@ https://ntrs.nasa.gov/search.jsp?R=19670031069 2020-03-16T16:44:57+00:00Z

-
e []

NASA CONTRACTOR [ NASA CR-904

REPORT

v
(=]
o~

.
oz
J
L~
(Vo]
<t
-

NG T - 2 3
= J 0y
= (ACCESSION NUIMBER) —_— ————
rmes (THRU)
«/ - 4

e /

/{ (PAGESS . cobEgy 4
g, J &/

T tINASA cR oo DN I 7 Z

EXTENSION OF GAGE CALIBRATION |
STUDY IN EXTREME HIGH VACUUM

(Orbitron and Magnetron Studies)

by F. Feakes, E. C. Muly, and F. ]. Brock

Prepared by
NATIONAL RESEARCH CORPORATION
Cambridge, Mass.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION < WASHINGTON, D. C. « OCTOBER 1967



NASA CR-904

EXTENSION OF GAGE CALIBRATION STUDY

IN EXTREME HIGH VACUUM
(Orbitron and Magnetron Studies)

By F. Feakes, E. C. Muly, and F. J. Brock

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NASw-1137 by
NATIONAL RESEARCH CORPORATION
Cambridge, Mass.
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — CFSTI price $3.00



TABLE OF CONTENTS

Page No.
GENERAL INTRODUCTION 1
PART I. ORBITRON GAGE. 3
1.1 INTRODUCTION . e e e . 3
1.2 ORBITRON PRINCIPLE AND APPLICATION . . 5
1.3 PROCEDURE. . .« « v « v « & ¢« « o« & o« « « o 10
1.4 POTENTIAL DISTRIBUTION . . . . . . . . . . 12
1.5 TRAJECTORIES . + + « + &« & « « « o« « « o . 18
1.6 SPACE CHARGE DISTRIBUTION. . . . « . . . . 22
1.7 SELF-CONSISTENT SOLUTION (1ST APPROXI-
MATION). . . . C e .. . . . 30
ION PRODUCTION RATE. . . « « &« « &+ « « « « 57
CONCLUSIONS. v v + « v & o+ o o o o « « 15
2.0 DESIGN AND CONSTRUCTION OF AN EXPERIMENTAL
ORBITRON GAGE. . . « « « & o « « + & 82
APPENDIX A - STABILITY ANALYSIS A-1
APPENDIX B - EFFECTIVE ECCENTRICITY A-6
APPENDIX C - 8 - DEPENDENT CHARGE DISTRIBUTION A-10
APPENDIX D - INTERPRETATION OF B8 A-15
APPENDIX E - CHARGE OPTIMIZATION A-1T7
APPENDIX F - TRAJECTORY ANALYSIS FOR LOW CHARGE
DENSITY (APPROXIMATE) A-24
PART II. MAGNETRON GAGE. . . + « « « o « « « +« . . 86
INTRODUCTION. . « + « « o « « + « « « . . 86
PERFORMANCE CHARACTERISTICS OF EXPERIMENTAL
GAGE. . . . . .o e e e . . 88
1.3 OSCILLATORY BEHAVIOR. . . . . A B B
1.4 EFFECTS OF ULTRA-VIOLET RADIATION . . . . 114
1.5 ELECTRON INJECTION. . . + « &« « « « « . . 116
1.6 PHOTOGRAPHIC STUDIES. . . . + « « « « . . 118
1.7 ANOMOLOUS CURRENT STUDIES . . . . . . . . 130

iii



FIG.
FIG.

FIG.

FIG L]
FIG.
FIG.

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

10
11
12

13

14
15

16

17

18

19

LIST OF FIGURES

NUMERICAL SOLUTION OF EQ. (64)

NUMERICAL SOLUTION OF_EQ. (68) FOR THE

MAXIMUM VALUE OF a82 =1). . . .

1ST APPROXIMATION TO THE SPACE CHARGE
DISTRIBUTION . . « . « « + N

1ST INTEGRAL OF fl (ao rg e e e e e e e
2ND INTEGRAL OF fl (ao,_). e e e e e e

2ND APPROXIMATION TO THE CHARGE DENSITY
DISTRIBUTION . . . . . e e e e e e

EXPERIMENTAL ORBITRON GAGE (SCHEMATIC)
ELECTRON LAUNCHER (SCHEMATIC). . . .
MAGNETRON EXPERIMENTAL SETUP (SCHEMATIC)
EXPERIMENTAL MAGNETRON SCHEMATIC
CALIBRATION CURVE 552 GAGE . . . . . . .

EFFECT OF MAGNETIC FIELD AND ANODE VOLTAGE

ON MAGNETRON SENSITIVITY .

EFFECT OF MAGNETIC FIELD AND ANODE VOLTAGE

ON MAGNETRON SENSITIVITY

MAGNETRON SENSITIVITIES VS. MAGNETIC FIELD .

EFFECT OF MAGNETIC FIELD AND PRESSURE ON
MAGNETRON SENSITIVITY. . . . . . . .

VALUES OF Vp AND B AT WHICH NORMAL MAGNETRON

IS LINEAR. . . . e e e e e e

NORMAL MAGNETRON CATHODE CURRENT VS. PRESSURE

(3000v, 1100 GAUSS).

EFFECT OF PRESSURE ON INTENSITY ON r-f
SIGNAL FROM MAGNETRON GAGE . .

VIEW OF DISCHARGE THROUGH RADIAL SLOT IN
CATHODE OF MAGNETRON GAGE. . . . . .

iv

Page No.

38

4o

b2

45

84

94
.100

.101
.102

.105

.107

.109

112

.120




FIG.

FIG.

FIG.

FIG .

FIG.

FIG.

FIG.

20

2l

22

23

24

25

26

LIST OF FIGURES

DISTRIBUTION OF PHOTO-RADIATION FROM
MAGNETRON GAGE . . . . . . . . .

EFFECT OF ANODE VOLTAGE ON RADIAL DISTRI-

BUTION OF LIGHT. . . . . . . « « .« .

EFFECT OF MAGNETIC FIELD INTENSITY ON
RADIAL DISTRIBUTION OF LIGHT .

POLARIZATION P AS A FUNCTION OF TIME
t AFTER A CONSTANT ELECTRIC FIELD IS
APPLIED TO THE DIELECTRIC. . . .

DIELECTRIC POLARIZATION EXPERIMENTAL TEST

ARRANGEMENT. . . . . . . . . « e

3

Page No.

121

125

126

135

136

CATHODE TO AUXILIARY CATHODE LEAKING CURRENT

VERSUS TIME AFTER A .170 VOLT STRESS WAS

REMOVED. (THIS STRESS WAS APPLIED FOR

32 MINUTES). . . . . .

.

138

CATHODE TO AUXILIARY CATHODE LEAKAGE CURRENT

VERSUS TIME AFTER AN ANODE DISTURBANCE

(1 - HIGH VOLTAGE POWER SUPPLY TURNED OFF,

2 - ANODE HEAD DISCONNECTED)

.

139



TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

II

III

Iv

VI

LIST OF TABLES

Page No.

SENSITIVITIES OF MAGNETRON GAGE AT AN

AVERAGE PRESSURE OF 5.2 x 10-8

(TORR N2) . . . . . . L] . . - . . . . 96
SENSITIVITIES OF MAGNETRON GAGE AT AN

AVERAGE PRESSURE OF 5.2 x 10-10 TORR. . . 97
SENSITIVITIES OF MAGNETRON GAGE AT AN

AVERAGE PRESSURE OF 2.7 x 10-11 TORR. . . 98
SENSITIVITIES OF MAGNETRON GAUGE AT AN

AVERAGE PRESSURE OF 1.2 x 10-11 TORR. . . 99
EFFECT OF ANODE VOLTAGE (Vp) VARIATIONS

ON INTENSITY OF DISCHARGE IN ARGON. . . .123

EFFECT OF MAGNETIC FIELD VARIATIONS (B)
ON INTENSITY OF DISCHARGE ON ARGON. . . . .l24

vi




SUMMARY

During recent years it has become increasingly apparent
that the techniques for the production of an extremely low
pressure environment have outstripped the methods and tech-
nigues of measurement of low pressure. The present work
represents part of a continuing effort to develop more reliable
and higher sensitivity pressure gauges for pressures below
10'10 Torr. The report is divided into two parts. Part I is
a consideration of the orbitron gauge. This type of gauge
appears to have high potential for the measurement of extremely
low pressures. In addition 1t appears to have high potential
for aerospace pressure measurements because it does not require

magnets of relatively high mass.

The major fraction of the present work on the orbitron
is concerned with a theoretical analysis of the orbitron prin-
ciple. 1In thils part of the program a method has been developed
for obtaining a self-consistent solution for the electron motion,
charge density distribution, and space charge dependent potential
distribution in an orbitron. The solution may have any pre-
scribed accuracy, since the final accuracy of the solution is
a function only of the number of 1lterations performed. The
assumptions used are equivalent to asserting that the space
charge 1s all electronic and 1s only a function of r (these
are later shown to be valid for practicable configurations
and modes of operation). The interelectrode space is divided
into 3 concentric cylindrical regions such that all the space
charge 1s contained in the middle region. The Poisson Equation
1s solved 1in the middle region for an arbitrary charge distri-
bution and matched at its boundaries with solutions of the
Laplace Equation in the adjacent regions. The force equations
are solved for the radial component of the electron velocity
for an arbitrary potential distribution. The continuity equation
is solved for the charge distribution for an arbitrary electron
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radial veloclty. The lst approximation to the charge distri-
bution is obtained by using the space charge free electron
radlal veloclity. This charge distribution is substituted into
the potential distribution and integrated numerically to given
the flrst approximation to the space charge dependent distri-
bution. This result 1s substituted into the radial velocity
equatlon to obtain the 2nd approximation to the electron radial
veloclity which 1s substituted back into the continuity equation
to obtain the 2nd approximation to the charge distribution and
begln the 2nd iteration. A comparison of the 1lst and 2nd
approximatlions of the charge distribution indicates that the
iteratlon process converges rapidly and that the result of

the 1lst lteratlon 1s a useful approximation to the self-
consistent solution.

The 1st iteration has been worked out for a particular
subset of self-consistent solutions. Using these results as
a lst approximation to the final self-consistent solution,
condltions are derived which optimize the total space charge
stored 1n the rotating electron cloud such that the electron
trajectories are stable and the space charge distribution is
uniform in é-space and the electron mean kinetic energy has
& prescribed value. Under these conditions, it turns out
that the total space charge stored in the rotating electron
cloud approximates that stored on one plate of a cylindrical
capacltor which has the same dimensions and anode potential.
It 1s found that the ion current generated per centimeter of
length of the lectron cloud (along the z-axis) is of the
order of 1 to 15 amp/Torr (Argon) for anode potentials in
the range 0.4 to 10KV. This corresponds to ionic pumping speeds
(for Argon) of the order of 0.2 to 3 liters/sec (for each
centimeter of pump length) and to ion gage sensitivities of
the order of 104 to lO5 Tor-r_l (Argon) for a conventional
size device (1=10 cm). Further it is found, in ion gage
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applications, that modes of operation are possible which are
substantlially free of x-ray induced residual current.

An experimental orbitron gage for extremely low pressure
measurement was desligned and constructed but performance
characteristics were not measured during the present program.

Part II of the present report outlines work carried out
on the normal magnetron type of gage. The major emphasis
of thils part of the program was on the measurement of the
sensivitles of a normal magnetron gage over wide ranges of
anode voltages, magnetron field strengths and pressures.
Sensitivities were measured at the following pressures:
5.2 x 1078 Torr, 5.2 x 10-10 Torr, 2.7 x 10-11 Torr, and
1.2 x 10~11 qorp, Anode voltages were varied from 1000 to
8000 volts and magnetic field strengths from 1100 to 2000
gauss. The study confirmed earlier work and showed that
considerable changes in gage sensitivity may occur as the
operating parameters are varied. However, broad general
patterns exist in the performance characteristics and gage
sensitlvities may be more than doubled from the 4.5 amp/Torr
obtailned at about 5000 volts and 1000 gauss if considerably
higher anode voltages and magnetic field strengths are used.
Some evldence was developed which suggested that the linear
operation of the normal magnetron could be extended to lower
pressures by operating the gage at different combinations of
anode voltage and magnetic field strength -- e.g., 3000 volts
and 1100 gauss, also 4800 volts and 1250 gauss. However,
it appeared that a lower pressure limit was obtained for the
range where the gauge was linear or close to linear for these
conditions also. For instance, with an anode voltage of 4800
volts and a filled strength of 1250 gauss the gage had a
response curve with a slope of approximately 0.9 down to
1.2 x 10711 Torr. But the results indicated that the gage
again turns to non-linear operation at lower pressures.
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A short study was made of the r.f. oscillatory behavior
of the normal magnetron gage. The results obtained confirmed
previous measurements. The generation of stable r.f. frequencies
could not be detected below 2 x 10-10 Torr_the pressure below
which the gage is non-linear.

Experimental work on the effects of ultra-violet radiation
and electron injection were inconclusive because of possible
effects of photo-desorption and thermal desorption.

Work was initiated on the theoretical and practical
aspects of some of the possible sources of anomolous currents
at the cathode of the magnetron gage.

A large number of photographs of the discharge inside
the experimental magnetron gage were taken. From these it
was possible to estimate the shape of the discharge and its
intensity. The effects of pressure, anode voltage and
magnetlc field strength on the discharge were broadly examined.
It was not possible to obtain photographs of the discharge
below 2 x 10-10 Torr.




GENERAL INTRODUCTION

As a part of a previous program (NASw-625), the operating
characteristics of four UHV ionization gages were examined at
pressures below 10-10 Torr. The gages chosen for study were
those which appeared to have the highest potentlal for the
measurement of extremely low pressures. They were a nude
modulated Nottingham gage, a suppressor-grid gage, an in-
verted magnetron gage, and a normsl magnetron gage. The
work indicated that the normal magnetron gage should continue
to be included in the further investigations of the measurement
of extremely low pressure mainly because of its high sen-
sitivity and the fact that hot filaments were not required
to supply the ionizing electron flux. The work clearly in-
dicated that a considerable improvement would result if the
linear reglon of the normal magnetron gage were extended
below 2 x 10=10 Torr. It therefore became the aim of the
present program to investigate the possibilities of "linearizing"
the normal magnetron and to improve its low pressure operating
characteristics. One of the aspects considered under the
latter heading was the possibility of reducing the noise
level of the gage at low pressures. This was to include
the reduction of spurious currents arising from microphonics,
dlelectric polarization, and leakage.

In addition, it had become apparent in the period of
performance of the first program that another gage, not
investigated in that program also held considerable promise
for low pressure measurement. This was the orbitron gagesl)
Consequently, theoretical and experimental investigations
of the orbitron gage were initially included in the present
program.

