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SUMMARY

During recent years it has become increasingly apparent

that the techniques for the production of an extremely low

pressure environment have outstripped the methods and tech-

nigues of measurement of low pressure. The present work

represents part of a continuing effort to develop more reliable

and higher sensitivity pressure gauges for pressures below

l0 -10 Tort. The report is divided into two parts. Part I is

a consideration of the orbitron gauge. This type of gauge

appears to have high potential for the measurement of extremely

low pressures. In addition it appears to have high potential

for aerospace pressure measurements because it does not require

magnets of relatively high mass.

The major fraction of the present work on the orbitron

is concerned with a theoretical analysis of the orbitron prin-

ciple. In this part of the program a method has been developed

for obtaining a self-consistent solution for the electron motion,

charge density distribution, and space charge dependent potential

distribution in an orbitron. The solution may have any pre-

scribed accuracy, since the final accuracy of the solution is

a function only of the number of iterations performed. The

assumptions used are equivalent to asserting that the space

charge is all electronic and is only a function of r (these

are later shown to be valid for practicable configurations

and modes of operation). The interelectrode space is divided

into 3 concentric cylindrical regions such that all the space

charge is contained in the middle region. The Poisson Equation

is solved in the middle region for an arbitrary charge distri-

bution and matched at its boundaries with solutions of the

Laplace Equation in the adjacent regions. The force equations

are solved for the radial component of the electron velocity

for an arbitrary potential distribution. The continuity equation

is solved for the charge distribution for an arbitrary electron
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radial velocity. The ist approximation to the charge distri-

bution is obtained by using the space charge free electron

radial velocity. This charge distribution is substituted into

the potential distribution and integrated numerically to given
the first approximation to the space charge dependent distri-

bution. This result is substituted into the radial velocity

equation to obtain the 2nd approximation to the electron radial

velocity which is substituted back into the continuity equation

to obtain the 2nd approximation to the charge distribution and
begin the 2nd iteration. A comparison of the 1st and 2nd

approximations of the charge distribution indicates that the

iteration process converges rapidly and that the result of

the 1st iteration is a useful approximation to the self-
consistent solution.

The Ist iteration has been worked out for a particular

subset of self-consistent solutions. Using these results as

a 1st approximation to the final self-consistent solution,

conditions are derived which optimize the total space charge
stored in the rotating electron cloud such that the electron

trajectories are stable and the space charge distribution is

uniform in e-space and the electron mean kinetic energy has

a prescribed value. Under these conditions, it turns out

that the total space charge stored in the rotating electron

cloud approximates that stored on one plate of a cylindrical

capacitor which has the same dimensions and anode potential.

It is found that the ion current generated per centimeter of

length of the lectron cloud (along the z-axis) is of the

order of 1 to 15 amp/Torr (Argon) for anode potentials in

the range 0.4 to 10KV_ This corresponds to ionic pumping speeds
(for Argon) of the order of 0.2 to 3 liters/sec (for each

centimeter of pump length) and to ion gage sensitivities of
the order of l0 4 to l0 5 Torr -1 (Argon) for a conventional

size device (l=10 cm). Further it is found, in ion gage
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applications, that modes of operation are possible which are

substantially free of x-ray induced residual current.

An experimental orbitron gage for extremely low pressure

measurement was designed and constructed but performance

characteristics were not measured during the present program.

Part II of the present report outlines work carried out

on the normal magnetron type of gage. The major emphasis

of this part of the program was on the measurement of the

senslvities of a normal magnetron gage over wide ranges of

anode voltages, magnetron field strengths and pressures.

Sensitivities were measured at the following pressures:

5.2 x l0 -8 Torr, 5.2 x l0 -10 Tort, 2.7 x l0 -ll Tort, and

1.2 x l0 -ll Torr. Anode voltages were varied from 1000 to

8000 volts and magnetic field strengths from ll00 to 2000

gauss. The study confirmed earlier work and showed that

considerable changes in gage sensitivity may occur as the

operating parameters are varied. However, broad general

patterns exist in the performance characteristics and gage

sensitivities may be more than doubled from the 4.5 amp/Torr

obtained at about 5000 volts and i000 gauss if considerably

higher anode voltages and magnetic field strengths are used.

Some evidence was developed which suggested that the linear

operation of the normal magnetron could be extended to lower

pressures by operating the gage at different combinations of

anode voltage and magnetic field strength -- e.g., 3000 volts

and ii00 gauss, also 4800 volts and 1250 gauss. However,

it appeared that a lower pressure limit was obtained for the

range where the gauge was linear or close to linear for these

conditions also. For instance, with an anode voltage of 4800

volts and a filled strength of 1250 gauss the gage had a

response curve with a slope of approximately 0.9 down to

1.2 x i0 -II Tort. But the results indicated that the gage

again turns to non-llnear operation at lower pressures.
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A short study was made of the r.f. oscillatory behavior

of the normal magnetron gage. The results obtained confirmed

previous measurements. The generation of stable r.f. frequencies

could not be detected below 2 x I0 -I0 Torr-the pressure below

which the gage is non-linear.

Experimental work on the effects of ultra-violet radiation

and electron injection were inconclusive because of possible

effects of photo-desorption and thermal desorption.

Work was initiated on the theoretical and practical

aspects of some of the possible sources of anomolous currents

at the cathode of the magnetron gage.

A large number of photographs of the discharge inside

the experimental magnetron gage were taken. From these it

was possible to estimate the shape of the discharge and its

intensity. The effects of pressure, anode voltage and

magnetic field strength on the discharge were broadly examined.

It was not possible to obtain photographs of the discharge

below 2 x i0 -I0 Torr.



GENERALINTRODUCTION

As a part of a previous program (NASw-625), the operating

characteristics of four UHV ionization gages were examined at
pressures below l0 -10 Tort. The gages chosen for study were

those which appeared to have the highest potential for the

measurement of extremely low pressures. They were a nude

modulated Nottingham gage, a suppressor-grld gage, an in-

verted magnetron gage, and a normal magnetron gage. The

work indicated that the normal magnetron gage should continue

to be included in the further investigations of the measurement

of extremely low pressure mainly because of its high sen-

sitivity and the fact that hot filaments were not required

to supply the ionizing electron flux. The work clearly in-

dicated that a considerable improvement would result if the

linear region of the normal magnetron gage were extended
below 2 x l0 -10 Tort. It therefore became the aim of the

present program to investigate the possibilities of "llnearizlng"

the normal magnetron and to improve its low pressure operating

characteristics. One of the aspects considered under the

latter heading was the possibility of reducing the noise

level of the gage at low pressures. This was to include

the reduction of spurious currents arising from mlcrophonlcs,

dielectric polarization, and leakage.

In addition, it had become apparent in the period of

performance of the first program that another gage, not

investigated in that program also held considerable promise
for low pressure measurement. This was the orbitron gage_1)"

Consequently, theoretical and experimental investigations

of the orbitron gage were initially included in the present

program.

The work carried out under the present program is divided

up into two parts. Part I is a report of work carried out

in the present program on the orbitron gage. The major fraction



is connected with a theoretical analysis of the orbitron

principle. The second section of Part I describes work on
the design and construction of an experimental orbltron

gage. This work predated the theoretical analysis and in
consequence it was not feasible to incorporate the results
of the theoretical analysis in the design of the experimental

orbitron gage. Part II is a report of the various aspects

of work carried out on the normal magnetron gage.



Part ! ORBITRON GAGE

I. i INTRODUCTION

The orbitron principle has been applied to ion gages and ion pumps

by the group at the University of Wisconsin under the direction of

Professor R.G. Herb. (I)
The activity of this group has been principally

applied to the experimental development of practical pumps and gages

with a secondary emphasis on the theory and analysis of the orbitron prin-

ciple. The theory of the orbitr0n principle appears to have been studied

first by W.E. Waters (2) and then independently by R.H. Hoover_nan, (3)

stimulated by Herb's work. However, in both of these studies only the

space charge free potential distribution was considered. While the re-

sults of these studies may correctly describe the electron trajectories

for a very low electron density stored in the rotating electron cloud, the

results are not applicable to practical orbitrons since existing experi-

mental data indicate that the electron density in the space charge cloud

is not negligible, in fact it may even approach saturation. The space

charge free analysis yields little, if any, insight into the dynamics of

the orbitron since all the questions of subst_ice involve the space charge

dependent potential distribution. For example, questions concerning

electrode geometry for optimum charge storage in the rotating space charge

cloud, launcher location for optimum charge storage, anode potential for

optimum charge storage, self-consistent orbit injection parameters, mean

orbiting life-time of the electrons, orbit stability criteria, dependence

of average kinetic energy of the electron on stored charge, and injec-

tion (emission) current necessary to maintain optimum charge storage can

not be answered without knowledge of the space charge dependent potential

distribution.

The orbitron principle appears to contain a natural feedback mech-

anism which, for a given electrode geometry and potential, and a self-

consistent set of prescribed injection parameters, launcher location and

injection current, limits the number of electrons stored in the space

charge cloud. However, it appears possible to over-ride this feedback

mechanism and over-populate the electron cloud if all geometrical, elec-

trical and dynamic parameters are not self-consistent. The over-popula-

tion of the electron cloud substantially modifies the potential distribution



such that the injection parameters now violate the orbit stability criteria
and the electron meanlife-time is reduced to transit time between the

launcher and anode.

Fromthe above discussion it is clearly essential that the analysis

of the orbitron be self-consistent if it is to be applicable to real orbl-t-

rons, provide insight into the principle, and provide answers to the prac-

tical questions implied above. That is, the analysis must be self-
consistent in the sense that the differential equations which describe the

electron motion must contain a potential distribution which is in part a

function of the electron motion and thus take proper account of the aver-

age electron distribution within the space charge cloud. This appears to

be a formidable task, since the self-consistent set of differential equa-
tions describing the electron motion (Force Equations, Poisson Equation ,

and Continuity Equation) reduce to an essentially nonlinear integral

equation of a type for which no general solution is known (except, perhaps,

in a few special, restricted cases). However, a solution to the self-

consistent set of equations is possible using iterative, numerical methods.

A method of solving these equations such that the solution has a pre-

scribed accuracy is outlined later on and the first approximation is

worked out in somedetail. Even from this approximate solution, consider-

able insight into the answers to manyof the above questions is developed.
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I. 2 ORBITRON PRINCIPLE AND APPLICATION

In principle, the orbitron consists of two coaxial cylinders having

radii R. (inner) and R (outer), between which is applied a potential
i o

difference V(Ri)_0 and V(Ro)=0 , yielding a logaritb_ic electrostatic

potential distribution in the interelectrode space and a central force

field which is attractive for electrons. It is assumed that the cylinder

lengths are large con_pared to their radii thus minimizing the importance

of end effects. Electrons are injected into the central force field with

angular momentum and kinetic energy such that they are captured in bound,

stable orbits around the inner cylinder (anode). For certain sets of

orbit injection parameters the individual electron trajectories resemble

open ellipses as viewed from a stationary reference system. While the elec-

trons execute ellipse-like trajectories in a radial plane they drift slowly

in the axial direction until they arrive in the neighborhood of the end of

the coaxial cylinders, where they are reflected by a weak electron mirror

field (produced by auxiliary electrodes). Thus the total trajectory is

s_milar to an elliptical spiral repeatedly folded back on itself.

If the individual electron orbits are not closed, the electrons col-

lectively form a space charge cloud, the charge density of which is

uniform in azimuth and the local angular velocity of which is equal to

the average angular velocity of the electrons at that radius. Thus, not

all parts of the cloud have the same angular velocity; the inner part of

the space charge cloud rotates at a much higher angular velocity than the

outer part of the cloud.

Although, under the proper conditions, the charge density of the space

charge cloud is uniform in 0-space, it is never uniform in r-space. The

electron cloud does not occupy the entire interelectrode space but rather

has an inner and outer boundary which corresponded respectively to the

inner and outer turning points in the electron trajectories. The radial

charge density is proportional to the interval of time that the electron

occupies an increment of the radius between the inner and outer turning

points (inner and outer cloud boundaries). Thus the radial charge den-

sity distribution is inversely proportional to the radial component of



the electron velocity. The charge density is thus high in the neighbor-

hood of the boundaries and low in the neighborhood of the radial center

of the space charge cloud.

The electronic (negative) space charge associated with the rotating
electron cloud modifies the interelectrode electrostatic potential dis-

tribution. The potential distribution associated with the electron den-

sity distribution is always negative, regardless of the particular shape
of the density distribution. Thus the total potential distribution, that

due to applied potential plus that due to interelectrode electronic space

charge, is everywhere lower than the applied potential distribution.
Therefore the electric field inside the inner space charge boundary is

higher than the applied electric field and the field outside the outer
cloud boundary is lower than the applied electric field. Thus, within

the cloud the field gradient (total) is much steeper than it would be if

the space charge density were negligibly low. Thesemodifications of the

potential and field distributions obviously have strong effects on the
motion of the electrons which produced them. This is the source of nearly

all the difficulties in understanding and in applying the orbitron prin-

ciple. For very low space charge densities where the actual potential
distribution is nearly identical with the applied potential distribution

the orbitron principle is simultaneously elegant and simple, and is almost
completely understood. (1'2'3) Howeverthe principal advantage of real

orbitrons is the ability to attain relatively high charge densities.

The value of applying the orbitron principle to ion gages and ion

pumps is that large numbersof electrons having long mean life-times may

be stored in the space charge cloud and efficiently used to generate ions

by impact ionization. This, of course, assumesthat the electrons are

injected into stable (long life-time) trajectories, a condition which re-

quires a knowledge of the space charge dependent potential distribution.

There is another substantial advantage in applying the orbitron principle

to ion gages: It appears possible to operate an orbitron ion gage in a

modewhich produces no soft x-ray induced background current. In conven-

tional ion gages, electrons having kinetic energy in the neighborhood of



i00 eV are abruptly decelerated in the surface of the electron

collector (grid). A fraction of the soft x-rays produced by the
decelerated electron flux are radiated from the electron collec-

tor surface to the ion collector surface, and produce free elec-
trons by the phoeoelectric process. (The electrons which

have final momentum vectors such that they penetrate the surface

barrier and escape into the vacuum.) The photoelectric current

leaving the ion collector is indistinguishable from an ion cur-

rent arriving at the collector. Thus there exists a background

or residual current which is dependent only on the emission cur-

rent. In the orbitron, provided the electrons are properly in-

jected into stable orbits, the electrons do not reach the anode

except if they have lost sufficient energy in a collision to make

it energetically possible. A large fraction of the collisions of

this kind are ionizing collisions (for electron energies in the

neighborhood of i00 eV). Thus the subsequent emission of a photo-

electron at the ion collector (outer cylinder), by a soft x-ray

emitted from the anode in the process of collecting the ionizing

electron, simply enhances the current associated with the ionizing
event. Those electrons which do not encounter a gas atom continue

to orbit the anode until they eventually return to the launcher,
or exit from the orbitron structure. It appears possible to

arrange the potential of the launcher such that returning elec-
trons arrive with a relatively low kinetic energy, under which

condition the generation of soft x-rays is an improbable process.

Thus, operation of an orbitron ion gage in this mode avoids the

usual defect of generating a residual current which is dependent

only on the emission current.

The relization of the advantages inherent in the orbitron

principle, in applications to practical ion gages and ion pumps,

requires optimization of the total ionization rate. The prin-

cipal parameters involved in this optimization are: orbit stabil-

ity,the electron kinetic energy, space charge cloud location,

7



and the number of electrons stored in the space charge cloud

(per unit length). There is considerable value in a brief, pre-
liminary observation of how these parameters influence the

application of the orbitron principle to a practical device.

The probability of an electron encountering a gas ato_of course, in-

creases as the electron orbiting life-time increases. The probable orbit-
ing life-time is maximumfor stable orbits. Thus the electrons must be

injected into stable orbits.

The probability that an electron-atom collision yields an ion (in an

inelastic collision) is a functioh of the kinetic energy of the electron.

The maximumionization probability in most gases occurs for an electron

kinetic energy in the neighborhood of I00 eV. However, the ionization

probability as a function of energy generally falls off much faster for

energies less than this value than it does for energies greater than this

value. Thus the electrons must be injected into orbit such that their

minimumkinetic energy (outer turning point) is not substantially less

than the kinetic energy corresponding to the ionization efficiency maxi-

mum,eventhough the kinetic energy is substantially above this value at

the inner turning point.

The ionization rate (per unit length), of course increases as the num-

ber of orbiting electrons in unit length of the space charge cloud in-
creases. The maximumnumberof electrons that can be stored in unit

length of the cloud is a function of the electron kinetic energy, the orbit

stability, the applied potential, and all geometrical parameters. The

requirements of the above two paragraphs, in effect, specify the first

two of these parameters and also assign a minimumvalue to the applied

potential. Thus the geometrical parameters and the maximumvalue of the
applied potential must be chosen such that the number of electrons in unit

length of the cloud is maximized.

Failure to follow the above pre scriptions, in one way or another reduces

the ionization rate below its optimum value (although the stored charge

may actually increase) and increases the residual current (in ion gage ap-

plications). The details of the methods of satisfying the above require-



ments are developed later on.

There are several important constraints which should be

recognized in any application of the orbltron principle to
practical devices. The ratio Ro should not be too large.

Ultimately, the quantity of charge that may be stored in the

electron cloud depends on the field-energy density within the
interelectrode volume. As R° increases the total field-

Ro
energy decreases. Further,--for _i large, the field-energy
density is high only in the neighborhood of the anode and

low elsewhere. Thus as _ increases the useful fraction
of the volume within thea_nterelectrode space shrinks. For
Ro
R_i large, a non-negligible fraction of the total population
of the electron cloud may be electrons that have already

experienced one or more collisions with gas atoms, since the

probability of capturing an electron at the anode immediately
R° increases.

following a collision decreases as
The electron trajectories should be such that regions of

low electric field are avoided since in these regions the

magnetic forces on the electron (arising from spurious magnetic

fields) may be comparable with the electric forces.
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1.3 PROCEDURE

It is considered useful to outline here the analytical

procedure that is followed in subsequent sections since some of

the analyses are rather long, some intricate, and some encounter
rather cumbersome analytical expressions. To minimize the pos-

sibility of arithmetic inundation some of the demonstrations and

computations have been placed in appendices.

The first step in the procedure consists of solving Pois-

son's Equation for an arbitrary charge density distribution ex-

tending over an arbitrary region of the interelectrode space.

It is therefore necessary to divide the interelectrode space
into three concentric regions and solve the Poisson Equation in

each. The solution for each region is then matched at its

boundaries with the solutions for the adjacent regions. In the

process, electrode boundary conditions are applied. Three ex-

pressions are finally obtained for the potential distribution,

one for each of the three regions, in terms of the applied po-

tential, geometrical parameters and integrals over the arbitrary

charge density distribution.

The differential equations (force equations) for the mo-
tion of an electron are solved for an arbitrary potential dis-

tribution. Only a solution for the velocity is required since

the turning points may be obtained directly from the velocity

equation and a detailed knowledge of the orbit shape is unneces-

sary in nearly all meaningful questions. However, much can be

inferred concerning the general orbit shape from various

analytical results. In developing an expression for the veloc-

ity it is useful to distinguish between stable and unstable

trajectories. The results of the stability analysis are in-

corporated into the velocity equation.

I0



The charge density distribution is then obtained from

the continuity equation in terms of the radial component of

the electron velocity. The same expression is derived from
statistical reasoning.

At this point three equations have been obtained in

terms of three unknown functions: the potential distribution,

the charge density distribution, and the electron velocity.
Solving this system of equations for the potential distribu-

tion yields a nonlinear integral equation. This equation has

a form for which no general solution is known. However, a

particular solution is possible using numerical techniques.

By numerical integration and iteration, a solution having any
prescribed accuracy may be obtained.

The electron velocity corresponding to the space charge
free potential distribution is taken as a first trial solution.

The space charge free electron velocity is integrated numeric-

ally and the result used to obtain a first approximation to the

space charge dependent potential distribution. Inserting this
potential into the electron velocity equation yields a second

approximation for the charge density distribution.

This procedure, although not done here, may be continued

until a solution is obtained having the prescribed accuracy.

The additional computation required to obtain a convergent,
self-consistent solution involves considerable computer time.
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1.4 POTENTIAL DISTRIBUTION

In solving Poisson's Equation for the space charge depend-

ent potential distribution, it is unnecessary to consider all

possible charge density distributions. Rather, only those dis-

tributions are considered which lead to near optimum electron
storage, since the principal function of the electron cloud is

to generate ions, which can be done at the maximum rate if the

number of electrons stored in the cloud is optimized. It is

obvious that those charge density distributions which are most

uniform in 0-space, produce the smallest modification of the

electrostatic potential distribution for a prescribed total

charge. Since the electron orbits must remain stable and the

electrons must have a kinetic energy greater than a prescribed

minimum, there is a limit to the magnitude of the space charge
modification of the electrostatic potential distribution that
can be allowed.

A uniform charge density distribution in the radial direc-

tion is incompatible with the differential equations which de-

scribe the motion of orbiting electrons. Thus the applicable

form of Poisson's Equation will always have at least one inde-
pendent variable, r.

If the electron drift velocity in the z-direction is such
that the period of oscillation in the z-direction is a non-

integral multiple of the orbit period, the charge density dis-

tribution is nearly uniform in the z-direction, except in the

neighborhood of the electron mirrors at the ends of the cylin-

ders where the charge density increases slightly since the

mirrors introduce z-direction turning points. It therefore is

allowed to eliminate z as one of the independent variables in

Poisson's Equation, a considerable simplification. Formally

stated then, the first assumption in the analysis is: The charge

density distribution is sufficiently uniform in the z-direction

that its variation may be neglected in the analysis.
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Concerning the dependence of the charge density distribu-

tion on e, the situation is not so elementary. Both uniform

and strongly e-dependent charge distributions are possible.

