r)6(0)K(cp) . (2.4.2)

On making use of (2.4.2), Laplace's equation reduces to three ordinary

differential equations of the form

2
r2 ^- + 2r - n(n+l)R = 0 , (2.4.3)

dr

dcp2
m2K = 0 , (2.4.4)

and

sin d
(2.4.5)

where n(n+l) and -m are separation constants.

Equation (2.4.3) has as solution

R(r) = Clr
n + c2r'

(n+l) . (2.4.6)

Equation (2.4.4) is a linear homogeneous equation with constant

coefficients and its solution is

12



K(cp) = C3e + V- . (2.1.7)

Equation (2.̂ .5) is Legendre's equation and has solutions of the

form (see Appendix A)

6(0) = C P'̂ COS 0) + C6Q£(cos 0) , (2.11.8)

where P (cos 0) and Q (cos 0) are associated Legendre polynomials of

the first and second kind respectively.

An examination of these solutions permits some of the constants to

be determined by the physical nature of the problem:

(a) Cf- = 0 since Q, (cos 0) is not bounded at 0 = 0,n.

(b) n must be zero or a positive integer to maintain P (cos 0)

finite at the poles.

(c) For continuity and periodicity of the exponential function,

which is necessary for the eyeball, m must be zero or an

integer.

(d) By the definition of P (cos 0), m S n (see Appendix A).

(e) For internal problems r is unbounded at r = 0 and

therefore C = 0.

(f) For external problems r is unbounded at r = <» and therefore

By making use of these observations, the complete solution can be

written as

n oo

r < R
/ mn n

m=-n n=0
(continued)

13



n co

r > R

m=-n n='

It should be noted that the notation used requires that

Pm = p~m = p|m|
n n n (2.1+.10)



III. SIMPLE MODELS

3.1 Droplet Model

As the simplest model the eye will be considered to consist of a

liquid core surrounded by an infinite liquid. The interface material

between the core and the surroundings will be under a constant tension

T = N.. = N . The liquids will be considered as imcompressible and

invicid, and the flow will be irrotational. Gravity will be neglected.

When making use of (2.2.1), (2.1.10), and (2.3.16), the equation of

motion can be written as

- P20 - P2*2t = R
 2 - R + cot e

csc Q

where p1Q and p ~ are the internal and external equilibrium pressures,

p and p the internal and external densities, $ and $ the

internal and external velocity potentials, t is time, and M- is the

surface density of the corneo-scleral membrane. Subscripts of 0, cp,

and t represent differentiation with respect to these variables.

(3.1.1) implies that the equilibrium (£ = 0) pressure distribution is

prn

PlO - P20 = * = r '
 (3'1'2)

Ap is referred to as the intraocular pressure. If we differentiate

(3.1.1) with respect to time and make use of the kinematic boundary

conditions (2.3.3), we find that

15



[•Pl0ltt - P2*2tt = 2R I 2*lr + — ~lre

(3.1.3)

It should be noted that the equation of motion (3.1.3) should in

fact be satisfied at r = R + £ but since second order £-terms have

consistently been neglected, (3.1.3) may be validly satisfied at r = R.

To obtain the solution of the equation of motion a space-time

separation is attempted:

(3.1.10

where a is the eigenfrequency squared.

A substitution of (3.1 A) in (3.1.3) yields

- en = =& 2i|rn + cote2R Ir

In reference to Laplace's equation in spherical coordinates (2.4.1),

if it is differentiated with respect to r and rearranged, it becomes

r * + cote * + *r0e + esc 0$ = 0 . (3.1.6)
L -Jrr

Since 0-. and 0 satisfy Laplace's equation i|r and \|f do

also. Therefore (3.1.6) can be used in (3.1.5) to produce

rr

16



In addition; the solutions for Laplace's equation inside the eye

(for \|/, ) and outside the eye (for i|fp) can be written as

m n

i|r2(r,0,cp) = V

r , E,

eimcp -(n+l)pm
2mn n

m n

and also

(3.1.8)

~C. e
Iran

imcp n-Lm
^

m n

and

IV1 VVr t-i = ) )
I lrJrr A A

m n

imCD

iIran
n-l_mFn

(3.1.9)

(3.1.10)

It should be noted that the thickness of the sclera (corneo-scleral

membrane) is considered to be constant, that is each part of the sclera

is assumed to move with its corresponding middle surface point. There-

fore an important boundary condition across the sclera is that the

normal velocity be continuous. This may be written as

v — = -5 —dr or
at r = R . (3.1.11)

This implies, from (3.1.8), that

Iran
= - C02mnv (3.1.12)

17



or

P ( n \ P2n+1p r* iC2mn = ' (n+l) R Clmn ' (3.1.

By making use of (3.1.8), (3.1.9), (3.1.10), (3.1.12), and (3.1.13) in

(3.1.7) at r = R we obtain

eimq>Rn-lpm + n +

Imn n mn 1 n+1 2
m n

m T C
n mn ] 1

)Y- n2(n+l) 0 .

The linear independence of the functions requires that

P1R + H?i P2R + pn 1 + ft n 2 " n(n+l)a p,R + ~ p0R + un + =i n 2 - n(n+l) = 0 (3.1.15)
rr)Y") I * I V> -J_l ~O ' I OD I * ' I \ ff /

or

aamn [ n nn~)3i+ ̂ i p2
 + r

A similar solution has been obtained (shell inertia not included)

13 14
before and may be found in the books by Lamb and Rayleigh among

others. Although it is not new some comments about the results bear

repeating:

(a) The eigenfrequencies are independent of m. This means that

for a given n there corresponds 2n + 1 different eigenfunctions.

Thus each of the eigenfrequencies correspond to 2n + 1 different

oscillations.

(b) The eigenfrequency is zero for n = 0. This corresponds to

radial oscillations. On physical grounds for an incompressible fluid,

radial oscillations are impossible.
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(c) As the external fluid density decreases the natural frequencies

increase. This is to be expected since less mass is being moved during

oscillation.

Figures 3.1, 3.2, and 3.3 show curves of eigenfrequency

squared (a ) versus intraocular pressure for this spherical droplet

model with various side conditions.

These curves were plotted using the nominal values of R = 1.3 cm,
•z p

p = pp = 1.0 gm/cm and u = 0.1 gm/cm . Figure 3.1 treats the spherical

droplet problem with no side conditions. Figure 3.2 adds the inertia

of the shell. And Figure 3.3 adds the external medium. In comparing

the three curves, it can be seen that each additional condition lowers

the eigenfrequencies. This may be explained by the fact that each

addition increases the apparent mass of the system. It should be noted

that since the shell depends entirely on the internal pressure to retain

its shape when the pressure goes to zero so do the natural frequencies.

At the nominal intraocular pressure of 20 mm Hg the lowest mode (n = 2)

exhibits eigenfrequencies of hO, 37, and 30 cps for the three cases

mentioned.

3.2 Elastic (Membrane) Model

This model differs from the flexible model in that the tension in

V

the sclera will no longer be considered as constant but account will be

taken of its elastic properties. That is the sclera will be treated as

a membrane and the membrane assumptions — only in-plane stresses, plane

sections remain plane — will be used. Again only radial displacements

will be allowed.

19



As in the case of the flexible model the stress resultants due to

the intraocular pressure Ap, can be written as

w = u =
 R AP . (3.2.\Ap W2Ap 2 ko.^.J

In addition^ the stress resultants due to a radial deformation can be

obtained from Hooke ' s law as

where

A=f^, (3.2.3)

E is Young's Modulus, v is Poisson's ratio, and h is the thickness

of the corneo-scleral membrane. By superposing (3.2.1) and (3.2.2), the

total stress resultants are

When making use of (3.2.4), (2.1.10), and (2.3.16) in (2.2.l) the equation

of motion becomes

^Ufo l"
P10 + pl*lt - P20 - P2°2t = 2 + A RJ R R

+ cote £0 + £00 H

From which equilibrium requires that

p - p = Ap . (3.2.6)

If we differentiate (3.2-5) with respect to time and make use of the

kinematic boundary condition (2.3.3), we obtain
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2A An
n <B - n <D = - u<I> - d> + —i- I PS + fi) rntfl +Pl Itt P2 2tt M Irtt D2 Ir 2R Ir 9^« COW

r( L

On attempting the space-time separation as in (3.1.10, (3.2-7) transforms

into

J - p

By applying (3.1.6), (3.1.8), (3.1-9), (3.1.10), and the continuity

of the normal velocity across the sclera (3.1.11), and (3.1.13), (3.2.8)

yields

n l_m f C
\ "T3 CT / Un I mn l H

2An

m n ' ' R

' +§nf2 - n(n+l)j"| = 0 . (3.2-9)

The linear independence of the functions requires that

v, [-»+ "IB + "f si] - p2 + i»[2 - »<»+1>] - <» <5-2-10

or

*WVn

Some observations about this result are now in order:

(a) from a comparison of (3.2.11) and (3.1.16) it can be seen

that the elastic model is in reality a linear superposition of the droplet
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model and a term due to the elasticity of the solera (corneo-scleral

membrane);

(b) as in the droplet model the eigenfrequencies are independent

of m, and

(c) (3.2.11) shows that radial pulsations cannot exist, since

this would imply that the fluid was compressible;

(d) Figure 5.k shows a graph of a versus intraocular pressure

for the one degree of freedom membrane model, for n = 0,1,...,6. This

curve was plotted using the nominal values of R = 1.3 cm, h = 0.1 cm,
•z '• o /r o

p.. = p = 1.0 gm/cm , (j. = 0.1 gm/cm , v = 0.5, and E = 7-0 X 10 dynes/cm .

In comparing Fig. 3A with Fig. 3.3, it is seen that the eigenfrequencies

of the elastic model do not vanish at £%> = 0. It should also be noted

that the slopes of the corresponding modes are the same for both models.

At the normal pressure of 20 mm Hg the elastic model exhibits a frequency

of 193 cps for the lowest pressure dependent mode (n=2). This increase in

eigenfrequency (from 30 cps for the droplet model to 193 cps for the

membrane model) is due entirely to the elastic forces which are considered

in the elastic model. In the tonometers now in use the difference in

elastic properties from eye to eye is normally neglected, but as can
—1»

be seen from the comparison of Figs. 3.3 and 3.1*, elasticity has a

large effect;

(e) in the elastic model the n = 1 mode exists and is pressure

independent. If all three orthonormal displacements were considered

this mode would be a linear translation which is obviously independent

of the intraocular pressure. If only radial displacements are taken

into account (as is presently the case) then this mode (n = l) becomes
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a constrained translation (nodes at n/2 and 3n/2). In reality this

constrained translational mode cannot exist and therefore can be ignored.
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IV. SHELL MODEL AND SPECIAL CASES

U.I Equations of Motion

The shell model differs from the elastic model in that bending

stresses and the 0 and cp displacements are not neglected. Since

bending is small in the first fev modes the elastic (membrane) model is

probably a good approximation but if higher modes are to be considered

bending must be taken into account.