The work carried out under the present program is divided
up into two parts. Part I is a report of work carried out
in the present program on the orbitron gage. The major fraction



is connected with a theoretical analysls of the orbitron
principle. The second section of Part I describes work on
the design and construction of an experimental orbitron

gage. This work predated the theoretical analysis and in
consequence it was not feasible to incorporate the results

of the theoretical analysis in the design of the experimental
orbitron gage. Part II 1s a report of the various aspects

of work carried out on the normal magnetron gage.




Part 1 ORBITRON GAGE
1.1 INTRODUCTION

The orbitron principle has been applied to ion gages and ion pumps
by the group at the University of Wisconsin under the direction of

(1)

Professor R.G. Herb. The activity of this group has been principally
applied to the experimental development of practical pumps and gages

with a secondary emphasis on the theory and analysis of the orbitron prin-
ciple. The theory of the orbitron principle appears to have been studied
first by W.E. Waters(z) and then independently by R.H. Hooverman,(3)
stimulated by Herb's work. However, in both of these studies only the
space charge free potential distribution was considered. While the re-
sults of these studies may correctly describe the electron trajectories
for a very low electron density stored in the rotating electron cloud, the
results are not applicable to practical orbitrons since existing experi-
mental data indicate that the electron density in the space charge cloud
is not negligible, in fact it may even approach saturation. The space
charge free analysis yields little, if any, insight into the dynamics of
the orbitron since all the questions of substarnce involve the space charge
dependent potential distribution. For example, questions concerning
electrode geometry for optimum charge storage in the rotating space charge
cloud, launcher location for optimum charge storage, anode potential for
optimum charge storage, self-consistent orbit injection parameters, mean
orbiting life-time of the electrons, orbit stability criteria, dependence
of average kinetic energy of the electron on stored charge, and injec-
tion (emission) current necessary to maintain optimum charge storage can
not be answered without knowledge of the space charge dependent potential

distribution.

The orbitron principle appears to contain a natural feedback mech-
anism which, for a given electrode geometry and potential, and a self-
consistent set of prescribed injection parameters, launcher location and
injection current, limits the number of electrons stored in the space
charge cloud. However, it appears possible to over-ride this feedback
mechanism and over-populate the electron cloud if all geometrical, elec-
trical and dynamic parameters are not self-consistent. The over-popula-

tion of the electron cloud substantially modifies the potentilal distribution
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such that the injection parameters now violate the orbit stability criteria
and the electron mean life-time is reduced to transit time between the

launcher and anode.

From the above discussion it is clearly essential that the analysis
of the orbitron be self-consistent if it is to be applicable to real orbit-
rons, provide insight into the principle, and provide answers to the prac-
tical questions implied above. That is, the analysis must be self-
consistent in the sense that the differential equations which describe the
electron motion must contain a potential distribution which is in part a
function of the electron motion and thus take proper account of the aver-
age electron distribution within the space charge cloud. This appears to
be a formidable task, since the self-consistent set of differential equa-
tions describing the electron motion (Force Equations, Poisson Equation ,
and Continuity Equation) reduce to an essentially nonlinear integral
equation of a type for which no general solution is known (except, perhaps,
in a few special, restricted cases). However, a solution to the self-
consistent set of equations is possible using iterative, numerical methods.
A method of solving these equations such that the solution has a pre-
scribed accuracy is outlined later on and the first approximation is
worked ocut in some detail. Even from this approximate solution, consider-

able insight into the answers to many of the above questions 1s developed.




1.2 ORBITRON PRINCIPLE AND APPLICATION

In principle, the orbitron consists of two coaxial cylinders having
radii Ri (inner) and R (outer), between which is applied a potential
difference V(Ri)>0 and V(RO)=O, yielding a logarithmic electrostatic
potential distribution in the interelectrode space and a central force
field which is attractive for electrons. It is assumed that the cylinder
lengths are large compared to their radii thus minimizing the importance
of end effects. Electrons are injected into the central force field with
angular momentum and kinetic energy such that they are captured in bound,
stable orbits around the imner cylinder (anode). For certain sets of
orbit injection parameters the individual electron trajectories resemble
open ellipses as viewed from a stationary reference system. While the elec-
trons execute ellipse-like trajectories in a radial plane they drift slowly
in the axial direction until they arrive in the neighborhood of the end of
the coaxial cylinders, where they are reflected by a weak electron mirror
field (produced by auxiliary electrodes). Thus the total trajectory is

similar to an elliptical spiral repeatedly folded back on itself.

If the individual electron orbits are not closed, the electrons col-
lectively form a space charge cloud, the charge density of which is
uniform in azimuth and the local angular velocity of which is equal to
the average angular velocity of the electrons at that radius. Thus, not
all parts of the cloud have the same angular velocity; the immer part of
the space charge cloud rotates at a much higher angular velocity than the
outer part of the cloud.

Although, under the proper conditions, the charge density of the space
charge cloud is uniform in é-space, it is never uniform in r-space. The
electron cloud does not occupy the entire interelectrode space but rather
has an inner and outer boundary which corresponded respectively to the
inner and outer turning points in the electron trajectories. The radial
charge density is proportional to the interval of time that the electron
occupies an increment of the radius between the inner and outer turning
points (inner and outer cloud boundaries). Thus the radial charge den-

sity distribution is inversely proportional to the radial component of



the electron velocity. The charge density is thus high in the neighbor-
hood of the boundaries and low in the neighborhood of the radial center

of the space charge cloud.

The electronic (negative) space charge associated with the rotating
electron cloud modifies the interelectrode electrostatic potential dis-
tribution. The potential distribution associated with the electron den-
sity distribution is always negative, regardless of the particular shape
of the density distribution. Thus the total potential distribution, that
due to applied potential plus that due to interelectrode electronic space
charge, is everywhere lower than the applied potential distribution.
Therefore the electric field inside the inner space charge boundary is
higher than the applied electric field and the field outside the outer
cloud boundary is lower than the applied electric field. Thus, within
the cloud the field gradient (total) is much steeper than it would be if
the space charge density were negligibly low. These modifications of the
potential and field distributions obviously have strong effects on the
motion of the electrons which produced them. This is the source of nearly
all the difficulties in understanding and in applying the orbitron prin-
ciple. For very low space charge densities where the actual potential
distribution is nearly identical with the applied potential distribution
the orbitron principle is simultaneously elegant and simple, and is almost

4. (1,2,3)

completely understoo However the principal advantage of real

orbitrons is the ability to attain relatively high charge densities.

The value of applying the orbitron principle to ion gages and ion
pumps is that large numbers of electrons having long mean life-times may
be stored in the space charge cloud and efficiently used to generate lons
by impact ionization. This, of course, assumes that the electrons are
injected into stable (long life-time) trajectories, a condition which re-
quires a knowledge of the space charge dependent potential distribution.
There is another substantial advantage in applying the orbitron principle
to ion gages: It appears possible to operate an orbitron ion gage in a
mode which produces no soft x-ray induced background current. In conven-

tional ion gages, electrons having kinetic energy in the neighborhood of




100 eV are abruptly decelerated in the surface of the electron
collector (grid). A fraction of the soft x-rays produced by the
decelerated electron flux are radiated from the electron collec-
for surface to the ion collector surface, and produce free elec-
ftrons by the phoeoelectric process. (The electrons which

have final momentum vectors such that they penetrate the surface
barrier and escape into the vacuum.) The photoelectric current
leaving the ion collector is indistinguishable from an ion cur-
rent arriving at the collector. Thus there exists a background

or residual current which is dependent only on the emission cur-
rent. In the orbitron, provided the electrons are properly in-
Jjected into stable orbits, the electrons do not reach the anode
except if they have lost sufficient energy in a collision to make
it energetically possible. A large fraction of the collisions of
this kind are ionizing collisions (for electron energies in the
neighborhood of 100 eV). Thus the subsequent emission of a photo-
electron at the ion collector (outer cylinder), by a soft x-ray
emitted from the anode in the process of collectihg the ionizing
electron, simply enhances the current associated with the ionizing
event. Those electrons which do not encounter a gas atom continue
to orbit the anode until they eventually return to the launcher,
or exit from the orbitron structure. It appears possible to
arrange the potential of the launcher such that returning elec-
trons arrive with a relatively low kinetic energy, under which
condition the generation of soft x-rays is an improbable process.
Thus, operation of an orbitron ion gage in this mode avoids the
usual defect of generating a residual current which is dependent

only on the emission current.

The relization of the advantages inherent in the orbitron
principle, in applications to practical ion gages and ion pumps,
requires optimization of the total ionization rate. The prin-
cipal parameters involved in this optimization are: orbit stabil-

ity,the electron kinetic energy, space charge cloud location,



and the number of electrons stored in the space charge cloud
(per unit length). There 1s considerable value in a brief, pre-
liminary observation of how these parameters influence the

application of the orbitron principle to a practical device.

The probability of an electron encountering a gas atom, of course,in-
creases as the electron orbiting life-time increases. The probable orbit-
ing life-time is maximum for stable orbits. Thus the electrons must be

injected into stable orbits.

The probability that an electron-atom collision yields an ion (in an
inelastic collision) is a functionh of the kinetic energy of the electron.
The maximum ionization probability in most gases occurs for an electron
kinetic energy in the neighborhood of 100 eV. However, the ionization
probability as a function of energy generally falls off much faster for
energies less than this value than it does for energies greater than this
value. Thus the electrons must be injected into orbit such that their
minimum kinetic energy (outer turning point) is not substantially less
than the kinetic energy corresponding to the ionization efficiency maxi-
mum,even though the kinetic energy is substantially above this value at

the inner turning point.

The ionization rate (per unit length), of course increases as the num-
ber of orbiting electrons in unit length of the space charge cloud in-
creases. The maximum number of electrons that can be stored in unit
length of the cloud is a function of the electron kinetic energy, the orbit
stability, the applied potential, and all geometrical parameters. The
requirements of the above two paragraphs, in effect, gspecify the first
two of these parameters and also assign a minimum value to the applied
potential. Thus the geometrical parameters and the maximum value of the
applied potential must be chosen such that the number of electrons in unit

length of the cloud is maximized.

Failure to follow the above prescriptions,in one way or another reduces
the ionization rate below its optimum value (although the stored charge
may actually increase) and increases the residual current (in ion gage ap-

plications). The details of the methods of satisfying the above require-




-

ments are developed later on.

There are several important constraints which should be
recognized in any application of the orbitron principle to
practical devices. The ratio Ro should not be too large.
Ultimately, the quantity of cha%ge that may be stored in the
electron cloud depends on the fileld-energy density within the
interelectrode volume. As Ro increases the total field-
energy decreases. Further, ifor %2 large, the field-energy
density is high only in the neighborhcod of the anode and
low elsewhere. Thus as gg increases the useful fraction
of the volume within the interelectrode space shrinks. For
g% large, a non-negligible fraction of the total population
of the electron cloud may be electrons that have already
experienced one or more collisions with gas atoms, since the
probability of capturing an electron at the anode immediately

following a collision decreases as ;9 Increases.
.‘

<

The electron trajectories should be such that regions of

low electric field are avoided since in these regions the

magnetic forces on the electron (arising from spurious magnetic

fields) may be comparable with the electric forces.



1.3 PROCEDURE

It is considered useful to outline here the analytical
procedure that is followed in subsequent sections since some of
the analyses are rather long, some intricate, and some encounter
rather cumbersome analytical expressions. To minimize the pos-
sibility of arithmetic inundation some of the demonstrations and
computations have been placed in appendices.

The first step in the procedure consists of solving Pois-
son's Equation for an arbitrary charge density distribution ex-
tending over an arbitrary region of the interelectrode space.
It is therefore necessary to divide the interelectrode space
into three concentric regions and solve the Poisson Equation 1in
each. The solution for each region is then matched at its
boundaries with the solutions for the adjacent regions. In the
process, electrode boundary conditions are applied. Three ex-
pressions are finally obtained for the potential distribution,
one for each of the three regions, in terms of the applied po-
tential, geometrical parameters and integrals over the arbitrary
charge density distribution.

The differential equations (force equations) for the mo-
tion of an electron are solved for an arbitrary potential dis-
tribution. Only a solution for the velocity is required since
the turning points may be obtained directly from the velocity
equation and a detailed knowledge of the orbit shape is unneces-
sary in nearly all meaningful questions. However, much can be
inferred concerning the general orbit shape from various
analytical results. In developing an expression for the veloc-
ity it is useful to distinguish between stable and unstable
trajectories. The results of the stability analysis are in-

corporated into the velocity equation.
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The charge density distribution is then obtained from
the continuity equation in terms of the radial component of
the electron velocity. The same expression is derived from

statistical reasoning.

At this point three equations have been obtained in
terms of three unknown functions: the potential distribution,
the charge density distribution, and the electron velocity.
Solving this system of equations for the potential distribu-
tion yields a nonlinear integral equation. This equation has
a form for which no general solution is known. However, a
particular solution is possible using numerical techniques.

By numerical integration and iteration, a solution having any
prescribed accuracy may be obtained.

The electron velocity corresponding to the space charge
free potential distribution 1s taken as a first trial solution.
The space charge free electron velocity is integrated numeric-
ally and the result used to obtain a first approximation to the
space charge dependent potential distribution. Inserting this
potential into the electron velocity equation yields a second

approximation for the charge density distribution.

This procedure, although not done here, may be continued
until a solution is obtained having the prescribed accuracy.
The additional computation required to obtain a convergent,

self-consistent solution involves considerable computer time.

11



1.4 POTENTIAL DISTRIBUTION

In solving Poisson's Equation for the space charge depend-
ent potential distribution, 1t is unnecessary to consider all
possible charge density distributions. Rather, only those dis-
tributions are considered which lead to near optimum electron
storage, since the principal function of the electron cloud is
to generate ions, which can be done at the maximum rate if the
number of electrons stored in the cloud is optimized. It is
obvious that those charge density distributiqns which are most
uniform in 6-space, produce the smallest modification of the
electrostatic potential distribution for a prescribed total
charge. Since the electron orbits must remain stable and the
electrons must have a kinetic energy greater than a prescribed
minimum, there is a limit to the magnitude of the space charge
modification of the electrostatic potential distribution that

can be allowed.

A uniform charge density distribution in the radial direc-
tion 1is incompatible with the differential equations which de-
scribe the motion of orbiting electrons. Thus the applicable
form of Poisson's Equation will always have at least one inde-

pendent variable, r.

