Report No. IITRI-A6088-21
(Final Report, Volume I)

PREDICTION OF NEUTRON INDUCED ACTIVATION VOLUME I - NAP CODE MANUAL

May 14, 1964 through January 31, 1966

Contract No. NAS8-11160
Control No. DCN 1-4-50-01014-01 \& S1(1F)
CPB 02-1058064
IITRI Project A6088

for
George C. Marshall Space Flight Center National Aeronautics and Space Administration Huntsville, Alabama 35812

Attention: PR-EC

$$
k_{G} / 4 \pi \pi^{2}
$$

Report No. IITRI-A6088-21
(Final Report, Volume I)

PREDICTION OF NEUTRON INDUCED ACTIVATION
VOLUME I - NAP CODE MANUAL
May 14, 1964 through January 31, 1966

Contract No. NAS8-11160
Control No. DCN 1-4-50-01014-01 \& S1(1F)
CPB 02-1058064
IITRI Project A6088

Prepared by
David A. Klopp

IIT RESEARCH INSTITUTE Technology Center Chicago, Illinois 60616
for
George C. Marshall Space Flight Center National Aeronautics and Space Administration Huntsville, Alabama 35812

Attention: PR-EC

This report was prepared by the IIT Research Institute under Contract No. NAS8-11160 entitled Development and Validation of a Method for Predicting Neutron Induced Activation in Materials for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration. The work was administered under the technical direction of the Propulsion and Vehicle Engineering Laboratory, Materials Division of the George C. Marshall Space Flight Center with Lowell K. Zoller acting as project manager.

This is Report No. IITRI-A6088-21 of IITRI Project A6088, Contract No. NAS8-11160, entitled "Prediction of Neutron Induced Activation, Volume I - NAP Code Manual." The report covers the period from May 14, 1964, through January 31, 1966.

Personnel who made significant contributions to the research reported here include Dr. Robert B. Moiler, who programmed the major portion of the computer subroutine dealing with radioisotope decay chains, and Dr. Gerald Hardie, who programmed the computer subroutine for the computation of the cross section for compound nucleus formation due to neutron bombardment.

Respectfully submitted,
IT RESEARCH INSTITUTE
AT R RA Flop
Research Physicist
Nuclear and Radiation Physics Section
Approved by:
0. S. Stivechornt
T. G. Stinchcomb

Acting Manager
Nuclear and Radiation Physics Section

C. W. Terrell

Director
Physics Research

ABSTRACT
 PREDICTION OF NEUTRON INDUCED ACTIVATION VOLUME I - NAP CODE MANUAL

An IBM 7094 computer program was written for the prediction of neutron induced activation. This report describes the preparation of input data and the interpretation of output data. Flow charts for the main program and each subroutine are given, as is a complete program listing in Fortran IV. A sample problem is also presented.

TABLE OF CONTENTS
Page
ABSTRACT iv
I. INTRODUCTION 1
II. GENERAL DESCRIPTION OF THE NAP CODE 4
A. Calculation of Neutron Flux 9
B. Calculation of Radioisotopic Atom 18 Densities
C. Calculation of Gamma Ray Source Strengths 24
D. Calculation of Gamma Ray Dose Rate and Dose 25
III. INPUT DATA PREPARATION 26
IV. OPERATING INSTRUCTIONS 55
V. OUTPUT DATA 56
VI. FLOW CHARTS 58
VII. PROGRAM LISTING 115
VIII. SAMPLE PROBLEM 175

LIST OF TABLES AND FIGURES

Table Page
I NAP Library Energy Group Structure 12
II Values of Discrete Ordinates 16
III Effect of IFLX Option 30
IV Effect of IWT Option 31
V Identification of Cross Section Type 44
VI NAP Program Options 48
VII NAP Input Dictionary 50
VIII Input Data Format Summary 53
Figure
1 Block Diagram of NAP Program 5
2 Approximation of Neutron Flux Time Dependence 11
3 Spatial Dependence of Neutron F1ux 17
4 Example of Anisotropic Flux 37

I. INTRODUCTION

A computer program for the prediction of neutron induced gamma ray radioactivity was required for use in the design of facilities for developing a nuclear space vehicle. Neutron induced activation calculations are required not only in the selection of structural materials for such a facility, but also for the scheduling of the static tests and the maintenance and repair of equipment, once the facility is constructed. A neutron induced activation computer program could also be utilized to determine the gamma ray activity of reactor coolants, or any other material exposed to a neutron flux. The analysis of foil activation data for the determination of neutron energy spectra, and other activation analyses, could be assisted by a neutron activation computer program.

The objectives of the research program reported here were:

1. The development of a flexible and comprehensive analytical method for computing neutron induced activation, providing for items such as:
a. Inclusion of at least (n, γ), (n, p), (n, α), and ($n, 2 n$) reactions which result in radionuclei for all stable and long-lived metastable isotopes.
b. Consideration of at least first-generation daughter radioisotopes.
c. Variation of the neutron energy spectrum, not necessarily limited to fission spectra.
d. Consideration of non-uniform cyclic irradiation.
e. Consideration of self-shielding.
f. Determination of radiation dose rates from activated materials for a variety of geometric conditions, at least by use of one or more of the commonly used radiation shielding or reactor computer codes.
g. Adaption for primary, charged particle induced reactions.
2. The programming of the analytical method for use on a digital computer.
3. The validation of the analytical method through an experimental program.

Computer programs developed previously throughout industry for calculating neutron induced activation were generally limited to a relatively few neutron reactions by lack of data, or were restricted in utility by failure to incorporate one or more of the critical items listed above.

This volume of the final report constitutes a manual for the use of the NAP (Neutron Activation Prediction) computer program. The NAP program is a FORTRAN-IV IBM-7094 computer program which computes neutron induced activation gamma ray source strengths as a function of time, space, and energy given an incident neutron flux and region material compositions. Simplified dose and dose rate calculations, which do not account for gamma ray attenuation or buildup, are also performed by the program. More accurate dose rate calculations may be performed by utilizing results obtained from the NAP code as input data for any of the more popular gamma ray shielding computer codes. All the critical items listed in the previous paragraph are treated adequately by the NAP program. This code manual consists of a general description of the NAP code, instructions for preparing input and interpreting output, operating instructions, flow charts, and a complete program listing.

The experimental validation of the NAP computer program is discussed in Volume II of this final report series. Volume II also describes in detail those portions of the NAP code which required extensive physical analysis. The description in Volume II emphasizes the theoretical aspects and the experimental validation of the program, rather than the
programming aspects which are emphasized in this volume. A description and listing of the NAP Cross Section Library is given in Volume III of this series. A similar description and listing of the NAP Gamma Radiation Library is given in Volume IV.
II. GENERAL DESCRIPTION OF THE NAP CODE

The NAP (Neutron Activation Prediction) computer program is a comprehensive and flexible tool for the computation of neutron induced activation gamma ray source strengths. A simplified method, ignoring gamma ray attenuation and buildup, is provided for the calculation of gamma ray dose and dose rate due to these activation sources. The source strengths may also be utilized as input data for any of the more popular gamma ray shielding codes to provide more sophisticated shielding calculations. The NAP code may be used to provide activation calculations for structural materials, reactor coolants, or any material exposed to a neutron flux. The NAP code may also be used as an analytical tool in the interpretation of activation data, such as that obtained in attempting to measure neutron flux spectra or isotopic composition.

The basic logical flow during execution of a typical NAP problem is shown in Figure 1. Only the most important phases of a NAP calculation are depicted. Input data are indicated in abreviated form by the oval boxes on the left hand side of the figure, output data on the right hand side.

The typical NAP program operation commences by reading in the neutron energy flux spectrum in terms of the number of neutrons per square centimeter per second incident upon the activated material, or some other specified spatial region, having energies within various neutron energy bands or groups, whose selection is specified by the program user. Angular incident neutron flux information may also be presented. The energy bands or groups into which the discrete gamma ray energies are to be sorted are also specified by the program user. If the NAP program is to calculate neutron flux distributions within the activated material regions, or other regions, various neutron cross sections must be provided by energy groups and regions, along with geometrical data. If requested by the problem originator, the NAP program then

computes the neutron flux distribution as a function of neutron energy group and spatial position within the various regions specified by the program user. This neutron selfshielding calculation is performed in one-dimensional slab or spherical geometry. The basic result of this computation is the spatially-averaged neutron flux in each neutron energy group and each spatial region.

The time-dependence of the incident neutron flux is accounted for by reading in the power levels for a series of time increments. The energy group and region dependent flux values are multiplied by the power level to obtain fluxes which rise or fall at specific times. The different time values at which gamma source strengths are desired must also be supplied to the NAP program, in addition to those time values which form integration end points for the computation of gamma ray dose, i.e., the gamma ray dose rate integrated over a given time interval.

The NAP calculation now proceeds region by region. A region is defined as that spatial volume throughout which the neutron flux is treated as spatially constant and which has a uniform, homogeneous material composition at zero time. Because the neutron flux is regarded as spatially constant in each region, the gamma source strength is also treated as spatially constant in each region. Starting with the first region, the isotopic (or elemental) atom densities initially present are read into the program. Using the first isotope whose initial atom density has been supplied as a target nucleus, the NAP program discovers the identity of the isotope resulting from (n, γ) reactions. The rate at which the residual nucleus is produced is computed, and the NAP Gamma Radiation Library is searched to discover the identity of the daughter isotope resulting from radioactive decay of the reaction product nucleus. If the daughter decays, the gamma library is searched for the identity of the second-generation
daughter, etc. This process continues through four generations of decay, or until a stable daughter isotope is found.

Having established a specific decay chain, the NAP program computes and prints out the atom density of each chain member at each of the specific times supplied previously to the program. This is followed by a computation of the emission rate of gamma rays, grouped according to the previously selected gamma ray energy bands, from each of the chain members at each time value. These gamma source strengths are also printed out by the program. At each time value, the gamma ray emission rate is converted to a gamma ray dose rate, using the average gamma ray energies of the selected energy bands and the sourcedetector distance. These dose rates are printed out, and are integrated over time to provide gamma ray dose values. Finally, these dose values are printed out.

The NAP program now returns to the reaction product nucleus to discover if another decay chain exists. If so, the process described briefly above is repeated. Having exhausted the possibilities of decay following the (n, γ) reaction, the NAP program returns to the isotope originally present in the region. Now the (n, p) reaction is followed through in the manner described above. The process is repeated for the (n, α) and then the ($n, 2 n$) reaction. After all these reaction possibilities and the subsequent decay chains have been investigated, the NAP program considers the second isotope originally present in the region. Using the second isotope as a base, the entire calculation described above is repeated. This process is continued until all the isotopes originally present have been used as a base for the calculation. At this point, the NAP program proceeds to the second region, and the computation begins anew.

This brief description of a typical NAP problem shows that the problem may be conceptually divided into four main sub-calculations. These are calculations of:

1. Neutron flux as a function of space, time, and energy, 2. Isotopic atom densities as functions of space and time,
2. Gamma ray source strengths as functions of space, time, and energy,
3. Gamma ray dose and dose rate as functions of time for a single detector position.
The following sections A through D discusses each of the calculations in greater detail.

A. Calculation of Neutron F1ux

The major protion of the neutron flux calculation is optional and consists of a multigroup discrete ordinate transport calculation. It should be performed if significant spatial variations of the flux are anticipated in the regions for which the gamma ray source strengths are desired, or in the regions between the position where the flux is known and the positions where the source strengths will be calculated.

In any case, an incident neutron flux must be specified. The neutron energy range of interest is divided into contiguous neutron energy groups such that the upper and lower energy limits of energy group g are E_{g-1} and E_{g}, respectively. If x_{o} is the position where the incident flux is given, then the flux as a function of time and energy is taken as

$$
\phi\left(t, E, x_{0}\right)=P(t) F \emptyset_{g}\left(x_{0}\right)
$$

where $P(t)$ is a time-dependent reactor power level, F is an arbitrary normalization factor, and \emptyset_{g} is the flux in energy group g. The incident flux is thus completely specified by giving the power level as a function of time, the flux normalization factor, the incident flux in each energy group, and the group energy limits.

The time dependence of the flux is contained in the "power level" $P(t)$, which is simply a dimensionless flux intensity normalization factor. The entire time span of interest is divided into as many as 50 time periods, each of arbitrary length. The factor $P(t)$ must be given for each time period, and is assumed constant throughout the duration of each time period. An arbitrary time-dependent flux is thus approximated by a series of power levels, each of arbitrary time duration but having a constant magnitude throughout the duration of each time period. For example, a known time dependence of the incident flux might be approximated by
$P(t)$ as shown in Figure 2. Non-cyclic irradiations are handled easily in this framework.

The time-independent flux spectrum is specified by giving the group fluxes \emptyset_{g} and the energy limits E_{g}. A maximum of 43 energy groups is permitted. The group fluxes may be input in any one of three forms, where:

1. \emptyset_{g} is the average flux per unit lethargy in energy group g,
2. \emptyset_{g} is the average flux per unit energy in energy group g,
3. \emptyset_{g} is the integral of $\emptyset(\mathrm{E})$ over energy from E_{g} to $\mathrm{E}_{\mathrm{g}-1}$.

The input group energy limits are adjusted by the NAP program, if they are not consistent with the group energy limits used in the NAP Cross Section Library, which are listed in Table I. Similarly, input group fluxes \emptyset_{g} are adjusted to be consistent with the library energy limits. A simple check calculation is automatically performed to insure that the total flux is invariant to this energy limit and group flux adjustment. Thus, in many cases, the group energy limits and group fluxes appearing on the output will be equivalent but not identical to those supplied as input by the problem originator.

If desired, this group adjustment procedure can be bypassed by appropriate selection of an input parameter. The program user must then insure that the input group fluxes are consistent either with the NAP Cross Section Library or with cross sections supplied by the user. In any case, the quantity $P(t) F \emptyset_{g} \sigma_{g}$ integrated over energy, where σ_{g} is a group g cross section supplied by the NAP library or by the user, must have dimensions of neutron-barn/ cm^{2}-sec.

Table 1
NAP LIBRARY ENERGY GROUP STRUCTURE

Group Number	Lower Energy Limit	Lower Lethargy Limit
0	21.17 MeV	-0.75
1	16.49 MeV	-0.50
2	12.84 MeV	-0.25
3	10.00 MeV	0.00
4	7.788 MeV	0.25
5	6.065 MeV	0.50
6	4.724 MeV	0.75
7	3.679 MeV	1.00
8	2.865 MeV	1.25
9	2.231 MeV	1.50
10	1.738 MeV	1.75
11	1.353 MeV	2.00
12	1.054 MeV	2.25
13	820.8 keV	2.50
14	497.9 keV	3.00
15	302.0 keV	3.50
16	183.2 keV	4.00
17	111.1 keV	4.50
18	67.38 keV	5.00
19	40.87 keV	5.50
20	24.79 keV	6.00
21	15.03 keV	6.50
22	9.119 keV	7.00
23	5.531 keV	7.50
24	3.355 keV	8.00
25	2.035 keV	8.50
26	1.234 keV	9.00
27	748.5 eV	9.50
28	454.0 eV	10.00
29	275.4 eV	10.50
30	167.0 eV	11.00
31	101.3 eV	11.50
32	61.44 eV	12.00
33	37.24 eV	12.50
34	22.60 eV	13.00
35	13.71 eV	13.50
36	8.315 eV	14.00
37	5.043 eV	14.50
38	3.059 eV	15.00
39	1.855 eV	15.50
40	1.125 eV	16.00
41	0.6826 eV	16.50
42	0.4140 eV	17.00
43	0.0010 eV	23.03

Spatial variation of the neutron flux is provided by the problem originator or by the neutron transport subroutines of the NAP program. After specifying the incident neutron $f 1 u x$ at the position x_{o}, or in the first spatial region, the program user may

1. stipulate that the group fluxes are spatiallyindependent,
2. supply spatially-dependent group fluxes as input, or
3. utilize the NAP neutron transport subroutines to provide spatially-dependent group fluxes.

The NAP neutron transport calculation is based on the discrete ordinate method in one-dimensional slab or spherical geometry. In the absence of internal neutron sources, the monoenergetic steady-state Boltzmann transport equation may be written ${ }^{1}$

$$
\mu \frac{\partial \psi(x, \mu)}{\partial x}+\Sigma_{t} \psi(x, \mu)=\frac{1}{2} \Sigma_{s} \int_{-1}^{1} \psi\left(x, \mu^{\prime}\right) d \mu^{\prime}
$$

where plane geometry and isotropic scattering have been assumed. Here $\psi(x, \mu)$ is the monoenergetic neutron flux at x traveling in the direction $\cos ^{-1} \mu$ with respect to the positive x-axis, and Σ_{t} and Σ_{s} are the total and scattering cross sections, respectively, both being step functions of position. In the discrete ordinate method, the integral in the equation above is approximated by a numerical integration formula of the type:

$$
\int_{-1}^{1} \psi\left(x, \mu^{\prime}\right) \mathrm{d} \mu^{\prime}=\sum_{j=1}^{N} a_{j} \psi\left(x, \mu_{j}\right)
$$

[^0]where the discrete ordinates μ_{j} and the weights a_{j} are given by the integration formula used, and are independent of the integrand. The transport equation need then be solved only for μ equal to each of the μ_{j}. That is, the transport equation is replaced by the system of N differential equations
$$
\mu_{j} \frac{\partial \psi\left(x, \mu_{j}\right)}{\partial x}+\Sigma_{t} \psi\left(x, \mu_{j}\right)=\frac{1}{2} \Sigma_{s} \sum_{k=1}^{N} a_{k} \psi\left(x, \mu_{k}\right)
$$

The technique is easily extended in the multigroup formalism. The equations solved by the NAP neutron transport subroutine are, in slab geometry,

$$
\begin{aligned}
& \left(\mu_{j} \frac{d}{d x}+\Sigma_{g}^{t}\right) \emptyset_{g}\left(x, \mu_{j}\right)=\frac{1}{2} \Sigma_{g, g} \sum_{k=1}^{N} a_{k} \emptyset_{g}\left(x, \mu_{k}\right) \\
& \quad+\frac{1}{2} \Sigma_{g-1, g} \sum_{k=1}^{N} a_{k} \emptyset_{g-1}\left(x, \mu_{k}\right)
\end{aligned}
$$

where $\emptyset_{g}\left(x, \mu_{j}\right)$ is the neutron flux at x traveling in the direction $\cos ^{-1} \mu_{j}$ with energy in energy group g, Σ_{g}^{t} is the total cross section for energy group g, and $\Sigma_{h, g}$ is the scattering cross section for transfer from energy group h into energy group g. Similar, but more complicated equations, are solved for problems in spherical geometry. One of the restrictions of the current transport subroutine is that neutron slowing-down is assumed to be from one energy group only to the adjacent energy group of lower energy. These equations are solved by an iterative procedure.

The boundary conditions used in the NAP transport subroutine are that the incident flux is specified at the leftmost, or first, value of x and that there is no return current (vacuum boundary condition) at the right-most, or largest value of x. That is,

$$
\begin{aligned}
& \emptyset_{\mathrm{g}}\left(\mathrm{x}_{\mathrm{o}}, \mu_{\mathrm{j}}\right)=\text { given for all } \mathrm{g} \text { and } \mu_{\mathrm{j}}>0 \\
& \emptyset_{\mathrm{g}}\left(\mathrm{x}_{\mathrm{L}}, \mu_{\mathrm{j}}\right)=0 \text { for all } \mu_{\mathrm{j}}<0
\end{aligned}
$$

As many as 20 slab or spherical shell regions, of different materials, may be used in the NAP neutron transport subroutine. A maximum of ten ordinates may be used to describe the angular dependence of the flux, and 43 neutron energy groups may be used. Either Legendre-Gauss or Lobatto quadrature is available. The appropriate ordinates, i.e. values of $\cos \theta$ where θ is the angle between the neutron velocity and the normal to the surface, are given in Table II. The program user must specify the forward components of each group flux at the left-most surface. A maximum of 100 spatial mesh points may be used in the problem. Figure 3 illustrates a one-group, two-region problem using eleven mesh points. Macroscopic total, scattering, and group transfer cross sections must be supplied for each energy group and each region. Isotropic scattering is assumed and group transfer is permitted from group g to $g+1$ only, i.e. only down-scatter is permitted to the next lower energy group. The convergence criterion ϵ is supplied by the problem originator. Convergence is assumed when, for each energy group, the fractional change in the flux at the right-most spatial point is less than ϵ between iterations. The flux in each group is then spatially averaged in each region for later use in computing activation. Further details of the physics aspects of the NAP neutron transport subroutines are given in Volume II of this report series.

In summary, the incident neutron flux must be specified by the program user. The time-dependence is contained in the power level factors $P(t)$, the energy-dependence is contained in the group fluxes \emptyset_{g}, and the spatial-dependence is either specified as input data or computed by the NAP program in one-dimensional slab or spherical geometry.

Table II

VALUES OF DISCRETE ORDINATES

Number of Ordinates	Value of Ordinate $(\cos \theta)$ Legendre-Gauss Lobatto
2	± 0.5773503 -
4	$\pm 0.3399810 \pm 0.447214$
	$\pm 0.8611363 \pm 1.0$
6	$\pm 0.2386192 \pm 0.285232$
	$\pm 0.6612094 \pm 0.765055$
	$\pm 0.9324695 \pm 1.0$
8	± 0.1834346
	± 0.5255324
	± 0.7966665
	± 0.9602899
10	± 0.1488743
	± 0.4333954
	± 0.6794097
	± 0.8650634
	± 0.9739065

Figure 3
SPATIAL DEPENDENCE OF NEUTRON FLUX

B. Calculation of Radioisotopic Atom Densities

The neutron produced radioisotopic atom densities are computed as a function of time in each region, region by region. A maximum of 20 regions may be used. The initial isotopic or elemental atom densities in each region must be provided as input data. If elemental densities are specified, the isotopic composition is assumed to be that of the naturally occuring element. A maximum of 20 initial isotopes may be utilized in each region. The geometry of each region is arbitrary, but the neutron flux is taken as spatially constant in each region.

Each time period for which the power level is constant is divided into a set of equal time intervals. The total number of time intervals summed over the time periods is limited to 199. That is, the isotopic atom densities in each region may be computed at 200 different times, including the initial time. The time periods and time intervals are taken identically in each spatial region.

In each region, each initially present isotope is examined for possible (n, γ), (n, p), (n, α), and ($n, 2 n$) reactions ending with a ground state or an isomeric state. Only one ground state and one isomeric state is permitted for each isotope. Each isotope initially present leads to the possible production of eight new "isotopes." Four of these result from (n, x) reactions, where x is γ, p, α, or $2 n$, leading to a ground state; the other four result from (n, x) reactions leading to an isomeric state. The labeling of the (n, x) reaction cross section contained in the NAP Cross Section Library, or in the cross section set supplied by the program user, indicates whether the cross section of the (n, x) reaction is to be associated with a ground state product or an isomeric state product. If no tabulated cross section for the (n, x) reaction is found by the NAP program, the code will either
set the cross section equal to zero or will calculate the cross section as indicated in the input options by the problem originator. This cross section calculation will be described briefly below, and applies only in the case of reactions leading to ground state products. If no cross section is found for reactions leading to an isomeric state, the cross section is automatically taken as zero. In addition, the cross sections for (n, γ) reactions are corrected to account for resonance self-shielding. This correction is also discussed below.

The members of each radioisotope decay chain are determined by searching the NAP Gamma Radiation Library for the appropriate isotopes and their mode of decay. If an isotope is not found listed in the library, it is regarded as stable and the chain is terminated. It may be noted that if the decay of a radioactive isotope can in no way lead to photon emission, the isotope may be regarded as stable without error in computing gamma ray source strengths. The NAP Gamma Radiation Library was constructed to be as complete as possible and contains decay data for over 800 isotopes. A complete listing of the library is given in Volume IV of this report series. The maximum length of each chain is five members, including the isotope originally present. The formulation of the chain is discussed further in Volume II.

Having formulated a decay chain, the NAP program computes the atom density of each chain member at each time step, i.e., at the end of each time interval. For example, at the time $t+\Delta t$, where the atom densities are known at the time t and Δt is the duration of the next time interval,

$$
\begin{aligned}
& n_{1}(t+\Delta t)=n_{1}(t) \exp \left(Q_{1} \Delta t\right) \\
& n_{2}(t+\Delta t)=n_{2}(t) \exp \left(-Q_{2} \Delta t\right)+\frac{n_{1}(t) S_{1}}{Q_{2}-Q_{1}} \\
& \quad\left[\exp \left(-Q_{1} \Delta t\right)-\exp \left(-Q_{2} \Delta t\right)\right]
\end{aligned}
$$

where n_{i} is the atom density of chain member i, Q_{i} is the loss
rate, and S_{j} is the production rate due to chain member j. The Q and S pertaining to the isotope initially present are

$$
\begin{aligned}
& \mathrm{Q}_{1}=\mathrm{P}(\Delta \mathrm{t}) \mathrm{F} \int \emptyset_{\mathrm{g}} \sigma_{\mathrm{g}}^{\mathrm{t}} \mathrm{dE} \\
& \mathrm{~S}_{1}=\mathrm{P}(\Delta \mathrm{t}) \mathrm{F} \int \emptyset_{\mathrm{g}} \sigma_{\mathrm{g}}^{\mathrm{x}} \mathrm{dE}
\end{aligned}
$$

where $P(\Delta t)$ is the power level during the time interval Δt, F is the flux normalization factor, \emptyset_{g} is the neutron flux for energy group g and the appropriate spatial region, σ_{g}^{x} is the cross section for neutron energy group g and reaction (n, x), and $\sigma_{\mathrm{g}}^{\mathrm{t}}$ is the sum of $\sigma_{\mathrm{g}}^{\mathrm{x}}$ over all x , x being $\gamma, \mathrm{p}, \alpha$, or 2 n . The loss and production rates for the remaining members of the chain involve only decay rates and branching ratios. The expressions for the atom densities of the other chain members are similar to those quoted above. Further discussion is provided in Volume II of this report series.

The reaction rate per nucleus, i.e., the quantity $\emptyset_{\mathrm{g}}{ }_{\mathrm{g}}$ integrated over energy, is computed by one of the NAP subroutines. The total reaction rate is simply the sum of the partial rates. Neutron reactions for other than the first chain member are ignored. The microscopic group cross sections are tabulated in the NAP Cross Section Library, or they may be supplied by the problem originator. The library cross sections are tabulated for 43 neutron energy groups using the energy structure given in Table I. A complete library listing is given in Volume III of this report series.

Because the program user will frequently desire to use less than 43 neutron energy groups, the program will collapse the 43 group cross section set to produce a cross section set desired by the user. The 43 group cross sections are collapsed by assuming one of the following flux spectra:

1. constant flux per unit energy
2. constant flux per unit lethargy
3. fission spectrum above 183 keV , constant flux per unit lethargy below 183 keV .

That is, if the problem originator specifies less than 43 neutron energy groups and also selects use of the NAP Cross Section Library, narrow group library cross sections are weighted with one of the above spectra to produce broad group cross sections consistent with the problem originator's given group structure.

The library cross sections for the 43 rd group are multiplied by a thermal averaging parameter and a non-1/v factor, if given for the isotope of interest. A maximum of ten isotopic non-1/v factors may be specified in a NAP problem. The group 43 library cross section is the $2200 \mathrm{~m} / \mathrm{sec}$ value of the cross section. The thermal averaging parameter is that factor such that the $2200 \mathrm{~m} / \mathrm{sec}$ value of the cross section multiplied by the thermal averaging parameter would yield the value of the thermal cross section averaged over the thermal neutron flux spectrum thought to be appropriate to the problem, if the cross section had a $1 / v$ neutron energy dependence. The thermal averaging parameter is regarded as spatially independent, and is applied to all isotopic cross sections.