The equations of motion are obtained by making use of the Flu'gge

equations for a spherical shell and adding the D'Alembert forces due

to the shell and internal and external liquids. The equations of motion

can be written as

(l+k)(l+v)[u' + v sin 0 + v cos 9 + 2w sin 0] - k[ii' - u' cot0

2 2 "
+ u'(3 + cot 0) + u1" esc 0 + v sin 0 + 2v cos 0 - v cot0 cos0

P **

+ v(3 + cot 0)cos 0 + v" csc0 + v" cot0 csc0] + k[w sin 0

+ 2w cos 0 - (l + v + cot 0)w sin 0 + w(2 - v + cot 0)cos 0

- 2(l+v)w sin 0 + 2w" csc0 - 2w" cot0 csc0 + w"(3-v + k cot20)

csc0 + w"" csc30] - P[2w +w+wcot0 + w" csc20]sin 0

o~2w
+ [m + m + m ] —-| sin 0 = 0, (k.I.l)

5 X 2 dtd

u1 - I —r— I u1 cot0 + v sin 0 + v cos 0

/ 2 2 \/ cos 0 + v s i n 0 \ i - L - v i „ ^ /n \. . .
v : + —^-] v csc0 + (l+v)w sin 0

V sin 0 /

(continued)
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* p
- k[w sin 8 + w cos 0 + w(l - cot 0) sin 0 + w" csc0

- 2w" cot0 csc0] - m —^ sin 0 = 0 , (4.1.2)5 at2

and

(l+k) [-̂ -} u sin 0 + u cos 0 - u(cot20 - l)sin 0 + u" csc0

COt 0+ (^) V + ffl V cot. * <l+v).-] - k[S- * V

+ 2v' + w'"csc20] - m 2Ji sin 0 = 0 ,3 at2

where

K h2k =
DR2 12R2

D = ̂ , K = ̂ i- (4.1.5)
1-v2 12(l-v2)

P=|f, (4.1.6)

m = £ L . n . m = : £ _ n , m = — u (417)
s D s l D 2 3 D 3

and

M = m + m + m. (4.1.8)

u, v^ w are the displacements in the 9, 0, and r directions, D is

the extensional rigidity, K is the flexural rigidity, u is the
s

surface density of the shell and u and n are apparent density terms

of the inner and outer liquids.
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(it.1.9)

4.2 Solution

To solve equations (4.1.1), (4.1.2), and (4.1.3) a space-time

separation of the following form will be attempted:

w(0,cp,t) = elN/a

v(0,cp,t) = e1"^CTtV(0,cp) (4.2.1)

u(0,cp,t) = e U(0,cp) .

If the space-time separation is used in (4.1.1), (4.1.2), and

(4.1.3) we obtain

Lin(w) + L10(v) + L.,(u) + M aW sin 0 =0 (4.2.2)

L21(w) + L22(v) + L23(u) + mgaV sin 0 = 0 (4.2.3)

and

L31(w) + L32(v) + L33(u) + mgaU sin 0 = 0 , (4.2.4)

where L., (i,k = 1,2,3) are linear differential operators as definediK

from (4.1.1), (4.1.2), and (4.1.3).

The space variables W(0,9), V(0,cp), and U(0,cp) can be expanded as

W(0,ep) =\ VA^ cos mcp P̂ (cos 0)
(—1 I—a
m n

(continued)
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V(e,cp) \ (4.2.5)
m n

U(e,cp) =\ \ Cmn sin mcp csc9 P™(cos 9) .

ra n

A differentiation of U(6,cp) with respect to 0 produces

sin mcp - cote csc0 Pm + csc0 ̂  Pm
n do n

m n

(4.2.6)

and

U(0,cp) =\ \ C sin mcp (csc3e + cot20 csc0)p'
l—j Z_i (__
m n

- 2 cot0 csce nP + csc9 P'
d9 n d02

,m
n

Let

d_ pm •m
d0 n n

and |_pm m
dri n n '

(̂ .2.7)

.2.8)

where

T] = COS 6 . (̂ •2.9)

By making use of (̂ .2-5), (̂ .2.6), (4.2.7), and (4.2.8), in (4.2.2),

(4.2.3), and (4.2.4), the equations of motion become

I I fA~> [2(1+k)(1+v)Pn + k fn"+ 2^°W - ^n 0 *
m n ^~

cot2e

2m2 csc2 Pm cot0(2-v + cot2e + 2m2 csc2e)
n

?™ {- 2(l+v) - m2 csc29(3-v + 4 cot20) +

27
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- P(2Pm + P™ + Pm cote - m2Pm csc2e) -Ma Pm~]v n n n n n mn n I

+ B fd+kXi+v) (pm + pm cote > - k(pm + 2p'm cotemn I v n n J ^ n n

-Pm(cot2e + m2 csc2e) + Pm cote(3 + cot26 - m2 csc2e)}

+ C (l+k)(l+v)m csc2e Pm - km csc2efp'm - 3 cote Pm
mn I n ^ n n

+ csc2e(4-m2)P̂ } Icos mcp = 0 , (4.2.10)

V V (A k sin e P>m + Pm cote + Pm(l - cot20 - m2 csc2e
L L \ ^ ( _ n n n
m n ^~

- (l+k)(l+v)/k)+ 2m2P™ cote csc2e - B^l+k) P™ sin 9

+ "m a 'm . _ J 20 m 2Q
 ms mnp cos e - p sm e { cot e + — esc e — — —

n n \ 2 l+k

Q

_ Cmn(i+k)(i+v)
f"™

| cscel P^(I+V)

P™ cote | } cos mcp = 0 , (4.2.11)

and

m n

(¥)f: -- p"1 cote) I (i+k) + c I ̂ )|pm - cote pm + 2(1 - m2 csc2e)pm
n ' v ' m n V 2 / n n v x n

+ t-2-\ m a P"1 - v P'" - P"' cote + 2P"' \) sin mcp = 0 .
s m n n n n n 1 '
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4.3 Apparent Mass Terms

For an incompressible fluid under irrotational flow, continuity

requires that

V2^ = 0 . (4.3.1)

In addition, as was previously the case, the solution to Laplace's

equation for the internal and external liquids are

Z S"1

I1 mn
m S

n
m n

and

i/at^ -(n+l) m( E r x 'cos mcp P r > R .mn ^ n
m n

(4.3.2)

The kinematic boundary conditions require that

at r = R .

By making use of (4.3.3), (4.2.1) and (4.2.5) in (4.3.2) and the

orthogonality of the cos mcp's and P 's, we find that

(4.3.3)

= - Dmn mn = Emn (4.3.4)

A rearrangement of (4.3.4) produces

Dmn DnR mn

and

=
mn n+l mn

(4.3.5)
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If |i. and n? are defined by

= - pl at

and

= p at r = R ,

(4.3.6)

when using (4.3-5) in (4.3.6) we obtain

PIR

In addition M becomesn

(4.3.7)

PoR
n n (4.3.8)

Rather than continue with the complete, solution at this time, it is

better to treat several special cases which are" easily attacked from this

point. The complete solution will be treated in section 4.7-

4.4 Special Case 1: One Degree of Freedom Shell Model

Consider that the shell has only one degree of freedom, that is,

the displacement can only be radial e.g.

A = Amn mn

B = C = 0
mn mn

(4.4.1)

If use is made of the orthogonality of the cos mcp terms and

(4.4.1), equation (4.2.10) reduces, for each value of m, to
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A i 2(l+k)(l+v)pm + k P + 2P cote - Pm(l+v
mn I n n n n cot2e + 2m2 csc29)

Pm cote(2-v + cot29 + 2m2 csc26) + P
n

,m . ^m

- m2 csc29(3

- v + 4 cot2e) + m csc 6J - P(2Pia + P
n n

Pm cot9 - tn2pm csc2e) -Ma P™ \ = 0 .
n n n mn n ( (4 .4 .2 )

By making use of (8.3.3), (8.3.4), (8.3-5), (8.3.6) in Appendix

A, define I as

m m 2 2I, = P + 2P cote - 1 + c o t e + 2m c s c 6I n n

+ cote 2 + cot2e + 2m2 csc2 - 2 + m2(3 + 4 cot2e)csc2e

- m esc
p. 2 mini

1 ) P n - n
2 213r| - 5 - 2m

+ 2T]P [ P P P "^
3 m m (m -4) I m

' " ~2 ' d-n2)2 J n
(4.4.3)

When using (8.3.12) and (8.3.10), (4.4.3) reduces to

I1 = n2(n+l)2 - n(n+l) - (4.4.4)

Similarly define I as

Lm n T,m/̂  2 2- Pn cote - Pn(2 - m esc

(k.k.5)

Legendre's equation, reduces (4.4.5) "to

I2 = (4 .4 .6)
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The use of (4.4.4) and (4.4.6), permits (4.4.2) to be rewritten

n2(n+l)2 - n(n+l) - 2 + v(n+2)(n-l)
L J

P(n+2)(n-l) - M P

By making use of the orthogonality of the P 's, this reduces to

the requirement that

r2 2 i
n (n+l) - n(n+l) - 2 + v(n+2)(n-l)
I J

+ P(n+2)(n-l) + M a = 0 ,^ /x ' n ran

from which a is found to bemn

Cmn =S2(1+k)(1+v) + k(n+2)(n-l) n(n+l)+(l+v) + P/K

Or, from the previously defined symbols of (3.2.3), (4.1.6) and (4.3.8),

a becomes
mn

n/4A(l+k) + R£p(n+2)(n-l) + =§ (n+2)(n-]

a
mn

2R3 I Pn + Po ̂  - i- (,.4.10)

\-lhen comparing this result to that for the droplet and membrane models

it is seen that

(a) the one degree of freedom shell solution is a linear super-

position of the droplet model and terms due to the membrane and bending

stressesj

(b) even for this shell model the eigenfrequencies are independent

of m (in the one degree of freedom case) •
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(c) the radial (n=0) mode vanishes due to the nature of the

apparent mass term. This is an obvious consequence of the assumption

that the fluid contained in the shell is imcompressible.

Fig. 4.1 shows a graph of c versus intraocular pressure for the one

degree of freedom shell model for n.= 0,1,...,6. The physical constants

used are the same as for the previous models.

At a nominal pressure of 20 mm Hg the lowest pressure dependent

eigenfrequency is 193 cps.

Fig. 4.2 shows a comparison between the one degree of freedom

droplet, membrane, and shell models. From this figure it can be seen

that

(a) only for n > 4 do the membrane and shell models differ

appreciably. For n = 3 the frequency difference is approximately 1%.

Even for the n = 4 mode the frequency difference is only about 3$.

This is as one would expect since bending terms are only important for

the higher modes;

(b) the marked difference between the elastic models and the droplet

model indicates that the elastic properties play an important part in the

dynamic behavior of the eye.

4.5 Special Case 2: Axisymmetric Modes

If m is set equal to zero, (v, u no longer neglected) in (4.2.10),

(4.2.11), and (4.2.12) it is found that the equations of motion separate

into two groups:

(a) equation (4.2.12) becomes independent of A and B and
^ mn mn

therefore describes a completely torsional oscillation. Since this
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oscillation is independent of pressure (no pressure terms appear in the

equation) it is uninteresting with regard to the originally stated

objectives and so will not be discussed further ;

(b) equations (4.2.10) and (4.2.11) interconnect A and B
mn mn

(and are independent of C ) and therefore describe a motion which is

partly radial and partly tangential.

A similar condition was discovered by Lamb in which he considered

the problem of a vibrating spherical membrane. He referred to these

separate vibrations as vibrations of the First and Second Classes. His

problem will be discussed in section 4.6.

If m = 0 and use is made of the orthogonality of the cos nxp terms,

equations (4.2.10) and (4.2.11) reduce to

r /-:; ~
A 2(l+k)(l+v)P + kl P + 2P cote - P(l+v +• cot 0)n n n_ n _n

n

? ~ \ . . .
cote(2-v + cot 0) - 2Pn(l+v)l - P(2Pn + Pn + Pn cot0)

- M a P + B I
n n n n

-1

|(l+k)(l+v)(P +P cote) - k< P + 2P cotev x v n n I n n

and

- p cot2e + p cote(3 + cot2e)) | || = o (4.5.1)

V TA kfp + p cote + p fi - cot2e - d+v)(i+k)\1 _ ( } f»
L \ n I n n n\ k / J n L n
n

m
+ p cote - p cot^e + v - --2 = o . (4 .5 .2)

n n \ -
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If use is made of (4.4.4), (4.4.6), (4.5.4), (4.5.6), (4.5-8), and

(4.5.10) in (4.5.1) and (4-5-2), this produces

[A | 2(l+k)(l+v) + k(n+2)(n-l) n(n+l) + 1 + v + P/k - M^

- B kn(n+l)(n+2)(n-l) .P = 0 (li-.5.1l)

and

m a

•̂l+k
D - P
• n n+1

. B (l+k)
n

= 0

(l+v)

(4.5-12)

By using (8.2.7), ^P - P becomes

iSTI [Pn-l - Pn+1]^Pn - Pn+l n-l n+1

When differentiating (4-5.13) with respect ot i) we obtain

d_ f p p ~] _ n d_ f ~\
dn I ' n " n+1 J 2n+l dn l n - 1 " n+1 J

' -, - P' -,1* = - nP .n-1 n+l j n2n+l n

If we differentiate (4-5-12) and apply (4.5.13) and (4.5.14), we find

(4-5-14)

that

V /A k f(n
A _ ' V n L

-l)(n+2)
_ B

m o
+ (l+v) - - )n(n+l)P = 0 .