If the electron drift velocity in the z-direction is such
that the period of oscillation in the z-direction is a non-
integral multiple of the orbit period, the charge density dis-
tribution is nearly uniform in the z-direction, except in the
neighborhood of the electron mirrors at the ends of the cylin-
ders where the charge density increases slightly since the
mirrors introduce z-direction turning points. It therefore is
allowed to eliminate =z as one of the independent variables in
Poisson's Equation, a considerable simplification. Formally
stated then, the first assumption in the analysis is: The charge
density distribution is sufficiently uniform in the z-direction

that its variation may be neglected in the analysis.
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Concerning the dependence of the charge density distribu-
tion on 6, the situation is not so elementary. Both uniform
and strongly 6-dependent charge distributions are possible.
This may be seen more clearly by considering first, those trajec-
tories which lead to 6-dependent charge density distributions.
If electrons are injected into trajectories which close affter
the execution of n orbits, the complete trajectory of the
electrons resembles n superimposed, open-ellipse-like trajec-

tories such that the angle between successive outer turning
2mn

points is (See Appendix C). The electron continues in
this trajectory indefinitely, retracing it once for each m
circuits around the anode. That is, for a closed trajectory
the electron returns again to the point of orbit injection,
same r and 6 but different =z, and passes through this
point with the same kinetic energy and angular momentum that it
possessed at orbit injection. It necessarily follows that
trajectories of this type are stationary since the individual
orbits of the anode resemble ellipses having a relatively large
counter rotating precession velocity such that the major axis
rotates about the anode exactly m times while the electron is
orbiting the anode n times. If all electrons are launched
from the same point and injected into orbit with the same angu-
lar momentum and kinetic energy (which is very probable), then
all electrons proceed along the same closed trajectory. Thus
the charge density distribution in 6-space is nonuniform, being
concentrated principally in the neighborhood of the 2n turning
points of the n superimposed ellipse-like trajectories, and 1is
stationary. Even if the electrons were all injected at equal
intervals in time, at any given instant later they are not equally
spaced along their common trajectory. These motions are investi-
gated quantitatively in Appendix C.

It is clear, by comparison with the above results, that
open trajectories lead to charge density distributions which are
uniform in 6-space. That is the result of the continuing pre-

cession of the orbit eventually smears the charge uniformly

13



through 6-space. This conclusion holds even if all electrons are
injected into the same open trajectory. As stated previously,
optimum charge storage is associated with the absence of charge
clusters, that is with uniform charge density distributions.

Thus the second assumption, implicit in the following analysis

is: The charge distribution in 6-space is uniform, that is that
the range of allowed orbit injection parameters are such that the
electron trajectories are open or at least close only after n is
very large. This eliminates 6 as an independent variable in
Poisson's Equation and reduces it and the continuity equation to

one dimensional ordinary differential equations in r.

Since the electron trajectories do not occupy the entire
interelectrode space but rather only a thick cylindrical region
located somewhere within the interelectrode space and with its
axis coinciding with the axis of symmetry, it is necessary to
divide the interelectrode space into three thick cylindrical re-
gions: Region 1 = the volume between the anode surface and the
inner boundary of the electron cloud; Region 2 = the volume
occupied by the electron cloud; Region 3 = the volume between the
outer boundary of the electron cloud and the surface of the outer
cylinder. A radial cut through the interelectrode space is shown
in the figﬁre below, which also defines some of the pertinent
parameters. V

¢(I’) A
o (r)
# ! ¢3(r)

|
%
|

L—o(r)

—o(r)v '

In Region 1, the poteﬂtial distribution ¢1(r) is obtained

from the homogeneous Poisson Equation (Laplace Eq.)

%%{P(%ﬂ = 0, (Ry3Psril. (1)
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In Region 2, the Poisson Equation applies

s (rig r < ro). (2)

In Region 3, the Laplace Equation again applies

1 d dé3
Fdr(

r—1,=20 r <r<R ).
3 ) =0, (r <R ) (3)
At the boundary between Regions 1 and 2, the potential distribulion and

the electric field must be continuous. Therefore the solutions to
Egs. (1) and (2) must satisfy

¢1(ri) = ¢2(ri) s (4)

and

d¢1 - d¢

dr r=r, dr |r=r

—~
Ut
~

At the boundary between Regions 2 and 3 again the potential and electric
field must be continuocus. Therefore the solutions to Egs.(2) and (3) must

satisfy
¢2(ro) = ¢3(P0), (6)
and
d¢
P 0
dr r=r_ rer_

At the surface of the anode, the potential must equal the applied voltage
V. Therefore

o (R) =V . (8)
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At the surface of the outer cylinder the potential must be zero. There-

fore

¢3(RO) =0 . (9)

The solutions to Egs.(1), (2) and (3) are (before evaluating the

constants of integration)

9, (r) =c  logr+cy, , (Ry <r <ry), (10)
_ ¢ dr p(r’)

¢, (r) = f / c rdr +c, logr+ c,, | (ry<r<ry), (11)

¢,(r)=c, logr+c, ., (ry < v Ry)- (12)

Using the six conditions expressed in Egs.(4) through (9) to evaluate

the six constants of integration gives

R
log R R, log R
¢ (r)= vy e, {I(r )-T(r, 1" (r,)log 5> - I'(ry)1og > } —=R
log o To Ty log _©
Ri Ri
(Ri £rs ri), (13)
R
log -2 RO log RI—’_
¢ (r) =V -—=%+ [I(r +I'(r )log —] —_—
2 log To ° © Tod 10g %Q
R, i
i
R
_._°.
[}(1" ) I'(I‘l)lOg_L-_-} RI’ - I(r), (r.i_<_ r < l"o), (14)
log _©o
R.
1
Ro R
( ) lOg l'-’— I" Pi 1og ;O—
9, (1) =V - [I(I‘ )-I(r;)-I'(r )log == + I'(r;)log _—:| —r
’ log 59 © ' ° Rl * Ri log _© R’
R R,
(ry<r <Ry, (5)
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where

I'(r,) = | pir') r dr| , (16)
o r=ry
and
I(r,) = i %;-f ~é§) r dr (17)
=Y
X

Fquations (13) through (15) define the interelectrode potential distribu-
tion in terms of geometry, applied potential, and the charge integrals in
Egs.(16) and (17) for an arbitrary charge distribution, the evaluation of
which must await specification of the actual charge density distribution

from the results of the orbit analysis.
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1.5 TRAJECTORIES

The differential equations for the motion of an electron in a cylindri-

cally symmetric attractive, central force field are:

m (¥ - r62) = -eE(r), (radial force component), (18)
and 7%;(mr2é) =0, (azimuthal component), (19)
where E(r) = electric field due to both the applied potential

and the space charge distribution.

Integrating Eq.(19) gives

mr2e = % (20)

where
% = electron angular momentum (a constant throughout the

orbital motion).

Therefore & 1is one of the orbit injection parameters. Using Eq.(20) to

eliminate 6 1in Ey.(18) gives the radial force as a function of r alone

me = 2~ eE(r). (21)

mr3

The space charge radial distribution must eventually be derived from the

solution to this equation.

Before proceeding with the solution of this equation, it will be
rewritten to satisfy the orbit stability criteria, that is it must be
modified such that it applies only to stable electron trajectories and
excludes from consideration all trajectories which are unstable against
radial perturbations. The motivation for introducing this modification
is simply to concentrate the analytical work on that subset of trajec-

tories which has the longest probable orbiting 1life time, since in
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practical devices these trajectories are the most useful. There are
many disturbances which may perturb the electron trajectory; for ex-
ample, variation in electrode potentials due to power supply noise,
variation in potential distribution induced by collective space charge
oscillations, local magnetic fields, motion of the orbitron in these
fields, elastic (nonionizing) collisions with gas atoms, etc. It is ob-
vious that those trajectories which are unaffected by such disturbances
have the highest probability of survival. Those trajectories which are
least affected are the stable trajectories.

It is shown in Appendix A that the open-ellipse~like trajectories are
stable only if the electron angular momentum satisfies the stability cri-
teria

2 = 42 3
2 a meEz(ro)r'o s (22)

where o 1s an independent stability parameter which quantitatively labels
the stability of an orbit and has the allowed range

(approaching instability) < a2 <1 (most stable) . (23)

Wi

It 1s shown in Appendix B that o is a function only of eg = the effec-
tive eccentricity of the open-ellipse-like electron trajectories in the
orbitron. It is shown in Appendix C that there are certain discreet
values of o within the range given by Eq.(23), but which must be dis-
allowed since they not only violate one of the analytical assumptions,
but lead to stationary nonuniform charge distributions in 6-space and

therefore nonoptimum charge density distribution.

Thus, the modification which must be made in the radial force equa-
tion, Eq.(21), is simply to introduce the stability criteria into that
equation such that the system of equations applies to stable orbits only.
Essentially, this constrains the allowed range of one of the orbit in-

Jection parameters (angular momentum) to a relatively narrow range.
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The actual constraint, which sorts out of all possible electron
trajectories those which are stable, is introduced into the system by re-
placing the angular momentum in Eq.(21) with its constrained value given
by Eq.(22). The radial acceleration of the electron, applicable to stable

orbits only, then is given by

3
.. e r
v=$ [az}zz(ro) ;‘3’— - Ez(r):l : (21)

m

This introduces a third formal assumption into the analysis: Allowed

orbits are members of the orbit subset which satisfy the stability criteria
Eq.(22) only, however there 1s a discreet series of orbits within this sub-
set which are disallowed since they lead to stationary nonuniform charge

distributions in 6-space.

Proceeding now with the solution to Eq.(24), the radial component of
the electron velocity is obtained by multiplying this equation by dr,
recalling that Tdr = P& ,  that -E(r)dr = dle(r)], and integrating.
The result is

m

., 2 _a2r03E2(I’o) +¢2(r)J +c, (25)

r_———
2 r2

where ¢ 1is a constant of integration. This constant may be conveniently
evaluated at either the inner or outer turning points where the radial
component of the electron velocity passes through the value zero. There
is, however, some advantage in using the outer turning point. Thus,
setting the left side of Eq. (25) equal to zero, evaluating the right side
at r=r_, solving for c, and substituting the result back into Eq.(25)
gives the radial velocity in terms of physical parameters

2

. 22 By
rz _ _23[0!. I';) 2 ro)(l _ %-) +¢2(r)_¢2(ro)]. (26)
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This equation has two roots: the larger is of course at r'ys the
smaller is at ry (the inner turning point) which may be obtained by
setting r2=0 giving the transcendental equation

—Q~—=l+
i o

(27)

r 2 , {%(ri) - ¢ztro>}
2 .

Ez(ro)r0

The potential distribution in Eq.(26) is that previously obtained
for the space charge region, Eq.(14). The electric field at the outer
turning point is obtained from Eq.(14) by taking the negative derivative
with respect to r and evaluating the result at r . Both of these
functions depend, in part, on the charge density distribution through the
charge integrals, Egs.(16) and (17), which are yet unspecified. Further
progress in developing a self-consistent solution for the electron motion
in the orbitron requires the definition of the charge density distribu-

tions.
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1.6 SPACE CHARGE DISTRIBUTION

Recalling the previous discussion concerning the possible form of
the charge density distribution, it was concluded that it could not be
a function of 2 since only small gradients existed in the 2Z-direction
resulting in a charge density which 1s nearly uniform in the Z-direction,
and that it could not be a function of 6 since only those launch param-
eters corresponding to open orbits (nonstationary) are allowed, which
after sufficient time result in a charge density distribution which is
uniform in the 8-direction. If sufficient time is allowed after the be-
ginning of injection,the charge density at all points in the electron
cloud will have built up to its final, equilibrium value and will thus be
independent of time. This neglects the small time dependent component of
the charge density assoclated with the collision loss rate and the orbit
injection rate, since the mean orbiting life-time is relatively long
(except at high pressures) in comparison with the injection or loss
transit time. This amounts to introducing into the analysis a 4th formal
assumption: The time-dependent component of the charge density distribu-
tion corresponding to the collision loss rate and the balancing injection
rate is negligible in comparison to the stationary (equilibrium) charge

density distribution.

Under the above conditions the charge density distribution is a

function of r only, and thus the continuity equation

T4
vt =0 (28)
reduces to

= (v =o. (29)
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For any equilibrium (stationary) charge density distribution g%—= Q.

It necessarily follows that the quantity of charge flowing into any volume
element equals the quantity flowing out of that element. The radial compon-
ent of the current density at any point within the space charge region must

therefore consist of a positive and negative component, such that

o) = 2 0t (2) (30)
and 1
. () = Zem)t_(r) ' " (31)
and have the property
3,0 =3, () 4§ (0) = S ek, (e ()] = 0, (32)
since
r(r) = -t (r) 3 (33)

since r(r) is a single valued function of r. However, since all the.
charge is electronic and p(r) is a scalar, the charge density is inde-
pendent of the sign of jr(r).ﬂ.Thus each component of jr(r) con-

tributes equally to the local charge density p(r). Therefore the function
that must be inserted into Eq.(29) for the current density is

3, O+ 13,0 = 5 o@UEE]+ |2 @] = o () |#(r)]. (34)
The contunuity equation thus becomes
== {r o @)|F@)|}= 0. (35)
The solution to this equation is obviously
p(r) = —— . (36)

r|f(r)|
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The constant of integration may be evaluated as follows: Suppose there
are Ny electrons in unit length of the electron cloud (unit length
along the cylindrical axis). The integral of the charge density dis-
tribution over the volume of a unit length of the space charge region

must equal the total charge within that region, thus

T 27
rjp(r) rdrde = —eNL

r. o
1
where (-e)zelectron charge. Since p(r) 1is independent of 6 this
equation may be written

To

eN
fp(r)rdr' - . _L .
2

i
Substituting from Eq.(36) for p(r) and solving for the normalization
constant c¢, gives

eNL 1

2m 0'()‘1d1"
P

C = -

i
Substituting this result back into Eq.(36) gives the charge density dis-

tribution within the space charge region

eNL 1
D(r’) = - ro *
on { I#(r)|-ldr

i

r(r)|

(37)

(38)

(39)

(h0)

Although this result (that the charge density is inversly proportional

to the radial component of the velocity) is not a common form of charge

density distribution, it has been encountered in other situations (see for

example landau and Lifschitz in Ref.5 where a similar result is obtained

in another connection concerning the motion of bound electrons).
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The charge density distribution may be derived directly from
statistical considerations which do not involve (explicitly) the inte-
gration of the continuity equation. This derivation also yields a some-
what different insight into the connection between charge density dis-
tfibution and the electron dynamics. Consider the motion of a single
electron along a stable trajectory in an orbitron. The fraction of the
orbit period that the electron spends in traversing the infinitesimal
interval As along its trajectory S is

£(s+A8) - ()
T

> (41)
where 1 1is the orbit period and t is considered a function of orbit
position s. The probability that the electron is within the interval

As at s is the probability distribution ¥ (s) (probability per unit
length of trajectory). Thus V¥(s) is simply the fraction of the orbit
period spent in As divided by the length of As,

o(s) = t(s+ATs_)A;t(s) . (42)
Taking the limit A S+ 0 gives
= 1
vE) = T (43)

since

lim t(stas)-t(s) _dt _ _1 (4h)
AS+0 A'S T ds W_ST

where v(8)= orbit velocity as a function of the trajectory coordinate s,

and the absolute value of the orbit velocity has been taken to avoid the
possibility of a physically meaningless negative probability distribution
(especially later, when a transformation is made from the trajectory co-
ordinate s to polar coordinates r,6). The charge associated with a single
electron may be considered as distributed over the electron orbit in exactly
the same way that the probable position is distributed. The charge dis-
tribution at any point S along the orbit is then given by the product of
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the electron charge and the position probability distribution. Thus the

increment of charge in the interval ds at s 1is given by

dQ(s) = —e ¥(s) ds (45)

Referring to the figure below, the increment of charge contained in the
volume between two concentric cylindrical surfaces of radii r and r+dr
respectively, must be given by the product of the local density p(r)
and the volume element dV. Thus

A(r) = p(r) dV = p(r) 2r rdr (46)

where Q(r) = charge per unit length of cylindrical volume (also applies to
Eq.(45)),
p(r) = charge density at r assoclated with a single orbiting elec-

tron.
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Since the electron trajectory passes twice through the volume element

considered, the increment of charge in Eq.(46) is twice the increment in

Eq.(45). Therefore

mo (r) rdr = —-e y(s)ds=- ?e‘-;,%%ﬂ—.

