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ON THE EQUIVALENCE OF THREE 
TRAJECTORY OPTIMIZATION SCHEMES 

G. J. Lastman* 
University of Texas, Austin 

A p e r t u r b a t i o n  method and  a n  a d j o i n t -  
p e r t u r b a t i o n  method f o r  t h e  s o l u t i o n  o f  two- 
p o i n t  boundary v a l u e  problems,  which a r i s e  i n  
t h e  v a r i a t i o n a l  t r e a t m e n t  o f  o p t i m a l  c o n t r o l  
p rob lems ,  a re  shown t o  be e q u i v a l e n t  t o  a 
p r o c e d u r e  based on t h e  c l a s s i c a l  Newton's 
Method for m s i m u l t a n e o u s  e q u a t i o n s  i n  m 
unknowns. 

*Research  E n g i n e e r ,  Department  o f  E n g i n e e r i n g  
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1. Introduction. 

Recently three computational methods [Refs. 1, 2, 31 have 

been proposed for the solution of two-point boundary value 

problems arising from a variational calculus treatment of optimal 

control problems. Computational experience [Ref. 41 has indicated 

that two of these methods, those of Refs. 1 and '2, are essentially 

the same. The conclusions of Ref. 4 are verified by the results 

of this note; that is, all three methods are mathematically 

equivalent. A similar type of analysis was given by Roberts 

and Shipman [Ref, 51 for the method of Goodman and Lance [Ref. 6 3 ,  

In Ref. 3 it is shown that a variational two-point 

boundary value problem can be expressed in the following form: 

z = - -  dZ - F(Z,t) , 
dt 

where Z, F and K are 2n-vectors, L is an m-vector, C is an 

(m-1)-vector, and Q is a scalar. In the analysis of the three 

methods, Q will be assumed to be unknown; thus m = n + 1. 
In order to solve the boundary value problem, C and Q 

must be known. In each of the three methods to be discussed, 
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values of C and Q are estimated and Eq, (I) is integrated 

from t = 0 to t = Q with initial conditions given by Eq. (2)" 

In general the terminal conditions, Eq. ( 3 ) ,  will not be 

satisfied. (A solution satisfying Eqs. (1) and (2) but not 

necessarily E q .  ( 3 1 ,  is known as a nominal trajectory.) In each 

method a procedure is given for determining corrections to C and 

Q so that a new nominal trajectory will better satisfy Eq. (3). 

These correction-procedures are shown to give identical results 

for the same nominal trajectory. 

2. Newton's Method. 

Newton's Method for the solution of the two-point boundary 

value problem, Eqs. (1) - (31 ,  is discussed in Ref, 3. This 

method is based on the classical Newton Method for the solutfon 

of m simultaneous equations in m unknowns. The iteration 

scheme is 

T where BT = [ C  Q] , (superscript T denotes transpose) 

A(B) = C- - 
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From E q .  (11, 

and hence  

t a 

D i f f e r e n t i a t i n g  E q .  ( 7 )  w i t h  r e s p e c t  t o  t g i v e s  

d az  - aF az 
d t  ac az ac -- - -- 

w i t h  

The m a t r i x  aF/aZ i s  e v a l u a t e d  on t h e  nominal  t r a j e c t o r y ,  Fo r  

c o m p u t a t i o n a l  p u r p o s e s  t h e  i t e r a t i o n  scheme g i v e n  b y  E q ,  (4) is 

m o d i f i e d  as f o l l o w s :  

where 0 < ak 1. The f a c t o r  ak i s  chosen  s o  t h a t  - 
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3. P e r t u r b a t i o n  Method. 

I n  t h e  p e r t u r b a t i o n  method [Ref.  11 a p e r t u r b e d  t r a j e c t o r y  

(Z+z,C+c,Q+q) i s  c o n s i d e r e d .  E q u a t i o n s  (1) and ( 2 )  are w r i t t e n  

i n  terms o f  t h e  p e r t u r b e d  t r a j e c t o r y ;  F and K are  expanded i n  

a T a y l o r  se r ies  ( a t  e a c h  t )  abou t  t h e  nominal  t r a j e c t o r y .  

