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by 
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Division of Engineering and Applied Physics 
Harvard University 
Cambridge, Mass. 

Abstract 

Kalman and Bucy (1961)  derived the optimal filter for continuous lin- 
ea r  dynamic systems where - all measurements contain "white noise, I t  i.e., 
noise with correlation times short  compared to times of interest in the 
system. Bryson and Frazier  (1962) described the corresponding optimal 
smoother. (llFilteringtl involves making an estimate at a time t l  using 
measurements made before t 1; "smoothing" involves making an estimate 
at  a time t using measurements made both before and after tl.) 

Bryson and Johansen (1965) described the optimal filter for  the case 
1 

where some meas.urements contained either no noise or "colored noise, 
i. e., noise with correlation times comparable to o r  larger than times 
of interest  in the system. The present paper describes the optimal 
smoother for the case where some measurements contain either no noise 
o r  "colored noise." The problem is formulated as a calculus of varia- 
tions problem with equality constraints, and is solved using the "sweep 
method" of McReynolds and Bryson (1965). 
ment containing colored noise is treated first. 
and a simple example a r e  described. 

The case of a single measure- 
Then the general case 



, 

1. INTRODUCTION 

The Kalman-Bucy fi l ter  [ 11 and the Bryson-Frazier smoother [ 21 

presume that all  measurements contain white noise. 

the measurements contain time-correlated noise, or  no noise at all, the 

correlation matrix of noise in the measurements (usually denoted as R) 

is singular. Since the inverse of R appears explicitly in the filtering 

and smoothing equations of Refs. [ 11 and [ 23, they cannot be used i f  R 

is singular. 

correlated (or llcoloredll) noise in the measurements can be reduced to a 

problem in which some of the measurements contain white noise and others 

are perfect. 

If some o r  all of 

By augmenting the state of the system, the problem of time- 

The optimal filter for  continuous linear dynamic systems using mea- 

surements containing time-correlated noise was described by Bryson and 

Johansen [3]. 

on any previous results,  and, furthermore, i t  leads naturally to the 

smoothing results. 

Unlike their approach, the present approach does not re ly  

To elucidate the method, we shall first consider the case of a single 

measurement containing time -correlated nois e. 

surement  dynamics with system dynamics and augmenting the state of the 

system, this case reduces to the case of a system with a scalar  perfect 

measurement. 

After combining mea- 

1 
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2. STATEMENT OF THE PROBLEM 

Consider a continuous linear dynamic system whose augmented state 

is represented by the n component s ta te  vector x. 

Let  the differential equations obtained by combining measurement 

dynamics with system dynamics be 

t s t c r ,  
0 

2 = Fx + Tu 

where 

F(t)  = n X n 

r ( t )  = n x r 

u(t) = r X 1 

matrix of functions 

matr ix  of functions 

vector of random forcing functions (white noise ) 
* 

The mean value and correlation of u a r e  given as 

E{u(t)} = 0; E{u(t)uT(T)} = Q(t) 6(t-T), 

where 

Q(t) = r X r non-negative definite matr ix  

E{ 1 = expected value operator. 

The initial conditions a r e  also random with mean and covariance 

given as 

* 
Note: If u is not white noise, we can construct a shaping filter for i t  

and augment the state of the system. 
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E(x(to)} = 0; E{x(to)x T (to)} = P(to). 

It is assumed that u(t) is independent of x(to). 

for t ,< t s T. E(x(to)uT(t)} = 0 0 

Let z(t) denote the scalar  measurement made on the system con- 

tinuously from t to T. It is linearly related to the state of the system 
0 

I 

as 

t S t t T ,  T 
0 

z(t) = h x 

where 

h(t)  = n X 1 vector of functions. 

The problem consists in finding the maximum likelihood estimates 

of x(t ), x(t), and u(t) for  to d t s T using ( d t ) ,  tostST}. 
0 

3. FORMULATION O F  THE PROBLEM 

Since x(t) is a Gauss-Markov random process,  the minimum variance 

estimate,  the maximum likelihood estimate and the min-max estimate a r e  

all equal [4]. Hence let  us consider the maximum likelihood estimate in 

which we t ry  to  maximize the probability of x and u, given equations of 

motion (1) and the set  of measurements (2). 
I 

The problem can be stated a s  follows. Find x(to) and u(t) to minimize 

I 
Note: F rom here on x and u wi l l  denote smoothed estimates of the cor -  

responding random variables. This simplifies t;e terminokog . In 
the l i terature,  i t  is common to denote these as x(t/T) and u(t7T). 