II
(4.5-15)

*Note: P' - P' = (2n+l)P , (see reference l8, p. 136).
n+1 n-1 n
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In conjunction with (8.3.3), (8.3.4), (8.3-5), and (8.3.6), we define

I , !• , I,-, and I/- in the following manner:

i_ = P + 2P cote - p cot2e + p cote(3 + cot2e)3 n n n v '

= (1-T]2)2P"" - 8T)(l-Ti2)p'" + 4(3ri2-l)p" . (4-5-3)
n n n v

With (8.3.12) and (8.3.10), this becomes

I = n(n+l)(n+2)(n-l)P . (4-5-4)«_} n

Also

I, = P + P cote = (l-Tj2)PM - 2r|P' - ( 4 . 5 . 5 )4 n n x n n \ ; < > i

Legendre's equation reduces this to

1^ = - n(n+l)Pn . (4-5-6)

In addition

I5 =
P. .. -2!
P + P cote - P cot e sin
n n n

= - (i-n2) d-Ti2)?1 - - r • (^-5.7)

When combining (4-5-7), (8.3.11), and (8.3.9) we obtain

I = (n+l)|(n-l)(n+2) + 11 Upn - Pn+1"l - (4-5-8)

Let

I, = P sin e = - -(l-Ti2)?' . (4-5-9)
b n n

vath (8.3-9) this reduces to

35



Since the Pn's are orthogonal functions, (̂ .5.11) and (̂ .5.15)

require that

n n-l) I n(2(l+k)(l+v) + k(n+2)(n-l) I n(n+l) + (l+v) + P/k

k(n+2)(

- M o

- Bn ( n-l) n( = 0

and

*), B(l+k) (n-

m a
= 0 . (̂ .5.17)

The fact that these are linear homogeneous algebraic equations for

each value of n implies that solutions for the constants, A and B ,
* n n'

exist only if the determinant of their coefficients is zero. This

requires that the frequency equation be

2(l (l+v) + P/k > -

r
(n

m a
- k
r
(n-

> - M^

X1+k) ( k(n+2)(n-l) n(n+l) = 0 .

This may be rewritten as

aa - ba + c = 0 ,

where

a = m M
s n

b = + (M + 2m )(l+v)(l+k)+(n+2)(n-l) M (l+k) + m k n(n+l)u s i n s i

+ (l+v) + P/k) (continued)
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c = )̂ (n-l)(n+2)+(l+v)Ĵ

P/k}J - n+ (1+v) + P/kM - n(n+l)

k(n+2)(n-l) n

k(n-l)(n+2)
2

(̂ •5.20)

It should be noted that the frequency equation (U.5-19) is a

quadratic which implies that for each value of n there are two

independent eigenfrequencies. It follows therefore that there are also

two independenteigenfunctions or mode shapes (see Appendix D). Since the

P
product 4̂-ac is small compared to b (from (U.5-16)) these two frequencies

(corresponding to each n) differ by about an order of magnitude.

Fig. ^-.3 shows a plot of the eigenfrequency squared versus the

intraocular pressure (calculations were based on the nominal values

previously discussed). It should be noted that the high frequency

modes are almost pressure independent (for the n = 2,3,^,5>6 modes the

frequency changes less than .01$ from 0 to kO mm Hg). The low frequency

n = 0,1 modes both have zero eigenfrequency. These correspond to radial

pulsation and translation (see Appendix D) the first of which is clearly

impossible, and the second having no restoring force has no oscillation.

The frequency for nominal pressure of 20 mm Hg for the first observable

mode (n = 2) is 85 cps.

Fig. k.k compares the one degree of freedom and two degree of

freedom shell models. It should 'be noted that the frequencies for

corresponding modes are lower for the two degree of freedom model than for

the one degree of freedom model.

h.6 Special Case 3: Two Degree of Freedom Membrane Model

The results of section U-5 permit a comparison between the two

degree of freedom models to assess the effects of bending. By setting
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k = 0 in (U.5.16) and (^-5.17), the effects of bending are eliminated

and the solution is valid for the two degree of freedom membrane model.

The frequency equation with k = 0 becomes

aa2 - ba + c = 0 (4.6.l)

where

a = m Ms n

b = (M + 2m )(l+v) + (n+2)(n-l)(~M + m P~J (k.6.2)n s *— n s *— *

ir I
) 2(l+v)+(n+2)(n-l)P _ n(c =

If the internal and external liquids and the pressure terms are

eliminated, this reduces to Lamb's solution for a vibrating membrane.

Fig. ^.5 shows a graph of a versus intraocular pressure for the

n = 1,2,..., 6 modes for the two degree of freedom membrane model. (All

calculations based on previously mentioned nominal constants). The modes

shown are the low frequency modes (Note: there are two eigenfrequencies

and mode shapes for each value of n since the frequency equation is

quadratic) which are the most pressure dependent and therefore the most

interesting for the problem being considered. At a nominal intraocular

pressure of 20 mm Hg, the lovest mode (n =2) corresponds to a frequency

of 8k cps.

Fig. k.6 compares the one and two degree of freedom membrane models.

As predicted by theory the tvo degree of freedom model exhibits lower

frequencies than the one degree of freedom model. It should also be

noted that the corresponding slopes for the two degree model are the



same as for the one degree model. Camparative frequencies for n = 2

at 20 mm Hg are 193 and 84 cps for the one and two degree of freedom

models respectively.

Fig. 4.7 compares the two degree of freedom membrane and shell

models for n = 1,2,...,6. As was the case with the one degree of

freedom models the curves do not differ appreciably until n > 4. This

is to be expected since the modes exhibit little bending until n = 4

(see Appendix D for mode shapes). It should also be noted that the slopes

of the corresponding curves are exactly the same. This could have been

anticipated by examining equation (4.5-20) which shows that the pressure

term is unaffected by bending.

4.7 The Complete Shell Model

A brief discussion describing the solution of the complete equations

of motion (4.2.10), (4.2.11), and (4.2.12) will now be given. A more

detailed description can be found in Appendix B.

By rewriting equations (4.2.10), (4.2.11) and (4.2.12) the

orthogonality of the sin mcp, cos mcp, and P terms can be taken

advantage of to "reduce" the equations of motion to three algebraic

equations for each value of m and Z. These equations can be written

as (H has replaced n as the axisymmetric mode number)

•7! -r2 -p3 4 5
+ A + A + A Jm£ + Am,£+k Jm£

Bm,J5+2 JmJ2

Cm,
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r& . A j!5 + . jl6 _L7
*•* yi ^* /I T n ** /i T ^ a ^* n T *^ n

B T18 + B T19 + B 720 + B T21

m,,e-3 m£

and

+ A + A + +

where the A's, B's, and C's are the expansion coefficients defined in

(̂ .2.5) and the J's are defined in Appendix B.

Equations (ij-.y.l)^ (U.7-2)., and (^.7-3) each constitute an infinite

set (one equation for each value of S,} with £ = 1,2,...} of linear

homogeneous algebraic equations for each value of m (m = 0,1, ...,.0).

In order for a nontrivial solution for the A's, B's, and C's to exist,

the determinant of their coefficients must vanish. This determinantal

equation constitutes the frequency equation for each value of m.

A solution is not possible unless the determinant is truncated at

some finite order. Although the solution obtained by truncating the

determinant is not exact, a nearly exact solution can be obtained by

considering enough terms. In order to solve these equations for the

eigenfrequencies a digital computer program was developed that computes

the J""Vs (i = 1,2,... ,32) for specified values of m and I,

evaluates the truncated determinant for varied values of a, and plots

the value of the determinant as a function of a. The curve crosses

the abscissa (determinant equals zero) at the eigenfrequencies.



Truncating the determinant at £ = 6, equations (4.7.1), (4.7.2),

and (4.7-3) have been solved for m = 0,1,...,5.

Figures 4.8 through 4.12 are graphs of the eigenfrequency (in cps)

versus pressure (in mm Hg) of asymmetric vibrations for S, = 2,3,4,5,6

respectively. Each figure shows curves for m = Q,...,&, that is those

asymmetric modes which exist for each calue of Z. These curves were

plotted using the following nominal physical values:

R = 1.3 cm

h = 0.1 cm

£> P
E = 7 X 10 dynes/cm ,

with the other constants being taken as previously. It should be noted

that these curves all show the same general characteristics (except

i, = 6), that is, all of the curves lie within an envelope bounded by the

m = 0 and m = 1 curves. The fact that for m > 1 the curves approach

(decrease towards) the m = 0 curve seems to defy the principle that

the eigenfrequency should increase monotonically with increasing con-

straints, as reflected by nodal lines and points. In reality this is not

true since the m = 1 mode actually has the most nodal lines and

points. This can readily be seen if the displacements are examined

for various modes. Taking for example the & = 2 modes, it is

found that for m = 0, v vanishes at cos 0=0, 1"! and w vanishes

at cos 9 = + 1//3 . (These are not really nodes but pseudo-nodes in

that not all components of the displacement vanish at these points. Nodes

only exist at the poles and never occur for the m = 0,1 modes). For

m = 1, u vanishes at cos 0=0, I'l, v vanishes at cos B = tl/s/2 ,
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and w vanishes at cos 9 = 0, ±1. For m = 2, u vanishes at

cos Q = il; v vanishes at cos 9=0, +1, and w vanishes at

cos 0 = ±1. Figure 4.13 shows'these nodal lines and points.

As can be seen the m - 1 mode does have more points constrained

than either m = 0 or m = 2. But it should also be noted that the

m = 2 mode involves less constraints than the m = 0 mode. This would

imply a lower frequency for m = 2 than for m = 0 which does not

appear in the frequency pressure curves. This discrepancy may be attrib-

uted to the fact that the expansions for the displacements were truncated

'after six terms. An expansion with more terms might give better agree-

ment. Figure 4.12 shows that the & = 6, m = 5 mode has a lower fre-

quency than the & = 6, m = 0 .mode which would ,seem to .substantiate this

.premise, .since the m = '0 mode is more .constrained than the m = '5

'mode-. "This explanation does -not .consider the .strength of the constraints.

The -m = 0 mode 'may have .weaker constraints than the m = 2 .mode which

would account for its lower .frequency..

At a nominal intraocular .pressure of 20 mm ,Hg the asymmetric

vibrations exhibit 'eigenfrequencies ,of 136 cps 'for the ,n = 2,, m = 1

mode and 100 cps -for the >n = 2, .m = 2 mode. In comparison .the ,axi-

symmetric mode (m =,2,, ,m = 0') 'has -a natural 'frequency of 84 cps and

the one degree of 'freedom.model .has a corresponding eigenfrequency of

193 cps 'at 20.mm .Kg.

The asymmetric vibrations were'also.examined with respect to the

influence of 'E 'and h. .Figures 4.14, : .̂'15; and .4.16-show curves of the

eigenfrequency [(in.cps') .versus .the intraocular .pressure (in .mm Hg) of

asymmetric vibrations for '& = 2,3,U with Young' s ,modulus equal to



S P
7 X 10 dynes/cm . As can be seen, these curves have the same general

6 ?
appearance as in the case of E = 7 x 10 dynes/era , except that the

frequencies are lower for corresponding modes, and the dependence on the

number of nodal lines (m) is less pronounced. For n = 2, m = 0 the

eigenfrequency at 20 mm Hg is 38 cps.

Some qualitative results which may be extracted from this analysis

and the numerical results are:

1- the square of the eigenfrequency appears to be a linear function

of the intraocular pressure. That is, the frequency -pressure relation

may be written as

da ,

2- -^ = g

where g (R) and g9(-0 are functions of R and I respectively.