Assuming t h a t  ( z , c , q )  are "small" o n l y  f irst  o r d e r  terms are  

r e t a i n e d  i n  t h e  T a y l o r  s e r i e s .  The l i n e a r  p e r t u r b a t i o n  e q u a t i o n s  

are 

. z = -  aF z az 

z ( 0 )  = - aK c ac 

Because  E q .  ( 3 )  i s  n o t  s a t i s f i e d  on t h e  nominal  t r a j e c t o r y ,  t h e  

change  i n  t h e  t e r m i n a l  c o n d i t i o n s ,  due t o  t h e  p e r t u r b a t i o n  

( z , c , q ) ,  i s  g i v e n  b y  

aL z + = q = - L .  dL AL = - az 

L e t  M ( t )  b e  a fundamen ta l  m a t r i x  [ R e f .  7 1  f o r  E q .  ( 1 2 ) ,  w i t h  

M ( 0 )  = I ,  t h e  2nx2n i d e n t i t y  m a t r i x .  Then a s o l u t i o n  o f  E q .  ( 1 2 )  

i s  

z ( t )  = M ( t ) z ( O )  = M ( t ) $  c . 
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On setting t = Q in Eq. (15) and substituting this expression 

into Eq. (141, the equation becomes 

aL aK dL - M ( Q ) z  c + q = -L . az 

Let 

BT = [ C T  Q ]  

The iterative procedure is therefore 

Equation (18) is the same as Eq. (11) if and only if D(B (k)) = 

A(B(k)). The matrices D and A are identical if and only if 

a z ( Q )  = M ( Q ) x  aK . 
ac 

The matrices ac and M(t)s satisfy the same differential 

M ( O )  = I ,  2nx2n identity matrix, Since the matrices are equal 



7 

at t = 0 and.they satisfy the same differential equation, they 
are equal for each t, 0 t 4 Q. Then D(B ( k ) )  = A(B ( k ) )  - - 

and therefore the perturbation method is equivalent to Newton's 

Method. 

4. Adjoint-Perturbation Method. 

The adjoint-perturbation method CRef.21 uses the adjoint 

equation to Eq. (12), 

T aF y = - (&  y 

to determine the corrections for C and Q. If N(t) is a 

matrix whose rows are solutions of Eq. (19), then the solution 

of Eq. (12) can be written as 

since d aF aF 
az dZ ~ ( N z )  = iz t Ni = -N-z t N-z = 0 . 

At t = Q, choose N(Q) as 

The matrix N(t) is obtained by integrating Eq. (19) from 

t = Q to t = 0 with initial conditions given by Eq. (20)" 
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Thus, 

and so Eq. (14) becomes 

t3K dL 
dQ N ( O ) =  c + - q = -L , 

Once again, let 

BT = [CT Q] 

The iteration scheme 

is identical to Eq. (11) provided E(B(k)) = A(B ( k i ) .  The 

matrices E and A are equal if and only if N ( O ) x  aK - - 

. To show that these matrices are equal consider aL az 

a fundamental matrix R(t) for E q .  (19), with R(Q) = I, the 
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2nx2n i d e n t i t y  m a t r i x .  The m a t r i x  N ( t )  c an  be  e x p r e s s e d  as 

N T ( t )  = R ( t ) N  T ( Q )  . 

It i s  known [Ref.  71 t h a t  t h e  fundamen ta l  m a t r i c e s  M ( t )  and 

R ( t ) ,  f o r  E q s .  (12) and (19) r e s p e c t i v e l y ,  a r e  r e l a t e d  b y  t h e  

e q u a t i o n  

T With tl = Q and t 2  = 0 w e  have M ( Q )  = R ( 0 )  and t h e r e f o r e  

N ( 0 )  = N ( Q ) M ( Q ) .  It was shown i n  S e c t i o n  3 t ha t  

aK a z ( Q )  = M ( Q ) ~  ac 

so t h a t  

where N ( Q )  i s  g i v e n  b y  E q .  ( 2 0 ) ,  T h e r e f o r e ,  t h e  a d j o i n t -  

p e r t u r b a t i o n  method i s  also e q u i v a l e n t  t o  Newton 's  Method, 

5 .  C o n c l u s i o n s .  

The a n a l y s i s  i n  S e c t i o n s  2 ,  3 ,  and 4 has shown t h a t  t h e  

t h r e e  methods 
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(1) the perturbation method [Ref. 13, 

(2) the adjoint-perturbation method [Ref. 21, and 

(3) the Newton method [Ref. 31 

are mathematically equivalent, The three methods are just variants 

of the classical Newton Method for the solution of m simultaneous 

equations in m unknowns. 
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