Because of the possibility of appreciable spatial and energy self-shielding in large (n, γ) resonances, effective (n, γ) cross sections are computed automatically if resonance parameters for the isotope of interest are found in the cross section library, or in the cross section set supplied by the program user. Resonance self-shielding is accounted for by computation of effective resonance integrals for as many as nine resolved resonances for each isotope. Effective resonance integrals are computed using either the NR or NRIA approximation ${ }^{2}$ and the rational approximation for the escape probability. Further details of the physical model utilized by the NAP program in the computation of effective resonance integrals are given in Volume II of this report series.

[^1]In an effort to make the NAP program as comprehensive as feasible, cross section calculations are provided for use when any of the required cross sections are poorly known. By appropriate choice of input control parameters, the NAP program will compute any $(n, \gamma),(n, p),(n, \alpha)$, or $(n, 2 n)$ reaction cross sections for ground state product nuclei, if the required cross section is not found by the program in either the library or in the cross section set supplied by the program user. If desired, computed cross sections can be used in place of the library cross sections. The thermal (n, γ) cross sections are crudely estimated from known systematics in measured thermal (n, γ) cross sections and least squares fits to the measured data. Epithermal (n, γ) cross sections are estimated using statistical resonance theory and least squares fits to measured resonance statistical parameters. Only s-wave resonances are considered. The (n, p) , (n, α), and ($n, 2 n$) reaction cross sections are estimated by computing compound nucleus formation cross sections due to neutron bombardment and using the statistical model to compute compound nucleus decay probabilities. Direct nuclear reactions are ignored. Further details of the physical models used in cross section computation are reported in Volume II。 Finally, it may be emphasized that no additional input data is required by the NAP program for the computation of cross sections. A11 necessary data, such as reaction Q-values, are generated automatically。

In summary, isotopic atom densities are computed region by region at up to 200 different specified times. Only isotopes initially present are assumed to undergo nuclear reactions. The transmutation chains resulting from each isotope initially present are formulated by examining the product of flux and cross section to find possible nuclear reaction products. The decay chain resulting from each reaction product is followed until a stable isotope is encountered or a maximum chain length of five members is
attained. Required reaction cross sections may be obtained from the NAP library, computed internally, or supplied by the program user. Resonance self-shielding of the (n, γ) reactions is accounted for if resonance parameters are available to the program.

C. CalcuLation of Gamma Ray Source Strengths

After each time interval, the gamma ray source strength density due to each chain member is computed. The gamma ray spectrum is obtained by dividing the entire gamma ray energy range of interest into contiguous energy groups. The gamma ray energy group limits must be specified by the program user. A maximum of 20 gamma ray energy groups is permitted. The isotopic source strength density is given by

$$
a_{i, j}(t)=n_{j}(t) \lambda_{j} f_{i, j}
$$

where $a_{i, j}(t)$ is the number of photons in gamma ray energy group i emitted by chain member j at the time t per unit volume per unit time, $n_{j}(t)$ is the atom density of chain member j at the time t, λ_{j} is the decay constant of chain member j, and $f_{i, j}$ is the number of photons emitted in gamma energy group i by chain member j per disintegration.

The $f_{i, j}$ above are obtained by using the gamma ray energy group structure supplied by the problem originator and data contained in the NAP Gamma Radiation Library. The library contains, for each isotope, the half-1ife, a listing of gamma ray energies, and a fractional emission probability for each listed photon energy. A complete description and listing of the NAP Gamma Radiation Library is given in Volume IV of this report series.

Regional source strength densities are obtained by summing the $a_{i, j}(t)$ in a given region over the index j. The region source strength densities are printed out for each region, each time interval, and each gamma ray energy group. In a similar manner, the regional energy source strength densities are printed out. The energy source strengths are simply the gamma ray source strengths multiplied by the average energy of each gamma ray energy group.

D. Calculation of Gamma Ray Dose Rate and Dose

For each source region, the distance R from the center of the region to a single detector position must be given. After each time interval, the gamma ray dose rate due to each source region is computed according to

$$
\operatorname{DR}(t)=\frac{1}{4 \pi R^{2}} \quad \sum_{i, j}^{\sum} \quad K_{i} a_{i, j}(t)
$$

where K_{i} is a conversion factor from photons/cm ${ }^{2}$ sec to tissue dose rate in rads/hr for gamma ray energy group i.

The gamma ray dose due to each source region is obtained by trapezoidal integration of the dose rate over time. The initial and final times for each dose calculation must be supplied as input data.

III. INPUT DATA PREPARATION

This section defines the input variables and specifies the input format for each input card necessary in using the NAP program. Except for the first input card, all input data to the NAP program are integer numbers or floating point numbers. The first card, which contains the problem title, may contain any of the alphabetic and numerical characters A to Z and 0 to 9.

An integer number is written without a decimal point, using the decimal digits $0,1, \ldots, 9$. A floating point number is written with a decimal point, using the decimal digits $0,1, \ldots 9$. Any unsigned number (without a preceeding + or sign) is assumed to be positive. A floating point number may include an integer exponent preceeded by an E. Thus the floating point number $5.0 \mathrm{E}+03$ means 5.0×10^{3}. An unsigned exponent is assumed to be positive.

The manner in which the value of an input variable is to be entered on an input card is specified below in the form Iw or Ew.d. Here I indicates that the value should be entered as an integer number, while E indicates that the value should be entered as a floating point number. The value of w is the number of columns on the input card which may be used to specify the value of the input variable, while the value of d is the number of columns to the right of the decimal (excluding an integer exponent). For example, the specification I6 indicates that six columns on the input card are reserved for entering an integer number. The integer number should be punched in this six-column field right-justified (i.e., the units position is at the extreme right). Thus the largest number which can be entered using an I6 format is 999999. Similarly, the specification E12.5 indicates that 12 columns on the input card are reserved for entering a floating point number. The integer exponent, if any, must be entered as right-justified.

Succeeding input format specifications as used here are separated by commas, and each specification is repeated as many times as shown by the integer preceeding the specification. If no integer preceeds the specification, it is used only once. Thus the specifications 2E12.5, 3I2 as used with the input variables EPS, XO, IGEON, IOUT, and NOANG mean that the value of EPS is punched as a floating point number on the input card in columns $1-12$, the value of xO is punched as a floating point number in columns 13-24, and the values of IGEON, IOUT, and NOANG are punched as integer numbers in columns 25-26, 27-28, and 29-30, respectively.

Blank columns on any input card (except the first) are interpreted as a zero by the program. Floating point numbers need not have 4 columns devoted to the exponent field. The start of the exponent field must be marked by an E, or, if that is omitted, by a + or -. Thus E2, E+2, +02, E02, and E+02 are all permissible exponent fields. The decimal point in a floating point number, as punched on the input card, overrides the position indicated in the input format specification.

Card Type 1, format 12A6; problem title. This card is simply a title card and may contain any 72 alphanumeric characters. The title will appear at the top of each page of output data.

Card Type 2, format E12.5, 7I6; FLUXN, NOBG, NOREG, NOGG, NOSS, NISO, IFLX, IWT.

FLUXN is a neutron flux normalization factor (p. 9). It is used to avoid repeated entries of powers of ten in describing the neutron flux on card type 6 or 11 . All fluxes input to the NAP code are multiplied by this factor. The dimensional units are not fixed, but must be consistent with the dimensions used on card type 6 or 11 .

NOBG is the number of neutron energy groups (p. 9) used in the specification of the neutron flux on card type 6 or 11 . NOBG must be less than 44.

NOREG is the total number of spatial regions (p. 15) in the problem. If the NAP neutron transport subroutine is used, neutron transport cross sections and geometrical data must be supplied for each of the NOREG regions. Similarly, if region-dependent neutron fluxes are input to the program (card type 11), the code expects the group fluxes to be specified for each of the NOREG regions. Finally, the program expects initial isotopic atom densities (card type 22) to be specified in each of the NOREG regions. In any case, NOREG must be less than 21.

NOGG is the number of gamma ray energy groups (p. 24) to be used in the description of the gamma ray energy spectrum. NOGG must be less than 21.

NOSS is an integer number used as a control option. If NOSS is entered as zero, the NAP program assumes that the neutron flux spectrum specified by card type 6 is region-
independent, i.e., the fluxes input on card type 6 will be used in each region. If NOSS is entered as a positive integer (>0), the NAP neutron transport subroutine ($p .13$) will be used to compute region-dependent fluxes. Finally, if NOSS is entered as a negative integer (<0), the NAP program expects region-dependent fluxes to be supplied as input data using card type 11.

NISO is meaningful only if the neutron transport subroutine is used (NOSS >0). If NISO is entered as zero, the neutron transport subroutine assumes that the incident neutron flux (p. 14) specified on card type 6 is isotropic. If NISO is entered as any positive integer (>0), the neutron transport subroutine expects that the angular dependence of the incident flux is specified by data on card type 9 .

IFLX is a control integer indicating the interpretation (p. 10) to be given to the incident neutron group fluxes specified by card type 6 or 11. IFLX $=0$ signifies that the group fluxes input on card type 6 or 11 are integrals of $\emptyset(E)$ over energy using the group energy limits specified by card type 3. IFLX = 1 signifies that the input group fluxes are average fluxes per unit lethargy. IFLX $=2$ signifies that the input group fluxes are average fluxes per unit energy. IFLX = 5 signifies that no interpretation is required for the input group fluxes, and further that the neutron energy group limits (card type 3) should not be adjusted to be consistent with the NAP Cross Section Library energy limits. This last option is used only when the problem originator desires to rely exclusively on his own cross section set (card types 19 and 20). The use of IFLX is summarized in Table III.

IWT is a control integer indicating the type of neutron flux spectrum weighting ($\mathrm{p}, 20$) given to the reaction cross sections if NOBG is less than 43. If IWT $=0$, a fission flux spectrum is used to weight the cross sections above 183 keV and a $1 / E$ flux spectrum below 183 keV . If $\mathrm{IWT}=1$, a $1 / E$ flux spectrum is used; if IWT $=2$, a constant flux per unit energy spectrum is used. The use of IWT is summarized in Table IV.

Table III

EFFECT OF IFLX OPTION

Value of IFLX

0

1

2

5

$$
\frac{\frac{\text { Meaning of Group Fluxes }}{\text { (card type 6) }}}{\int_{\mathrm{E}_{g}}^{\mathrm{E}_{\mathrm{g}-1}} \emptyset(E) \mathrm{dE}}
$$

$$
\int_{E_{g}}^{E_{g-1}} \emptyset(E) \frac{d E}{E} / \int_{E_{g}}^{E_{g-1}} \frac{d E}{E}
$$

$$
\int_{E_{g}}^{E_{g-1}} \emptyset(E) d E / \int_{E_{g}}^{E_{g-1}} d E
$$

arbitrary

Table IV

EFFECT OF IWT OPTION

Value of IWT

0

$$
\int_{\mathrm{E}_{\mathrm{g}}}^{183 \mathrm{keV}} \sigma(\mathrm{E}) \frac{\mathrm{dE}}{\mathrm{E}}+\int_{183 \mathrm{keV}}^{\mathrm{E}_{\mathrm{g}-1}} \sigma(\mathrm{E}) \emptyset_{\mathrm{F}}(\mathrm{E}) \mathrm{dE}
$$

$$
\int_{E_{g}}^{183 \mathrm{keV}} \frac{\mathrm{dE}}{\mathrm{E}}+\int_{183 \mathrm{keV}}^{\mathrm{E}_{\mathrm{g}-1}} \emptyset_{\mathrm{F}}(\mathrm{E}) \mathrm{dE}
$$

$$
\int_{E_{g}}^{E_{g-1}} \begin{aligned}
& \sigma(E) \frac{d E}{E}
\end{aligned} \int_{E_{g}}^{E_{g-1}} \frac{d E}{E}
$$

$$
\int_{E_{g}}^{E_{g}-1} \sigma(E) d E / \int_{E_{g}}^{E_{g-1}} d E
$$

Note: $\emptyset_{F}(E)$ denotes a fission flux spectrum.

Card type 3, format 6E12.5; ELIM(I).
ELIM(I) is the lower energy limit of neutron energy group I in units of electron-volts. That is, ELIM(I) corresponds to the energy limit E_{I} on p. 9. Here I is a running index such that $I=1,2,3, \ldots, N O B G$, where NOBG is the total number of neutron energy groups entered on card type 2. The values of ELIM(I) are specified six values per card in order of decreasing neutron energy. The upper energy limit of the first neutron energy group is not specified, but is programmed to be 21.17 MeV . The total number of energy limits entered is thus equal to NOBG. As many as seven cards of this type may be required. If IFLX (card type 2) is 5, NOBG energy limits must be given but are not actually used. However, the energy limits will be printed out as part of the output data.

Card type 4, format 24I3; NLIM(I). (Used if IFLX = 5).
NLIM(I) are integers which specify the manner in which the 43-group cross section sets provided by the program user should be collapsed into a set of NOBG groups. This type of card must be submitted if and only if IFLX is 5. Here I is a running index such that $I=1,2,3, \ldots$, NOBG. Each value of NLIM specifies the largest group number of each of the broad neutron energy groups. For example, if five neutron energy groups (NOBG $=5$) are used to specify the flux such that the first group consists of groups $1-10$ of the 43 -group structure used to describe the cross sections, the second group consists of groups 11-20, the third of 21-30, the fourth of $31-42$, and the fifth of 43 on1y, then the values of NLIM entered on this card should be $10,20,30,42,43$. The values of NLIM are entered 24 to a card arranged in order of increasing group number. Two cards of this type may be required. The broad group cross section set is obtained by an arithmetic average of the appropriate narrow group cross sections.

Card type 5, format 6E12.5; EGG(I).
EGG(I) are floating point numbers which are the gamma ray energy group limits (p. 24) desired in the NAP computation. Here I is a running index such that $I=1,2,3, \ldots$, NOGG+1 where NOGG is the number of gamma ray energy groups entered on card type 2. The EGG(I) are expressed in MeV and must be listed in order of decreasing value, six values to a card. Unlike the specification of the neutron energy group limits, the uppermost gamma ray energy group limit must be specified. Thus EGG(1) is the upper energy limit of the first gamma ray energy group, EGG(2) is the lower energy limit of the first gamma ray energy group, EGG(3) is the lower energy limit of the second gamma ray energy group, etc. All photons of energy above the largest energy limit or below the smallest energy limit are ignored. Up to four cards of this type may be required.

Card type 6, format 6E12.5; FLXIN(I).
FLXIN(I) are floating point numbers which specify the magnitude of the incident neutron flux (p. 9) using the energy group structure previously entered on card type 3. Here I is a running index such that $I=1,2,3, \ldots$, NOBG where NOBG is the number of neutron energy groups entered on card type 2. Thus, FLXIN(I) is the magnitude of the incident neutron flux in energy group I. The values of the FLXIN array are listed in order of decreasing energy (increasing group number) with six values to a card. Eight cards of this type may be required. The physical units used depend upon the value entered for IFLX on card type 2. The values of the FLXIN(I) entered on this card are all multiplied by the value of FLUXN (card type 2) during operation of the program. Thus if IFLX is entered as zero, the product of FLUXN and FLXIN(I) should have units of neutrons/ cm^{2}-sec. If IFLX is 1 , the product of FLUXN and FLXIN(I) should have units of neutrons per unit lethargy/ $\mathrm{cm}^{2}-\mathrm{sec}$. If IFLX is 2 , the product of FLUXN and FLXIN(I) should have units
of neutrons/eV-cm ${ }^{2}-\mathrm{sec}$. If IFLX is 5, the units are arbitrary but must be consistent with the units of the cross sections entered on card type 20.

Card type 7, format 2E12.5, 3I2; EPS, XO, IGEON, IOUT, NOANG. Must be submitted if and only if NOSS (card type 2) is greater than zero.

EPS is a floating point number specifying the convergence criterion (p .15) used in the NAP neutron transport subroutine. In each neutron energy group, convergence is satisfied when the fractional change in the group flux at the right-most boundary is less than EPS between successive iterations.

XO is the spatial coordinate in centimeters of the leftmost boundary (p. 14). An error stop will occur if XO is zero and spherical geometry is used.

IGEON is an integer number indicating the geometry for the neutron transport subroutine. If IGEON is zero, spherical geometry is assumed; if IGEON is 1, slab geometry is assumed.

IOUT is an integer number specifying the quantity of data output generated by the neutron transport subroutine. If IOUT is entered as 3, the angular flux, i.e. $\psi\left(x, \mu_{j}\right)$ on p. 14, obtained from the neutron transport solution is printed out as a function of space (mesh point), energy group, and angle $\left(\mu_{j}\right)$. If IOUT is entered as 2 , the group flux, i.e. $\psi\left(x, \mu_{j}\right)$ integrated over μ, is printed as a function of space and energy group. If IOUT is entered as 1 , the spatially-averaged group flux in each spatial region is printed as a function of energy group.

NOANG is an integer specifying the type and number of discrete ordinates (p. 13) to be used in the neutron transport subroutine. If NOANG is $2,4,6,8$, or 10 , Legendre-Gauss quadrature is used employing the $2,4,6,8$, or 10 angular
ordinates given in Table II (p. 16). If NOANG is 24 or 26, Lobatto quadrature is used employing 4 or 6 ordinates. If spherical geometry is used (IGEON $=0$), Legendre-Gauss quadrature will be employed, even if Lobatto quadrature is selected.

Card type 8, format 4E12.4, I2; SIGS(I), SIGT(I), SIGSL(I), DX(I), NINT(I). Must be submitted if and only if NOSS (card type 2) is greater than zero.

SIGS(I) is a floating point number giving the value of the macroscopic neutron scattering cross section (p. 13) for neutron energy group one and region I. Here I is a running index such that $I=1,2,3, \ldots$, NOREG where NOREG is the number of regions specified on card type 2. There are as many cards of this type as there are regions in the problem. Thus the first type 8 card gives data pertaining to region one, the second to region two, etc. Note however that SIGS(I) on this card pertains only to the first (highest) neutron energy group. Cross sections for other energy groups are given on card type 10. The physical units of SIGS(I) must be consistent with the units used for FLUXN (card type 2) and FLXIN(I) (card type 6). The product of SIGS, FLUXN, and FLXIN should have units of neutrons/cm ${ }^{3}-\mathrm{sec}$.

SIGT(I) is analogous to SIGS(I), but is the total cross section.

SIGSL(I) is also analogous to SIGS(I), but is the cross section for neutron scattering from energy group one to energy group two. The SIGSL values, when multiplied by the group one flux values, act as a slowing down source term for the second energy group.

DX(I) is the mesh point spacing (p. 15) in centimeters for region I.

NINT(I) is an integer equal to the number of mesh point intervals in region I. The thickness of region I is thus DX(I) times NINT(I). The total number of mesh intervals summed over all of the regions must be less than 100.

Card type 9, format 5E12.4; AFLX(J). Must be submitted if and only if both NOSS and NISO (card type 2) are greater than zero.

AFLX(J) is a floating point number which specifies the value of the incident neutron flux in energy group one at the discrete ordinate $\mu_{J}(p .14)$. The number of AFLX values entered should be one-half the number of discrete ordinates indicated by NOANG on card type 7, inasmuch as only the forward components of the angular flux are to be specified. The AFLX values should be entered in order of increasing θ (decreasing μ), and must be normalized such that the sum of the values times the angular weights pertaining to both forward and backward components is unity. That is, the value of $\operatorname{AFLX}(J)$ must be equal to onehalf the fractional neutron flux in the first neutron energy group incident upon the left-most boundary directed at an angle $\theta_{J}=\cos ^{-1} \mu_{J}$ to the normal. Only positive values of μ_{J} are considered. An example is given in the following paragraph. If NISO is entered as zero, this card is not submitted, and the AFLX values are internally programmed to be 0.5.

As an example, suppose that the neutron flux incident upon the left-most boundary of the system is known as a function of energy and angle to the normal. A typical angular dependence is shown in Figure 4. An isotropic flux is also shown for comparison. If Legendre-Gauss quadrature with four ordinates are used, two values of AFLX(J) should be entered on card type 9. For the example shown in Figure 4, these two values should be 0.795 and 0.550 in that order.

Card type 10, format 3E12.4; SIGS(I), SIGT(I), SIGSL(I). Must be submitted if and only if NOSS is greater than zero and NOBG is greater than one. This card is analogous to card type 8, except that the mesh point spacing and number of mesh intervals is omitted. The cross sections now refer to the second neutron energy group. As before, I is a running index

INWARD NORMAL TO SURFACE

FIGURE 4

EXAMPLE OF ANISOTROPIC FLUX
which indicates the region number, $I=1,2,3, \ldots$, NOREG. These cards are ordered by increasing region number, the region numbers increasing from left to right.

If both NOSS and NISO are greater than zero and NOBG is greater than one, a card of type 9 now follows the above set of card type 10. The AFLX values now refer to the anisotropy of the incident neutron flux in the second neutron energy group. Card types 10 and 9 are repeated uncil data for all the neutron energy groups have been submitted.

To clarify the ordering of card types 8, 9 , and 10 , the following example may be considered. Suppose a NAP problem is set up with three neutron energy groups, two spatial regions, the incident neutron flux is anisotropic in a known manner, and it is desired to use the NAP neutron transport subroutine. On card type 2, NOBG should be given as 3, NOREG as 2 , NOSS and NISO as some integer greater than zero, say 1. Card types 8, 9 , and 10 should be submitted in the following order:

1. card type 8 for region one and neutron energy group one
2. card type 8 for region two and energy group one
3. card type 9 for neutron energy group one
4. card type 10 for region one and neutron energy group two
5. card type 10 for region two and energy group two
6. card type 9 for neutron energy group two
7. card type 10 for region one and neutron energy group three
8. card type 10 for region two and energy group three
9. card type 9 for neutron energy group three

If the incident neutron flux were known to be isotropic, then NISO on card type 2 should be given as zero. The ordering of the cards is the same as that just given, except that all cards of type 9 must be omitted.

Card type 11, format 6E12.5; FLX(I). Must be submitted if and only if NOREG (card type 2) is greater than one and NOSS (card type 2) is less than zero.

FLX is an array of floating point numbers used to describe the average neutron fluxes in each spatial region as a function of neutron energy group. If NOSS is greater than zero, the NAP neutron transport subroutine is used to generate the FLX array. If NOSS is zero, the FLXIN array submitted on card type 6 is assumed to apply in each spatial region, i.e. the neutron flux is independent of spatial region. If NOSS is less than zero, the neutron flux in each energy group and each spatial region (other than the first) must be supplied on this type input card. Here I is a running index such that $I=N O B G+1$, NOBG+2, ..., (NOBG) x (NOREG). For example, if NOSS is less than zero, NOREG is 3, and NOBG is 4 , then the group fluxes in region one should be entered on card type 6 for energy groups one through four, in order of increasing group number (decreasing energy). The cards of type 11 should then contain eight numbers, six on the first card and two on the second. The first four numbers should be the group fluxes in region two, in order of increasing group number; the second set of four numbers should be the group fluxes in region three, in order of increasing group number.

Card type 12, format E12.5; TFAC, NONV.
TFAC is a floating point number which specifies the thermal averaging parameter (p. 21). All group 43 neutron reaction cross sections are multiplied by TFAC. Thus TFAC is that factor such that multiplication of the $2200 \mathrm{~m} / \mathrm{sec}$ cross section value of a $1 / v$ cross section by TFAC yields the effective thermal cross section. For example, if the thermal neutron flux is assumed to have a Maxwellian velocity distribution with a most probable velocity of $2200 \mathrm{~m} / \mathrm{sec}$, then TFAC is the ratio of the most probable velocity to the average velocity and should be entered as $1 / 1.128=0.8862$.

NONV is an integer equal to the number of isotopes in the problem (in all spatial regions for which gamma ray source strengths are desired) whose thermal cross sections are not $1 / \mathrm{v}$. The maximum value of NONV is ten.

Card type 13, format 3(2I6, E12.5); NZ(I), NA(I), VFAC(I). Must be submitted if and only if NONV (card type 12) is greater than zero.
$N Z(I)$ is an integer equal to the atomic number of the Ith isotope having a non-1/v thermal cross section. Here I is a running index such that $I=1,2, \ldots$, NONV.
$N A(I)$ is an integer equal to the atomic mass number of the Ith isotope having a non-1/v thermal cross section.
$\operatorname{VFAC}(I)$ is a floating point number equal to the non-1/v factor (p. 21) for the Ith isotope having a non-1/v thermal cross section. In computing neutron reaction rates for isotopes originally present in the problem, the NAP program searches the $N Z, N A$ table provided by cards of type 13. If both the atomic number and the mass number of the isotope under consideration are found in the table, the thermal (Cross Section Library neutron energy group 43) cross section is multiplied by both TFAC and VFAC(I) to obtain an effective thermal cross section for use in computing the reaction rate. Three sets of NZ, NA, and VFAC are permitted on each card of type 13 in the order NZ (1), NA(1), $\operatorname{VFAC}(1), \mathrm{NZ}(2), \mathrm{NA}(2), \operatorname{VFAC}(2), \mathrm{NZ}(3), \mathrm{NA}(3), \operatorname{VFAC}(3)$. Since NONV must be equal to or less than ten, a maximum of four cards of type 13 is permitted, the last card having only one set of values.

Card type 14, format 2I6; NOPER, NODOS.
NOPER is an integer equal to the total number of time periods in which the power level (p. 9) is constant. NOPER is limited to a value of 50 or less. For example, if $P(t)$ is given by 22 values as indicated in Figure 2, NOPER must be entered as 22 。

NODOS is an integer equal to the number of initial and final times to be used in the dose calculations (p. 25).

Each dose calculation consists of a numerical integration of the dose rate from some initial time to some final time. These times are supplied on card type 18. NODOS must be equal to the total number of such times and must be 50 or less. For example, suppose three dose calculations are desired, the first from time t_{1} to time t_{2}, the second from t_{3} to t_{4}, and the third from t_{4} to t_{5}. Six values for the time must be supplied on card type 18, the fourth such value being repeated, and NODOS must be entered as six. It may be noted that NODOS is twice the number of dose calculations desired.

Card Type 15, format 6E12.5; POW(I).
POW(I) is a floating point number which gives the value of the power level $P(t)$ ($p .9$) during the Ith time period. Here I is a running index such that $I=1,2, \ldots$, NOPER. The physical units are arbitrary, but must be consistent with the units used for FLUXN on card type 2 and FLXIN(I) on card type 6. It is essential that the product of POW, FLUXN, FLXIN, and the neutron cross sections, whether taken from the NAP Cross Section Library or supplied by the user, has dimensions of neutrons/sec. The number of values of POW(I) submitted, six to a card, must be equal to the value of NOPER (card type 14). Thus, for the example shown in Figure 2, 22 values of $\operatorname{POW}(I)$ must be entered. A value of zero entered for any POW(I) implies that there is no incident neutron flux during the Ith time period.

Card Type 16, format 6E12.5; TI(I).
$T I(I)$ is a floating point number equal to the duration in hours, of the Ith time period. Here I is a running index such that $I=1,2, \ldots$, NOPER. The power level POW(I) is constant throughout the time period of length TI(I). There must be NOPER values of TI(I) given, six per card.

Card Type 17, format 12I6, NINT(I).
NINT(I) is an integer equal to the number of equal time intervals contained in the time period of length TI(I). Again I is a running index such that $I=1,2, \ldots$, NOPER. Thus the Ith time period of length $\mathrm{TI}(\mathrm{I})$, during which the power level is constant at the value POW(I), is divided into NINT(I) time intervals, each of length TI(I)/NINT(I). The radioisotopic atom densities, gamma ray source strengths, and gamma ray dose rates are computed at the end of each time interval. There must be NOPER values of NINT(I) given, twelve per card. The total number of time intervals used in all the time periods is limited to 200. That is, the sum of the values of all the NINT(I) must be equal to or less than 200 .

As an example, suppose the power level is unity for one hour, and then is zero. Then NOPER is 2 , POW(1) is 1.0 , and POW(2) is 0.0 . If it is desired to compute the gamma ray dose rate every ten minutes during the irradiation, and every five minutes for three hours after the irradiation, then $\mathrm{TI}(1)$ is $1.0, \mathrm{TI}(2)$ is 3.0 , $\operatorname{NINT}(1)$ is 6 , and NINT(2) is 36 .

