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DUAL TURBOPUMP LIQUID HYDROGEN FEED SYSTEM EXPElUJ3NCEF 

S. V. Gum= and C. Dunn* 

Bocketdyne 
A Division of North American Aviation, Inc. 

Canoga Park, California 

Experience in the design and development of l iquid hydrogen feed sys- 
tems u t i l iz ing  two turbopumps operating in  pa ra l l e l  is described. The 
pumps are  supplied with l iquid hydrogen from a common i n l e t  and discharge 
in to  a common duct; the turbines also a re  supplied with turbodrive gases 
from a common i n l e t .  Two system configurations were designed, developed, 
and delivered t o  NRDS : one having dual Mark 9 turbopumps and one having 
dual Mark 25 turbopumps. The systems del iver  flows up t o  330 lb/sec and 
pressures up t o  2000 psi.  They were developed f o r  use in Phoebus reactor  
tes t ing performed by the Los Alamos Scient i f ic  Laboratory. 

Component and system performance, and dynamic charac ter i s t ics  of the 
systems are  described, Development t e s t s  have proved the prac t ica l i ty  of 
para l le l  dual, l iquid hydrogen turbopump operation. The two uni t s  operate 
with complete hydrodynamic s t a b i l i t y ,  sharing the hydraulic load equally, 
and no detrimental mechanical interact ions have been found. 

Dual turbopumps of fer  the potent ial  of emergency, s ingle  pump operation. 
The current feed system ( ~ o c k e t d ~ n z  Model NPS-3B) has a check valve i n  each 
pump discharge pr ior  t o  the comon header, and the poten*.ial f o r  such emer- 
gency operation is being evaluated. 

PEIOEBJS FEED SYSTEM 

In 1961, the h s  Alamoa Scient i f ic  Laborato~-y and the Space Nuclear Pro- 
pulsion Office began planning f o r  a new se r i e s  . ~ f  nuclear rocket reactor  
t e s t s  t o  be designated the Phoebus reacior  -Lest ser ies .  The Phoebus reac- 
t o r s  were t o  be larger ,  more powerful versi-ons of the K i w i  B &actors, and a 
power level  r a g e  between 3000 and 4000 megawat.;s was targeted f o r  the  new 
reactors. 
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The pump performance level requirements eetablished f o r  the Phoebus Feed 
System were : 

Developed Head, f ee t  50,000 
Delivered Flow, gpm 21,200 
NPSH, fee t  350 

I n  addition, the performance range requirement was specified t o  encompass an 
operating envelope bounded by a continuously variable,  delivered discharge 
pressure ranging from 100 to  1600 psia ,  and a continuously variable,  delivered 
f lowrate ranging t o  approximately 200 lb/sec . 

System Definition A survey was made of various methods for  meeting the 
l iquid hydrogen pumping requirements associated with the higher powered 
reactors,  and it was concluded tha t  manifolding ( in  pa ra l l e l )  multiple Mark 9 
turbopumps was feasible ,  t ha t  l iquid hydrogen bypass capabili ty would pro- 
vide the f l e x i b i l i t y  of very low delivered flowrate a t  f u l l  system discharge 
pressure, and tha t  t h i s  approach offered s ignif icant  schedule and cost ad- 
vantages. Accordingly, i n  l a t e  1961, a comparative study was conducted by 
Rocketdyne of a l te rna te  configurations fo r  coupling two Mark 9 turbopumps 
t o  a common hydraulic load and a select ion made of a preferred configura- 
t ion. The resul t ing Nuclear Feed System (NFS-3) is shown schematically i n  
Fig. 1. T h i s  system 5as a dual turbopump speed control subsystem and a 
pump specif ic  speed l i m i t  control subsystem. Dual, pa ra l l e l  turbopump speed 
control loops are used t o  control both turbopump speeds from a common sup- 
pl ied reference. Shaft speed i s  sensed on each turbopump, b; means of 
proximity-type inductance pickups, and compared t o  the speed =ference sig- 
nal.  The resul t ing e r ro r  signal is supplied t o  an integrating-type 
control ler ,  which, through an internal-position loop adjusts  the turbine 
valve t o  vary turbine power and speed. T5e NFS-3 turbopump speed control 
system i s  integrated into the f a c i l i t y  flaw control syatem, which supplies 
the reference speed-change signal upon comparing measured reactor flow t o  
commanded reactor flow. 

Punp specif ic  speed limiting is  accomplished by controlled actuation of 
the l iquid hydrogen bypass valve. Both the pump discharge volume flowrate 
and the turbopump shaf t  speed m e  measlared, and the r a t i o  of flowrate-to- 
pump speed (Q/N) is  re la ted  t o  the preselected minimum value f o r  Q/N. I f  
the measured Q/N is  l e s s  than the desired minimum Q/N, an e r ro r  signal i s  
generated, which causes a proportional in tegra l  plus lead-lag-type control ler  
t o  command the bypass valve t o  open, thereby diverting l iquid hydrogen out 
the bypass l ine ,  and increasing t o t a l  pump flow u n t i l  the minimum desired 
Q / N  value i s  sa t i s f i ed .  

The servocontrol logic diagram f o r  NFS-3 is shown i n  Fig. 2. Alternate 
control systems configurations analyzed i n  the study included: 1 single  
vs dual turbine control valves, i . e . ,  one for  each ti-rbine; and I {  2 single  
vs dual l iquid hydrogen bypass valves (IBBV). Dynamic analyses conducted 
included; s tar tup,  f u l l  poweq and shutdown operations; tolerance s tudies  
(turbopump mismatch e f fec t s  between the No. 1 and No. 2 uni t s  and valve 
character is t ic  e f f ec t s ) ;  and malfunction analyses. A s  a r e su l t  of the 
studies,  a single turbine control valve and a s ingle  l iquid hydrogen bypass 
valve were found t o  provide s table  operation over the operating regime of 
the dual turbopumps, and on the bas is  of simplicity were selected for  u t i l i -  
zation i n  the system. 



Figure 3 indicates the dynamic character is t ics  of the dual turbopump 
ayskem a s  exhibited i n  the i n i t i a l  analog atudies. Primary aystem param- 
e t e r s  are  indicated, but only the output from turbopump uni t  No. 1 i a  in- 
cluded because on the indicated scale ,  the behavior of the two uni t s  
appear the same. Figure 3a presents a f a s t  s ta r tup  and shutdown operation 
with speed ramp ra t e s  of 34,000 rpm/sec. This condition represents an 
order of magnitude f a s t e r  speed change than anticipated to  be demanded i n  
reactor teat ing.  The model indicated very good character is t ics  fo r  th ia  
rapid s tar tup.  Due t o  turbopump and f lu id  ine r t i a s ,  the shutdown operation 
exhibited desirable exponential decay character is t ics ,  since the reduction 
i n  reactor power is determined by the f i ss ion  product decay, and normally 
eliminates the need f o r  rapid shutdown of the l iquid hydrogen feed system. 

The systems response t o  8-11 (400 rpm) speed demand s teps  at 34,000 
rpm is  indicated in Fig. 3b with a 100 rpm speed overshoot and approxi- 
mately 1 lb/sec flow overshoot a t  210 lb/sec delivered flow. The indicated 
system speed and specif ic  speed control responses were approximately 3 t o  
4 cps (90-degree phase s h i f t  point) over the operating range. 