This may be seen more clearly by considering first, those trajec-
tories which lead to e-dependent charge density distributions.

If electrons are injected into trajectories which close after

the execution of n orbits, the complete trajectory of the

electrons resembles n superimposed, open-ellipse-like trajec-

tories such that the angle between successive outer turning

2m_ (See Appendix C). The electron continues inpoints is n "
this trajectory indefinitely, retracing it once for each m
circuits around the anode. That is, for a closed trajectory

the electron returns again to the point of orbit injection,

same r and 0 but different z, and passes through this

point with the same kinetic energy and angular momentum that it
possessed at orbit injection. It necessarily follows that

trajectories of this type are stationary since the individual
orbits of the anode resemble ellipses having a relatively large

counter rotating precession velocity such that the major axis
rotates about the anode exactly m times while the electron is

orbiting the anode n times. If all electrons are launched

from the same point and injected into orbit with the same angu-
lar momentum and kinetic energy (which is very probable), then

all electrons proceed along the same closed trajectory. Thus

the charge density distribution in 0-space is nonuniform, being

concentrated principally in the neighborhood of the 2n turning

points of the n superimposed ellipse-like trajectories, and is
stationary. Even if the electrons were all injected at equal

intervals in time, at any given instant later they are not equally

spaced along their common trajectory. These motions are investi-

gated quantitatively in Appendix C.

It is clear, by comparison with the above results, that

open trajectories lead to charge density distributions which are
uniform in 0-space. That is the result of the continuing pre-

cession of the orbit eventually smears the charge uniformly

13



through e-space. This conclusion holds even if all electrons are

injected into the same open trajectory. As stated previously,

optimum charge storage is associated with the absence of charge
clusters, that is with uniform charge density distributions.

Thus the second assumption, implicit in the following analysis

is: The charge distribution in e-space is uniform, that is that

the range of allowed orbit injection parameters are such that the

electron trajectories are open or at least close only after n is

very large. This eliminates e as an independent variable in

Poisson's Equation and reduces it and the continuity equation to

one dimensional ordinary differential equations in r.

Since the electron trajectories do not occupy the entire

interelectrode space but rather only a thick cylindrical region

located somewhere within the interelectrode space and with its

axis coinciding with the axis of symmetry, it is necessary to

divide the interelectrode space into three thick cylindrical re-
gions: Region i e the volume between the anode surface and the

inner boundary of the electron cloud; Region 2 e the volume

occupied by the electron cloud; Region 3 e the volume between the

outer boundary of the electron cloud and the surface of the outer

cylinder. A radial cut through the interelectrode space is shown

in the figure below, which also defines some of the pertinent
parameters V-

¢(r) ¢i (r)/ I
(r)

ri
0 _- ;--r

Ri I I R °

I
i 0(r)
I

In Region I, the potential distribution ¢i(r) is obtained

from the homogeneous Poisson Equation (Laplace Eq.)

i d _ d¢1_ = 0 (R i_r<__ri). (I)
r dr t (--d-_
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In Region 2, the Poisson Equation applies

i d ir d¢2 (r)Yd--r _-'-) - P
0

, (ri__ r __ ro).

In Region 3, the Laplace Equation again applies

(2)

i d [r d¢3r dr _---) = 0 , (ro_r_Ro). (3)

At the boundary between Reg_on_ I &rid 2, the .... _.... _t_,_ distribution and

the electric fleld must be continuous. Therefore the solutions to

Eqs.(1) and (2) must satisfy

¢l(rl) : ¢£(rI) ,
(4)

and

de 1 = de

1 I

(5)

At the boundary between Regions 2 and 3 again the potential and electric

field must be continuous. Therefore the solutions to Eqs.(2) and (3) must

satisfy

@2(to) = ¢3(r0>,
(6)

and

d¢2 de 3

dr r=ro r:r
o

(7)

At the surface of the anode, the potential must equal the applied voltage

V. Therefore

¢l(Ri) = V .
(8)
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At the surface of the outer cylinder the potential must be zero.

fore

¢3(Ro) : 0

There-

(9)

The solutions to Eqs.(1), (2) and (3) are (before evaluating the

constants of integration)

el(r) : Cll log r + c12 , (R i _< r _< ri) ,

¢2(r) =_ f dr (r) r dr + c21 22 , - --_- f P log r + c (r i <r<ro) ,
C o

¢3(r) = C31 log r + c32 , (r o _< r_< Ro).

(i0)

(ll)

(12)

Using the six conditions expressed in Eqs.(4) through (9) to evaluate

the six constants of integration gives

Ro R R° log r
v O

(r) = V l°g-_--r-+ {l(ro)-l(ri) +I (ro)l°g _--- l'(ri)l°g r7 } _ii
_1 log Ro o 1 log _R° '

R
Ri ±

(R_ _ r _ ri),
(13)

_2(r) = V

R log r

log -_0 E1 R°]

r + (ro)+l' (ro)log _--log __R° o log

R.
i

R

[I rg<._ l°g °+ (ri)-l'(ri)lo -r- l(r), (ri -<r _<ro),
• log Ro

R.
1

¢3(r) --V

R
O

log r

log Ro
R.

1

(14)

R

r ri I l°g--q°o I' )log r(r°)-l(ri)-l'(r°)l°g_ii + (ri Vii log __R°'

R.
i

(ro _ r _ Ro), (15)
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where

l'(r x) = f p(r) r drJ
_0 r--r X

(16)

and

dr (r)
l(rx) = f _- f _eo

rdr
Ir=r

x

(17)

Equations (13) through (15) define the interelectrode potential distribu-

tion in terms of geometry, applied potential, and the charge integrals in

Eqs.(16) and (17) for an arbitrary charge distribution, the evaluation of

which must await specification of the actual charge density distribution

from the results of the orbit analysis.
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i. 5 TRAIECrORIES

The differential equations for the motion of an electron in a cylindri-
cally syn_etric attractive, central force field are:

and

m (_ - re 2) = -eE(r), (radial force component),

d_(mr26) = 0, (azimuthal component),

(18)

(19)

where E(r) _ electric field due to both the applied potential

and the space charge distribution.

IntegratingEq.(19) gives

= (20)

where

z electron angular momentum (a constant throughout the

orbital motion).

Therefore Z is one of the orbit injection parameters. Using Eq.(20) to

eliminate e in Eq.(18) gives the radial force as a function of r alone

m_'- &2 eE(r). (21)
mr 3

The space charge radial distribution must eventually be derived from the

solution to this equation.

Before proceeding with the solution of this equation, it will be

rewritten to satisfy the orbit stability criteria, that is it must be

modified such that it applies only to stable electron trajectories and

excludes from consideration all trajectories which are unstable against

radial perturbations. The motivation for introducing this modification

is simply to concentrate the analytical work on that subset of trajec-

tories which has the longest probable orbiting life time, since in
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practical devices these trajectories are the most useful. There are

many disturbances which may perturb the electron trajectory; for ex-

ample, variation in electrode potentials due to power supply noise,

variation in potential distribution induced by collective space charge

oscillations, local magnetic fields, motion of the orbitron in these

fields, elastic (nonionizing) collisions with gas atoms, etc. It is ob-

vious that those trajectories which areunaffected by such disturbances

have the highest probability of survival. Those trajectories which are

least affected are the stable trajectories.

It is shown in Appendix A that the open-ellipse-like trajectories are

stable only if the electron angular momentum satisfies the stability cri-

teria

£2 = m2meE (ro)ro3 (22)2

where e is an independent stability parameter which quantitatively labels

th_ stability of an _t _nd has the allowed _'ange

1 m2
(approaching instability) _ < & 1 (most stable) . (23)

* _ the effec-It is shown in Appendix B that e is a function only of ec

tire eccentricity of the open-ellipse-like electron trajectories in the

orbitron. It is shown in Appendix C that there are certain discreet

values of e within the range given by Eq.(23), but which must be dis-

allowed since they not only violate one of the analytical assumptions,

but lead to stationary nonuniform charge distributions in 0-space and

therefore nonoptimum charge density distribution.

Thus, the modification which must be made in the radial force equa-

tion, Eq.(21), is simply to introduce the stability criteria into that

equation such that the system of equations applies to stable orbits only.

Essentially, this constrains the allowed range of one of the orbit in-

Jection parameters (angular momentum) to a relatively narrow range.
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The actual constraint, which sorts out of all possible electron

trajectories those which are stable, is introduced into the system by re-

placing the angular momentum in Eq. (21) with its constrained value given

by Eq. (22). The radial acceleration of the electron, applicable to stable

orbits only, then is given by

e [a2E2(ro ) ro 3 E (r)]
r'=m rT- 2 "

(24)

This introduces a third formal assumption into the analysis: Allowed

orbits are members of the orbit subset which satisfy the stability criteria

Eq. (22) only, however there is a discreet series of orbits within this sub-

set which are disallowed since they lead to stationary nonuniform charge

distributions in e-space.

Proceeding now with the solution to Eq. (24), the radial component of

the electron velocity is obtained by multiplying this equation by dr,

recalling that "r_ir= _ , that -E(r)dr = d[¢(r)], and integrating.

The result is

_.,2 = __2e_-e2ro3E2(ro)____ +¢2(r)I + c , (25)
m L 2r 2

where c is a constant of integration. This constant may be conveniently

evaluated at either the inner or outer turning points where the radial

con_ponent of the electron velocity passes through the value zero. There

is, however, some advantage in using the outer turning point. Thus,

setting the left side of Eq.(25) equal to zero, evaluating the right side

at r=r o, solving for c, and substituting the result back into Eq.(25)

gives the radial velocity in terms of physical parameters

_2 2eFs2roE2 (r°) (i ro 2 )_= -m-L 2 " - r-_- ] + @2(r)-¢2(r° "
(26)
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This equation has two roots: the larger is of course at ro, the

smaller is at ri (the inner turning point) which may be obtained by

setting r2=0 giving the transcendental equation

2 { (ri) _ _2(ro) }

ro 2 _2

ri 2=I + ....
C_2 E2(ro)r ° •

(27)

The potential distribution in Eq.(26) is that previously obtained

for the space charge region, Eq.(14_. The electric field at the outer

turning point is obtained from Eq.(14) by taking the negative derivative

with respect to r and evaluating the result at ro. Both of these

functions depend, in part, on the charge density distribution through the

charge integrals, Eqs.(16) and (17), which are yet unspecified. Further

progress in developing a self-consistent solution for the electron motion

in the orbitron requires the definition of the charge density distribu-

tions.
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1.6 SPACECHARGEDISTRIBUTION

Recalling the previous discussion concerning the possible form of

the charge density distribution, it was concluded that it could not be

a function of z since only small gradients existed in the Z-direction

resulting in a charge density which is nearly uniform in the Z-direction,

and that it could not be a function of e since only those launch param-
eters corresponding to open orbits (nonstationary) are allowed, which

after sufficient time result in a charge density distribution which is
uniform in the e-direction. If sufficient time is allowed after the be-

ginning of injection,the charge density at all points in the electron

cloud will have built up to its final, equilibrium value and will thus be

independent of time. This neglects the small time dependent componentof

the charge density associated with the collision loss rate and the orbit

injection rate, since the meanorbiting life-time is relatively long

(except at high pressures) in comparison with the injection or loss

transit time. This amounts to introducing into the analysis a 4th _or_nal

assumption: The time-dependent componentof the charge density distribu-
tion corresponding to the collision loss rate and the balancing injection

rate is negligible in comparison to the stationary (equilibrium) charge

density distribution.

Under the above conditions the charge density distribution is a

function of r only, and thus the continuity equation

reduces to

v.j + -0_t

d
(r_jr) = 0.dr

(28)

(29)
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For any equilibrium (stationary) charge density distribution _P -• y_-o.

It necessarily follows that the quantity of charge flowing into any volume

element equals the quantity flowing out of that element. The radial compon-

ent of the current density at any point within the space charge region must

therefore consist of a positive and negative component, such that

and

i
jr+(r) = _ o (r)_+(r) (30)

i
Jr_(r) = __ 0 (r)__(r) (31)

and have the property

• i
Jr(r) = Jr+(r) + jr_(r) = _p(r)[#+(r)+__(r)] = 0, (32)

since

#+(r) = -__(r) ; (33)

since b(r) is a single valued function of r. However, since all the.

charge is electronic and p (r) is a scalar, the charge density is inde-

(r). Thus each component of Jr(r) con-pendent of the sign of Jr

tributes equally to the local charge density 0(r). Therefore the function

that must be inserted into Eq.(29) for the current density is

•

IJr+(r) l + IJr-(r)] = 7 p(r)[ Ir+(r)[+ Ib_(r)l] = p (r)I_(r)

The contunuity equation thus becomes

(34)

d {r o(r) l_(r)l}= o.
dr

The solution to this equation is obviously

(35)

p(r) -
r]_(r) l

(36)
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The constant of integration may be evaluated as follows: Supposethere

are NL electrons in unit length of the electron cloud (unit length
along the cylindrical axis). The integral of the charge density dis-

tribution over the volume of a uni t length of the space charge region

must equal the total charge within that region, thus

0(r) rdrd0 ---eNL

r. o
1

(37)

where (-e)_electron charge.

equation may be written

Substituting from Eq.(36) for

Since 0(r) is independent of e this

ro

f eN Lp(r)rdr -
27

ri

0(r) and solving for the normalization

constant c, gives

(38)

eNL i
C -

27 l-1 
r
i

Substituting this result back into Eq.(36) gives the charge density dis-

tributionwithin the space charge region

(39)

0(r) = -

eN
L i

• -m

f l (r) l-'dr rl (r) l
r.

1

(40)

Although this result (that the charge density is inversly proportional

to the radial component of the velocity) is not a con_non form of charge

density distribution, it has been encountered in other situations (see for

exan_ole Landau and Lifschitz in Ref.5 where a similar result is obtained

in another connection concerning the motion of bound electrons).
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The charge density distribution maybe derived directly from

statistical considerations which do not involve (explicitly) the inte-

gration of the continuity equation. This derivation also yields a some-

what different insight into the connection between charge density dis-

tribution and the electron dynamics. Consider the motion of a single

electron along a stable trajectory in an orbitron. The fraction of the

orbit period that the electron spends in traversing the infinitesimal

interval As along its trajectory s is

t(s÷As) - t(s) (41)

where • is the orbit period and t is considered a function of orbit

position s. The probability that the electron is within the interval

As at s is the probability distribution ¢ (s) (probability per unit

length of trajectory). Thus ¢(s) is simply the fraction of the orbit

period spent in as divided by the length of as,

¢(s) :
t(s+as.)- t(s)

_ As
(42)

Taking the limit A s÷ 0 gives

1 (43)
-  iv(S)l ,

since

lim t(s÷As)-t(s) _ dt i
as+O As - ds : v_7 (44)

where _ s) e orbit velocity as a function of the trajectory coordinate s,

and the absolute value of the orbit velocity has been taken to avoid the

possibility of a physically meaningless negative probability distribution

(especially later, when a transformation is made from the trajectory co-

ordinate s to polar coordinates r,O). The charge associated with a single

electron may be considered as distributed over the electron orbit in exactly

the same way that the probable position is distributed. The charge dis-

tribution at any point s along the orbit is then given by the product of
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the electron charge and the position probability distribution. Thus the

increment of charge in the interval ds at s is given by

dQ(s) = -e ¢(s) ds

Referring to the figure below, the increment of charge contained in the

volume between two concentric cylindrical surfaces of radii r and r+dr

respectively, must be given by the product of the local density _ (r)

and the volume element dV. Thus

(45)

where

dQ(r) = p(r) dV = p(r) 27 rdr (46)

Q(r) _ charge per unit length of cylindrical volume (also applies to

Eq.(45)),

p(r) _ charge density at r associated with a single orbiting elec-

tron.

e+de

e

ds P
o

i
+ dr

S
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Since the electron trajectory passes twice through the volume element

considered, the increment of charge in Eq.(46) is twice the increment in

Eq.(45). Therefore

_p(r) rdr = -e ¢(s)ds =_- e ds
Iv(s)l"

(47)

The right side of this equation may be transformed to polar coordinates by

recalling that

2_
(48)

and

Iv(s)i: + {i+ _ J_(r)l. (49)

Equation (47) then may be written

{ITp(r)r+ e }clr'= 0
_l{"(r)I

Therefore the charge density distribution of a single bound electron

executing a stable, open orbit in an orbitron is

(5o)

p (r) - e . 1
_ rig(r) I '

and the charge density distribution for

space charge region is finally

(51)

electrons per unit length of

(r)-
e NL

WT
(52)
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T

is equal to --.
2

This result agrees with that previously derived, Eq. (40), if

r

r.
1

But by definition, the orbit period is given by

• = dt=2

0 r.
1

(53)

Therefore Eq.(40) and Eq.(52) give identical results for the charge density

distribution.

Completely electronic charge density distributions of the form given

by Eq.(52) permit some simplification of the potential distribution given

by Eqs.(13) through (15),since Certain of the charge integrals appearing

in these equations are zero. Apart from the negative sign associated with

the electronic charge, (-e), the integral of the charge density distribu-

tion, see Eq.(16), is a positive, increasing function of r and is zero

for r<r. and r>r since o(r) is zero outside these limits. There-
i o

fore the first charge integral evaluated at the lower limit, the inner

boundary of the space charge cloud, is zero. Thus

I'(r i) = O.

A similar arguement applies to the second integral of the charge density

distribution, see Eq.(17), since it represents the area under the curve

Q(r) Therefore
r

(54)

i) = O. (55)

Thus the quantity within the second set of brackets appearing in Eq.(14) is

zero.
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It may be useful to emphasize several observations concerning p(r).
At both the inner and outer turning points p(r) diverges since _(r i) =

_(r o) -- 0. However the integral of p(r) remains finite and it is generally

an integral function of p (r) that is required in the analysis. Perhaps

the most important property of _ (r) (because of its serious consequence)

is its form. The form of p (r) renders the Poisson Equation nonintegrable

analytically. Although this is a serious mathematical handicap implying that

a general solution to the problem is not possible, self-consistent particular

solutions having any prescribed accuracy can be developed using iterative,

numerical integration. _nese latter difficulties are the consequence of the

fundamental nonlinearity of the orbitron.
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1.7 SELF-CONSISTENT SOLUTION (ist APPROXIMATION)

The analysis has now yielded all the information necessary

to develop a selgconsistent solution for the electron motion

in an orbitron: Eq. (14) gives the potential distribution for an

arbitrary charge density distribution; Eq. (26) gives the elec-

tron radial velocity for an arbitrary potential distribution;

and Eq. (52) gives the charge density distribution as a function

of the radial component of the electron velocity. These equa-

tions may be considered a set of consistent, simultaneous integro-
differential equations. _(r) and _(r) may be eliminated by

substituting Eq. (26) into Eq. (52) and then substituting the

result into Eq. (14) which gives a single nonlinear, integral

equation in ¢(r) alone. This equation is not written here
since it is nonintegrable analytically; implying that a general

solution to the orbitron problem is not possible.

However, after having specified all pertinent parameters,
a particular solution may be developed (one solution for each

set of parameters) by iterative, numerical integration. The

continuation of the analysis beyond this point therefore involves

a combination of both numerical and analytical techniques.

The starting point for obtaining a particular self_onsistent

solution using these methods is the radial velocity equation

(radial mode kinetic energy equation). The application of

numerical methods requires a knowledge of the specific range of

integration. Thus it is first necessary to establish the turning
points (space charge boundaries). The ratio of the turning

points is, in general, given by Eq. (27) but for the present
need it is more convenient to write it in the unconstrained

form (without the stability constraint which will be reinserted

later on) by substituting from Eq. (22) for E (r) and recalling2 o
that the outer turning point kinetic energy T(ro), is given by
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e, •

T(ro) =
_2

2mr 2
o

(56)

Eq. (27) may then be written

r 2

o - 1 + e [¢_(r_-¢2(rn)] (57)

ri2 T(r o )

From E q.(14) and using Eqs.(54) and (55) the difference in the

space charge dependent potential between r i and r ° is given by

'(r o) [log r° -[ R_

¢2(ri) - ¢2(ro) =

I!_rl _-_ - !' (r O) Ogr_ - :i,-(ro) j • (58)
l°gRi

may be observed from Eqs.(16), (17) and (52) that the

ratio of charge integrals, • is not explicitly

dependent on the magnitude of the total charge stored in the

space charge cloud. The explicit dependence of the potential

difference in Eq.(58) on the magnitude of the stored charge

may be eliminated by imposing the stability constraint. Taking

the negative derivative of Eq.(14) with respect to r and

applying Eqs.(54) and (55) gives the space charge dependent

electric field distribution

l [ ro I(r____)]l 1 1 [i,(r )_I,(r_.E2(r) = V+l'(ro) l°g_ i - l,(re_ ---_o _ - o r
l°g_-_i

(59)
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Evaluating this equation at r e and substituting the results into
the stability criteria, Eq.(22), and using Eq.(56) to eliminate
_2 in terms of T(r ) gives

o

a 2
T(r ) = -FeE (r°o 2 )ro

o2e{-- -_- V+I'(r o)
I1 I(ro) ]I i (60.)og_ I '(r o ) R_

l°gRi

From this equation it fol_ows that

'(r ° ) = V
[l-2T_r°) log ]

ev R i .