Card Type 18, format 6E12.5; TS (I).
TS(I) is a floating point number equal to an initial or final time (in hours) used in calculating the gamma ray dose. Here I is a running index such that $\mathrm{I}=1,2, \ldots$, NODOS. This card must be submitted even if NODOS is zero, in which case a blank card may be used. There must be NODOS values of TS(I) entered, six per card. For the example discussed above under card type 14 , one card of type 18 should be submitted containing the values $t_{1}, t_{2}, t_{3}, t_{4}, t_{4}, t_{5}$.

Card Type 19, format I6; NX.
NX is an integer which specifies the number of neutron reaction cross section sets supplied by the program user, to be used in preference to the NAP Cross Section Library. Each reaction type for each isotope is counted as a single set. If no cross sections are supplied, NX should be entered as zero.

Card Type 20, format 10E8.1; X(M).
$X(M), M=1,2, \ldots, 50$, is an array of floating point numbers, ten per card, giving the microscopic cross section set supplied by the program user. Five cards of this type constitutes a single cross section set. These cards must not be submitted if NX (card type 19) is zero.

$X(1)=$	atomic number (Z) of isotope described by this
	set of cross sections.
$X(2)=$	mass number (A) of isotope.
$X(3)=$	fractional abundance of naturally occuring
	isotope.
$X(4)=$	a number describing the type of cross section
	given. Acceptable values of $X(4)$, and their
	meanings, are given in Table V.

If $X(4)$ is less than 100 ,
$X(6)=$ cross section (barns) for neutron energy group 1.
$\mathrm{X}(7)=$ cross section (barns) for neutron energy group 2.
$\dot{\vdots}(48)=$ cross section (barns) for neutron energy group 43.
If $X(4)$ is 100 or 200 ,
$X(6)=$ neutron resonance energy ($(\mathrm{EV}$) for first resonance.
$X(7)=$ resonance statistical factor g for first resonance.

Table V

IDENTIFICATION OF CROSS SECTION TYPE

X (4)	type of reaction	ground	nucleus isomeric state
1	(n, γ)	x	
2	(n, p)	x	
3	(n, α)	x	
4	($\mathrm{n}, 2 \mathrm{n}$)	x	
11	(n, γ)		x
12	(n, p)		X
13	(n, α)		x
14	($\mathrm{n}, 2 \mathrm{n}$)		x
100	(n, γ) resolved resonance	x	
200	(n, γ) resolved resonance		x

$X(8)=$ resonance capture width (eV) for first resonance.
$X(9)=$ resonance neutron width (eV) for first resonance.
$X(10)=$ resonance parasitic width (eV) for first resonance.
$X(11)=$ neutron resonance energy (eV) for second resonance.
$\begin{array}{ccc}\vdots & \vdots & \vdots \\ x(50) & \text { resonance parasitic width (eV) for ninth resonance. }\end{array}$
If $\mathrm{X}(4)$ is less than 15 , the NAP program assumes that the cross section set is supplied, using a 43 -group neutron energy structure, in the order of decreasing energy. The cross section for group 43 is assumed to be a $2200 \mathrm{~m} / \mathrm{sec}$ value, i.e., it is multiplied by TFAC and by VFAC, if appropriate, in computing the reaction rate. If IFLX (card type 2) is five, the 43-group energy structure need not be identical to that used in the NAP Cross Section Library. Five cards of type 20 must be supplied for each cross section type given. Additional cross section sets are placed in order of increasing Z, increasing A, and increasing value of $X(4)$. For example, cross section sets for $30^{\mathrm{Zn}}{ }^{70}$ must preceed those for $3 \mathrm{Ga}^{69}$.

Card type 21, format I12,4E12.5; ISOR, R, TEMP, VOL, RD. This card type and the following are grouped together in order of increasing region number. There must be NOREG cards of this type.

ISOR is an integer specifying the number of isotopic or elemental atom densities to be specified as initially present in the region. ISOR must not be greater than 20. If ISOR is zero, the region is not considered in the computation of gamma ray source strengths, but is considered in the neutron transport problem if NOSS (card type 2) is greater than zero.
R is a floating point number giving one-half the radius or one-half the thickness of the region, in centimeters. For infinitely-long cylinders, R is the radius; for infinite slabs, R is the thickness. R is used only in the computation of effective resonance integrals (see Volume II). A machine overflow will
occur if R is entered as zero and an effective resonance integral calculation is attempted.

TEMP is a floating point number giving the temperature (degrees Fahrenheit) of the region, and is used only in effective resonance integral calculations.

VOL is a floating point number giving the volume (cm^{3}) of the region.

RD is a floating point number giving the distance (cm) from the center of the region to the position where gamma ray dose rate and dose information is desired. If RD is entered as zero, no such information will be obtained, and the NAP program will advance to the next region, after computing the gamma ray source strengths.

Card Type 22, format 3(2I3, I6, E12.5); IZ(I), IA(I), IKEY(I), DEN(I).

IZ(I) is an integer giving the atomic number of the Ith isotope initially present in the region. On this type card, I is a running index such that $I=1,2, \ldots$, ISOR.

IA(I) is an integer equal to the atomic mass number of the Ith isotope initially present in the region. If IA(I) is entered as zero, the NAP program assumes that the element specified by $I Z(I)$ is present in its naturally occurring isotopic composition, provided that composition is available in either the NAP Cross Section Library or in the Cross Section sets supplied by the program user (see card type 20) 。

IKEY(I) is an integer which controls the origin of all neutron reaction cross sections for the Ith isotope or element according to the following scheme:

$$
\begin{aligned}
\text { IKEY }=0: & \text { cross sections will be calculated if not } \\
& \text { found in the NAP Cross Section Library. }
\end{aligned}
$$

IKEY = 1: cross sections will be set equal to zero if not found in the library.
IKEY = 2: cross sections will be calculated even if in the library.
IKEY = 3: cross sections are supplied (card type 20) by the user. If not found in the supplied data, they will be calculated.
DEN(I) is a floating point number giving the isotopic (or elemental) atom density (10^{24} atoms/cc) of the I th isotope.

Each card of this type may contain data for three isotopes. As an example of the ordering of card types 21 and 22 , consider a two-region problem with five isotopes initially present in the first region and four in the second. The proper order is then:

> card type 21 for first region card type 22 for first region (three isotopes) card type 22 for first region (two isotopes) card type 21 for second region card type 22 for second region (three isotopes) card type 22 for second region (one isotope)

Finally, a summary of program options available to the problem originator is given in Table VI, a dictionary of all input variables in Table VII, and a summary of input card formats in Table VIII.

TABLE VI
NAP PROGRAM OPTIONS

Card Type	Variable	Suggested Value	Effect
2	NOSS	-1	Regional fluxes are input
		0	Flux is spatially uniform
		-1	Perform neutron transport calculation
2	NISO	0	Incident flux is isotropic
		1	Incident flux is anisotropic
2	IFLX	0	Input group fluxes are integrals over energy
		1	Input group fluxes are averages per unit lethargy
		2	Input group fluxes are averages per unit energy
		5	Input group fluxes are undefined and energy limits are not adjusted
2	IWT	0	Cross Sections are weighted by fission flux spectrum and $1 / E$ flux spectrum
		1	Cross sections are weighted by 1/E flux spectrum
		2	Cross sections are weighted by constant flux spectrum
7	IGEON	0	Spherical geometry
		1	Plane geometry
7	IOUT	1	Print average group flux by region
		2	Print average group flux and group flux by mesh point

TABLE VI (CONT'D.)
NAP PROGRAM OPTIONS

Card Type	Variables	Suggested Value	Effect
		3	Print average group flux, group flux, and angular flux
22	IKEY (I)	0	Calculate cross sections (for isotope I) if not found in library
		1	Set cross sections equal to zero if not found
		2	Calculate cross sections
		3	Cross sections are supplied as input

NAP INPUT DICTIONARY

Name	Card Type	Meaning
AFLX(J)	9	Normalized incident angular flux (used only if NOSS >0 and NISO $\neq 0$) (No more than 5 values)
DEN (I)	22	Initial isotopic atom density ($10^{24} / \mathrm{cc}$) for isotope I.
DX (I)	8	Mesh spacing (cm) in region I (used only if NOSS >0)
EGG (I)	5	Gamma energy group limits (MeV)
ELIM (I)	3	Neutron flux energy group limits (eV)
EPS	7	Convergence criterion for neutron transport calculation
FLUXIN(I)	6	Incident neutron energy group fluxes
FLUXN	2	Neutron flux normalization factor
FLX (I)	11	Regional neutron energy group fluxes (used only if NOSS < 0)
IA (I)	22	Atomic mass number of initial isotope I (if IA $=0$, natural abundance is used)
IFLX	2	$0,1,2$ if $\operatorname{FLUXIN}(I)$ is integral flux, flux per unit lethargy, or flux per unit energy, respectively. If IFLX $=5$, FLUXIN(I) is arbitrary.
IGEON	7	0 for spherical geometry, 1 for slab geometry (used only if NOSS >0)
IKEY (1)	22	Supplied for isotope I: 0: σ calculated if not in library 1: $\sigma=0$ if not in library 2: σ always calculated 3: σ applied as input
IOUT	7	```Used if and only if NOSS >0: 3: print angular flux 2: print group flux 1: print average group flux```

TABLE VII (CONT'D.)
NAP INPUT DICTIONARY

Name	Card Type	Meaning
ISOR	21	Number of initial isotopes in region I ($\leqslant 20$)
IWT	2	Indicates weighting for averaging of group万's: $0,1,2$ indicates fission and $1 / E$ weighting, 1/E weighting, and constant weighting, respectively
IZ (I)	22	Atomic number of initial isotope I
NA (I)	13	Atomic number of $I^{\text {th }}$ non-1/v isotope (used if and only if NONV >0)
NINT (I)	8	Number of mesh intervals in region I (used if and only if NOSS >0) (Sum over $\mathrm{I}<100$)
NINT (I)	17	Number of time intervals in time period I (Sum over I
NISO	2	>0 if incident flux is anisotropic (used only if NOSS >0)
NLIM (1)	4	Used if and only if IFLX $=5$. Specific group structure of incident flux for σ weighting.
NOANG	7	Number of flux angular ordinates (used if and only if NOSS >0) (Restricted to $2,4,6,8$, 10,24 , or 26)
NOBG	2	Number of neutron energy groups ($\leqslant 43$)
NODOS	14	Number of initial and final dose times ($\leqslant 50$)
NOGG	2	Number of gamma energy groups ($\leqslant 20$)
NONV	12	Number of non-1/v isotopes ($\leqslant 10$)
NOPER	14	Number of constant flux time periods ($\leqslant 50$)
NOREG	2	Number of spatial regions ($\leqslant 20$)
NOSS	2	$\begin{aligned} & <0, \text { regional fluxes are input } \\ & =0, \text { flux is spatially uniform } \\ & >0 \text {, perform neutron transport calculation } \end{aligned}$
NX	19	Number of σ sets given as input
NZ (I)	13	Atomic number of $I^{\text {th }}$ non-1/v isotope (used if and only if NONV >0)

TABLE VII (CONT'D.)
NAP INPUT DICTIONARY

Name	Card Type	Meaning
POW (I)	15	Neutron flux intensity level for time period I
R	21	One-half times mean chord length (cm) ($\neq 0$)
RD	21	Distance (cm) from source to detector
SIGS (I)	8,10	Scattering cross section (cm^{-1}) for region I (used if and only if NOSS >0)
SIGSL (I)	8,10	Slowing down cross section (cm^{-1}) for region I (used if and only if NOSS >0)
SIGT(I)	8,10	Total cross section $\left(\mathrm{cm}^{-1}\right)$ for region I (used if and only if NOSS >0)
TEMP	21	Temperature (degrees F)
TFAC	12	Thermal cross section averaging parameter
TI (I)	16	Length (hrs) of time period I
TS (I)	18	Time (hrs) at which dose starts or stops
VFAC (I)	13	Non-1/v factor for non-1/v isotope 1
VOL	21	Volume (cm^{3}) of region
X (M)	20	Input values of "cross section"
XO	7	Coordinate (cm) of system left hand boundary ($\neq 0$ if IGEON $=0$)

TABLE VIII
INPUT DATA FORMAT SUMMARY

Card Type	Variables	Format	Comment
1	-----	12A6	problem title
2	FLUXN, NOBG, NOREG, NOGG, NOSS, NISO, IFLX, IWT	$\begin{aligned} & \text { E12.5, } \\ & 7 \text { I6 } \end{aligned}$	
3	ELIM(I)	6E12.5	must provide NOBG values
4	NLIM(I)	2413	used if and only if IFLX $=5$, must provide NOBG values
5	EGG(I)	6E12.5	must provide NOGG+1 values
6	FLUXIN (I)	6E12.5	must provide NOBG values
7	$\begin{aligned} & \text { EPS , XO, IGEON, } \\ & \text { IOUT, NOANG } \end{aligned}$	$\begin{aligned} & \text { 2E12.5, } \\ & 3 \mathrm{I} 2 \end{aligned}$	used if and only if NOSS >0
8	$\begin{aligned} & \text { SIGS (I), SIGT(I), } \\ & \text { SIGSL(I), DX(I), } \\ & \text { NINT(I) } \end{aligned}$	$\begin{aligned} & \text { 4E12.4, } \\ & \mathrm{I} 2 \end{aligned}$	used if and only if NOSS >0
9	AFLX (J)	5E12.4	used if and only if NOSS >0 and NISO $\neq 0$
10	$\begin{aligned} & \operatorname{SIGS}(I), \operatorname{SIGT}(I), \\ & \operatorname{SIGSL}(I) \end{aligned}$	3E12.4	used if and only if NOSS >0 and NOBG >1
11	FLX (I)	6E12.5	used if and on1y if NOSS < 0 , must provide NOBG x (NOREG-1) values
12	TFAC, NONV	E12.5,16	
13	$\begin{aligned} & \mathrm{NZ}(\mathrm{I}), \mathrm{NA}(\mathrm{I}), \\ & \mathrm{VFAC} \end{aligned}$	$\begin{aligned} & 3(2 I 6, \\ & \text { E12.5) } \end{aligned}$	used if and only if NONV >0, must provide NONV values
14	NOPER, NODOS	216	
15	POW (I)	6E12.5	must provide NOPER values
16	TI (I)	6E12.5	must provide NOPER values
17	NINT (I)	1216	must provide NOPER values
18	TS (I)	6E12.5	must provide NODOS values
19	NX	I6	
20	X (M)	10E8.1	used if and only if NX >0, must provide 5 times NX cards

TABLE VIII (CONT'D.)

INPUT DATA FORMAT SUMMARY

Card Type	Variables	Format	Comment
21	ISOR, R,TEMP VOL, RD	$\begin{aligned} & \text { I12, } \\ & \text { 4E12. } \end{aligned}$	must provide NOREG cards
22	$\begin{aligned} & \operatorname{IZ}(\mathrm{I}), \operatorname{IA}(\mathrm{I}) \\ & \operatorname{IKEY}(\mathrm{I}), \operatorname{DEN}(\mathrm{I}) \end{aligned}$	$\begin{aligned} & 3(2 \mathrm{I} 3, \mathrm{I} 6, \\ & \mathrm{E} 12.5) \end{aligned}$	must provide ISOR sets for each region

IV. OPERATING INSTRUCTIONS

The NAP program has been written entirely in the IBM 7090/7094 FORTRAN IV language, and is designed for operation under the IBSYS Operating System (Version 13). The program binary decks currently available are for use on an IBM 7094.

Correct operation of the NAP program requires placement of the NAP Cross Section Library tape on FORTRAN tape unit 8 and the NAP Gamma Radiation Library tape on FORTRAN tape unit 10. FORTRAN tape unit 1 is used to store any cross section data submitted by the program user. FORTRAN tape unit 2 is used for temporary storage during program operation.

As an aid in determining the rapidity of convergence when the neutron transport subroutine is used to calculate the spatial dependence of the neutron fluxes, sense lights 1 and 2 may be observed. Both sense lights are off prior to the use of the neutron transport subroutine. At the start of the iterations for the first group flux solution, sense light 1 turns on and remains on until a converged solution for the first group flux is attained. Sense light 1 remains off until a converged solution for the second group flux is attained. Thus, as convergence is achieved for each energy group flux, the status of sense light 1 will change. When a converged solution has been obtained for all of the energy group fluxes, sense light 2 turns on. Depressing sense switch 1 results in a bypassing of the convergence test after five iterations are completed in each group.

Sense switches 2 and 3 may be depressed to obtain supplemental output data, as explained in the following section. All output is written on FORTRAN tape unit 6; input data is assumed to be on FORTRAN tape unit 5.
V. OUTPUT DATA

NAP program output is largely self-explanatory. Typical input and output are illustrated by the sample problem in Section VIII of this report. If region-dependent neutron group fluxes are input to the problem, the group fluxes will appear in the output in order of increasing region number, but the regions are not identified on the flux output. In many cases, two or more atom densities will be printed for the same radioisotope. This will occur whenever the radioisotope is produced in more than one manner. Atom densities, gamma ray source strengths, energy source strengths, dose rates, and doses are printed as a function of time, region by region.

Sense switch 3 may be depressed to produce additional output. This consists of the results of effective resonance integral calculations and the broad group cross section sets resulting from condensation of the NAP Cross Section Library sets.

Sense switch 2 may be depressed to produce some "debugging" output. This includes cross section sets and resolved resonance parameters as obtained directly from the NAP Cross Section Library. Additional informtion pertaining to effective resonance integral calculations is printed. Cross section sets calculated by the NAP program are also printed using the NAP library 43group energy structure. The groups are not identified on the output, but the first column contains group cross sections for groups $1-15$, the second column groups $16-30$, and the third column 31-43. Each decay chain is described by printing out the isotopic identification of each chain member. Isomeric states are identified by mass numbers in excess of 500, e.g., mass number 683 indicates an isomeric state of mass number 183. The Q_{i} and S_{j} defined in Section II-B, but without the $P(\Delta t)$ factor, are printed for each chain member. In addition, the chain member atom densities (in units of 10^{24} atoms/cc) are printed, prior to dumping on magnetic tape for later use. Here the time
in hours is identified by T and the atom density of chain member I by $N(I)$.

VI. FLOW CHARTS

This section presents a brief description and a flow chart for each subprogram of the NAP code. Arguments, dimensioned variables, common variables, subroutines called, and subroutines entered from are listed for each subprogram. The flow charts show explicitly the operation of the input program control options available to the program user. The main program is described first, followed by the subprograms in alphabetical order.
A. MAIN PROGRAM

1. Purpose: The main program reads in most of the input data and links together most of the NAP subroutines. It sets up the fixed neutron energy group limits consistent with the NAP cross section library, sets up the time intervals used in computing isotopic concentrations, dose rate, and dose, and computes the regional gamma source strength densities.
2. Arguments: None
3. Dimensioned Variables:

A(5)	IKEY(20)	$\operatorname{REGS}(20,200)$
BX (12)	IZ (20)	$\operatorname{SOR}(20,5)$
D (5)	KMAX (20)	SPOT (20)
DEN (20)	NA (10)	T(200)
EGG(21)	NINT (50)	TI (50)
ELIM (43)	NLIM(43)	TS (50)
FELIM(44)	NZ (10)	VFAC(10)
FLX (860)	POW (50)	VOL (20)
FLXIN(43)	POWR (200)	Z (5)
IA (20)	RD(20)	

4. Common Variables:

BS* : EGG, LASTT, NOGG, POWR, SOR, T
CF: ELIM, FELIM, FLXIN, IFLX, IWT, NA, NOBG, NONV, NZ, TFAC, VFAC
CP: BX,IC,LEAF
CQ: NLIM
R: DEN, IA , ISOR, IZ , R, TEMP, SPOT

* name of labeled common

5. Called Subprograms:

DOS, GROUPS, ISOCON, NATDEN, PAGE, RLIM, SHIELD, XSIN.
6. Calling Subprograms: None.
7. Comments: The position in the program of various write statements are indicated on the right hand side of the logical flow chart to aid in malfunction analysis. The array name REGS, referred to after calling ISOCON, signifies REGS (I,J), the regional gamma source strength density for gamma energy group I and time step J. It is computed from data dumped on tape 2 by subroutine ISOCON and is used later by subroutine DOS. Although not indicated on the flow chart, the main program calls RLIB and PAGE. The first statement of the main program calls RLIB to initiate reading of part of the NAP Radiation Library into an allocated portion of core storage. PAGE is utilized with most of the write statements to provide page numbering of output data.

B. Function AJ

1. Purpose: Computes Dresner's J-function with ξ and β asn input. See Volume II.
2. Arguments: XI, BETA.
3. Dimensioned Variables: BJ 27,10)
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: RESINT
7. Comments: Tabular data are contained in the array BJ which is set up by three data statements. Approximation No. 1 is given by equation (87) of Volume II, approximation No. 2 by equation (84).
FUNCTION AJ FLOW CHART

C. Function ALCOM
8. Purpose: Obtain compound nucleus formation cross section of nucleus, specified by Z and A, due to incident alpha particle of energy specified by parameter Y.
9. Arguments: Y, Z, A.
10. Dimensioned Variables:

FLIS (4)	FFLIST(4)	YL(29)
FLIST(29,6)	$\mathrm{XLIST(4)}$	ZL(6)

4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: FFUN.
7. Comments: Tabular data are contained in the array FLIST as a function of YL and ZL. See Volume II for other notation.

FUNCTION ALCOM FLOW CHART

D. Function ALETH

1. Purpose: Averages the cross sections in the array SIG over a $1 / E$ flux to obtain cross sections in the group structure specified by the program user.
2. Arguments: FELIM, SIG, I, J.
3. Dimensioned Variables: FELIM(44), SIG(43).
4. Common Variables: None
5. Called Subprograms: None
6. Calling Subprograms: FS
7. Comments: SIG is averaged from energy group I to energy group J, inclusive. FELIM(K) is the lower energy limit of energy group $K-1$ and is indicated in the flow chart by E_{K}.

FUNCTION ALETH FLOW CHART

E. Function COMNUC

1. Purpose: Computes compound nucleus formation cross section for isotope of mass A due to incident neutron of energy EN.
2. Arguments: A, EN.
3. Dimensioned Variables: F(22), G(22).
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: FFUN, SIGGAL.
7. Comments: See Volume II for notation.

F. SUBROUTINE DOS

1. Purpose: To compute the gamma ray dose and dose rate at the distance RD from an activation source.
2. Arguments: RD,VOL, IR,NODOS,TS,REGS,NOGG, LASTT, EGG, T
3. Dimensioned Variables:

C(18)	E(18)	T(200)
D(25)	EGG(21)	TS (50)
DR(200)	REGS (20,200)	BX (12)

4. Common Variables:

CP: BX,IC,LEAF
5. Called Subprograms: PAGE
6. Calling Subprograms: MAIN
7. Comments: CONV is a conversion factor from gamma ray energy flux (10^{5} photons $-\mathrm{MeV} / \mathrm{cm}^{2}-\mathrm{sec}$) to gamma ray absorbed dose rate (rad/hr) in tissue. It is computed from the conversion factor array C, which is ordered according to the photon energies listed in the array E. The arrays C and E are provided internally in this subprogram by data statements. Different units for the dose rate can be provided only by rewriting a few of the FORTRAN statements in this subroutine and changing the C and E arrays. The array D is not used and could be eliminated.

G. Function ENER

1. Purpose: Averages the cross sections in the array SIG over a constant flux per unit energy to obtain group cross sections in the group structure specified by the program user.
2. Arguments: FELIM, SIG, I, J.
3. Dimensioned Variables: FELIM(44), SIG(43).
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: FS
7. Comments: SIG is averaged from energy group I to energy group J, inclusive. $F E L I M(K)$ is the lower energy limit of energy group $K-1$ and is indicated in the flow chart by E_{K}.

FUNCTION ENER FLOW CHART

H. Function EXMAS

1. Purpose: Computes mass excess using Wing-Fong formula for nucleus specified by Z and A.
2. Arguments: Z,A.
3. Dimensioned Variables: $B(5), C(5), D(5), E(5)$.
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: XSCAL
7. Comments: Refer to Volume II for notation.

FUNCTION EXMAS FLOW CHART

I. Function FFUN

1. Purpose: Performs integration of product of compound nucleus cross section and level density over energy as required by equations such as equation (46) of Volume II.
2. Arguments: J, TZ, TA, E2, E1, C, A, BEN.
3. Dimensioned Variables: None.
4. Common Variables: None.
5. Called Subprograms: ALCOM, COMNUC, PROCOM.
6. Calling Subprograms: SIGCAL.
7. Comments: J indicates the type of compound nucleus formation cross section required, $T Z$ and $T A$ the Z and A of the target isotope, E2 and E1 the upper and lower limits of integration, C and A the level density parameters, BEN the neutron binding energy.

FUNCTION FFUN FLOW CHART

J. Function FISS

1. Purpose: Averages the cross sections in the array SIG over a fission flux spectrum to obtain cross sections in the group structure specified by the program user.
2. Arguments: FELIM, SIG, I, J.
3. Dimensioned Variables: FELIM(44), SIG(43).
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: FS.
7. Comments: SIG is averaged from energy group I to energy group J, inclusive. FELIM(K) is the lower energy limit of energy group $\mathrm{K}-1$ and is indicated in the flow chart by E_{K}.

FUNCTION FISS FLOW CHART

K. Function FS

1. Purpose: Integrates the flux times the group cross sections over energy to obtain reaction rates.
2. Arguments: Z, A, INRE, LKEY, ISO.
3. Dimensioned Variables:

NLIM(43)

BX(12)	FLXIN(43)	NZ (10)
ELIM(43)	GSIG(43)	SIG(43)
FELIM(44)	NA(10)	$\operatorname{VFAC}(10)$

4. Common Variables:

CF: ELIM, FELIM, FLXIN, IFLX, IWT, NA, NOBG, NONV, NZ, TFAC, VFAC.
CP: BX, IC, LEAF.
CQ: NLIM.
5. Called Subprograms: ALETH, ENER, FISS, PAGE, XLIB, XSCAL.
6. Calling Subprograms: ISOCON
7. Comments: Z and A identify the isotope for which the reaction rate is desired, INRE the type of reaction, LKEV the eross section option, ISO the isotopic indea of the material. The array SIG is the 43 -group cross section set as obtained from the library or the input. The array GSIG is the cross section set in the group structure specified by the program user.

L. SUBROUTINE GROUPS

1. Purpose: Computes total neutron flux integrated over energy, adjusts the input energy limits and group fluxes to be consistent with the NAP Cross Section Library, and prints the resulting group energy limits and group fluxes.
2. Arguments: TFLX, which is the total neutron flux integrated over energy.
3. Dimensioned Variables:

$\operatorname{BX}(12)$	FELIM(44)	NZ (10)
$\operatorname{ELIM}(43)$	FLXIN(43)	$\operatorname{VFAC}(10)$
	$\operatorname{NA}(10)$	

4. Common Variables:

CF: ELIM, FELIM, FLXIN, IFLX, IWT, NA, NOBG, NONV, NZ, TFAC, VFAC.
5. Called Subprograms: PAGE.
6. Calling Subprograms: MAIN.
7. Comments: None.