It should be noted that da ./dP is independent of m but d «/0~?/dP is
ITLt/ TTlx/

not. The latter is obvious since (a ) is a function of m.x o mn

3- (a ) . may be described byo rtu/

= = E

Eh G(R,^,m) for t <

where G and G are functions of the variables shown. For the low

frequency modes I ̂  k bending does not play a major role, da ./dP can

be obtained in closed form from the one degree of freedom model and is



approximately valid (better than 2$) for all models. From (U.U.lO), I

can be written as

n(n+2)(n-l) ,. ,

' ( 7>7)



V. VARIATION OF PHYSICAL CONSTANTS

Since it is obvious that all eyes are not identical, it is necessary

to examine the effects of variations of the constants associated with the

corneo-scleral membrane. It has been assumed that the nominal constants

associated with the eye are

R = 1.3 cm

h = 0.1 cm
£ Q

E = 7.0 X 10 dyne/cm
Q

u = 0.1 gm/cm

P-L = P2 = 1-0 gm/cm

v = .5 •

The effects of small variations of these constants on the frequency

(and therefore the intraocular pressure determination) will be examined

using the axisymmetric shell solution (4.5-19)- Since this solution has

been obtained in closed form results can be obtained fairly readily.

Figure 5-1 shows the effect of radius variation on the frequency-

pressure relation. Here the equilibrium radius was varied t 0.1 cm

(± 7-7$) from a nominal value of 1.3 cm. At 20 mm Hg this radius

variation corresponds to a 21.4$ variation of frequency in the n = 2,3

modes, 21.7$ in the n = 4 mode, 22-9$ in the n = 5 mode, and 2k.k%

in the n = 6 mode.

Figure 5-2 shows the effect of a variation of the effective 'scleral

thickness on the frequency-pressure relation. Here the effective thick-

ness was varied + 10$) from a nominal value of 1.0 mm. At 20 mm Hg this

thickness variation corresponds to an 9-1$ variation in the n = 2,3
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modes, 9-9% in the n = k mode, 11.6$ in the n = 5 mode and 13.6$

in the n = 6 mode.

Figure 5-3 shows the effect of a variation in the modulus of

elasticity on the frequency-pressure relation. Here E was varied

+ 0.5 X 10 dynes/cm (1 7-1$) from a nominal value of 7.0 X 10 dynes/

cm. At 20 mm Hg this variation in Young's modulus corresponds to a 6.3$

variation in the n = 2 mode, 5-6$ in the n = 3 mode, 5-1$ in the

n = 4 mode, ̂ -9$ in the n = 5 mode and 1*.8$ in the n = 6 mode.

This problem has also been examined with regard to variations of the

scleral density, vitreous density and external tissue density. In each

case a variation of ± 5$ was assumed. Here frequency variations at

20 mm Hg amounted to only 0.5$ for the n = 2 mode and 1.2$ for the

n = 6 mode for variation of the scleral density] 2.5$ for the n = 2

mode and 2.0$ for the n = 6 mode for variation of the vitreous density;

and 1.7$ for "the n = 2 and n = 6 modes for variation of the external

tissue density. Since these variations were so small they were not

graphically illustrated.

A goal of this analysis is the determination of Young's modulus and

an effective thickness of the corneo-scleral membrane by comparison with

experiment. Since the scleral thickness varies appreciably (from 0.3 mm

to 1.0 mm in the human eye) it will be necessary to introduce an effective

thickness. Recent experiments at Ames Research Center by Anliker

indicate that the elastic properties of blood vessels in dogs may vary-

by as much as an order of magnitude depending on the stress imposed on

f> ?
the animals. This indicates that the value of 7 X 10 dynes/cm

considered here is at best an estimate of the order of magnitude of E.



Figure 5.^ compares the n = 2,...,6 modes for values of the

modulus of elasticity differing by a factor of 10. Note that lowering

E by an order of magnitude radically changes both the slope and the

frequency. At 20 mm Hg the n = 2 mode exhibits frequencies of 85 and

6 5 2
38 cps for E = 7 X 10 and E = 7 x Kr dynes/cm respectively.

Figure 5.5 compares the n = 2,...,6 modes for values of the

effective thickness, of the sclera, differing by a factor of 10. Com-

paring this with Fig. 5.^ shows that decreasing either E or h by an

order of magnitude produces almost the exact same effect for the n =
C O

2,3,̂ - modes, that is, the curves for E = 7-0 X 10 dynes/cm and

h = 0.1 mm are almost coincident. But the n = 5,6 modes do show

substantial differences. This is not surprising since bending effects

are insignificant for n S k.

This similarity in varying E and h for n ^ k- implies that the

modulus of elasticity and the effective thickness can only be determined

from the frequency spectrum if we also admit modes corresponding to

n > k.



VI. EXPERIMENTAL PROGRAM

The objective of the experimental program was to obtain preliminary

data concerning the dynamic and static behavior of the eye in order to

validate the theoretical considerations described in the previous chapters.

6.1 Dynamic Experiment

The original experimental concept was to excite vibrations of the

eye using a sound source (e.g. audio speaker) and determine the resonance

frequencies by monitoring the surface deflection optically. Figure 6.1

shows the arrangement of the experimental apparatus devised for this

purpose.

The deflection was measured using an MTI KD-^5 Fotonic Sensor with

a resolution of ten microinches. The instrument employs an 1/8 inch

diameter fiber optics bundle to illuminate the object and to conduct the

reflected light to a photocell, the output of which is a measure of the

relative displacement between the sensor and the reflecting surface.

The frequency response of this instrument is d.c. to 60 kc. The signal

from the Fotonic Sensor was fed into an oscilloscope whose maximum

sensitivity was .001 volt per centimeter. The intraocular pressure was

measured using a water column and a hypodermic needle (sizes ranging

from #19-25).

The experimental procedure was:

(1) select the infusion pressure by raising the level of the water

columnj

(2) wait approximately two minutes to allow for a steady state

pressure equilibrium;



(o) activate the excitation device (e.g. speaker);

(k) vary the frequency until resonance is observed.

The difficulties encountered in a feasibility experiment on the

eye of an anesthetized dog demanded that for an initial study enucleated

eyes should be used.

Several experiments were performed with a Jensen 120-17 woofer as a

sound source. However, it was found that much of the vibratory energy-

was dissipated in the Fotonic Sensor and its support making it extre^el;

difficult to detect the ocular resonances. By locating the apparatus

on a concrete floor, orienting the speaker to maximize the energy trans-

mission to the eye and applying maximum power to the speaker (~ 30 watts)

a signal of approximately 15 millivolts could be obtained; with a signal

to noise ratio of 3.

Since it was decided that verification of the theory was of primary

concern the speaker was replaced by a mechanical vibrator obtained on

loan from the Ames Research Center of the NASA. The vibrator consisted

of a magnesium tube connected to a ferromagnetic core which was driven

by an a.c. excited coil. With the vibrator directly contacting the eye,

the amplitude of the exciting vibrations could be controlled so that an

adequate resonance signal could be obtained. It was also necessary to

limit the vibration amplitude so as not to distort the eye. A measure of

the distortion is the change in intraocular pressure when the vibrator

is removed from contact with the eye. This was usually about 3 mm H?0

at a nominal pressure of 97 cm HO.

Figure 6.2 shows a graph of a versus the intraocular pressure for

a typical set of data obtained by this method. The data will be discussed

in the next chapter.
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Some experimental observations are:

(1) The material surrounding the eye (fat, tissue, etc.) has

extremely good damping properties and must be thoroughly removed to

assure a sufficiently strong signal.

(2) In most of the experiments performed the eye was excited near

the optic nerve in order to excite axisymmetric modes and make use of

a scleral reflecting surface.

(3) The sensitivity of the Fotonic Sensor is a function of the

reflectivity of the surface; a better signal was obtained when the sensor

was positioned over the sclera rather than the cornea.

(k) Fastening the pressure connection (hypodermic needle) with

respect to the eye-support seemed to have little -effect on the resonance

values.

(5) The resonance frequencies seemed to be lower when the

excitation amplitude was increased but no quantitative data was obtained.

(6) To assure that the resonance frequency observed was that of

the eye and not that of the eye-vibrator system, the fundamental frequency

of the vibrator was examined and found to be higher than kOO cps.

(7) It is very difficult to decrease the pressure in the eye

because of the nature of the vitreous. Therefore in all experiments the

pressure was increased monotonically.

(8) The eyes used in the experiments were from zero to nine days

old (after enucleation). Older eyes showed external decay in spite of

refrigeration. Internal decay was visible after about 3 days when a

black substance could be observed through the cornea. Dissection showed

this to be the decaying retina.
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(9) The resonance frequency was measured to an accuracy of ± 1.5 cps.

All pressure readings were within tl mm HO and assumed steady state

conditions.

(10) The output of the Fotonic Sensor is a function of the reflectivity

(color, surface finish, etc.) of the object and its orientation and

distance from the sensor.

(11) In using this experimental apparatus only the lowest pressure

dependent mode could be detected.

It should be noted that this experiment does not simulate the in

vivo support of the eye.

6.2 Static Experiment

The purpose of the static experiment was to measure the distensibility

of the eye. By assuming the eye to behave like an elastic spherical

shell with a uniform wall thickness, Young's modulus could then be

calculated. That is, if the geometric parameters (R and h) are known,

an effective modulus of elasticity can be determined by measuring either

the change in diameter or change in volume associated with a change in

intraocular pressure.

To obtain the diameter change the eye was placed on Bausch and

Lomb optical comparator of magnification 62.5> and the pressure was

varied using a water column. The diameter was measured across the

equator of the eye. Whenever the intraocular pressure was increased the

equatorial diameter decreased initially and then began to increase

continuously after approximately 6 minutes. The diameter continued to

increase for more than two hours. The opposite behavior could be observed
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when the pressure was decreased. This peculiar phenomenon can be

attributed in part to an initial change in shape caused by a transient

pressure gradient in the polar direction, and in part to the viscoelastic

behavior of the sclera. With older eyes the shape change was not very

pronounced.

Due to the transient geometric alteration it was decided that the

volume would be a better parameter in measuring the distensibility of

the eye. Figure 6.3 shows the appratus used to measure volume changes as

a function of intraocular pressure and time. The Kontes syringe is

accurately ground and gas tight. All members of the hydraulic circuit

have much higher values of Young's modulus than the eye so that the

corresponding volume change should be negligible.

The experimental procedure was:

(1) the pressure is increased by injecting a known volume of water

into the system using the Kontes syringe;

(2) the corresponding pressure rise is measured and held constant

by continually injecting more fluid into the system and recording the

volume injected as a function of time. By accounting for the volume

added to the water column, the change in volume of the eye can be

determined.

Figure 6.k shows a graph of the volume change of the eye versus the

time (creep curve) in a representative case at various pressures. The

data will be discussed in the next section.

Some noteworthy experimental observations are:

(l) By constantly checking all system joints the leak rate was

found to be negligible.
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(2) The capillary diameter was non-uniform but the variation was

only ±2$. This allowed volume changes in the capillary to be measured

to ±1$ with pressure changes of 10 cm HO.

(3) The Kontes syringe allowed measurements of volume input to

±.02 nig.

(4) The pressure could be measured to -1 mm HO.

(5) The eye is obviously viscoelastic and continued to change volume

for at least 90 minutes.

6.3 Geometric Parameters

Both external and wall thickness dimensions were measured. The

external dimensions were measured using the previously mentioned optical

comparator with magnification of 62.5. Of the approximately 20 dog eyes

examined the equatorial (scleral) diameter varied from a minimum of

2.136 cm to a maximum of 2.313 cm with a variation in a single eye of

about t.051 cm. The polar (corneal) diameter varied from a minimum of

2.217 cm to a maximum of 2. ̂38 cm. The corneal diameter was more diffi-

cult to measure accurately because of the protuberance due to the optic

nerve.

Wall thickness measurements were made by dissecting the eye in half

through the cornea and measuring the wall thickness using a micrometer.

The equatorial (scleral) walls varied between .036 cm and .051 cm with

a single eye variation of ±.005 cm. The south polar (near optic nerve)

walls varied between .036 cm and .056 cm. The north polar (corneal)

walls varied between .089 and .Ik0 cm. Figure 6.5 shows a typical eye

and its dimensions.