The right side of this equation may be transformed to polar coordinates

recalling that

e
3642 n2
gs = {1+ (3 Yar,

and

4
vl =+ {1+ @Y o).

Equation (47) then may be written

e

{ﬂp(P)I‘ + D) }dr’ = 0,

Therefore the charge density distribution of a single bound electron

executing a stable, open orbit in an orbitron is

) = - & v 2
P T rit(r)| °?

and the charge density distribution for NL electrons per unit length
space charge region is finally

eN 4

mt ple(r)]| °

p(r) = -
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(48)

(49)

(50)

(51)

of
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This result agrees with that previously derived, Eq.(40), if
r

dr
[7(r) ]
r,
1
is equal to é?. But by definition, the orbit period is given by

T
o
T=fdt=2fﬁ§w. (53)

o r,
i

Therefore Eq.(40) and Eq.(52) give identical results for the charge density

distribution.

Completely electronic charge density distributions of the form given
by Eq.(52) permit some simplification of the potential distribution given
by Eqgs.(13) through (15), since certain of the charge integrals appearing
in these equations are zero. Apart from the negative sign associated with
the electronic charge, (-e), the integral of the charge density distribu-
tion, see Eq.(16), is a positive, increasing function of r and is zero
for r<r, and r>r since p(r) is zero outside these limits. There-
fore the first charge integral evaluated at the lower limit, the imner
boundary of the space charge cloud, is zero. Thus

I'(ri) = 0. (54)

A similar arguement applies to the second integral of the charge density

distribution, see Eq.(17), since it represents the area under the curve
Qr)
el

Therefore

Ite,) = 0. (55)

Thus the quantity within the second set of brackets appearing in Eq.(14) is

Zero.
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Tt may be useful to emphasize several observations concerning o(r).
At both the inner and outer turning points p(r) diverges since 1 (rj) =
r(r,) = 0. However the integral of p(r) remalns finite and it is generally
an integral function of p(r) that is required in the analysls. Perhaps
the most important property of p(r) (because of its serious consequence)
is its form. The form of p(r) renders the Poisson Equation nonintegrable
analytically. Although this is a serious mathematical handicap implying that
a general solution to the problem is not possible, self-consistent particular
solutions having any prescribed accuracy can be developed using iterative,
nunerical integration. These latter difficulties are the consequence of the

fundamental nonlinearity of the orbitron.
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1.7 SELF-CONSISTENT SOLUTION (lst APPROXIMATION)

The analysis has now yielded all the information necessary
to develop a selfconsistent solution for the electron motion
in an orbitron: Eq. (14) gives the potential distribution for an
arbitrary charge density distribution; Eq. (26) gives the elec-
tron radial velocity for an arbitrary potential distribution;
and Eq. (52) gives the charge density distribution as a function
of the radial component of the electron velocity. These equa-
tions may be considered a set of consistent, simultaneous integro-
differential equations. p(r) and p (r) may be eliminated by
substituting Eq. (26) into Eq. (52) and then substituting the
result into Eq. (14) which gives a single nonlinear, integral
equation in ¢ (r) alone. This equation is not written here
since it is nonintegrable analytically; implying that a general
solution to the orbitron problem is not possible.

However, after having specified all pertinent parameters,
a particular solution may be developed (one solution for each
set of parameters) by iterative, numerical integration. The
continuation of the analysis beyond this point therefore involves
a combination of both numerical and analytical techniques.

The starting point for obtaining a particular selfconsistent
solution using these methods is the radial velocity equation
(radial mode kinetic energy equation). The application of
numerical methods requires a knowledge of the specific range of
integration. Thus it is first necessary to establish the turning
points (space charge boundaries). The ratio of the turning
points is, in general, given by Eq. (27) but for the present
need it is more convenient to write it in the unconstrained
form (without the stability constraint which will be reinserted
later on) by substituting from Eq. (22) for Ez(ro) and recalling
that the outer turning point kinetic energy T(ro), i1s given by
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9‘2
T(r ) = ———. (56)
2mr02

Eq. (27) may then be written

o 14 o [oa(rg-0,(ry)]

2
r, T(ro)

(57)

From Eq.(14) and using Egs.(54) and (55) the difference in the

space charge dependent potential between r, and r is given by

. 1og£— :
frov e fosk - 0 - o oty - 352

It may be observed from Eqs.(16), (17) and (52) that the
ratio of charge integrals, %¥§55 , is not explicitly
dependent on the magnitude of the total charge stored in the
space charge cloud. The explicit dependence of the potential
difference in Eq.(58) on the magnitude of the stored charge
may be eliminated by imposing the stability constraint. Taking
the negative derivative of Eq.(14) with respect to r and
applying Eqs.(54) and (55) gives the space charge dependent
electric field distribution

E,(r) ={V+I'(ro) [1og§9 I—Sl("nl)]} s 2 -[r - o ()] &

logR

"Sll—-‘

(59)
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Evaluating this equation at rj and substituting the results into
the stability criteria, Eq.(22), and using Eq.(56) to eliminate

22 in terms of T(r ) gives

T(ro) = —§eE2(ro)ro
- aze V4T 1( ) 1 EQ I(I’D) 1 (60)
= =5 r, OgR~ - () B
i To logg®
i
From this equation it follows that
2T(r, ) R
1-=2-0= log g%
Bogzﬂ._ Eﬁfgl. ]
Ry I'(ry)

Using this equation to eliminate I'(ro) in Eq. (58) gives for

the potential difference between ry and r,

4>2(r'i) B <I>2(1"O) =

r I(r,)
2T(r, ) tog T+ v - 2T (r ) Log R, [;085?,_ fTT%;ﬂ
2 r R {log_a_l(ro)l
er; ~ I (r, (62)

ale i alev i
which does not depend explicitly on the magnitude of the stored

charge.

It is shown in Appendix E that optimization of the total
charge stored in the rotating electron cloud corresponds, in

part, to maximizing it with respect to ry. The maximization
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of NL with respect to ry requires that r, = Ri' That is
that the inner turning point (and the inner boundary of the
space charge cloud) 1s displaced from the surface of the anode
only by a very small distance, sufficient to assure that the
electrons do not collide with the surface. In practice, this
distance may be of the same order of magnitude as the surface
roughness and therefore very small compared with Ri' Setting
r,=Rj thus does not involve a substantial approximation and the
difference between them may be neglected in the analysis (see

.
gh this

Appendix E ). Althou ondition is very important to the
optimization of the stored charge, it has other, equally import-
ant, consequences. Setting ri=Ri reduces the system from a 6
parameter system to a 5 parameter system, but accomplishes the
reduction in a way which permits considerable additional analy-
tical progress without specifying all other parameters. Apply-

ing rizRi to Eq.(62) reduces that equation to

27 (r, ) r 2T (r, ) R_
¢2(ri)—¢2(ro) = log — + V [ - ——— log g |, (r;=Ry ),

ale Ty a? eV i

(63)

and substituting this into Eq.(57) and rearranging gives the
following transcendental equation for the ratio of the outer

fo inner turning points

2
r 2 r
1 r
i
where
eV Ro
= —— - log =— . 6
¢ = S 5 5 (65)
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8 is not an independent parameter, but a specific function of
prescribed parameters. Thus the introduction of B8 does not
amount to introducing a new parameter since all the parameters
on the right side of Eq.(65) are prescribed parameters and
therefore specify 8. Alternatively, B8 may be considered a
subset label, specifying not a single particular solution but
rather an entire subset of particular solutions in which there
remains a considerable range of variation of the parameter on
which B8 depends, subject only to the condition that B8 remain
constant. B8 1is here introduced as a mathematicl convenience,
however, in Appendix D its physical interpretation is discussed
and it is shown that B > 0 for all electronic charge distri-
butions and B may be considered a measure of the reduction in
electric field at the outer cylinder resulting from the space

charge insertions.

Eq.(64) gives the ratio of turning points in terms of
prescribed parameters only,which do not explicitly involve
the charge density distribution. Actually, since it has been
specified that r, = R, and R, is prescribed, Eq.(6U4) gives the
outer turning point in terms of prescribed values of a? and
8. This substantially reduces the number of selfconsistent
particular solutions for electron trajectories in the orbitron
since all solutions for which r > Ri are rejected. However,
this is a considerable advantage since only those particular
solutions are retained for which the charge stored in the

electron cloud is optimized.

It is obvious that the space charge integrals I'(ro),
I(ro) and I(r) in Eq.(14) must apply to exactly the same
region of r-space as that to which ¢2(r) applied. The first
approximation to these integrals is obtained by substituting

eN
’F% . QL, the space charge free . Therefore the

rr

into p(r) = -
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ratio of the outer to inner turning points in the space charge
free radial velocity equation, %ﬁ (where the subscript o
indicates that 8=0), must be theisgme as the ratio of the outer
to inner turning points in the space charge dependent radial
velocity equation, ;? 5 (where the subscript 8 indicates any
value of 8>0 implying |p|>0). Thus

1"o _ ro
(“)(—) e

-

r
<§9) is a function of «? only as may be seen from Eq.(64) for
i r

8=0° and r$ 6 is a function of both o2 and 8. If ag is

some value of a? applicable to Eq.(64) for £=0 and aé is
the value of a? applicable to some prescribed value of §g>0,

the only way Eq.(66) can be satisfied is if a§>a§. Thus, from
Eq.(66), it follows that the set of equations

r 2 r2
log 72+ 20 1 - 2-)=0 (67)
Ty 2 r2
1
and
ro . 9 ra
log — + = 1 - —=>}+8=0 (68)
r, 2 2
i ry
must be solved simultaneously for :;% and a% for some pre-

scribed set (ag,s). According to the stability criteria, the
minimum value of a2 1is %u This value of a2 strictly applies
only to u% and not to ag

used only as an initial generating function known to have an
approximately correct shape. However, in this first develop-
ment of a self-consistent solution, the stability criteria is

applied to both ag and 2, This value of o2 corresponds

since the space charge free 1 is

to the maximum value of ;2 and thus yields the highest
(allowed ) probability that ©°electrons miss the launcher during
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the first few orbits after injection. (See Appendix E ). From
r

Fig.1l,where numerical solutlons of Eq.(64) for F% as a

function of a? with B8 as family parameter are plotted, 1t

may be seen that

(%)

r
From Eqgs.(66) and (69) and Fig.2, where ;% is plotted as a

function of B8 for a%=l, it may be seen thag the maximum

). (69)

= 2.59, (az =
max

w|+

value that may be prescribed for g 1is about 1.9. In this first
development of a self-consistent solution, a mid-range g 1is

arbitrarily chosen such that

g = 1.0. (70)

For this value of B and from Eqgs.(66) and (69) and Fig.1l, it
follows that

g = 0.684. (71)

These numerical values are needed for later computations.

The first approximation to the charge density distribution

is given by

—eN
o (r) = =L . L1, (72)

TT
) I’l"o

where the subscript o indicates that the electrons have been
arbitrarily assigned the radial velocity strictly applicable
only to electrons in a space charge cloud which has a negligibly
low charge density. This does not imply that pl(r) is neces-
sarily small (N; in Eq.(72) may be large), but only that
Eq.(72) is an approximate relation which is to be refined in
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Fig.

Note:
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Numerical Solution
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Value of ag (aB

2
B
B constant with Eq.

This value of «o

range of NL'

of Eq.(68) for the Maximum
1).

allows the maximum range of

(66) and thus the maximum
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subsequent iterations. From Eqs.(1ll4) and (26), Eq.(72) may

be written in the following dimensionless form (after setting
all charge integrals to zero),

, -x
v 2
) 0
SOCIRETRLE 15-2)
‘eNL) 02 .
_2 _2
J{lo e 1— }

2m
The denominator of this equation has been integrated numeri-

cally and the equation is plotted in Fig.3 as fl(aO;{}) for
(o]

(73)

r\)|l—'

221
=T where

rorpﬁr’)

r ~
Falogsg) = (—eNL) : (74)
2%

The first approximation to the first charge integral
Il(r) is then obtained by substituting Eq.(73) into Eq.(16)
and performing a numerical integration, using Eq.(69) to de-
fine the lower limit of integration. The result is plotted

in Fig.l4 as g (ao,; ) (a dimensionless function obtained by

o eNp
dividing Eq.(16) by = 21T€0),

Looroy _ Ir)
g} (coip ) :_ei‘lL | (75)

215,

The first approximation to the second charge integral
Ifr) is then obtained by substituting the numerical results
from Fig.4, Eq.(75), into Eq.(17) and performing the second
integration, agalin numerically. The results are plotted in
Fig.5 as gl(ao;gg) (a dimensionless function obtained
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eNjy,
2w%

by dividing Eq.(17) by - )s

r. _Ii(r)
gy (e, ro) = elNL . (76)

21reo

g' and g have been introduced as a mathematical convenience.
They are the same as I' and I except that they do not depend
explicitly on NL'

Substituting these numerical results back into Eq.(14)

gives (77
R ‘
V log =2 eN R r
L o logs—
¢ 1(p) = — T - log —+g,(agy,1) Rjy r
21 R, 2me, [ r, 1h7e Ro —gl(qngﬁ
log ﬁ_; log ﬁ—i- o

where the second subscript on ¢,31(r) indicates that it is the
first approximation to the space charge dependent potential
distribution. In Eq.(77), Egs.(54) and (55) have been applied
and the result

gl (e ,1) = 1 (78)

has been used.