[log roo I (r o ) ]

_i I '(r o)

(61)

Using this equation to eliminate I '(ro) in Eq.

the potential difference between r i and r
o

(58) gives for

_2(r i) - ¢2(r ) =o

2T(r°) [i 2T(r ) R__] [!°g_ I_]I
log r_ + V o log Ri [log I (royc_2e ri _2ev _ I!rIoi ] (62)

which does not depend explicitly on the magnitude of the stored

charge.

It is shown in Appendix E that optimization of the total

charge stored in the rotating electron cloud corresponds, in

part, to maximizing it with respect to r i. The maximization
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of NL with respect to r i requires that r i = Ri. That is
that the inner turning point (and the inner boundary of the

space charge cloud) is displaced from the surface of the anode

only by a very small distance, sufficient to assure that the
electrons do not collide with the surface. In practice, this

distance may be of the same order of magnitude as the surface

roughness and therefore very small compared with Ri. Setting

ri=R i thus does not involve a substantial approximation and the
difference between them may be neglected in the analysis (see

AppendIY R ) Al*_ .... _ *_ condition is very important to the

optimization of the stored charge, it has other, equally import-

ant, consequences. Setting ri=R i reduces the system from a 6

parameter system to a 5 parameter system, but accomplishes the

reduction in a way which permits considerable additional analy-

tical progress without specifying all other parameters. Apply-

ing ri=R i to Eq.(62) reduces that equation to

¢2(ri)-@Z(ro ) - 2T(ro) ro [i 2T(ro) R ]log -- + V log ,(ri=R i),
a2 e ri a 2 eV

(63)

and substituting this into Eq.(57) and rearranging gives the

following transcendental equation for the ratio of the outer

to inner turning points

where

ro e211 _log i + - + B=o, (ri- Ri),
riJ

a2eV Ro

8 - 2T(r ° ) log Fi .

(64)

(65)
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6 is not an independent parameter, but a specific function of

prescribed parameters. Thus the introduction of 6 does not

amount to introducing a new parameter since all the parameters

on the right side of Eq.(65) are prescribed parameters and

therefore specify 6. Alternatively, 6 may be considered a

subset label, specifying not a single particular solution but

rather an entire subset of particular solutions in which there

remains a considerable range of variation of the parameter on

which 6 depends, subject only to the condition that 6 remain

constant. 6 is here introduced as a mathematicl convenience,

however, in Appendix D its physical interpretation is discussed

and it is shown that 6 > 0 for all electronic charge distri-

butions and 6 may be considered a measure of the reduction in

electric field at the outer cylinder resulting from the space

charge insertions.

Eq.(64) gives the ratio of turning points in terms of

prescribed parameters only,which do not explicitly involve

the charge density distribution. Actually, since it has been

specified that ri _ R i and R i is prescribed, Eq.(64) gives the

outer turning point in terms of prescribed values of a2 and

B. This substantially reduces the number of self_onsistent

particular solutions for electron trajectories in the orbitron

since all solutions for which ri _ R i are rejected. However,

this is a considerable advantage since only those particular

solutions are retained for which the charge stored in the

electron cloud is optimized.

It is obvious that the space charge integrals l'(ro),

l(r o) and l(r) in Eq.(14) must apply to exactly the same

region of r-space as that to which _ (r) applied. The first
2

approximation to these integrals is obtained by substituting

eNL . __i the space charge free _. Therefore the
into p(r) = _ r_'
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ratio of the outer to inner turnin_ points in the space charge

free radial velocity equation, (where the subscript o

m X iloindicates that 8=0), ust be t_e same as the ratio of the outer

to inner turning points in the space charge dependent radial

velocity equation, (where the subscript B indicates any

value of 8>0 implying 8 101>0). Thus

(r°)o(re) (66)

is
rio
8=0 and

some value

a function of _2 only as may be seen from Eq.(64) for

(o_I is a function of both _2 and 8. I f _2 is
82 o

applicable to Eq.(64) for 8=0 and e# is

_2 applicable to some prescribed value of 8>0,the value of

the only way Eq.(66) can be satisfied is if e2>_2
B o"

Eq.(66), it follows that the set of equations

Thus, from

log r-_ + -- ' =2 r.2
1

ro
log _ii + -_- r_

ro
must be solved simultaneously for --

ri

0 (67)

+ B = 0 (68)

and e_ for some pre-

scribed set (_,B). According _0 the stability criteria, the

2 is 1
minimum value of s o _. This value of _2 strictly applies

only to a_ and not to _2o since the space charge free 9 is

used only as an initial generating function known to have an

approximately correct shape. However_ in this first develop-

ment of a self-consistent solution, the stability criteria is

applied to both a_ and _. This value of _2 corresponds

(_, yields the highestto the maximum value of r and thus

(allowed) probability that o electrons miss the launcher during
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the first few orbits after injection. (_e Appendix E ). From
ro

Fig.l,where numerical solutions of Eq.(64) for r-_ as a

function of a 2 with _ as family parameter are plotted, it

may be seefi that

--2.59, ° : y). (69
max

o

From Eqs.(66) and (69) and Fig.2, where is plotted as a

function of 8 for a_=l, it may be seenXtJa_ the maximum

value that may be prescribed for B is about 1.9. In this first

development of a self-consistent solution, a mid-range _ is

arbitrarily chosen such that

8=1.0. (70)

For this value of

follows that

8 and from Eqs.(66) and (69) and Fig.l, it

a_ = 0.684. (71)

These numerical values are needed for later computations.

The first approximation to the charge density distribution

is given by

-eNL i

_1 (r) = nT • _ , (72)
o r9 o

where the subscript o indicates that the electrons have been

arbitrarily assigned the radial velocity strictly applicable

only to electrons in a space charge cloud which has a negligibly

low charge density. This does not imply that p1(r) is neces-

sarily small (N L in Eq.(72) may be large), but only that

Eq.(72) is an approximate relation which is to be refined in
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Note:

Numerical Solution of Eq.(68) for the Maximum

Value of aB2 (_ = I).

This value of _ allows the maximum range of

B constant with Eq.(66) and thus the maximum

range of N L .
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subsequent iterations. From Eqs.(14) and (26), Eq.(72) may

be written in the following dimensionless form (after setting
all charge integrals to zero),

i
2 m--

• l F_ Ij,,, i

,-eNL) _{ 2 [ 2 }-_

o ro G o r o

_+_ i-_) dr
I 2_ log r 2 _ r2 ro

ri

(73)

The denominator of this equation has been integrated numeri-

cally and the equation is plotted in Fig.3 as fl(ao,+) for
2_] -o

o-3' where

rorP.l(r )r
fl(a or -r)

o l_-eNL_ "

The first approximation to the first charge integral

I {(r) is then obtained by substituting Eq.(73) into Eq.(16)

and performing a numerical integration, using Eq.(69) to de-

fine the lower limit of integration. The result is plotted

in Fig.4 as g_(_o,-_ -r ) (a dimensionless function obtained by
i _" O eNL

dividing Eq.(16) by 2_e )'
o

(74)

r, ) -eNLg'l(%'r o :

The first approximation to the second charge integral

l_r) is then obtained by substituting the numerical results

from Fig.4, Eq.(75), into Eq.(17) and performing the second

integration, again numerically. The results are plotted in
r

) (a dimensionless function obtained
Fig.5 as gl(aO,ro

(75)
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eNL
by dividing Eq.(17) by - 2_E_),

o

r ) :_If(r) (76)
gl (So ' r° .eN L •

2_c o

g' and g have been introduced as a mathematical convenience.

They are the same as I' and I except that they do not depend

explicitly on N..

Substituting these numerical results back into Eq.(14)

give s (77)

V iog R--£°Ro eN L I[1 Ro _ IOg_-IRo "o 1
r og --Z-+gl(_ o I r

¢2 l(r ) = 2_eo r ' -gl (_-_-)

where the second subscript on #21(r) indicates that it is the

first approximation to the space charge dependent potential

In Eq.(77), Eqs.(54) and (55) have been applieddistribution.

and the result

gi(%,l) = 1 (78)

has been used.

The first approximation to the electron radial velocity

as a function of the space charge dependent potential distrib-

ution is obtained by substituting Eq.(77) into Eq.(26), then

using Eq.(61) to eliminate NL after having substituted the

numerical results of Figs.4 and 5, Eqs.(75) and (76), into

Eq.(61). The result of these operations is
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(79)

_2 4T(ro) ro r2 og _f_ + gl o,_jo )_g1(a ,I)
log T + ..._._ + _ _--- o

1 = Ct_ m r 0

log ri gl(_o,l)

Tt may be seen that rl does not depend explicitly on N L. This

completes the development of the first approximation to a self-

consistent solution of the electron motion and distribution in

an orbitron (except for several detail calculations which are

made later).

The second approximation to the charge density is obtained

by substituting Eq.(79) into Eqs.(52) and (53) which gives

r

{ _2___(I r_ } [log ___ro+gl(_-_o)-gl (_i) ];r r 02(r) log _+ - 8[l-_g ro_go _T i(%,i )

(-eNL)-/12_. log -r-+2r° _A_/_kl__-_)+r2°' _log r_a+gl(ao_el)-gl(ao,l_d_80)ro]_ I_o

i log _i-g l(adl)

The denominator of this equation has been integrated numeric-

ally and the equation is plotted in Fig.6 as f2(gl,a ,B,rr--)
8 o

where

r ror °2(r)

f2(gl'aB'B'-r°)- (- eNL)2_ ' (81)

The functior _2(r),which does not depend explicitly on N L.

Eq.(80), may now be used in the same way as above to begin the

second iteration and thus generate the second approximation to

r__) and
the dimensionless charge integral functions g_(gl,aB,B, ro
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r ). These functions may then be used, in the samegz(gl,_ _,
-o

way as above, to generate the third approximation to the charge

density distribution, p3(r) may now be used to begin the third

iteration, and so on... The development of a self-consistent

solution having the required accuracy is finally completed if

the result of the last iteration Pn(r) differs from the re-

sult of the previous iteration 0n__1(r), by less a prescribed

amount over the entire range of the electron motion (ri!r!ro).

From a study of the form of Eq.(80), it is clear that the charge

boundaries in p_r) will be the same as they are in o2(r).

Thus, no further adjustment in =8 and _ will be required in

subsequent iterations.

At this point, the first approximation to the number of

electrons in unit length of the rotating electron cloud, (NL) P

may be obtained immediately from Eq.(61). Using Eqs.(75) and

(78) to evaluate the left side of this equation, eliminating
Ro

log _ii on the right in terms of 8 from Eq.(65), and sub-

stituting for I'(r_ and I(r o) on the right from Eqs.(75) and

(76) gives (after rearrangifig)

(NL) 1 =
_2 e2[!og ro )]

B r i - gl (_I

(82)

All the parameters on the right side of this equation are pre-

scribed except gl (ao, l ), the value of which has already been

calculated. Substituting into Eq.(82) the numerical values of

the prescribed parameters given in Eqs.(69),(70)and (71) , and

the numerical value of _ (=o,i) from Fig.5 gives

(NL) I =

toT(r o )

(0.422) e 2

(83)
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50 eV is about the minimum outer turning point kinetic energy
consistent with an acceptable ionization probability (for most

gases). The inner turning point kinetic energy is given by,

from Eqs. (20) and (56),

[ro@
T(r i) = _9_ij T(_) , (84)

which from Eq.(69) yields T(ri) = 6.7 T(r_. From this result,

it is clear that the minimum acceptable T(_ ) should be used

to avoid the penalty of a reduced ionization probability in the

neighborhood of the inner turning point. The outer turning

point kinetic energy is therefore prescribed such that

T(r o) = 50 eV. (85)

Substituting this value into Eq.(83) gives the first approx-

imation for the number of electrons per unit length of the ro-

tating electron cloud (for Ri = ri,a _ 1= _, B = i, T(r o) = 50eV).

(NL) I = 0.825 x 109 cm -l. (86)

Referring again to Fig.6, it can be inferred that the

_r_r) which will result from the second
function g2(gl, a B, B, ro ,

iteration, has the property g2<g . Combining this with1

Eq.(82) implies that the second approximation to N L will yield

a number which is smaller than (NL)I, since the denominator of

Eq.(82) will increase. Thus, it may be concluded that

However, since gl

(NL) 2 < (NL) I.

is only of the order of _ of
r o

log _ii

(87)

and
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the difference between gl and g2 should not be large,

(NL) 2 probably will not differ substantially from (NL) 1.

The method of deriving a self-consistent value for the

ratio of the electrode radii is discussed in the following

paragraph. The Hamiltonian, H, of an orbiting electron is

simply its total energy. Therefore,

H = T(r) + U(r), (88)

where U(r) is the electron potential energy, given by

U(r) = -e_21(r),
(89)

and thus

H = T(r) --e@21(r). (9O)

Since the Hamiltonian is constant over the entire electron

trajectory, it may be evaluated at any point along the tra-

Jectory. However, it is convenient to evaluate H at the

outer turning point. _21(ro) is given by Eq.(77) after eval-

uating at r=r o. Substituting Eqs.(75),(76) and (78) into

Eq.(61) and using the result to eliminate NL in _21(ro)

gives

2T(ro) R o

_21 (ro) - a_ e log _i"

Substituting Eq.(91) into Eq.(90) gives (after rearranging)

log

(91)

(92)
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R o

Thus, instead of prescribing _-- (which is equivalent to pre-

scribing R° r oo is already prescribed) it is prefer-
N_i since R-_

able to prescribe H, since it is one of the more important

physical parameters concerning the dynamics of the electron.

For example, suppose that H_T(ro): From Eq.(92), it is ob-

vious that the outer turning point then occurs at Ro, the

surface of the outer cylinder. For certain applications, it

may be preferable to operate the orbltron in this mode.

However, for rn_Ro_ (actually_ ro=Ro-_', where.........a' _ _ma]l

compared to Ro) , it is probable that a large fraction of the

orbiting electrons could be collected at the outer cylinder.

This condition should be avoided in both ion gages and ion

pumps. Therefore, H should be sufficiently small that it is

improbable that electrons can reach the outer cylinder. This

occurs for H=0, which implies that if all the outer turning

point kinetic energy (angular mode) were converted (in an

elastic collision) to radial mode kinetic energy (an improb-

able event), the electron would reach the outer cylinder as

r_0. Thus, setting H=0 in Eq.(92) and using Eqs.(69) and

(70) (and recalling that it has been prescribed that ri:R i)
Ro

gives -- = 3.65. This is the minimum value that may be pre-
Ri Ro

scribed for -- (See Appendix E). From the above discussion,
R i

it may be seen that to completely avoid the possibility of elec-

trons reaching the outer cylinder, a negative energy must be pre-

scribed for H. It is convenient (although somewhat arbitrary)

to prescribe

H = -T(ro). (93)

Substituting this into Eq.(92) gives

Ro 2 (94)
log ro B '
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and using Eqs.(69),(70) and (71) yields the ratio of the elec-

trode radii,

R
o

_7. : 5.13. (95)
1

The only way this number can be increased is to decrease

(prescribe a larger negative value).

H

The method of deriving the self-consistent anode poten-

tial is described in the following paragraph. From Eq.(65),

after substituting from Eq.(94) and recalling that ri=R i ,

the self-consistent anode potential is given by

eV -
2T

2
(ro)(_ _ + B + log _o.).

1

Using Eq.(68), this may be written in the form

)r!
eV -- T(r o

r 2

i

- H.

(96)

(97)

Using Eq.(93), this equation becomes

eV--T(ro) r[_21 + i_ (98)

Substituting into Eq.(96),(97), or (98) (which are s lmply dif-

ferent forms of the same statement) from the numerical values

given in Eqs.(69),(70),(71),(85) and (93) gives the self-

consistent anode voltage

V = 385 volts. (99)
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The method of deriving the launcher bias voltage is de-

scribed in the following paragraph. The electrons may be in-

serted into orbit at any point along their trajectory, however

at the turning points only a fraction of the space occupied by

the launcher need protrude into the space occupied by the elec-

tron trajectories, but if the launcher is located at any other

point along the electron trajectory the entire launcher is

within the space charge cloud. Thus, orbit insertion should be

accomplished at either the inner or outer turning points. At

either turning point, there are two principal methods of in-

serting the electrons into orbit: (i) The electrons may be accel-
erated within the launcher, which iS biased to the local space

charge dependent potential, such that they are emitted from

the launcher with the prescribed turning point kinetic energy

(angular momentum) and with their velocity vectors coinciding
with the e-direction. (2) The electrons may be emitted from

the launcher with negligible kinetic energy, but constrained to

move in the e-direction only, from a launcher which is biased

below the local space charge dependent potential such that they
are accelerated up to the prescribed turning point kinetic

energy by the local field as they leave the launcher. It is,
of course, possible to combine the two methods. The first

method is, in principle, more flexible and the accurate control

of the launch (insertion) parameters is simpler and more posi-
tive. Of the two turning points, the more suitable location

for the launcher is the outer turning point, ro, since this
location gives the lowest probability for electrons collid-

ing with the launcher on subsequent passes (for moderate to
high eccentricity trajectories). For electrons emitted from

a launcher at ro, in the e-direction, and with kinetic
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energy T(r o) (_=[2 m ro2 T(ro)]½), the launcher bias voltage

must be such that it matches the local space charge dependent

potential ¢21(ro). From Eqs.(77),(61),(75),(76),(85),(92) and

(93), it follows that the launcher bias voltage is given by

eV b = e¢21(r o )
i

= 2 T(ro) , (lO0)

or

Vb = i00 volts, (i01)
1

where the subscript b I indicates that this bias applies to

the first launch method. (It is interesting to observe that

for a space charge free potential distribution, and all other

parameters held fixed, the local potential would be _160 volts.)

If the electrons are emitting with negligible kinetic energy,

the launcher must be biased such that

eE¢21(ro) - Vb] : T(ro) , (102)

from which it follows that

Vb2= 50 volts, (103)

where the subscript b 2 indicates that this bias applies to

the second launch method. (For a space charge free potential

distribution, the required bias would be -- ii0 volts). In the

second launch method, the application of the correct bias to

the launcher is not sufficient to assure that the electrons are

correctly inserted into orbit since the potential difference
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through whichthe electrons fall depends on the direction which

the electrons leave the launcher since the potential hill sur-

rounding an acceleration-biased launcher is not symmetrical,
being steeper on the inside (toward the anode) than it is on

the outside. The acceleration-biased launcher cannot be located

at r o (the outer turning point) since the electron must

arriveat r o with r(ro):0 and at this point have kinetic

energy T(r o) (a prescribed parameter). The only way that an
acceleration-biased launcher can satisfy these conditions is
_ *_ _* .... to be _-_........... _,_o _._±_ed from the launcher in a direction

which makes an_angle somewhat less than with the radius vec-
tor (emitted'outward) such that the electrons pick up angular

momentum and kinetic energy in falling down the potential hill.

The electrons then continue to coast outward (against the field)

until the radial component of the momentum goes to zero. This

point is ro, however for insertion into the correct orbit the
launcher bias and the direction of emission must have been such

that the electrons arrive at this point with the proper angular

momentum (_=[2 m r_ T(ro)]½, wher_..... T(ro) is prescribed, say

50 eV). The important conclusion is that an acceleration-biased

launcher is completely within the space charge cloud since the

cloud outer boundary (trajectory outer turning point) is well

outside the launcher location. A similar argument applies to

acceleratlon-biased launcher locations in the neighborhood of

the inner turning point and a similar conclusion is obtained.

It is obvious that a potential hill 50 volts high produces a

substantial perturbation in the space charge dependent potential

distribution. It is not only a large perturbation locally, but

it is non-negliglble over a substantial fraction of the volume

of the space charge cloud in the z-neighborhood of the launcher

since its decay is quasi-logarithmic. It thus appears that the
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only acceptable method of launching is the first, with launcher
locations restricted to either the inner or outer turning points,

since this method produces no perturbation of the space charge

dependent potential distribution, and only a fraction of the
volume of the launcher protrudes into the space charge cloud

volume.

Under certain conditions, the orbitron principle con-

tains a natural feedback mechanism which may be used to main-

tain the number of electrons in the space charge cloud
constant. This feedback mechanism is discussed in the follow-

ing paragraph.

Suppose the electrons are inserted into orbit at the

outer turning point with kinetic energy T(r o) from a launcher
biased to match the local space charge dependent potential.

Thus, the outer turning point is fixed at r ° (the launcher

location), the electron emission angle is fixed at -_ (with
respect to the radius vector), and the electron emission

energy, Te , is fixed since

Te = T(ro). (104)

Now, suppose that the electron injection rate into the space

charge cloud is perturbed such that it exceeds, by a small

fraction, the total electron loss rate from the cloud. It

necessarily follows that NL must begin to increase. The
immediate effect of increasing NL is to lower the potential
distribution within the space charge cloud, see Eq.(77).

Thus, _ 21(ro) must decrease or, considering the potential a

function of NL, it follows that
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¢ 21(ro, NL + ANL) < ¢21(ro, NL). (105)

Since r i = Ri+_ (and _ is negligible), the potential at
the inner turning point is nearly identical with the anode

potential and is, therefore, constant. Thus, at the inner

turning point, the potential must satisfy

¢21(ri, NL+ANL) = ¢21(ri, NL). (lO6)

............. _ ............ ._._,,_= _±±_ in the numerator

of Eq.(57), which gives the ratio of the turning point radii,

must increase as N L increases. Now, concerning the denom-

inator of Eq.(57), before the injection rate perturbation,

the launcher bias must satisfy Eq.(100), that is

Vb = ¢ 21(ro , NL),
1

(io7)

and after the perturbation begins, the launcher bias is

greater than the local space charge dependent potential since

the bias is fixed and the potential at the outer turning point

decreases as NL increases, see Eq.(105). Thus, the elec-

trons are emitted from the launcher into a retarding field.