VII. RESULTS AND DISCUSSION

7.1 Comparison of Theory and Experiment

The free vibration analysis of eyes, described in the earlier

chapters, predicts that the frequency squared (a ) should be approxi-

mately linear with respect to the intraocular pressure irrespective of

the excited mode. This theory also predicts that the slope (da /dP)

should be independent of m and only a function of n and R. In fact,

the slope appears to be independent of the model chosen (to better than

2$ from 0 to 100 cm HpO). That is, for a fixed R and n the values

of da /dP for the one, two, and three degree of freedom models is

the same, allowing us to obtain a closed form relation from the one

degree of freedom model. Therefore, by making use of the slope obtained

from the experimental data and assuming a value for n, R can be

calculated and compared to its measured value. In addition, the experi-

mental data can be extrapolated back to P = 0 to determine (a )v o'mn

and from this (by using (k.J.6)) m and Eh can be obtained. It should

be noted that at least two modes must be detected in order to determine

both m and Eh. Also to calculate E and h separately an additional

mode is necessary, the symmetric mode number (n) of which is greater

than four.

In examining the data graphed in Fig. 6.2 it can be seen that a

is linear with respect to Ap (P is a dimensionless value of £p) to

about 35 cm HO. At higher pressures the slope decreases and the curve

becomes non-linear. Since the normal pressure for a healthy eye is about

25 cm HO, it can be seen that under normal physiologic conditions the
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eye operates in the linear (or elastic) region. In the nonlinear domain

the eye is overpressured and glaucoma occurs. In this experiment and

the others to be discussed the vibrator was oriented along the symmetry

axis (as closely as possible) in order to attempt to excite axisymmetric

mode s.

In analyzing this data the slope (da /dP) was calculated (from

the linear portion of the curve), a value for n was assumed, and with

p = 0, R was calculated from simple theory (k.~(.l). It was then

assumed that the excited mode was axisymmetric (m = 0), and by extrap-

olating the data curve back to £sp = 0 to obtain (a ) and using

the measured value of h, E could be calculated.

Figures 7-1; 7-2, 7-3; and 7-^ show data curves for dog eyes

enucleated on 9/13/66 (both from the same dog). The data of Figures 7-1

and 7-3 were obtained five days after enucleation while that of figures

7-2 and 7-^ were obtained 8 days after enucleation. The similarity

between the curves should be noted. In figures 7-1; 7-2, and f.k the

data is somewhat irregular at pressures below about 12 cm HO. This is

probably due to the fact that at these low intraocular pressures the

eyes had areas of negative curvature.

Table 7-1 compares the measured and calculated values for the four

experiments. An error analysis has been performed to give the bounds

shown. The value of R shown is an average radius (based on fourm

measurements) measured at the equator less one half of the wall thickness

(the middle surface radius). The value of h shown is the average

thickness of the sclera (obtained from three measurements) and does not

include the corneal thickness. It should be noted that the calculated
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value of R is always (within experimental error) within the accuracy

of the measured value when n = 2 (ellipsoidal mode).

If it is assumed that the eye is a hollow, elastic, incompressible

sphere subject to static internal pressure, Young's modulus can be

21
calculated (using membrane theory ) from

where r is the external radius and AV is the change in volume ofo o

the sphere (e.g. the liquid that goes into the eye). Second order h/r

terms have been neglected.

For a viscoelastic material (7.1.1) can be considered as describing

a function that is proportional to the reciprocal of the strain under

the condition of constant stress. Figure 7-5 shows this time dependent

"behavior (experimental) compared to an exponential decay of the form

1/e = €l - e2(l - e-
t/T) (7.1.2)

where en and e are functions of the intraocular pressure and e is

the strain, e, and e can be calculated from the values of 1/e at

t = 0 and t » T. The time constant, T, associated with this

behavior is 20 minutes for all of the curves shown.

If Young's modulus is considered to be frequency dependent of the

form

E = E - aEQ , (7-1-3)

where En is a constant as obtained from the elastic considerations

(and the experimental data) and E is a function of the intraocular
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pressure, the simple one degree of freedom (u = v = o) elastic

analysis can be extrapolated to the axisymmetric (u = o) case and

permit comparison with the experimental data. That is, by substituting

(7.1.3) in (3.2.11) we obtain

4A n + R£p(n+2)(n-l)n
J_ / _, ._ |

2R3

If E is taken to be of the form
o

= T)(Ap)2 ,

where r\ is a physiologic constant and Ap is in cm HO, (7.1.̂ ) can be

used to describe the dynamic behavior of the eye. Figure 1.6 shows a

comparison of the extrapolated curve from (f.l.k), with E, = 1.2 X 10

dynes/cm (as determined from the data of Fig. 7-3) and r\ = 8.0 X 10 /

and the vibrational data of Fig. 7-3.

7-2 Comparison with Other Investigations

23
In 196l, Mackay published data obtained from experimental studies

on vibrating rabbit eyes. The eyes (five) were vibrated by placing each

in contact with a core driven by a coil fed from an ac source. Mackay

hypothesizes that the pressure -frequency relation can be expressed as

where f is the fundamental eigenfrequency, R is the radius of the

eye and M is the mass of the plunger. Based on this he obviously

feels that this is a "system" (eye-vibrator system) resonance rather



than an ocular resonance that is being measured. Figure 7-7 shows a

simple model that might represent this system, k and k represent

the effective spring constants of the vibrator and eye respectively.

M and m represent the effective masses of the vibrator and eye

respectively. For this system the natural frequency squared may be

written as

a =
k +'kv e
M + m (7-2.2)

From this Mackay concluded that

k = 0v

m = 0e (7-2.3)

k = 2nR Ap

When rewriting, (7-2.2) becomes

0 = a
1 + k /k

v e
1 + M/m

where

cr = k /me' e (7.2.5)

By differentiating (7-2A) with respect to Ap we obtain

, . dadp 1 e
d(Ap) ~ 1 + M/m d(Ap) ' (7-2.6)

assuming that only k is a function of Ap.
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This implies that 1 + M/m acts as a scale factor which relates

the rate of change of resonant frequency with respect to the eye-vibrator

system to the ocular system.

It should be noted that if M « m and k =0, thene • v

(7-2.7)

Figure 7-8 shows a comparison of Mackay's data, his hypothesized

theoretical curve, and a curve calculated from the axisymmetric model

(see section .̂5); assuming that n = 2, R = 0.60 cm and Eh = 1.6 x 10
£- p

dynes/cm (e.g. E = 7 X 10 dynes/cm and h = .023 cm). Since the

theoretical curve based on section k.$ does not take into account

frequency dependent elastic effects, we can assume (since there is such

good agreement with the experimental data) that there is some coupling

between the eye and the vibrator. In fact, if the eye -vibrator coupling

were strong enough the data might actually show a vibrator resonance as

influenced by the eye. It should be pointed out that Mackay's publication

made no mention of the magnitude of the geometric parameters of the

experimental rabbit eyes, and therefore the values used in this analysis

have been assumed.
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7-3 Conclusions

A model has been developed to analytically describe the dynamic

behavior of a vibrating eye. This model treats the eye as an elastic

shell surrounded by and filled with an incompressible, invicid, irrota-

tionally flowing fluid. Equations have been developed which consider

both the symmetric and asymmetric vibrational modes and a closed form

solution has been obtained for the symmetric case. A frequency dependent

elastic model has been proposed and has been directly applied to the one

degree of freedom (u = v = o) vibrating system. This model permits

extrapolation to the axisymmetric (u = o) and asymmetric systems.

Both static and dynamic experiments have been performed on

enucleated dog eyes. The static experiments emphasize the viscoelastic

behavior of the sclera, while the vibration experiments indicate that the

elastic properties (i.e., Young's modulus) are frequency dependent. The

dynamic experiments prove that there exists an intraocular pressure range

in which linear elastic theory, as used in the models chosen, describes

the dynamic behavior of the eye to within experimental accuracy. This

pressure range includes the normal intraocular pressure of a healthy eye

but does not seem to extend much above 35-^-0 cm HO.

The static creep experiments imply that there is a time constant

associated with the volume change caused by a state of constant stress.

This time constant is of the order of 20 minutes.

The dynamic vibration experiments indicate that Young's modulus

for the sclera is frequency dependent and may be written in the form

E = En - E a . (7-3.1)
1 o
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This model when extrapolated to the symmetric case shows agreement

within experimental accuracy if E is described by

E = T!(Ap)j , (7-3.2)

where T] is a constant depending on the physiologic state of the sclera,

and j is approximately 2 or 3 (also depending on the physiologic state),

If one considers the vibration data in light of the structure of the

sclera (see section 1.2) a possible explanation appears. That is, at low

pressures the lamina fusca, rich in elastic fibers, governs the dynamic

behavior of the eye and the experimental data agrees well with linear

elastic theory. At higher pressures the sclera proper and episclera,

composed of loosely intertwined bundles of connective tissue and few

elastic fibers, are added to the dynamic system with their associated

frequency dependent elastic properties. It is interesting to consider

the possibility that the onset of the nonlinear dynamic behavior might

coincide with the onset of glaucoma.

Based on the preliminary experiments discussed here it would seem

that the postulated theory, when used in conjunction with the proposed

frequency dependent elastic model, may well describe the dynamic behavior

of the eye to a first approximation.

7 A Recommendations

Some suggestions for future study are:

(l) The experimental technique should be modified so that the

vibrational studies can be performed in vivo. This is very important

since the elastic properties in vivo may be very different from the in
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vitro elastic properties discussed in this paper. In addition, the

damping properties of the surroundings must be taken into account.

(2) Toward this end the use of sound waves as attempted (see

section 6.l) might be pursued. Methods of focusing these waves should

be examined such as using an inverted speaker or going to close range

small systems using piezoelectric crystals or magnetostrictive materials.

(3) Attempts should be made to experimentally determine the mode

shape. This may be done by using multiple Fotonic Sensors to map the

surface of the eye during vibration.

(k) A mechanical vibrator should be designed which is force

independent, that is, which delivers constant amplitude vibrations

independent of external force or frequency. In this way any chance of

coupling between the eye and the vibrator would be eliminated.

(5) Attempts at detecting higher modes should be made. This is

important since it will allow a firm determination of E and E as

a function of pressure. This can possibly be done by using the more

sensitive Fotonic Sensor (sensitivity of 10 inches) in conjunction

with appropriate filters and amplifiers.

(6) More extensive static experiments should be performed to

determine e,, eQ and T as functions of pressure. The experiment

might' be extended so that both AV and Ar were measured simultaneously

to provide a cross check. This data could then be compared to the work

2k
of Schwartz where only Ar was measured. Measuring only Ar does

not take into account shape changes (which were discovered in this

program and are mentioned in section 6.2) and therefore may produce

erroneous results.
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(7) The eye should also be examined with regard to the effects of

vibration excitation amplitudes and ocular support (such as surrounding

the eye with liquid).

(8) The frequency dependent elastic considerations should be

extended to the multi-degree of freedom systems and consideration should

be taken of the dependence of E on Ap.

(9) More sophistication might be added to the analytical model

such as viscosity, nonsphericity, attachments (nerves, muscles, etc.);

elastic outer material, multilayered sclera, effects of the cornea and

lens, and effects of the ocular support.



VIII. APPENDIX A

ASSOCIATED LEGENDRE POLYNOMIALS OF THE FIRST KIND

8.1 Legendre's Equation and Solution

Legendre ' s equation may be written as

(1-T12) & - 2T, f + fn(n+l) - J2L-1 y = o . ' (8.1.1)
drf QT| L 1-rf J

To obtain a solution, consider first the equation with ra = 0.