The r e su l t s  of the investigations of general ~ u m ~ / s ~ s t e m  load s t a b i l i t y  
analyses a re  shown i n  Fig. 4. The load l i n e  ust for  the analysis i s  i n d i -  
cated, with tho re la t ive  slope of possible pump curves along the planned 
operating specif ic  speed indicated f o r  slope comparison. This f igure i l l u s -  
t r a t e s  several in te res t ing  character is t ics .  Hydrodynamically, the Mark 9 
pump wouid be very s tab le  along the planned Phoebus operating load l i n e  
becauee the slope of the Mark 9 head/flow character is t ic  i s  approximately 
-10~si/lb/sec fo r  two pumps operating i n  paral le l .  For t h i s  ap l ica t ion ,  
changes i n  f lu id  flow a r e  s tab le  and overdamped fo r  a l l  pump H Q slopes 
more negative than -7; s t ab le ,  though underdamped, f o r  pump H / Q slopes up 
t o  + l ;  and ms tab le  f o r  slopes greater  than +l. Relatively steep negative 
pump curves are  desirable f o r  systems i n  which the pumps are  operated i n  
pa ra l l e l ,  which i n  e f fec t  reduces the equivalent system pump H/Q curve 
slope by a factor  of 2. 

Upon completion of the design and associated analyses of the NFS-3 sys- 
tem i n  the l a t e  spring of 1962, the system configuration shown i n  Fig. 5 
and described below was accepted by SNPO-Washington and LASL, and fabrica- 
t ion  of tke hardware was in i t ia ted .  

D e s i ~ n  Features The two Mark 9 pumps and turbines are mounted ver t i -  
cal ly ,  side by s ide,  i n  an alignment col lor ,  which i s  supported by a tripod 
structure.  Liquid hydrogen is supplied t o  the system i n l e t  from a 10-inch 
f a c i l i t y  duct. The i n i t i a l  horizontal system i n l e t  duct s p l i t s  and turns 
90 degrees downward; two ve r t i ca l  8-inch ducts, 6 fee t  long, then carry the 
hydrogen in to  the pump in le t s .  The high-pressure hydrogen is discharged 
horizontally from the eingle-exit volutes of each pump into two adapter duct 
sections containing turbine-type, 4-inch l iquid hydrogen flowmeters. 

The two 6-inch discharge ducts then turn  90 degrees upward, r i s e  7 f ee t ,  
and turn 90 degrees outward, joining in to  a common 8-inch duct, which mates 
with the f a c i l i t y  discharge duct. A 3-1/2-inch l iquid hydrogen bypass valve, 
located just  upstream of the system discharge flange, provides the capabili ty 



for  bypassing controlled amounts of hydrogen, thereby limiting the hydrau- 
l i c  impedence tha t  the f a c i l i t y  discharge ducting and t e a t  reactor may im- 
pose on the feed system. 

The supply of turbodrive gases f o r  the NFS-3 system was or iginal ly  ape- 
c i f i ed  t o  be high-pressure, ambient-temperature hydrogen gas, stored i n  
f a c i l i t y  bot t les .  A 6-inch, combination shutoff and t h r o t t l e  valve is 
u t i l i zed  t o  control the flaw of hydrogen gas t o  the turbine,  in response 
t o  the demande of the turbopump speed control system; t h i s  flow i s  con- 
ducted t o  both turbine i n l e t  flanges by means of an adapter and two 3-inch 
turbine i n l e t  duct a ,  which are  approximately 6 feet  i n  length. The two 
turbine exhaust flows are  carried t o  the f a c i l i t y  flare-stack l ine  by 8- 
inch exhaust ducts, which turn 90 degrees outward and extend 9 f e e t  hori- 
zontally and 13 fee t  ve r t i ca l ly  t o  the 30-inch f a c i l i t y  flare-stack header. 

Tbe design of the NIB-3 system permitted ready conversion t o  aingle- 
turbopump operation, termed single mode, by (1) removal of one each of the 
ump ve r t i ca l  i n l e t  ducts, pump discharge ducts, and turbine i n l e t  ducts;  

capping of the unused i n l e t  flange of the pum discharge t'Ytt duct and 
the ex i t  flange of the turbine i n l e t  '1" duct;  (37 blanking of the unused 
turbine exhaust connect flange i n  the r 'aci l i ty  flare-stack hesder; (4) sub- 
s t i t u t i o n  of a s ingle ,  horizontal system i n l e t  duct f o r  the s p l i t  i n l e t  
duct,; and (5) appropriate deactivation of the nonoperative turbopump speed 
control and spec i f ic  speed sensing circui ts .  

Development Program 

Single Mode The development t e s t  program of the NFS-3 system was 
i n i t i a t e d  i n  December 1963, and completed i n  April  1965. The f i r s t  s e r i e s  
of 12 t e s t s  was conducted i n  s ingle  mode, and was concerned with (1) demon- 
s t r a t ion  of the performance potent ial  of the turbopmp t o  f u l l  speed and 
power, (2) l imited pump performance mapping and s t a l l  def in i t ion  t e s t ing ,  
and (3) ver i f ica t ion  of the operational capabili ty of the turbopump speed 
and pump specif ic  speed control systems. 

A second se r i e s  of 24 t e s t s  was conducted with the following objectives: 
1 demonstration of mechanical in tegr i ty  of the turbopump t o  34,000 rpm, 
2 measurement, by means of special  proximity instrumentation, of the pump I1 

ro tor  rad ia l  and axia l  displacements a s  a function of turbopump speed and 
pump specif ic  speed, and (3) turbopump speed control loop frequency response 
t e s t s .  The pump ro tor  displacement measurements obtained from t h i s  se r i e s  
of t e s t s  revealed for  the f i r s t  time the existence of subsynchronous ro tor  
whirl over cer ta in  operating regions of the pump map. 

The th i rd  and f i n a l  s e r i e s  of e ight  s ingle-m~le t e s t s  of the NIB-3 de- 
velopment program was i n i t i a t e d  in February and completed i n  April  1965. 
The objectives of the t e s t  s e r i e s  were exploratory evaluations of several 
potential  hydrodynamic forcing functions, and 01 effect ive bearing spring 
r a t e s  (with and without bearing ca r r i e r  dampening) upon the subs~pchronous 
whirl tendencies of the Mark 9 pump rotor.  



Dual Mode The f i r s t  dual mode t e s t s  were i n i t i a t e d  i n  February 1964. 
Three low-power exploratory t e s t s  were conducted, and some l imited dual- 
turbopump speed control  response da ta  w a s  obtained. In general ,  the  feas i -  
b i l i t y  of dual-turbopump operation,  with common sources of turbodrive gases,  
pump i n l e t ,  and system discharge ducting,  was indicated.  A second s e r i e s  of 
14 dual-mode t e s t s  was conducted during the  period of November 1964 through 
January 1965. The f i r s t  4 t e s t s  were concerned with evaluating the  mechani- 
c a l  and hydrodynamic performance of the  dual-turbopump operations,  while the  
l a s t  10 t e s t s  were d i rec ted  toward t he  determination of the capab i l i t i e s  of 
the  dual-turbopllmp speed and spec i f i c  speed-limiting control  systems. NFS-3 
dual-mode t e s t  experience i s  indicated i n  TaLle I. 

Reaponse of the  NFS-3 system t o  a s t ep  demand i n  turbopump speed of 
4000 rpm is ahown i n  Fig, 6. The acce le ra t ion  of t he  turbopump approached 
50,000 rpm/sec2, t he  overshoot w a s  l e s s  than 1000 rpm, and the  speed d i f f e r -  
e n t i a l  between the  two turbopumps was only a few hundred rpm. The behavior 
of the  system was subs t an t i a l l y  aB predicted i n  Fig. 3b, although the ampli- 
tude of the  speed s t e p  i n  t h i s  t e s t  was 10 times t h a t  used i n  the analog 
model study. 