M. SUBROUTINE ISOCON

1. Purpose: Sets up isotopic decay chains, computes isotopic densities and gamma source strengths as function of time.
2. Arguments: ZISO, AISO, ATD, LKEY, KM, ISO.
3. Dimensioned Variables:

A(5)	EGG(21)	RATE (5)
BX(12)	E1 $(5,7)$	$\operatorname{SOR}(20,5)$
$\operatorname{BR}(6)$	F1 $(5,7)$	T 200$)$
CS (8)	GAM (21)	Z (5)
D(5)	GNO $(20,5)$	
DENS (5)	POWR(200)	

4. Common Variables:

BS: EGG, LASTT, NOGG, POWR, SOR, T
CP: BX, IC, LEAF
5. Called Subprograms: FS, PAGE, RLIB
6. Calling Subprograms: MAIN
7. Comments: The write statements indicated on the flow chart are performed only if sense switch 3 is depressed. GNO (M, J) is the number of gammas per decay from chain member J in gamma energy group $M . \operatorname{SOR}(I, J)$ is the number of gammas per unit volume per unit time emitted in energy group I from chain member J, and is time-dependent. ZISO and AISO are the Z and A for the chain parent, ATD is its initial atom density, and LKEY is its cross section option. KM is a running counter of the number of chains for which data are dumped on tape 2. ISO is the parent chain member's isotopic index in the region.
 write time and densities dump atom densities on tape 2
compute $\operatorname{SOR}(I, J)$
dump $\operatorname{SOR}(I, J)$ on tape 2

N. Subroutine NATDEN

1. Purpose: Obtains isotopic composition of naturally occurring isotopes and potential scattering cross section of all isotopes in region from NAP Cross Section Library.
2. Arguments: LKEY
3. Dimensioned Variables:

AO (20)	IZ (20)	SPOT (20)
D(20)	LK (20)	X(250)
DEN(20)	LKEY(20)	ZO(20)
IA(20)	SIG(43)	BX(12)

4. Common Variables: CP: BX, IC, LEAF R: DEN, IA, ISOR, IZ, R, SPOT, TEMP
5. Called Subprograms: PAGE, XLIB
6. Calling Subprograms: MAIN
7. Comments: LKEY indicates whether the material cross sections searched for are input by the program user or are in the Cross Section Library. XLIB is called to initiate reading of data from the Cross Section Library into allocated core storage.

8. Subroutine PAGE
9. Purpose: To provide pagination of output data.
10. Arguments: None.
11. Dimensioned Variables: BX(12)
12. Common Variables: CP: BX, IC, LEAF.
13. Called Subprograms: None.
14. Calling Subprograms: MAIN, GROUPS, SHIELD, SETUP, NATDEN, ISOCON, FS, RESINT, XSCAL.
15. Comments: The problem title is contained in the array $B X$, which is printed at the top of each page of output. IC is a line counter, LEAF is a page counter. Use of sense switch settings to provide optional output will usually result in some output pages without title or page number.

P. Function POLY

1. Purpose: Computes Legendre polynomials required by subroutine SETUP.
2. Arguments: N,X
3. Dimensioned Variables: None.
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: SETUP
7. Comments: N is the order of the Legendre polynomial required, X is the argument of the polynomial.

FUNCTION POLY FLOW CHART

Q. Function PROCOM

1. Purpose: Obtain compound nucleus formation cross section of nucleus, specified by Z and A, due to incident protons of energy specified by parameter Y.
2. Arguments: Y, Z, A.
3. Dimensioned Variables:

$\operatorname{FLIX}(4)$	FFLIST(4)	YL(39)
FLIST(39,9)	$\operatorname{XLIST}(4)$	ZL(9)

4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: FFUN.
7. Comments: Tabular data is contained in the array FLIST as a function of YL and ZL. See Volume II for other notation.

R. Subroutine RESINT

1. Purpose: Computes effective resonance integrals from resonance parameters.
2. Arguments: E, G, GAMG, GAMN, GAMF, RI, I.
3. Dimensioned Variables: $\mathrm{BX}(12)$, IA(20), DEN(20), SPOT(20).
4. Common Variables:

CP: BX, IC, LEAF
R: IA, ISOR, IZ, DEN, R, SPOT, TEMP
5. Called Subprograms: AJ, PAGE
6. Calling Subprograms: XLIB
7. Comments: See Volume II for notation.

S. Subroutine REVLIB

1. Purpose: To provide for future internally calculated cross sections to the NAP Cross Section Library.
2. Arguments: Z, A, IN, SIG.
3. Dimensioned Variables: SIG(43).
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: XSCAL.
7. Comments: This subroutine was never programmed and consists solely of a return statement. Therefore, no flow chart is included here.

T. Subroutine RLIB

1. Purpose: Reads decay data from FORTRAN tape unit 10 .
2. Arguments: J3, Z, A, GAM.
3. Dimensioned Variables: GAM(21), X(252)
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: MAIN, ISOCON.
7. Comments: Z and A identify the isotope for which decay data are required. J3 is a decay chain branch indicator. The decay data are transferred to ISOCON by the array GAM. If the decay data are not found, GAM(2) is set equal to 999. To avoid excessive tape reading time, twelve sets of decay data are stored in core at any one time. The initial reading of this data is accomplished by setting A equal to 999.

SUBROUTINE RLIB FLOW CHART

U. Subroutine SETUP

1. Purpose: Set up angular ordinates and quadrature weights required by SHIELD.
2. Arguments: IGEON, NOANG, L1
3. Dimensioned Variables:
$\mathrm{A}(10), \mathrm{AK}(10,10), \mathrm{AL}(40), \mathrm{AMU}(10), \mathrm{BX}(12)$
4. Common Variables:

CP: BX, IC, LEAF
SH: A, AK, AMU
L: AL
5. Called Subprograms: BLOCK DATA, POLY, PAGE
6. Calling Subprograms: SHIELD
7. Comments: The array A consists of the quadrature weights, AMU of the angular ordinates, AL of the set of possible weights and ordinates, and $A K$ of the K matrix defined by equations (25) and (26) of Volume II. L1 designates the desired quadrature scheme. The subprogram BLOCK DATA is simply a single data instruction inputing the set of possible ordinates and weights.

V. Subroutine SHIELD

1. Purpose: Perform neutron transport calculation, set up average regional group fluxes, and print flux.
2. Arguments: NOBG, NOREG, FLXIN, FLX, NISO
3. Dimensioned Variables:

$\operatorname{A}(10)$	$\operatorname{BX}(12)$	$\operatorname{SIGS}(20)$
$\operatorname{AFLX}(100,10)$	$\operatorname{BUM}(10)$	$\operatorname{SIGSL}(20)$
$\operatorname{AK}(10,10)$	$\operatorname{DX}(20)$	$\operatorname{SIGT}(20)$
$\operatorname{AMU}(10)$	$\operatorname{FLX}(860)$	$\operatorname{SLD}(100)$
$\operatorname{ANINT}(20)$	$\operatorname{FLXIN}(43)$	$\operatorname{SRS}(100,10)$
$\operatorname{BLFX}(100)$	$\operatorname{NINT}(20)$	$\mathrm{X}(101)$

4. Common Variables:

CP: BX, IC, LEAF
SH: A, AK, AMU
5. Called Subprograms: PAGE, SETUP
6. Calling Subprograms: MAIN
7. Comments: $\operatorname{AFLX}(I, J)$ is the angular flux at the mesh point I and angular ordinate J. The quantity $\operatorname{AFLX}(\mathrm{J})$ referred to in the input data is really $\operatorname{AFLX}(1, J)$. SRS (I; I) is the source term at mesh point I and angular ordinate J defined by equation (16) of Volume II. FLX is a one-dimensional array which specifies the average flux in each group and each region. The array is ordered by increasing region number. Within each region, the array is ordered by decreasing neutron energy. Output is dependent upon the value of input variable IOUT.

W. Function SIGCAL

1. Purpose: Computes $\sigma(n, \propto), \sigma(n, p)$, or $\sigma(n, 2 n)$ at energy E given level density parameters, binding energies, and Q values.
2. Arguments: Z, A, E, N.
3. Dimensioned Variables: None.
4. Common Variables:

CX: AA, AN, AP, BEA, BEN, BEP, CA, CN, CP, QA, QN, QP.
5. Called Subprograms: FFUN, COMNUC.
6. Calling Subprograms: XSCAL.
7. Comments: FP, FA, FN, FP*, FA*, and F2N are computed using equations (46) through (51) of Volume II, respectively. The argument N identifies the reaction type.
s.

X. Subroutine XLIB

1. Purpose: Reads cross sections and resonance parameters from FORTRAN tape unit 1 (data supplied by program user) or tape unit 8 (NAP Cross Section Library), and initiates resonance integral calculations.
2. Arguments: Z, A, I, SIG, LKEY, ISO.
3. Dimensioned Variables: SIG(43), X(250).
4. Common Variables: None.
5. Called Subprograms: RESINT
6. Calling Subprograms: FS, NATDEN
7. Comments: Z and A identify the isotope for which the cross section is desired, I the cross section type, SIG the cross section array, LKEY the cross section option, and ISO the isotopic index. The initial reading of data from the library into core storage is accomplished by setting A equal to 999. If the desired cross sections are not found, SIG(1) is set equal to 999.

Y. Subroutine XSCAL

1. Purpose: Controls calculation of cross sections and contains $\sigma(n, \gamma)$ calculation.
2. Arguments: Z, A, IN, SIG, LK, ISO.
3. Dimensioned Variables:

BX (12)
ELIM(43)
EN(10)
FELIM(44)

FLXIN(43) XSIG(10)
NA (10) VFAC(10)
4. Common Variables:

CF: ELIM, FELIM, FLXIN, IFLX, IWT, NA, NOBG, NONV, NZ, TFAC, VFAC.
CP: BX, IC, LEAF
CX: AA, AN, AP, BEA, BEN, BEP, CA, CN, CP, QA, QN, QP.
5. Called Subprograms: EXMAS, PAGE, SIGCAL, REVLIb.
6. Calling Subprograms: FS
7. Comments: Z and A identify the isotope for which the cross section is desired, IN the reaction type, SIG the cross section array, LK the cross section option, and ISO the isuiupic index.

Z. Subroutine XSIN

1. Purpose: Places cross sections input by program user on FORTRAN tape unit 1 in format required by subroutine XLIB.
2. Arguments: None.
3. Dimensioned Variables: X(250)
4. Common Variables: None.
5. Called Subprograms: None.
6. Calling Subprograms: MAIN
7. Comments: None.

SUBROUTINE XSIN FLOW CHART

VII. PROGRAM LISTING

This section gives a complete program listing of the main program and each subroutine. The entire program is written in the FORTRAN IV language, version 13. The listing of the main program is given first, followed by the listings of the subroutines in alphabetical order.

DIMENSION RX(12), ELIM(43) , EGG(<1) , FLXIN(43) •FLX(860), TI(50), TS(50)
1, POW(50), NINT(50), T(200), POWR(200), FFLIM(44), I7(20),IA(20), DEN(20)

ЗVFAC(10), KMAX(20), VOI (20), RD(20), NLIM(43), SPOT(20)
COMMON /BS/ NORG,LASTT,EGG,T, PUWR, SOR
COMMON /CF/ NORG, ELIM,FELIM,FLXIM,NZ,NA, VFAC, NONV,TFAC,IFLX,IWT
COMMON /CP/IC.LEAF,BX
COMMON /CQ/ NLIM
COMMON /R/ ISOR, IZ, IA, DFN, SPOT, R, TEMP
FLIIXN = CONSTANT FLUX NORMALIZATION FACTOR NOBG = NO OF NEUTRON ENERGY GPOUPS, LESS THAN 44 NOREG = NO OF SPATIAL REGIONS. LESS THAN ?I NOGG = NO OF GAMMA ENERGY GROIIPS, LESS THAN 21 NOSS = NON-7ERO IF SELF=SHIELTING IS REQUIRED NPSO = NON-ZERO IF FLUX IS ANISOTROPIC AND NOSS NON-TERO
CALL RLIR(1.1..999.,FGG)
TFLX $=0$.
1 READ (5,901) (RX(I), $1=1,12)$
901 FORMAT(12A6)
LEAF = 1
$I C=70$
CALL PAGE
READ (5,902) FLUXN,NORG,NOREG,NOGG,NOSS,NISO, IFLX, IWT
902 FORMAT (E17.5.716)
$1 C=I C+3$
CALL PAGE
WRITE (6.903) NOBG, NOREG,NOGG
903 FORMAT $/ 1 / 1$ HH THERE ARE, $15,24 \mathrm{H}$
NEIITRON ENERGY GROUPS,915.14H RFGI
IONS. AND.15,21H GAMMA ENERGY GROIIPS)
TF (NOSSILF.O) GO TO 2
$I C=1 C+1$
WRITE (6.904)
904 FORMÁT (43H NEUTPON SFLF-SHIELDING WILL BE CALCULATFD)
if inisngláój GO to ?
WRITE (6.905)
905 FORMAT 34 H THE INCIDENT FLUX IS ANISNTROPIC,
$I C=1 C+1$
2 READ (5,906) (FLIM(I), $1=1$, NOBG)
906 FORMAT(6E1?,5)
IF (IFLX.EQ.5) RFAD (5,933) (NLIM(I), $9=1$, NOBG)
933 FORMAT (2413)
$K=N O G G+1$
$I C=I C+3$
WRITE (6.920) FLUXN
920 FORMATI/34H THE FLUX NORMALIZATION FACTOR IS .1PE15i8/1
REAU (5,906) (FGG(I),I=1,K)
READ (5,906) (FLXIN(I),I $=1$, NOBG)
SET UP THF CROSS SECTION ENERGY LIMITS FFLIM
FELIM(4) $=1.57$
FELIM(1) $=$ FELYM(4) QEXP(.75)
FELIM(2) $=$ FELIM(4) \&FXP(.5)
FELIM(3) EFELYM(4)4FXP(,25)
$1=5$

```
    \(11=.25\)
12 FELIM(I)=FFLIM(4)"FXD(-(1)
    \(U=11+.25\)
    \(I=I+1\)
    IF (I.I.T.15) rin TO I?
    \(11=3.0\)
    13 FELIM(I)=FFLIM(4) *FYR(-1J)
    \(11=11+.5\)
    \(I=1+i\)
    IF (!.LT.44) rin in 1.3
    FELIM(44)=.OC)
    CALL GROIPPSITFLX)
    \(I C=I C+N O C H+3\)
    CALL PATFE
    WRITF IE,gng!
909 FDRMAT ///TG:1
        C.AMMA YNEFRY GKOI:P NO: IOX, 2 SH LOWFR ENERGY LIMIT
    \(1(M F V)\) )
        กO \(4 \quad 1=1, k\)
        \(j=1-1\)
    4 WRITF (G.gra) . FGG(I)
908 FORMAT (14Y, IC., 1世X, jPFI4.7)
    IF (NOSS.L.F.O) r.n TO. 3s
    CALL SHIELT(MOKF, MORFG,FLXIN,FLX,NISO)
    GO TO 31
    35 IF (NOSS,FO.O) r.N TO 36
    no \(3 \mathrm{I}=1\), Hnat,
    \(3 F L X(I)=F_{L} \times I A(I)\)
    \(K P=\) NOHGBMORFP:
    \(M P=N N_{M}+1\)
    OEAII (h, QOF) (rIY(I),I=MP,KP)
    TFLUX \(=\) TFIX
    กロ \(42 \mathrm{~J}=2\), MnPFP
```



```
    \(K P=(J-1)\) NNORF +1
\(41 F L \times I N(1)=F L \times(K \Gamma)\)
    CAIL GPOUPS(TFIX)
42 CONTINUE
    TFLX \(=\) TFI \(11 X\)
    GO TO 37
36 ก̃ 40 . \(1=1\), MAREF.
    NO \(40 \quad I=1\), NOAG
    \(M P=(J-1)\) «NORF +1
    \(F L X(M P)=F L X[\) (1)
    40 CONTINUE
    \(37 K P=\) NORGWPIORFC.
    กo \(5 \quad I=1, K F\)
    \(5 \mathrm{FLX(I)}=\mathrm{FLUXN*FIX(I)}\)
    READ \((5,924)\) TFAC, MONV
924 FORMAT (E17.5.ik)
    \(I C=I C+7\)
    CALL PACE
    WRITF (6.9.9.6) TFAC
926 FORMAT \(1 / \mathrm{OH}\) (JMIT \(A=1 P E 14.7\) )
    IF (NONV.LF.N) GO TO 107
    READ (5,925) (N7(I),NA! I),VFAC(I), I=1,NONV)
925 FORMAT (3(7IA,F1?.5))
```

```
    IC = IC+2+NONV
    CALL PAGE
    WRITE (6.977)
    927 FORMAT !/10X,2H Z,5X,2H A,5X,1yH NON 1/V FACTOR ,
    DO 38 I=1,NONV
    38 WRITE (6,978) NZ(I),NA(I),VFACII)
    928 FORMAT (8X,13,3X,13,8X,1PE)44,7)
    109 READ (5,910) NOPER,NODOS
    910 FORMAT(216)
        N\capPFF = NO OF PERTODS OF EQHIIL TIME INTERVALS, LESS THAN 51 
        READ (5,906) (POW(I),I=1,NMPER)
    READ (5,90A) (TI(I),I=1,NOPER)
    READ (5,911) (N!NT(I),I=1,NOPEK)
    911 FORMAT (12!6)
    READ (5,906) (TSII),I=!,NONOS)
    LASTT = 1
    NO 6 l=1,NOPFP
        6 LASTT = LASTTTNINT(I)
            I = 1
            J = 2
            k = 1
            T(1) = 0.
            POWR(1) = POW(1)
        7 חt = TI(I)/FLOAT(NINT(I))
        & T(J) = DT + T(J-1)
            POWR(J) = MOW(I)
            k = k + 1
            j}\equiv\mp@code{j+1
            IF (KGLE,NINT(I)) GO TO &
            I}=1+
            k = l
            IF (I,LE.NAPFR) TOO TO 7
                            cAlCulate the total fli!x
        10 TFLX= FLUXN*TFLX
                            IC=IC+5
        CAIL PAGE
        WRITE (6.912) TFIX
    912 FORMATI//GNH ISOTOPIC CONCENTRATIONS ARE CALC|JATFN AT THE FOLLOWI
    ING TIMES AND NORMALIZED POWER LEVELS /44H THE POWER iS NORMALIZED
    2TO A TOTAL FLUX OF ,1PF14.7/10X,14H TIMF INTERVAL,5X,13H TIME PHOU
    3RSI,10X,12H DOWFR LEVEL ,
        J=0
    WRITE (6,913) J.T(1)
913 FORMAT(13X,15,10X,1PE14.7)
    nO 11 K=2.LASTT
    J= J+1
    IC=IC+1
    CALL PAGE.
    11 WRITE (6,914) J,T(K),POWR(K)
```

914 FORMAT（13X，15，10X，1PE14，7，9X，E14，7） CALL XSIN

THE LOOP ON THE FEGION NUMRER IR STARTS HERF ISNR $=$ THE NO，OF INPUT ISUTOPFS IN THIS REGION 17．（I）$=2$ FOR THE ITH ISOTORE IA（I）＝A FOR THE ITH ISOTOHF DFN（I）＝ATOM DENSITY OF THE ITH ISOTOPF IN UNITS OF E＋24 IKEY（I）$=0$ jF CROSS SECTION NOT iN LIRPARY SHOULI RE CALCILATET $=1$ IF CONSS SECTION SHOULD NOT BE CALCIILATED $=?$ IF CROSS SECTION ShoUl AlWays re calculaten $=3$ IF CROSS SECTION IS SUPPLIET
$I R=1$
14 READ（5，915）ISOR，P．TEMP，VOL（IK），RD（IR）
915 FORMAT（112，4F17．5）
IF（ISOR．LF，O）GO TO 150
$I C=61$
CALL PAGF．
WRITE（S，9חT）ISOR，IR，VOI（IR），R，TFMP
907 FORMAT／／／／IOH THERE APF，I $5,31 H$ ISOTOPES OR FLEMENTS IN REGYON．I4 121 H THE FFGION VOLUME IS，IPE15．8．3H CC／30H HALF THF MEAN CHORD LE
 READ（5，916）（T7（I），IA（I），IKEY（I）－DEN（I），I＝1，ISOR）
916 FORMAT（91213．16．F12．5））
CALL NATDFN（IKFY）
IC $=1 C+4+$ SCR
CALL PAGE
WRITE（6．917）TR
917 FORMATI／／37H THF INITIAL ATOM DENSITIFS IN REGION，15，5H ARE／14X： 12H 2，8X，2H A， $6 X, 2 O H$ ATOM DFNSITY（E +24 ）， $5 \mathrm{X}, 21 \mathrm{H}$ CROSS SECTION APTIO 2 N ）
no 15 I＝1，ISOR
15 WRITE（6．918）［7（1），IA（1），DEN（1），IKEY（1）
918 FORMAT（10X，15，5X，15，7X，1PE14，7，12X，15）
nO $16!=1$ ，NORG
$K P=1+$ NORGB（IR－1）
16 FLXIN（I）$=$ FLX（KP）
$1=1$
17 ZISO＝17（1）
$A I S O=1 A(I)$
ATD＝DEN（I）
LKEY $=$ IKEY（T）
$K M=0$
CALL ISOCON（7ISO，AISO，ATD，LKEY，KM，I）
$K M A X(I)=K M$
$1=1+1$
IF（I．LE．ISOR）GOTO TO
ENT FILF 2
REWIND ？
$I C=53$
CALL PAGF．
WRITE（6．919）IR
919 FORMAT（／／4EH THE ATOR：NENSITIES（E＋24 ATOMS／CCI IN REGIONOI4．5H A $\mathrm{RE} \overline{\mathrm{E}}$,
$1 C=I C+4$

```
    00 19 j=1,200
    nO 18 NG=1,NOGG
    18 REGS(NG;J) = 0.
    19 CONTINIIE
    1 = 1
120
    IF (KK.LE,O) GO TO 145
    DO 140 k=1,kK
    READ (2) [MIN,IMAX,(Z(M),A(M),M=],IMAX)
    IC=1C+5
    CALL PAGE
    WRITE (6.930) K
930
    LATOM DENSITY,
    DO 135 J=2.LASTT
    READ (2) (\Gamma(M),M=1,5)
    READ (2) ((S\capR(M,MPM),M=1,NOGG),MM=IMIN,IMAX)
    IC=1C+3
    CALL PAGE
    WRITE (B,9?1) T(J)
921 FORMAT(/1FF15.7/)
    DO 130 M=1M「N.IMAX
    IZ(M) = IFPX(Z(M)+.5)
    IA(M)={F[X(A(M)+,5)
    IC=1C+1
    CALL PAGE
    WRITE (6,999) IZ(M),IA(M), П(M)
929 FORMAT(19X.214.1PE15.7)
    #O 125 NG=1,NOGC
125 REGS(NG,J) = REGS(NG,J) + SOR(NG,M)
130 CONTINIE
135 CONTGNUE
14O CONTINUE
145 i= 1 + 1
    IF (I.LE.ISOR) rOO TO 12n
147 1C = 70
    CALL PAGE
    WRITE (6.922) IP
922 FORMAT///37H THE PHOTON SOUIRCE STRENGTH IN REGION,I4,3H IS//3IX.
    1 15HSOURCE STRFNGTH. 36X,5HTAMMA,14X,GHFNERGY/35X, 7HNENSITY,12X.
    2. 14HENERGY OFNSITY,8X,15HSNURCE STRENGTH,GX,15HSOURCE STRFNGTH/
    3 115H TIMF(HOURS) ENERGY GROUP (PHOTONS/CC-SEC) (PHOTONS-
    4MEV/CC-SEC) (PHOTONS/SEC) (PHOTONS-MEV/SEC) )
    IC = IC + R
    DO 155 J=2.LASTT
    DUM = .5@RFGS(1.J)*(EGG(1)+EGG(?))
    RUMI = VOL(IR)QREGS(I,J)
    nUM2 = VOL(IR)*NUM
    IC=IC+2
    CALL PAGF
    WRITE (6,973) T(J),REGS(1,J), DUM, तIMM1, NUM2
923 FORMATI/1PF14.7,5X,7H 1,11X,E14,7,9X,F14.7,8X,E14:7.7X,E14.7)
    IF (NOGG.LF.I) GO TO 155
    DO }150\mathrm{ NG=?,NOGG
    MUM = .5*RFGS(NG,J)*(ERG(NG)+FGG(NG+1))
    DUMI = VOL(IR)&REGS(NG,J)
```

```
    ПUM2 \(=\operatorname{VOL}(I R)\) ®DUM
    \(I C=I C+1\)
    CALL PAGE
```



```
935 FORMAT(14X,17,11X,1PF14.7,9X,E14.7,8X, E14.7,7X, E14.7)
155 CONTINUE
    CALL DOS(KM(IR), VOL (IR),IR, NODOS,TS,RFGS,NOGG,LASTT, EGG,T)
\(160 I R=I R+1\)
    REWIND?
    REWIND 8
    REWIND 10
    IF IIR.LF.MORFG) GO TO 14
    REWIND 1
    GOTO 1
    END
```


人2.: $8,57,73,47,77,44,12,44,25,44,5,44,3,44,19,44: 17,44,07,44$: 03,

$14,73,17 . r 1,12,75,11.74+11,4,11,71,11,78,11,991$

DFPIIRN
5 If (xI.15.1.1 en to 15
If ixi.1.T.1, \quad if io 30
IF (EETA.LF. 3 . 2 .) (. TC 10
$30 A_{j}=1.570 \%$ COOT(HFTA*(1.+AETA))
RETIIRN
$107=A L O H(1$,
$\Delta Y=\left(11.517+n\left(0 r_{3}(F+T A)\right) / 0.60715\right.$

1

FTA $=1 .+E \times O($ MIM 1)

RFTUPN
15 IF (VI.GT.O.ne) ro : O ? 0

RTTIFN
20 IF (XI.GF.0.1) TORTU 25
IF (BETA.GT.735.) \because IT in lA
GO TO 10
$25 A_{K}=(A L \cap ラ(\cap E T A)+11.4131 / 7.69315$
IF (AK.I.T.n.) ron TC. la
$I K=A K$
$1 \times 1=10.03 \times 1$
$A A K=I K$
RAK $=A K-A A K$
$\Delta \times I=I \times 1$
RXI $=10.03 \times 1-\Delta x 1$