The first approximation to the electron radial velocity
as a function of the space charge dependent potential distrib-
ution is obtained by substituting Eq.(77) into Eq.(26), then
using Eq.(61) to eliminate NL after having substituted the
numerical results of Figs.4 and 5, Eqgs.(75) and (76), into

Eq.(61). The result of these operations 1s
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(79)

., AT(r,) - log o2 + 21 (ag,rr)eg (a, , 1]
r]_ = ____’)____9_—- log -—-0— + aB (l i) 1
aé m r

log ﬁi - g,(a,,1)

Tt may be seen that fl does not depend explicitly on NL. This

completes the development of the first approximation to a self-
consistent solution of the electron motion and distribution in

an orbitron (except for several detall calculations which are

made later).

The second approximation to the charge density is obtained
by substituting Eq.(79) into Egs.(52) and (53) which gives

g o7 p2\  [Los Zove, (ay)-g, (6,1) R
r,ro,(r) o8 —7 " 1oe ro-g1(a ;1)
, (80)

eN r Lo
- L r 2 log =24g, (o L )-g (a_,1
( oy ) ]C{log —+"éa(1‘_)+ L r o’l"o) g) o> 2dr
ri r e.l. Fg

log -2
og -I'_—gl(ao’l)
i

The denominator of this equation has been integrated numeric-
ally and the equation is plotted in Fig.6 as f,(g;,a ,8,%)
where : Yo

r,r pz(r)

(g o B ._E.) = —_—
2 1° 3Py 81
B r, - eNL 4 (81)
2m
which does not depend explicitly on N . The functior p,(r),

Eq.(80), may now be used in the same way as above to begin the

second iteration and thus generate the second approximation to

the dimensionless charge integral functions gg(gl,aB,B, %}) and
(o]
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iteration process ° converges rapidly.
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gz(gl,aB,B, %i). These functions may then be used, In the same
way as above, to generate the third approximation to the charge
density distribution, p,(r) may now be used to begin the third
iteration, and so on... The development of a self-consistent
solution having the required accuracy 1is finally completed if
the result of the last iteration o, (r) differs from the re-
sult of the previous iteration p&A(r), by less a prescribed
amount over the entire range of the electron motion (riirfﬁb)'
From a study of the form of Eq.(80), 1t is clear that the charge
boundaries in pér) will be the same as they are in Q§r).
Thus, no further adjustment in o, and B8 will be required in

B8
subsequent iterations.

At this point, the first approximation to the number of
electrons in unit length of the rotating electron cloud, (Np)
may be obtained immediately from Eq.(61). Using Eqgs.(75) and
(78)Rto evaluate the left side of this equation, eliminating
log ﬁ? on the right in terms of 8 from Eq.(65), and sub-
stituting for I'(r) and I(r,) on the right from Egs.(75) and
(76) gives (after rearranging)

1°

b ey 8 T(ry

(N,), = (82)

r
af e?[log £ - g (a,1)]

All the parameters on the right side of this equation are pre-
scribed except g (ag,1), the value of which has already been
calculated. Substituting into Eq.(82) the numerical values of
the prescribed parameters given in Egs.(69),(70)and (71) , and

the numerical value of 81(003 ) from Fig.5 gives

Ue e T(r.)
(N) = —2 2 (83)
1 (0.422) e2
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50 eV is about the minimum outer turning point kinetic energy
consistent with an acceptable ionization probabllity (for most
gases). The inner turning point kinetic energy is given by,
from Eqs, (20) and (56),

T(ry) = (2 T(x,) (84)
which from Eq.(69) yields T(ry) = 6.7 T(r). From this result,
it is clear that the minimum acceptable T(r,) should be used
to avoid the penalty of a reduced ionization probability in the
nelghborhood of the inner turning point. The outer turning
point kinetic energy is therefore prescribed such that

T(r,) = 50 eV. (85)

Substituting this value into Eq.(83) gives the first approx-
imation for the number of electrons per unit length of the ro-

tating electron cloud (for Ry = ri,al =3z, 8 =1, T(r,) = 50eV).

W+

(NL)1= 0.825 x 10°% cm-L (86)

Referring again to Fig.6, it can be inferred that the
function gz(gl, ags 8,.%%), which will result from the second
iteration, has the property 8,<8,: Combining this with
Eq.(82) implies that the second approximation to N will yield

L

a number which is smaller than (NL)P since the denominator of

Eq.(82) will increase. Thus, 1t may be concluded that
(N, < (NL)l' (87)

r
However, since g, 1s only of the order of % of 1log ;% and
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the difference between g, and g, should not be large,
(NL)2 probably will not differ substantially from (NL)
1

The method of deriving a self-consistent value for the
ratio of the electrode radii 1s discussed in the following
paragraph. The Hamiltonian, H, of an orbiting electron is
simply its total energy. Therefore,

H = T(r) + U(r), (88)
where U(r) 1is the electron potential energy, given by

U(r) = -e¢, (r), (89)
and thus

H = T(r) — (r). (90)

%21
Since the Hamiltonian is constant over the entire electron
trajectory, it may be evaluated at any point along the tra-
jectory. However, it is convenient to evaluate H at the
outer turning point. ¢21(r0) is given by Eq.(77) after eval-
uating at r=r_. Substituting Egs.(75),(76) and (78) into
Eq.(61) and using the result to eliminate Np 1in ¢21(r0)

. gilves
2T(ro) R
¢21(P0) © 2. log ﬁi. (91)
B

Substituting Eq.(91) into Eq.(90) gives (after rearranging)

1oe 32 = % [1 - iy , (92)
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R
Thus, Instead of prescribing ;3- (which 1s equivalent to pre-

scribing g? since ;% is alrgady prescribed) it is prefer-
able to prescribe H, since it is one of the more important
physical parameters concerning the dynamics of the electron.
For example, suppose that H=T(r,): From Eq.(92), it is ob-
o» the
surface of the outer cylinder. For certain applications, it

vious that the outer turning point then occurs at R

may be preferable to operate the orbitron in this mode.
However, for r, =R, (actually r,=R,-6', where &' 1is small
compared to Ro), it is probable that a large fraction of the
orbiting electrons could be collected at the outer cylinder.
This condition should be avoided in both ion gages and ion
pumps. Therefore, H should be sufficiently small that it is
improbable that electrons can reach the outer cylinder. This
occurs for H=0, which implies that if all the outer turning
point kinetic energy (angular mode) were converted (in an
elastic collision) to radial mode kinetic energy (an improb-
able event), the electron would reach the outer cylinder as
r+~0. Thus, setting H=0 in Eq.(92) and using Eqgs.(69) and
(70) (agd recalling that it has been prescribed that ri:Ri)

gives ﬁ% = 3.65. This is the minimum value that may be pre-

O
Ry .
it may be seen that to completely avoid the possibility of elec-

scribed for (See Appendix E). From the above discussion,

trons reaching the outer cylinder, a negative energy must be pre-

scribed for H. It i1s convenient (although somewhat arbitrary)
to prescribe

H = -T(r,). (93)
Substituting this into Eq.(92) gives
R
log == = a2 , (94)
r
(o]

B
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and using Egs.(69),(70) and (71) yields the ratio of the elec-

trode radii,

= = 5.13. (95)

The only way this number can be increased 1s to decrease H

(prescribe a larger negative value).

The method of deriving the self-consistent anode poten-
tial is described in the following paragraph. From Eq.(65),
after substituting from Eq.(94) and recalling that r;=R; ,
the self-consistent anode potential is given by

N

2T (ry) (a2 + 8 + log 22). (96)

eV > -
o .
8 1

Using Eq.(68), this may be written in the form

rs
eV = T(ry) — - H. (97)
i

Using Eq.(93), this equation becomes

2
eV = T(r,) F% + {] . (98)
i
Substituting into Eq.(96),(97), or (98) (which are simply dif-
ferent forms of the same statement) from the numerical values
given in Eqs.(69),(70),(71),(85) and (93) gives the self-
consistent anode voltage

V = 385 volts. (99)

50




The method of deriving the launcher bias voltage 1s de-
scribed in the following paragraph. The electrons may be in-
serted into orbit at any point along their trajectory, however
at the turning points only a fraction of the space occupied by
the launcher need protrude into the space occupied by the elec-
tron trajectories, but if the launcher is located at any other
point along the electron trajectory the entire launcher is
within the space charge cloud. Thus, orbit insertion should be
accomplished at either the inner or outer furning points. At
either turning point, there are two principal methods of in-
serting the electrons into orbit: (1) The electrons may be accel-
erated within the launcher, which is biased to the local space
charge dependent potential, such that they are emitted from
the launcher with the prescribed turning point kinetic energy
(angular momentum) and with their velocity vectors coinciding
with the 6-direction. (2) The electrons may be emitted from
the launcher with negligible kinetic energy, but constrained to
move in the 6-direction only, from a launcher which is biased
below the local space charge dependent potential such that they
are accelerated up to the prescribed turning point kinetic
energy by the local field as they leave the launcher. It is,
of course, possible to combine the two methods. The first
method 1s, in principle, more flexible and the accurate control
of the launch (insertion) parameters is simpler and more posi-
tive. Of the two turning points, the more suitable location
for the launcher is the outer turning point, r,, since this
location gives the lowest probability for electrons collid-
ing with the launcher on subsequent passes (for moderate to
high eccentricity trajectories). For electrons emitted from

a launcher at r in the 6-direction, and with kinetic

o°?
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energy T(r,) (2=[2 m r} T(ro)]%), the launcher bias voltage
must be such that it matches the local space charge dependent
potential ¢,,(ro). From Egs.(77),(61),(75),(76),(85),(92) and
(93), it follows that the launcher bias voltage is given by

eVb1 = e¢21(ro)
= 2 T(r,), (100)
or
vV, = 100 volts, (101)

1

where the subscript b indicates that this bias applies to

1
the first launch method. (It is interesting to observe that

for a space charge free potential distribution, and all other
parameters held fixed, the local potential would be ~160 volts.)
If the electrons are emitting with negligible kinetic energy,

the launcher must be blased such that

el¢, (ro) - ng = T(ry) , (102)
from which it follows that

vV, = 50 volts, (103)
2

where the subscript b2 indicates that this bias applies to
the second launch method. (For a space charge free potential
distribution, the required bias would be ~ 110 volts). In the
second launch method, the application of the correct bias to
the launcher 1s not sufficient to assure that the electrons are

correctly inserted into orbit since the potential difference
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through which the electrons fall depends on the direction which
the electrons leave the launcher since the potential hill sur-
rounding an acceleration-biased launcher is not symmetrical,
being steeper on the inside (toward the anode) than it is on

the outside. The acceleration-biased launcher cannot be located
at r (the outer turning point) since the electron must

o

arrive at r, with f(ro)=0 and at this point have kinetic
energy T(ro) (a prescribed parameter). The only way that an
acceleration-biased launcher can satisfy these conditions is

for the electron

4+
Cns ©

o be emitted from the launcher in a direction
which makes an angle somewhat less than % with the radius vec-
tor (emitted outward) such that the electrons pick up angular
momentum and kinetic energy in falling down the potential hill.
The electrons then continue to coast outward (against the field)
until the radial component of the momentum goes to zero. This
point is ros however for insertion into the correct orbit the
launcher bias and the direction of emission must have been such
that the electrons arrive at this point with the proper angular
momentum (2=[2 m r? T(PG)]%, where T(r,) is prescribed, say
50 eV). The important conclusion is that an acceleration-biased
launcher is completely within the space charge cloud since the
cloud outer boundary (trajectory outer turning point) is well
outside the launcher location. A similar argument applies to
acceleration-biased launcher locations in the neighborhood of
the inner turning point and a similar conclusion is obtained.

It is obvious that a potential hill 50 volts high produces a
substantial perturbation in the space charge dependent potential
distribution. It is not only a large perturbation locally, but
it is non-negligible over a substantial fraction of the volume
of the space charge cloud in the z-neighborhood of the launcher

since its decay is quasi-logarithmic. It thus appears that the
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only acceptable method of launching is the first, with launcher
locations restricted to either the inner or outer turning points,
since this method produces no perturbation of the space charge
dependent potential distribution, and only a fraction of the
volume of the launcher protrudes into the space charge cloud

volume.

Under certain conditions, the orbitron principle con-
tains a natural feedback mechanism which may be used to main-
tain the number of electrons in the space charge cloud
constant. This feedback mechanism is discussed in the follow-
ing paragraph.

Suppose the electrons are lnserted into orbit at the
outer turning point with kinetlc energy T(ro) from a launcher
biased to match the local space charge dependent potential.
Thus, the outer turning point is fixed at r, (the launcher
location), the electron emission angle is fixed at %% (with
respect to the radius vector), and the electron emission

energy, T, , 1s fixed since

T, = T(r,). (104)

Now, suppose that the electron injection rate into the space
charge cloud is perturbed such that it exceeds, by a small
fraction, the total electron loss rate from the cloud. It
necessarily follows that NL must begin to increase. The
immediate effect of increasing N; 1s to lower the potential
distribution within the space charge cloud, see Eq.(77).
Thus, ¢21(r0) must decrease or, considering the potential a
function of NL’ it follows that
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¢21(P°, NL + ANL) < ¢21(Po, NL). (105)

Since r; = Ry+8 (and 6 1is negligible), the potential at
the inner turning point is nearly identical with the anode
potential and is, therefore, constant. Thus, at the inner
turning point, the potential must satisfy

(Pi, NL+ANL) = ¢21(Pi, NL). | (106)

R rence appearing in the numerator
57), which gives the ratio of the turning point radili,
must increase as NL increases. Now, concerning the denom-
inator of Eq.(57), before the injection rate perturbation,

the launcher bias must satisfy Eq.(100), that is

(r, N.), (107)

O,

and after the perturbation begins, the launcher bias is
greater than the local space charge dependent potential since
the bias is fixed and the potential at the outer turning point
decreases as N, 1increases, see Eq.(105). Thus, the elec-
trons are emitted from the launcher into a retarding field.
The outer turning point kinetic energy, after the beginning

of the perturbation of the injection rate, is given by

T(r NL+ANL) = T -e[Vb1-¢21(ro, NL+ANL)], (108)

0> e

which may be written, using Eqgs.(104) and (107)

T(r

o> Np+aN ) = T(r ,N;) -ele¢, (ry,N)-¢, (r , N +aN )].