Response of t he  NFS-3 system, operating i n  dual  mode, t o  a programmed 
increase i n  t he  impedance exhibited by t he  f a c i l i t y  discharge system (created 
by commanding t he  f a c i l i t y  t h r o t t l e  valve toward t he  closed posi t ion)  caused 
the  flow through each pump t o  decrease at  a maximum r a t e  of 45 lb/aec/sec 
a s  shown i n  Fig. 7. The LEBV opened a t  a maximum r a t e  of 110 percent/sec 
t o  l i m i t  t he  measured flow e r r o r  t o  4.5 lb/sec. ('The flow e r r o r  would have 
been appreciably l e s s  i f  t he  LBBV had been modulating flow a t  t he  time of 
the  per turbat ions;  bu t  because of t h e  deadband created by t he  LBBV s e a l ,  12 
percent of f u l l  s t r ake  occurred before any appreciable bypass flow developed.) 

This s e r i e s  of t e s t s  c l ea r ly  demonstrated t he  f e a s i b i l i t y  and prac t ica l -  
i t y  of dual-turbopump operation. The two units operated with complete hydro- 
dynamic s t a b i l i t y ,  sharing the  hydraulic load equally,  and no detrimental  
mechanical in te rac t ions  were found. 

A dupl icate  NFS-3 system was shipped t o  Nuclear Rocket Development Sta-  
t i o n  i n  March 1965 f o r  i n s t a l l a t i o n  i n  Test Ce l l  C. 

Phoebus 1 and Pheobus 2 Test  Requirements Meanwhile, i n  1964, LASL1s 
planning f o r  t he  Phoebus reac tor  t e s t s  had advanced t o  t he  point  where two 
Eeactor-configurations and t h e i r  t e s t  requirements had been-identif ied.  
The f i r s t  configuration,  Phoebus 1, baaed on the  K i w i  B4 reac tors ,  would 
a l so  fea ture  a 35-inch reac tor ,  and would be uprated i n  power s u f f i c i e n t l y  
to  generate f u e l  element power dens i t i e s  equivalent  t o  those planned f o r  
the  second configuration. The l a t t e r  u n i t ,  Phoebus 2 ,  would feature  a 55- 
inch reac tor ,  and a planned power l eve l  t o  5000 megawatts. The required 
feed system performance l eve l s ,  i den t i f i ed  with the  two planned Phoebus reac- 
t o r  configurations a r e  l i s t e d  below: 

Phoebus 1 Phoebue 2 

Target Power a v e l ,  me awatts P 2000 5000 
Hydrogen Flawrate, l b  sec  115 290 
Pump Diachargc? Pressure, p s i a  1950 1450 



About the  same time, Rocketdyne had undertaken a co~pny-sponeored project  
t o  design and fabr ica te  a more powerful and improved axial-flow hydrogen pump, 
based on the  same physical s i z e  - -  the  Mark 9 ,  and u t i l i z i n g  some of i t s  ele- 
ments. This t e s t  pump was designated t he  E-bladed, Mark 9 pump. The & 
blading h y d r ~ d p a m i c  changes included Che u t i l i z a t i o n  of symmetrical blading; 
increasing the  flow and head coe f f i c i en t s ,  while maintaining approximately 
the  same dif fus ion and re tars ta t ion f az to r  as  were employed i n  t he  Mark 9 
s t a t o r s ;  and increasing the  s o l i d i t y ,  but  decreasing the  blade height s l i gh t l y .  
These changes resulted i n  a t e s t  pump fea tur ing  an inducer plus  four high- 
pressure-rise ax i a l  s tages  within the  same envelope a s  t h e  inducer, plus s i x  
ax i a l  s tages  Mark 9 pump ( ~ i ~ .  8); and w i t h  predicted hydrodynamic perform- 
ance increases of approximai.ely 50 percent i n  flow, 26 percent i n  t o t a l  head 
r i s e ,  and 89 percent i n  f l u i d  horsepower. The predicted performance map of 
the  E-bladed Mark 9 pump, as  compared t o  the  o r ig ina l  Mark 9 pump, i s  pre- 
sented i n  Fig. 9. 

In  view of the  po t en t i a l  of the  E-bladed pump t o  s a t i s f y ,  i n  s ing le  mode, 
the  pumping requirements of the  Phoebus 1 reac tor  and, i n  dual  mode, the  
Phoebus 2 r eac to r ,  SNPO-Washington authorized a s e r i e s  of e l e c t r i c  d r ive  
t e s t s  t o  def ine  the  performance of the  modified pump. A t o t a l  of 40 t e s t s  
were conducted during the  period of December 1964 through Apri l  1965, t o  de- 
termine the  H/Q, s t a l l ,  and cav i ta t ion  cha rac t e r i s t i c s  of the  pump up t o  
30,000 rpm. The r e su l t s  of these t e s t s  a r e  shown i n  Fig. 10. The measured 
NPSH requirements were equivalent t o  one ve loc i ty  head a t  the  inducer i n l e t  
over the  Q/N range tes ted.  No measurement of qua l i t y  was made a t  the  i n l e t ;  
however, the r e s u l t s  ind ica te  t h a t  mixed phase hydrogen might be pumped with 
t h i s  design and t h a t  t e s t i n g  with the  pump mounted j u s t  below a v e r t i c a l  
tank,  i n  conjuvction with tank emptying s tud ies ,  would be p rof i t ab le .  

NFS-3.A D e s i ~ ~ l  Features Possessing proved hydrodynamic performance of the  
E-bladed pump, mP0-Washington authorized a new scope of work f o r  the  Phoebus 
Feed System program, i n  which modifications t o  components of the  NFS-3 system 
t o  uprate the feed system performancc. t o  t h e  sew requirements of the  Phoebus 
1 and Phoebus 2 reac tor  t e s t  s e r i e s  would be accomplished and the  system 
redesignated NFS-3A. I n  addi t ion t o  incorporating t he  E-blading, the  modi- 
f i e d  pump, hereaf te r  re fe r red  t o  as the  Mark 25 pump, was strengthened 
mechanically by the  use of K-Monel i n  t h e  r o t o r ;  the  use of l a rge r ,  duplex 
55 mm bearings (loaded back t o  back) a t  each end of the  pump; and other  
de t a i  1 improvements . 

The increased pump power requirements, coupled with a decision f o r  MlDS 
operation t o  supply the  turbodrive gases from l i qu id  hydrogen bled from t h e  
pump discharge l i n e  and warmed t o  ambient temperature by a hot water heat  
exchanger, d i c t a t ed  modifications t o  t he  turbine.  Because of the  turbine  
i n l e t  pressure l imi ta t ions  resu l t ing  from the  use of a pump-bleed system, i t  
was necessary t o  increase the  e f f ec t i ve  turbine  flow are .. 

This change was accomplished by removal of t he  f i r s t - s t age  in l .e t  nozzles 
and r o t o r  blades, making t he  previous second-stage s t a t o r  and r o t o r  the  
i n l e t  stage of the  modified turbine.  I n  addi t ion,  the  turbine  was  
strengthened by the  use of Inco 718 i n  the  ro to r ,  by increasing t h e  blade 
sect ions  i n  the  last two ro to r  s tages ,  and other  d e t a i l  improvements. With 



these  modifications, the  un i t  was r e d e ~ i g n a t e d  a s  the  Mark 25 turbine .  
F ina l ly ,  a new, multiple-row, bal l -spl ine  coupling was C?signed t o  pro- 
vide g r ea t e r  torque and dpecd capacity a t  the pump-turbine in te r face .  

The increased flow requirements of the  uprated Phoebus Feed System a leo  
d i c t a t ed  changes i n  t he  systems ducts ( ~ i ~ .  11). The o r ig ina l  pump i n l e t  
ducts  m d  shor t  adaptive e x i t  sec t ions  below the  second Sellows t o  accom- 
modate a reductiori Pram an 8-inch-diameter duct down t o  the  7.25-inch- 
diameter Mark 9 pump i n l e t .  The modification t o  the  pump i n l e t  drlct in-  
volved replacing the shor t ,  adaptive, e x i t  sec t ion  with an e x i t  sec t ion  
re ta in ing  t he  8-inch diameter down t o  t he  Mark 25 pump i n l e t  flange. 

