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1. Introduction.

Recently three computational methods [Refs. 1, 2, 3] have
been proposed for the solution of two-point boundary value
problems arising from a variational calculus treatment of optimal
control problems. Computational experience [Ref. 4] has indicated
that two of these methods, those of Refs. 1 and 2, are essentially
the same. The conclusions of Ref. 4 are verified by the results
of this note; that is, all three methods are mathematically
equivalent. A similar type of analysis was given by Roberts
and Shipman [Ref. 5] for the method of Goodman and Lance [Ref. 6].

In Ref. 3 it is shown that a variational two-point

boundary value problem can be expressed in the following form:

: az _ :
z = 3£ = F(z,¢) , 0<t <Q (1)
Z(0) = K(C) (2)
L(z2(Q),Q) =0 (3)

where Z, F and K are 2n-vectors, L is an m-vector, C 1s an
(m-1)-vector, and Q@ 1is a scalar. In the analysis of the three
methods, Q will be assumed to be unknown; thus m = n + 1,

In order to solve the boundary value problem, C and Q

must be known. In each of the three methods to be discussed,



values of C and Q are estimated and Eq. (1) is integrated

from t =0 to t =Q with initial conditions given by Eq. (2).
In general the terminal conditions, Egq. (3), will not be
satisfied. (A solution satisfying Eqs. (1) and (2) but not
necessarily Eq. (3), 1s known as a nominal trajectory.) 1In each
method a procedure is given for determining corrections to C and
Q@ so that a new nominal trajectory will better satisfy Eq. (3).
These correction-procedures are shown to give identical results

for the same nominal trajectory.

2. Newton's Method.

Newton's Method for the solution of the two-point boundary
value problem, Egs. (1) - (3), is discussed in Ref. 3. This
method is based on the classical Newton Method for the solution
of m simultaneous equations in m unknowns. The iteration
scheme is

p(ktl) _ g() _ p-1g(k)y () Lo q (4)

where BT = [CT Q] , (superscript T denotes transpose)

AL AL
3L 37 {dL
A(B) = 37 3C a‘a] (5)

t=Q

dL _ 8L 87 , L _ AL oL
Q-3 |t % F(z(Q),Q) + 5q

n
|
|
+



From Eq. (1),

t
Z(t) = Z(0) +fF(Z,s)ds
0

and hence

t

32(t) _ XK 3F 37
5C ‘ac+faz ¢ ds
0

Differentiating Eq. (7) with respect

4 8z _ IF 37
dt aC 37 3C
with
32(0) _ K
aC 3C

(6)

(7)

to t gives

(8)

(9)

The matrix 3F/3Z 1is evaluated on the nominal trajectory. For

computational purposes the iteration

modified as follows:

b0 = a1k (K)

_ g0, (0

Oy

< 1. The factor o,

scheme given by Eq. (4) is

(10)

(11)

is chosen so that
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3. Perturbation Method.

In the perturbation method [Ref. 1] a perturbed trajectory
(Z+z,C+c,Q+q) 1s considered. Equations (1) and (2) are written
in terms of the perturbed trajectory; F and K are expanded in
a Taylor series (at each t) about the nominal trajectory.
Assuming that (z,c,q) are "small" only first order terms are
retained in the Taylor series. The linear perturbation equations

are

z = = % (12)
z(0) = 3"’%- c . (13)

Because Eq. (3) is not satisfied on the nominal trajectory, the
change in the terminal conditions, due to the perturbation

(z,c,q), is given by
= dL =
AL = =& 2 + mq = -1 . (1“)

Let M(t) be a fundamental matrix [Ref. 7] for Eq. (12), with
M(0) = I, the 2nx2n identity matrix. Then a solution of Eq. (12)

is

z(t) = M(t)z(0) = M(t)—g-}g c . (15)



On setting t = Q 1in Eq. (15) and substituting this expression

into Eq. (14), the equation becomes

oL 2K dL _
—a—z' M(Q)S_C c + m q = =L
Let
_ oL 3K |, dL
D(B) = [ﬁ M(Q)a_c I m]t___Q (16)
BT = [cT @]

b = p=l(p(k))L(K) (17)
The iterative procedure is therefore
(kD) glk) ) (k) (18)

k .

Equation (18) is the same as Eq. (11) if and only if D(B(k))

A(B(k)). The matrices D and A are identical if and only if

3Z2(Q) _ 3K
s - M@ -
Th . 3Z(t) 3K . . .
e matrices 3C and M(t)ﬁﬁ satisfy the same differential

equation Y = %% Y and at t = 0, agéo) = %% = M(O)%% , Since

M(0) = I, 2nx2n identity matrix. Since the matrices are equal



at t = 0 and.they satisfy the same differential equation, they
are equal for each t, 0 <t < Q. Then D(B(k>) = A(B(k))
and therefore the perturbation method is equivalent to Newton's

Method.

4, Adjoint-Perturbation Method.
The adjoint-perturbation method [Ref.2] uses the adjoint

equation to Eq. (12),
y = -(55) v (19)

to determine the corrections for C and Q. If N(t) is a
matrix whose rows are solutions of Eq. (19), then the solution

of Eq. (12) can be written as

N(t)z(t) = N(0)z(0) = N(O)% ¢

oF oF

since HE(NZ) = Nz + Nz = —NEZZ + NEZZ =0 .
At t = Q, choose N(Q) as
L
N(Q) = [$] : (20)
Z £=Q

The matrix N(t) 1is obtained by integrating Egq. (19) from

t =Q to t =0 with initial conditions given by Eq. (20).



Thus,

N(Q)z(Q) = N(0)5g o
and so Eq. (14) becomes
3K dL _
N(O)'s-é- c + a@" q ~-L
Once again, let
BT = rcT qJ
E(B) = [N(0)ZE | 4Ly (21)
aC daQ~, _
t=Q
p(8) o gl (k) (22)
The iteration scheme
B(k+l) - B(k) + Otkb(k) (23)
is identical to Eq. (11) provided E(B(k)) = A(B(k)). The
matrices E and A are equal if and only if N(O)gg =
3L 35] . To show that these matrices are equal consider
5Z 3C° g

a fundamental matrix R(t) for Egq. (19), with R(Q) = I, the



2nx2n identity matrix. The matrix N(t) can be expressed as
T T
N"(t) = R(£)N(Q)

It is known [Ref. 7] that the fundamental matrices M(t) and
R(t), for Egs. (12) and (19) respectively, are related by the

equation
RT(6)M(t,) = RT(6,)M(t,)

With t1 = Q and t2 = 0 we have M(Q) = RT(O) and therefore

N(0O) = N(Q)M(Q). It was shown in Section 3 that

Z(Q)  _ 3K
o - M@
so that
3K _ 3K _ 3L 232

where N(Q) 1s given by Eq. (20). Therefore, the adjoint-

perturbation method is also equivalent to Newton's Method.

5. Conclusions.
The analysis in Sections 2, 3, and 4 has shown that the

three methods
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(1) the perturbation method [Ref. 1],

(2) the adjoint-perturbation method [Ref. 2], and

(3) the Newton method [Ref. 3]
are mathematically equivalent. The three methods are just variants
of the classical Newton Method for the solution of m simultaneous

equations in m unknowns.
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