- 
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subject to the constraints 

i = FX + r u  t o G t G T  

T z = h  x 

where z(t) is given. 

density of x(to) and {u(t), to Gt a}. 
surement constraint is equivalent to maximizing the joint probability den- 

si ty function of x(to) and{u(t), toCtGT}, given {z(t), to9tCT}. Once x(to) 

and u(t) a re  known, the state x(t) for  to 4 t C T is determined from dynamic 

equations ( 1). 

Note that e-J is proportional to the joint probability 

Hence minimizing J subject to the mea- 

4. REDUCTION TO A STANDARD CALCULUS OF 
VARIATIONS PROBLEM 

The smoothing problem has been formulated as a calculus of var ia-  

tions problem involving equality constraints on the state variables alone. 

One way to solve this problem, as outlined in [SI, is to differentiate the 

equality constraint until i t  contains one or  more  components of u explic- 

itly. 

into mixed equality constraints involving both the s ta te  and the control 

variables. Following the same method here ,  we differentiate the mea- 

surement and substitute for  x f rom the dynamic equations. 

In this way, the state variable equality constraints are converted 

T z = h  x 
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I .  

= (hT+hTF)x + h T r u .  

The correlation of the additive noise in the expression for k is 

h rQr hd(t--r) and, if it is not identically zero over the interval t G 

t G T, then 2 may be regarded as a measurement with additive white 

noise and z(t ) = h (t ) x(t ) as an initial condition. This would be 

called a first order  perfect measurement. 

T T 
0 

T 
0 0 0 

Note further that z is just a linear combination of the state variables 

and i t  can be made a component of the state vector in place of any other 

component by properly transforming the state. A s  this component (z) 

is known from measurements, the dimension of the state to be estimated is 

effectively reduced by one. 

only (n  - 1) components, it would satisfy an equation of the type 

If we denote by x1 the new state vector which has 

g1 = F x + F l z z + G 1 u  (n- 1) equations. 11 1 

Then the nth state equation is a "measurement" equation 

' T  T T 5 = (h + h  F ) x +  h r u ,  

where FIl ,  Flz, G1 a r e  obtained from F and I' by suitable transfor- 

mations. (These transformations wi l l  be discussed later.) 

In short, the following two sets  of equations are completely equivalent: 

I Set 1 Set 2 

= F x 4- F z + G1u (n-1) equations 11 1 l z  S = FX + r u  n equations 

T z = h  x T 
1 equation I k = ( i T + h T F ) x +  h r u  1 equation 

1 equation 
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We shall consider equation set  2 because it will  yield a lower-order 

filter and eliminate the problem of singularity of the R matrix in se t  1. 

(R denotes the correlation matrix of the noise in the measurements. In 

se t  1, it is clear that R = 0 because the scalar measurement does not 

contain any noise.) 

T T -  If h rQI' h = 0 over to S t S T, we must differentiate z again and 

substitute for 5. 

we shall call z a pth order perfect measurement. 

If p differentiations of z a r e  required to involve U, 

Let 

(p) = = QTx + Du, z 2  
- -  - z  dp z 
dtP 

T where D QD # 0 for to S t S T, Q is an n X 1 vector, and D is a 1 X r 

vector of functions. Now z(P)(t) may be regarded a s  a measurement with 

additive white noise and z(to), z (1) (to), . . . , z (p-')(t0) as initial condi- 

, 

tions. 

Let 

x2(to) = 

x2(tJ is a p X 1 vector of initial conditions. 

x2 is related to x by 

x2  = c x  
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where C is a p X n matrix of functions obtained via the differentiation 

process . 