The o r ig ina l  pump discharge ducts a l so  ha2 shor t  adaptive i n l e t  eec- 
t i ons  t o  accommodate the  change i n  cross  sec t ion  from t h a t  of the  4-inch 
flowmeter t o  t h a t  of the  6-inch diameter, major port ion of the  pwnp d i s -  
charge ducts. The 4- and 6-inch f lowmeters a r e  shown i n  Fig. 12. The 
6-inch flovmeter u t i l i z e d  i n  t he  N F S - 3  and 3B systems was scaled from the  
4-inch NFS-3 version. To maintain flow measurement response, while x t a i n -  
ing the  same magnetic pickups t o  sense %he passage of the  blade t i p s ,  two 
more blades ( t o t a l i ng  s i x )  were added t o  the  6-inch ro tor .  The changes t o  
the  discharge ducts  involved tapered sec t ions  from the  5-inch pump dis-  
c h ~ r g e  flanges t o  the  6-inch flowmeter housings, the  s u b s t i t u t i c n  of the  
l a rge r  l i qu id  hydrogen flowmetera, and a l a rge r  bypass valve connect f lange 
t o  accommodate a 5-1/2-inch l i qu id  hydrogen bypass valve. 

The turbine  i n l e t  ducts were redesigned t o  increase t h e i r  diameter t o  
4 inches,  and t o  u t i l i z e  ex te rna l ly  t i e d  bellows. These changes increased 
the flow capacity of the turbine  i n l e t  ducts,  without the penalty of exces- 
s ive  pressure drop. 

NFS-3 Development - Program A single-mode development t e s t  p rogrm of 
t he  NFS-3 system was i n i t i a t e d  i n  May 1965, and continued through December 
1966. Because of the  lead time required t o  f ab r i ca t e  and modify the  sysiem 
hardware, t he  i n i t i a l  system t e s t a  were conducted with the  E-bladed pump; 
a five-stage Mark 9 turbine  ( the  blades were machined off the  f i r s t - s t age  
ro to r ,  and the  i n l e t  nozzle block removed); and a modified NFS-3A type pump 
i n l e t  duct. The remainder of t he  system components were NFS-3 hardware. 

The f i r s t  s e r i e s  of 35 t e s t s  were conducted between May and October 
1965. The object ives  of t h i s  t e s t  s e r i e s  were (1) t o  demonstrate the  per- 
formance expected of the Mark 25 turbopump over the  complete operatiry.map 
spec i f ied  f o r  the  uprated Phoebus Feed System, (2) t o  define the  v ibra t ion  
chs r ac t e r i s t i c s  ( c r i t i c a l  speeds, subsynchronous whir l  regions,  synchronous 
v ibra t ion  leve l s ,  e t c .  ) as a function of t he  turbomachinery operating po in t ,  
(3) re-evaluation of the c a p a b i l i t i e s  and response cha rac t e r i s t i c s  of the  
turbopus: speed and pump spec i f i c  speed l imi t ing control  systems, and (4) 
t he  pump stal l-recovery ' c apab i l i t i e s  of t h e  NFS-3 system. Table I1 pre- 
sen t s  three  typ ica l  t e s t  sequences emplojred i n  the  system t e s t  s e r i e s ,  the  
turbopump speed and pump spec i f i c  speed a r e  preselected and automatically 
time programmed. 



The h y d r o d y x ~ d c  performance of t he  E-bladed pump during the  system 
t e s t  agreed c losely  with the  performance exhibit2d during the  e a r l i e r  elec- 
t r i c  dr ive  t e s t s .  Since the  syetem t e e t s  ranged t o  34,000 rpm, and the  
pump discharge pressures t o  2000 p s i ,  the compressibil i ty e f f e c t  upon t he  
apparent head developed by the  pump was  more evident.  By properly account- 
ing f o r  the  enthalpy condit ions ex i s t ing  a t  the  i n l e t  and e x i t  of the  pump, 
the  t r u e  head r i s e  across  the pump could be determined, aad the  t r ue  head 
vs  volume flowrate curve, obtained from the  higher w e r  t e s t s ,  cor re la ted  
well  with the  curves obtained from the  lower power t e s t s .  I n  add i t ion ,  
the  d e f i n i t i o n  of t he  s tal l  l i n e ,  a constant  value of Q / N  = 0.30 over a 
range of speeds from 10,000 t o  32,000 rpm, confj.rmed the  r e s u l t s  obtained 
from the  e a r l i e r  e l e c t r i c  dr ive  t e s t s .  

The v ibra t ion  and rotordynamic cha rac t e r i s t i c s  exhibi ted by the  in te r im 
ICE'S-% system during the  initial  t e s t  s e r i e s  can be sumuarized as follows: 
(1) an apparent, bearing-stiffness-determined? pump ro to r  c r i t i c a l  speed 
ex i s ted  at approximately 26,500 rpm, (2) subaynchronous whirl  of t he  pump 
r o t o r  w a s  i n  e v i d e ~ c e  when t he  primp operating spec i f i c  a eed was l e s s  than 
the design,  and t he  sha f t  speeds were above 24,000 rpm, PJ) t he  pump syn- 
chronous r a d i a l  v ib ra t ion  leve l s ,  exhibited at  the  forward bearing houaing, 
d id  not  normally exceed 20 g , and (4) a aupersynchronoue, 700-cpa v ibra t ion ,  
possibly flow induced, w a s  usually exhibited in  t h e  system mount, d u c t s ,  
and turbomachinery housings when the  system was operated a t  high power and 
high pump spec i f i c  speeds. Thebe v ibra t ion  modes were not believed t o  be 
s u f f i c i e n t l y  strong t o  l i m i t  the  operation of the  system f o r  t h e  planned 
reac tor  t e s t s .  

The cievelopment of the  turbopump speed anJ t he  pump s p e c i f i c  s?eed 
l imi t ing control  systems resu l ted  i n  dynamic control  c a p a b i l i t i e s  which 
exceeded t h s  requirements of NRDS, Spec i f ica l ly ,  t h e  bandwidth of the  
turbopump speed control  system with adequate s t a b i l i t y  margin, w a s  deter-  
mined t o  be 2 c ~ s  a t  30,000 rpm. The reaponse of the spec i f i c  speed l i m i t -  

con t ro l  system was optimized t o  limit the  reduction i n  pump operating 
Q i? t o  l e s s  than 11 percent,  when the system del ivered flow was del iber-  
a t e l y  reduced a t  a r a t e  as high a s  1000 lb/sec2, When conducting t e s t s  i n  
which dynamic control  operations occ~.si-ed, no s i g n i f i c a n t  control  i n t e r -  
ac t ion  s t a b i l i t y  problems were evidenced. 

The s t a l l  recovery capab i l i t i e s  of the  NFS-3.A system were demonhirated 
over a range in speeds from 10,000 t o  25,l)OO rpm. driving the  f a c i l i t y  
t h r o t t l e  valve a t  maximum r a t e  toward i t s  closed posi t ion,  with the  PIGS 
operating i n i t i a l l y  a t  a Q / N  of 0.33, it was possible t o  overwhelm mnmen- 
t a r i l y  the spec i f i c  speed l imi t ing control  and dr ive  the  pump i n t o  sta3 
Immediately, however, the  l i qu id  hydrogen bypaas valve w a s  commandad o, 
reducing the hydraulic impedance seen by the pump, and s t a l i  recovery k 
ef fec ted  with the  system resuming steady-state operation a t  a Q / N  of O . > j .  
The durat ion of the  s t a l l - t r a n s i e n t  var ied  from 0.10 second a t  10,000 rpm 
t o  0.23 second a t  25,000 rpm. Figure 13 presents a time display of Rome 
of the per t inen t  system operating parameters from a typ i ca l  stal l-recovery 
t e s t .  