Assume a series solution of the form

T) . (8.1.2)s

s

By using (8.1.2), (8.1.1) becomes

's(s-l)G T1S"2 + [n(n+l) - s(s+l)]G i\B \ =0 . (8.1.3)
S S I

o

Since the TJ terms are linearly independent, each coefficient must

equal zero separately. This produces

(s+l)(s+2)G _ + [n(n+l) - s(s+l)]Go = 0
S"T £ S

or

s - (n-s)(n+s+l) s+2 ' --

From (8.1.5) it can be seen that G ̂  and G_2 are zero if GO and

Cu are finite. Also if G = 0 then G = G , = ... = 0, so that
JL S S *"*̂  S ̂ T"

all negative powers of r\ vanish for finite GQ and G, . If G_ = 1,

the even powered series becomes
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If d, = I, the odd powered series becomes

y^ ' 3; ' 5; i "••• • W'-"--u

The complete solution to (8.1.1) with m = 0 can then be written as

y = Anpn + Bnqn for -1 < TJ < 1 . (8.1.8)

By rearranging and normalizing (8.1.6) and (8.1.7) the Legendre

polynomial of the first kind is defined by a finite series as

k
x \ ' i fpn-P-i'P n Pi

P T] =\(-i J— ^n ^}- r)n ̂  (8.1.9)n / jo./ Jt \/._ ,1./ • v ^y

which is valid for n equal to a positive integer with k = — n or

;j(n-l), whichever is an integer. This can be expanded to give the more

familiar form

The second solution of Legendre"s equation is also defined from

(8.1.6) and (8.1.7) by the infinite series as

00

Q (n) = 2n V (n+j)!(n+2J)! ̂ -(n+SJ+l) /Q 1

This series diverges for |TJ| = 1 and therefore this part of the

solution is only useful for problems which exclude the poles. For this

reason it will not be discussed further.
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(8.1.10) then is the solution to (8.1.1) with m = 0. If (8.1.1)

(with m = 0) is differentiated m times, and letting x = d y/dT] ,

(8-1.1) may be written as

2
(1-T]2) £_ - 2T](m+l) £ + (n-m)(n+m+l)x = 0 . (8.1.12)

an

Let

z = (l-T!
2)"1/̂  . (8.1.13)

When using (8.1.13) in (8.1.12) we obtain

- -5L_] z = 0 .
I-TI J

- 2T, * + n(n+l) - -5L_ z = 0 . (B.l.lU)
dt| -

This is identical with (8.1.1) Legendre's equation, and a solution

is therefore

y = z = (l-T?)m/2X = (l-T)
2)"1/2 ̂ - P (TJ) . (8.1.15)

Or the associated Legendre polynomial of the 1st kind may be defined as

(8.1.16)
dri

l8 19 20
8.2 Basic Recurrence Relations '

Without proof some useful recurrence relation will be given.

Y\ v» J. I • « " ^ '

(continued)
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*

= [(m-n)rjpj + (m+n̂ Kl-r]2)-1/2

- ̂  = (m-n-l)d-T1
2)1/2pm-1

_
n i

(8.2.2)

(8.2.3)

(8.2A)

(8.2.5)

(8.2.6)

8.3 Differential Relations

dPm

(8.3.1)

vhere

and

= cos 9

Pm = _
n n

,2 a/2,

(8.3.2)

(8.3.3)

n d0 n (8.3.4)

- (i-,2) /V (8.3.5

•im d_ »
n d0 r

m (7T!

(8.3.6)
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From the definition of P (TJ) (8.1,15)

ra-2
d -m d /., 2\m/2 d _ /, 2x 2

= — P =3— (1-T) ) ' P = - nm(l-ri )An -n An ] ^ ' / mnl r-^v-1- I /dr, n dt, | - " dTim nj — - ' , ̂m n

ra

If use is made of (8.2-5) in (8.3.7), we find that

(8.3.8)

or

(1-T1
2)P̂ ' = T!(nH-l)P° - (n-m+l)P̂ +1 . (8.3.9)

A useful relation for the second derivative of the associated

Legendre polynomial can be gotten directly from Legendre's equation.

That is

2,Pm' + Ln+l) - -̂ ~}P™ = 0 .
L l-Tl J

(8.3.10)
11

Differentiation of (8.3.10) produces

(l-T] )Pm - UT)Pm + (n+2)(n-l) - • m Pm - 2m ^ Pm = 0 .

(8.3.11)

It we again differentiate, (8.3.11) becomes

<— o —»
O O m O m'" O m*- )> ™"

(1-n )2P - 87](l-T]2)pni - -
L l-T) J

r,2^ 2 1,'m (.m -4,

d-r,2)2
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8.4 More Recurrence Relations

By making use of (8.2.4), other useful recurrence relations can

be written as

71 Pn ~ 2n+l ^'"^n-1 Xl" """^n+l

(m+n)(m+n-l) p

.]
,m I (n-m+l)(n+m+l) (m+n)(n-m) 1
n-2 [ _ ( 2 n + l ) ( 2 n + 3 ) ( 2 n + l ) ( 2 n - l ) J

(n-m+l)(n-m+2) pm
(2n+l)(2n+3) n+2

3m _ (m+n)(m+n-l)(m+n-2) _m /m+n \ (n+m-l)(n-m-
1 n ~ (2n+l)(2n-l)(2n-3) n-3 l,2n+lj |_(2n-l)(2n-3)

(n-m+l) (n+m+l) (n+m)(n -m) m
+ (2n+l)(2n+3) (2

/n-m+l\ [(n-m+1)(n+m+l) + (m+n)(n-m)
l2n+l J ( 2 n + l ) ( 2 n + 3 ) ( 2 n + l ) ( 2 n - l )x ' l_

(n-m+2)(n+m+2) I m (n-m+l)(n-m+2)(n-m+5) m
( 2 n + 3 ) ( 2 n + 5 ) J n+1 ( 2 n + l ) ( 2 n + 3 ) ( 2 n + 5 ) n + 3

= S4Pn-3 + S5Pn-l + S6Pn+l + Vn+S ' (8.4.2)

m _ /m+n-3\ (m+n)(m+n-l)(m+n-2) m
n ~ ^2n-5 j '~- - ^ ' ~ - ^'" ^~(2n+l)(2n-l)(2n-3)

I (n-m-2)(m+n)(n+m-1)(n+m-2) /n+m-l\ /m+n \ (n+m-l)(n-m-l)
U2n-5)(2n+l)(2n-l)(2n-3) \2n-l ) ( 2n+l/[(2n-l)(2n-3)

(n-m-l)(n+m+l) (m+n)(n-m) I m
+ (2n+l)(2n+3) (2n+l)(2n-l)Jj n-2

f(n-m)(n+m) | (n+m-l ) (n-m-l ) (n-m+1)(n+m+l)
H2n-l)(2n+l) I (2n-l)(2n-3) (2n+l)(2n+3)

(continued)
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(m+n)(n-m) (n+m+l)(n-m+l) ( (n-m+l)(n+m+lj
(2n+l)(2n-l)J (2n+3)(2n+l) (j2n+l)(2n+3) ~

(n+m)(n-m) (n-m+2) (n+tn++2) 11 pm
-l) ( 2 n + 3 j ( 2 n + 5 ) f n

f( n-m+2 )(n-m+l)
1 (2n+3)(2n+l)

(n+m)(n-m)
( 2 n + l ) ( 2 n + 3 ) ( 2 n + l ) ( 2 n - l J

(n-m+2Xn+m+2) (n-m+2 )(n-m+5)'(n+m+5)(n-m+l) I ptn
+ (2n+3)(2n+5) ( 2n+l ) ( 2n+3 ) ( 2n+5 ) ( 2n+7 ) J n+2

(n-m+l)(n-m+2)(n-m+3)(n-nH4) pm
( 2n+l ) ( 2n+3 ) ( 2n+5 ) ( 2n+7 ) n+k

SQP
m , + S Pm 0 + SinP

m + S^Pm 0 + S10P
m

8 n-4 9 n-2 10 n 11 n+2

8.5 Integral Relations

The two orthogonality relations relating Legendre polynomials of

different degree and different order may be written as

1
r̂ jn jn , 2 (,0+m)! ^ /<-, _

-1

and

nn n /o c-(8-5-

where

5, = 0 ^ ̂  n ̂
^ \ (8.5-3)

= 1 & = n J .

When making use of (8.4.1), (8.4.2), (8A.3), (8.2.1) and (8.2.2) some

useful integral relations may be derived.
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-1

where l(n) is some function of n and

-1

m _ + S P"1 . + S,P"
n-3 3 n-1 6 n+1

-1

(8.5.8)

72



where

(2.0+7) (2.0+5) (2.2+3)

(l-m+2)U+m+2)
-l) (2^+3) (2.0+5)

(2.0+3) (2^+1)

l-m \ (^-

-m+l)l
+l) I

-1

1

2

where

(2.0+3) (2Ji +5) (2£ +7) (2.2+9)
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p*dTl

(8.5.13)



| (l-m+l)U+i
(_( 2.2+1) (2.2 +

j-m+l)~
(24-1) (24+1) (24+3) (21 +5) (2.0+3X2-2+5) \_

(8.5-15)
(l+m+2)(l-m+2) ( I +m+5 ) ( I -m+5 )"]
(2,0+3) (2.0 +5) (2.2+5X2.0+7) J

Q
1 0 "" P ?

) (2.8-3) (2.8+1) (2i+l) (2̂ +3) (2̂ +5)

)l
J

_ - - - - - - 2 ) (jg+m-l) (^-m-= ~

+l) (l-m+l)"i
(2̂ +3) J

A useful formula that will not be proved generally, may be written

as

1 1

-1 -1

where a is a positive (or zero) integer. As an example let a = k.

Then from (8.4.3)

(8.5-20)

and



On multiplying by P,,dT| and integrating from -1 to +1 we obtain

-1

Vn)BJ,n
s12(,

5-̂ )1

and

(8.5.22)

-i
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IX. APPENDIX B

DETAILS OF THE COMPLETE SHELL MODEL SOLUTION

The complete equations of motion (̂ .2.10), (k.2.1l), and (U.2.12)

will now be examined. First it is best to define separately many of the

terms contained in the equations and eliminate the derivations with

respect to 0. When using (8.3.3), (8.3.U), (8.3.5), (8.3.6), (8.3.9),

(8.3.10), (8.3.11) and (8.3.12) the following terms can be defined:

T = P™ + 23?* cote - Pm(cot20 + m2 csc29)
7 n n nv

+ Pm cote(3 + cot2e - m2 csc20)
n

[12T]

+ 2m(m-l)
I-TI

r 2
Tl111 m \ I : T •* m

= P + =• n(n+l)
n i-n L i-r

(1-T1

Pm + Pra
n n

•jn

1-ri

jo.

m

1-"
In =<P

m - 3cot0 Pm + (U-m2)csc20 Pm
9 1 n n v n

(9.1.D

. (9-1.2)

(continued)
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- Mn-m+1), n _ ' " I *n -V"-"'- ' 2 n+1
L 1-T] -1 I-T! >

[.- = Pm sine + P'" cose +10 n n

2m2Pm cot0 csc0
n

P™ sin9(l - cot2e) - m2 cscQ

ln = - P sine = (1- ,)P

= (n+l)r)Pm - (n-v n

( n+1 \|/ v^m n(n-m+l) _m I
2^l][(n+m)Pn-l - -feoT" Pn+lJ '

/ 2
= P111 sine + Pm cose - Pm(cot2e sin e + 2_ CSC0)

n n n\ 2 /

' 2(l-rf )J ' n

r 2 "i
- (n-m+l) (n-l)(n+2)+l - -^—5- P^n . (9-1-6)

L 2(l-fic;)J

™ cote
— '

1"T1 (continued)
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2 n
jn

I-TI
2 n+1 ' (9-1.7)

(9-1.8)

- + 3P- cote =

Dn + 2(n-m+l) ^2 Pn+l ' (9'1'9)

_ (n+1)(n+2)lpm . 2(n-m+l)
J n - --T|

Pm

2 n+1 (9-1-10)

cot0

n+1^m2 - n(n+3)l Pm - 2(n-m+l) JL
1-n J n l-i

-
2 n+1

I ft = Pm - Pm cote + 2Pm

18 n n n

= (l-Ti2)Pm" + 2Pm
x ' n n

rm2+2(n+l) _ n(n+3)lpm _ 2(n.m+l) JL

L I-TI J n I-'
- Pm

2 n+1
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By rewriting (4.2.10), (4.2.11), and (4.2.12) using the previously

defined I. (i = 1, ...,l8) and by making use of the orthogonality of the

sin mcp and cos mcp terms we obtain, for each m,

- kI7]

Amn[kmll4 - »(l+v)(l+k)F^

15 + VI16]

(9.1.15)

Since the final objective is to reduce these equations of motion to a

series of algebraic equations, the next step is to put these equations

into a form in which the orthogonality of the P ' s can be taken

advantage of. This requires reducing all of the terms to forms which
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-JO.can be integrated simply after being multiplied by P. dr). To do this
J6

O O O

it is necessary to multiply (^-7-1) by (l-r\ ) and (k . 7.2) by (l-if)

to produce

| [I-L + I2(v+P/k)]k

(9-1.16)

where

L = 2(l+k)(l+v) - M a + (n+2)(n-l)[n(n+l)+(l+v) + P/k]k

L3 = Ll '

(9-1.17)

(9-1.18)

where

= [m2 - n(n+l)](l+k)(l+v)

L = [2n(n+l) - m ](l+k)(l+v)

L, = - n(n+l)(l+k)(l+v) .