I C =  

hT 

AT + hTF 

IbfiT+ ATF + hTk + kTF + h T 2  F 

1 
In this way we get the following new constraining equations: 

1 equation (4) 
z ( ~ )  = z2  = QTx + D T u 

X2(t0) = a t o )  x(to) p equations ( 5) 

In the case of a f i r s t  order  perfect measurement the dimension of 

the s ta te  vector was  reduced by one. 

sion of the state vector by p in the case of a pth order perfect measure-  

ment. To do this, we transform the state x of the system by a matrix M 

such that the new state vector has x2 as part  of i t s  state representation. 

Let x denote the remaining (n-p) components of the state vector. 

Similarly, we can reduce the dimen- 

1 

rl] = Mx = 

M is n X n; MI is (n-p) X n;' and M2 is p X n. 

The choice of M is arbi t rary to a certain extent, but one obvious 

choice for M is 
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where C1 and C 2  a r e  obtained by partitioning matrix C (p X n) along the 

(n-p) 
th column so that C is p X (n-p) and C 2  is p X p. 

c = [cl I czl. 

Moreover, C2 is nonsingular, For the transformation (0) to be unique 

o r  one-to-one, M must be nonsingular and our present choice for  M 

insures that M is nonsingular as long as C2 is nonsingular. In fact, 

obtained from a formula given in Bodewig [SI. Differentiating (6))  

2 = F x + F 1 2 x 2 + G 1 u  (n-p) equations 1 11 1 

G 2  = FZlxl + F 2 2 ~ 2  + G2u p equations 

where 
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is (n-p) X (n-p); is p x p ;  *11 

F12 is (n-p) X p; 

is p X (n-p); F21  

G is (n-p) X r; 

G2 is p X r. 

pth order  measurement equation (4) becomes 

Let 

QTM-l = [H1 I H21, 

where H is a 1 X (n-p) row vector and H2 is a 1 X p row vector. 1 

(9) t s t s r  
0 

z2 = H x + H2x2 + Du 1 1  
Also 

x2(to) = a t o )  x(to). (10) 

p equations (8) are contained in equations (9) and (10) just as 

So (8) need not be in the case  of a first  order perfect measurement. 

considered while considering (7), (9), and (10). Thus we have reduced 

the dimension of the state by p as x1 is only (n-p) X 1. 

determined f rom the measurements (in practice, by actual differentiation). 

x2  is completely 

5. THE TWO POINT BOUNDARY VALUE PROBLEM 

The problem may now be restated a s  follows: Find x(to) and u(t) 

to minimize 
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b 
0 

subject to 

= F l l x l + F  x +G1u 

= H x  + H x  + D u  

12  2 
t 4 t S T  

;1 
0 

22 1 1  2 2  

and 

x2(to) = a t o )  x(to) 

(n-p) equations (7) 

1 equation (9) 

p equations (10) 

Note that the las t  two equations together imply 

for t S t  C T .  
0 x2(t) = C(t) x(t) 

These constraint equations may be adjoined to  the cr i ter ion function J 

using undetermined multipliers: 

.A ,(t) = (n-p) X 1 vector of multiplier functions for (7) 

p(t) = a scalar multiplier functions for (9) 

v = p X 1 vector of multiplier constants for (10) 

T T 
+ 3 I+ {uTQ-’u+ X (-%l+F l ~ l + F  12~2+G1~)+p(z2 -H1~1  -H2x2-Du)} dt. 

b 
0 

Considering variations in J due to  infinitesimal variations in { d t )  

toGtb’I’] and x(to) and the resulting variations in x l ,  we get (notice that 

the variations in x2  and z2 are zero) 



11 

r r 
+ {U'Q-~~U+X~ ( -6$l+F116~1+G16~)+p(-H 1 1  6x - Dbu)) dt. 

0 

r Integrating X 6gl by par ts  1 
~ 

65 = [x r (to) P-'(to) -vrC(t )] 6x(to) - X 1  r 6x1 
0 

* T  T T 
+ 1 {(uTQ-l +XTG1 - p,D)6u+ (A1 + A 1  Fll  - pH1)6x1) dt. 

L 
0 

I But 

I x1 = M1x 
~ 

or 

6x1 = Mldx. 