The outer turning point kinetic energy, after the beginning

of the perturbation of the injection rate, is given by

= (r ° NL÷ANL)]T(r o, NL+AN L) T e -e[Vbl-¢21 , (108)

which may be written, using Eqs.(104) and (107)

T(r o, NL+AN L) = T(ro,NL) -e[¢21(ro,NL)-¢ 21(to , NL+ANL)].

(109)
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• p

From this equation and Eq.(105), it is obvious that

T(r NL+AN L) < T(ro,NL)-O'

(iio)

Thus, the perturbation which increased NL, resulted in a

decrease of the outer turning point kinetic energy. Using

Eqs.(106) and (109) to evaluate Eq.(57) after the beginning

of the perturbation gives

r 2

° I = 1 + e

NL+AN L

[¢ 21(ri,NL ) - ¢ 21(ro , NL+ANL)3

, (ro,NL)-¢z/ro NL+ANL)]T(r o N L) - e[¢21

.(lll)

From Eq.(105), it follows that increasing NL by AN L has

increased the numerator and decreased the denominator of the

term on the right in Eq.(lll). Therefore, it follows that

r 2 r 2

r 2 r

i
NL+AN L NL

(112)

and since r ° is fixed, it necessarily follows that r i

must decrease. But decreasing r i implies that electrons

collide with the anode, since ri=R i. These collisions

increase the total electron loss rate from the space charge

cloud which produces a decrease in NL (and incidentally a

decrease in the mean orbiting llfe time). It is, therefore,

concluded that the variation in the space charge dependent

potential distribution as a function of N L is such that it

has the effect of closing a feedback loop around NL and

tends to hold N L constant (provided, of course, that the

orbit injection parameters, electrical parameters, and geo-

metrical parameters all belong to a self-consistent set).
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1.8 ION PRODUCTIONRATE

The average number of ions produced in unit time by

the electrons in unit length of the rotating space charge

cloud, (N+)L' is given by

(N+) L=<V>NLno+, (113)

where o+_

<V> -

gas ionization cross section for electrons
m

having a mean kinetic energy <T> = _<v> 2,

mean electron velocity,

n _ gas member density.

NL has already been calculated and o+ has been repeatedly

measured for many gases by numerous experimenters and is

available in the literature. Thus, it remains to calculate

the mean electron velocity, <v> .

There are several useful definitions of the mean elec-

tron velocity, each differing slightly from the others. The

definition of <v> considered most useful in this applica-

tion is that electron velocity properly associated with the

mean radial position of the electron, <r> . Therefore, it

is first necessary to derive a self-consistent expression for

<r> , then evaluate it for the particular set of parameters

under consideration in this first self-consistent solution

and, finally, compute the electron velocity at this mean radial

position, that is to compute v(<r>).

The second approximation to the mean radial position of

the electrons is given by
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1 f_< r_>- rJ1 r dt
0

r
o

2 _ r dr

r°_1_i; _i

Integrating by parts gives

(i14)

r

lrf lr°-f°drf
r.

r i

(115)

Equations (53) and (54) may be used to evaluate the first

integral, with the result

r
o

<r> f2 dr -_-
o : i r_ 1 rl

r.
1

The second integral may be written, using Eqs.(52), (79),

(80) and (81), as

(116)

r
o

%> r dr< = i- _oo f2(gl ' _B' B'-_o) _oo ' (i17)

ri

and from an equation similar to Eq.(75), but applying to the

2rid approximation to the charge integral l'(r), Eq.(ll7) may

be written

r
o

--_o ff r dr'x >= I- g'2(gl'aB'B'r--_ ) _oo "

1j

This integral has been evaluated numerically (for _ = --
o 3

8=1, ri_R i) and the result is

(118)
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<r____>_- i - 0.254
r o

= 0.746. (ll9)

The electron velocity at any point along its trajectory

is given by

1
(120)

v(r) = {_2 + r 2 _ 212

and using Eqs.(20) and (56), thls may be written

1

2T(ro) to2 t2"
v(r) = {_2 "I" 7- r 2

(121)

and substituting for

tion to the electron velocity

i

V 2(r) = m {I + =_

from Eq.(79) gives the 2nd approxima-

1

r if
[aog +g{_o-)-g_(_o 1)],r o

ro

[log ri _ (_o,i)]

(122)

Evaluating this expression at <--_e> given by Eq.(llg), taking

r>)
r° from Eq (69) B from Eq.(70), _8 from Eq.(71), g_<-ro

r i

from Fig.5, and gl(_o,l) from Fig.5, yields

1 1

<v,> v,(<_r--->) (2 38)._ 12T(r°)] _
0

(123)

Digressing for a moment, the electron mean kinetic energy

may be immediately calculated from Eq.(123), slnce
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m 2 (124)<T> = _ <v> ,

which gives

<T> = 2.38 T(r ), (125)
o

and substituting from Eq.(85) for T(r o) gives

<T> = 119 eV. (126)

Thus, for the set of parameters chosen, the electron mean

kinetic energy is about the center of the kinetic energy

ran&e corresponding to the ionization probability maxima for

a large group of common gasses. From Eqs.(85) and (123), it

follows that the mean electron velocity is

<v2>= 6.45 x 108 c__mmsec. (127)

Returning now to the ion production rate (Argon is

used throughout as a typical gas wherever gas properties are

required in detail calculations) given by Eq.(ll3) and taking

N L from Eq.(86), <v2> from Eq.(127) and the ionization prob-

ability for Argon (the average of many values from the litera-

ture applicable to Eq.(126)) as

16

OAr + = 3.8 x i0 -_ cm 2
(128)

yields

(NAr+)L = 6. 6 x I018 PT' I Ar+ (129)
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for each centimeter of space charge cloud (the T-subscript

on PT indicates that pressure is measured in Torr). This
result should be considered a first approximation since the

value of NL used is a first approximation even though the
value of <v > is a second approximation. The ion current

2

produced (per cm of space charge cloud) is simply e(_Ar+) L
(-e _ electronic charge), and from Eq.(129) this is

(JAr+) L = 1.06 PT' (Amp). (130)

The electron injection rate required in two typical

modes of operation is computed in the following paragraphs.

One of the simplest modes of operation is that in which the

electrons drift slowly away from the launcher (in the z-

direction) until they reach z=L where they leak out of the

coaxial cylindrical structure through a weak mirror field.

This mode of operation tends to minimize the x-ray induced

residual current since the electrons which do not collide

with a gas atom are eventually collected outside the orbitron

structure. Suppose that the potential of the mirror electrode

is such that the mean velocity in the z-direction is <Z>.

Thus, the current leaving the neighborhood of the launcher in

the z-direction is -eNL<Z > (none of which returns). There-

fore, the electron injection rate required to maintain N L

constant in the neighborhood of the launcher is

e = NL <_ > " (131)

It is assumed that the electrons are inserted into orbits

which are sufficiently eccentric to miss the launcher during

the interval of time required to drift out of the z-nelghbor-

hood of the launcher. For a l.auncher biased to match the local
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space charge dependent potential, this may be of the order

of five orbit periods (or more). However, for an acceleration

biased launcher, this interval is probably of the order of one

orbit period. Thus, <Z> must be larger (in this mode of opera-

tion) for an acceleration biased launcher than for a potential
matched launcher. This implies that the electron injec-

tion rate must be larger for the acceleration biased launcher

than for a potential matched launcher.

For a potential matched launcher, the electrons must move

a distance aZ=L' (L' is the launcher length) in a time inter-

val of the order of 5_. This yields the approximate relation

h' . (132)
<v> l_<r>

For L'=0.5 cm

R =2.5cm(implying from previous results that
o

gives

= io, .
min

(a small but yet practicable value) and

<r>= 0.94 cm)

(133)

This constraint places an upper limit on the parameter

Np_ somewhere in the neighborhood of an10 3 . For acceleration

biased launcher, this upper limit would be smaller since
<Z>

Eq.(133) gives a larger minimum value for
(V>

An important mode of operation involves a relatively

strong mirror field at Z=L such that all electrons are re-

flected. By properly restricting the maximum value of operat-
L <v >

ing pressure, the ratio R' and <-_, NL may be maintained

approximately uniform over _he full range of Z (this was not

necessarily the case in the previous mode of operation). For
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where a+ _ ionization collision cross section of the

atom for electrons having a mean kinetic

energy <T> .

The number of non-ionizing collisions per unit time is there-

fore

_-_ = <v> L N L n(o-o+). (136)

This &iso may be taken as the number of elastic collisions

per unit time, since the excitation cross section is generally

very small compared to a _ In some fraction of the elastic

collisions, there is sufficient electron kinetic energy loss

or momentum change such that the electrons are left in an un-

stable orbit after the collision and, subsequently, collide

with the anode. The number of electrons lost from the space

charge cloud in unit time by this mechanism is therefore

h Ve = h( v-v+ ) = <v> L N L nh(a-a+) , (137)

where h is in the interval 0 ih!l, the exact value of

which is not essential.

A small fraction of the electrons orbiting in the z-

neighborhood of the launcher, continuously collide with the

launcher. The electron-launcher collision frequency is worked

out below for a launcher located at r and biased to match
o

the local space charge dependent potential (the necessary pro-

cedural modifications for treating the acceleration biased

launcher are rather obvious). Consider a cylindrical launcher

of radius RL, the axis of which is parallel to the orbitron

axis and located at r ° (electrons are ejected from a central

slit, parallel to the launcher axis, which is orthogonal to

the radius vector passing through the center of the launcher).
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Obviously, the launcher radius should be as small as practic-

able. From practical considerations of the operations In-

volved in the assembly of the various launcher electrodes, a
near minimum launcher radius is considered to be

RL = 0.05 cm. (138)

The effective launcher length, L', protruding into the end of

the space charge cloud, is taken as

L' = 0.5 cm. (139)

The electron collision frequency with the launcher is given

by

where ALe

1 _I (r) dA, (140)Je

A L

that part of the launcher projected area onto a

radial plane passing through it,which is within

the space charge cloud,

The current density is given by

Je(r) _ p(r) Ve(r) . (141)

But since R L << r° and

in the neighborhood of

that

Ve(r) is a slowly varying function

r , the approximation may be made
o

Ve(r) _ Ve(_) , ro-RL_r_r o. (142)
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a launcher biased to match the local space charge dependent
potential, electrons that collide with the launcher have a

kinetic energy of 50 eV (for a launcher located at the outer

turning point). If the launcher were located at the inner

turning point, the electrons would collide with a kinetic

energy of 335 eV, which is another reason for avoiding an
inner turning point location for the launcher. The electron

launcher collisions produce soft x-rays, a fraction of which

radiate from the launcher to the ion collector surface (outer
cvlinder] wh_e they _+ _+........ _ _oelectrons. Thus, in this mode

of operation, it is necessary, in the interest of reducing the

residual current for ion gage applications, to separate that
portion of the outer cylinder which surrounds the launcher

from the remainder of the outer cylinder and use only the

latter for ion collection. This substantially reduces the

photoelectron emission from the ion collector, since the sub-

stantial fraction of the soft x-rays and photoelectrons leave
the surface in a direction near the surface normal and thus
do not reach the ion collector.

Under the above conditions, the total number of elec-
tron-atom collisions in unit time is

_ = <v>L NL no , (134)

where o e total collision cross section of the atom for

electrons having a mean kinetic energy <T> .

Similarly, the total number of ions generated in unit time
is

= <v> L NL no+ , (135)
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From this approximation and Eqs.(124) and (125), the current

density may be written

<V>

j0(r) -- _ 0(r). (143)

Substituting this back into Eq.(140) and taking p(r) from

Eq.(52) and noting that dA=L'dr, the electron-launcher col-

lision frequency becomes

<v> L,NL --[ro dr
VL - _ _ _ j r _(r). (144)

ro-R L
. • DI _

'The strong variable in this integrand is r(r) since r ÷ ®

as r + ro Further r - R L _ r which implies that the range" O O

of integration is sufficiently small that r may be set equal

to r and factored out of the integrand. From Eqs.(71),
o

(94) and (138), and taking

R =2.5cm,
o

(145)

it follows that

r m

o RL = 0.96 r o,
(146)

and that

r
o

= 1.26 cm (147)

Therefore Eq.(144) may be written
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r
o

<v> L'N L / dr (148)VL = _ _ T r o r(r) "

ro-R L

Using Eq.(53) and Fig.4 to evaluate this expression, the

electron-launcher collision frequency is

<v> L'NL(O.185)

= r ' (149)
o

and from Eqs_139) and (147)

vL =7.58 x i0 -3 <v> NL (15o)

The total number of electrons lost per unit time from the

space charge cloud by elastic, inelastic and launcher colli-

sions, is the sum of Eqs.(i35), (137) and (150). A necessary

condition for maintaining N L = constant is that the electron

launcher rate, Ne' must be equal to this loss rate. Therefore

N = <V>NL_Lno[(l-h)_ °-!++ h] +7 58 x i0 -3e O '
I.(151)

At low pressure (small n) the dominant term in this expression

is obviously the last term. Thus, maintaining N L constant at

low pressures requires a constant electron launch rate, inde-

pendent of P. This launch rate is given by

Ne = <V>NL[7'58 x i0-3], (152)

dropping all but the last term in Eq.(151). Substituting from

Eqs.(86) and (127) for NL and <v>, implies that the emission
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current (required to maintain the total charge in the rotating
electron cloud constant) is

= 0 645 ma, (153)i e

(again, for the specific set of parameters used in this first

development of a self-consistent solution). The pressure above

which the electron launch rate (required to maintain NL= const.)
depends on P , may be evaluated by determining that pres-
sure above which the last term in Eq.(151) is no longer domin-

ant (suppose it is only of the order of 90% of the total).
Thus

-3
8.5 x i0

nmax< L_[(l-h) _-_ + h] ' (154)
O

and again taking Argon as a typical gas, for which

and from Eq.(128)

OAr = 9.5 x 10 -16 cm 2

OAr +

OAr
- 0.4, and taking

, (155)

L = l0 cm, (156)

gives the pressure above which the launch rate required to

maintain NL= const, is dependent on pressure

(PT)
max

2.64 x 10 -5 Torr, (h=l), (157)

6.6 x I0 -5 Torr, (h=0).
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A reasonably accurate estimate of h is a rather laborious

computation which involves not only quantum collision mech-

anics but also the specific geometrical parameters of the

orbitron, the space charge dependent potential distribution,
and the electron trajectory parameters• The computation of

h is not done here, but from Appendix A, it may be seen that

h+l as _B2_ and that h÷hllml t as _2_1. Although

hllmlt>0 for all useful electron kinetic energies•

mh_ _m_+=_ . P may now be calculated from Eqs
(135) and (152), whic_ e Tglves

N+ L n o+

NePT 7.58 x 10-3PT

and taking L from Eq.(156) and o+ from Eq.(128)

(for Argon), gives

(158)

NAr+ = 1.63 x 104 , (Torr -I) •

NePT

(159)

The ionic pumping speed, S+ , associated with the ion

production rate is given by

v+

S+ = C± n '
(160)

where Ci _ ion capture probability at normal incidence for

ions having kinetic energy T+(Ro)=e¢21(<r>), (=170 eV)•
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Substituting Eq.(135) into Eq.(160) gives

S+

C±
- <V> L NLO+, (161)

and using Eqs.(86), (127), (128) and (156), gives the ionic

pumping speed for Argon

SAr+ cm 3
- 2 x 103 . (162)

C± sec

The rotating electron cloud corresponds to a circulating

current which is given (approximately) by

<v> L (163)
i8 = eNL 2_<r>

Thus, the ratio of emission current to circulating current is

given by, from Eqs.(152) and (163),

ie =
.--- (7 58 X 10 -3 ) 2w<r>" L '(P<Pmax)' (164)
18

and using Eqs.(ll9), (147) and (156) gives

i
e

i 8
- 4.47 x 10 -3 . (165)

This result validates the use of the time-independent contin-

uity equation, an assumption made earlier in deriving the

charge density distribution, see Eq.(29).
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It was assumed earlier that the charge distribution is

nearly uniform along the Z-axis. The validity of this assump-

tion may be determined for the maximum pressure for which the

orbitron response is a linear function of emission current,

Eq.(157). The electron mean free path in Argon is given by

k(e,Ar) -
OAr

0.032

and substituting (PT)ma x for PT from Eq.(157), gives

k(e,Ar)Imin= 5.8 x 102cm, (h=O).
(167)

The distance traveled by an electron along its trajectory

during one orbit is of the order of

s = /2 _ <r> , (see Appendix C), (168)

and using Eqs.(llg) a_d (147) gives

s = 5.0 cm. (169)

Thus, in one mean free path, an electron executes

_(e,Ar)= 116 orbits, (170)
8

which is adequate to assure nearly uniform charge distribution

along the Z-axis since in this number of orbits the electron

could have traversed the full Z-range several times.
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This entire orbitron analysis has been based (in part)
on the working hypothesis that the space charge was com-

pletely electronic. The validity of this hypothesis may be
determined by calculating that pressure above which the

ionic component of the space charge is no longer negligible.

Since the mean radial position of the electrons is <r> ,
the most probable radial position at which ions are formed

is also <r>. The mean ion llfe time, <T+>, is therefore
the time required for an ion to traverse the distance from

<r> to Ro. The ionic acceleration is given by

"" e
r - E(r). (171)

m+

Integrating this equation gives the ionic velocity

r

1

[
_n+z ¢2l(<r>)-¢2l

m+/ [¢ (<r>)-¢
21 31

I

(r)] Y, <r>_<r _<ro,

1

(r)] _ r o < r < R o,
, _ - (172)

where the initial ion velocity is assumed negligibly small.

Integrating this result again gives the mean ion llfe time

ro R
173)

/m+\7 dr dr

<T+> : "'--_2-el [¢21(<r>)_C21(r) ] _[ [¢21(<r>)_¢al(r) ]

<r> r °

¢21(r) is given by Eq.(77), and from Eqs.(15), (54), (55),

(75), (76) and (78), it follows that

Ro

IveN[2oro ]ll°gTlog _ii gl(e°'1) Ho" (174)
¢31(r) = log Ri
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Making the appropriate potential substitution in Eq.(173),

taking the limits of integration from previously defined
_r ) from Fig. 5, and performing

parameters, taking g1(ao, ro
the indicated integrations numerically, gives

I
fm+ V

<'[+> = 1.45 Ro _2 eVl "
(175)

Taking R from Eq.(145) and
o

Argon ion life time is

V from Eq.(99), the mean

<tAr+> -- 8.4 x 10 -7 sec.
(176)

The number of ions in unit length of the interelectrode

space is given by

(N+)L = (N+)L <T+>. (177)

Substituting from Eq.(129) for (NAr+)L

for <TAr+> gives (again for Argon)

and from Eq.(176)

(NAr+)L = 5.5 x 1012 PT" (178)

For the space charge to be considered completely electronic

(as has been done in the analysis)

(NAr+) L << NL.
(179)
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Therefore from Eqs.(86) and (178), it follows that

PT I << 1.49 x 10 -4 Torr.
msx

(180)

This result implies that the space charge may be considered

completely electronic below about 1.5 x 10-5 Tort. There-

fore, from Eq.(157) (for any value of h ), it follows that

over the entire linear dynamic range of the orbitron, the

assumption that the space charge is completely electronic,

is valid.
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1.9 CONCLUSIONS

The development of the ist approximation to a self-

consistent solution for the electron motion, charge density

distribution and charge dependent potential distribution in

an orbitron, used the following assumptions:

0. The space charge is completely electronic.

i. The charge density distribution is sufficiently

uniform in the Z-dlrection that its variation

with Z may be neglected.

. The charge density distribution is independent

of e .

, Allowed orbits are members only of the orbit

subset which satisfies the stability criteria;

excluding, however, although members of this

subset, that part of the discrete series of closed

trajectories for which n is small.

, The time dependent component of the charge den-

sity corresponding to the collision loss rate and

the balancing injection rate is negligible, com-

pared to the equilibrium charge density.

These assumptions are shown to be valid for practicable config-

urations and modes of operation.
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Under these assumptions, the consistent set of differen-

tial equations describing the space charge dependent potential

distribution, the charge density distribution, and the electron
radial velocity are:

d (r de) _ r p(r)dr d-r e
0

(Poisson Equation),

d [r r p(r)] = 0dr (Continuity Equation),

and

dr £2 e d¢
+ (2nd Law).

dr m2r3 m dr

The solution of which is applied to three concentric cylindrical

regions, with space charge in the middle region only, by forcing

the solution to satisfy two boundary conditions on the potential

at the inner and outer electrode surfaces, and four continuity

conditions on the potential and electric field at the two inter-

faces of the three regions. The solution is also constrained to

satisfy

T(ro ) - a22 e [-r deId--r
r=r

(Stability Constraint),

for the allowed range of the stability parameter

i < a2 < 1
3

which assures that the rotating electron cloud is populated with

electrons having long probable llfe times.
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The solution is developed by substituting the space charge free

potential distribution into the 2nd Law, and solving numerically

for _. This function is then substituted into the Continuity

Equation and a solution obtained for p(r). This result is

used in the Poisson Equation to obtain the 1st approximation to

the space charge dependent potential distribution. This poten-
tial is substituted into the 2nd Law, and a 2nd approximation

to r obtained numerically. Using this function in the Con-

tinuity Equation gives a 2nd approximation to the space charge
__"_ion

Since the above system of equations is non-llnear and

also non-integrable analytically, a particular solution may be

obtained by numerical integration for a specific set of param-

eters only. To enhance the utility of this first development

of a self-conslstent solution, it is first determined where the

rotating electron cloud inner boundary should be located to give

maximum charge storage. It is found that the inner turning

point should be near the anode surface. This result permits the

introduction of a valid approximation which, in turn, makes it

possible to retain some generality in the sense that the numer-

ical integrations apply not to one particular solution only,

but rather to a subset of particular solutions.