(9-1.19)

(9-1.20)

where

L-, = ̂ m2(n+2)-m2(n+l)(n+i|-)+n(n+l)(n+2)(n-l)

- lun2(n-m+l)(n+m+l)/(2n+3)
(continued)
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Ln = m2(n+l)(n+lO-2n(n+l)(n+2)(n-l) )

= - 4m2(n-m+l)(n-m+2)/(2n+3)

(9-1.21)

)m ^c2 (9-1-22'
where

(9-1.23)

L = ^km(n-m+l)(n-m+2)/(2n+3)

where

= (n+l)(n+m)/(2n+l)

L = -(n+1)

L = n-m+1 .

?)!.- =L,.Pm
n + [L n+l

(9-1-25)

(9.1-26)
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where

= (m+n)

L = -(n+l)[(n-l)(n+2)+l]

- f- (n+5)

> (9-1.27)

'n+1
(9-1.28)

where

22

} (9.1-29)

L26Pn+2
(9-1.30)

where

2n+3

= 2(n-m+l)(n-m+2)/(2n+3) .

(9-1.31)

m
= + L P
'n 29 n+2

(9-1.32)

where

= [m2(2n+5)-(n+l)(n+2)]/(2n+3)j

(continued)
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= (n-U)(n+2) (9-1.33)

= -2(n-m+l)(n-m+2)/(2n+3)

(9-1.310

where

L » = [2(n+l)(n+2)-n(n+3)(2n+3)-m (2n+l)]/(2n+3)30

= n(n+3)

= -2(n-m+l)(n-m+2)/(2n+3) .

(9-1.35)

' [L33 (9-1.36)

where

= [m (2n+5)+2(n+l)(n+2)-n(n+3)(2n+3)]/(2n+3)

= n(n+3) (9-1.37)

L-,- = -2(n-m+l)(n-m+2)/(2n+3)

ik - m(l+v)(l+k)P°

where

(9-1.39)

Pra

"n+1 (8.1.^0)
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where

37

38

39

where

m a vm

rm a
s - v L

' m a
s

1+k

15

\ vm (n-m+l)n
Vj Ll6 " 2(2n+l)

(9-1.^3)

m a

- v L 17 '

kml
_ /. 2 \_m

= L, X1-T1 )P40 n

where

(9.1.^5)



In making use of (9.1.16) to (9.1.39).) the equations of motion become

(for each m)

mn
(1-2T) - kL?)

C Lin + T) Ln_mn V 11 ' 121

n

- Bmn L18

l]

- Cmn 2

and

n

mn

+ B
m '1+k)

mn 2 n + (L25

2m o 2m a
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The equations of motion are now in a form such that if they are multiplied

by P di| and integrated from -1 to +1, the integrals can all be
&

obtained in closed form by making use of (8.5-1) through (8.5-19). The

equations of motion are thereby transformed into

J + BJ + + J +

where

[(L5 - ̂8̂ 3 + (L6

(L5 - kL8)Q2 + (L6

+ (L 6 - -2 (continued)
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= (L

where

= [L39

= [L37

jl8 =

and

JL k ,15 jl6 + A J.7 + jl8

19 B T20 + B T21 + C ^2 + 0 J23 - 0J d ^ ~ U

(9-1.51)

- L20 + (LU3 - L19
)Q6

- L18 + (\5 - L19
)Q5

= (l+k)(L43 - L19)Qlv5^n_3 (continued)
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?2 ml

and

m,.e+2

+ B T29 +
-2 mi

T3° + P J31 + P J32 - 0~ (9.1.53)

where

[L26

T29 -
mi ~

30 T i/l+k\r_
— )[L32

- /T
Q3(L31

2m a
s mn

31 \r_ _
)[L - VL

2m a
s

30 - 33

2m o
mn

2m a
s n



Equations (9-1.̂ 9), (9.1.51), and (9.1.53) each constitute an

infinite set (one equation for each value of i, with & = 1,2,...) of

linear homogeneous algebraic equations for each value of m(m = 0,1, ...,.£)•

In order for a nontrivial solution for the A's, B's, and C's to exist,

the determinant of their coefficients must vanish. This determinantal

equation constitutes the frequency equation for each value of m.

In order to solve these equations for the eigenfrequencies, a

computer program was developed. This program computes the J 's
ITlx/

(i = 1,2,...,32) for values of m and I, evaluates the determinant

for varied values of a and plots the value of the determinant as a

function of a. The curve crosses the abscissa (determinant equal zero)

at the eigenfrequencies.

The previous description is, of course, not workable unless the

determinant is truncated at some finite order. And, in fact, to calculate

the first It, frequencies requires the continuous evaluation of a deter-

minant of order 3,0.

As an example of a calculation the Z = 1 and £ = 2 modes will

be examined. It should be noted that the & = 1 equations are only valid

for m = 0,1 and to examine the m = 2 mode (for ^ = 1,2) it is

necessary to eliminate the & = 1 equations (in the determinant) and

replace them by the & = 3 equations.

The equations for .0=1 and S, = 2 can be written as

A nJ
3 . + A „/ . + A CJ

5 , + B ..J . + B ,J9 . + B cJ
10
nm, 1 m,l m, 3 m,l m, 5 m, 1 m,l m,l m, 3 m,l m,5 m,l

+ C .J12, + C Ĵ13, = 0 (9.1-55)m,3 m,l '̂ "'



A J16., +A .J17 +B J20, +B ,J21, +C ^J23 =0 (9.1.56)m,2 ra,l tn,4 m,l m.,2 m, 1 m,^ m,l m,2 m,1

+ A n + Bm, 1 m, 1 m, 5 m,l m,l
B + c ,

m,3 m.l m ;l m,l

C ,Jn = 0nij o nij ± (9.1-57)

+ B .J^ + Cm^o m,2 + C J1 = 0 (9.1.58)

, 3
B

+ B + C + C ^J = 0
m,3 m,2

m,2 m,k m,2 m,2 ra,2 m,

(9-1.59)

+ C , J = 0 .
m,2

(9-1.60)

If we neglect the terms for which £ > 2, the 6x6 frequency deter-

minant may be written as

J3, 0
m, 1

o j^

J2'' 0

J 0

0 J2?ml

^1 °

^
ml

0

Jm!l

0

<Cl

0

(continued)
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0

J15,
m,2

0

3
Jra,2

0

T25

"X2

0

^9Pm,2

0

8
' Jm,2

0

J28

m,2

0

J22

m,2

0

12
Jm,2

0

31
m,2 • (9.1.61)

It should be noted that every alternate element of this determinant

vanishes, which means that the 6x6 determinant reduces to the product

of two 3X3 determinants. This is true of any even determinant whose

alternate terms are zero. That is, under these conditions, a 2i X 2i

determinant reduces to the product of two i X i determinants.

By rewriting (9-1.6l) as the product of two 3X3 determinants we
i

obtain

J20, J2Jm,l

«1

^2

Jm,l

^1

J18

rn,2

J12,m, 1

J
m, 1

J22

m,2

X m,2

J28 J3

(9.1.62)

J ,,J n , J^ _, JT n , J ., and J contain a -terms, and
ra,l m,l' m,2 m,l m,2' m,2

therefore must be evaluated for each value of o before the determinants

can be evaluated.

Equations (9-1. ̂9), (9-1-51) and (9-1.53) have been solved using

!> = 1,2,... ,6 and m = 0,1, ...5; that is for each value of m an

l8xl8 (in reality two 9x9 determinants) had to be evaluated several

hundred times.
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X. APPENDIX C

VISCOSITY CONSIDERATIONS

To give some idea as to the effect of viscosity a simplified

13
analysis will be presented. In following the analysis by Lamb , the

velocity potential of the inner medium for any fundamental mode may be

written as

*-, (r,9,cp,t) = D r11 cos m® Pm cos -/a *t . (lO.l.l)
Iran mn T n mn

For an incompressible, irrotationally flowing fluid the kinetic

energy contained in a sphere of radius r may be written as

P, rr o-O
T = - T r <*y (10.1.2)

where y denotes the solid angle. By making use of (lO.l.l) in (10.1.2)

we find that

P PP

T = _ _i // D
2 r2n+1ri cos2 mcp(pm)2 cos2 N/o"1 t dy . (10.1.3)

2 JJ mn TV n ran '

Since the system has been considered to be conservative, the energy

must be constant which implies that the potential energy may be written

as

V = - t /To2 r2n+1n cos2 mcp(Pm)2 sin2 -VT"11 dT . (10.1.4)
2 JJ mn YV n mn '

The dissipation in a liquid sphere, of viscosity u, based on the

assumption of irrotational flow is
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The kinetic energy of the fluid contained between two spherical

surfaces of radii r and r+8r can be gotten from (10.1.2) and from

the definition of kinetic energy. By equating these, we obtain

J 5r = ̂ Pi
I Pl I /JVr2dT | or = =± Pl | £ // ^ ^i r-dy | 6r (10.1.6)

which implies that

If use is made of (lO.l.l) in (10.1.7), we find that

2dY = - n(2n+l) // D2 r2n 2 cos2 m9(Pm)2 cos2 V o ' t dy .
.JJ ^ n ^ -(10.1.8)

And from (10.1.5) the dissipation becomes

= 2un(2n+l)(n-l) D2 r2""1 cos2 nKp(Pm)2 cos2 V̂ "1 t
™ ^ n; mn

Or the mean value per unit time may be written as

E = un(2n+l)(n-l) Dr211"1 cos2 mcp(P)2dY . (10.1.10)

If it is assumed that the effect of viscosity may be represented by

a gradual variation of the coefficient D , then
mn

E = (T + V) . (10.1.11)



Or by making use of (10.1.10), (10.1.3) and (lO.lA) in (lO.l.ll)

produces, for a sphere of radius R

d_ _ _V_ (n-l)(2n+l) (10112)
dt mn p _2 Dmn ' (10-1-12J

_L R

the solution of which may be written in the form

D = D e"t//T , (10.1.13)mn mn x

o

where D is a constant and T is defined bymn •*o

R2Pn

T = (n-l)(2n+l) •

This result indicates that if the vitreous body is considered to have a

viscosity approximating water (u ~ .01 ——^ ), then a spherical
cm 3

liquid mass, of radius 1.3 cm and density 1.0 gm/cm , will have a decay

time for the fundamental (n=2) mode of

T = 33.8 sec

This implies that even if the viscosity of the vitreous body is two

orders of magnitude greater than that of water the decay time will still

be of the order of .35 seconds which corresponds to 35 cycles (assuming

a natural frequency of approximately 100 cps).

While it must be realized that this is only a very elementary model

of the viscous effects (and does not include the viscous effects of the

external tissue), it does imply that in this early model viscosity can

be neglected.