Substituting this above for  6x1(to) and choosing multipliers v ,  p,, and 

A s o  that the coefficients of 6x(to) and 6xl(t), to G t G T vanish, we obtain 

k: = - X I F l l  r + pHl 



1 2  

We can eliminate p and v using (9) and (10) due to l inearity of the 

problem. Substituting in (10) f rom (15) 

L 

F o r  stationarity, i. e . ,  6J = 0 for a rb i t ra ry  6u(t), it follows that 

o r  

Thus the two point boundary value problem is (substituting for u in  

x1 and X1 equations) 

r r X1 = -F A + H1p. 11 1 

F rom (11) 

x(to) = P(to) [CTv - h ' I T A 1 ]  
t=to 

or  

Al(T) = 0, 

where p(t) and v a r e  determined from 

t S t S T  
0 

= H x + H2x2+ Du z 2  1 1 

x2(to) = a t o )  x(to). 

(1 5) 

6. SOLUTION OF THE TWO POINT BOUNDARY VALUE PROBLEM 
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or 

v = 

0 

Putting v back in (15) 

' I  t= to 
x(to) = [PCT(CPC T ) -1 (x2+CPM1X1) T -PMIX1 

Let 

fil(to+) = (MIPCr(CPC T ) -1 x2 

0 

P1(to+) 

The reason for 

xl(to) = 

xz(to) = 

Note that 

= {Ml[P-PCT(CPC r ) -1 CP] M1 
T}t=t 0 

this particular notation will  be explained shortly. 

h 
Xl(t0+) - P1(to+) X1(to)* 

(16) 

(17) 

Then 

(18) 

0 

{CPCT(CPC 

and 
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P ( t  +) = {P -PCT(CPC r 1 -1 

0 
0 

AS pointed out in [3], there is a simple explanation for these results 

in te rms  of the single stage estimation theory. 

ments x2(to) become available at  (to+), we update our estimate of the 

state to %(to+) and the covariance matrix is correspondingly updated 

to P(to+). 

at time t = t 

As  soon as the measure- 

Thus there a r e  discontinuities in the state of the optimal fi l ter  

0' 

Now let us eliminate p f rom equations (13) and (14) using (9). Sub- 

stituting u from (12) in (g), 

T r z 2  = Hlxl + H2x2 + DQ (D p - G1 A l )  

o r  

T p. = (DQDT)-' (z2 - Hlxl - H2x2+ DQGl A , )  

Putting this in ( 1 3 ) ,  (14), we get 

-HIR r -1 H1 
- 

-G,QG;+G~QD r R -1 DQG, r 



1 5  

r where R = DQD is a scalar  and denotes the covariance of noise in z2. 

There are various ways of solving linear two-point boundary value 

problems. The transition matrix Q(t, to) can be calculated for this sys-  

tem. 

Let 

Q(t, to) = 

- 1x1 

Then 
4 

T -1 +@All1 (T, t)[H1 R 

Solution of this gives xl(to). 

can solve the smoothing problem. 

Thus xl(to) and Xl ( to )  are known and we 

However, i t  is much more interesting to solve these equations by 

sweep method as this also gives us the filtering results. In this method 

we effectively sweep the boundary conditions from one end to the other [2]. 

Let 

(This form is suggested by the boundary condition at to.) Differentiating 

and substituting from (20) 
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T -1 T -1 T -1 
(Fll-GIQD R H1)g1+F12x2+G1QD R (z2-H2x2) -Il -PIHIR H1”X1 

= [.-&l+PIF~l-PIH1 T R -1 DQGT+GIQG~-GIQD r R -1  DQG1+FI1P1 T 

-GIQD T R -1 HIP1-PIVIR T -1 H1Pl] h l o  

Setting the coefficient of h l  equal to zero, 

= P ~ F E  + F ~ ~ P ~  + G ~ Q G T  - ( P ~ H ~  T + G ~ Q D  T 
$1 

Let 

K = ( P ~ H : + G ~ Q D ~ )  R - ~  (22) 

A = F  x + F 1 2 x 2  - KH 2 + K(z -H X ) 1 5 1  11 1 1 1  2 2 2  
I .._ I 

(22-24) a r e  the equations of the optimal f i l ter  for the case  of perfect 

measurements. In practice, we cannot obtain z2 by differentiating x2 as  

z2 contains white noise. So we should eliminate z 2 f rom these expressions. 