The following table gives the prescribed parameters and

the derived parameters in order of progress:

Prescribed Parameters

r i -_ R i

2 1

o 3

B = 1

Derived Parameters

r o
- 2.59

r i

_ = O. 684

4_ Co8 T(r o)

N L =
_ e2 [log rriO g1(_o,1)]
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Prescribed Parameters Derived Parameters

T(r o) = 50 eV N L = 0.825 x 109 cm -I

H = -T(r o)
R
o

R-_ -- 5.13

V = 385 Volts

i00 Volts

Vb 1

<_> = 0.746

r o

<v>= 6.45 x 108 c__mm
see

<T>= 119 eV

(NAr+_ = 6.6 X lO ,e PT\sec/L

(iAr+_ = 1.06 PT (amP)L

R = 2.5 cm
O

r = 1.26 cm
O

r i = 0.49 cm
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Prescribed Parameters

L = i0 cm

Derived Parameters

< 6.6 x 10 -5 Torr
(PT)max

RL = 0.05 cm

L' = 0.5 cm

i = 0.645 ma
e

i -3
= 4 47 x lO

i
e

NAr+

NePT

1 63 x 104 -!- . Torr

SAr+

C±

- 2 llters/sec.

-7

<_A +>r = 8.4 X i0 sec.

12

(NA_) L = 5.5 x i0 PT (A_)L

The following conclusions may be drawn from the results

developed in the preceding orbitron analysis:

The space charge dependent potential distribution,

for maximum charge stored stably in the rotating

electron cloud, is substantially lower than the space

charge free potential distribution. This confirms the

suspicion that a space charge free analysis has limited

utility.

The maximum charge that may be stored stably in

the rotating electron cloud is about the same as may be

stored on one plate of a cylindrical capacitor of the
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same dimensions at the same anode potential.

The maximum charge stored stably is approximately
a linear function of anode potential (other parameters fixed).

The ion production rate (per unit length of electron

cloud) increases slower than the anode potential (other
parameters fixed).

Maximizing the charge stored stably requires that
the electron trajectory inner turning point be very near
the anode surface.

The charge stored stably increases with increasing

anode radius and decreasing outer cylinder radius (however

for all other parameters fixed, the outer cylinder radius
cannot be less than a certain lower limit).

The feedback mechanism, which regulates the total
population of the electron cloud at its maximum value

consistent with stability requirements, is operative

only for an inner turning point location very near the

anode surface. For all larger inner turning point locations

the cloud population must be regulated by other (external)

mechanisms. The possibility of over populating the

electron cloud presents a grave hazard if the inner turning
point is not near the anode surface.

Orbit insertion parameters must be accurately controlled
to achieve optimum charge storage. Deviation in orbit

insertion parameters results in unstable trajectories,

short orbiting life times, and low ion production rate.

For many configurations or modes of operation, the
ratio of emission current to ion current increases with

increasing anode potential.
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Ion gage sensitivities of the order of 104 to 105

Torr-i can be achieved for conventional size devices.

Several modes of operation are possible, for orbitron

ion gages, which are substantially free of residual current.

Relatively high ionic pumping speeds are attainable

in orbitron ion pumps. For example: an orbitron pump

about the size of the magnetron gage (Redhead) and

operated at the same anode potential would have an Argon

speed of about 2 ]_t_/_ _i_-_--............. __, a 5 cm diameter,

20 cm length orbitron pump operated at 10KV would have an

Argon speed of about 65 liters/sec.

The computational task associated with obtaining

a precise solution to the orbitron problem appears to be

less formidable than was suspected at first, since the

comparison presented in Fig. 6 implies that the iteration

process converge rapidly.

The numerical data presented in Fig. 3 thru 6 may be

applied to geometrical and electrical configurations which

differ from the configuration worked out in section VII

and VIII by using the computational procedures developed

in these sections, provided only that _8 and B are held
fixed.
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2.0 DESIGN AND CONSTRUCTIONOF AN EXPERIMENTAL
ORBITRON GAGE

The analytical results obtained in the preceeding section have

been applied to the design of an orbitron ion gage which is dis-
cussed in the following paragraphs. Schematics of the device are

presented in Fig. 7 and 8 where electrode materials are indicated

and important dimensions are given.

The design is such that either mode of electron launching may

be used, that is from a potential matched launcher or from an
acceleration biased launcher. The ion collector portion of the

outer cylinder is electrically separated from the end section

of the outer cylinder and the launcher is located within this
end section to minimize the residual current at the ion collector.

The launcher is located near one of the electron mirrors to pro-

vide for control of the ratio of z-axis drift velocity to orbital

velocity. In this configuration, launching is anticipated only

in the neighborhood of the outer turning point. It is further

supposed that operating parameters will always be such that the

inner turning point is in the neighborhood of the anode surface

since optimum charge storage in the electron cloud is of principal
interest. The launcher is mounted on a bellows assembly to provide

for some adjustment in the ratio of outer turning point radius to

inner turning point radius by adjusting the radial position of the
launcher. This mounting system also provides for some adjustment

in the z position of the launcher and as well as some variation

in launch angle about _ (applicable to an acceleration biased
launcher). Electrically isolated electron mirrors and anode

guard electrodes are provided to control the axial flow of
electrons and adjust the axial position of the electron cloud.

An enlarged schematic of the electron launcher is shown in

Fig. 8. The cathode is centrally located in a slited tube. The
tube serves as one heater current lead and supports one end of the

cathode, and the axial slit limits the width of the electron
stream drawn from the cathode assembly. The launcher anode
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surrounds the cathode assembly and has an axial slit which is

aligned with the cathode assembly slit. This slit system results

in the ejection of a narrow stream of electrons from the launcher.

The center plane of the sllt system is oriented at an angle of

with respect to the radius vector of the orbitron. In the

potential matched mode of launching the launcher anode is biased

to match the local space charge dependent potential and the

cathode assembly is biased below the anode such that the potential

difference between them corresonds to the desired electron ejection

..... o_ ............ _ _,,_ _±,_uic energy.......... ±_le electron

launch rate is controlled by variation of the heater current only.

In the acceleration biased launching mode, the launcher anode is

biased below the local space charge dependent potential such that

the potential difference corresponds to the desired electron

kinetic energy in the neighborhood of the outer turning point.

However, to minimize space charge limitations within the launcher

and to assist in collimating the ejected electron stream the

launcher cathode assembly should be biased somewhat below the

launcher anode. Thus the electrons leave the anode sl_t _n a

well defined direction and with a few eV of kinetic energy.

All electrodes are mounted on support rods which pass through

ceramic insulators located on a single flange thus making the

entire assembly demountable.

With the above geometrical configuration and for anode

potentials between 250 and i000 volts corresponding to the mean

electron kinetic energy range from about 75 to 300 eV, the orbi-

tron ion gage performance may be experimentally studied and

evaluated over the sensitivity range from about 103 to 105 Torr -I.
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APPENDIXA

Stability Analysis

If an electron is in a stable orbit, any small perturbation of its

radial motion, resulting in an incremental displacement from its orblt_
must be resisted by a force which tends to restore the electron motion to

its original orbit. Thus, the incremental restoring force resulting from
an incremental displacement of the electron from its orbit must have the

following form if the orbit is to be stable

df =-k dr, (AI)

where k is a positive constant. Taking the differential of both sides

of Eq.(21) gives

d(mr) _ df.: - ÷ e _ (A2)

For these two equations to be identical in form, it is necessary that

3_---_2+ e d E(r) > 0, (A3)
mr4 dr

for all points along the trajectory.

The least stable point in an ellipse-like trajectory is the outer

turning point, where the electron is most distant from the force center,

thus experiencing the smallest electric force, and also where the gradient

of this force is smallest. Thus, a stability criteria which assures that

the electron trajectory is stable at the outer turning point is sufficient
to assure that the entire orbit is stable.

The outer turning point of an electron in an undisturbed orbit coin-

cides with the outer boundary of the space charge cloud, the boundary
between regions 2 and 3. However, if the electron trajectory has been

perturbed such that the actual trajectory has been displaced radially by

a positive increment from the original trajectory, its outer turning point

will occur in region 3, beyond the space-charge boundary. Therefore, the

field derivative appearing in Eq.(A3) must be evaluated ir_nediately outside
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the space-charge boundary in region 3. Since, in general, this region is
charge free, Laplace' s Equation applies, from which it follows

d E3(r)l - E3(r°)--- E_(r°) (A4)

dr I r rr:r o o
o

Substituting this result into Eq. (A3) and evaluating the angular momen-

tum term at ro also, gives (after rearranging)

Z2 > r°-_3me E2(r ). (A5)
3 o

Thus, of all possible orbits, only those are stable for which the elec-

tron angular momentum is greater than this lower limit.

In the orbitron, only bound orbits are of any interest, thus, the

repulsive term (positive) in Eq. (21) must not be so large (relative to

the electric field term) that it forces the electron to escape radially

from the interelectrode space. The repulsive term has its largest allowed

value when it exactly balances the attractive electric field term. The re-

pulsive term is related to the angular momentum. Therefore, the angular

momentum must have an upper limit if the orbit is to remain bound. This

limit is obtained by setting the left side of Eq. (21) to zero, which gives

Z2 = ro3 me E(ro) , (A6)

where r3E(r) has been evaluated at a radius equal to the outer turning

point radius of an ellipse-like orbit, thus occupying the same region of

the interelectrode space.

Thus for stable, bound orbits the angular momentum has an upper

and lower limit according to

3r

o me E2(r ) < £2 < r 3 me E2(ro). (A7)
3 O -- O

This expression may be converted to an equation, for insertion into

the analysis, an operation which assures the selection of only the stable

subset of orbits for further study. Converting the relation (A7) to an
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Thus the effect of the perturbation, independent of the form of the per-

turbation interaction, is that the electron oscillates about its original

trajectory at the frequency given by Eq.(AI4) and with the amplitude given

by Eq. (AI6). The oscillation will continue for avery long time since the

only damping in the system is radiation damping of the electron which has

been neglected in Eq. (AI3) since it is extremely small. The energy ra-
_i 0

diated during one orbit is typically of the order of i0 T(r i) to 10-15

T(r. ) where T(r i) is the kinetic energy of the electron at the inner turn-i
ing point (maximumkinetic energy). Since the system is nonlinear _ is

not a constant. In fact, _ increases as r decreases (as the electron
2_

proceeds along its trajectory from r ° ). The oscillatory period, -_-, is
of the sameorder of magnitude as the orbit period. Thus, the oscillatory

electron response actually distorts the entire orbit.

For k<0 in Eq.(AI0), the response of the electron to a perturbation
is essentially different from the above results. The solution to Eq.(AI3)

is then

×(t) = Xo cosh _t + X___osinh _t, (A18)

where
(i-3a2) E2(ro) 2 1

mr "_ <_"

o

2 1
Thus, for _ <5' a perturbation which produces either a displacement

from the original trajectory or an increment in the radial velocity (or

both), no matter how small, yields an electron response which diverges

from the original trajectory without limit.

(AI9)
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where
k (3_2-I) e E2(r o)

_2 _ - (A14)
m mr

o

The solution to this equation describes the electron response to the per-

turbation. Since the form of the perturbation forcing function is un-

known, the most general method of proceeding with the solution to Eq. (AI3)

is to assume that at the end of the perturbation, the electron has been

i., 2 (the
displaced by ×o and given a velocity increment _o' where _m×o

increase in radial mode kinetic energy) is assumed small compared to

Z2
. Taking the end of the perturbation as the zero-time reference,

2mr 2
o

the parameters ×o and Xo become the initial conditions necessary to

specify the integration constants in the solution of Eq.(AI3).

For k>0, the solution to Eq.(AI3) is

x(t) = Xo cos _t + X-_°sin_ _t. (AI5)

For k>0, from Eq.(Al4) it is obvious that _ decreases as _ de-

creases. Therefore, the amplitude of the electron response in Eq.(AI5)

increases as _ decreases and the frequency of the oscillatory response

decreases as _ decreases. The maximum displacement of the electron

from its original trajectory is, from Eq.(AI5),

[ ]½Xmax= XO l+--
Xo2CO2

(AI6)

Using Eqs. (A8) and (AI4), this may be rewritten in terms of the kinetic

energy given to the electron during the perturbation AT, and the original

electron kinetic energy at the outer turning point T(ro),

(Xma.x] 2 Xo 2 a 2 AT

,_ ) = r--,z + ---- • (AIT)o (3 e2-1) T(r )
o
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Thus the effect of the perturbation, independent of the form of the per-

turbation interaction, is that the electron oscillates about its original

trajectory at the frequency given by Eq. (AI4) and with the amplitude given

by Eq. (AI6). The oscillation will continue for avery long time since the

only damping in the system is radiation damping of the electron which has

been neglected in Eq. (AI3) since it is extremely small. The energy ra-

0 10_15diated during one orbit is typically of the order of lO-I T(r i) to

T(r ) where T(r i) is the kinetic energy of the electron at the inner turn-
i

ing point (maximum kinetic energy). Since the system is nonlinear m is

not a constant. In fact, _ increases as r decreases (as the electron
2_

proceeds along its trajectory from r° ). The oscillatory period, -_-, is

of the same order of magnitude as the orbit period. Thus, the oscillatory

electron response actually distorts the entire orbit.

For k<0 in Eq.(AI0), the response of the electron to a perturbation

is essentially different from the above results. The solution to Eq.(AI3)

is then

x(t) = Xo cosh _t + X_p_osinh _t, (AI8)

where

(I-3_2) E2(ro) _2<_._02 = ,.

0

2 1

Thus, for a <7' a perturbation which produces either a displacement

from the original trajectory or an increment in the radial velocity (or

both), no matter how small, yields an electron response which diverges

from the original trajectory without limit.

(Ai9)
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APPENDIXB

Effective Eccentricity

Thetrajectory of a bound particle in a r -2 central force field is
in general a closed ellipse (4) (provided wave effects and relativistic ef-

fects are negligable). The radial position of the particle as a function

of the azimuth angle 0 is given by

1 (BI)r --

which is the standard form in polar coordinates of the ellipse sketch

below,

_nd where

t-r. r __

1 o

-- 2a

k _ force constant,

_ particle angular momentum,

m _ particle mass,

ro_ outer turning point,

rim inner turning point,
^

r _ semi-latus rectum of the ellipse.

t
2 b
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The radial component of the particle acceleration is given by

£2 k
=

m2r 3 mr 2
(B2)

The radius at which the particle radial acceleration passes through zero
,.

is obtained from this equation by setting r = 0 and solving for r

r(r=0) : r _2= -- • (B3)
km

Substituting this value for

gives

^

r into Eq.(BI) and solving for

^ ]i
e = + n -,(n odd). (B4)

-- 2

Thus, the polar coordinates of the particle at the instant that the radial

acceleration passes through zero are just the coordinates of the end points

of the semi-latus recturn of the ellipse.

In terms of standard elliptical parameters, the radius to the outer

turning point is given by

r° a(l+e c) , (B5)

_nd the !e.n4_thof the sem_-!atus rect_n is given by

b2
r : _- , (B6)

and the ellipse eccentricity e must satisfy the relation
c

b 2 = a2(l-ec2), (BT)

where 2 a e major axis of the ellipse,

2 b e minor axis of the ellipse.

Eliminating a and b in Eq.(B5) through (B7) gives

^

r _ l-e • (B8)
r c

o

That is, the ratio of the radius at which the radial acceleration

is zero to the outer turning point radius is a function only of the eccen-

tricity of the ellipse. In retrospect, this may be demonstrated more
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succintly by substituting Eqs.(B3) and (B8) into Eq.(BI) which gives the
equation of an elliptical orbit in the fonn

^

r

--= l-e cos 8, (Bg)
r c

from whichEq.(B8) follows immediately for the coordinate pair

(r , nH) (n even).
o

By analogy with the closed elliptical orbit, an effective eccentricity

may be defined for the electron trajectory in an orbitron even though it is

not a closed ellipse. Equation(24), upon setting r=0, gives

E2 (_)

o

This equation is cumbersome to use if left in its general form, but be-

comes particularly elementary if only the space charge free potential

distribution is considered. The space charge free field is simply

E(r) - V 1 . (BII)
Ror

log Ri

Substituting Eq.(BII) into (BI0) gives

m

-- (BI2)
r
o

Thus, by analogy with Eq.(B8), the effective eccentricity

tron trajectory in the orbitron is given by

* of an elec-
ec

e* = l-a. (BI3)
c

Thus, the parameter originally introduced as an orbit stability label,

turns out to be nothing more than an obscure way of writing the effective

eccentricity of the open, ellipse-like electron trajectories in the orbitron.

Strictly, the elementary relation in Eq.(BI3) applies only to negligibly

low space charge distributions. A similar, but more complicated relation
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may be derived for non-negligible space charge distributions. However,

the essential conclusion is (and applies to any space-charge distribution)

that _ is simply a measure of the effective eccentricity of the ellipse-

like electron trajectories.
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APPENDIXC

8-Dependent Charge Distributions

For this discussion it should be recalled that an orbit maybe defined

as that se_Fnentof the electron trajectory between two successive outer

turning points (this definition is consistent with the conventional defi-
nition(4)). The azimuthal angle 0 is the angle traversed in e-space

betweentwo successive outer turning points. It is shownbelow that 0

has an upper and lower bound (independent of charge density distribution)•

It is then shownthat for certain values of 0 the electron trajectory

is stationary yielding a e-dependent charge density distribution.

A boundelectron having the maximumallowed angular momentum (_2:1)
%,

executes a constant radius trajectory about the anode such that r=0,

r=0 and the electron velocity along its trajectory is constant and given

by

v 2 =eE(ro m o)ro =( _m-_o_-
(el)

where r is the constant radius of the trajectory and £ is the in-
o

Jectionmng_larmomentum. Suppose that a small radial perturbation is

applied to the electron motion. If the perturbation is sufficiently

small that nonlinear terms may be neglected, the resulting motion is a

small amplitude harmonic oscillation about the original trajectory, the

oscillatory part of which is given by Eq.(Al5) after having set _2=I
2H

in Eq.(Al4) During the period of one oscillation _= --, the electron
•

advances along the trajectory r=r o a distance VoT. Obviously then, the

wave length of one oscillation, measured along the original trajectory, is

V o

A = 2n _ . (C2)

given by

Taking the period T as the time between two successive maxima of the

oscillatory part of the motion, it follows from the above definition of

8 that (see sketch below)
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A=r @
0

(c3)

since the average value of the oscillatory amplitude is zero as may be

seen from

= r + 1 _T x(t)dt : r
o T 0

0

upon substituting from Eq.(AI5) for ×(t).

(C4)

Eliminating A between Eq.(C2) and (C3), substituting from Eq.(Cl) for

and substituting from Eq.(Al4) for _ (with a2=l), gives
Vo_

e : n. (c5)
M

The subscript M (for maximum) has been applied to e since this

value was obtained for the maximum angular momentum and as the angular

momentum decreases e must decrease. An important observation is

that the result in Eq.(C5) is independent of electric field distribution

and therefore of the charge density distribution.
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The minimum angle traversed in one orbit is that associated with an

g=0 trajectory (which of course violates t_e stability criteria and pre-

sents obvious practical difficulties). However• if practicable and if

allowed• an _=0 electron would pass through the origin (r=0) and proceed

to r=r on the opposite side of the anode. The angle between two succes-
o

sive outer turning points is H and therefore

e = _ (C6)
m •

where the subscript m _or minimum ) has been applied since an angle smaller

than this value would have no physical meaning.

From the above discussion, it follows i_nediately that all electron

trajectories in an ortitron must satisfy

< 0 < _-_. (C7)

Since the derivation of these limits did not involve the form of the elec-

tric field distribution• Eq. (C7) is applicable to any charge density dis-

tribution provided only that the charge is uniformly distributed in e-space.

It is i_nediately obvious that the _=0 trajectory results in a non-

uniform e-distribution of the space charge, since on a time average the

charge is mostly in the neighborhood of the turning points where _=0.

The _=0 trajectory thus yields two charge clusters, each in the neighbor-

hood of r=r o but one at e=e and the other at e=e + n. Thus for allo 0

e not near e or e +_, p =0. An important observation concerning this
o o

charge distribution is that it is stationary in e-space. As the number

of _=0 electrons are increased, the charge density approaches saturation

in only two regions while in the remainder of the interelectrode space the

charge density is zero. Such trajectories then make very inefficient use of

the interelectrode space and the applied potential.

A sequence of possible trajectories exists having $>0 which like the

_0 trajectory, tend to produce localized stationary charge clusters.