During December 1965 and January 1966, a second s e r i e s  of f i v e  t e s t s  was 
conduct.ed with t he  in ter im NZS-3.A system t o  evaluate the mechanical and 
rotordynauic bchavior t o  be expected from the  Mark 25 pump ro to r .  For thesc  



t e s t s ,  a  spec ia l ly  modified E-bladed pump, with duplex 45 mm bearing; s e t s  
(loaded back t o  back) a t  each end of the pump r o t o r ,  was  utilize^. The 
r e s u l t s  obtained dernonst*.ated ,the improvements i n  r o t o r  r a d i a l  p i lo t ing  
a d  a x i a l  posit;oning t o  be expect,ed from the 55 mm duplex bearing config- 
ura t ion,  i n  t h a ~  there  was no evidence of r o t o r  rubbing in close-clearance 
areas.  Furthe~more,  subsynchronous whirl  was not observed, even though 
the  pump was operated a t  a spec i f i c  speed of approximately 900 t o  30,000 
rpm . 

By Vehruary 1965, the  f i r s t  Mark 25 turbopump, and one each of a l l  of 
the  modified system ducts ,  were avei lable  f o r  converting the in ter im NFS-3A 
system t o  a single-mode NFS-JA system. The r equ i s i t e  componentrr were in- 
s t a i l i d  and a s e r i e s  of 25 Mark 25 turbopump t e s t s  conducted. The objec- 
t i v e s  of t h i s  t e s t  s e r i e s  were (1) t o  ver i fy  the  hydrodynamic performance 
of the  Mark 25 turbopump over the  comple?e operating mop specif ied f o r  the 
uprated Phoebus feed systems, (2) t o  determine the  ro to r  dynamic and vibra- 
t i o n s  cha rac t e r i s t i c s  of the new turbomachinery i n  the  NFS-3A system ad a 
function of operation point ,  and (3) t o  demonstrate the  mechanical i n t e g r i t y  
of the  complete system by a s e r i e s  of s i x  full-power, fac i l i ty -dura t ion  
t e s t s .  The data  from t h i s  t e s t  s e r i e s  confirmed the  performance, ro to r -  
dynamic, and mechanical v ib ra t ion  cha rac t e r i s t i c s  of the  e a r l i e r  in ter im 
NFS-3.A system t e s t  da ta ,  with t h e  exception t h a t  t he  subaynchronous whirl. 
region had moved up i n t o  the  corner of the  pump map. 

With the completion of t he  aforementioned t e s t  s e r i e s  i n  May 1966, 
acceptance t e s t s  of two Mark 25 turbopumps were conducted, and the  un i t s  
del iverea  t o  NRDS. A new scope of development e f f o r t  was then authorized 
i n  June 1966, t o  expand t h e  ava i lab le  da t a  on the  nature  and possible 
causes of the  rotordynamic and v ibra t ion  phenomena observed i n  the  e a r l i e r  
development t e s t i ng ,  and t o  accumulate addi t ional  t e s t  time on t he  Mark 25 
turbopumps p r io r  t o  enter ing t he  planned dual-mode t e s t  program. This addi- 
t i o n a l ,  single-mode, t e s t  program continued through December 1966, during 
which time 30 control led i npc t  ("shaker") v ib ra t ion  tqes t8  and 46 turbine- 
powered pumping t e s t s  of the  NFS-% system were ca r r ied  out. 

The purposes of the  shaker t e s t s  were t o  determine t o  what extent  the 
system's strucr;ural resotances were a s s ~ c i a ~ e d  with the  vibrat ion phenomena 
noted on the  turbomachinery housing and th8 system ducting, and t o  inves t i -  
gate  t he  e f f e c t  of severa l  possibie s t ruc tura?  modifications lipon t he  prin- 
c ip l e  s t r u c t u r a l  resonancea. The r e s u l t s  of the  v ibra t ion  t e s t i ng  indicated 
many na tura l  frequencies,  with a strong 710-cps resonance in the  pump i n l e t  
duct. Also, it was noted t h a t  when the pump i n l e t  duct was exci ted a t  380 
cps, it responded sharply a t  760 cps. Addit ionally,  the turbine i n l e t  duct 
exhibited a strong resonance a t  370 cps. S t ruc tu r a l  modifications performed 
during the  shaker t e s t s  produced l i t t l e  change i n  the  multiresonant charac- 
t e r i s t i c s  of the system, although a reduction in  am$icudes was noted when 
the  turbopump uupport was s t i f f ened .  

During the  conduct of t he  system pumping t e s t s ,  pa r t i cu l a r  a t t en t i on  was 
paid t o  t he  rotordynamic, hydrodynamic, and mechanical v ib ra t ion  character-  
i s t i c s  exhibited by components of t he  system a s  a function of operating point  



on the pump map, as  well a s  direct ion of change of the operating point. 
Subs~nchronous whirl, a t  a frequency of approximately 0.62 times the 
rotor speed frequency, was noted t o  occur at pump spec i f ic  speeds l e s s  
than design and a t  speeds above 30,000 rpm; the edge of the whirl region 
seemed t o  correlate with a i i a e ,  the slope of whict is proportional t o  
the r a t i o  of head developed divided by speed, while the location of the 
whirl region on the map appears dependent on the bearing s t i f fness ,  i . e . ,  
a t  constant specific speed, the greater  the bearing s t i f fness ,  the higher 
the threshold ~ ~ e e d / ~ r e e s u r e  rer  'red t o  t r igger  the ins t ab i l i t y .  

On occasion, usually correlat ing with a par t icu lar  pump, 120-cps pres- 
sure osci l la t ions were noted when the pump was operated i n  the v ic in i ty  
of the design specific speed and above 32,000 rpm. The data indicate tha t  
the f luid osci l la t ion i s  a standing longitudinal wave i n  the l iquid hydro- 
gen system, but the i n i t i a t i n g  source has not pet been identified.  When 
the pump was cperated a t  flowrates between 137 and 155 lb/sec, and a t  
speeds above 31,000 rpm, a strong 700- t o  780-cps vibration was noted in  
the tnrbopump housings and the major ducts. These charac ter i s t ics ,  coupled 
with the pump i n l e t  duct resonant frequencies determined from the shaker 
t e s t s ,  suggest tha t  t h i s  mode of vi3rsziaa inay be flow excited, and tha t  
an observed hysteresis e f fec t  may be dhe t o  nonl ineari t ies  or  an energy 
threshold requil-ed t o  e rc i  t e the vibration. 

The causes of the pump rotordynamic and the system vibration phenomena 
discussed above have not been established; but no known hardware damage 
occurred from these operating conditions i n  the many system t e s t s  conducted 
t o  date. Im~far  a s  synchronous vibrations a re  concerned, the acceleration 
levels sensed on the t.urbomachinery housings were typical ly  l e s s  than 20 g 
peak t o  peak. There appears t o  be a bearing stiffness-determined c r i t i c a l  
speed a t  approximately Z8,800 rpm; but the amplification real ized is  not 
suf f ic ien t ly  large t o  pr?judice bearing r e l i a b i l i t y .  

Three cases of inducer blade cracking were encountered during the t e s t  
program. The cracks were very small, and only occurred a t  the t r a i l i n g  
edges of the f u l l  blades. Previous vilbraticn t e s t s  had not revealed a mode 
corresponding with the cracks at any wake exci tat ion frequency, and the 
power-bending loads on these blades were quite reasonable; however, the 
tr&;lin% edges of the f u l l  blades overlapped the leading edges of the 
second pa r t i a l  blades, which suggested the poss ib i l i ty  of a flaw-induced 
f l u t t e r .  Axial trinrming of the blades, t o  reduce the overlap and increase 
the edge thickness +Jo a minimum of 0.040 inch, seems t o  have eliminated t h i s  
problem. 