$A_{J}=A J 1+\{A K \Leftrightarrow(A J n=A J!)$
RETURH
En

```
    FUNCTION ALCOM(Y,Z,A)
    DIMENSION YL(29),ZL(6),FFIST(29.6),FFLIST(4),XLIST(4),FLIS(4)
    BLIF(P,Q,R,S,Y)=((Q-P)O(S-F)/(R-Q)+S)
    IF (Y,GE,(,2)) GO TO 202
201
    ALCOM = O.
    RETURN
202 IF (2.LT.(0.)) GO TO 201
    IF (Y.GY,3.) GO 10 300
    YL(1) E:2
    DO 203 1m2.29
203 YL(I) = YL(I-1)*,1
    ZL(1) = 10.
    2L(2)=20:
    2L(3)=30.
    ZL(4)=50:
    ZL(5) = 70:
    ZL(6) = 90:
    DATA ((FLIST(I.J),IE1.29),J=1.3)/79.E-9.:00179.,061,:59,2:47,6:7%
    1 12,5,19,2,25,6,31,6,37,.42,,46,.50,.53:,55,.57,,58,,59,159,5,60,4
    2,60,8.61,3,61,6,62,1,62,5,63.,63.5.64,.28,6E-11,54,E-6.,001560
```



```
    477:.79,5,81,0,82,5,84,4,85,6,87,9,88,3,89,6,90,8,91:9,76,E-15,
    5 37:E-8,59,Em6,,0063,:156,1,38,5,8,14,3,24:8,36,,46,,55,,63,,70., 
    6 76:.81,.86,089,7,93,7,97,.100,2,103;,105,5,107,7,110,1112;3,114,5
    7.116.5.118.31
    DATA ((FLIST(I,J),I=1.29),J=4,6)/64,Em21,62,E-13,12,3E=0.,000148.
```



```
    4 ,101,.113,123,.131,,140,1148,,155,5,163,3,168,9,173,9,178;6,
    5 182,9,186,9,190,6,194,.197,2,0,.35,E-19,42,E-12,46,E-8,,00042,
```



```
    7 171!.182..191.,200.9206.5.212.5.217.7.222.5.226.9.231.1.234.9/
    IF (Y,LT,YL(29)).GO TO l
    k =27
    GO PO 2
1 IF (Y.GY,YL(1)) GO TO 3
    K=1
2 KK = 2
    60 10 9
300 4 I=1.29
    IF (Y,LE,YL(I)) GO TO 5
    4 CONTINUE
    1 = 29
    5 I = |-1
    IF (I,LE.37) GO PO 6
    K=101
    60 10 1
    6 1F (1:GE:2) 60 10 6
    K=1
    7 KK = 3
    GO TO %
    6 K E I-1
    KK m&
    9 IF (2.LP.ZL(6)) GOTO 10
```

```
    6. % 5
10 IF (Z.GT:ZL(1)) GO TO 12
    L=1
11LL=2
    60 10 19
12 10 13 1E1.6
    IF (Z:LE:ZL(l)) 60 10 14
13 CONTINUE
14I= I-1
    IF (I,GT.4) GO YO 15
    IF ((1-1)-1) 16.18.18
15 L = I-1
    GO 10 17
16 L = I
17 LL = 3
    GO 10 19
    18L=1-1
    LL=4
    19 J1=1
    J3 = LL+L-l
    J2 =
    x = Y
    N=kK
    l=1
    KA = K+KK-1
    DO 20 IAEK.KA
    XLIST(I) = YL(IA)
201 = 1*1
    I=1-1
    KB = 0
    GO 10 22
2! KB = KB+1
    FFLIST(KB) # DUMMY
22 1 = 1
    DO 23 IA # K,KA
    FLIS(I) = FLISP(IA.J2)
    23 I= i+1
    I= 1-1
    J2= = 22+1
    IF (J2%J3) 24,24.25
24 ASSIGN 21 TO MAIN
    GO 1O 30
    25 ASSIGN 26 TO MAIN
    GO TO 30
    26 KB = KB+1
    FFLIST(KB) a DUMMY
    N = KB
    x=2
    1 =1
    DO 27 KC=L.J3
    XLIST(I) = 2L(KC)
27 1= 1*1
    DO 28 I=1.KB
26 PLIS(I) = FFLIST(I)
```

```
    ASSIGN 29 TO MAIN
    60 YO 30
    29 ALCOM = 0;01&DUMMY
    RETURN
    30 1F (X-XLIST(N)) 32.31.31
    31 1 = N-1
    GO TO 37
    32 IF (X~XLIST(I)) 33.33.34
    33 1 # 1
    60 10 37
    34 DO 35 I=1,N
    if (XmXLIST(I)) 36,36.35
    35 CONTINUE
    l=N
    36 ! = !-1 = BLIF(X,XLIST(I), XLIST(I+1),FLIS(I),FLIS(I+1))
    GO TO MAIN, (26,21,29)
300 R = 1.2 + 1,5*(A**,333333)
    B =2,88402/R
    S = A; "ANG;6442E-24/(A*4;)
    C=1.05443E-14/(SQRT(2.*S*B41.60206E-06))
    T = C/SQRT(Y)
    D = 1.-R/(Ya(R+T))
    ALCOM = .031416*D*(R+T)*(R+T)
    RETURN
    END
```


FUNCTION ALETH(FELIM.SIG.I.J)

C
C
C
this surfoutine averages rross sections ovfr a $1 / E$ flux
DIMFNSION FEI.IM(44), SIG(43)
$M=J-1$
IF (I.EG.M) GO TO 1 0
ALETH = 0 .
ПO $5 K=1, M$
ALETH = ALETHISIG(K)"ALOG(FFLIM(K)/FELIM(K+1))
5 CONTINUE
ALETH = ALETH/ALOG(FFL!M(I)/FELIM(J))
RETIRN
10 ALETH = SIG(1)
RETURN
END

BLOCK DATA

COMMON /L/AL

DIMENSION AL(40)

DATA (AL(I), I=1,40)/,57735027., 86113631., 33998104..93246951., 66120 1939., 23861919.,96028986..79666648,.52553241,.18343464., 97390653., 8 26506337., 67940957.,43339539., 14887434.1....447214.1....765055., 28523

 572,.29552422,.16666667,.83333333.,066667., 378475,.554858/
END

```
    FUNCTION COMNUC (A,EN)
C SUBROUYINE FOR COMPOUND NUCLEUS CROSS-SECTION
    DIMENSION F(22),G(22)
    AREAE (70.687)# (A800:66667)
    IF (ENILE;O.) GO TO 206
    SEX= 3289(( (A**1;33333)/(1;*A))ASQRT(EN)
    BEX = SQRT(SEX*&2 +2:25*(A&&0.66667))
    L = 4+IFIX(SEX)
    IF (L;GF.15) L=15
    K=L+2
    SUM = O:
    D=0;
    8=1.
    C:5.
    DO 202 Jw2,K
    G(1) =0.
    G(2) =0,
    G(3) =1:
    F(1) E1:
    F(2) El:
    F(3) Eli/SEX
    AJ=J
    IF(J-3) 203.203.204
    203 VE1:/(F(J)*#2 +G(J)*a2 )
    VPz(I, (SEX**2 )l#((SEX**2 )*(F(J-1)*&2*G(J-1)*#2 )* ((AJ-2.)*#2 )
    L*(F(J)*&2 *G(J)$#2 )-2&*SEX*(AJ-2.)*(G(J)*G(J-1)*F(J)#F(J-1)))
    f =((4.&5EX*BEX*V)/(BEX**2*(2,*BEX*SEX*VP)*SEX*V))*B
    B=3.
    60 10 205
204
    F(J)=((3:+D) /SEX)*F(J-1)-F(J-2)
    G(J)=((3,*D)/SEX)*G(J-1)-G(J-2)
    DED+2;
    VEl:/(F(J)*&2 +G(J)**2 )
    VP#(1./(SEX**2 ) )*((SEX**2)*(F(J-1)**2 +G(J-1)**2 )* ((AJ-2;)*&2 )
```



```
    T=C*(4;*SEX*BEX*V)/(BEX**2+(2.*BEX+SEX*VP)*(SEX*V))
    C=C+2.
    205 SUM=SUM+T
    202 CONTINUE
    COMNUC = (AREA/(SEX*SEX))*SUM*1.E-3
    RETURN
    206 COMNUC = 0,
    RETURN
    END
```

```
    SUBROUTINE OSSIRI,VOL,IR,NOLOS,TSTREGS,NOGG,LASTTTREGG.TI
    DIMENSION TS(50), REGS(20.200), T(200), EGG(21), E(1A), C(18).
    1 DR(200).D(25)
    COMMON /CP/IC.LEAF,BX(12)
    DATA (E(I),I=1,18)/.1,.15,.2..3.,4,.5..6..9.1.,1.25,1.5.2..3..4..,
    15.96..8..10.1
```



```
    1 5.96,6.27.6.81,7.87,8.41.9.,9.46,10.22,10.67/
    IF (RD.LE.O.I RETURN
    [0 5 J=1.2.00
    5 DR(J) = 0.
    IC = 70
    CALL PAGE
    WRITE (6.901) RU,IR
901 FORMATP//28H THE GAMMA DOSE RATE AT R = ,1PEI5,7,I5H CM FROM REGIO
    IN,I5,3H IS/35H TIME(HOURS) DOSE RATE (RAD/HR) I
    IC = IC + 5
    00 33 M=?,L4STT
    OC 30 NG=1,NOGS
    EN = . 5#(EGG(NG) +EGG(NG+I))
    IF (EN.GE.O.1) ©O TO 10
    z = EN#VSL#RE(SS(NG,M)/(1.4142F+OG*RD|RD)
    GO TO 30
    10 IF (EN.LF.IO.)G2 TO 15
    z=EN#VOL"REGS(NG,M)/(1.3408E*O7#RO*RD)
    GO T0 30
    15 J = 0
    IO 20 k=1,18
    J=J+1
    IF (EN.GT.E(K)) SO TO 20
    GO TO ?5
    20 CONTINUE
    25 J = J - 1
    CONy= (l) + (EM-E(J))%(C(J+1)-C(J))/(E(J+1)-F(J))
```



```
    30 DR(M) = OR(M) + 2
    IC = 1C+1
    CALL PAGE
    33 WRITE (6.902) T(4),DR(M)
902 FORMAT(1PE1b.7,3X,E15.7)
    IC = 70
    CALL PAGE
    WRITE (6,903) RU.IR
903 FORMATI//23H THE GAMMA DOSE AT R = ,1PE15.7.23H CM FROM SOURCE RE
    IGION,I5.4H IS/59H INITIAL TIME(HOURS) FINIAL TIMF(HOURS)
    ZDOSE(RAD) )
    IC = IC + 5
    J = 2
35 IF (J.GT.NOUOS) SO FO 80
    M = 2
    k = J - 1
40 IF (TS(K).LT.T(M)) GO.T0 45
    M = M + 1
    GO TO 40
45MB = M - 1
```

```
    \(M=M B\)
50 IF (TS(J).LE.T(M)) 50 TO 55
    \(M=M+1\)
    GO TO 50
\(55 \mathrm{ME}=\mathrm{M}\)
    IF (ME.LE. (119 + 1) ) GO TO 65
    \(D R X=D R(M B)+(T S(K)-T(11 R)) Q(M R(M B+1)=D R(M B)) /(T(M B+1)=T(M B))\)
    \(A B=.5 *\left(T\left(M^{R}+1\right)-T S(K)\right) *(D R(M B+1)+D R X)\)
    \(\cap R X=\operatorname{MR}(M E-1)+(T S(J)-T(M F-1)) \&(D R(M E)-D R(M F-1)) /(T(M E)-T(M F=1))\)
    \(A C=.5 \Leftrightarrow(T S(J)-T(Y E-1)) \omega(D R X+D R(M E-1))\)
    \(I B=M H+1\)
    \(I E=M E=\) ?
    \(A R=0\).
    EO \(60 \quad I=1 \mathrm{~B} \cdot I F\)
    \(60 \Delta R=.53(T(I+1)-T(I)) *(D R(I+1)+I D(I))+A R\)
    DOSE \(=A Q+A P+A C\)
    GO 1070
\(65 \operatorname{DRX}=\operatorname{MR}(M A)+(T S(K)-T(M E)) \#(D R(M E)-D R(M B)) /(T(M E)-T(M A))\)
    \(C R Y=U R(M R)+(T S(J)-T(M E)) \#(D R(M E)-D R(M B)) /(T(M E)-T(M A))\)
    DOSE = .5\#(TS (J) \(=T S(K)) *(D R Y+\) DRX)
    70 WRITE \((6,9 \cap 4)\) TS \((K)\), TS(J), DOSE
904 FORMAT ( 3 X, IPF15.7.8X,E15.7.6X,E15.7)
    \(I C=I C+1\)
    CALL PAGE
    \(J=J+\) ?
    GO PO 35
80 RETURN
    END
```

FUNCTIO EMEIFETM，S16，1，1）
C
C H：X pha JMit ENEGGY

$11=1-1$

$E A F R=0$
ro $5 \quad k=1$ ，

5 coritno．
FNEK＝FVER：IFEIY（！）－FFIJ！（J）
RETUFN

Pとなぁた
Fing

FUNCTION EXMAS (Z:A)
C A SUFPROGRMM FOR COMPUYING MASS EXCESS FROM THE WING-FONG FORMULA C SEE ANL-6886

DIMENSION B(5),C(5),D(5),E(5)
$2 A=A *(1 ; *, 003 * A) /(2 ; * .01 * A)$
IF (AMOD (A,2,1) 4.1:4
1 IF (AMOD(2.2.)) 3.2.3
2 DELTA $=-11$
GO TO 5
3 DELTA $=1$:
GO YO 5
4 DELTA $=0$.
$531=0$:
$52=0 ;$
$D(1)=3 ; 49$
$D(2)=5,99$
$D(3)=5.75$
$D(4)=7.76$
$D(5)=5 ; 02$
$E(1)=A-2-28$.
$E(2)=A=2-50$!
$E(3)=A=2-82$;
$E(4)=A-Z=126 ;$
$E(5)=A-2-152$.
IF (E(1)) 7.6.6
$6 B(1)=4,04$
$C(1)=0$.
GO 108
$7 B(1)=0$;
$C(1)=1,44$
8 IF (E(2)) 10.9 .9
$9 B(2)=5 ; 96$
$C(2)=0$:
601011
$10 B(2)=0:$
$C(2)=2 ; 88$
11 If (E(3)) 13.12 .12
$12 B(3)=2.49$
$C(3)=0$.
601014
$13 B(3)=0:$
$C(3)=5.32$
14 1F (E(4)) 16.15.15
$15 B(4)=2,9$
$C(4)=0$.
601017
$16 B(4)=0$.
$C(4)=5.36$
17 IF (E(5)) 19.18.18
$18 \mathrm{~B}(5)=6.88$
$C(5)=0$:
GO TO 20
$19 B(5)=0$
$C(5)=5.29$
$201=1$


```
    1 1)
    1F (1.5) 22.23.23
\(221=1+1\)
    601021
23 D(1) \(=3.07\)
    \(D(2)=2,74\)
    \(D(3)=4,22\)
    \(E(1)=2-28\).
    \(E(2)=2-50\)
    \(E(3)=2-82\).
    1F (E(1)) 25.24.24
\(24 B(1)=2,27\)
    \(C(1)=0\),
    601026
\(25 \mathrm{~B}(1)=0\);
    \(C(1)=2.77\)
26 IF (E(2)) 28.27.27
\(27 B(2)=4.31\)
    \(C(2)=0\).
    GO 1029
\(28 \mathrm{~B}(2)=0\).
    \(C(2)=3.1\)
29 IF(E(3)) 31.30,30
30 B(3) \(=1.51\)
    \(C(3)=0\) :
    60 TO 32
\(31 B(3)=0\).
    \(C(3)=2,35\)
\(321=1\)
```



```
    IF (I-3) \(34,35,35\)
\(341=1+1\)
    GO TO 35
\(35 \mathrm{~S}=\mathrm{S} 1+52\)
    \(A S=S Q R T(A)\)
```



```
    \(1 \quad+215.8 / A 1+11.51 \circ D E L T A / A S=5\)
    RETURN
    END
```

FUNCTION FFUN（J，TZ，TA，EZ，EL，C，A，BEN）

IF（EZ．GTAE1）GO TO 1
FFUN $=0$ ．
RETURN
1 K＝10．＂（ヒスーヒ1）
IF（K，GT，50）$K=50$
IF（K，LT，LD）K＝ 10
$D E=(E 2-E 1) /(F L O A T(K-1))$
$M=2$
IF（J．NE，1）GO TO 2
$R=1$. ． R （TA＊＊，333333）
$8=1,442$（ $\mathrm{T}^{2}(-1$, ）／R
GO TO 3
2 IF（J，NE，2）GO TO 3
$R=1.2+1.50((T A-3) * 0.333333$.
$B=1,442$＂2．＂（T2－2．）$/ R$
$31=1$
FFIIN $=0$ ．
FUN $=0$ ．
$E E=E 1$
C
C
C INTEGRATION LOOP STARTS HERE

4 If（EE，LE，U．）GO TO 8
$Y=E 2$－tt
RHO $=0$ ．
IF（Y，GT，O，）RHD $=\operatorname{CWEXP}(2, \# S Q R T(A \nVdash(Y+B E N)))$
IF（J．LT，3）GO TO 5
$E N=E E(T A+1,) / T A$
SIG＝COMNUC（TA，EN）
GO TO 7
$5 X=E E / B$
IF（J．NE，1）GO TO 6
$Z=T Z-1$.
SIG $=$ PROCOM $(X, Z, T A)$
GO TO 7
6 IF（J．NE，2）GOTO 7
$Z=T Z-2$.
$P A=T A-3_{1}$
SIS＝ALCOM（X，Z，PA）
7 FUN＝EE®SIG＂RHO
IF（1，EQ．1）FUN $=, 5 \$ F U N$
IF（I，EQ，K）$+U N=, 5 \sharp F U N$
FFUN＝FFUN＋DEQFUN
IF（M，EQ，1）WRITE（6，901）EE，SIG，RHO
901 FORMAT（20X，4H EE＝，E13．6，6H SIG＝，E13．6．6H RHOE，E13．6）
8 IF（I．GE，K）150 TO 3
$1=1+1$
$E E=E E+D E$
GOTO 4
9 IF $(J, E Q, 2)$ GO TO 10
FFUN $=4,7836 * T A \Delta F F U N /(T A+1$,

60 TO 11

11 IF (M,EQ.1) WRITE (6.902) J,TZ.TA,EZ,E1,A,FFUN
902 FORMAT(20X,3H JE, IJ,6(3X,E13.6))
RETURN
END

FUNCTION FISS(FELIM,SIG,I,J)
C
C
C
C
tNis subroutine averages cross sections over a fission FLUX SPECTRUM

DIMENSION FELIM(44), SIG(43)

$$
M=J-1
$$

$$
\text { IF (I.EQ.M) GO TO } 10
$$

$$
\text { FISS }=0
$$

$$
I=1.29 E+06
$$

$$
\text { DO } 5 \mathrm{~K}=1, \mathrm{M}
$$

FISS = FISS+SIG(K)\#(1.+FELIM(K+1)/T)*FXP(-FELIM(K+1)/T)-(1.+FELIM $1(K) / T)=\operatorname{EXP}(-F E L I M(K) / T))$
5 CONTINUE
FISS = FISS/((1.+FELIM(J)/T)\#EXP(-FELIM(J)/T)-(1.+FELIM(I)/T)*EXP 1 (-FELIM(I)/T))
RETURN
10 FISS = SIGII
RETURN
END

FUNCTIONFS(T,A,INRE•I, KEY,ISO)

THIS SIPREUTIME INTFRRATES THF FLIX TIMES THE GROUP CROSS SFCTYחU'S CVER EIERGY AAIN PRINTS THE GROUP CAOSS SECTIONS IF SF*ST SWTTCH 3 IS MOWP!

1 VFACIIO), GSIG(43), STC(43)
COMMINN /CF, MOAR, FLIM. EELIA, FI, YPN, NZ, HA, VFAC, NDNVE TFACg
1 IFIX, IWY
COMMON /CP/ IC. I.EAF, MX
CCMMON /CC/ ALIM(43)
$F:=1$.
חO $5 \quad J=1,4.3$
SIf(I) = r 。
$5 \operatorname{GSIG}(I)=1$.
$G=T F A C$
IF (IFLx,1O.5) YO TM 05
IF (HONV.EO.O) FOTR 12.
กn $12 I=$. Mrinv
$17=l$
$I A=A$

$G=$ TFAC\&VFAC(1)
10 Cuntinuf
12 IF ! ! KEY=En.2) (O) TO 15
CAL.L XLIP(7, A, INDF, G1G, LKEY, ISN)
IF (SIG(1), it. OGn.) GO TO 20
IF (LKEY.TF.]) riO YO is
RETUFN
15 IF IINRFEC.I') RFTUFR

If IINRE. (n. I) KETUFI!
If (INRE,FO.'4) PFPUPN
CALL XSCAL(Z.AのIMAF, SICIGKEY,ISO)
$20516(43)=6459(43)$
CALL SSVTCM(?,IS?)
IF (IS2.NE.1) 6 (1027
$I L=I C+1 \bar{c}$
CALL PADE

920 FORMATI/29H THF FINE GRDUP XSFCTS FOP $Z=, F 5,1,3 H \quad A=, F B, 1$ GH INREE,

23 IF (IFLX,FO.5) COTO 165
IF (IWT,EQ,O) GO TO 45
$I=1$
DO $40 \mathrm{~K}=19 \mathrm{AORG}$
DO $25 \mathrm{~J}=5.44$

25 CONTTNUF
28 IF (J.t6.44) TOM 10 35
IF (IWT,NE,2) GO 10 3n
GSIG(K) =FNER(FELIM.SIGnIGJ)
GO TO 40

```
30 GSIG(K) = ALETM(FEIIM,SIG,I,J)
    GO TO 40
35GSIO(k)=SIG(45)
40 1 =
    GOTO 15
45 1 = l
    n@ 7? k=1,110:ra
    00 50 J=1,44
    IF (FLIM(k).CE.FFI!M(J) (00 Tn 53
    5 0 ~ C O N T T N : H F .
    53 IF (J.tG.44) GO T0, 54
        If (J.LE.17) ron TO AO
        IF (I:SE,IT) rin TO (S
        x = (1)-1) (1-1)
        If (x.E.T.C.S) On TO K5
        G0 17 6"
    55 GSIG(K) = `IC(4.3)
    GO TO N
    60 GSIG(K)= FISSIFPLIN,SIG,I.J)
    G0 T\ 7!
    65GSIG(K)=ALFTH(FFII!A,SI~,I,N)
    70 1 = !
    72. CGNTINUF
    75 IF (IFLX.1r.1) roo TO &5
        FS = FLXIN(J)&GSIf!1)*aLOG(FFI.IM(!)/FLIM(1))
    DO &O K=2,NORE.
    80FS= FS+FLYIF:(K)*GSTG(K) BALOF(FLYATX-1)/ELTM(K))
        GO TO 105
    85 IF (TFLX,NF.0) 00 TO 25
```



```
        no gr, K=2,Nofr
    90 FS = FS+rLXIM(K)*GS!r(K)*(FLIH(K-1)-FLIM(K))
        GO In 105
    95 DU 1100 n=1,年:%
    100FS=FS + FLXIN(K)PFSIG(S)
    105 CALL SSWTCH(9,TE)
        IF (IS.NE.l) rin TO J5;
        IF (FS.LE.C.) GO TO lo?
        IC=IC+1:OnG+4
        CALL PAIFE
        1%= ?
        IA =A
        IF (INRE.CT.4) rer ve jog
        GO TO (110.115.120,12与1, INRF
    1OAIMR=TNRE-IN
        GOTO 1130.135,140,145), INR
    110 WRITE (6.901) I%, IA
        GO TO 15%
    115 WRITF (5,902) 17. IA
        GO TO 1>0
    I20 WRItE (f,qп\3)IZ, IA
    GO TO 1כO
    125 WRITE (6,on4) IT, IA
        GO TO 150
    130 WRITE (6,911) IZ, IA
        00T0150
```

135 WQITE (5,912) !7, IA
GO TA 150
140 WRITE $18,913117,11$
Ger TO 150
145 WHITE (F,G14) IT, IA
150 WHITE (6.9ns)

$155 \mathrm{FS}=1, \mathrm{~F}-2445.5$
If (IS.NE.1) fir Th ikc
Wh ITE (6, an 7) +!
160 日ITURN.
$1651=\mathrm{i}$
$J=1$
$k=1$
170 if (K.tu.44) rot TO GK $1=$! + 1
rosig(j) $=$ rsin(J) $+\operatorname{sir}(k)$

$k=k+1$
60 TO 170
175 GSIG(J) = FSTE(J)/FLCT(I)
$1=0$
$J=3+1$
$k=k+1$
$00 \quad 10170$
$\stackrel{C}{c}$
901 FURIMTI/4EH THE (N,GAMMY) GROIIP RDOSS SECTIONS FOR 2 OF ,I3,IOH A 1 NG A OF , 13, 5H AFE)

 LA OF ,Ij, EH ARF)
905 FCRMATHOX,7H GFOID, $20 X, 22 H$ CROSS SFCTYON (RARNS),
906 FCR1.1T(22).17, 23x,1pF27.A)
907 FCFMATLGZH THF FRODICT AF CROSS SFCTION: ANO FLUX IS ,IPEPO.8.19H 1 NOUTSM-rnimge
911 FCRNATI/SSH THF IGOMFRIC (NGOANMA) OROMP CROSS SFCTIONS FOR 2 DF
1,13,10m AlO A TE, P?,5HARE?
912. FORMATISIM THE IGNIFOIC (N,P) GOMUP CEOSS SECTIONS FOR 2 OF IS, 1104 ANI, A $\mathrm{FF}, 13,5 \mathrm{H} 4 \mathrm{H}^{\circ} \mathrm{E}$,
913 FCRNATI/5EH THF ISNMFOIC (I,AIPHA) GROUN CROSS SECTIONS FOR Z OF $1,13,10 \mathrm{H}$ ANT A OF , $13,5 \mathrm{H}$ IRF)
914 FORMATISAZH THE ISOMFRIC (N.?N) GONUP CRCSS SECTIONS FOR 2 OF I I 3 $1,10 H$ ANL A OF, $13,5 \mathrm{H}$ ARE $\mathrm{F}: 1$

SURROUTIME T，RGIIPS（TFI．X）

THIG SIUROHITME ADJISTS THF ORIGINAL GROID GOUNПARIFS TO THF FIXFD LICRIPY GPOIP OOUNDARIES

 1 ，： 1 \｛ 121

1 TFIX，TNT
COMMON／CF／TM，LEAF，\quad OX
$\left.T F_{L X}=.\right)$ ．
IF（IFI．：．in．！）ro in 1 rn

no $13^{\circ} \mathrm{t}=\mathrm{i}, \mathrm{m}$ mar．
$135 \mathrm{THLX}=\mathrm{FHL} X+F(X 1: 1(1)$
rov T0 1）？

GO TO 10？

חu $155 \quad 1=\therefore$ aingr．

$J=M O A_{1} ;-1$
П） $40!=1 . j$
吅 5 K＝？， 4

5 CONTIN：
C
10 IF（ELIM（I）．T．ח． 4 ）rio T）40

IGT＝YMPIEG GROIP ARJICTIG DY ENFRGY，NOT IFTHARGY

$k=k=1$
C

15 IF（IFLx，OF，N1 ほ门 TU $2 j$

$x=F E l$ P：11）

$\mathcal{F L X I N}_{L}(I+I)=F L X \operatorname{I}(I+I) \omega(A L O G(F L Y M(I) / E L I M(I+I))-D E L) /$
1 A！OT（F！．IM（I）／E！Ma（I＋1））
60 TO 20

1 ALOG（ELIM（T－1）／ELIM（I））
$20 E L I M(I)=F E!I^{+1}(K)$
GO TO 40

$K=K=1$
30 IF（IFLX，NE，O）GO 1035
DELE $\left.=E_{L} \|(I)-F E_{L I M} I K\right)$

```
    X = FELIN(1)
    IF (I,NF.1) x = ELIN(I-1)
    FLXIN(I)=FLXPN(I)*((TEL+X-EIPM(P))/(X-FLIM(I)))
    35 ELIM(I) = FEI["(K)
    40 CONTINIJF
    90 % = %
    no 9? I=1,Nore
    92 IF (FLXI!:(1).IF.C.) FLXIN(I)=0.0
    IF (IFix.Fn.1) fre90,105
    IF (IFLX.EC.O) or Tr 115
    nO 95 I=1, Nirer,
    95R=P + FLXI\because(')
    GO TO 1?E
105R=FLY!`(1)EA:NG(フ.117E+C7/FIPM(1))
    #O 110 I= ?,*-п%
```



```
    GO TO 1:5
115A=FLXI'(1)019.!17F+G7-FLYN(1))
    no joc 1=?,"吅
120 R=F=F&V!:(F)*(FITM(I-1)-FLI*(I))
125 no 130 t=!, Nの"M,
130 FLYIN(Y)=T!! \&FLYY:(Y)/P
    42 1C = 1C+4
    CALL PArF
    IF(IVT.FC.O) rom TS4, 5
    IF (lWT,FC.|) Sn TO m0
    WKq!E (t,cil)
901 FORMATU//7'H CROES SECTIONS #!THPAI RONIIFS KEIGHTFTI NITH CONSTANT
    1FL|X FEF INIT FAEFGY,
        GO TO 5m
    45 WHTTF (t, crz)
902 FORMAT', PMH CEOSS SFCTIPNS WITHTM GPOUPS WEIGHTEII HITH FISSION
    IFLUX A&PVE IO2KEV, IIEFLUXFFLOW,
        30 TO 55
    50 WRITE (K,OT3)
903 FORTMT(//7%H ROCSS CFCYYCNS WYTHTN FROIJNGWFIGHTFD WITH CON:STANT
```



```
    55 IF (IFLY.EREN C.O TONO
        IF (IFLX,FQ,;) GO T( GE
        IF (IFLX,FO.1) OO Tr 7%
        WRYTE (E,ORT)
```



```
        GO TO 75
    60 WFITE (f,OE4)
904 FORNATITGI FIONIP ERUMIAAIFS NAT AMJIISTEN, ALL CROSS SECTIONSMUST
    1 HE INFI:T N:Q IFEN )
        GO TO 75
    65 WRITF (t,gre!
```



```
        GO 10 75
    70 WKITE (&.gCOE)
906 FORNATI4PH 'NVONGF FLI:X PER INIT LETHARGY TS INPITT,
    75 ]C= IC+NCPC+?
        CALL PAGF
        WRITE (0,9(18)
    908 FORMATI/FGH NFITROH FHFRGY GROUP ND.,IOX,24H LOWFR FNERGY LIMIT I
```