XI. APPENDIX D

MODE SHAPES

The mode shapes for n = l,2,3,k for the axi symmetric shell model

vill be examined here. From (lj-,2.1) and (1̂ .2.5) the radial and tangential

displacements for any axisymmetric mode can be written as

w (0,10 = An e
11 P (cos 0) (11.1.1)n n n

vn(0,t) = B n e
N ^Pn(cos9). (11.1.2)

The Legendre polynomials for n = 1,2,3,4- are

PI(COS 6} = cos 0 (11.1.3)

P2(cos 0) = | (3 cos
20 - l) (ll.l.U)

P3(cos 0) = | (5 cos
30 - 3 cos 0) (11.1.5)

P^(cos 0) = g (35 cos 0 - 30 cos20 + 3) (11.1.6)

and their derivatives with respect to 9 are

dP
- = - sin 0 (11.1-7)d0

dP
•TOT = - 3 sin 0 cos 0 (11.1.8)

= - sin 0(5 cos^0 - 1) (11.1-9)

dP, , 2

-^~ = - | sin 0 cos 0(7 cos 0 - 3) . (11.1.10)
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Using the nominal physical constants R = 1.3 cm, h = 0.1 cm,

E = 7-0 X 10 dyne/cm , and v = 0.5 at P = 0, the eigenfrequencies for

the first four mode numbers (n = 1,2,3,4) as computed in section (4.5)

are

0=0 and 9-328 X 10

a = 0.3128 X 10 and 31.87 X 10

ff = 0.5522 X 10 and 65.50 X 10

0. = 0.8418 X 106 and 110.2 X 10 .

(11.1.11)

To obtain a relation between A and Bn we make use of (4.5.13)

A [2(l+k)(l+v)+k(n+2)(n-l){n(n+l)+(l+v)+ p/k) - M a ]

- B [(l+k)(l+v)+k(n+2)(n-l)]n(n+l) = 0 . (11.1.12)

A and B are related asn n

A = BI for cr1 = 0

for 0., = 9-328 X 10

(11.1.13)

= 0.2760A2 for a^ = 0.3128 X 10

= - 5-587A2 for CJ2 = 31.87 X 10
.6

B, = 0.1433A for 0 = 0.5522 X 10
G •_) O

B, = - 4.242A, for 0 = 65.50 X 10o o o

(11.1.15)



= + 0.07798Â  for o^ = 0.8418 x 106

(11.1.16)

for tf = 110.2 X 10 .

By making use of (11.1.13), (ll.l.HO, (11.1.15), (11.1.16), and

the Legendre polynomials and their derivatives in (ll.l.l) and (11.1.2),

we obtain for the radial and tangential displacements

(11.1.17)

wn (0) = A^ cos

cj = 9-328 x 10° (11.1.18)
/

(̂0) = 7-984A, s±n 9

1(9,t) = - A^ sin 0

w(6) =- (3

a = 0.3128 x 10 (11.1.19)
v (0) = - 0.8280A sin G cos

-, (Q\ — — (3
0 2 [ £

a = 31.87 X 10 (11.1.20)
i

v (0) = 16.76 A^ sin 0 cos 9

A
v (0) = -^ cos 9(5 cos 0 - 3 )
O £_

v

cr = 0.5522 x 10
2.r(0) = - 0.2150 A sin 9(5 cos0 - l) | (11.1.21)
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A
, = TT cos e(5 cos20 - 3)

v (0) = 6.363 A sin 8(5 cos20 - l)
*J O

(35 cos 0 - 30 cos20 + 3)

a = 65.50 x 10 (11.1.22)

a = 0.8418 x 106

- 0.1950 A, sin 0 cos 0(7 cos20 - 3) I (11.1.23)

A, ,
•• (35 cos 0 - 30 cos20 + 3)

(3 = 110.2 X 106

8.494 A, sin 0 cos 0(7cos20 - 3) .1 (11.1.24)

It should be noted that w and YI for cr = 0 are time independent

which implies a continuous linear motion.

In order to obtain an effective plot of these mode shapes, the

Calcomp plotter associated with the B5500 computer was used. By making

use of the Stanford University Computation Center Library Program No. 159

the graphs of the mode shapes were obtained. Since the Calcomp plotter

only understands cartesian coordinates it was necessary to transform the

aforementioned relations. This was done as follows:

A point on the equilibrium surface of the sclera (circular cross-

section) can be written in vector form as

R = R sin 0 i + R cos 0 k (11.1.25)

A /»

where i and k are unit vectors in the x and z -directions

respectively.

The displacements in vector notation can be written as
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-• A 1
w = w sin 9 i + w cos 0k (11.1.26)

and

-. A A
v = v cos 9 i - v sin 0 k . (11.1.27)

The displaced surface (2-dimensional) is then

Rdn = R* + wn + Vn (11.1.28)

or using (11.1.25), (11.1.26) and (11.1.27)

R, = [(R + w ) sin 0 + v cos 0]i
dn v n' n J

+ [(R + w ) cos 0 - v sin 0]k . (11.1.29)

When making use of (11.1.17) through (11.1.2U) in (11.1.29), the

displaced surfaces for each mode may be written as:

for 0=0

R= R sin 0 i + (R cos 0 + A )k (11.1.30)

,6
for ff = 9-328 X

R = sin 0[R + 8.98 A^ cos

2+ [R cos 0 + A1(l - 8.98 sin0)]k (11.1.31)

for 0 = 0.3128 x 10

R = sin 0[R + A2(0.67 cos
20 - 0.50}]i

+ cos 0[R + A2(1.00 - 0.67 sin
20}]k (11.1.32)
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for c* = 31.87 X 10

f~\ yv
R = sin 9[R + A {18.26 cos 0 - .50}]i

+ cos9[R + A2(1.00 - 18.26 sin
29}]k (11.1.33)

for cr, = 0.5522 X 10
o

R = sin 9[R + A cos 9{1.43 cos29 - 1.29)]i
d3 5

+ [R cos 9 + A ,(1.43 cosS - .21 cos29 - .22) ]k (11.1.34)
o

for a = 65.50 X 10
O

R = sin 9[R + A cos 9(34.32 cos29 - 7-86}]i
d3 5

+ [R cos 9 + AJ34.32 cos 9 - 39.68 cos29 + 6.63}]k (11.1.35)
O

for a^ = 0.8418 x 106

R = sin 9[R + A, (3.01 cos 9 - 3.17 cos29 + .38}]i
d4 4

+ cos 9[R + A^(3.01 cos 9 - 1.80 cos29 - .21] ]k (11.1.36)

for <J = 110.2 X 10

Rd = sin 9[R + Â (63.43 cos 9 - 29-23 cos9 + .38)]?

+ cos 9[R + A, (63.43 coŝ 9 - 88.69 cos29 + 25-86)]k . (11.1.37)

By examining the a, = 0 mode equation (11.1.30) and comparing it

to the equilibrium equation (11.1.25); it can be seen that the difference

A
between the equations is a displacement A., in the k -direction. That

100



is every point of the equilibrium surface is displaced a distance A

A

in the k -direction, or more simply, this describes a translation in

/\
the k -direction.

Figs. 12.la through 12.Ih show the mode shapes for the first four

mode numbers (n = l,2,3,i|). These figures depict the maximum and

minimum displacements during oscillation. The low frequency modes are

the most familiar. That is, for n = 1 a translation is observed, and

for n = 2,3,̂  the familiar two, three, and four lobed figures are seen

to emerge.

The high frequency modes though are not at all familiar. An

examination of them shows very sharp bends (although the bends are

greatly exaggerated in the figures in order that they show up distinctly)

which would seem to account for the high frequencies associated with

these modes. The sharp bends are due to the large tangential displacement

associated with the high frequency modes.
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FIGURE 1.1. SCHIOTZ TONOMETER
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FIGURE 4.16. SYMMETRIC AND ASYMMETRIC MODES:
n = 4, E = 7 x 105 DYNES/CM2
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FIGURE 5.1. EFFECT OF RADIUS VARIATION
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FIGURE 5.2. EFFECT OF CORNED-SCLERAL THICKNESS VARIATION
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E = 7.5 x 106 DYNES/CM2
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FIGURE 5.3. EFFECT OF YOUNG'S MODULUS VARIATION
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FIGURE 5.4. EFFECT OF YOUNG'S MODULUS
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FIGURE 7 .2 . VIBRATION DATA FOR ENUCLEATED
DOG EYE (8 DAYS OLD) - EYE 1
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FIGURE 7 .7 . SPRING-MASS MODEL FOR EYE-
VIBRATOR SYSTEM
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AXISYMMETRIC SOLUTION
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FIGURE 7.8. COMPARISON WITH MACKAY'S DATA
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n = 1, f = 0

w1(e) = AX cose
FIGURE 12.1 a

n = 1, f = 486 CPS
vL(6) = 7.98 AL SIN0

WjCe) = AX cose
FIGURE 12.1 b

n = 2, f = 89 CPS
= - 0.83 A SIN0 COSe

0.50 A2 (3COS20 - :

FIGURE 12.1 c

n = 2, f = 899 CPS
v2(e) =16.76 AZ SINe cose
«2(e)

FIGURE 12.1. MODE SHAPES

= 0.50 A2 (3 COS 6- 1)

FIGURE 12.1 d
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n = 3, f = 118 CPS
v3(9) = -0.22 SIN 6(5 COS 9-1)

w (9) = 0.50 A COS 9 (5 COS 9 -3)

FIGURE 12.1 e

v3(9) = 6.36 A3 SIN9(5 COS 9-1)

w3(9) = 0.50 A COS9(5 COS2 9-3)

FIGURE 12.1 f

4, f = 146 CPS
4(9) = -0.20 A4 SIN 9 COS 9 (7 COS 9-3)

w4(9) 0.13

FIGURE 12.1 g

(35 COS4 9 -30 COS2 9 +3)

n = 4, f
v (9) = 8.49

1670 CPS

w4(0) 0.13

S I N 9 C O S 9 ( 7 COS 9 -3)

(35 COS49 -30 COS29 +3)

FIGURE 12.1 h

FIGURE 12.1 (CONTINUED). MODE SHAPES
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EYE NO.
AND
AGE

1
5 DAYS

1
8 DAYS

2
5 DAYS

2
8 DAYS

da/ dP x 104

RAD2/SEC2-MM Hg

°-«<S:SH
«•*<«
°-4<n
0.494«;°^

CALC
CM

(n = 2)

+0 .09

+0. 12

+0. 11
1-11-0.03

0 98+0-08

°<98-0.04

F x in6
ECALCX l°
DYNES /CM

°-9-S:2
i-2+-l:l
i.2^;2

7

i-o+-°0.
52

^AS
CM

1.11+0.05

1.11+0.05

1.11+0.05

1.11+0.05

^lEAS
CM

| (SCLERAL)

0 . 048+0 . 006

0.048+0.006

0 . 046+0 . 006

0 . 046+0 . 006

TABLE 7.1. COMPARISON OF THEORY AND EXPERIMENT
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pressible, invisc'id, irrotationally flowing fluids. Its dynamic behavior has been
investigated by making use of 'the Flugge shell equations and the appropriate inertia
terms. The :axi symmetric case has been solved in closed form, and the asymmetric case
has been solved numerically. Some qualitative results for physiologically meaningful
parameter values are

ran (D
da
-fiT = g-L'n)g2(R) (2)

(a) •= (a) I i = E G.(h,R,m,n) - Eh G (R,m,n) n^k (3)
* o mn' mn|__Q JL <=

where a is the eigenfrequency squared, P is a dimensionless intraocular pressure,
g j g > ̂) and G?> ^ functions-of "the variables shown, E is the effective Young'
modulus, "Hi. is the meanseleral thickness, R is the middle surface radius, n is the
symmetric mode number, and m is the asymmetric mode number,-

Static'and dynamic experiments were performed on enucleated dog eyes. The static
experiment measured the!change in volume of the eyes as a function of time at various
pressures. iThe results'of this experiment indicated that the eyes were viscoelastic
with an associated time constant of approximately 20 minutes.
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UNCLASSIFIED 13. Abstract (continued)

The dynamic experiments measured the fundamental frequency as a func-
tion of the intraocular pressure. The results of that experiment indicated
that the n = 2 (axisymmetric ellipsoidal mode) was excited. At intra-
ocular pressures below kO cm HgO, the data were in agreement with the
theoretical analysis within experimental error. At higher pressures o_
vs P curves became non-linear with decreasing slope. If Young's modulus
exhibits a frequency and pressure dependence of the form

E = EI - oEo

where E, is a constant obtained from linear elastic theory and EQ is a
function of P, it is possible to explain the non- linear behavior of the
vibration data. The dynamic results seem to imply that the inner elastic
layer of the sclera governs the dynamic behavior of the eye up to a certain
critical intraocular pressure. Above this critical pressure the outer
layer conceivably contributes to a frequency -pressure dependent elastic
behavior.
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