Daring the e a r l i e r  (preacceptance) tes t ing  of the Mark 25 turbopump, 
s t r a in  gage measurements of the turbine bearing ca r r i e r s  had revealed axia l  
thrust  loads and osci l la t ions ranging up t o  6000 polmds and 41500 pounds, 
respectively. A reduction i n  the clearance a t  the first labyrinth sea l  
reduced the axial  load t o  an acceptable value of l e s s  than 1500 pounds and 
eliminated the csc i l la t ions .  In addition, the gas flow t o  the turbine w a s  
reduced by 9 percent. 

I 



The foregoing se r i e s  of 75 single-mode NIB-JA system t e s t s  resul ted i n  
the accumulation of a lar e amount of Mark 25 turbopump performance data ,  
much of it a t  high power f 20,000 horsepower). This data  provided the basis 
fo r  the performance map shown i n  Fig. 14; a lso shown are  the Phoebus 1 and 
Phoebus 2 feed system requirements, a s  defined earli$r. The actual per- 
formance capabi l i t ies  of the system extend beyond the contract-defined en- 
velope, and are  currently being explored at NI1DS. 

Late in ihe NZS-3A t e s t  program, SNPO-Washington authorized additional 
development e f f o r t  t o  investigate the prac t ica l i ty  and repeatabi l i ty  of 
high-speed balancing of the pump ro tor ,  with a t ten t ion  t o  ro tor  element 
repositioning er rors ,  and re la ted  rotordynamic behavior. The investigations 
were carr ied out i n  Rocketdyne's rotordynamic f a c i l i t y ,  which has a large 
vacuum-spin p i t  and high-speed e l e c t r i c  drive,  and has the capabili ty of 
driving a fu l ly  instrumented pump ro tor  at f u l l  speed. 

During December 1965 through February 1967, 29 vacuum-spin p i t  t e s t s  
were conducted; the f i r s t  10 t e s t s  were concerned with checking out the 
f a c i l i t y  and instrumentation, and establishing t e s t  procedures, while the 
second se r i e s  of 19 t e s t s  was expended i n  evaluating the f e a s i b i l i t y  of 
high-speed balancing. The corrective balanca adjustments made reduced the 
ro tor  rad ia l  displacements, p a r ~ i c u l a r l y  a t  the c r i t i c a l  speed of approxi- 
mcitely 28,000 rpm, where the displacements of the most sens i t i r e  plane were 
reduced by a factor  of 5. It w a s  therefore concluded tha t  high-speed 
balancing of the Mark 25 pump ro tor  was prac t ica l ,  and resul ted i n  a better- 
balanced ro tor  than can be achieved with low-speed balancing. 

NFS-3B Design Features In  e a r l i e r  planning fo r  the modifications t o  
t e s t  c e l l  C ,  NRDS, it had been decided t o  i n s t a l l  a hot water-to-liquid 
hydrogen heat exchanger system (designated Turbine Ehergy source) t o  pro- 
vide the turbodrive and dewar pressurization gases, m d  a high-pressure 

/ l iquid hydrogen dewar ,designated a r g e n c y  Cooldown ~ e w a r )  t o  provide an 
suxi l iary source of reactor coolant f o r  t e s t  s i tua t ions  involving unexpected 
shutdown of the main l iquid hydrogen supply system. The integration of 
these modifications in to  the t e s t  f a c i l i t y  are  indicated in  Fig. 15, which 
a lso  s e t s  for th  the f u l l  power operating conditions expected fo r  the planned 
Phoebus 2A reactor t e s t .  

A s  a r e su l t  of these decisions, the BIRDS operational requirements fo r  
the uprated Phoebus feed system were fur ther  defined i n  the f a l l  of 1965. 
Because of the premium placed OD t - h i z i n g  the turbine energy source- 
bootstrap loop pressure drop when testing a t  the Phoebus 2 operating point,  
the specif icat ion f o r  the plug and sea t  of the turbine control valve was 
recommended t o  be changed from a CV of 195 t o  350, thereby increasing the 
effect ive flow area by 80 percent. The incorporation of the Emerge~.cy Cool- 
down Dewar in to  the f a c i l i t y  high-pressure hydrogen delivery l ine  introduced 
the need f o r  i so la t ion  crf the pump i n l e t  system from the discharge system 
under emergency shutdown conditions. Analog and d i g i t a l  simulation s tudies  
of the predicted dynamic behavior of the feed systems in  t h i s  f a c i l i t y  re- 
sulted in the recommendations tha t  check valves be ins t a l l ed  in  each pump 
discharge duct, and larger  l iquid hydrogen bypass valves be located jus t  
upstream of each check valve with separate specif ic  speed control lers  fo r  
each l iquid hydrogen bypaas valve a s  indicated In  Fig. 16. 



The NFS-3B d i g i t a l  simulation model, with indicated computation pointe, 
i s  presented i u  Fig. 17. The model features  completely variable pumped 
f l u i d  ( l i q u d  hydrogen) phyeical propertiea, thermodynamics of variable 
turbopmp efficiency, and spa t ia l ly  dis t r ibuted hydrogen flows and pres- 
sures;  and generated predicted speed t ransients  which were i n  good agree- 
ment with t e a t  data. Response of the NFS-3B system t o  a s tep  increase i n  
the f a c i l i t y  discharge impedance a t  25,000 rpm, as  determined by the d i g i t a l  
model, i s  prestilted i n  Fig. 18. The input is  a 2-millisecond ramp reduction 
i n  f a c i l i t y  l iquid hydrogen t h r o t t l e  valve (valve No. 1, Fig. 17) posit ion 
from 100 t o  1 G  percent open, The delivered flow drops t o  30 percent i n  2 
milliseconds, and t o  15 percent i n  28 milliseconds when the check valves 
(valves No. 4 and 5) sea t  closed. The l iquid hydrogen bypass valve begins 
opening on specif ic  speed control a t  8 milliseconds and i s  f u l l  open 85 m i l l i  
seconds l a t e r .  The t ransient  i a  over and the system is  operating essent ia l ly  
a t  steady s t a t e  i n  100 milliseconds with 10 percent flow being delivered and 
90 percent bypassed. Thia t rans ien t  i s  extremely severe compared t o  r e a l i t y ;  
however, when the model predicted behavior is compared t o  the pertinent 
s ingle  mode t ransients  experienced i n  pumping t e a t s  of t h i s  type, the indi- 
cations a re  tha t  the system would accommodate sa t i s f ac to r i ly  the abrupt 
changes i n  flows, pressures, and implied loads. By f e r  the most c r i t i c a l  
component i s  the pump i n l e t  duct, which experiences pressure surges t o  100 
percent over the maximum operating level ,  fo r  approximately 10 milliseconds. 

The individual check valves and bypass valves f o r  each pump also pro- 
vide the potential  fo r  emergency, s ingle  pump operation when turbine shutoff 
valves a re  incorporated I- each turbine i n l e t  duct. These valves would be 
actuated by pressure difference across the check valve. This system is being 
evaluated f o r  possible use at BIRDS t o  provide additional assurances of ade- 
quate l iquid hydrogen flow t o  the reactor under emergency t e s t  conditions. 

With the acceptance of these recommendations, design of t.he new check 
valves, new l iquid hydrogen bypass l i nes ,  and associated redesign of the 
p u p  discharge ducts was i n i t i a t e d  i n  November 1966, and resul ted i n  a new 
system configuration, designated NFS-3B 19). 