80 WKITFir, Orol ! FITI!!! FIXI!!!

REYURN.
FNT


```
C
```



```
    Comm@lv/Cl/ ir,lfargfy
    J3=1
    RATE(1)=*.
    0i, }7\mathrm{ 1=1,5
    7(I) = i.
    4 \Gamma(I) =!.
    7A(I)=i.
        nO & I=?,: I
    HGL1(I)=O.
```



```
    J}=1+
```



```
    711:= LISO
    \Delta(1)=AISO
    Or. 170 ITYRt=1.m
```



```
    11 7(2)= (.1)
        A(?)-A(1)+40!."
        <- Y! 4%
    147(2)=2(1)
        A(?)=A(1)+1.n
        GC IT 41
    177(?)= L(1)
        A(?)=A(J)+497."
        f0) T\cap 41
    20 2(2)=:11)
        A(?)=4(1)-1.F
        *(j) 1) 4;
    232(2)=[(1)-..n
        A(2)=A())+5(!n.:
        G0 T? 4%
    25 2(?)=2(!)-!.0
        A(?)}=1(1
        GO TO 4%
    297(2)=<(?)-?.0
        A(2)=A(1)+497.C
        GO TO 47
    32.7(2)=2(1)-2.n
        A(?)=A(1)-7."
    47 ASSIGN GA TO ,ITRAN
    G0 Tn hu
    49 ASSIGN SG TO JTDAN
    50 CALL FL)"(JA,V(2),A(2),(目)
```



```
    HT = LA:M(3)
    IT = IFIX(GAN(4)+000L)
    AF(3)=GAM(5)
```

```
    IZ# = IFIX(GAM(6)+.OC(5)
    IAD=IFIX(GAM(7)+,O5)
    00 54 IT=1.7
    E1(2.I1)=GAM(2#II+6)
    54F1(2,11)=GAM12*II+7)
    56 IF(IT.PG.0) RO TO 60
    GCHOJTRAN, (52,59,67,69,77,78)
    58 IF(IT.EQ.1)GOTO 588
    60%550
    588 ASSIGN 49 TO ITRANI
        MMN=1
        GO TO 612
    59 IF(IT,NE.2)Ön 10 50
    IMIN = 3
    GC TO 611
    60 I~ 1%:=1
    611 ASSIGN ITS TO ITFANI
    61? RATF(己) = .01lnE25/HT
        Z(3)=1<1.
        A(3)=1A[
        ASSIGN 67 TO JTFAN
        G0 T2 62
    61 ASSIGN GE TO JTRLN
    62 Call film(J3,7(3),4(3),GAM)
```



```
    65 1HAX=2
        ASSIGN 1FO TO LTFAN
        G0 10 90
    66 HT = EAN (3)
        IT = IFIX(O,A:(4) + OF)
        BR(4) = GiN(5)
        12D=IFI*(GAM(G)+,F)
        IAT = IFIX(GAM(7)+,5)
        D0 64 11=1,7
        El(3,]1) = GAM(2*11+6)
    64 F1(3,11)=GAM(2*I)+7)
        if (IT,FO.O) roO TO 6,9
        GO TO JTFMN, (58,59,67,6%,77.78)
    67"IFTIT.FN.11Gn TO 677
    GO TO E2
    677 ASSIGN 61 TO ITRAN:
    GO TO TO
    68 IF(IT.NE.Z) GO TO F?
    IN1H=4
    69 ASSIGN 169 TO ITRAN?
    70 RATE(3) = .0115525%HT
        7(4)=120
        A(4)=IAL
        ASSIGN 77 TO JTRAN
        G0 T0 12
    11 ASSIGN 1S TO ITRAN
    72 CALL RLIH(J3,2(4),A(4),GAM)
        IF (AES(f;AN(?)-079.).GT.(.05)) gn T0 76
    75 1. }\Deltax=
        ASSIGN 168 TN LTAAN
        60 10 40
```

```
76 HT=GAN(3)
    IT = IHIX(CAM(4)+.5)
    PR(5)=GAM(E)
```



```
    IAD = IFIX(GAM(E)+.5)
    OO 73 I1=1,7
    E1(4,11)=GAM(2*11+6)
    73FI(4,IL)=GAN(?@II+7)
    IF (IT.EC.0) rin TO 79
    GO TO JTFAN,(55,59,47,68,77,79)
77 IF(IT,HG.|IONTO 771
    CO TO 72
77 ASSIGH 71 TO ITRANG
    GO TO 80
    78 If(IT,N, <)GO 10 7?
    IMIN=5
    70 ASSIGN dt: TO ITRAN3
    80 RATE(4)=.0115525/HT
    7(5)=121
    A(5)=I\DeltaI
    8) CA!LL RLIP(J3.7(5),A(5),G4M)
    If (ABS(GAN(2)-9C9.).C?.(.CS)) GO TO 85
    84 ASSIIGN 1G7 TM ITRAN
    1: }\Deltax=
    %O TO 90
    35 HT = GAN(3)
    IT = IFI M (C.L:(4) +. 5)
    RR(G) = 5A:A(5)
    IZD = IFIX(E.AN(6)+.5)
    IA! = IF; 首(GA:(f) + (F)
    !0 33 11=1,7
    E1(5,Il)= GNM(24I)+G)
    83F1(5,11)=5^N(?#I1+7)
        ASSIG:V 167 TO LTVAM
        IMAx=5
        RATE(5) = :!)S5?S/HT
    90 İ̈(IMINAFT.lMAX)rOO TO 166,
    G% TO (1,r,3,6,1(%9,110,1!1,112),!TYPE
    1FSI=(S(F)
    G0 10 113
    2FS1=CS(1)
    G! TO 115
    3FSI=CS(N)
    GO T0 113
    SFSI=CS(4)
    Go T\cap 113
109 FS1=CS(6)
    G) TO 11?
110 FS1=CS(2)
    G) TO 113
111FS1=CS(7)
    G) TO 113
112 F31=CS(3)
113 IF (FSI.LF.O.) GO TO 166
    FST=CS(1)+CS(?)+CS(3)+CS(4)+CS(5)+CS(6)+CS(7)+CS(8)
    CALL SSWT(HM13,IS)
```

```
    CALL SSNT(H(O,IS)
    IF IIS.NE.l! rn Tn 17%
    CC=IC+TNAX+7
```



```
    509 FGRMAT(/I4HTHIS CHAIN IS/ (7X,7H Z=,F5.1,3X,3H a=,F6,1))
    175 AL = A(L)
    7! = Z(i)
    05=0.
    Q4 = 0.
    03=0.
    Q2 = 0.
    Q1 = 0.
    54=0.
    S3=0.
    SO=0.
    SI= 5.
    RATE(1) = ^.
    GO T) (0-i,04,0,0,02,91), 1:A:
9105= QAT:15)
    S4 = {NT:(%)#1,2(5)
9? O4 = 'PATH(4)
    S3=KATI:(7)*:2(4)
93Q3={ATr(7)
    Sa = RATf(2) &OE(7)
94 Q2)={ATY(>)
    Sl= = SI
9521=F5T
    nl}=AT
    nc=3.
    73=0.
    n4, = U.
    #5 = 1).
    OT% = AT!
    Ot? = 0.
    0n3 = 0.
    01)4=0.
    005 = 0.
    IF (IS.EO.1) IC=1C+5
    IF (IS,F\cap.I) CALL NAGF
    IF (IS.5Q.l) WHITH (G,50?) Q1,0?,C,I,03,S?,Q4,53,05,S4
```



```
    2,E14.7)
```

```
RNO(I,J)='JN. OF PHOTONS PFR NFCAY IN ENFRGY GROUP I FROM
```

RNO(I,J)='JN. OF PHOTONS PFR NFCAY IN ENFRGY GROUP I FROM
CIAIN MEMRFR J
CIAIN MEMRFR J
SOR(IGJI=NO. OF PHOTONS FER INIT VOL PER UNTT TIMF EMITTET
SOR(IGJI=NO. OF PHOTONS FER INIT VOL PER UNTT TIMF EMITTET
IN ENERGY GPOID I FROM CHAPN MEMRFR J
IN ENERGY GPOID I FROM CHAPN MEMRFR J
00 101 I=1, NOr,g
\#O 101 J=1.1!"Ax
SOR(I,J)=u.
101 GNO(I,J)= 人.
n0 1J8 !\#, tMAx
\#O 193 k=1.7
M=1

```
```

105 IF (F|(J,k).r.T.FGG(M)) GO TO 103
IF (E|!J,k)-Fr.f(M+1)) 10?,10`,!\cap4
102 M = M+1
If (4-N0)Fis) 10'0,105, l03

```

```

103 CONTINHIL
108 CONTINIE
KM=KM+1

```

```

 #0 10% rMr=?,:NgTT
 #)=3.\thereforeE+C{*(T(IMF)-T(IMF-1))
 Q1 = 213p(w:(!15)
 Sj= FS(4~n&%(TME)
 Fal={र以(-\?*推)
 E|? = ExF(-0.**NT)
 F13 = EMF(一NT*TT)
 F04=E吅(--54:3:T)
 F(05- rip(-0L*nT)
 G(1 T\ 1101.,97,10,97,76), i,AAK
    ```














```

100 nd = 001%[01
IF (iS.F!.!) TC=I!+?
IF (TS.fr., CN1) FAC,F

```




    Oll = H
    One = mic
    の13 = 11.
    \(01: 4=114\)
    \(n+15=115\)
    OENS (1) = M!
    MFNS (2) \(=12\)
    nEJS (5) \(=1.3\)
    Пt リS (4) \(=\sqrt{4}\)
    DENS (5) \(=1.5\)

    00 \(100 \quad \mathrm{I}=1\), NOGOR


    IF (IS.t.F.1) GO TO 107
    \(I C=I C+I H A X-I^{\prime \prime} I I+?\)
```

 CALLL FAGO
    ```


```

107 CONTINLI
165 CCNTTANE
166 J3 = "
GO TO LFFA, (1/0,if,8,16:7)
167 fr: TO PRO 3.(11,1AR)
168 GC TO ITRAN?,16:.10,9)
169 GC TOITRAN1, (49, \7(i)
170 J3 = 1
RFT|ON
Fi!

```
```

 SUBROUTINE NATDEN(LKEY)
 C
C
THIS SUBPROGRAM EXTRACYS SCATTERING CROSS SECTIONS AND
ELEMENTAL COMPOSITIONS FROM THE CROSS SECYION LIRRARY
DIMENSION SIG(43), X(250), SPOY(20), 70(20), 17(20). AO(20).
1 IA(20), D(20): DEN(20).LKEY(20).LK(20)
COMMON TRT ISOR, IZ,IAG DEN, SPDT, R. TEMP
COMMON /CP/ IC,LEAF, BX(12)
C
DO 5 I=1.ISOR
SPOT(I)=0.
ZO(I) = IZ(I)

```

```

 LK(I) = LKEY(I)
 5 D(I) = DEN(I)
 NOIS = ISOR
 J:0
 REWIND 8
 REWIND-I
 C
DO 40 I=1.ISOR
READ (B) (X(M),M=1,250)
J=J \& l
NT = 8
IF (LKEY(1).EO.3) NTEI
IF (LKEY(I).NE,3) GO TO 12
10 READ (NT) (X(M),Y=1.2501
12 IF (X(201).LT.ZO(I)) GO TO 10
DO 15 K=1.201.50
IF (X(K).EQ.ZO(I)) GO TO 20
I5 CONTINUE
NOIS = NOIS - 1
IC = IC + 3
CALL PAGE
WRITE (6.901) 2O(I)
901 FORMAT 1/38H NO CROSS SECTION DATA FOUND FOR Z m ,E1.3.6.38H IT H
IAS BEEN OMITTED FROM THE PRDBLEM TS
J=J-1
GO TO 40
C
20-SPOF(J) = X(K+4)
IZ(J)= 20(I)
IF (AOTIT,NE,O.) GO TO 35
IA(J) E X(K+1)
LK(J) = LKEY(I)
DEN(J)= }=\textrm{X}(K+2)\#D(1
25 K = K + 50
IF (K.LE.250) GO 10 30
READ (NT) (X(Y),M=1,250)
IF (X(2).EQ.999.) GO 10 45
30 IF (X(K),NE,2O(1)) GO TO 40
IF (X(X+I).EG.FLOAT(IA(J))) GO TO 25
J = J * 1
NOTS=NOTS*I
IF (NOIS:NE.2O) GO TO 20

```
```

 TCEIC-4
 CALL PAGE
 WRITE (6.902) [Z(J). IA(J)
 902 FORmAT l/21H 20 ISOTOPES REAG.hED/23H EvERYTHING after 2 a ol5.6H
 1 A =,15,9H OMITTED /1
 GO TO 45
 35 [A(J) = AO(I)
 DEN(J)= D(I)
 4O CONTINUE
 45 1SOR = NOIS
 IF (ISOR.GT.2O) ISOR = 20
 DO 42 tE1.ISOR
 42 LKEY(I) = LK(I)
 REWIND &
 REWIND 1
 DO 50 K=1.43
 50 SIG(K) = 0.
 CALL XLIB(1.9999..1.SIG.1.1)
 RETURN
 END
    ```
```

 GUBROUTINE PAGE
 DIMENSION EX(12)
 COMMON/CP/ ICOLEAFIBX
 IF (IC:LT,S3) RETURN
 ic: {C-53+3
 WRITE (6.901) (BX(1)0IE1012),LEAF
 901 FORMAT (IHI.///10X,12AG.10X.5H PAGE.15//1
LEAF : LEAF - I
RETURN
END

```
```

 FUNCTION POLY(N,X)
 C THIS SUBPROGRAM COMPUTES THE NPH ORDER LEGENDRE POLYNOMIAL OF }
IF (N) 2.1.3
1 POLY = 1.
RETURN
2 WRITE 16.9011
901 FORMAT (4SHONEGATIVE ORDER LEGENDRE POLYNOMIAL ASKED FOR,
CALL EXIT
3 IF (N-1) 4.4.5
4 POLY E X
RETURN
5 IF (N-2) 6,6,7
6 POLY = 0.5*(3.*X*X-1.)
RETURN
7 IF (N-3) 8.8.9
8 POLY = 0.5* (5, *X*X*X-3,* ()
REPURN
9 IF {N-4} 10.10.11
10 POLY = 0.125*(35,*x*x* X*X-30.*x* X* 3.)
RETURN
11ME5
EM =M
POLY2 = 0.5*(5.*X*X*X-3.* ()
POLYL = 0.125*(35.*X*X*X*X-30.कX*X*3.)
12 POLY = ((2.*EM-1,)*X@POLY1-(EM-d.)*POLY2)/EM
IF (N-M) 13.13.14
13 REPURN
14M=M+1
POLY2 = POLYI
POLYL : POLY
EM = M
GO TO 12
END

```

FUNCTION PROCOM \((Y, Z, A)\)
GIMENSION YL(39), ZL(9),FLISY(39.9),FFLIST(4),XLIST(4),FLIS(4)
\(B L J P(P, Q, R, S, T)=((Q-P) *(S-T) /(R-Q)+S)\)
IF (YiGE: \((12)\) GO TO 202
201
PROCOM \(=0\). RETURN
202 IF (2.LP: 0.1\()\) GO TO 201
IF (Y:GY:4.) GO 10300
YL(1) \(=.2\)
DO 203 I=2.39
203 YLII YLII-1) +1
ZLII 10.
DO 204 I \(=2.9\)
204 2L(1) \(=2 L(1-1)+10\).
DAPA (fFLIST(I.J).i=1.39).JE1,3)/.74.3.7.10.2.16.3.22.027.1.31.3.
 \(270,2,70,8,71,71,1,71,2,71,3,71,4,71,5,71,5,71,5,71,5,71,5,71,5\). 3 11:5.71.4.71.4.71,40:0323.:59.2.81.7.6.12.6.20.7.27:4.33.6.39.7

\(587,87,7,88,6,89,3,89,9,90,3,90,8,91,1,91,5,91,8,92,1,92,4,92,6\),
 \(7,67, \cdot 72, \cdot 75,5,79,5,83,5,87,90,93,96,98,5,101,103,105, .106,5\) \(8.108 .109,110.5,111.4,112,2,112,9.113,5,114,1,114,7.115 .2\).
9.115.6.116.11116.51


\(2111,5,115,118,120,5,123,125,127,128,5,129,8,131,1132,0133.0\)
\(3133,9,134,7,135,5,136,3,137,137,6.138,2.14,7 E-06,0057 \cdot .154,1.23\)

\(5,116,120,125,126,5,132,5,135,5,130,5,141,144,146,148,150,1\),



\(9163.165,167,169,170 ; 5,172,173,5,174,5,176,177: 1\)


\(2145,150,154, \cdot 158,162,166,169,172,175,178,181,183,185,1,10\)




\(7,16,9,32 ; 8,46,064,79,93,105,116,127,137,145,152,160.1\)

\(9220: 222, \cdot 224.0225 .5 \cdot 227.1,228.6 .230 .1\)
IF (Y,LTMY(39)) GOTO 1
\(K=38\)
60102
1 IF (Y,GT,YL(1)) GOTO 3
\(K=1\)
\(2 K K=2\)
GO 109
3004 IE1.39
IF (Y,LE,YLIII) GOTO 5
- CONYINUE
\(1=39\)
```

$51=1=1$
IF (I:LE;37) 60 P0 6
$k=101$
GO 107
6 IF (I.GE:2) GO TO 8
$K=1$
$7 \mathrm{KK}=3$
60109
8 $K=1-1$
$K K=4$
9 IF (Z.LT:ZL(9)) GO TO 10
L. 8
601011
10 IF (2.GT:ZL(1)) GO YO 12
$L=1$
$11 L L=2$
GO TO 19
$1200151=1.9$
IF (Z.LE,ZL(l)) GO TO 14
13 CONTINUE
$14 \begin{aligned} & 1=9 \\ & =1-1\end{aligned}$
IF (I.GT.7) GO TO 15
1F (19-1)-1) 16.18.18
$15 \mathrm{~L}=101$
GO 1017
$16 \mathrm{~L}=1$
17 LL E 3
GO 1019
$18 \mathrm{~L}=1 \mathrm{~m} 1$
$L \leq 4$
$19 \mathrm{Jl}=1$
$J 3=L L+L-1$
$J 2=L$
$X=Y$
$N=k K$
$1=1$
$K A=k+K K-1$
DO 20 IAFK,KA
XLIST(I) $=$ YL(IA)
$201=1+1$
$1=1-1$
$K B=0$
601022
$21 K B=K B+1$
FFLIST(KB) a DUMMY
$221=1$
DO 23 IA $=$ KOKA
PLIS(I) $=$ FLIST(IA,J2)
$23!!+1$
$1=1-1$
$12=\mathrm{J2}+1$
if $(J 2-J 3) 24.24 .25$
24 ASSIGN 21 TO MAIN
GO YO 30
25 ASSIGN 26 TO MAIN

```
```

 GO YO }3
 26 K8 = KB+1
 FFLISY(KB) = DUMMY
 N = KB
 x =2
 1 =1
 DO 27 KC=L.J3
 XLIST(I)= ZL(KC)
 27!= 1+1
DO 28 I=1.KB
28 FLIS(I) = FFLIST(I)
ASSIGN 29 TO MAIN
60 YO 30
29PROCOM = 0.01ODUMMY
RE TURN
30 \&F (X-XLIST(N)) 32.31.31
311 = Nol
60 10 37
32 If (X-XLIST(1)) 33.33.34
33 1 = 1
GO PO 37
34 DO 35 IEI,N
IF (X-XLIST(I)) 36.36.35
35 CONTINUE
I=N
37 DUMMY = BLIF(X,XLIST(1), XLISY(1+1),FLIS(1),FLIS(I+1))
GO TO MAIN, (26,21,29)
300R = 1,5*(A**,333333)
B=1.44242/R
S = A\&1,6742E-24/(A+1;)
C=SQRT(2,*5%B"1.60206E-06)
C=1.05443E-14/C
T = C/SQRT(Y)
D = 1.\sigmaR/(Y*(R*T))
PROCOM = .031416*D*(R+T)*(R+T)
RETURN
END

```
```

 SUBROUTINE RESINT(E,T,GAMG,GAMN-GAMF,RI,I)
 DIMENSION IZ(ZO), IA(Z0), DEN(20), SPOT(20), AX(12)
 COMMON /R/ ISOR, 1Z, IA, DFN, SPOT, R, TEMP
 COMION /CP/ IC,LEGF.RX
 GAM = GAMG + GAMM + GAMF
 SIGO = 2.62E+1/6#5#GAMN/(E#GMM)
 BIGP = 0.
 DO 2 J=J,ISOR
 2 RIGP = GIGP + DE:|(J)\triangleSPOT(J)
 DUM = 1. + L.aRa!IGP
 DUM = 2.0R*SIGO#GEN(I)/UUM
 IF (DUM.(iT,..) GO TO)4
 IAM = 700
 GO TO 6
 4 GAMPR = GAM*SQRT(UUM-1.)
 AMAX = 4."E/GAMPR
 IAM = \triangleMAX
 6 SIGM = 1./(2.#R*IEN(I))
 DO 10 J=1,ISOK
 IF (IA(J).GT.IAMI GO TO 10
 SIGM = SIGM + DEN(J)&SPOT(J)/DENII)
 10 CONTINIE
IF (IA(I)-IAM) 20. 20, 15
15 HETA = SIGM/SIGO
60 10 25
20 AETA = SIGM*GAM/(SIGO\&GA:1G)
25 n = IA(I)
XI = GAM\&SQRT(A/(1.9148E-04\&EN(TEMP+459.69)))
R! = SIGONGAMLaBETA@AJ(XI,AETA)/E
CALL SSWTCH(3,IS)
CALL SSWTCH(2,IS2)
IF (IS?.NE.1) GO TO 2.8
IC = IC+3
CALL PAGE
WRITE (6:902) E,G,GAMG,GAMN,GAMF,SIGO,BIGH,SIGM,BETA,XI
902 FORMAT1/3HEE=,E12.5,3HG=,F12.5,6H GAMGE,F12.5.कH GAMN=,E12.5.6H G
IAMF=,E12.5/6H SIGO=,IHEI2.5,6H AIGP=.F12.5,6H SIGME,EI2.5.6H BETAE
2,E12.5.4H XI=,E12.51
28 IF (IS.NE.1) GO rO 30
IC = IC+2
CALL PAGF
WRITE (6.901) E,IL(1),IA(I),R!
901 FORMATI/5H THE ,FB.3.29H EV RESONANCF INTEGRAL FOR 2E,I3,3H A=,I3.
14H IS ,1PE14.7.6.4 BARNS (
30 RETURN
END

```

SUAROUTINE REVLIB(Z,A.IN. 3 16)
DIMENSION SIG(43)
RETURN
END
```

 SUBROUTINE RLIB(JZ,Z,A,GAM)
 DIMENSION GAM(21),X(252)
 IF (A,NE,999,) GO TO 13
 READ (10) (X(M),M=1.252)
 RETURN
 13 J5 = l
l IF (X(1).GT.(2*.05)) GO TO 5
If (X(232),LT.(Z-,05)) G0 10 5
IF (ABS(X(1)=2),GT, (,05)) 60 TO 3
IF (X(2),GE,500.) GO TO 2
IF (A,GE,500:) GO TO 12
IF (A,LT, (X(2)=.05)) GO T0 5
GO TO G
2 IF (A.LT, (X(2)-500.Ob)) GO TOS
GO TO 6
3 IF (ABS(X(23C)mZ),GT.(.05)) GO TO 6
IF (X(233),GE.500.) 60 T0 4
IF (A,GT. (X(233)+,05)) GOTO 5
GO TO 6
4 IF (A,GT.(X(233)-4499.95)) GO TO 5
GO TO 6
6 10 7 1=1,232.21
IF (ABS(XII)-2),GT,1,05)) 60 TO 7
IF (ABS(X(I+1)-A).LT.(.05)) GO TO B
7 CONTINUE
GAM(2) = 999.
RETURN
8 IF(J3,NE,2) GO PO 15
J3 =1
IF (ABS(X(I+Y)-2.),LT, (.OS)) GO TO 10
IF (I,EQ,232) GO TO \&1
I=l+21
15009 J % 2 21
K={+J
9GAM(J)EX(K-I)
RETURN
5 IF (Z,LE, (X(1)*,5)) GO TO \$4
IF (JS,EQ,2) J5= 3
GO TO 11
14 IF {ABS(Z-x(1)).6T.(.05)) 60 T0 10
IF (ABS(Z-X(1)),LE,30.) GO TO 10
REWIND 10
11 READ (20) (X(M),M=1.252)
GO TO 1
10 BACKSPACE 10
BACKSPACE. }1
IF (J5,EQ:1) J5=2
IF (J5,EQ.3) GO T0 7
60 10 11
12IF ((A-500.).LT, (X(2)=.5)) 60 TO 5
GO TO 6
END

```
```

 SUBROUTINE SETUP (IGEON,NOANG,L1)
 C PHIS SUGROUTINE SETS UP THE ANGLES.WEIGHYS,AND K MATRIX FOR SHIELD
COMMON /SH/A,AK,AMU/L/AL
COMMON /CP/ ICOLEAF
DIMENSION A(10),AK(10.10),AMU(10),AL(40)
N: NOANG/2
IF (LI) 1.15.1
C LEGENDREMGAUSS QUADRATURE
1 60 TO (2,3,4.5.6),N
2 A(1) : AL(21)
A(2) = AL(21)
AMU(1) = AL(1)
AMU(2) = -AL(1)
60 10 7
S A(1) =AL(22)
A(2) = AL(23)
A(3) = AL(23)
A(4) = AL(22)
AMU(1) =AL(2)
AMU(2) = AL(3)
AMU(3) = -AL(3)
AMU(4) = -AL(2)
60 10 7
4 DO 81 {E1.3
A(1)=AL(I+23)
AMU(I) \& AL (!* 3)
A(!+3)=A(!)
81 AMU(I+3) = -AMU(I)
00 10 7
500 82 1m1.4
A(1) = AL(I+26)
AMU(I) = AL(I+6)
A(I*A) = A(I)
82 AMU(I+\&) E -AMU(I)
60 T0 7
60 83 {mios
A(I) = AL(I*SO)
AMU(1) = AL(1+10)
A(1+5) = A(1)
83 AMU(I+5) = -AMU(\$)
IF (IGEONI B.10.8
- DO 9 JEI,NOANG
DO 9 Im1,NOANG
- AK(IOJ)=0.
REPURN
10 N1 NOANG-1
ANOANG = NOANG
DO 13 JEI.NOANG
AMUJ = AMU(J)
IU s J=1
DO 13 {=1.IU
AMUI = AMU(I)
IF (1-J) 11.12.11
11 AK(J.I) = O.5*ANOANG*ANOANG*A(l)*POLY(NL.AMUJ)*POLY(NI.AMUI)/(AMUJ
1 -AMUII