The trajectories belonging to this series are those for which the angle be-

tween successive outer turning points satisfies the relation
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nO= 2m_(n>m), (C8)

where n and m are positive integers containing no commonfactor

(and of course e must satisfy Eq.(C7).) The n=2, m:l trajectory has

already been discussed (_:0). The n:3, m:2 and the n:5, m--3 trajec-
tories are sketched below.

n=3
m=2

The-important property of this series of trajectories is that after n

orbits (or m circuits of the anode) each closes on itself and repeats

indefinitely. Thus, the n-orbit trajectory considered integrally is station-

ary. The n-orbit closed trajectory produces 2n stationary charge clusters

in the neighborhoods of the 2n turning points of the integral, closed

trajectory. All the members of this series of trajectories make more or less

inefficient use of the interelectrode space, approaching saturation in a dis-

crete set of small regions. The maximum charge that can be stored in the inter-

electrode space under these conditions is substantially less than that cor-

responding to a uniform approach to saturation over all e-space. As n be-

comes large, the charge clusters begin to overlap and the charge distribution

in e-space begins to smooth, eventually becoming approximately uniform.

From the above discussion, it is clear that the n-orbit closed trajectories,

in which n is small, should be avoided in the orbitron. This may be
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accomplished by disallowing those values of _ within the stability range

which correspond to stationary, closed trajectories. It turns out that the

specification of this discrete set of o's involves considerable numerical

computation and a complete solution to the electron motion in the space

charge dependent potential distribution.

For all trajectories which do not satisfy Eq. (C8), e is an irrational

multiple of 2n, the trajectories never close, the orbits continue to pre-

cess, and the charge density is uniform in e-space.
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APPENDIXD

Interpretation of 8

The electric field distribution in Region 3, outside the space charge
cloud, is obtained from Eq. (15) by taking the negative derivative with

respect to r. Applying Eqs.(54) and (55) and evaluating at R giveso
the electric field at the outer boundary

r

E3(Ro) = {V+l,(re)log _.o _ l(ro)} I i• _ " 5--

-'i 10g _-_ _o
Ri

(DI)

The space charge free electric field at the outer boundary is obtained

from this same equation by setting all the charge integrals to zero

Ecf(Ro ) = _ V . ___i
log Rn Ro

R.
1

(D2)

The change in electric field at the outer boundary resulting from the

charge insertion is

r o

Ecf(Ro)-E3(Ro) = +{-I'(ro)log _+ I(ro)}

i i

R R '
log -9-o o

Ri

The fractional change in electric field, relative to the final value, is

Ecf(Ro)-E3(R o)

E (Ro)
3

r o

-I' (ro)log _ + l(ro)

V+I, (ro)log ro _ I(ro)

Substituting from Eq.(61) for l'(r o) gives

(D3)

(D4)

Ecf (Ro)-E3(Ro) _ Ecf(Ro)

ES(Ro) - E3(Ro)

[u2eV Ro i

_ 7 -log Ro
(D5)

A-15



Therefore by comparison with Eq.(65), it follows that

• R

E<f(R°) - i} log __o.R.
l

(D6)

From this equation it is obvious that B is positive for all nonzero

charge densities and approaches zero as the charge density approaches

zero. .8 is essentially a measure of the fractional reduction in elec-

tric field at the outer boundary relative to its final value after charge

insertion.

An informative alternate form of Eq.(D6) is

E3(R o) =

from which it follows that

V

Ro(8 + log ____oo)
(D7)

Lim E3(R o) = O. (D8)

Thus, the electric field at the outer boundary is always greater

than zero for acceptable values of 8.
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9 •

APPENDIX E

Charge Optimization ,

It follows immediately from Eqs.(16), (52), (53) and

(54) that

--I' (r o) = -- _ p (r)r dr _ eNL r°/ d____r eNL .

ri _o _Eo r i _ : 2_o

(El)

Therefore Eq.(61) may be written

Ro]2T(ro) log R--_
eN L = 2,._oV - _2 eV (E2)

ro •
R i

Since

r ° r
r° - log + log i

logRi _ _ , (E3

Eq.(E2) may be written

2T(r o) log R_lll
LI e2 eV

eN L = 2_coV - _.
ri ro l(ro)

log_ + log_- _(-go_J
The left side of this equation is the total charge stored in

unit length of the rotating electron cloud. Optimizing N L

involves several operations: Maximizing NL with respect to

ri; maximizing N L with respect to _2 but consistent with

the other requirements that _2 must satisfy; and determining

the behavior of NL as a function of other prescribed param-

eters such that values are prescribed which tend to optimize NL.

(E4)
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P

Maximizing N L with respect to r i involves minimizing

the denominator of Eq.(E4) with respect to r i. Although the

ratio r-_° is fixed by prescribing _2 and B, either ro or
rl

r i may be prescribed independently. Full advantage may be

taken of this degree of freedom by prescribing that

r i = R i + 8, (E5)

such that

6
- << I. (E6)

R i ri

This prescription is equivalent to locating the inner turning

point immediately outside the anode surface such that the elec-

trons pass by the anode at a distance Just sufficient to assure

that they do not collide with the anode surface. Under this

condition _ may frequently be neglected in the analysis

(for _2 not close to 1). This simplifies the denominator

of Eq.(E4) and removes any explicit dependence on R i since

the first term may be written

ri - 8-_-)=log (i+ 6 ) = 8 << 1 . (E7)
log Ri log (i+ Ri r-_ r i

This operation maximizes NL with respect to r i while

leaving the ratio r°m unchanged and without substantially

rl I(ro)
affecting the value of

I'(r o )

Maximizing NL with respect to e2 is not so elementary.

A plausibility argument may be constructed, based on an approx-

imation to I(rn) obtained by using the radial component of
I'(r o )
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the electron velocoty applicable to negligibly low charge den-
sities• Although this approximation does not contain some of

the important parameters (for example 8 ), it must indicate

correctly at least the direction of the variation in NL as
a function of _2 . That is, the result must correctly indi-

cate, even for non-negligible Charge densities, whether N L

is an increasing or decreasing function of _2 (it turns out

this is the only information required to maximize N L with

respect to e2). This conclusion follows from the fact that

p(r) has the same general shape for any value of N L. The

principal influence of NL upon p(r) is that variations in

N L raise or lower p(r) and only secondarily increase or de-

crease the distance between turning points (space charge

50undaries). The shape of p(r) is principally determined by

the form of the function (which is generally similar for any

N_ and _2. The first integral of the charge density is in-

dependent of the shape of p(r) The ratio I(ro) is inde-
• l,(ro)

pendent (exp!ic _+_'' _T_a) of and is principally a function of
_m

the shape of the charge density distribution. Therefore, con-

clusions based on the shape of one charge density distribution

must be generally applicable to other similar charge density

distributions since their shapes do notdiffer substantially.

The derivation of the analytical expressions necessary to

I(ro) depends on _2 is
expose the way that the ratio i,(ro)

connected intimately with the trajectory analysis in Appendix F,

which is therefore used freely in the following analysis.

Equation (F13) may be used to obtain an approximate value

for the charge integrals I'(r o) and I(ro). Substituting

Eq.(F13) into Eq.(52), substituting the result into Eq.(16)

and applying Eqs.(54) and (F16) gives
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x

eNL i _ d x
l'(r) = -- -_-

2_e o [2ax- x2]½
o

=-eN L . I cos-l(1-%),
2_- ° ._

where a is defined by Eq.(FI4). Evaluating this equation at

r , (x = 2a), gives the expected result
o

e N L

l,(ro) = 2_Eo '

(E8)

(E9)

which is the same for all charge density distributions since

l'(r o) is independent of the shape of p (r).

Substituting Eq.(ES) into Eq.(17), performing the co-

dr and applyingordinate transformation of Eq.(F3) on _-

Eq.(55) gives

I(r) =
eNL i x__ x dx

2_Eo _ f cos -I(I-[)
o

(EIO)

where y is defined in Eq.(F4) or (FI2). It is convenient to

make a new coordinate transformation such that

= cos -l(l- _) ,
(Ell)

with the limits

x = 0 , _ = 0

X = X _ =
0 _

(El2)

Equation (El0) may then be written
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• t

eNL b _ _ sin _ d_
l(r) - 2_o . -_--

o i - b' cos_
(El3)

where

i _2 _ 2
).

2_2_ y2

Integrating Eq.(E13) by parts gives

(El4)

l(r)- eNL {7--_log (l-b cos _)-- 71 flog (l-b cos_)d_}. (El5)
O

2_E
0

Since b << 1 (the leading term in its expansion as a function

A
of A is _) (see Eqs.(F8) and (FI2)), the logarithms in Eq.(E15)

may be expanded in powers of (b cos _ ). Second order and higher

terms may be neglected for the present purpose. After perform-

ing these operations• Eq.(E15) becomes

eNL k (sin _ -_ cos _). (El6)
l(r)_ 2_%

Evaluating this expression at _,(_ = _), gives

eN L
l(r ) - b . (El7)

o 2_e o

From Eqs.(E9) and (El7)

I(ro) = b •

I'(r ° )

(El8)
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and from Eq.(EI4)

l(ro) I (_l,(roY = _ _ 2) ,

(El9)

and applying Eq.(FI2) gives

(for

l(ro) I [l--e2] a

-

Therefore the denominator of Eq.(E4) may be written

a 2 near i)

(E20)

rolog + log rl

I(ro) r___o_ A

_--_ _ log rl _ ;

(E2I)

and from Eqs.(F4) and (FI2) it follows that

r
__£_

log r
i

from which Eq.(E21) becomes

A; (E22)

r
log ri + log o _ = _+

R i rl rl

6 1 2

=r-_2(z-_ ).

Therefore, under the condition expressed in Eq.(E5) and for

near I, the limiting value of the total charge stored in unit

length of the rotating electron cloud is

Llm eNL= 2_%V_6

a2 ÷ i

2T(ro)log Ro ]eV R?i "

(E23)

a 2

(E24)
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Ro
Using Eq. (65) to eliminate log R--i , which in this dis-

cussion is an unimportant parameter, Eq,(E24) may be written

in the alternate form

4_° 8T(r°) rl (E25)
Lim NL =

_2 ÷ 1 e 2 6

from which it is obvious that NL increases with increasing

r i and decreases with increasing 6. This limiting charge

corresponds to a thin, high density charge sheet immediately

outside the anode surface, the electrons of which execute cir-

cular trajectories.

_2=i leads to serious practical difficulties since the

electron launcher cannot be made infinitesimally small. Long

electron life times can be achieved only if the electron tra-

jectory is sufficiently eccentric that the electrons miss the

launcher during the first few passes after injection (it is

assumed that after the first few passes, the electron has drifted

far enough along the z-axis to miss the launcher altogether).

Therefore, optimization of N L is not a simple maximization

operation. The optimum N L is that associated with the largest

a2 for which the trajectory is sufficiently eccentric that the

probability of collision with the launcher during the first few

orbits is negligibly small. It is only under this condition

that the charge density can be pumped up to its equilibrium value

all along the z-axis and a uniform charge density cahieved in

z-space (if the electrons returned to the launcher at the end of

the first circuit of the anode, all the charge would be concen-

trated in the z-neighborhood of the launcher).

Concerning the remaining parameters in Eq.(E4), it is ob-

vious that NL increases with V and increases with decreasing
Ro
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APPENDIX F

Trajectory Analysis for Low Charge Density (Approximate)

If the total charge stored in the rotating electron cloud

is sufficiently low that the space charge dependent potential
distribution does not differ substantially from the space charge

free potential distribution, and if the electrons are injected
into trajectories which are not very eccentric, then Eq.(26) may

be approximated by an integrable function. The results obtained
are not strictly applicable to the more interesting and useful

high density, moderate eccentricity space charge configuration,
however the results provide considerable insight into the low

density electron dynamicsand may be used to clarify and assist
the correct interpretation of other results which are directly

applicable to moderate eccentricity, high density space charge

distributions.

Under the above restrictions, the radial component of the

electron velocity is given by

i

r 2 r 2 '

where

2 eV= . (F2)
Ro

m log R-T

For mathematical convenience, let

r
-- = y + X ,
ro

(F3)
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• a

where r i

Y - r (F4)
o

The trajectory turning points then occur at

and

r = r i , x = x i = 0 , (inner turning point) ,

r = r , x = x = l-y,(outer turning point) .
O o

(F5)

(F6)

Recalling that the trajectories considered in this Appendix are

not very eccentric, y is near i and for even the maximum

value of x,

x << i (F7)
o

Similarly, _2 is not much less than i and may be written

= z - A , (F8)

where

0 < A << i _F9)

From Eqs.(Fl) and (F4), it follows that

_2 --_2log ! + (I ) = O. (FlO)
y 2 y

The logarithmic term in this equation may be approximated by

the first two terms of the well known Taylor expansion in the

neighborhood of i,

I 2
=. =( y1 -- i_I]___(i___] • (FII)log
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t

Substituting Eq. CFII) into Eq. GFI0) and solving the resulting

quadratic equation for y gives

= l+m 2 2-A
- ~ l-A = _2 (FI2)

Y 3__2 2+A

a result which is needed frequently later on.

Using Eq.(F3) to eliminate r in Eq.(FI) and performing

an expansion similar to Eq.(Fll) and taking account of Eq.(F10)

yields an approximate analytical expression for the radial com-

ponent of the electron velocity

i i i

= K-22 t[3012--Y 2) 2 [2ax-x (FI3)2
Y

where

c_2-Y 2 A

)=_. (FI4)

The solution to this differential equation gives the electron

radial position as a function of time. Taking the zero time

reference to correspond to the inner turning point of the elec-

tron trajectory and integrating Eq.(F13) gives

1 x

,o 22yoSdxi
i _3a2 ._2 [2ax_x2]_

1

y~ r cos (i-).

K7 3a2-y 2

(FI5).
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From this equation, the orbit half-period

immediately by setting r=r ° (x=_),

T ! is found

3a2--y 2
(FI6)

Using this result, Eq.(FI5) may be written

X = X sin 2 _t
o 2_' '

and transforming from x-space back to r-space, the radial

position of the electron as a function of time is given by

(FIT)

_ : _t
r 1 -- (l--y) cos2_,r
o

The position of the electron in e-space may be obtained

as a function of time by substituting Eq.(FI8) into Eq.(20)

and integrating (again taking the zero- e reference to cor-

respond to the inner turning po{nt),

t

o

_t
d (Ti-)

[1-( ) cos Tv]

where _'

velocity at the outer turning point and is given by

is again the half-period and _ is the angular
O

1

= 2T(roO2)]_o [ m

(FI8)

(FIg)

(F20)
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and the outer turning point kinetic energy,
by

T(ro) , is given

e2 eV

2 log Ro
Ri

The coefficient of

small compared to

_t
COS _-y

1 since

in the denominator of Eq.(FI9) is

(F21)

Therefore a satisfactory approximation of the integrand in

Eq.(FI9) is obtained by applying the binomial expansion

theorem and retaining only the first two terms. This opera-

tion gives

t

•e = -_--(y_V] [1-2( ) cos _t]
O m

(F22)

(F23)

Performing the integration indicated in this equation gives

the 8-coordlnate of the electron along its trajectory as a

function of time (both measured from the inner turning point),

e__q3_( 2 ]2 2 i 3 _ t

- an- {(_y--_-l]tan_'}
e = , _l-_y_ [i_4(_)219t

Using Eqs.(F2), (FI6), (F20) and (F21), this may be written

] ]2tan-1{(3--y_)2tan 2--_'_t}

(F24)

(F25)
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where the approximation has been made

[l-4[!=!_}l+_)] --1

because of Eq.(F22). Setting t=_' in this equation gives

the azimuthal half-angle of the electron trajectory

i
ct2 2 _ 2

Using this result, Eq.(F25) may be written in the alternate

form

e 2e'tan -l 3-_ ]_tan _t= T { (3-T_-_' 2_,}.

(F26)

(F27)

(F28)

Using Eq.(FI2), y may be eliminated from Eq.(F27) in favor of

_2 which gives

. 2c_2 '_2

e,= _ %[_J (F29)
(3_a2)'

from which it follows that

Lime' =

_2 _ 1

(F30)

a result which was derived from other considerations in

Appendix C.
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Considering Eqs.(F18) and (F25) as a set of parametric
equations in t, r may be expressed as a function of e

by eliminating t. The result of this operation (after using
Eq.(F12) to eliminate y) is

r_rl 3a2_l]tan2 Fl+a 2 2 2
ro--r--(3-a2 {<2_---_T-](3-a2) _}. (F31)

An immediate application of this equation is to compute

the values of a 2 for which the electron trajectories are

closed and stationary so that these a's may be rejected in

prescribing the launch parameters. From Appendix C, the first

non-degenerate stationary trajectory has m=3, m=2. Therefore
2_

at r=ro, e=_-. Substituting these values into Eq.(F31) gives

[l+a212(3-a2)_ - _ (n=3 m=2) ;
_2e 2 _ 3 2 " "

(F32)

from which it follows that

a 2 = 0.95 , (n=3, m=2). (F33)

Similarly, the second closed, stationary trajectory occurs for

a 2 = 0.93 , (n=5, m=3). (F34)

The separation in a-space between successive stationary

trajectories decreases as n increases. This implies that

either the launch parameters must be controlled very precisely

or a 2 must be sufficiently small that n is large and the

charge clusters in the neighborhood of the 2n turning points
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overlap sufficiently to yield an approximately uniform charge

density distribution in e-space.
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PART II MAGNETRON GAUGE

i.i INTRODUCTION

In the initial description of the magnetron gauge using

auxiliary cathodes, Redhead (6) showed that the gauge could

be used to l0 -12 Torr but that it was non-linear below about

5 x l0 -10 Tort. Later work (7)'(8), using different calibration

techniques and extending the measured low pressure limit to

3 x l0 -13 Torr, confirmed Redhead's work. However, in total,

very little work has been carried out at pressures below

i0 -I0 Tort where the aim has been to characterize the per-

formance of the magnetron gauge over the range of the many

variables which exist. For instance, in his original paper,

Redhead _6#"" used an anode voltage of 6000 v and a magnetic

field of 1000 gauss in measuring the variation of the cathode

current with pressure. Similarly, later work (9) has tended

to use similar values for the anode voltage and magnetic

field. However, work at the National Research Corporation _10)"

has shown that below l0 -10 Torr, the sensitivity (S = i+/P)

of the normal magnetron goes through a maximum as the anode
(il)

voltage is varied from i000 to 7000 volts. More recently

Redhead has investigated changes in both anode voltage and

magnetic field over a range of pressures extending down to

1.3 x l0 -ll Tort. This work has shown that the magnetron

dlschargeexlsts in two states which may be characterized

by the nature of the radio frequency oscillations exhibited

by the gauge. In the pressure range 1 x l0 -10 Torr to

l0 -6 Torr and at low magnetic fields (State I), the low

frequency noise was large and stable r-f oscillations were

not observed. At higher magnetic fields (State II), stable

oscillations of very narrow band width were observed in the

frequency range 15 - 100 Mc/s. (When used as a pressure

gauge, the magnetron is operated under the conditions

corresponding to State I.) In addition, Redhead reported
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that oscillations were not observed below l0 -10 Torr and it

appeared that two separate states did not exist at these

pressures. These results suggested that the change in

oscillatory behavior may be closely related to the transition

from linear to nonlinear operation at approximately 2 x l0 -10

Tort. They also suggested that the oscillations might

provide an indication as to whether or not a gauge was

^_o_o+4_ under linear _,,__o._v_- ...._ The question also arose

as to whether the gauge was linear when operated in State II.

In general, it appeared that a wider range of variables

than hitherto investigated should be studied - particularly

the effect of anode voltage, magnetic field strength, and

pressure on gauge sensitivity. The results of this work

are discussed below in section 1.2: Performance Characteris-

tics of Experimental Gauge. Several other aspects of

magnetron performance which were studied included further

experiments on the oscillatory behavior, the effects of

ultra-vlolet radiation and electron injection and a study

of some of the possible causes for anomolous currents

in the magnetron gauge. A photographic study of the dis-

charge within a magnetron gauge was also made. The results

are reported in the following sections.
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1.2 PERFORMANCECHARACTERISTICS OF EXPERIMENTAL GAUGE

Previous work (8)'(10) had shown that accurate, direct

calibration procedures below l0 -10 Torr required great care

and considerable effort. In order to cover a wide range of

such variables as anode voltage, magnetic field strength,

and pressure, it was decided that it would be more efficient

to use a simpler system involving comparison of the experi-

mental magnetron gauge with a standard Redhead gauge

(NRC 552). The reference Redhead gauge was operated at

fixed conditions - anode voltage 4800 v, magnetic field

strength, 1035 gauss.

The experimental apparatus constructed for the magne-

tron studies is shown schematically in Fig. 9. The basic

vacuum system consisted of a mechanical pump backing

two oll diffusion pumps in series, a 2 in. diffusion pump
being used to "back" a 4 in. diffusion pump (NRC HK4-750).

Dow Corning 705 Silicone oil was used in both pumps.

A specially adapted liquid nitrogen trap was mounted
on the 4 in. diffusion pump. The trap was optically

black and contained an anti-migration barrier. An R.C.A.

high vacuum valve was mounted on the trap. The pressure

above the liquid nitrogen trap was measured with a standard

Redhead gauge (NRC 552). The R.C.A. valve was modified

so that both the experimental magnetron gauge and the
reference gauge could be tubulated onto the valve above

the valve seat in such a way that there was high conductance-
approximately 20 llters/sec - between the gauge volumes.

In order to extend the low pressure performance capabili-
ties of the system to below l0 -ll Torr, a liquid helium cryo-

pump was installed below the high vacuum valve. The cryopump

was designed to have a high conductance for gases not con-
densed at 4.2°R. In addition, it produced low pressures
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which were stable for many hours of operation because of

low heat losses and exceedingly small temperature variations

over the cryopumplng surface.