The redesign of the pump discharge ducts t o  accept the check valves in- 
volved cutting i n t o  the ve r t i ca l  sections between the t i e d  bellows, and in- 
s t a l l i ng  flange joints  and chambers i n  each duct t o  contain the check valves. 
I n  addition, a t ee  and flange were ins t a l l ed  i n  the horizontal sect ion of 
each duct adjacent t o  the flowmeter t o  accomnodate the larger  5-1/2-inch 
l iquid hydrogen bypass valves. These bypass valves were connected t o  the 
f a c i l i t y  flare-stack l ine  by 6-inch ducts, 8 f ee t  i n  length, which carr ied 
the bypass hydrogen t o  the  f a c i l i t y  interface flanges. 

The 7-inch check valves (Fig. 20) were designed t o  exhibit  a pressure 
drop of l e s s  than 50 ps i  a t  f u l l  Phoebus 2 flowraten, and t o  withstand the 
impact and pressure loads associated with closing i n  l e s s  than 20 m i l l i -  
seconds under 2000--,si reverse pressure. The new 5-1/2-inch l iquid hydro- 
gen bypass valve (J?ig, 21) was designed f o function under continuom servo- 
duty as  e i the r  a shutoff or t h r o t t l e  valve; operate with upstream pressures 



ranging up t o  2250 p s i ,  and ye t  withstand reverse l r e s su re s  of 1000 p s i ;  pro- 
vide c.n e f f ec t i ve  unblocked area  of approxirat?!g 20 sq in.; and have a ga te  
slewrate of a t  l e a s t  1200 percent/sec. '9-e g l t e  i s  ac tua l ly  a b a l l  incor- 
porating stub sha f t s  wiAh those port ions of t he  b a l l  not  required f o r  seal ing 
cutaway. A two-position, hell-crank-typs actuator  i s  employed so t ha t  the  
torque applied t o  t ~ e  ga te  sha f t  would epproximate a pure couple, thereby 
minimizing t h e  r ad i a l  loading on bhe gate  shaf t  bearings. 

NFS-JB Development Program Testing of t he  Nl?S-3B system has been con- 
duct<d only a t  t e s t  c e l l  C ,  W S .  The i n i t i a l  t e s t s ,  begun i n  September 
1966, were conducted with the  single-mode configuration f u r  the  purpose of 
qual i fying the  systems f o ~  t h e  Phoebus 1B reac tor  t e s t ,  as  well  a s  gaining 
experience with t he  operation of the  new system i n  the  modified t e s t  c e l l .  
A t o t a l  of 17 turbine-powered t e s t s  were conducted between October and 
December 1966  a able I I ~ ) ,  uuring which 2580 seconds were accumulated on 
one turbopump a t  speeds and power l eve l s  i n  excess of the  requirements pre- 
dicted "or t h e  Phoebus 1B full-power run. On 23 February 1967, t he  ac tua l  
full-pohar t e s t  occurred, a d  t he  feed system functioned properly f o r  t he  
e n t i r e  44 minutes of "urbine-powercd operation. 

I n  Apri l  1967, the  1Q5-3B system was converted t o  the  dual-mode con- 
f i g u r a t i ~ n ,  and dual-mode t e s t i n g  was i n i t i a t e d .  The f i r s t  11 t e s t s  were 
concerned i n  par t  with ;aining operational  experience with the  system i n  
dual  mode, and t h e  turbopump speeds were limited t o  30,000 rpm. Then, 
beginning i n  May and crnt inuing through June, an addi t ional  13 dual-mode and 
25 single-mode t e s t s  were conducted during which (1) the  system was operated 
repeatedly,  i n  dual   mod^, a t  or  above t he  Phoebus 2 operating po in t ,  (2) one 
of t he  turbopumps acc -mla t ed  approximately 25 mfxrtes a t  or  above t he  
planned Phoebus 211. pumping power requirements, a d  (3) t he  same turbopump 
was taken t o  36,000 rpm, developing 24,000 shaf t  hsrsepower, while del iver-  
ing 185 lb/sec of l iquid  hydrogen a t  a del ivery pressure of 1700 psia.  

I n  addi t ion,  during t he  lz7,er port ion of the  t e s t  s e r i e s ,  it w s s  found 
poss ible  t o  operate one of t he  turbopumps a t  any desired point-on i t s  
operatjng map, ' r i l e  t he  other  turbopump was allowed t o  motor slowly by 
bleeding a small amount of l iquid  hydrogen from i t s  bypass valve. The 
source of turbodrive gases was i so la ted  from the  second turbine  by i n s t a l l -  
ing a blanking flange on t h e  corresponding leg  of t he  turbine i n l e t  duct. 
This mode of operation p a r t i a l l y  denvastrates the  f e a s i b i l i t y  of turbopump- 
out capab i l i ty  f o r  nuclear rocket, engines employing multiple turbopumps. 

Table I11 presents  a summary of representa t ive  t e s t  da ta  from a few of 
t h e  60 t e s t s  conducted with t he  NFS-3B system a t  Nuclear Rocket Development 
Stat ion.  

Rocketdyne has designed, fabr ica ted ,  t e s t e d ,  and delivered two configura- 
t i ons  of dual-mode l iquid  hydrogen f e  d systems f o r  use i n  t e s t i n g  Phoebus 
reac tors  ..n t he  Rover Program. One system incorporates dual  Mark 9 turbo- 
pumps and t h e  other dual  25 turbopumps. The cha rac t e r i s t i c s  of these  
two feed systems, NFS-3A and NFS-3B, a re  presented i n  Table TV. Approximately 



1500 seconds of dual-mode NFS-3 and 4500 seconds of dual-mode NFS-3B 
t e s t i n g  t o  d a t e  have proved t h e  p r a c t i c a l i t y  and f l e x i b i l i t y  of p a r a l l e l  
ope ra t ion  of two l i q u i d  hydroken turbopumps. The p a r a l l e l  u n i t s  ope ra t e  
wi th  complete hydrodynamic s t a b i l i t y  , s h a r i n g  t h e  hydr -1ulic load e q u a l l y  
a t  e i t h e r  s t e a d y  s t a t e  cond i t i on  o r  through l a r g e  speed t r a n s i e n t s  in- 
vo lv ing  turbopump a c c e l e r a t i o n s  up t o  50,000 rpm/sec. I n  a d d i t i o n ,  t h e  
pllmps responded smoothly and e q u a l l y  t o  programmed reduc t ions  i n  d e l i v e r e d  
flow. 

The d u a l  turbopump systems can be operated i n  s i n g l e  mode, i.e., one 
turbopump by i n s t a l l i n g  b lanking  f l a n g e s  i n  p e r t i n e n t  system d u c t s .  and 
swi tch ing  t h e  c o n t r o l  console  t o  t h e  single-ode ope ra t ing  condi t ion .  
Together w i th  t h e  au tomat ic  l i q u i d  hydrogen d i scha rge  bypass  c a p a b i l i t y  
t h e  system provides  f o r  t h e  ope ra t ion  a t  a l l  d e l i v e r e d  p r e s s u r e s  t o  2000 
p s i a ,  and a l l  d e l i v e r e d  f lows t o  330 lb/sec. The u t i l i z a t i o n  of m n l t i p l e  
turbopumps has  provided s i g n i f i c a n t  c o s t  and schedule advantages t o  t h e  
Rover Program. 

Mul t ip l e  turbopumps o f f e r  t h e  p o t e n t i a l  of pumpout feed  system opera- 
t i o n .  The NFS-38 feed system inco rpora t e s  a check v a l v e  i n  each pump 
d i s c l . r * e  d u c t ,  upstream of t h e  common heade r ,  and pumpout ope ra t ion  a t  
NRDS i s  Se ing  eva lua ted .  