21

(109)
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From this equation and Eq.(105), it is obvious that

T(ro, NL+ANL) < T(ro,NL). (110)

Thus, the perturbation which increased NL, resulted in a
decrease of the outer turning point kinetic energy. Using

Egs.(106) and (109) to evaluate Eq.(57) after the beginning
of the perturbation gives

r? ¢, (r,,N_) = ¢, (r_ , N +aN )]
T(ro,NL)-e[¢21(ro,NL)—¢21ro, NL+ANL)]

From Eq.(105), it follows that increasing N, by &N has

increased the numerator and decreased the denominator of the
term on the right in Eq.(111). Therefore, it follows that

rf r
— > — » (112)
rf rf

NL+ANL NL

and since r_  1is fixed, it necessarily follows that r,
must decrease. But decreasing r; implies that electrons

collide with the anode, since ry;=R These collisions

increase the total electron loss raée from the space charge
cloud which produces a decrease in Ny (and incidentally a
decrease in the mean orbiting life time). It is, therefore,
concluded that the variation in the space charge dependent
potential distribution as a function of NL is such that it
has the effect of closing a feedback loop around NL and
tends to hold NL constant (provided, of course, that the
orbit injection parameters, electrical parameters, and geo-
metrical parameters all belong to a self-consistent set).
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1.8 ION PRODUCTION RATE

The average number of ions produced in unit time by
the electrons in unit length of the rotating space charge
cloud, (N+)L, is given by

(N+)L=<V>NLno+, (113)

where o} gas lonization cross section for electrons

having a mean kinetic energy <T> = %<v>2,
<v>= mean electron velocity,

n = gas member density.

NL has already been calculated and o, has been repeatedly
measured for many gases by numerous experimenters and is
avallable in the literature. Thus, it remains to calculate

the mean electron velocity, <v> .

There are several useful definitions of the mean elec-
tron velocity, each differing slightly from the others. The
definition of <v> considered most useful in this applica-
tion 1s that electron velocity properly associated with the
mean radial position of the electron, <r> . Therefore, it
is first necessary to derive a self-consistent expression for
<r> , then evaluate it for the particular set of parameters
under consideration in this first self-consistent solution
and, finally, compute the electron velocity at this mean radial
positlion, that is to compute v(<r>).

The second approximation to the mean radial position of
the electrons is given by
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(= >=Iqu r dt (114)
r dr

r

1

1
o
2
rrT
o

f’l’

ol"

J,0
ll"i

Integrating by parts gives

r 2 dr Yo ro dr
< l"o>= peges ;Pf?l —fdr[—f.— . (115)
o r ]
i I"i

Equations (53) and (54) may be used to evaluate the first
integral, with the result

r
(o]
r 2 dr
> =1 - : dr -_— . 116
- = T (116)
Ty

The second integral may be written, using Egs.(52), (79),
(80) and (81), as

rO
r dr r dr
<I‘>=l_ff‘_ff(g’a8’8’7)l‘-—’ (117)
0o o 2 1 o o
Ty
and from an equation similar to Eq.(75), but applying to the
2nd approximation to the charge integral I'(r), Eq.(117) may

be written

rO
r = - r dr
< ro> 1 fg«'z(gl’“s.’sﬁ') - (118)
Ty

This integral has been evaluated numerically (for a = %’
=1, ri:Ri) and the result is
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A
\
]

1 - 0.254
0.746. (119)

The electron velocity at any point along its trajectory
is given by

S
v(r) = {#2+ p2§2}2 (120)

and using Eqgs.(20) and (56), this may be written

1
2
vir) = {r2+ §%£r°)

3} (121)

2

ir I

and substituting for r from Eq.(79) gives the 2nd approxima-
tion to the electron velocity
1

2T(r ) \? lo E9—+g( s ) -g ,1)]4,2
v,(r) = ( To ) {1 + 2 [1og %§+e[ £ 7 B %o ry B % ]]}

m a2 ro
B [lOg E—i - % (Go,l)]
(122)
Evaluating this expression at < ? > given by Eq.(119), taking

(o]
;3 from Eq.(69), B8 from Eq.(70), ag from Eq.(71), g{adég >)
i [o]

from Fig.5, and gﬁao,l) from Fig.5, yields

1
2T(ro)] 2
T :

1
v,> = v2(<§L€9 = (2.38l7 [

(o]

(123)

Digressing for a moment, the electron mean kinetic energy
may be immediately calculated from Eq.(123), since
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<T>= 5 <v>?2, (124)

VTR=]

which gives
<T>= 2.38 T(ro), (125)

and substituting from Eq.(85) for T(r ) gives

<T>= 119 eV. (126)

Thus, for the set of parameters chosen, the electron mean
kinetic energy 1s about the center of the kinetic energy
range corresponding to the ionization probability maxima for
a large group of common gasses. From Egs.(85) and (123), 1t
follows that the mean electron velocity 1is

cm

- 8
>= 6.45%10 —ec”

<V, (127)
Returning now to the ion production rate (Argon is

used throughout as a typical gas wherever gas properties are

required in detail calculations) given by Eq.(113) and taking

N, from Eq.(86), <V, > from Eq.(127) and the ionization prob-

ability for Argon (the average of many values from the litera-

ture applicable to Eq.(126)) as

16
Cppt = 3.8 x 107  cm?2 (128)
yields
. +
(NAr+)L= 6.6 x 1018 Prs (%g‘c“) s (129)
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for each centimeter of space charge cloud (the T-subscript
on PT indicates that pressure is measured in Torr). This
result should be considered a first approximation since the
value of NL used 1s a first approximation even though the
value of <v2> is a second approximation. The lon current
produced (per cm of space charge cloud) is simply e(NAr+)L

(-e = electronic charge), and from Eq.(129) this is

(14,4) = 1.06 Py, (Amp). (130)

The electron injection rate required in two typical
modes of operation is computed in the following paragraphs.
One of the simplest modes of operation is that in which the
electrons drift slowly away from the launcher (in the z-
direction) until they reach z=L where they leak out of the
coaxial cylindrical structure through a weak mirror field.
This mode of operation tends to minimize the x-ray induced
residual current since the electrons which do not collilde
with a gas atom are eventually collected outside the orbitron
structure. Suppose that the potential of the mirror electrode
is such that the mean velocity in the z-direction is <Z>.
Thus, the current leaving the neighborhood of the launcher in
the z-direction is -eNL<Z:>(none of which returns). There-
fore, the electron injection rate required to maintain N

L
constant in the neighborhood of the launcher 1is

. - < . )
N, = N <Z> (131)
It is assumed that the electrons are inserted into orbits

which are sufficiently eccentric to miss the launcher during
the interval of time required to drift out of the z-neighbor-
hood of the launcher. For a launcher biased to match the local
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space charge dependent potential, this may be of the order

of five orbit periods (or more). However, for an acceleration
biased launcher, this interval 1s probably of the order of one
orbit period. Thus, <7> must be larger (in this mode of opera-
tion) for an acceleration biased launcher than for a potential
matched launcher. This implies that the electron injec-
tion rate must be larger for the acceleration bilased launcher

than for a potential matched launcher.

For a potential matched launcher, the electrons must move
a distance AZ=L' (L' is the launcher length) in a time inter-
val of the order of 5t. This yields the approximate relation

<> _ L
<v> ~ 1l0On<cr>

(132)

For L'=0.5 ecm (a small but yet practicable value) and
Ro=2.50m(implying from previous results that <r>=0.94 cm)
gives

= 107 2
v .

(133)

N
\

min
This constraint places an upper 1limit on the parameter

N
Eﬁ somewhere in the neighborhood of 103. For an acceleration
bifised launcher, this upper 1limit would be smaller since

<Z>

Eq.(133) gives a larger minimum value for s

An important mode of operation involves a relatively
strong mirror field at Z=L such that all electrons are re-
flected. By properly restricting the maximum value of operat-

. L <V
ing pressure, the ratio —+—, and —ZE%}, N

approximately uniform over fhe full range of Z (this was not

may be malntained

necessarily the case in the previous mode of operation). For
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1

where o} ionization collision cross section of the
atom for electrons having a mean kinetic

energy <T>

The number of non-ionizing collisions per unit time is there-
fore.

v-v = <v>L N n(o-0,). (136)
This also may be taken as the number of elastic collisions

per unit time, since the excitation cross section is generally
very small compared to o¢ . In some fraction of the elastic
collisions, there is sufficient electron kinetic energy loss
or momentum change such that the electrons are left in an un-
stable orbit after the collision and, subsequently, collide
with the anode. The number of electrons lost from the space
charge cloud in unit time by this mechanism is therefore

h v, = h{ v-v, ) = <v> L NL nh(o—o+) s (137)

+
where h 1is in the interval 0 <hc<l, the exact value of

which is not essential.

A small fraction of the electrons orbiting in the 2z-
neighborhood of the launcher, continuously collide with the
launcher. The electron-launcher collision frequency is worked
out below for a launcher located at r, and biased to match
the local space charge dependent potential (the necessary pro-
cedural modifications for treating the acceleration biased
launcher are rather obvious). Consider az eylindrical launcher
of radius RL, the axis of which is parallel to the orbitron
axis and located at r, (electrons are ejected from a central
slit, parallel to the launcher axis, which is orthogonal to
the radius vector passing through the center of the launcher).
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Obviously, the launcher radius should be as small as practic-
able. From practical considerations of the operations in-
volved in the assembly of the various launcher electrodes, a

near minimum launcher radius is considered to be

R, = 0.05 cm. (138)

The effective launcher length, L', protruding into the end of

the space charge cloud, is taken as

L' = 0.5 cm. (139)

The electron collision frequency with the launcher is given
by

1
. =JE.[36(P) da, (140)
Ay
where ALE that part of the launcher projected area onto a

radial plane passing through it,which is within
the space charge cloud,

= ]
L RL.
The current density is given by
Jor) = p(r) ve(r) . (141)

But since RI << r, and Ve(r) is a slowly varying function

in the neighborhood of roos the approximation may be made
that

ve(r) = ve(rbL ro—RLsrsro. (142)
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a launcher biased to match the local space charge dependent
potential, electrons that collide with the launcher have a
kinetic energy of 50 eV (for a launcher located at the outer
turning point). If the launcher were located at the inner
turning point, the electrons would collide with a kinetic
energy of 335 eV, which is another reason for avoiding an
inner turning point location for the launcher. The electron
launcher collisions produce soft x-rays, a fraction of which
radiate from the launcher to the ion collector surface (outer
cylinder) where they eject photoelectrons. Thus, in this mode
of operation, it 1is necessary, in the interest of reducing the
residual current for ion gage applications, to separate that
portlion of the outer cylinder which surrounds the launcher
from the remalnder of the outer cylinder and use only the
latter for ion collection. This substantially reduces the
photoelectron emission from the ion collector, since the sub-
stantial fraction of the soft x-rays and photoelectrons leave
the surface in a direction near the surface normal and thus

do not reach the ion collector.

Under the above conditions, the total number of elec-
tron-atom collisions in unit time is

v=<v>LN no , (134)

where g total collision cross section of the atom for

electrons having a mean kinetic energy <T> .

Similarly, the total number of ions generated in unit time
1s
(135)

v, = <v> L NL no

+ + °?
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From this approximation and Eqgs.(124) and (125), the current
density may be written

~

Jo(r) = =tmm o(x). (143)

Substituting this back into Eq.(140) and taking o(r) from
Eq.(52) and noting that dA=L'dr, the electron-launcher col-

lision frequency becomes

r

v, = _<v> L'Np © dr
L V238 g+ r r(r). (144)

ro-RL

‘The strong variable in this integrand is r(r) since r ! » =

as r +r,. Further roo- RL =T which implies that the range
of integration is sufficiently small that r may be set equal
to r and factored out of the integrand. From Egs.(71),

(94) and (138), and taking

Ro =2.5cm, (145)
it follows that
r, - R = 0.96 ros (146)
and that
r = 1.26 cm . (147)

Therefore Eq.(144) may be written
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r
(o}

= _<v> L'Ny, dr
2 7538 v / r(r) . (148)
r_-R

o L
Using Eq.(53) and Fig.l4 to evaluate this expression, the

electron-launcher collision frequency is

v, = <v> L'NL(O.185)
L V2.38 2m 1"0 ? (149)

and from Eqs{139) and (147)

vy =7.58 x 1073 <v> N, (150)
The total number of electrons lost per unit time from the
space charge cloud by elastic, inelastic and launcher colli-
sions, is the sum of Eqgs.(135), (137) and (150). A necessary
condition for maintaining NL = constant is that the electron
launcher rate, Ne, must be equal to this loss rate. Therefore

' -3
N - <v>NL{Lno[(l—h) %t + h] +7.58 x 10 } . (151)

At low pressure (small n) the domingnt term in this expression
is obviously the last term. Thus, maintaining NL constant at
low pressures requires a constant electron launch rate, inde-

pendent of P. This launch rate is given by

N, = <v>N [7.58 x 10-3], (152)

dropping all but the last term in Eq.(151). Substituting from

Egs.(86) and (127) for NL and <v>, implies that the emission
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current (required to maintain the total charge in the rotating

electron cloud constant) is
i, = 0.645 ma, (153)

(again, for the specific set of parameters used in this first
development of a self-consistent solution). The pressure above
which the electron launch rate (required to maintain NL= const.)
depends on P , may be evaluated by determining that pres-
sure above which the last term in Eq.(151) is no longer domin-
ant (suppose it is only of the order of 90% of the total).

Thus
8.5 x 10'3

n <
max” ;.[(1-h) %+ + h] °* (154)
[0}

and again taking Argon as a typical gas, for which

o,, = 9.5 x 10716 cm2, (155)

OAr+

and from Eq.(128)
Oar

= 0.4, and taking

L =10 cm, (156)

gives the pressure above which the launch rate required to
maintain NL= const. 1s dependent on pressure

2.64 x 10=2 Torr, (h=1),
(Pp) = (157)
: max 6.6 x 10-° Torr, (h=0).
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A reasonably accurate estimate of h 1is a rather laborious
computation which involves not only quantum collision mech-
anics but also the specific geometrical parameters of the
orbltron, the space charge dependent potential distribution,
and the electron trajectory parameters. The computation of
h is not done here, but from Appendix A, it may be seen that
h+1 as a82+% and that h>hjjmir as ag2+l. Although
Njimit>0 for all useful electron kinetic energies.