Let x1 * A  = x1 - Kz (p- 1) 
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0 
A Substituting for xl ,  

m* A x1 = F x + F12x2 - KH1^xl - - KH2x2 11 1 

This can be implemented as shown in Fig.  1. . ,  

Equations (22) ,  (231, (24)  look very much like the Kalman Filtering 

Equations, but they a r e  of lower order. 
. .  

Using the filterihg equations, we can get hxl(T) which is the same 
, .  

I 

I 
I 

I 

as the smoothed estimate x l ( T )  because it uses all the measurements d t ) ,  

Knowing xl(T) and k l (T)  = 0, we can integrate (20) backwards I t ,< t ,< T. 

for xl(t) and Ll(t). 

mentioned above can be used to eliminate z2 from the smoothing equa- 

tions also. 

0 

Then u(t) is calculated from (12).  The procedure 

Let 

T -1 -GIQD R H1 

- H I R  T -1 H1 -Fll T + H1 T R -1 DQGl T 

(p- 1) 

+ 
[*12 

- G , Q D ~ R - ~ H ,  1 x2 
-HIR T -1 H2 . 



+J 
- KH2 + x,= z 

Z 

L 

Z 

FIG. I OPTIMAL FILTER FOR THE CASE OF A FIRST ORDER 
PERFECT MEASUREMENT 



n 
C l  

c x 
I 
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or 

I =  I 

where B', I", Hg, H4, H5, H6 a r e  easily defined by correspondence. The 

estimate of u is calculated from (12)  which, on substitution of p, gives 

u =Q[D T (DQD T ) -1 ( z ~ - H ~ x ~ - H ~ x ~ + D Q G ~ X ~ ) - G ~ X ~ ] .  r T 

Equation (26) can be implemented as shown on Fig. 2. 

7. ERROR COVARIANCE MATRIX OF SMOOTHED ESTIMATES 

In this sec'tion, we shall derive the analogs of Bryson-Frazier [2], and 

Rauch-Tung and Striebel [ 71, for the case of time-correlated noise in the 

measurements . 
Let 

= e r r o r  in smoothed estimates 
eS 

ef = e r r o r  in filtered estimates. 

Let 
1 

Expressions for  e and ef can be obtained by subtracting equations of S 

motion (7) from the smoothing equations (20) and the filtering equations (24). 



2 1  

3 

Q(G~-KD+PH~R T -1 .> T , 

a 

The P 

i. e . ,  equation (23) .  

equation leads to the same equation as  obtained ear l ier  for P1, 1 

T -n -n 
p1 = F P + P ~ F ; ~  + G ~ Q G ;  - K R K ~  11 1 

= (%+ $I?;') P sf - 8 + P s f ( F - P I H I R  T -1 Hl)' 

+ ( G ~ - K D + P ~ H ~  T R -1 D) Q ( G - K D ~  

A But e (T) = e (T) because xl (T)  = xl(T). 

. .  Psf(T) = P1(T). 

Substituting above and simplifying 

S f 

. .  PsfW = Pl(t) .  
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Using these results, we can obtain an expression for P ss' 

0 

= ("3;. 9P;') P - g? + Pss(%+ 3 P l  -1)T- $y pss ss 

or  

Equation (27) is the equivalent of the Rauch- Tung-Striebel Formula. 

TO derive the equivalent of the Bryson-Frazier formula, let  

I------l 
lPss = P1 + P I A P l  I 

where A is an (n-p) X (n-p) matrix to be determined. 

. 
= 6, + 6 , A P 1  + P1ilP1 + PIAf'l- 

Substituting for FSs frow (27)  and 6, from (23) ,  we get 

A = A ( C ~ ; - P ~ H ~ R  T -1 H ~ ) + ( T ' - P ~ H ~ R  T -1 H ~ ) ~ A - H ~  T -1 H~ 

-_  --- 

8. OPTIMAL SMOOTHER AS COMBINATION OF 
TWO OPTIMAL FILTERS 

(28) 