WOEBUS 1B FLf iPOWER REACTOR TEST 

On 23  February 1967, t h e  Phoebus 1B was t e s t e d  a t  f u l l  power. The 
44-minute run was, i n  g e n e r a l ,  a resounding  succes s ,  w i t h  t h e  r e a c t o r  
ope ra t ing  i n  t h e  power range of 1200 t o  1450 megawatts f o r  30 minutes.  
F igure  22 is a system schematic  of t h e  major hydrogen supply  and f low 
equipment a s  t hey  funct ioned d u r i n g  t h e  t e s t .  The p e r t i n e n t  test p a r e  
e t e r s ,  a s soc i a t ed  wi th  t h e  ope ra t ion  of t h i s  equipment a t  t h e  beginning  
of t h e  full-power p o r t i o n  of t h e  run, a r e  i n d i c a t e d  on t h e  schematic.  
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TABU I. NFS-3 DUAL MODE TESTS 

Date 

2-26-64 

2-26-64 

2-28-64 

11-25-64 

12-3-64 

I 
112-8-64 
I 

, Pressure Horse- Speed, 
Rise ,  p s i  power rpm b+oo 18,300 

12-10-64 

12-14-64 

12-14-64 

12-17-64 

12-31-64 

1-4-65 

1-8-65 

1- 18-65 

1-19-65 

1-21-65 

1-27-65 

Total 

Test Objectives 

Check-out of overspeed 
t r i p  and Ns l i m i t  con- 
t r o l  
Obtain turbopump speed 
loop response and ver i -  
f y  N, l i m i t  control  

loop response 

rprn checkout program 
speed operation 

rpm 

7 
Obtain turbopump speed 

Evaluate system mechani- 
c a l  i n t e g r i t y  t o  15,000 

Evaluate system mechani- 
c a l  i n t e g r i t y  t o  21,000 

Evaluate system mechani- 
c a l  i n t e g r i t y  t c  25,000 
r p m  
Evaluate system mechani- 
c a l  i n t e g r i t y  t o  30,000 
r p m  
Obtain low power turbo- 
pump speed loop response 
Obtain low power turbo- 
pump speed loop response 
Obtain medium power 
turbopump speed loop 
response 
Obtain medium power 
turbopump speed loop 
response 
Obtain high power turbo- 
pump speed loop response 
Obtain low power NS l imif 
system response 
Gbtain 10% power Ns limif 
system response 
Checkout Ns l i m i t  system 
a t  high power 
Evaluate in te rac t ion  of 
turbopmp speed and pump 
Ns l i m i t  control  systems 
Obtain high power N, 
l i m i t  system response 

Duration, 
seconds 

34 

48 

10 

48 

59 

Flowrste 
lb/sec 

110 

140 

145 

88 

120 

58 

68 1 140 

68 

148 

164 

125 

8 1 

36 

31 

147 

40 

90 

150 

150 

180 

80 

90 

180 

131 

1,343 - 
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TABLE 111. NFS-3B TEST SUWARY 

*Phoebus 1B 
*Phoebus 2 Cold Flow 

Date 

10-6-66 
12-7-66 
12-9-66 
12-15-66 
2-23-67* 
4-20-67 
4-26-67 

5-10-67 

5-25-67 
5-26-67 
6-15-67 
6- 16- 67 

7-12-67 

7-19-67 

Total 

TABLE IV. PHOEBUS FEED SISTPI CHABBCWISTICS 

Duration, 
secouds 

1,000 
1,000 
2,000 
1,700 
1,800 

400 
1,500 

1,400 

4 0  
200 

1,440 
50 

{ gY 
{ z* 

System 

Delivery Date 

Location 

PUMP - 
Designation 
F 1 owrat e , lb/s ec 
Discharge Press ,ps ig  
Speed, rpm 

TURBINE 

Designatiou 
I n l e t  Press ,  p s i a  
Pressure Ratio 
Flowrate, lb/sec 
S h a f t  Horser-wer 

14,870 

Mode 

Single 
Single 
Single 
Single 
Single  
Dual 
Dual 

Single  
Single  

Single  
Dual 
Dual 
Single  ------- 
Single  
Single  -- 
---I-- 

Single 
Dual 

,---- -- 
- 

Flowrate, 
lb/sec 

110 
110 
110 
120 
110 
250 
260 

{ iz; 
185 
250 
350 
l85 -_----_-------- 

85 
165 ,,,,,,,,,,,,,,,-,-.- 

165 165 -----------------,----------- 

Horsepower 

11,500 
11,500 
11,500 
14,000 
10,400 
16,200 
16,400 

17,500 
20,000 --------..---------------..------------,---------,------- 
20,000 
36,000 
40,000 
24,000 

---.----------------.------------,--------- 

1,400 
19 000 ~ - - - - - - - - . - - - - L - - - - - - -  

19,000 
2,600 

-----.------------ 

Pressure Riee ,  
pa i 

1440 
1440 
1400 
1620 
1320 
865 
830 

--------.I---------------.------------- 

1500 1225 

1200 
2000 
1500 
1650 

200 
1500 - ----- - - - - I - - - - - - - - - I - - - . - - - - - - - - - - - - - - - . - - - - - - - - - - -  

1500 200 

Speed, 
rpm 

28,000 
28,000 
28,000 
30,000 
26,800 
25,000 
25,500 

---------,------- 

32,000 
34,000 

34,000 
32,500 
34,000 
36,000 

14,000 
34 000 

34,000 
13,500 

.-------- 
- -- 

NFS-3 

1965 

NRDS 
Test  Ce l l  C 

Single  

Mark 9 
90 
1250 
31,000 

7 

NFS-3B 

1966 

NRDS 
Teet Ce l l  C 

Dual 

Mark 9 
180 
1250 
31,000 

Single  

Mark 25 
130 
2000 
33,000 

Dual 

Mark 25 
330 
2000 
33,400 

I 
Mark 9 - Mod 1 

I 
Mark 25 

511 
12. 3 
9.0 
8600 

90.0 
10.0 
18.0 
18,000 

511 
12.3 
18.0 
17,200 

880 
10.0 
38.0 
36, 000 
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x 0 
T I M E  

4 0 .  I SECONO 
I- = - 4 b 0 . 1  SECONO 

3e. Stariup and Shutdown 
(34,000 rpm/sec F&mps) 

3b. 400 rpm Steps at 34,000 rpm 

Figure 3. NFS-3 Dynamic Speed Characteristics ( ~ n b l o ~  ~ a t a )  

K~ - LB/IN.*/LB/SEC ( P u ~ P  CURVE SLOPE) 

IPUHP AND LOAD LINE SLOPES EQUAL 

Figure 4. Typical Pump System Stability Characteristics 
(with Phoebus* Load characteristics) 
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VENl 

W - 2 5 5  LB/SEC 

TES TURBILF ENERGY SOURCE 
P Pump 
' TURBINE 

TCV TURBINE CONTROL VALV; 
LHBV L I Q U i J  HYDRPZEN 

BYPASS VALVE 
FM FLOW METER 
C V  ChECK VALVE 

TURBGPUMP SPEED: 32.800 RPM 
TURBOPUMP POWER: 19,100 HP 
TURBOPLWP TORQUE: 36.700 I k L B  
PUMP EFFICIENCY: 76 PERCENT 
TURBINE EFFICIENCY: 79 PERCENT 

Figure 15. Full-Power Phoebus 2 Operat- Conditions 

,--OPENING B I A S  

-------- ------ 7 
I 

CONTROLLER 
TURtlNE 

SPECIFIC SPEED 

BYPASS V A L V E  
POSIT ION L O O P  

I 

I 
I 

1 L - - OPENING 
I- - -+ q+- - BIAS 

I i 
I -----------,-------- I 

Figure 16. NF'S-3B Feed System Schematic 
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Figure 21. Liquid Hydrogen Bypass Valve 

Figure 22. Full-Power Phoebus 1B Operating Parameters 
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