```
```

 GO 10 13
 12 AK(J.I) = AMUJ
 13 CONTINUE
 DO 14 I=2,NOANG
 JU = I-1
 DO 14 J=1.JU
 14 AK(J!I) = -A(I)@AK(IOJ)/A(J)
 RETURN
 C LOBATTO QUADRATURE
15 60 TO (16,17.18.16,16),N
16 CALL PAGE
WRITE (6.901)
901 FORMAT (33HOLOBATTO QUADRATURE NOT PERMITTEN / 4OHOLEGENDREmGAUSS
I QUADRATURE WILL BE USED I
GO TO 1
17 A(1) = AL(36)
A(2)=AL(37)
A(3) =AL(36)
A(4) = AL(37)
AMU(1) = AL(16)
AMU(2) =AL(17)
AMU(3)=AMU(1)
AMU(4) = AMU(2)
60 10 19
18 DO 84 {E1:3
A(I) = ALII+37)
AMU(1) = AL (I*17)
A(I+3) = A(I)
84 AMU(I+3) = - AMU(I)
19 1F (IGEON) 21.20.21
20 CALL PAGE
WRITE (6.902)
902 FORMAT I 55HOSPHERICAL GEOMEPRY NOY PERMITYED IN LOBAYTO QUADRATUR
IE 4OHOLEGENDREGGAUSS QUADRATURE WILL BE USED I
60 TO 1
21 RETURN
END

```
```

 SLEROUTIMF SHIEL'(NOEG,NChFG,FLXIN,FLX.MISN)
 C THIS SUBPC!TINt -CHMES E|ITRON SELF-SHIFLDINC
 COMPCN /5.t/ a.AK,AMU
 COMNON にO/ 'C,LFAF,!X
 DIMENSIO: F(XTV(63),FLX(569),SLT(100),AF(X(100.10),SRS(100.10),
 1CX(20),NMT(3:), EIGS(C0),STGT(20),SIGSL(2U), x(1OI).A(10), RUM(10),
 2AK(1C,10), AH:(:0),EFIX(1OC),ANMNT(20),RX(12)
 REAN (5,;O1) :OS.XC,IGECH.IOUT,ACANG
 941 FCRNAT (?El2.4.3!?)
 LITE= 2
 CALL SLITE(J)
 IF (MO&NG-?u) ?.ご.l
 : NCANG = YaANO - ?O
 L1=0
 GO TO 3
 2 LI = 1
 IC = 5%
 CALL FAGF
 WFITE (B.9ח2)
 902 FORNATY/72H NAP SFLF-gripELUING (ALCULATION /)
 CALL SETIPIICEOM, NOAGGL!I
 00 4 k=1,100
 4 SLT(K) = 0.
 DO IOC ISK=1,NNON
 if (LITE.FQ.p) Call SLITE(1)
 IF (LIPE.NE.P) CALL SLITF(U)
 [O 5 k=1.17j
 DO 5 J=1,10
 AFLX(K,j)= N.
 5 SFS(K, J)=J.
 IF (1GR-1) 11,G.11
 G REAL (5,909) (SISS(I),SIGT(I).SIGSL(I).UX(1).NPNT(1),I=1,NOREG)
 903 FORMAT ({E!2.4,1?)
 DO 7 k=1.101
 7x(k)=0.
 x(1) = x0
 J3=1
 LO 10 J1=1,*A0Eg
 J2 = 」3 + !NT(jl) - d
 00 9 14=.3.a;
 x(J4+1)=AuS(x(14))+D\times(Jl)
 IF (J4-J3) 30:O.7
 8 x(J4+1)=-x(J4+1)
 g CONTINIE
 10 J3= J3 + M1NT(J)
 MAXPT = J3
 JANG = NJANE/?
 IF (1GP-1) 11.92.11
 1) REA[(5,304) (5I5S(1),SIGT(1),SIGSL(I),IEIQNOREG)
 904 FORMAT (3EI%.4)
 92 IF (NISJ.NF.O) 30 TO 12
 1300 14 JEI.IANS
 14 AFLX1IGJ)= 1.5%FLX[N(IGR)
 60 10 17
 12 REAE (5,905) (AFLX(1,.J),J=1,5)
    ```
```

 905 FORMAT (56!%.4)
 15 [O 16 I=1, Jぶ:%
 If AFLX(I,J)=AF!X(J,J)"FLX|N(IGR)
 17 IF (10UT-1) 24.1:.13
 18 J2 = 1
 IC=IC-3
 IF (IGA."E.1) IN=58
 CALL PAG5
 WRITE (E,OME) 1G%
 906 FORMAT(/FRX,GH GFOUP.14//GIA,27H NACROSCOPIC CQOSS SFCTIONS/IOX.
 111H MESH O?I'T,4:.GH X(CN),4X,7H REGION,9X,1IH SCATTFRING.13X.GH T
 2OTAL,1:X,13H SLJNIVG EOWN:)
 DO 25 K=:MAXOT
 IC = IC + 1
 CALL PAEC
 IF (X|K)) 21.ここ,?2
 21 AX = X(K)
 AX=ATS(\Deltax)
    ```

```

 90& FORNAT (15x.15,F12.5.17.6x.E19.6.5X.F19.6,1X,E19.6)
 J2 = J2 + 1
 G0 10>5
 2? J3= J? - 1
 24 AX = X(K)
 AX =A?S(AX)
 WRITE 16,7ח%; <. \人,J3
 90? FORMAT (15x,15,F12.5.17)
 25 CONTIPIIE
 IC=IC+JANG+3
 CALL PAGF
 WRITE (6.91U) IG?
 910 FORMATI/FUH THE ANGILAR FLLX INCIDENT FRON THE LEFT IN MAOUQIS.
 13H15/15X.4.4 1:!.17X,5HFLUX)
 DO 1!O J?=1.1A!G
 15n WRITE (5,907)4.1(J2),AFLX(1, \2)
 907 FORMET\ITX,F13.9,4X,F15.81
 26 IF (IGFON) 95.2.7.35
 27 00 29 K=1,4axPT
 IF (X(K)) 2,123.27
 28 WRITL (6,G)l) <
    ```

```

 29 CONTINUE
 9% ELFLX=0.0
 ITER=O
 C THIS STARTS THE FLUX ITERATIONS
 30 J2=1
 ITEREITER*1
 THIS LIOO SETG JD THF SOHRCE TERM AT EACH DOINT
 DO 35 K=1,MAXD1
 \squareUM=(.
 00-31 JET,NTANG
    ```

```

 DO 33 J=1.N\capAM!
    ```
```

 RUM(J)=0.
 00 32 L=1.\7.13
    ```

```

 33 SRS(k, l)= 2i (x)+MuM(J)+7MA
 IF (k-`) an, an.e.
 &0 IF (X(!)) *4, +5, 75
 34 J2 = J3+1
 35 CONTINE
 C THIS LOOP COAITTS A'GULAR FLUX IN FORWARLICIRECTION
\Gamma0 37 1=1.Ja":
J2 = 0
KU=MXX3T-1
DO 37 k=1,k!!
IF (X(b+1)) 7.5?7.507
36 J2 = J + 1

```

```

 WO=(AM:|(1):(1.mS!,))/(BA(1):$STGT(J2))
 WO=(WO-5!')/51G!(Je)
 W\ = (':.-51F,):S?jT(N2))-.4
 507 AFLX(K-1,J)=SIS*:ELX(K,J)+NO#SRS(K,J)+W1*SDS(K+1,J)
 37 CONTINUF
 C
THIS LOOD EOMS ITES AMGILA'R FL:JY IV FACKNARN OIOECTIOA
JL= JiNT+1
TO 39".l= 1_-iv9aju
J2=NIRE:;

```


```

 W1 = (!1.-SI?)/S!:T(J2))-w!
 no 39 K=1,k!
 RM=MAXOY-k + 2
 KN=MAX2T-K+1
 MK = Mi\\OY - <
 IF (x(L,M)) 〕^, 50,.509
 3& J2 = J2-1
 SIG=FXO(-.;X(,12!aSIGT(J2):GM|(J))
    ```


```

 509 AFLX(MK,J)= (IFLX(KN,J)-NO#SRS(MK,J)-W1aSQS(KN,J))/SIG
 39 CONTYNUE
 C OBTAIM TAF INTEGOLTET FLIX AT FACH PGINT
00 4! k=1, ifx0゙T
DUM- = -
DO 40 J=1.10LGG
40 DUM = FUM+AFLX(K,J){A(J)
41 BFLX(K) = nUM
CONVFREF OA: FL:IX AT LAST POIMT
CALL SSWTCH(1,05)
IF (K5.NF.1) J0 TO \&S
IF (ITER.TF.G) OS TO 44
85 DUM = FFLX(1AKOT)
ERR = ABS({,1/1-F:FLX)/ПUM)
IF (ERF=F!S) 4%,4.3.43
43 F.LFLX= nJM
60 T0-30-

```
C

C
THIS COMPLETES JTERATIONS OH FI.UX--HEXT COMPITF SLOWING DOWN SOURCE

C
```

 44SLD(1)=SY,5L(:) WFFI.X(!)
    ```
\(.12=1\)
\(104\left(x=3,4, A^{-1}\right.\)

IF (X(V+1)) 4-, 4?,40
\(45 \mathrm{~J} 2=\mathrm{J}+1\)
46 CONTINIE
C NOW PRINT OUT Y-F FLIX
IF (IO!!T-2) 6?,47,47
47 IC = jヶ
CALL P3GF
WR!TE (6,91?) !TERQ1OR.IGR
912. FORMAT

120A•11H THERE WERE,I5, 2nHi ITERATIONS IN

If (NOAVS-5) i \(4,4 \times 54\)
\(48 I C=I C+1\)
CALL \(\overline{\text { CTO }}\)
WRITE ( 0,713\()(A \cdot J(J), J=1, \operatorname{NON(})\)

49 DO \(511 \mathrm{~K}=1\), ASXPT
\(I C=I C+1\)
CALL PASE
-50 WRITE ( 6.914\()<, Y(K),(A F L X(K \cdot J), j=1, N O A N G)\)
914 FORMAT(GX.1A.1PE14.6.5E19.0)
GO TO 62
\(54 I C=I C+1\)
CALL PASE

55 DO 56 K K J9MAXDT
\(I C=1 C+1\)
CALL PAGE
56 WRITf: \((6.914)<, \times(K),(A F L \times(K, J), J=1, J i, N G)\)
\(I C=I C+1\)
CALL PAGE
WRITE (K,013) (AVU(J), J=Jは, NOANG)
DO \(61 K=1, M A \times P T\)
\(I C=I C+1\)
CALL PAGE
61 WRITE \((6, \bar{y} 14) K, \dot{x}(K),(A F L X(K, J), J=J L, N O A N G)\)
62 IF (IDUT-2) K6,63,63
63 IC \(=55\)
CALL PAGE
WRITE (6,915) IG7
915 FORMAT (2OX.1OH YHE GROUP.15. 9H FLUX IS )
WRITE \((6,918)\)
91E FORMAT \(\{2\) OX. 164 OJIIT \(\times(C M)\) )
OOC64 KE1; पAXPT
\(I C=I C+1\)
CALL PASF
\(A X^{P}=A R S(X(K))\)
64 WRITE (6,917) K, AXP, BFLX(K)
917 FORMAT (20X.I5.12E14.6.OPE20.8)
C COMPUTE AVFRAGE FLUX IN FACH REGICN
```

 66 J1 = 1
 C0 68 12=1. \"%0
    ```

```

 J3=J!+\!M! \j>)
 DO 67 v=11,j3
 67 DUM = TU" + FL\X(x)
 DUM = TUM - DFLX(j3)*0.5
 Jl=J3
 KP=1GR+NOMO*(J?-1)
 ANINT(J2)=N!!ev2)
 68 FLX(KP) = {%"/R|\\(.12)
 IF (LITE.EN.Z) IT =1
 IF (LITE.NF.?) bIT = 2
 LITE = L?Y
 100 CONTINME
 PRINT OUT AVFEAC: FL:X If EACH DFGICN
 IF (IC'1!-1) 7%.6:-6%
 69 IC = 5%
 CALL PAGF
 WRITE (6.918)
 918 FORMAT (2OX, 35H THE AVFR&GE FLUX IN EACH RFGION IS //POXOGH GROUP,
 1 10X, 7H REGTON,10X,J3H AVFRAGE FLUX)
 DO }71\mathrm{ JCEI,NORFG
 #O-71 1GRE1,NORG
 J4=(.12-1)4!.)\G+1Gh
 IC=IC*I
 CALL PAGE
 WRITE (6,010) IGF,J2,FLX(J4)
 919 FORMA1 (?OX, if,1OX,IG,FIT.R)
 71 CONTIN!IE
 72 RETURN
 END
    ```

SUARCLTINE XI_IB1T,A,I,CIGOLKEY,ISC.
HIMENSIOM SIG(43), X(250)
1F (A.NF.999.) 6) TC 1
INITIALITE STOEING OF XLIB in CORE
QEAD (R) (X (M) , : \(4=1,259\) )
RETJD:
C. START SEAFCH HERE, JS USET TS PREVENT REPEATEO SEARCHES

3 if (x(1).GT.(2+.)S)) GO TO 9 g
C II 2 RAIIPARK
if (ARS(x(1)-7).it.C.J5) GS 904
IF (A.LT. (X(?)-..15)) Gn TO 9
IF (Q.01 \((x(2021+0.251+60\). 10 o
IF (FI.LT. (X(4)-.0.6)) 60 T0 9
IF (FY.GT. (X(2)4) +.05)) 60 109
GO in \(r\).
c. PIN TONN A

4 IF (AFS(x(201)-7), r.9.0.05) 60 905

IF (F).GT. (X(2.14)+.05)) 60 109
R!GHT A APII TYPE RALLPARK
5 DO \(6 \mathrm{M}=1,291,59\)
PF (APS (X(:)-7),GT.C.C5) GO TOE
IF (AFS \((x(1++1)-A) .5 T .0 .05)\) GO 90 ©

6 COMTMNE
P cross sectign not present
IF (FI.GT.79.) PTTUFN
SIG(1) \(=379\).
QETIRA
CCRRECT CIOSS SECIION OBIAINED.
9 IF (FI.6..09.1 GO PC 15
no \(8 \quad J=1.43\)
\(k=n+j+4\)
A SIf(J) \(=x(k)\)
IF (AFS(FI-1.).LT.0.05) 90 YO 13
IF IAPSLEI-11.).LI.C.05) GO 10. 14
IF (NA.EO.1) 50 TO 17
RETURA
C NRONG HALLPARK
9 IE (7.LE. (X(1)-.51) GO TO 10
PF (15.EO.?) Jち=3
60 In 12
c
WHICH WAY CO WE GO
10 IF (AES \((x(1)-2)\). \(3 T, 40.1\) GO 1012
IF (ABS(7-X(1)).LT.0.05) GOTO 11


SUBROUTINE XSCAL \(\left(Z, A_{,}\right.\)IN,SJG,GK,ISO)

DIMENSION BX(12),ELIM(43), FELIM(44), FLXIN(43), NZ(10), NA(10).
1 VFAC(10),5\$G(43), EN(10), XSIG(10)
COMMON /CF/ NOBGO ELIM. FELIM. FLXIN, NZ. NA, VFAC, NONV, TFAC,
1 IFLX, IWT
COMMON /CP/ IC, LEAF, BX
COMMON /CX/ UP, QA, QN, BEP, BLA, BEN, CP, CA, CN, AP, AA, AN
SET ISOMERIC CROSS SECTIONS tQUAL TO ZERO
IF (IN.LT,S) GO TO 8
DO \(5 \quad 1=1,43\)
5 SIG(I) \(=0\). RETURN
find nature of target nucleus
IT = 1 MEANS EVEN 2 EVEN N
\(=\angle\) MEANS ODD \(Z\) EVEN N
\(=3\) MEANS EVEN 2 ODU N
\(8 \quad 12=2\)
\(I A=A\)
\(N=\mid A-!Z\)
IF (MOD(N,Z),EQ,O) 50 TO 15
IF (MOD(IZ,2),EQ.O) GO 1010
\(1 T=4\)
60 TO 25
10 IT \(=3\)
GO TO 25
15 IF \(\operatorname{IMOU}(12,2), E Q .0)\) GO TO 20
IT = 2
60 TO 25
\(201 r=1\)
25 IF (IN,GT,1) GO TO 100
COMPUTE (N,GAMMAI CROSS SECTIONS CUMPUTE LEVEL SPACING D
\(D=5.336=.04596 * A+.000110 .3 \$ A\) A A
\(D=10, \% 40\)
IF (IT,EQ.4) GO TO 30
IF (IT.EQ.1) GO TO 35
GO TO 40
\(30 \mathrm{D}=.5{ }^{*} \mathrm{D}\)
GO TO 40
\(35 \mathrm{D}=5.0 \mathrm{~J}\)
\(c\)

GG \(=1.802-2 *(.0765-2 *(, 001152-5.73 E-06 * 2))\)
IF (Z.LT.30.) GG = .01297~Z
\(B=F A 1 / G G\)
\(C=1.31 E+0603.14160 \mathrm{~F}\)
DO 45 I=1,42
\(D U=A L O G(+E L I M(1) / F E L I M(I+1))\)
\(X U=\) SQRT(1,/FELIM(J))
\(X L=\operatorname{SQRT}(1, / F E L I M(I+1))\)
SIG(I) \(=C A(X L-X U+B \& A L O G((B+X U) /(B+X L))) / D U\)
IF (SIG(I).LT.O.) SIG(I) \(=0\).
45 CONTINUE
THERMAL (NoGAMMA)
\(v=\) FLOAT(N)
IF (ITGGT.1) GO TO 50
\(B=1520 .-29.91 \% \mathrm{~V}+.1399 \mathrm{VVOV}\)
IF (N,LE,132) \(\quad\) = \(=1\)
IF ( \(N\), LE, 122) \(B=-6503 .+131.60 \mathrm{Va.64010VaV}\)
IF (N.LE.82) B \(=-104.9+3.1954 \mathrm{~V}-.02278\) "V*V
IF (N,LE, S4) \(\quad\) E \(=-17,92+13383 * \mathrm{~V}\)
IF (N.LT.50) \(\quad B=-34.61+2.371 * \mathrm{~V}=.030160 \mathrm{~V} * \mathrm{~V}\)
IF (N,LE,20) \(\quad B=10 . * *(3 . *(.05 * V-1)\).
GO 1065
50 IF (IT,GT,2) GO TO 55
\(B=-2624,+33.64 \% \mathrm{~V}-09556 \mathrm{~V}^{\circ} \mathrm{V} \mathrm{V}\)
If (N.LT,124) \(B=2919,-23.75 * V\)
IF (N.LT.82) \(\quad B=-875.2+28.480 \mathrm{Vm.2176*V} \mathrm{~V}\)
IF (N,LT,5D) \(\quad A=-33,26+2,156 \not 18 \mathrm{~V}-04243 \mathrm{AVOV}\)
IF (N,LE,20) \(\quad B=050 \mathrm{~V}=19\)
IF ( \(N, L E, 10\) ) \(\quad A=10, * *(-, 46032 * V-.15873)\)
60 TO 65
55 IF (If.GTi3) G0 ro 60
\(B=115441,-1647.40 \mathrm{~V}+5,9884 \mathrm{Vav}\)
IF (N.LE,133) \(B=10\),
IF (N,LE.121) \(B=-30474 .+619.860 \mathrm{~V}-3.02430 \mathrm{~V} \mathrm{VV}\)
IF (N,LE.81) \(\quad B=148.50 .7464{ }^{\circ} \mathrm{V}\)
IF (N.LE.49) \(\quad B=181,4-12.95 \% \mathrm{~V}+.2302 \mathrm{~V} 0 \mathrm{~V}\)
IF (N,LE, 29) \(B=10 . * *(3 . *(.05 * V-1.1)\)
GO TO 65
\(60 \mathrm{~B}=-2809304 .+37936 . \mathrm{V}-127.7 \mathrm{~V} \mathrm{~V}\)
1F (N.LE,139) B = 2376.-10.27\#V
1F (N.LT.B1) \(B=-9897,+317.7 \$ V-2.431 * V A V\)
If (N.LE,SI) \(B=100\).
IF ( \(N, L T, 21\) ) \(\quad B=10.0 *(2, *(.10 V+1,1)\)
65 IF (B,LT.O.) \(B=0\).
SIG(43) \(=B\)
70 DO \(75 \quad[=1,42\)
75 SIG(I)=SIG(I)+SIG(43)A.31812\#(1,/SQRT(FELIM(I+1))=1,/SQRT
1 (FELIM(I)))/ALOG(FELIM(I)/FELIM(I+1))
GO 10200
COMPUTE Q VALUES AND BINDING ENERGIES \(Q P=\) TARGET \(Q\) VALUE FOR (N,P)
```

のののロのロ
$1002 P=2-1$.
$A P=A$
$Z A=2-2$.
$A A=A-3$.
$Z N=2$
$A N=A=1$.
$B=\operatorname{EXMAS}(Z, A)$
$Q P=, 7822+B-E X M A S(2 P, A P)$
$Q A=5.6474+B-E X M A S(Z A, A A)$
$Q N=B-E X M A S(Z N, A N) \quad 8,071$
$A B=A-4$.
$B E P=7.289+Q P-B+E X M A S(2 P, A N)$
$B E A=2,424+Q A-B+E X M A S(Z A, A H)$
$B E N=-Q N$
COMPUTE LEVEL DENSITY PARAMETERS
$C P=C$ FOR (N,P) KESIDUAL NUCLEUS
$C A=C$ FOR (N,ALPMA) RESIUUAL NUCLEUS
$C N=C$ FUR TARGET NUCLEUS
SIMILARLY FOR AX
$C P=.6441-.00544 A$
IF (A,GT.115.) CP = .3459 - . 00013 (AA
IF (IT,EQ.1) CP $=2, * C$
IF (IT,E(Q.4) CP $=, 2 \# C P$
$C A=.6441-.0054 \%(A-2$.
IF (A,GT,117.) CA $=.3459-.000130(A-2$,
IF (IT,EQ.21 CA $=2 \& * C A$
IF (IT,EQ.3) CA $=.2 * C A$
$C N=.6441-.00544 A$
IF (A,GT.115.) CN = . $3459-.000134 \mathrm{~A}$
IF (IT,EQ.4) $C N=2 . \# C N$
IF (IT,EQ,I) $\quad C N=, 2 \circlearrowleft C N$
$A P=.034 A$
IF $(A, L E, 60) \quad A P=.1825=,.00330 A+.00050 A 4 A$
$A A=, 03 *(A-3$.
IF (A.LE.63.) AA $=.1825 \times .0033 \%(A-3)+,.0005 *(A-3).(A-3$,
$A N=A P$
Calculate epithermal cross sections
DO $1201=1,42$
SIG(I) = U.
EN(1) = FELIM(I) \#1,E-06
XSIG(I) $=0$.
$D E=(F E L I M(I)-F E L I M(I+1)) / 9_{q} E+06$
no $105 \mathrm{~J}=2.10$
XSIG(J) $=0$.
105 EN(J) $=$ EN(J-1) - DE
DO 110 Jモ1.10

```
```

 EPSN=LN(J)"A/(A+1,)
 110 XSIG(J)=SIGCAL(Z,A,EPSN,IN)
 DO 115 J=2,9
 115 SIG(I) = SIG(I) + XSIG(J)
 SIG(I) = (SIG(I) + 50XSIG(1) + .5*XSIG(IO))/(FELIM(I)-FELIM(I+I))
 SIG(I)= SIG(I)&l,t+06
 120 CONTINUE
 C
C
C
200 CALL SSWTLH(L,IS)
If (IS,NE:1) GO TO 240
IC= IC+18
CALL PAGE
GO TO (205, 210, 215, 220), IN
205 WRITE (6,901)
901 FORMAT(/38H CALCULATEU (N,GAMMA) CROSS SECTIONS I
GO TO <2S
210 WRITE (6,902)
902 FORMATY/33H CALCULATED (N,P) CROSS SECTIONS I
GO TO 22S
215 WRITE (6,403)
903 FORMAT(/38H CALCULATED (N,ALPHA) CROSS SECTIONS:
GO TO <225
220 WRITE (6.404)
904 FORMATI/34H CALCULATED (N,ZN) CROSS SECTIONS)
225 R = 0,
ES = 0.
WRITE (6,905) 2, A, R, ES
905 FORMAT(15X,3H Z=,F7,2,5H A=,F7.2.5H R=,F7.5,6H ES=,FT.3)
DO 230 I=1.13
J = 1 +15
K=1+30
230 WRITE (6,906) SIG(I), SIG(J), SIG(K)
906 FORMAT(17X,1PE13,6,5X,E13,6,5X,E13,6)
WRITE (6.906) SIG(14), SIG(29)
WRITE (6,406) SIG(15), SIG(30)
240 1F (LK,NE,b) GO TO 400
CALL REVLIB(Z,A,IN,SIG)
400 RETURN
ENO

```

SUBROUTINE XSIN
THIS SUBROUTINE READS IN CROSS SECTIONS NX = NO. DF CROSS SECTION SETS READ IN
```

 DIMENSION X(250)
 READ (5,901) NX
 901 FORMAT (16)
IF (NX,LE.O) RETURN
REWIND 1
DO 5 1=1,250
5x(1)=0.
1=0
DO 15 Jzl.NX
l= l+1
IF (I.NE,G) GO TO 10
WRITE (1) (X(M),M=1,250)
DO 8 k=1.250
O }x(k)=0
l =1
10k= 50*(1-1)+1
L = K+49
READ (5.902) (X(M),M=K,L)
15 CONTINUE
902 FORMAT (5(10E8.1/))
DO 20 I=1.250
20 x(1) = 0.
x(1) = 79.
X(2) = 999.
X(3) = 999.
WRITE (1) (X(M),M=1,250)
END FILE 1
REWIND 1
RETURN
END

```

\section*{VIII. SAMPLE PROBLEM}

This section presents input and output for a sample NAP problem. This sample problem consists of a time-dependent neutron flux incident upon the left face of a five centimeter thick slab containing 0.00254 atoms of sodium per \(\mathrm{cm}^{3}\). A ten centimeter thick slab containing 0.00848 atoms of iron per \(\mathrm{cm}^{3}\) lies behind the sodium-containing slab. An isotropic neutron flux of \(10^{14}\) neutrons per square centimeter per second is incident upon the system for one hour. The neutron source is then turned off for one hour, and then turned on for one more hour at twice the original intensity. The total gamma ray dose nine hours from the start of the first irradiation is calculated 100 centimeters from the rear of the iron-containing slab.

Input data areshown on the next page on a standard form which is submitted to a key punch operator. The input was punched exactly as shown. This particular sample problem is illustrative only. The incident neutrons are treated in two neutron energy groups, while the gamma rays produced from neutron activation are divided into three energy groups. The NAP neutron transport subroutine is used to compute the neutron flux distribution in the two slabs. Output data are shown on the following pages. Gamma ray source strengths, dose rates, and dose are tabulated. This sample problem took approximately 1.5 minutes of operating time on an IBM 7094.