We shall now show that the optimal smoother is a weighted combina- 

tion of two Kalman Fi l ters ,  one a forward fi l ter  which uses  {z(a),toGaCt)J 

and the other a backward fi l ter  which uses  {z(a),tCa GT} with covariance 
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at T equal to infinity.[8]. Let 

h 
xB(t) = filtering estimate of backward filter 

P (t) = covariance of e r r o r  in the backward filter. B 

Also, let 

B = P B .  -1 

We shall prove the following results: 

P-l = E + B ss 

xl(t) = Pss[E$l+B$B] (31) 

With boundary conditions 

E(to+) = Pi1(t0+), 

Xl(t0+) = x1(t0+), 

B(T) = 0 

xB(T) = 0 

E and B satisfy the following equations: 

A A A 

k = -ET - T ~ E  - E YE + H~ T R -1 H~ 

h = - B y - T T B + B # B - H I R  T -1 H1 

. .  i . - l  = k + = -p-1% - q T p - l  - E ~ E  + (.-'-E) Y(P~;-E) 
ss  ss ss  s s  

pss ' -' = -Pel(%+ ss YE) + (5. $?E)TPi: + Pi: c$?P~: 

or 
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= -P P -1 P = (F+$Pl -1 ) T pss+pss pSS ss ss  ss 

which is the same as  (27).  

Also,  at final time PBi(T) = E(T) and B(T) = 0. Hence (30) is proved. 

T -1 A T -1 x1 = yGl + F 1 2  x 2 + P I H I R  (z2-H2x2-HlhX1) + GIQD R (z2-H2x2) 

T -1 T -1 
A ;B=%;;B+F12~2 - P H R (z2-H2x2-H1GB) + GIQD R (z2-H2X2). 

F rom (31) 

r\ ' A  A 
k1 = 6ss[EQ1+BhXB] + Pss[k$l+BgB] + Pss[Exl+BxB+BxB]. 

Substituting for fiSs, Pss, B, and ^xB from (27), (30), (31) we get 

T -1 x1 = (v+ @Pi1)x1+F12x2 - $P;'k1+Fl2x2+G1QD R (z2-H2x2) 

which is the same equation as (20) i f  we substitute 

-1 A h l  = P1 (X -X ). 1 1  

A 
Furthermore,  xl(T) = xl(T) and GB(T) = 0. Hence (31) is proved 

for all t. 

9. EXAMPLE OF A SIMPLE INTEGRATOR WITH EXPONENTIALLY 

CORRELATED NOISE IN MEASUREMENTS 

. (33)  x = u  
x J u J  z , m  all s ca l a r s  

z = x + m  O S t S T  

E[m(t)l = 0, E [ m ( t ) m ( ~ ) ]  = r exp(-b I t-7 1 )  



m(t) can be produced by passing white noise through a f i rs t  order filter. 

= -bm + bw 

where 

E[w(t)l = 0, 

E[m<O>l = 0, 

E[ W(t)W(7)] 2 r  6(t-T) 

E[m (011 = r. 2 

There is no correlation between u(t), w(t), x(O), and m(0). In this 

problem, the augmented state equations a r e  

[:I = [: -:][:I + [buw] 

0 .  z = x + rh  = u - bm + bw = u - b(z-x) + bw 
or  

- . .  x2 = z and z2 - d .  

Equation (33)  corresponds to equation (7).  

D =  [ l  , 13, H1 = b, H2 = -b 

2 
T 

R' R = DQD = q +  2rb; 
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Forward Filter 

Let 

p, = covariance of e r r o r  in filtering estimate of x. 

1 

s e  equations can be solved analytically. 

1 
-2at 
-2at 

- q - 1 + c e  

p x -  -;+- I - C ~  
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A 
x = K(z2+ bz-b?) where z2 = k. 

Let 
n 
x = xl’ + Kz 

b $  b 
c = x  + K z + K z 2 .  

. .  

where 

or 

Backward Filter 

Let 

pb = e r ro r  covariance of backward filter estimates. 

Solution of this equation gives 
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q &p + e-2a(T-t) 
- - + -  

b - 2a( T - t) pb - b 
1 - e  

(37) 

Similarly , 

I 

Optimal Smoother 

If ps denotes the e r r o r  covariance of smoothing estimate of x (de-' 

noted by xS)' 

Figure 3 shows curves for p,, pb, and p, for a particular value of b and 

large time-interval T. Note that both px and pb reach steady state after 

some time. 