The N+

n
EEEE N
(

(135) and

arameter may now be calculated from Eqgs.
152), whicEe Tgives

N Lno
_* - *_3 , (158)
NPy 7.58 x 10-3p,

and taking L from Eq.(156) and o, from Eq.(128)

(for Argon), gives

N
.Ar+ = 1.63 x 104 , (Torr-1) . (159)
N, Pq

e

The ionic pumping speed, S+ , assoclated with the ion
productlion rate is given by

S, =C, — , (160)

where C.

ion capture probability at normal incidence for
lons having kinetic energy T, (R,)=e¢,, (<r>), (=170 eV).
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Substituting Eq.(135) into Eq.(160) gives

nn

Q
K |+

= <yv> L NLO' (161)

+,

and using Eqgs.(86), (127), (128) and (156), gives the ionic
pumping speed for Argon

+ 3
= 3 cm”
C, 2 x 10 sec (162)

The rotating electron cloud corresponds to a circulating

current which is given (approximately) by

. <v> L
1g = eNp 5P (163)

Thus, the ratio of emission current to circulating current is
given by, from Egs.(152) and (163),

—e = (7.58 x 107%) L2 (pepy, ), (164)
lg
and using Eqgs.(119), (147) and (156) gives
;E = 4.47 x 10-3. (165)

8

This result validates the use of the time-independent contin-
uity equation, an assumption made earlier in deriving the
charge density distribution, see Eq.(29).
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It was assumed earlier that the charge distribution is
nearly uniform along the Z-axis. The validity of this assump-
tion may be determined for the maximum pressure for which the
orbitron response is a linear function of emission current,

Eq.(157). The électron mean free path in Argon is given by

rA(e,Ar) = 1
n oo,
_ 0.032
= T (em) (166
LT s \Uliiy \ Uy
and substituting (PT)max for Pq from Eq.(157), gives
A(e,Ar)|min= 5.8 x 102cm, (h=0). (167)
The distance traveled by an electron along its trajectory
during one orbit is of the order of
s = V2 7 <r> , (see Appendix C), (168)
and using Eqs.(119) and (147) gives
s = 5.0 cm. (169)
Thus, in one mean free path, an electron executes
%(e’AP)= 116 orbits, (170)

which is adequate to assure nearly uniform charge distribution
along the Z-axis since in this number of orbits the electron

could have traversed the full Z-range several times.
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This entire orbitron analysis has been based (in part)
on the working hypothesis that the space charge was com-
pletely electronic. The validity of this hypothesis may be
determined by calculating that pressure above which the
lonic component of the space charge 1s no longer negligible.
Since the mean radial position of the electrons is «<r> ,
the most probable radial position at which ions are formed
is also <r>. The mean ion life time, <t1,>, 1s therefore
the time required for an ion to traverse the distance from

<r> to Rg,. The ionic acceleration is given by

r = HI E(r). (171)

Integrating this equation gives the ionic velocity
(—e)
m

I

N
N

[¢21(<r>)—¢21(r)] Iy <rr>=r Sro,

He
Blm

1
)2 [¢21<<r>>—¢31<r>]%, rosrsR,, (172)

where the initial ion velocity is assumed negligibly small.
Integrating this result again gives the mean ion 1life time

ry R
( 1 4 S (173)
= Ei)z j. r 1 +J{ r 1
<T,> = 2 1_
' e r Lo, (cr>)=0,, (r)] T Doy ter)=o,, ()]
<r> r

[0}
((r) 1s given by Eq.(77), and from Egs.(15), (54), (55),
(75), (76) and (78), it follows that

_ eNL o - 108 T

72




Making the appropriate potential substitution in Eq.(173),
taking the limits of integration from previously defined
parameters, taking gl(ao,—go) from Fig. 5, and performing
the indicated integrations numerically, gives

1
> = 145 Ry (o). (175)

Taking R from Eq.(145) and V from Eq.(99), the mean
Argon ion life time is

STy 4> ® 8.4 x 10-7 sec. (176)

The number of ions in unit length of the interelectrode
space 1is given by

Substituting from Eq.(129) for (ﬁAr+)L and from Eq.(176)
for <t,.+> 8lves (again for Argon)

(NAr+)L = 5.5 x 1012 P (178)

For the space charge to be considered completely electronic
(as has been done in the analysis)

(N, +)p << Ny (179)
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Therefore from Egs.(86) and (178), it follows that

Prl << 1.49 x 10-% Torr. (180)
max

This result implies that the space charge may be considered
completely electronic below about 1.5 x 10~5 Torr. There-
fore, from Eq.(157) (for any value of h ), it follows that
over the entire linear dynamic range of the orbitron, the
assumption that the space charge is completely electronic,
is wvalid.
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1.9 CONCLUSIONS

The development of the 1lst approximation to a self-
consistent solution for the electron motion, charge density

distribution and charge dependent potential distribution in

an orbitron, used the following assumptions:

The space charge is completely electronic.

The charge density distribution is sufficiently
uniform in the Z-direction that its variation
with Z may be neglected.

The charge density distribution is independent
of ©

Allowed orbits are members only of the orbit
subset which satisfies the stability criteria;
excluding, however, although members of this
subset, that part of the discrete series of closed
trajectories for which n 1s small.

The time dependent component of the charge den-
sity corresponding to the collision loss rate and
the balancing injection rate is negligible, com-
pared to the equilibrium charge density.

These assumptions are shown to be valid for practicable config-

urations and modes of operation.
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Under these assumptions, the consistent set of differen-
tial equations describing the space charge dependent potential
distribution, the charge density distribution, and the electron
radial velocity are:

E%_(r %%) = - E_%iﬁl (Poisson Equation),
(o]
—a@r— [r?o(r)]=0 (Continuity Equation),
and

L] . 2 )
rdr . 27, & 4 (2nd Law).

dr 2.3 m dr

m2r

The solution of which is applied to three concentric cylindrical
regions, with space charge in the middle region only, by forcing
the solution to satisfy two boundary conditions on the potential
at the inner and outer electrode surfaces, and four continuity
conditions on the potential and electric field at the two inter-
faces of the three regions. The solution is also constrained to
satisfy

(Stability Constraint),

_ a? -r d¢
T(ro‘) 2 e[ dr

r=ro

for the allowed range of the stability parameter

% < a2 <1,

which assures that the rotating electron cloud is populated with
electrons having long probable life times.
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The solutlion is developed by substituting the space charge free
potential distribution into the 2nd Law, and solving numerically
for r. This function is then substituted into the Continuity
Equation and a solution obtained for p(r). This result is

used in the Polsson Equation to obtain the lst approximation to
the space charge dependent potential distributlion. This poten-
tial is substituted into the 2nd Law, and a 2nd approximation

to r obtained numerically. Using this function in the Con-
inuity Equation gives a 2nd approximation to the space charge

4+~

i »
vi 1wV

3~
Uution.

Since the above system of equations is non-linear and
also non-integrable analytically, a particular solution may be
obtained by numerical integration for a speciflc set of param-
eters only. To enhance the utility of this first development
of a self-consistent solution, it is first determined where the
rotating electron cloud inner boundary should be located to give
maximum charge storage. It 1s found that the inner turning
point should be near the anode surface. This result permits the
introduction of a valid approximation which, in turn, makes it
possible to retain some generality in the sense that the numer-
ical integrations apply not to one particular solution only,
but rather to a subset of particular solutions.

The following table gives the prescribed parameters and

the derived parameters in order of progress:

Prescribed Parameters Derived Parameters
ri = Ry % = 2.59
ry
2 = L1 2 =
aO 3 GB 0.68“
Yy eOB T(I"o)
B = 1 NL =

. r
a?e?[log 7= - g1(ao,1)]

(N



Prescribed Parameters Derived Parameters

T(r,) = 50 eV N, = 0.825 x 10° cm™?
R
H = -T(ro) B = 5.13
i

V = 385 Volts

= 100 Volts
<Ts = 0,746
r

= g cm
<y>= 6,45 x 10 cec

<T>= 119 eV

. Art
= 6.6 1018 pol—
(NAr+)L x T\sec L

(iAfa£= 1.06 Py (amp)

oy
)]
no
n
o
3
R
]
[
N
(o))
2]
=i

=
i
o
I~
\O
e]
=]
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Prescribed Parameters Derived Parameters

-5
L = 10 cm (PT)max < 6.6 x 10 Torr
RL = 0.05 ¢cm
ie = 0.645 ma
L' = 0.5 ¢m i

& - 447 x 107°

Ar . " -1
—— = 1.63 x 10 Torr
NePT
SA +

' = 2 liters/sec.

C,

-7
<t . +> = 8.4 x 10 sec.

12
5.5 x 10 P (A;)L

(NP g
The following conclusions may be drawn from the results
developed in the preceding orbitron analysis:

The space charge dependent potential distribution,
for maximum charge stored stably in the rotating
electron cloud, is substantially lower than the space
charge free potential distribution. This confirms the

suspicion that a space charge free analysis has limited
utility.

The maximum charge that may be stored stably in
the rotating electron cloud is about the same as may be

stored on one plate of a cylindrical capacitor of the
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same dimensions at the same anode potential.

The maximum charge stored stably is approximately
a linear function of anode potential (other parameters fixed).

The 1on production rate (per unit length of electron
cloud) increases slower than the anode potential (other

parameters fixed).

Maximizing the charge stored stably requires that
the electron trajectory inner turning point be very near

the anode surface.

The charge stored stably increases with increasing
anode radius and decreasing outer cylinder radius (however
for all other parameters fixed, the outer cylinder radius

cannot be less than a certain lower limit).

The feedback mechanism, which regulates the total
population of the electron cloud at its maximum value
consistent with stability requirements, is operative
only for an inner turning point location very near the
anode surface. For all larger inner turning point locations
the cloud population must be regulated by other (external)
mechanisms. The possibility of over populating the
electron cloud presents a grave hazard if the inner turning

point is not near the anode surface.

Orblt insertion parameters must be accurately controlled
to achieve optimum charge storage. Deviation in orbit
insertion parameters results in unstable trajectories,

short orbiting life times, and low ion production rate.

For many configurations or modes of operation, the
ratio of emission current to ion current increases with
increasing anode potential.
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Ion gage sensitivities of the order of 104 to 105
Torr-1 can be achieved for conventional size devices.

Several modes of operation are possible, for orbitron
ion gages, which are substantially free of residual current.

Relatively high ionic pumpling speeds are attainable
in orbitron ion pumps. For example: an orbitron pump
about the size of the magnetron gage (Redhead) and
operated at the same anode potential would have an Argon
speed of about 2 liters/sec. Simllarly, a 5 cm diameter,
20 cm length orbitron pump operated at 10KV would have an
Argon speed of about 65 liters/sec.

The computational task associated with obtaining
a precise solution to the orbitron problem appears to be
less formidable than was suspected at first, since the
comparison presented in Fig. 6 implies that the iteration
process converge rapidly.

The numerical data presented in Fig. 3 thru 6 may be
applied to geometrical and electrical configurations which
differ from the configuration worked out in section VII
and VIII by using the computational procedures developed
in these sections, provided only that o, and B are held

fixed.

B
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2.0 DESIGN AND CONSTRUCTION OF AN EXPERIMENTAL
ORBITRON GAGE

The analytical results obtained in the preceeding section have
been applied to the design of an orbitron lon gage which 1s dis-
cussed in the following paragraphs. Schematics of the device are
presented in Fig. 7 and 8 where electrode materials are indicated

and important dimensions are given.

The design is such that either mode of electron launching may
be used, that is from a potential matched launcher or from an
acceleration biased launcher. The ion collector portion of the
outer cylinder is electrically separated from the end section
of the outer cylinder and the launcher is located within this
end section to minimize the residual current at the ion collector.
The launcher is located near one of the electron mirrors to pro-
vide for control of the ratio of z-axis drift velocity to orbital
velocity. In this configuration, launching is anticipated only
in the neighborhood of the outer turning point. It is further
supposed that operating parameters will always be such that the
inner turning point is in the neighborhood of the anode surface
since optimum charge storage in the electron cloud is of principal
interest. The launcher is mounted on a bellows assembly to provide
for some adjustment in the ratio of outer turning point radius to
inner turning point radius by adjusting the radial position of the
launcher. This mounting system also provides for some adjJustment
in the =z position of the launcher and as well as some variation
in launch angle about % (applicable to an acceleration biased
launcher). Electrically isolated electron mirrors and anode
guard electrodes are provided to control the axial flow of
electrons and adjust the axial position of the electron cloud.

An enlarged schematic of the electron launcher is shown in
Fig. 8. The cathode 1s centrally located in a slited tube. The
tube serves as one heater current lead and supports one end of the

cathode, and the axial slit limits the width of the electron
stream drawn from the cathode assembly. The launcher anode
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surrounds the cathode assembly and has an axial slit which is
aligned with the cathode assembly slit. This slit system results
in the ejection of a narrow stream of electrons from the launcher.
The center plane of the slit system is oriented at an angle of

% with respect to the radius vector of the orbitron. In the
potential matched mode of launching the launcher anode is biased
to match the local space charge dependent potential and the
cathode assembly is biased below the anode such that the potential

difference between them corresonds to the desired electron ejection

kinetic energ

cinetic ener gy (outer turnin cint kinetic energy

1ing point kinetic energy). The electron
launch rate is controlled by variation of the heater current only.
In the acceleration biased launching mode, the launcher anode is
biased below the local space charge dependent potential such that
the potential difference corresponds to the desired electron
kinetic energy in the neighborhood of the outer turning point.
However, to minimize space charge limitations within the launcher
and to assist incollimating the ejected electron stream the
launcher cathode assembly should be biased somewhat below the
launcher anode. Thus the electrons leave the anode slit in a
well defined direction and with a few eV of kinetic energy.

All electrodes are mounted on support rods which pass through
ceramic insulators located on a single flange thus making the

entire assembly demountable.

With the above geometrical configuration and for anode
potentials between 250 and 1000 volts corresponding to the mean
electron kinetic energy range from about 75 to 300 eV, the orbi-
tron ion gage performance may be experimentally studied and
evaluated over the sensitivity range from about 103 to 102 Torr-l.
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APPENDIX A

Stability Analysis

If an electron is in a stable orbit, any small perturbation of its
radial motion, resulting in an incremental displatement from its orbit,
must be resisted by a force which tends to restore the electron motion to
its original orbit. Thus, the incremental restoring force resulting from
an incremental displacement of the electron from its orbit must have the

-following form if the orbit is to be stable
df =-k dr, (A1)

where k 1is a positive constant. Taking the differential of both sides
of Eq.(21) gives

. 22 d
= = = — E dr.
d(mr) = df [H%.,— teo (r)) (A2)
For these two equations to be identical in form, it is necessary that
2
e L E@E) o, (A3)
mr dr

for all points along the trajectory.

The least stable point in an €llipse-like trajectory is the outer
turning point, where the electron is most distant from the force center,
thus experiencing the smallest electric force, and also where the gradient
of this force is smallest. Thus, a stability criteria which assures that
the electron trajectory is stable at the outer turning point is sufficient

to assure that the entire orbit is stable.

The outer turning point of an electron in an undisturbed orbit coin-
cides with the outer boundary of the space charge cloud, the boundary
between regions 2 and 3. However, if the electron trajectory has been
perturbed such that the actual trajectory has been displaced radially by
a positive increment from the original trajectory, its outer turning point
will occur in region 3, beyond the space-charge boundary. Therefore, the
field derivative appearing in Eq.(A3) must be evaluated immediately outside
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the space-charge boundary in region 3. Since, in general, this region is
charge free, Laplace's Equation applies, from which 1t follows
E3(ry) Es(r
4 By (r) _ o) | Rary)

dr PO r
r=r 0

(Ak)

Substituting this result into Eq.(A3) and evaluating the angular momen-—

tum term at 1 also, gives (after rearranging)

3
To

22 > me Ez(ro). (A5)

Thus, of all possible orbits, only those are stable for which the elec-
tron angular momentum is greater than this lower limit.