The gauge structure of the experimental magnetron was

mounted on relatively heavy (0.100 in. diameter) stainless

steel support posts, which also formed the electrical feed-

through. Eight high impedance alumina feedthroughs were

mounted In a 4 3/4 in. OD stainless steel (304) flange.

The general arrangement of the magnetron is shown in Fig.10.

A number of special features were included in the design

and construction of this gauge. Some of the more important

were:

i) The entire gauge assembly was mounted on the feed-

through posts on a single flange. The arrangment facilitated

the assembly and accurate alignment of the magnetron elements.

It also permitted relatively rapid changes to be made in the

gauge construction without major disassembly of the gauge-

vacuum system.

ll) A radial slot (width 0.040 in.) was cut in the

cathode end-plate and a mirror mounted close to the anode of

the gauge. These arrangements were required for the photo-

graphic measurements aimed at defining the spatial distri-

bution of the discharge within the magnetron volume. See

Section 1.6.

ill) A tungsten filament (0.007 in. diameter) was mounted

opposite the anode. This filament was installed in order

that the entire gauge assembly could be degassed by electron

bombardment.

iv) A small hole (0.125 in. diameter) was drilled in one

of the cathode end plates at a position one third of the

distance from the cathode to the anode. In addition, a small

tungsten coll filament was mounted opposite the hole outside

9O
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the magnetron volume. The purpose of this arrangement was

to permit the addition of electrons to the discharge. See
Section 1.5.

v) The magnetron was enclosed in a metal gauge volume
to provide adequate shielding. Only single conductor

ceramic feedthroughs were used. Since these were mounted

in the metal flange, a high degree of isolation and

ahleldlng was achieved between each of the electrical feed-

throughs. In addition, metal skirts were placed around

She ceramic insulators on the vacuum side of the flange.

The purpose of these skirts was to prevent the build up

of a conductive coat on the ceramic during high tempera-

ture degasslng of the metal elements of the gauge.

A Granville-Philllps variable leak valve was tubulated

to the chamber of the experimental gauge. High purity gases
could be added to the system through this valve or the

magnetron volume could be pumped out through it.

The entire system above the main diffusion pump, in-

cluding the liquid nitrogen trap, helium cryopump, high

vacuum valve and the three magnetron gauges could be
baked to 450°C. Gold seals were used for all flange

seals. Elastomerlc materials were excluded from the entire

system.

The magnetic field for the experimental magnetron was

supplied by means of two electromagnets arranged as an

Helmholtz pair. This arrangement was chosen because of

the high degree of field homogeneity that it produces. For

example, the magnitude of the magnetic field varied less

than 0.1% over a spherical volume of 2 in. diameter in the

experimental setup used in the present work. The field

ripple, as detected by a Hall effect probe, was also less

than 0.1%. The magnetic field could be varied over the

92



range of 0 - 2200 gauss with the power supplies available.

In general• however• field variations over the range 400 -

2000 gauss were adequate for most of the experimental work.

The procedure used for determining the main performance

characteristics of the experimental magnetron gauge was as

follows. After thorough degassing of the system and gauge•

a known pressure was established in the experimental gauge.

This was usually done by admitting argon Into a section of

the system above the high vacuum valve. The pressure was

measured by the reference Redhead gauge. The cathode current

from this gauge was converted to pressure (Torr N2) by means
of Fig. ll. Since the latter takes into account the non-
linearity of the gauge below 2 x l0 -10 Torr, the reference

pressures quoted in the following discussion correspond to

actual Torr N2. After establishing a definite pressure•
the experimental gauge was operated at 1000 gauss and

10,000 v for a period of at least 45 minutes before startlng

a series of measurements at lower anode voltages. This

p_oced_e was _.... _ to give more reproducible results -

particularly at the lower pressures. It is not unlikely

that the gauge nlay tend to clean itself at the higher
ionization rates.

In the major part of the work, emphasis was not placed

on the measurement of low pressure. It was more to the

purpose to investigate a wide range of variables around

the region where the gauge changes from linear to non-linear.

The main conditions investigated were:

Pressures (Torr N2): 5.2 x l0 -8, 5.2 x l0 -10
2 7 x l0 -ll 1 2 x l0 -ll

Anode Voltages: 1000 - 8000 in 1000 volt steps.

Magnetic Field Strength: 400 - 2000 gauss in 100 gauss steps.

This program thus covered some 500 combinations of pressure,

anode voltage and magnetic field. The data apply to a magnetron
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with a geometry essentially the same as that described by
Redhead (6) and previously tested (8)'(10). It is considered

very unlikely that the cathode hole and slits and method of

support of the gauge elements would make the performance

characteristics of this experimental gauge different from

those previously investigated. Differences - and perhaps

improved performance - were more likely to be associated

with such factors as shielding by the metal envelope,

magnetic field homogeneity and isolation of the high impedance

• ee_v_ghs. The results obtained are summarized in Tables I

through IV. The performance characteristics have been

specified in terms of gauge sensitivity, S, measured as

amps/Torr N2. One of the reasons for presenting the results
in terms of the sensitivity, S, is that, other things being
equal, S should be proportional to the average number of

electrons trapped in the magnetron volume. In the tables,

it will be noticed that in some cases two sensitivity values

are given at particular values of Va and B. The values refer
to the minimum and maximum values recorded when the output of
the gauge was oscillatory and very noisy. These results will

be discussed in more detail in a later section (1.3).

Some of the data have also been plotted in Figs. 12, 13
and 14. Some of the points worthy of note are discussed
below.

At pressures (above 2 x l0 -10 Tort) where the gauge is

linear for normal operating conditions, the gause sensitivity

at any particular anode voltage increases with magnetic field

once the magnetic field is above that required to maintain

stable operation. Further increases in magnetic field result

in a maximum sensitivity being reached after which the

sensitivity decreases. At relatively low anode voltages

(1000 - 2000 volts), the maximum is relatively flat with

the sensitivity changing little with B. The sensitivity
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also increases with anode voltage and the results presented

in Figs. 12 and 13 suggest that there is an upper limit or

envelope for the sensitivity at values of B less than those

for maximum sensitivity at any particular anode voltage.

This upper limit or asymptote is approximately linear with

magnetic field. The slope appears to be somewhat higher

at 5 x l0 -8 than at 5 x l0 -10 Tort. However, this may

be associated with the fact that the gauge was much

noisier at 5 x l0 -8 Tort at low values of B than at 5 x l0 -10

Tort. This contrasted sharply with the situation at higher

magnetic fields after the maximum sensitivity values had

been reached. At 5 x l0 -8 Tort the sensitivity dropped

relatively slowly and there were few conditions where

noise and oscillations were noted. At 5 x l0 -10 Tort, the

sensitivity decreased abruptly after the maximum and there

were many conditions where the sensitivity oscillated as

indicated by the output from a Keithley 410 electrometer.

There were, in addition, a few isolated conditions at high

magnetic fie __s where the gauge returned to relatively

high sensitivity. Some of the aspects of this oscillatory

behavior will be described later under Section 1.3.

The above results follow the same general pattern as

those of Redhead (ll). The high sensitivity region at low

magnetic fields corresponds to Redhead's State I and the

lower sensitivity at high magnetic fields corresponds to

State II. The above results pertain to pressures above

2 x l0 -10 Torr. At lower pressures where the gauge is

non-llnear, the general nature of the curves appears to

change drastically (Fig. 14). The rate of increase of

sensitivity with magnetic field is much lower than at

the high pressures.

At 2000 volts and 3000 volts the sensitivity is con,

stant for a large range of values of the magnetic field

strength. There is also some evidence of a flat maximum in
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sensitivity being achieved at 700 gauss and I000 volts. The

general nature of the curves in Fig. 14 suggests that at the

higher anode voltages, e.g., 6000 - 8000 volts, magnetic

fields in excess of 2000 gauss would produce a range of con-

stant sensitivity. It is not unlikely that even higher

magnetic fields would give decreased sensitivity. The effect

of magnetic field and pressure on the sensitivity at an

anode voltage of 5000 v is shown in Fig. 15. At 5 x i0 -I0

Torr, the sensitivity is a maximum at about II00 gauss. (Note

that at 5 x 10 -8 Tort the maximum at 5000 volts was at about

800 gauss. See Fig. 4.) At both 2.7 x i0 -II Torr and
-Ii

1.2 x i0 Tort no maximum is shown. The variation in

sensitivity is approximately linear with magnetic field

at 2.7 x l0 -ll Torr and 1.2 x l0 -ll Torr. The slope

decreases with pressure.

It should also be noted (Fig. 13) that at a magnetic

field strength of, say, 1500 gauss the gauge sensitivity

is greater at 2.7 x l0 -ll Torr and 1.2 x l0 -ll Torr than

it is at 5 x l0 -10 Torr. Similarly, at 1500 gauss and

5000 volts the sensitivity is greater at 2.7 x l0 -ll Tort

than at 5 x l0 -8 Torr.

If it is assumed that the number of magnetically

trapped electrons (N) is proportional to the sensitivity,

the above results indicate that at the specific conditions

taken above, N is lower at the higher pressures where the

input rate of electrons from the volumetric ionization

process is greater. In general, it would be expected

that the higher input rates would tend to add to rather

than subtract from the number of trapped electrons. In

this situation, one is tempted to seek an explanation in

terms of the r-f oscillations which have only been

detected at the higher pressures (Redhead). _ll_'_ It

might be assumed that these oscillations effectively reduce

the number of trapped electrons. However, as is shown by
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Redhead, (I0) it is likely that the r-f oscillations are asso-

ciated with the rotation of the electron cloud. Hence, at

the same values of Va and B it is more difficult to see why

increasing the electron production rate(and loss rate)

by increasing the pressure should cause oscillations to

develop in the electron cloud. The simpler explanation that

the oscillations are dependent only on V A and B and essen-

tially independent of pressure - above 2 x l0 -10 Torr- seems

more acceptable. Further work should be carried out to

measure the frequency and relative intensity of the oscilla-

tion under conditions of equal gauge sensitivity. It may

well be that strong r-f oscillations do in fact exist at,

say, 2.7 x l0 -ll Tort, 1500 gauss and 5000 volts. It is,

nevertheless, possible that the ion c,r_ent is far from

constant at any pressure and that there are growth and

decay processes continually taking place in the electronic

space charge. At high pressures (above 2 x l0 -10 Torr),

these processes which are probably associated with surface

reactions at the cathode and anode possibly initiate

or produce distortions in the electron cloud which result

in stable r-f oscillations. At low pressures, the surface

controlled initiation processes may be too small to produce

oscillatory behavior.

From the data presented in Tables I through IV it is

a simple matter to determine those sets of conditions at

which the gauge has the same sensitivity at various pres-

sure. That is, the conditions under which the gauge is

linear. The results are presented in Fig. 16.

The data associated with line A in Fig. 16 where ob-

tained by plotting those conditions at which the sensitivity

at 5.2 x l0 -8 equal that at 5 x l0 -10 Tort. Line B was for

conditions where the sensitivity at 5.2 x l0 -8 Torr equaled

that at 2.7 x l0 -ll Torr. Along both line A and line B,
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the sensitivities increased with anode voltage (and magnetic

field). Line A is approximately parallel to line B, and

at any anode voltage, line B is located at a magnetic field

strength which is approximately 350 gauss higher. The

normal operating conditions for the 552 magnetron gauge are

i000 gauss and 5000 volts. This lies on line A. The data

of line B then suggest that at, say, 3000 volts and ii00

gauge, the magnetron gauge would be linear down to at

least 2.7 x i0 -II Torr. Thi_ requires that the cathode

current vary monotonically over the pressure range

5.2 x l0 -8 Torr - 2.7 x l0 -ll Torr. A number of pressure

variation tests were carried out at 3000 volts and ll00

gauss and also at 4800 volts and 1250 gauss. The results

for 3000 volts and ll00 gauss are presented in Fig. 17.

The best line through the data gives a slope of 0.90 down

to approximately 1 x l0 -10 Tort. At lower pressures there

is evidence that the slope increases to approximately 1.8.

_, The data for the lowest two pressures were taken from

separate experiments as recorded in Tables III and IV.

The slope obtained in this work in unusual in that it is

less than one. It is possible that the Reference gauge

changed from a slope of 1.0 to something less, but this is

unlikely. However, the decrease in sensitivity from 2.15

amps/Torr at 2.7 x l0 -ll Torr to 1.0 at 1.2 x l0 -ll Tort

(see Tables III and IV) indicates that operation in State II

is not likely to give high sensitivity performance at very

low pressures. The data taken at 4800 volts and 1250 gauss

also gave a slope of 0.90. Interpolating from the data in

Tables III and IV indicated that within experimental error

the slope remained constant down to the lowest pressure

measured, 1.2 x l0 -ll Tort. However, a comparison of the

data in Tables III and IV at higher anode voltages and

magnetic fields shows that there is a decrease in sensitivity

at the lower pressures. This is also clearly shown in Fig. 15.
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FIG. 17

NORMAL MAGNETRON CATHODE CURRENT

VS. PRESSURE (3000v, ll00 GAUSS)
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The data at 4800 volts and 1250 gauss showed considerably

more scatter than the data of Fig. 17. Some of the scatter

obtained in the early part of the experiment was found to be

affected by the R, L, C of the electrometer circuit. For

instance, at some specific pressures, particularly in the

range 6 x l0 -10 Tort to 2 x l0 -9 Torr, a 410 Keithley

electrometer would oscillate between specific values. A

study of some of this oscillating behavior indicated that

several types of oscillatory behavior may be observed when

measuring pressures in State II. These are discussed more

fully in the section below.
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1.3 OSCILLATORY BEHAVIOR

Redhead (ll) has given an extensive description of the

r-f oscillations which exist in the magnetron gauge when

operated in State II. Redhead's results on the effects of

magnetic field strength and anode voltage in the frequency

have been confirmed in the present program. The specific

frequencies have been observed in a number of ways including

field intensity meters, tuned r-f receivers and by means

of __ .._h_g_....e_,_'-_-..._jo_^_^ope__ . _±_ coupling may be

carried out in a number of ways, including direct coupling

to the auxiliary cathode on main cathode, capacitive

coupling to the anode or by means of a small antenna

supported axially near the gause anode.

One of the aims of the present program was to measure

the variation in intensity of the r-f signal as a function

of pressure. Redhead has reported that the r-f oscillations

were not detected below 2 x i0 -I0 Torr. A number • of attempts

were made to measure the effect of pressure on the signal

intensity but with little success. Using a tuned r-f

receiver and a signal intensity meter some data (Fig. 18)

were obtained which tended to suggest that the maximum signal

intensity at any pressure decreased as the pressure decreased.

At no time was an r-f signal detected below 2 x l0 -10 Torr.

However, the data showed considerable scatter and cannot be

regarded as more than minimal evidence. In this part of the

work, experimental procedures were greatly hindered by an

exceedingly strong 80 Mc/s signal from an external source

beyond our control. The metal system Helmholtz coils,

electrical and cooling water systems all acted as antennae

for the signal. Attempts to filter the signal and its

harmonics were not successful and it was beyond the limita-

tions of the program to install adequate shielding.
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When operating in State II a different type of oscillatory

behavior was noted. In this case, electrometer oscillations

would develop above and below previous mean steady state values.

The frequency was on the order of 0.1 - 1.0 cycles/sec. The

period of the oscillation increased with decreasing pressures.

These types of oscillations were often evident with an electro-

meter such as a Kelthley 410. If the input capacitance of

the electrometer was reduced, as with a Kelthley 600 or 610

operatlnE in the fast mode, oscillations did not occur. The

R-C constants of the entire electrometer circuit should be

such as to eliminate such low frequency oscillation. The use

of a high quality vacuum capacitor to shunt high frequency

components of the cathode current to ground is recommended.
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1.4 EFFECTS OF ULTRA-VIOLET RADIATION

A convenient method of decreasing the starting time of

a magnetron gauge at low pressures is by irradiating the

gauge with ultra-violet. The mechanism by which photo-

radiation assists in initiating the build up of the discharge

has not been determined. One, or a combination, of the follow-

ing processes may play a part.

i) Photo-emisslon of electrons from cathode.

li) Photo-desorption of neutral gas species previously

adsorbed on gauge elements, walls, etc.

Ill) Photo-ionlzation of a neutral, free or absorbed gas

species.

Experimentally, it is not easy to differentiate between

these processes and other effects - especially thermal de-

sorption effects associated with the radiation. However,

if the non-linearity of the magnetron gauge is caused by

a deficiency in the number of electrons in the discharge,

an increase in the number of electrons emitted by the

cathode should tend to make the gauge more linear. Bryant _7j""

has shown that a ceslated magnetron gauge has a non-llnear

characteristic, which has a lower slope than an uncesiated

gauge. Presumably, lowering the work function of the

cathode results in at least a partial increase in the number

of desired electrons in the discharge• As a practical

procedure for low pressure work the use of cesium has

obvious drawbacks• Another possibility of testing the

electron deficiency thesis appeared to lie in attempting

to stimulate photo-emlssion by the use of ultra-vlolet.

The radiation from a low-pressure mercury lamp, was shone

through the sapphire window of the experimental gauge.
o

The output of the mercury lamp peaked at 2537 A and the

sapphire window had a limit of transmission of about
o

1400 A (9 ev). Typical results were as follows: At a
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pressure of 3.7 x i0 -II Torr the output current of the gauge

rapidly rose from 6.8 x l0 -ll amps to 9.8 x l0 -ll amps. Within

5 minutes it decreased from this value and leveled off at

7.5 x l0 -ll amps. It remained constant at this value for as

lone as the u.v. lamp was on (2 hrs.). However, this 10%

increase in the output of the magnetron gauge was too small

to be attributed to an increase in gauge sensitivity. Even

though thls was a steady increase in output current, it is

more likely that it was caused by thermal desorption of gas

which was temperature and not time dependent. In any case,

even if it were all attributed to an increased gauge

sensitivity, the increase is only 12% of that required to

give a linear gauge. More work using a system in which a

concentrated beam of ultra-vlolet radiation is focussed on

specific areas within the gauge is recommended. In this

work, temperature variations should be investigated to alter

the effects of thermal and photodesorption of physically

adsorbed gas. It is, however, llkely that the magnetron

discharge is already an efficient source of ultra-violet

and X-ray radiation so that external sources may only have

secondary effects.
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1.5 ELECTRON INJECTION

As shown in Fig.10, the experimental magnetron was de-

signed so that an external filament could be used to inject

electrons through a small hole in one of the cathode end

plates and along the lines of magnetic flux. The hole in

the cathode end plate was 1/8 in. diameter and its center

was located 1/3 of the distance from the surface of the

central cathode rod to the anode diameter. The tungsten fila-

ment was coiled to an O.D. of about 0.08 in. In order to

prevent electrons moving directly to the cathode, it was

first necessary to determine the bias required on the

filament supply to prevent this. This was done with the

magnetron gauge not operating (Va - 0) but with the range

of B fields planned for experimental use. With the filament

at 1050°C, it was found that a bias of 4 volts was sufficient

to reduce the electron current to the cathode to less than

5 x l0 -14 amps. The gauge was then degassed by electron

bombardment and the temperature of the filament raised to

1350°C for about 1 hour. The output current of the ex-

perimental gauge was then measured with the filament at

1050°C and biased 4 to 6 volts above ground. At a pressure

of 3 x l0 -ll, these conditions caused an increase in the

cathode current of about 10%, but once again it is doubtful

whether this current could be attributed to an increase in

gauge sensitivity. Even though very careful degassing

procedures had been used, the magnitudes of the pressure

changes in the experimental and reference gauges were

commensurate with increased thermal desorption rates in the

gauge.

Since the electric fields within an operating magnetron

gauge are not known, it is difficult to inject electrons

into the discharge. If the electrons do not have sufficient

energy, they will not penetrate to the discharge. If they
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have too much energy, they will pass through the discharge to

the opposite cathode plate. In a later model of an experi-

mental gauge, a small accelerating grid was placed between

the filament and the cathode plate. It is anticipated that

this may allow more control and perhaps permit adequate

testing of electron injection techniques. It may be advan-

tageous to place holes in both cathode plates so that

electrons with excess energy would not be collected by the

back cathode plate but would move on to a dummy cathode

behind the hole in the true cathode.
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1.6 PHOTOGRAPHIC STUDIES

If a normal magnetron gauge is allowed to operate at

-4 l0 -5 Torr - arelatively high pressure - say l0 or

characteristic purple glow is clearly visible within the

gauge. In a darkened room, this glow is still discernible

at much lower pressures, particularly if l0 or 15 minutes

is allowed for eye accommodation. It was the aim of this

part of the program, to attempt to determine the distribution

of the discharge within the gauge by photographic techniques.

It was hoped that not only would it be possible to map the

discharge within the linear region of the gauge but that

the techniques could be made sufficiently sensitive so that

the distribution below 2 x l0 -10 Torr could also be deter-

mined.

The experimental magnetron gauge, Figure 10,was assembled

so that one of the cathode end plates could be viewed

directly through the sapphire window in the flange of the

magnetron chamber. A radial slot (1 mm wide) was cut in

the cathode end plate from the outer edge to within 1.4 mm

of the central cathode rod. A mirror was also mounted at

approximately 45 degrees to the magnetron axis outside the

anode screen. However, this mirror was of limited usefulness

in measuring the axial distribution of the glow because of

parallax problems associated with the relatively small

sapphire window. It was experimentally easier to photograph

the axial distribution directly through the glass of the

reference gauge, a NRC 552 gauge.