NAP GAMPLE FEORLTN
 NEUTRON SELF-SHIFLPITR WILL FE CALCULATET
THE FIUX NOGMAL IZATIOR: FACTOR IS 1. UOOROONOE 13
INCIDENT NELITRON FLUK \(2.0900013 E 00\)
7.9999986
00
\(N\) PAGE

NAP SANPLF PFORLPM



\(n\)


NAP SAMPL F RPOBLEM

\(n\)

\section*{PAGE}
 w



 \(\cdots\)



 \begin{tabular}{l}
\(\stackrel{3}{c}\) \\
\hdashline \\
\hline
\end{tabular}
 I

THE AVERAGF FLUX IN EACH REGION IS


UNIT \(A=8.8620000 E=01\)

CROSS SECTIOA OPTION
SAMPLF PFORLEM
NAP
the atom densitifg (e.?4 aions/ct) in pegion 1 are
 \(\begin{array}{lll}11 & 23 & 2.5309990 \mathrm{E}-\mathrm{n3} \\ 11 & 24 & 9.33 \cap 0956 \mathrm{E}\end{array}\) \(\begin{array}{lll}11 & 23 & 2.5399987 t-n 3 \\ 11 & 24 & j .2368058 E=00\end{array}\) 11 23 ?.53999R7E-n3 \(\begin{array}{lll}11 & 23 & ? .5399987 E-n 3 \\ 11 & 24 & j . ? 2 P 6 R B E E-n 9\end{array}\) \(\begin{array}{lll}11 & 23 & 9,5309987 E-n 3 \\ 11 & 74 & 1.2096449 E-n O\end{array}\)


 き
 1.0000000 EO 1.2500000 EO \(1.5000000 e 0\)

\section*{0 Datge}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(2.250 n c 00\) on} & & & \\
\hline & 11 & 23 & 2.5309987En3 \\
\hline & 11 & 24 & 1.7946792E-n9 \\
\hline \multicolumn{4}{|l|}{2.5000000E 00} \\
\hline & d) & 23 & 2.5309987E_n3 \\
\hline & 11 & 24 & ?.4052477E-ng \\
\hline \multicolumn{4}{|l|}{2.7500000 O} \\
\hline & 11 & 23 & P.5309987E-n3 \\
\hline & 1! & 24 & 3. 904826 SE-09 \\
\hline \multicolumn{4}{|l|}{3.0000000E 00} \\
\hline & 11 & 23 & 2.53999RTE-n3 \\
\hline & 11 & 24 & 2.603495uE=n9 \\
\hline \multicolumn{4}{|l|}{4.0000000 NO 11.23 , 539998 -} \\
\hline & 11 & 23 & 2.5399987E-03 \\
\hline & \(1!\) & 24 & 3.4328566t-n9 \\
\hline \multicolumn{4}{|l|}{5.0000000E OO} \\
\hline --... & ! ! & \[
\begin{aligned}
& 23 \\
& 74
\end{aligned}
\] &  \\
\hline \multicolumn{4}{|l|}{6,0000000E 00} \\
\hline & 11 & 23 & 2.53999R7E-n3 \\
\hline & 11 & 24 & 3.1352810E-09 \\
\hline \multicolumn{4}{|l|}{7.0000000 E 00} \\
\hline & 11 & 23 & 2.5309987E-03 \\
\hline & 11 & 24 & ?.993696YE-n9 \\
\hline \multicolumn{4}{|l|}{6.0000000E 00} \\
\hline & 11 & 23 & 2.5399987E-n3 \\
\hline - & 11 & 24 & 2.958505 EE - 09 \\
\hline \multicolumn{4}{|l|}{9,0000000E 00} \\
\hline & 11 & 23 & \(2.5399987 \mathrm{E}-\mathrm{n} 3\) \\
\hline & 11 & 24 & 2.7294198E-n9 \\
\hline
\end{tabular}

\section*{0 \\ W
\(\mathbf{0}\)
\(\mathbf{a}\)}
NAP SAMPLF FFORLEN
\begin{tabular}{|c|c|c|c|}
\hline CHAIN NIMMEF & & & \\
\hline TIME (hOMrs) & 7 & A & atom density \\
\hline 2.5000000e-01 & & & \\
\hline & 11 & 73 & 2.5399907E-03 \\
\hline & 11 & 22 & 7.64148308-14 \\
\hline \(5.0000000 \mathrm{E}-01\) & & & \\
\hline & 11 & 23 & ?.5309993E-0.3 \\
\hline & 11 & ? \(?\) & 1.52829n7t-33 \\
\hline 7.5000000E-01 & & & \\
\hline & 13 & 23 & ?.5399900t-03 \\
\hline & 11 & 27 & ?.?994272E-13 \\
\hline 1.0000000860 & & & \\
\hline & 11 & \[
\begin{aligned}
& 23 \\
& 23
\end{aligned}
\] & 2.5399987t-03 \\
\hline & 11 & \[
27
\] & 3.05F557HE-13 \\
\hline 1.2500000 EO & & & \\
\hline & 11 & \[
23
\] & \[
2.5399987 t-C 3
\] \\
\hline & & \[
22
\] & 3. \(2545340 \mathrm{E}-13\) \\
\hline 1.500CODOE 00 & & & \\
\hline & 11 & 23 & 2.5399987t-03 \\
\hline & 11 & 22 & 3.05t5114E-13 \\
\hline 1.7500000E OO & & & \\
\hline & 11 & 22 & 2.53大9882t-13 \\
\hline 2,0000000E OO & & & \\
\hline & \(1)\) & \[
\begin{aligned}
& 23 \\
& 27
\end{aligned}
\] & \(3.5399987 E=ก 3\)
\(3.0564650 E-13\) \\
\hline 2,2500000F OO & & & \\
\hline & 11 & 23 & 2.53999R7E-03 \\
\hline
\end{tabular}

El-7nGc9E85** \(2 己\) ! \(2,2500000 \mathrm{OO}\)
\[
\begin{aligned}
& = \\
& \\
& \vdots \\
& 0 \\
& 0
\end{aligned}
\]
NAF SEMPIF PFORLEM
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{2,5000000E ro} & & & \\
\hline & 11 & 23 & P.5309987E-03 \\
\hline & 11 & 22 & 6.1107352E-13 \\
\hline \multicolumn{4}{|l|}{2.7500000500} \\
\hline & 11 & 23 & 2.5399987E-03 \\
\hline & 11 & 2? & 7.43785306-13 \\
\hline \multicolumn{4}{|l|}{3.0000000 O} \\
\hline & 11 & 73 & 2.5399987E-n3 \\
\hline & 11 & \(2 ?\) & 9.1649592E-13 \\
\hline \multicolumn{4}{|l|}{4.000000000 - \(21.5399985-03\)} \\
\hline & 11 & 73 & 2.5399987E-r3 \\
\hline & 11 & 27 & 9,1646810E-13 \\
\hline \multicolumn{4}{|l|}{5.00000NOE CO נ1 23 2.5309997E-n3} \\
\hline & 11 & 23 & 2.5309987E-n3 \\
\hline & 11 & 22 & 9.164402Nt-13 \\
\hline \multicolumn{4}{|l|}{6.0000000E 00} \\
\hline & 11 & 33 & こ.53999A1E-03 \\
\hline --.. & 11 & 27 & 9.1641245E-13 \\
\hline \multicolumn{4}{|l|}{9.0000000 O} \\
\hline & 11 & 73 & 2.5309987E-03 \\
\hline & 11 & 22 & 9.1638463E-13 \\
\hline \multicolumn{4}{|l|}{8.0000000F 00} \\
\hline & 11 & 23 & 2.5399987E-03 \\
\hline & 11 & 22 & 9.16356R1E-13 \\
\hline \multicolumn{4}{|l|}{9,0000000F 00} \\
\hline & 11 & 23 & 2.5399987E-n3 \\
\hline & 11 & 22 & 9.1632898E-13 \\
\hline \multicolumn{4}{|l|}{CHAIN NUMAEP 3} \\
\hline TIME (HDURS) & 7 & A & ATOM DENSITY \\
\hline
\end{tabular}

\title{
\(1123=.5309907 E-C 3\)
}
\begin{tabular}{|c|c|c|}
\hline 11 & 23 & -.5309907E-C3 \\
\hline 10 & 23 & 1,221480̌E-14 \\
\hline 11 & 23 & . 539999 \\
\hline
\end{tabular}
\begin{tabular}{lll}
11 & 23 & \(? .539999 U E-03\) \\
10 & 23 & \(1 . ? 2148 \cap 2 E-14\) \\
& \\
11 & 23 & \(2.5399987 t-n 3\) \\
10 & 23 & \(1,2294801 t-14\)
\end{tabular}






 EO-3LG660ES'Z \(6 \varepsilon-30600000^{\circ}\)
 2
0
0
0
0
0
0
0
0
0
0
0
0
0 2.5000000E-01
5.000nOnOE-C1
7.500~000E-C.
1.0000000 E RO
1.250n000E 00
1.50000noe no
1.750 NOOOE CO
20000000000
2.25000 OOF 00
2.5000000e nis
＊

\begin{tabular}{|c|c|c|c|}
\hline NAP & F Pr & RLL & \\
\hline \multirow[t]{3}{*}{2．750n000E OC} & & & \\
\hline & 11 & 23 & 2．5399987E－n3 \\
\hline & 10 & 23 & 2．442960Ut－14 \\
\hline \multirow[t]{3}{*}{3．000n000eno} & & & \\
\hline & 11 & 73 & 2．5309987E－n3 \\
\hline & 10 & 23 & ？．4429600t－14 \\
\hline \multirow[t]{3}{*}{4.0000000500} & & & \\
\hline & 11 & 73 & 2．5399987E－03 \\
\hline & 10 & 23 & 「．00n00nUE－30 \\
\hline \multirow[t]{3}{*}{5，0000000E 00} & & & \\
\hline & 11 & 23 & －．5399987E－n3 \\
\hline & 10 & 73 & 「．00000年－39 \\
\hline \multirow[t]{3}{*}{6．000ñ00 OO} & & & \\
\hline & 11 & 23 & 2．53999R1E－n3 \\
\hline & 10 & 23 & f：0000000E－39 \\
\hline \multirow[t]{2}{*}{7．0000000e 0} & & & \\
\hline & 11 & 23 & 2．5399981E－03 \\
\hline －－ & 10 & 23 & C．00000nOE－39 \\
\hline \multirow[t]{3}{*}{8.0000000 O0} & & & \\
\hline & 11 & 73 & 2．53999R7E－n3 \\
\hline & 10 & 23 & C．DOCOONUE－39 \\
\hline \multirow[t]{3}{*}{9，0000000E 00} & & & \\
\hline & 11 & 23 & 2．53999R7E－n3 \\
\hline & 10 & 23 & 0．000000UE－39 \\
\hline CHAIN NIMMER & & & \\
\hline TIME（HOURS） & 7 & \(\Delta\) & ATOM DENSTTY \\
\hline \multirow[t]{3}{*}{2，5000000e－0］} & & & \\
\hline & 11 & 23 & 2．5309997t－03 \\
\hline & ？ & 20 & 6． \(2310594 \mathrm{~F}-15\) \\
\hline
\end{tabular}
SAMPLE PRORLFM
NAF
\begin{tabular}{|c|c|c|}
\hline 11 & 23 & 2.5399993E-ก3 \\
\hline \(\bigcirc\) & 20 & 6. \(3110592 \mathrm{t}-15\) \\
\hline 11 & 23 & ?.5379990E-n3 \\
\hline 9 & 20 & t. \(\mathrm{n} 310584 \mathrm{t}-15\) \\
\hline 11 & 23 & 2.5399987t-n3 \\
\hline 9 & 20 & 6.031057EE-15 \\
\hline 11 & 23 & 2.5399987t-03 \\
\hline 9 & 20 & 4. 70 O3575E-39 \\
\hline 11 & 23 & 2.53999R7E-C3 \\
\hline 9 & 20 & 0.00COOOOE-39 \\
\hline 11 & 23 & 2.53999R7t-n3 \\
\hline \(\bigcirc\) & 20 & ?.OONOOCUE-39 \\
\hline 11 & 23 & \(2.53999874-03\) \\
\hline 9 & 20 & n.000000UE-39 \\
\hline 11 & 23 & 2.5399987E-n3 \\
\hline 9 & ? 0 & 1.2062115E-14 \\
\hline 11 & 73 & 2.5399987E-03 \\
\hline 9 & 20 & 1.2062113E-14 \\
\hline 11 & 23 & 2.5399987E-03 \\
\hline 0 & 20 & 1.2062119E-14 \\
\hline
\end{tabular}
\(5.0000000 E-01\)
\(7.5000000 E-01\)
\(1.00000 \cap 0 E 00\)
\(1.2500000 E 00\)
\(1.5000000 E\) OC
\(1.7500000 E 00\)
\(2.0000000 E 00\)
\(2.2500000 E 00\)
\(2.5000000 E 00\)
SAMPIE PFGFLFM
\begin{tabular}{|c|}
\hline 3,0000000F 00 \\
\hline 4.0000000e no \\
\hline 5.0000000E OC \\
\hline 6.0000000E OC \\
\hline 7.0000000000 \\
\hline 8,0000000E 00 \\
\hline 9.0000000 EOC \\
\hline
\end{tabular}

\(\qquad\)
 0.000000 EE- 39
2.4331242 E
5.5355134 E
5.
 0
0
0
\(n\)
0
0
0
\(n\)
\(n\)
\(n\)
\(n\)
\(n\)
\(n\)
\(n\) \(9.000 \cap 000 E-39\)
\(3.1389139 E\)
1.2669614 F
1.4
\(E 0-30908668^{\circ}\) Z
\(E I 3 \varepsilon 09820 I^{\circ} \varepsilon\)
\(6 E-30000000^{\circ} 0\)

\section*{- ジ・}


 \(0.0000000 F=39\)
1.60663395
\(1.0064569 F\) \(0.0000000 F=39\)
\(1.5694570 F\)
\(2.3035643 F\)
2.
 ENERGY DENSITY
(PHSYONG-MEV/CC-SEC) \(0.0000000 E-39\)
\(1.6910739 F\)
10
10710275 0.0nn0000E-39 3.2878315 F
1.10
1.1071029 E 0.000n000e-39 \(\begin{array}{ll}0.000 n 000 E-39 \\ 4.8562485 E & 10 \\ 1.1071027 E & 08\end{array}\) \(0.0000000 \mathrm{E}-39\)
6.4765356 E
1.1071025 E
1.10 0.0000000F-39 \(6.2778279 E 10\)
7.53392295
 SOLRCE STRENGTH
THE FHOTON SOURCR STRFAGTH IN SOURCE STRENGTH
RENSPTY
(PHOTONSICC-SEC)
C.OOUDOCDE- 30 \(0.00 U O N C D E-30\)
\(R .4533695 E ~ n o ~\) R.
\(3.01 P 9140 \mathrm{E}\) OR n. ПOUOOODE-39
 ot-zũugnoudo
 OE-3UOUOOOO.O


 ENEPEY GROUP
-rum



\(\qquad\)\(-\mathrm{N} \cdot \mathrm{r}_{\mathrm{t}}\)
\(6 \varepsilon-30000000^{\circ} 0\)
\(\varepsilon 13960 \varepsilon 928^{\circ} \%\)
\(6 \varepsilon-30000000 \cdot 0\)
 \(6 \varepsilon=10000000^{\circ} 0\)
\(\varepsilon I 3 \vdash 596860^{\circ} 8\)
\(6 \varepsilon-30000000 \cdot 0\)
 \(6 \varepsilon-30000000^{\circ} 0\)
\(t I-3002 \% 8 \varepsilon \varepsilon \circ\)
\(6 \varepsilon-30000000^{\circ} 0\) \(6 \varepsilon-30000000^{\circ} 0\)
\(\varepsilon \varepsilon 34 \angle 20200^{\circ} L\)
\(6 \varepsilon-30000000^{\circ} 0\)
\(0.0000000 F-39\)
\(4,0244827 E 13\)
\(0,0000000-39\)

\(6 E-30000000^{\circ} 0\)
\(\varepsilon I-10012699^{\circ} \varepsilon\)
\(6 E-30000000^{\circ} 0\)


\section*{-}



\(11+L E 16610^{\circ} 2\)
\(613 t 782521^{\circ} 6\)
\(6 E-10000000^{\circ} 0\)
LI \(3 L E 16610^{\circ} 2\)
EI \(10447468^{\circ} \mathrm{E}\)
\(6 t-1000000^{\circ} 0\)
ET \(3 \angle E 16210^{\circ} 2\)
ET \(45009099^{\circ} 7\)
\(6 E-40000000^{\circ} 0\)
6E-10000000'U
 6と-30000000"0

6\&-30000000.0

-

\(6 E-30000000^{\circ} 0\)
II \(3550710 \nabla^{\circ}\) I
OE \(-30000000^{\circ} 0\)


\author{
-
}

n.0000nn0E-39
\(4.6882374 E\)
 40 3ヵLC\& \(0 c\)
\(N_{1}\)
1
0
0
\(C\)
\(C\)
0
0
0
0
0
0
\(c\)



 OE
OI \(300000000^{\circ} 0\)
O OI \(36569620^{\circ} 8\)
OE \(-300 U 0000^{\circ} 0\) \(8.4296359 \mathrm{E} \quad 10\)
\(0.0 \cap \mathrm{ODODOE}-39\) OE- \(30000000^{\circ} \mathrm{U}\)
 0
0
1
0
0
0
0
0
0
0
0 \(0.0000000 E-39\)
\(7.6 R 54 R 57 E 10\)
\(0.0000000 E-39\)



40. \(30000000^{\circ} 2\)
2.2500000 E 00
2.5000000 E 00
2.7500000 E 00
3.0000000 E 00
\(4.000 n 00 n E\) OO
\(5.0000000 \mathrm{E} \quad 00\)
6.0000000 E 00
7.0000000 E On
8.0000000 E 00
9.0000000 E 00


"


 둔

 졸采

19
Page
NAP SAMPL.F PROBLFM



NAF SAMPLE DPORLEN
THE ATOM PENSITIES（F＋24 ATC＊S／CS）IN DEGINN ？ARE
\[
\begin{aligned}
& \text { CHAIN NUMBER } \\
& \text { TIME (HOURS) } \\
& 2.5000000 E-C 1
\end{aligned}
\]
ATOM DENSTTY \(4,9523164 \mathrm{E}-\mathrm{O4}\) \(4.95 ? 3164 \mathrm{E}-14\)
\(4.2817846 \mathrm{E}-13\)
4.952313 HE－N4
\(5634681 E-13\) 8．56346R1E－13


 4．717613KE－12
4．9523077E－04 1，7125744E－12
\(4.9523077 E \_\)－ 4
1.7175350 E－ 12
\(4.9523071 E-n 4\)
\(1.712495 \mathrm{HE}-12\)


26
25
む む
志志
出出
※
\(\underset{\sim}{c}\)
\(\underset{\sim}{N}\)
－ 5，0000000E－01 \(5,0000000 E-01\)
\(7,5000000 E-01\)
\(7.5000000 E-01\)
\(1.0000000 E 00\)
1.2500000 E 00
\(1.5000000 E 00\)
\(1.7500000 E 00\)
\(2,0000000 E O O\)

\section*{\(N\) \\ 2
0
0
0}

NAD
\begin{tabular}{|c|c|c|c|}
\hline TIME (HOURS) & 7 & A & ATOM DENSYTY \\
\hline \multicolumn{4}{|l|}{2.5000000E-.21} \\
\hline & 24 & 56 & 7.7744593E-03 \\
\hline & ? 5 & 56 & 6.5276121E-13 \\
\hline \multicolumn{4}{|l|}{\(5.0000000 \mathrm{E}-01\)} \\
\hline & 76 & 56 & 7.7744547E-n3 \\
\hline & 25 & 56 & 1.2629054E-12 \\
\hline \multicolumn{4}{|l|}{7.5000000E-01 \(50.77445015-0\)} \\
\hline & 26 & 56 & 7.7744501E-03 \\
\hline & 35 & 56 & 1.833216.3E-12 \\
\hline \multicolumn{4}{|l|}{1.00000006 00 ? 56.7744450 -} \\
\hline & 26 & 56 & 7.774445'E-n3 \\
\hline & 25 & 56 & 2.3662931E-12 \\
\hline \multicolumn{4}{|l|}{1.2500000E 00 It 56 7.7744455E-03} \\
\hline & \[
\begin{aligned}
& 76 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 56 \\
& 56
\end{aligned}
\] & 7.774445SE-C3
2. 211807 PE-12 \\
\hline \multicolumn{4}{|l|}{1.5000000 E 0} \\
\hline & 26 & 56 & 7.774445SE-n3 \\
\hline & 75 & 56 & 2. \(067407 \mathrm{HE}=1 ?\) \\
\hline \multicolumn{4}{|l|}{1.75000NOE 00} \\
\hline & ? 6 & 56 & 7.774445SE-O3 \\
\hline & 25 & 55 & 1.9324349E-1? \\
\hline \multicolumn{4}{|l|}{2,0000000E 00 O 26 , 7744450E-03} \\
\hline & \[
\begin{aligned}
& 26 \\
& 25
\end{aligned}
\] & 56
56 & \[
\begin{aligned}
& \text { ?.7744455E-C3 } \\
& 1.8062741 \mathrm{E}-12
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{2,2500000E D0} \\
\hline & 36 & 56 & 7.7744455E- 53 \\
\hline & 25 & 56 & 2.9438695E-12 \\
\hline
\end{tabular}
\begin{tabular}{lll}
26 & 56 & 7.774445 SE-03 \\
25 & 56 & \(4.1039316 E-12\)
\end{tabular}
\begin{tabular}{lll}
26 & 56 & \(7.7744455 E-03\) \\
25 & 56 & \(5.141522<E-17\)
\end{tabular}
\begin{tabular}{lll}
\(2 h\) & 56 & \(7.7744455 E-03\) \\
25 & \(5 G\) & \(E .1113727 E-12\)
\end{tabular}
\begin{tabular}{lll} 
& & \\
26 & 56 & 7.774445 DE-03 \\
25 & 56 & \(4.6650240 \mathrm{E}-12\)
\end{tabular}


\begin{tabular}{l}
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
\(\vdots\) \\
0 \\
\hline
\end{tabular}

\(\begin{array}{lll}26 & 56 & 7.774445 \mathrm{SE}-03 \\ 75 & 5 f & 2.074909 \mathrm{AE}-17\end{array}\)
 2.7500000F ro

\section*{\(0030000000^{\circ} \varepsilon\)}
\(0030000000 \%\)
\(\cdots\)
5.0000000E OO
6.0000000 E 00
- ....
7,00000005 on
8.0000000000
9.0000000 EO
CHAIN NUMREF 1
tIME (HOURS)
\(\sigma\)
N~N
NAD SAMPLF PROMLEN:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(2.5000000 E-C 1\)} \\
\hline & 2f & 58 & 2.4287994E-05 \\
\hline & 26 & 50 & \(5.7550013 \mathrm{E}=12\) \\
\hline \multicolumn{4}{|l|}{\(5.0000000 \mathrm{F-O}\)} \\
\hline & 36 & 5 \% & ?.628798~E-O5 \\
\hline & 26 & 59 & 1.15090R1E-11 \\
\hline \multicolumn{4}{|l|}{7.5000000F-01} \\
\hline & 26 & \(5 R\) & ?.62A79R3E-05 \\
\hline - & 2 C & 59 & 1.72R2234E-11 \\
\hline \multicolumn{4}{|l|}{1.0000000ECO} \\
\hline & 26 & 58 & 2.62A7977E-C5 \\
\hline & ? 2 & 59 & \(2.3014475 \mathrm{E}-11\) \\
\hline \multicolumn{4}{|l|}{1.2500तOCE 00} \\
\hline & 26 & 58 & 2.6287977E-05 \\
\hline & 26 & 59 & 2.3010794E-11 \\
\hline \multicolumn{4}{|l|}{1.5000000F CO} \\
\hline & 24 & 58 & \[
2.628797 \text { IF }=05
\] \\
\hline \(\ldots\) & 24 & 59 & \[
2.30 \cap 7114 E-11
\] \\
\hline \multicolumn{4}{|l|}{1.7500000500} \\
\hline & 26 & 58 & \(2.6287977 \mathrm{E}-05\) \\
\hline & 26 & 59 & 2.3003434E-11 \\
\hline \multicolumn{4}{|l|}{2.0000000 O} \\
\hline & 26 & 58 & 2.6287977E-05 \\
\hline & 26 & 59 & 2.2999754E-11 \\
\hline \multicolumn{4}{|l|}{2.2500000f 0 n} \\
\hline & 26 & 58 & 2.6287977E-05 \\
\hline & ? 6 & 59 & \(3.45058635=11\) \\
\hline \multicolumn{4}{|l|}{2.5000000 CC} \\
\hline & 76 & 58 & 2.6287977t-n5 \\
\hline & 26 & 59 & 4.6010131E-11 \\
\hline
\end{tabular}
NAP SAMPIF PRORLFM
\begin{tabular}{|c|c|}
\hline ENERGY DENSITY （PHOTONS－MEV／CC－SEC） & \[
\begin{gathered}
\text { GAM'A } \\
\text { SOIPCE STRENGTH } \\
\text { (OHOTONS/SEC) }
\end{gathered}
\] \\
\hline 4.4070917505 & 9．7035372F 07 \\
\hline 4．8271176E 07 & 2.41 .35588 E 10 \\
\hline 2．6955123E 07 & 4．90n9314E 10 \\
\hline 8．5264596E 05 & 1.8947688 EF \\
\hline 9．3574123E 07 & \(4.6762061 F 10\) \\
\hline 5．2151930E O7 & 9．4B71692F 10 \\
\hline 1.23768885 On & 2.7504196508 \\
\hline 1．3595586E DA & 6.7977932 F 10 \\
\hline 7．5705217E 07 & 1．3764525F 11 \\
\hline 1.5975935 F On & 3．55n2079F 08 \\
\hline 1.7575057 ED & 8．7875285E 10 \\
\hline 9．77222月1E 07 & 1．7767688E ！ 1 \\
\hline 1．4932931E \(0_{6}\) & 3．3184292E 08 \\
\hline 1.6480931 E OR & 8．24n4654E 10 \\
\hline 9．1348357E 07 & 1，6608792F 11 \\
\hline 1．3058021E On & 3．1017824F 08 \\
\hline \(1.5458227 E 08\) & 7．7291136E 10 \\
\hline 8．5390560E 07 & 1.5575556 E 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ENERGY DENSITY （PHOTONS－MEV／CC－SEC） & \[
\begin{gathered}
\text { GAM'A } \\
\text { SOIPCE STRENGTH } \\
\text { (OHOTONS/SEC) }
\end{gathered}
\] \\
\hline 4.4070917505 & 9．7035372F 07 \\
\hline 4．8271176E 07 & 2.41 .35588 E 10 \\
\hline 2．6955123E 07 & 4．90n9314E 10 \\
\hline 8．5264596E 05 & 1.8947688 EF \\
\hline 9．3574123E 07 & \(4.6762061 F 10\) \\
\hline 5．2151930E O7 & 9．4B71692F 10 \\
\hline 1.23768885 On & 2.7504196508 \\
\hline 1．3595586E DA & 6.7977932 F 10 \\
\hline 7．5705217E 07 & 1．3764525F 11 \\
\hline 1.5975935 F On & 3．55n2079F 08 \\
\hline 1.7575057 ED & 8．7875285E 10 \\
\hline 9．77222月1E 07 & 1．7767688E ！ 1 \\
\hline 1．4932931E \(0_{6}\) & 3．3184292E 08 \\
\hline 1.6480931 E OR & 8．24n4654E 10 \\
\hline 9．1348357E 07 & 1，6608792F 11 \\
\hline 1．3058021E On & 3．1017824F 08 \\
\hline \(1.5458227 E 08\) & 7．7291136E 10 \\
\hline 8．5390560E 07 & 1.5575556 E 11 \\
\hline
\end{tabular}

c응․․
－응․
co゙に


\(1.4932931 E\)
\(1.6480931 F\)
\(9.1348356 E\)
9.10










                \(\rightarrow 4\)



IT J9E96TL家T

 \(0 \rightarrow 0\)
\(0=1\)
\(\omega\)
0
0
0
0
0
0
0
0



\(0=0\)

co -

co

\(c \rightarrow-\)





\(6=-\)
6
\(\infty\)
0
0
0
0





 \(2.0212992 E\) O6
\(2.2427734 E\) 0я
\(1.2366114 E\) 08



\(4039896144^{\circ} \mathrm{T}\)
\(8038154991^{\circ} 2\)
\(9034815704^{\circ} 2\)

 \(1.0693308 E\)
\(1.3661408 E\)
\(6.5621914 E\)
07

\(\underset{c}{x} \boldsymbol{c}\) 2. \(8942797 E\)
7.251141 AE
\(1.4513 \cap 41 E\)

\(\underset{c}{c}\)
\(\stackrel{i}{c} \times \underset{c}{\alpha}\)
cac
\(\underset{0}{6}=\)
\[
\begin{aligned}
& 0
\end{aligned}
\]

\(\cos a\)














                    に
\(\stackrel{\pi}{2}\)





I

\section*{요}```


[^0]:    ${ }^{1}$ Davison, ${ }^{\text {B. : }}$ Neutron Transport Theory. Oxford University Press, 1957.

[^1]:    ${ }^{2}$ Dresner, L.: Resonance Absorption in Nuclear Reactors. Pergamon Press, 1960.