For t such that 

- s a  - - - + -  
b b 2at >> 1, px 

so ps has  a constant value in the middle and two transients at the 



TO 03 
II 

V A R I A N C E  
ERROR 

OF 

px(o)t p,(FORWARD F I L T E R )  

I - 
0 '  T T I M E -  

FIG. 3 SHOWING P,,Pb,Ps VS T I M E  

= r n -  PSC 4 + 2 r b  Px (O+) 
I. V A R I A N C E  OF 

ERROR I N  
SMOOTHED 
E S T 1  M A T E  - - -  - - ----- - - - - - - -  

t 
P,, = + /4rl f 

1 - 

b = I /  CORRELATION T I M E  - 
FIG. 4 SHOWING SMOOTHING V A R I A N C E  VS. 

( i / C O R R E L A T I O N  T I M E )  
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ends. The constant value of p, denoted as psc can be calculated easily. 

Figure 4 shows psc vs b, 

for b = 0 (bias e r r o r )  and minimum value for  b = 00 (white noise). 

means that smoothing is most effective for the' white noise case. 

It can be seen that psc has maximum value 

This 

Bias E r r o r ,  b = 0 

b-0, R-q, K -  1. 

= O, & = 

so p, and pb a r e  constant. But 

This means that randomness is only due to initial uncertainty and 

backward filter gives no information. 

b 
A 

=. z2 = 

z(0) A r . .  x = 2 + $(O+) - z(0) = z + 
PX(O) + 

z(0) is the initial guess of the r 

px(0) + r 
subsequent measurements. Thus p,(t) 

r 

bias e r r o r  and i t  is added to all 

remains constant at p,(O+). 
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It is clear  that for this case, smoothing estimates a r e  exactly the 
A 

same as filtering estimates. ps - - p,; xs = x. So we do not gain anything 

by smoothing the results. 

2 r  White Noise, b - 06 and - b - rl 
rl  is the a rea  under the delta function representing spectral  dens’ity 

of white noise m(t). 

where 

A PX x(O+) = 0, K -  0 but Kb- -  

. . .  A px A x = -(z-x). 
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This is the usual Kalman Filter.  For the backward filter, 

The asymptotic values of pb and p, a r e  the same, viz. ,  6. 
1 . .  Ps, = T"ss'l* 

For constant values of p,, the smoothing estimate is the mean of the 

filtering estimates 

A A  x + XB 
2 '  x =  S 

10. GENERAL CASE 

For the general case,  manipulations get very involved, but the resul ts  

W e  shall only s ta te  the problem and give the final are essentially similar. 

results . 
Augmented state and measurement equations are 

z1 = H 1 x +  w 

y = c x ,  

where 
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z1  = q X 1 vector of measur.ements containing white noise 

y = r X 1 vector of perfect measurements 

w = q X 1 vector of white noise e r r o r s  in z 1 

E{u(t)} = 0; 

E{w(t)} = 0; 

E{u(t)uT(T)} = Q(t) 6(t--r) 

E{w(t)w'(T)} = Rl(t) b(t-T) 

E(u(t)w'(t)} = sl ( t ) ;  E{x(to)} = 0; E{x(to)x T (to)} = P(to) 

E{w(t)xT(to)} = 0. 

I , The smoothing problem can be stated as follows: Minimize 

subject to 

$ = F x + r u  

y = cx.  

Filtering results obtained a r e  

b 7- n -n 

P I  = F P + P ~ F ; ~  + G ~ Q G ;  - K ~ R K ~  11 1 

b 

= F 2 + F x + K 1 ( z - d l )  
1 11 1 1 2  2 

where 
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r I K1=(PIH +GIS)R-l;  

H5 = AFZ1, 

H1M-' = [H3 I I H4] 

Hg = AF22 

where A is a matrix of ones and zeros. 

s = [sl I 
I I QDTl, 

I 

DS1 I 
I 

and 

The smoothing equations a r e  the same as before with 

T -1 "3; = Fll -G1(Q-SR -1 S T ) A-lS1RT1H3 - G , A D ~ ( D A D  ) H~ 

-1 T T 3= G1(Q-SR S ) GI 

where 
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