Most of the photographs were taken with a Linhof Technika

Camera, using Xenar 1:4.5/150 lens. For the major fraction of

the work, Polaroid Type 57 film (ASA 3000 speed) was most

suitable. At the lower light levels, Polaroid Type 410

(ASA speed 10,000) was also used. In general, the camera was

operated with a lens opening of f 4.5 at approximately 7 in.
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from the magnetron assembly. The resultant image had a
magnification of 1.47. When taking photographs of the

experimental magnetron, the shutter mechanism failed to

operate in the high magnetic fields associated with the

Helmholtz pair. However, time exposures were generally

necessary so that it was entirely satisfactory to use

plate slides to give the desired exposure.

The main part of the experimental work was devoted to

the determination of the effects of pressure, magnetic

field strength, anode voltage and gas composition in the

shape, location and intensity of the discharge. The
major results are summarized below.

A representative photograph of the radial variation

of the intensity of the discharge is reproduced in Fig. 19.
The figure is a view of the discharge at 4.2 x l0 -6 Torr

through the radial slot in the cathode end plate. The
slot extended from the anode to within about 0.07 in of the

surface of the central cathode rod. The photograph shows

that the glow extends from the surface of the cathode rod

to about half way out to the anode. The intensity appears

to be relatively constant to approximately 1/2 (r a - r c)
and it then drops rapidly to a negligible value. Photo-

graphs of the discharge as seen through the perforated anode
were used to obtain an estimate of the axial distribution

of the discharge. By taking a series of photographs at

slightly different angles, various sections through the

discharge could be photographed. This series of photo-

graphs, when taken in conjunction with the radial photo-

graphs, has suggested that the distributions within the

gauge are as shown in Fig. 20.

The discharge extends out from the cathode rod to about

half the anode distance. The axial length of the discharge is

considerably less than the distance between the cathode end
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FIG. 19

VIEW OF DISCHARGE THROUGH RADIAL SLOT

IN CATHODE OF MAGNETRON GAUGE.

GAUGE CONDITIONS: ANODE: 4800V

MAGNETIC FIELD i000 GAUSS

PRESSURE 4.2 x 10 -6 TORR
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DISTRIBUTION OF PHOTO-RADIATION FROM

MAGNETRONGAUGE
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plates. That is, the discharge does not appear to extend to

the cathode end plates. The general shape of the discharge

resembles that of a doughnut around the cathode rod. There

was some evidence that the maximum light intensity was not

at the cathode rod but somewhat removed from it, as shown

in Figure 20. However, this increase in intensity was

relatively small. The axial length of the discharge appears

greatest at the cathode rod so that the radial sections

appeared to give an intensity which was either constant

out to 1/2 (r a - r c) or at a maximum at the surface of
the cathode rod.

The above results were obtained with the gauges operating

in Argon at 4.5 x l0 -8 Tort (N2) at normal conditions - anode,
4800 volts; magnetic field, 1000 gauss. The effects of

variations in pressure, magnetic field, anode voltage and

gas composition are summarized below.

Photographs obtained of 4.5 x l0 -7 Torr, 4.5 x l0 -8 Torr

and 4.5 x l0 -9 Torr indicated that the intensity of the dis-

charge was directly proportional to the cathode current.

Quantitative densitometer measurements of the intensity of

the discharge were not made but by varying exposure times

at different pressures and using visual comparison of the

photographic density, a fair estimate of the degree of

proportionality could be obtained. Future work would be
greatly facilitated by densitometer measurements. In order
to obtain a reasonable picture of 4.5 x l0 -8 Torr, an

exposure time of l0 minutes was required with the 3000 speed

film. Unfortunately, no photographs of the discharge
were obtained in the non-linear region below 2 x l0 -10 Torr,

even though exposure times in excess of 12 hours with

10,000 speed were used. Unfortunately, the films used lose

reciprocity for exposure times greater than about 8 hours

so that larger exposure times are not beneficial.
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The effect of varying the anode voltage was investigated

at two levels of magnetic field - 1000 gauss and 500 gauss.

The pressure was 4.5 x l0 -8 Torr and the gas, argon. In

order to compare the results, an arbitrary scale has been

used to estimate and specify the intensity. A range of 1

through l0 was used for l0 minute exposures of 3000 speed

film. Intensity 1 was barely discernible - and l0 was

complete exposure of the film. Intensities outside this

range were obtained with exposure times other than l0

minutes.

In some instances, considerable variations in film

sensitivity were noted from pack to pack. In general,

fresh packs were used for each series of experiments and

there was then good consistency within a series. Where

comparison between series was required, the estimated

sensitivities were normalized so that intensities at

5000 volts and 1000 gauss were consistent. The results

have been summarized in Table V. The distance which

the discharge extends out from the cathode is specified

in terms of R - the fraction of the cathode to anode

distance from which light is emitted.

TABLE V

EFFECT OF ANODE VOLTAGE (V A) VARIATIONS
ON INTENSITY OF DISCHARGE IN ARGON

Pressure VA B i+Exp.

(Torr N_) (Volts) (Gauss) (Amps)
4.5x10 -o 7.4x10-78000 1000

7000 1000
60O0 1000

50OO 1000
4000 1000

30oo i0o0

4800 5O0

45OO 50O

4OO0 50O

3OOO 5O0

20OO 500

lOO0 50O

6.5xlO-7

5. OxlO-7

3.6xlO-7

3.1xlO-7

1 5xi0-7

1 9xlO -7

1 9xlO-7

1 5xi0-7
1 2xlO-Z
10xlO- 
2 5xlO -_

Relative

R Intensity

•53 15

•55 12

.51 9

.52 7.5

.52 3

.36 1.2

.48 7.5

.54 12.0

•53 9.O

.51 6.O
•55 6.O

nd. .6
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In Figure 21 an attempt has been made to estimate the

variation of the light intensity as a function of the radial

position. There appears to be a rapid decrease in intensity

at about half the radial distance to the anode. Increased

anode voltage resulted in higher intensities but this

increase was greatest at the cathode. At 5000 and 6000

volts, the intensity appeared to be relatively constant

for a considerable fraction of the distance out from the

cathode. The results obtained on varying the magnetic

field from 600 to 2400 gauss are summarized in Table VI.

Pressure

(Torr N2 )

TABLE VI

EFFECT OF MAGNETIC FIELD VARIATIONS (B)
ON INTENSITY OF DISCHARGE ON ARGON

VA B i+ Exp. R Relative
(Volts) (Gauss) (Amps) Max. Intensity

4.5xl0-STorr 4800 600 2.0xl0 -7 .52 5

4800 800 2.9xi0-7 .58 7.5
4800 i000 2.2xi0-7 .56 7.0

4800 1200 2.5x10-7 .59 8.0

4800 1400 1.4xlO-7 .51 6.3

4800 1600 1.4xi0-7 .58 6.5
4800 1800 1.2xlO -7 .58 6.1

4800 2000 1.15xlO -7 .56 6.0

4800 2400 1.15xlO-7 .56 6.0

In Figure 22 an attempt has again been made to estimate

the variation in the radial light intensity as a function of

the magnetic field intensity. It is noteworthy that the

gauge has the highest sensitivity at 1200 gauss - a condition

where the intensity was the highest and constant for a

considerable fraction of the radial distance. At both higher

and lower magnetic fields the intensity was lower, and

appeared to decrease continually from the maximum value at

the cathode. In general, the areas under the curve

correlated with the gauge sensitivity - except at

extreme values. For instance, the sensitivity of the gauge at
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FIG. 21

EFFECT OF ANODE VOLTAGE ON RADIAL

DISTRIBUTION OF LIGHT

ARGON 4.5 x 10-8Torr

B = 1000 GAUSS

H

H

H

H

OQ
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I I I I
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0

0
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I
0.1
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0.2 0.3 0.4 0.5
R

R = FRACTION OF CATHODE TO ANODE DISTANCE
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600 gauss was 74% higher than at 2400 gauss. However, the

data suggest that increased sensitivity of the gause is

associated with higher intensities of the discharge at

larger distances from the cathode.

In all of the work reported above, argon was used.

Photographs were also taken for helium and hydrogen.

These gases were chosen because they have spectra which

are very significantly different from each other and argon.

When the gauges were operated at the same cathode current

levels, there was no significant difference in the shape

of the discharge. However, the intensity of argon was

greater than that of helium which in turn was greater than

hydrogen. The relative intensities at 4800 volts, i000

gauss in 4.5 x 10 -8 Torr N 2 were estimated as follows:

argon 7, helium 3, and hydrogen 2.

The main results of the photographic studies may be

summarized as follows:

i) In the linear region of the gauge, the glow is

located around the cathode rod. It extends about half way

to the anode but not to the cathode end plates. It is

roughly doughnut shaped.

il) The intensity is approximately constant within the

major part of glow region. The intensity appeared to be

more nearly constant at those VA - B conditions which gave

highest gauge sensitivity, e.g., 4800 volts, i000 gauss.

iii) The intensity is a strong function of pressure. It

appeared directly proportional to the cathode current.

iv) The location and intensity of the discharge appeared

to be essentially independent of anode voltage and magnetic

field. Any change in intensity observed on varying either

the anode voltage or magnetic field could be attributed to

the change in the cathode current.
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v) It was not possible to obtain photographs of the dis-

charge below the linear region of the gauge.

The fact that the intensity of the emitted light is

directly proportional to the cathode current suggests that

the glow is in fact directly associated with the ionization

process. While a number of possible processes may be

suggested to account for the generation of light, the

simplest overall explanation is probably as follows. Within

the glow regions, electrons have the required energies to
cause ionization. Some of the excess energy of the electrons

then appears as photons after the impact

e + A ÷ A+ + e + e + y.

The fact that the intensity appears relatively constant

within the discharge at the optimum operating parameters

of the gauge suggests that the volumetric ionization rate

is constant and therefore the electron density is approxi-

mately constant in its glow region. It also suggests

that the magnitudes of the radial electric fields within

the glow region are relatively small, and most likely

constant. This is consistent with the fact that the volume

of the discharge was essentially independent of the anode

voltage. This would result in constant values of the
2Em

cycloidal diameter, d = _ for the electrons in the glow

region. It is interesting to note that the glow appears

to extend out to slightly beyond the radius value

(0.45(r a - rc))at which the radial electric field is a

minimum for the space charge free case. (The space charge

free potential distribution has been measured by Redhead (12)

using electric analogue techniques.)

The above interpretations are largely dependent on the

assumption that the region of ionization is essentially con-

fined to the region emitting the light as evidenced by the
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photographic techniques. However, the apparent limitation of

the useful discharge to within about half the cathode-anode

distances may have other explanations. For instance, it was

not unlikely that significant radiation was emitted beyond

half the cathode-anode distance, but that it was absorbed in

either the camera lens or the film. Tests with a pinhole

camera did not resolve the problem because the fllm gelatin
O O

starts _ _hsorb at 3200A and reaches a maximum at 3000A.

What is required is a hlgh speed film with special sensitivity

down to at least 1800_. It Is not unlikely that such a

film will shortly be available commercially.

In one overexposed photograph of the radial distribution

taken at 5 x l0 -7 Torr, a dark space was observed between

0.73 and 0.82 of the cathode-anode distance. However, beyond

0.82, a faint glow was evident. The intensity of the light

In the anode region was at least an order of magnitude

lower than measured closer to the cathode. However, it

does raise the question as to whether the dark space was

attributable to gelatin absorption and that anode glow was

perhaps associated with light with a wavelength of less
o

than 3000A where the gelatin has a higher transmisslvity.

If this is the case, it would appear that there are con-

sistent radial variations of the spectral distribution.

However, the use of filters with cut-offs above 3200A did

not indicate that the above was in fact the case_ Because

of the nature of the ionization process, it is unlikely

that the emitted light would be a single function of the

radial position. Further work with a film of such

spectral sensitivity would be warranted to resolve this

question.
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1.7 ANOMOLOUS CURRENT STUDIES

Pressure measurements in the XHV range are made difficult

by the problems associated with reliable low current measure-

ments. The highest sensitivity pressure sensor at present

available in this region is the cold cathode magnetron gauge.

At pressures below l0 -13 torr, a readout current of less than

l0 -14 amp must be measured.

A number of possible sources of erroneous current can

effect the reliability of low pressure measurements. These

are related to four fundamental electrical oroperties of glass

and ceramic insulators used as vacuum feedthroughs_ 3_ They are:

Volume Electrical Resistivity - The volume resistivity

of a dielectric has two components_ 4 The first is the usual

conduction term similar to that for metallic conductors which

obey Ohm's law. The second term is associated with a transient

current which may be many times greater than the conduction term.

The net result is that dielectrics exhibit a conduction current

which not only depends on the applied voltage and temperature,

but also on the elapsed time after the initial application of

the voltage. This time dependence is also effected by the

electrical and thermal history of the dielectric.

Surface Electrical Resistivity - The adsorption of a film

of extraneous impurities on a dielectric surface will generally

result in a decrease of its electrical resistivity. The

adsorption effect can be significantly reduced by chemical

cleaning and bakeout prior to pressure measurement. In addition,

when charged particles come into contact with a dielectric

surface a similar effect can take place.15'16 Results of eXper_

mentally induced surface charging of a borosilicate glass by

Muray show that millisecond time constants for resistance changes

were obtained in a 10-8torr background vacuum. These measure-

ments were carried out at stress levels in the dielectric of up
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to 600 volts. The effect of surface charging in the l0 -14 amp

range and at XHV pressure has not yet been investigated.

Dielectric Constant - The dielectric constant is effected

by dielectric absorption in a way similar to the effects des-

cribed for volume electrical resistance. The dielectric ab-

sorption current, as will be shown, is caused by the finite

time required for dielectric dipole moments to accommodate their

orlentatlon to the applied fleld. 17

Dielectric Strength - In normal operation of the Redhead

Gauge, the pressure dependent ion current is measured between

the main cathode and ground. The auxiliary cathode is held

at ground potential. The potential difference between measuring

electrodes and ground is approximately 1 mV in the lowest pres-

sure range when conventional electrometers are used. Hence,

induced current in a dielectric due to high voltage breakdown

is not of interest in XHV pressure measurement due to the low value

of applied voltage.

This section of the report deals with influence of the

dielectric absorption current in the insulation region separating

the main cathode and auxiliary cathode electrode on electro-

meter currents in the l0 -14 amp region. Surface resistivity

effects were not investigated although a complete evaluation

of this effect is suggested.

Dielectric polarization phenomena result when charges

are displaced interior to a dielectric. Two types of dipoles

may result:

i Permanent dipoles interior to the dielectric material,

which are randomly oriented without the field, but

which may be selectively oriented when the field is

applied.

li Induced dipoles created by the application of the

external field.

131



For the purposes of this report, gases and liquids will not

be considered. In solids, if molecules with permanent dipole

moments are allowed to rotate, however small, they can con-

tribute to the total polarization by increasing the number and

degree of alignment with the increased external field.

Induced dipole moments occur only in the presence of the

applied field. The value of the dipole moment induced in the

dielectric depends, among other things, on the magnitude of

the applied field. The induced dipole may be caused by three

types of interaction of charge particles with the applied field.

The first of these is the distortion of ionic bonding by the

applied field. This is often referred to as atomic polari-

zability, and is caused by the relative motion of ions in

the solid material. The second source is caused by the

deformation of the electron cloud at individual atom sites.

In this type, the center of charge of the electron cloud is

displaced from the nucleus. This type of polarization is

often referred to as the electronic polarizability of the

solid. The third type of induced dipole moment is cause-

by the movement of free electronic and/or ionic charges in

the applied field. If the movement of the free charge is

restricted at crystalline boundaries, a dipole moment will

result, but if the charges move freely to the electrode

then a component of the dc conduction results.

The total effect of both permanent dipoles and induced

dipoles in the dielectric is to create an average dipole

moment associated with the dielectric which depends on the

applied field. This dipole moment is given by:

m

u=aE

where _ = the average dipole moment per molecule

= the total polarizability

E = the local electric field.
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where:

The total polarizability is given by:

a = md + aa + de + of

md = the polarizability for permanent dipoles

aa = the polarizability for induced ionic dipoles

ae = the polarizability for induced electronic dipoles

af = the polarizability for induced free dipoles.

The +^.oi _,.,.1o...,_,.,_,,-4,.,_, ..,4....

F=NaE

where:

N = the total number of dipoles in the solid dielectric.

From macroscopic theory, it can be shown that

K* - 1 4_

K* + 2 3

where

K* = the complex dielectric constant

E = the externally applied field.

This equation defines the relationship between the

polarizability and the complex dielectric constant K*.

When a constant electric field is applied to a set of

condenser plates which have a dielectric placed between them,

the resulting electronic dipoles induced in the dielectric

material are oriented almost immediately. This polarization

is often referred to as P® (the initial polarization or

the polarization at very high frequencies).

The polarization will increase gradually as the orienta-

tion of the dipoles or the displacement of the ions takes
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place. This increase will continue until equilibrium is established

approaches the static polarization condition, 18'19and the dielectric

Po' The equation describing the change in polarization in the

dielectric with time is given by:

Pa = [Po - P®][I - exp.( t-to)]
T

where T is the well known relaxation time for this process (see

Figure 23). The polarization process is analogous to a

diffusion process where the relaxation time T is given by:

T = T
O

eq/KT

where q is the activation energy and To is determined by

calculating the vibrational frequency of particles in a potential

well and is of the order of l0 -13 sec.

To determine if volume polarization effects substantially

influence the current readings in Redhead Gauges at low current

levels(<10 -14 amps) the experiment shown in Figure 24 was per-

formed. In this experiment low voltage pulses were applied

between the auxiliary cathode and the main cathode of a model

552 Redhead Gauge. Typical charging and discharging procedure

was as follows: l) open $2, 2) close S1, 3) short input of

the electrometer, 4) allow a charging period of 1 - 40 minutes,

5) open the input to the electrometer, 6) short $2, 7) open

S1, 8) observe the decay of current recorded by the electro-

meter.

This procedure assured that the full battery voltage would

not appear across the input terminal of the electrometer. The

potential divider network of the supply was designed to allow

its output terminal to be grounded without significantly reducing

the battery emf. The voltage pulses applied were between 0.1

and 0.5 volts in amplitude for periods of time not less than

1 minute. The gauge was not operative for long periods of

time (e.g. one week) prior to application of the voltage pulse.
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This assured that no surface charge was present on the interior

dielectric surface of the gauge surrounding the electrode

feedthrough. The gauge was inoperative during the measurement,

i.e., no magnetic field or anode voltage was applied. This

test was used to determine if the normal voltage stress level

in the dielectric was sufficient to create long term anomolous

charging currents which could be seen by the external instru-

mentation.

It is important to note that this stress level far exceeds

(,100 times) those levels found in normal operation of the gauge.

A characteristic response curve is shown in Fig. 25. This

curve shows that the current to the electrometer was in the

noise level in less than one minute after the removal of applied

voltage stress. This strongly suggests that anomolous charging

current in the dielectric separating the auxiliary cathode from the

main cathode cannot b_ considered the major difficulty in making

XHV pressure measurement.

Figure 26 shows the effect of high voltage disturbances at

the anode on the electrometer current measurements at the metering

terminal. This graph shows that large voltage changes resulting

from high voltage turn off and local disturbances in the vicinity

of the anode, i.e., removal of the anode lead, give rise to

measurement current perturbations which persist with time

constants of approximately 40 minutes.

Instrument time constants associated with the Kelthley

electrometer and Moseley recorder were evaluated during the

measurement cycle. Periodically the electrodes of the auxiliary

cathode and main cathode were shorted at the input to the

electrometer thus assuring that the free charge on the

surface of the dielectric under investigation would be neutralized.

When the monitoring instruments were reconnected, the decay

curve was retraced thus indicating that the decay was due to

an internal relaxation phenomena.

137



dl.

!
,.-I

I
o
,--I

X

LC_

/
!

/
/

,-I
I
o
,.-I

/
/

I

I

I

!
In

,.-I
I
o
• I

1,4

40

:::I
r.D

iu

.,-I
O

.io
I::: .'--

_v
c3

,-.-I
o.i

co
,-I

,-I

A

M
'1:1

0
U

kO

0

I
0

I.-I

138



L_

I

X

l
/--

-!

J
l
r

l.

i

/'
l-

J'J-

f7
I
o

I
Q

u'_

r-I
I
0

.,-I
O

Z

ko
,-I

I
O
,--I

f"l

o

o_

I"-4

r-IN

E-I

O
,-4

O

f-I

_._

0

_,.-i
_ 0.'_

¢_ boo
t:_ ,,,-I ¢_

_I I 0
¢) o

'cl o
0(I)'1:1

rj_

_ .,I-) 0

.-I I

_I ,'cl oJ
,_ 0

rJ _ E--t

@J

H

139



The results of this preliminary investigation into the

influence of polarization currents on vacuum measurement in the

XHV region indicate that:

Low voltage stress of the auxiliary cathode to main

cathode dielectric does not result in long term

polarization current in the 10 -14 to 10 -15 amp

level measurement region.

ii High voltage stress transients at the anode have

pronounced long term effects on the current measure-

ments.

The results of this investigation do not preclude the

effects of surface polarization currents induced on the interior

dielectric surface when the gauge is in operation as the

existence of dielectric adsorption at current levels below

l0 -15 amp. A complete analysis of this problem should be

carried out utilizing:

A modulated anode supply. The use of such a supply

will allow the potential of the electron space

charge to be varied and hence any electron charge

arriving at the dielectric surface will have an

ac component.

ii The use of temperature control of the gauge envelope.

iii The removal of the magnetron field while the gauge

is in operation. This should cause the scattering

of the electron space charge over the gauge envelope

thus creating the ultimate charging condition on the

interior dielectric surface.
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