In the orbitron, only bound orbits are of any interest, thus, the
repulsive term (positive) in Eq.(21) must not be so large (relative to
the electric field term) that it forces the electron to escape radially
from the interelectrode space. The repulsive term has its largest allowed
value when it exactly balances the attractive electric field term. The re-
pulsive term 1s related to the angular momentum. Therefore, the angular
momentun must have an upper limit if the orbit is to remain bound. This
limit is obtained by setting the left side of Eg.(21) to zero, which gives

22 = r03 me E(ro), (A6)

where r3E(r) has been evaluated at a radius equal to the outer turning
point radius of an ellipse-like orbit, thus occupying the same region of

the interelectrode space.

Thus for stable, bound orbits the angular momentum has an upper

and lower limit according to

3

r

< _me Ey(r ) <2 <r 3 me E,(r ). (A7)
0 — 0 o]

This expression may be converted to an equation, for insertion into
the analysis, an operation which assures the selection of only the stable
subset of orbits for further study. Converting the relation (A7) to an




Thus the effect of the perturbation, independent of the form of the per-
turbation interaction, is that the electron oscillates about its original
trajectory at the frequency given by Eq.(Ald) and with the amplitude given
by Eq.(Al6). The oscillation will continue for a very long time since the
only damping in the system is radiation damping of the electron which has
been neglected in Eq.(Al3) since it is extremely small. The energy ra-
diated during one orbit is typically of the order of 107 ° T(ry) to 107 *°
T(ri) where T(ri) is the kinetic energy of the electron at the imner turn-
ing point (maximum kinetic energy). Since the system is nonlinear « is
not a constant. In fact, w increases as r decreases (as the electron
proceeds along its trajectory from r_ ). The oscillatory pericd, %}3 is
of the same order of magnitude as the orbit period. Thus, the oscillatory

electron response actually distorts the entire orbit.

For k<0 in Eq.(A10), the response of the electron to a perturbation
is essentially different from the above results. The solution to Eg.(Al3)

is then
X .
x(t) = x, cosh wt + — sinh ut, (A18)
w
where ( 2y )
1—30!. E2 r
w2 = 0 "a2<%. (A19)

mr
e}

Thus, for a2<%, a perturbation which produces either a displacement

from the original trajectory or an increment in the radial velocity (or
both), no matter how small, yields an electron response which dlverges

from the original trajectory without limit.



where
(302-1) e Ez(ro)
= (A1h)

mr
o)

w2=

=Ny

The solution to this equation describes the electron response to the per-
turbation. Since the form of the perturbation forcing function is un-
known, the most general method of proceeding with the solution to Eq.(Al3)
1s to assume that at the end of the perturbation, the electron has been

displaced by X, and given a velocity increment io, where %mioz (the

increase in radial mode kinetic energy) is assumed small compared to
2'2
2mr 2
(o]
the parameters X and io become the initial conditions necessary to

Taking the end of the perturbation as the zero-time reference,

specify the integration constants in the solution of Eq.(Al13).
For k>0, the solution to Eq.(Al3) is

X
x(t) = x cos ut + jf-sin wt. (A15)
[¢]

For k>0, from Eq.(Al4) it is obvious that « decreases as o de-
creases. Therefore, the amplitude of the electron response in Eq.(Al5)
increases as o decreases and the frequency of the oscillatory response

decreases as o decreases. The maximum displacement of the electron

from its original trajectory is, from Eq.(Al5),

L] 2 }-
=y [1+ Yo ]2 (A16)
Xmax 0 X 2w2 .
(o]

Using Egs. (A8) and (Al4), this may be rewritten in terms of the kinetic
energy given to the electron during the perturbation AT, and the original

electron kinetic energy at the outer turning point T(ro),

2
(}max)z - Xo a? AT

+ . (A17)
Lo r,° (3 a2-1) T(r )
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Thus the effect of the perturbation, independent of the form of the per-
turbation interaction, is that the electron oscillates about its original
trajectory at the frequency given by Eq.(Al4) and with the amplitude given
by Eq.(A16). The oscillation will continue for a very long time since the
only damping in the system is radiation damping of the electron which has
been neglected in Eq.(Al3) since it is extremely small. The energy ra-
diated during one orbit is typically of the order of 107 ° T(ry) to 107 '°
T(r.) where T(ri) is the kinetic energy of the electron at the irmer turn-
inglpoint (maximum kinetic energy). Since the system is nonlinear w is
not a constant. In fact, w increases as r decreases (as the electron
proceeds along its trajectory from r_ ). The oscillatory period, %}3 is

of the same order of magnitude as the orbit period. Thus, the oscillatory

electron response actually distorts the entire orbit.

For k<0 in Eq.(A10), the response of the electron to a perturbation
is essentially different from the above results. The solution to Eq.(Al13)

is then

.

X .
x(t) = x_ cosh ut + — sinh ut, (A18)
w
where ( 2y )
1-32) Ep(r
W2 = 0 ’.a2<%u (A19)
mr

o
Thus, for a2<%3 a perturbation which produces either a displacement

from the original trajectory or an increment in the radial velocity (or
both), no matter how small, yields an electron response which diverges
from the original trajectory without limit.



APPENDIX B
Effective Eccentricity

The trajectory of a bound particle in a r 2 central force field is
in general a closed ellipse(u) (provided wave effects and relativistic ef-

fects are negligable). The radial position of the particle as a function
of the azimuth angle 6 1is given by

r = 1 , (B1)

km _ (%%Higl) cos 6

which is the standard form in polar coordinates of the ellipse sketch

below,

g O

1

-and where k = force constant,

L

particle angular momentum,

m = particle mass,
r,= outer turning point,
riE inner turning point,

r = semi-latus recturn of the ellipse.




The radial component of the particle acceleration is given by

2
P K (B2)
m2r3  mr2

The radius at which the particle radial acceleration passes through zero
is obtained from this equation by setting r = O and solving for r

. Y
r(r=0) =r = —, (B3)
km
Substituting this value for r into Eq.(Bl) and solving for 9(f=0)56
gives _

o = +n gy(n odd). (B4)

Thus, the polar coordinates of the particle at the instant that the radial

acceleration passes through zero are just the coordinates of the end points
of the semi-latus recturn of the ellipse.

In terms of standard elliptical parameters, the radius to the outer
turning point is given by
ro = a(1+ec), (B5)
and the length of the semi-latus recturn is given by

. 2
Pet, (=6)

and the ellipse eccentricity e, must satisfy the relation

b2 = a?(l-e_?), (BT)
where 2a = major axis of the ellipse,
2b = minor axis of the ellipse.

Eliminating a and b in Eq.(B5) through (B7) gives

L o =1e. (B8)
r c
o]

That is, the ratio of the radius at which the radial acceleration
is zero to the outer turning point radius is a function only of the eccen-

tricity of the ellipse. In retrospect, this may be demonstrated more
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succintly by substituting Egs.(B3) and (B8) into Eq.(Bl) which gives the
equation of an elliptical orbit in the form

n Y Ar BB

= l-ec cos 6, (B9)

from which Eq. (B8) follows immediately for the coordinate pair

(ro, nll) (n even).

By analogy with the closed elliptical orbit, an effective eccentricity
may be defined for the electron trajectory in an orbitron even though it is
not a closed ellipse. Equation(24), upon setting r=0, gives

5 3 Ep(T)
0?2 = (£ 22—, (B10)
o ~E,(r)
(o]
This equation is cumbersome to use if left in its general form, but be-
comes particularly elementary if only the space charge free potential
distribution is considered. The space charge free field is simply
E(r) = — 2. (B11)
r
log ﬁn
i
Substituting Eq.(B11l) into (B10) gives
=y, (B12)
r

o]

‘Thus, by analogy with Eq.(B8), the effective eccentricity e§ of an elec-

tron trajectory in the orbitron is given by
e* = 1—0. (Bl3)
C
Thus, the parameter originally introduced as an orbit stability label,

turns out to be nothing more than an obscure way of writing the effective

eccentricity of the open, ellipse-like electron trajectories in the orbitron.

Strictly, the elementary relation in Eq.(Bl3) applies only to negligibly

low space charge distributions. A similar, but more complicated relation
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may be derived for non-negligible space charge distributions. However,

the essential conclusion is (and applies to any space-charge distribution)

that o 1s simply a measure of the effective eccentricity of the ellipse-
like electron trajectories.

A-9



APPENDIX C

8-Dependent Charge Distributions

For this discussion it should be recalled that an orbit may be defined
as that segment of the electron trajectory between two successive outer
turning points (this definition is consistent with the conventional defi-
nition(u)). The azimuthal angle © 1is the angle traversed in 6-space
between two successive outer turning points. It is shown below that ©
has an upper and lower bound (independent of charge density distribution).
It is then shown that for certain values of 0 the electron trajectory
i1s stationary yielding a 6-dependent charge density distribution.

A bound electron having the maximum allowed angular momentum (a?=1)
executes a constant radius trajectory about the anode such that ‘f=0,
r=0 and the electron velocity along its trajectory is constant and given

by

V2
0o

2 \2
= Z E(r )r =(———) (C1)
(o] 0

mr'o

S

where r is the constant radius of the trajectory and 2 1is the in-
Jection angular momentum. Suppose that a small radial perturbation is
applied to the electron motion. If the perturbation is sufficiently

small that nonlinear terms may be neglected, the resulting motion is a
small amplitude harmonic oscillation about the original trajectory, the
oscillatory part of which is given by Eq.(A15) after having set a2=1

in Eq.(Al14). During the period of one oscillation 1= %g, the electron
advances along the trajectory r=r  a distance v, T Obviously then, the
wave length of one oscillation, measured along the original trajectory, is

given by

vV
A=2m 2. (c2)

Taking the period 1t as the time between two successive maxima of the

oscillatory part of the motion, it follows from the above definition of
® that (see sketch below)
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A=1r 0
r (c3)

since the average value of the oscillatory amplitude is zero as may be
seen from

F=p+s [F x(t)at = r (Ch)
o T o

upon substituting from Eq.(A15) for x(t).

,f”/"'-=“"—’—xmax

Eliminating A between Eq.(C2) and (C3), substituting from Eq.(Cl) for
v, and substituting from Eq.(Al4) for o (with a?=1), gives

e =4/2nm. (C5)
M

The subscript M (for maximum) has been applied to ® since this
value was obtained for the maximum angular momentum and as the angular
momentum decreases ® rmust decrease. An important observation is
that the result in Eq.(C5) is independent of electric field distribution
and therefore of the charge density distribution.
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The minimum angle traversed in one orbit is that associated with an

2=0 trajectory (which of course violates the stabllity criteria and pre-
sents obvious practical difficulties). However, if practicable and if
allowed, an =0 electron would pass through the origin (r=0) and proceed
to r=r on the opposite side of the anode. The angle between two succes-

sive outer turning points is 1 and therefore

O =1, (C6)

where the subscript m (for minimum ) has been applied since an angle smaller
than this value would have no physical meaning.

From the above discussion, it follows immediately that all electron
trajectories in an ortitron must satisfy

I < ei/é—n. (CT)

Since the derivation of these limits did not involve the form of the elec-
tric field distribution, Eq.(C7) is applicable to any charge density dis-

tribution provided only that the charge is uniformly distributed in e-space.

It is immediately obvious that the #=0 trajectory results in a non-
uniform 8-distribution of the space charge, since on a time average the
charge is mostly in the neighborhood of the turning points where r=0.

The =0 trajectory thus yields two charge clusters, each in the neighbor-
hood of r=r but one at 6=eo and the other at e=eo+ I, Thus for all

6 not near 0, or eo+H, p 0. An important observation concerning this
charge distribution is that it is stationary in 6-space. As the number

of 2=0 electrons are increased, the charge density approaches saturation
in only two regions while in the remainder of the interelectrode space the
charge density is zero. Such trajectories then make very inefficient use of
the interelectrode space and the applied potential.

A sequence of possible trajectories exists having £>0 which like the
2=0 trajectory, tend to produce localized statlonary charge clusters.
The trajectories belonging to this serles are those for which the angle be-

tween successive outer turning points satisfies the relation
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no = 2ml (n>m), (C8)

where n and m are positive integers containing no common factor

(and of course ® must satisfy Eq.(C7).) The n=2, m=1 trajectory has
already been discussed (2=0). The n=3, m=2 and the n=5, m=3 trajec-
tories are sketched below.

The- important property of this series of trajectories is that after n
orbits (or m circuits of the anode) each closes on itself and repeats

indefinitely. Thus, the n-orbit trajectory considered integrally is station-
ary. The n-orbit closed trajectory produces 2n stationary charge clusters
in the neighborhoods of the 2n turning points of the integral, closed
trajectory. All the members of this series of trajectories make more or less
inefficient use of the interelectrode space, approaching saturation in a dis-
crete set of small regions. The maximum charge that can be stored in the inter-
electrode space under these conditions is substantially less than that cor-
responding to a uniform approach to saturation over all 6-space. As n be-
comes large, the charge clusters begin to overlap and the charge distribution

in 6-space begins to smooth, eventually becoming approximately uniform.

From the above discussion, it is clear that the n-orbit closed trajectorles,

in which n is small, should be avoided in the orbitron. This may be
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accomplished by disallowing those values of o within the stability range
which correspond to statlonary, closed trajectories. It turns out that the
specification of this discrete set of a's involves conslderable numerical
computation and a complete solution to the electron motion in the space
charge dependent potential distribution.

For all trajectories which do not satisfy Eq.(C8), © is an irrational
multiple of 2N, the trajectories never close, the orbits continue to pre-
cess, and the charge density is uniform in é-space.
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APPENDIX D

Interpretation of 8

The electric field distribution in Region 3, outside the space charge
cloud, is obtained from Eq.(15) by taking the negative derivative with
respect to r. Applying Egs.(54) and (55) and evaluating at RO gives
the electric field at the outer boundary

~d

r
E (R) = {WI'(ry)log 22 - I(r )} —2p * o | (D1)
3 © i log =2 ‘o
i

o)

The space charge free electric field at the outer boundary is obtained
from this same equation by setting all the charge integrals to zero

1
v ¢ 'R— . (D2)
log R ()
Ri

ch(RO) =

The change in electric field at the outer boundary resulting from the

charge insertion is

B s R-E,(R)) = +{-I'(r,)1og ;—z + I(r )} RL . (D3)

The fractional change in electric fileld, relative to the final value, is

1 To
E_ (R,)-E, (R,) _ -T'(r,)log g2 + I(r,) | (Ob)
E_(R) VI'(r,)1og %'I(ro)

Substituting from Eq.(61) for I'(ro) gives

E _(R)-E®R) E_(R,) 2 R, 1
cf o 30’ _ cf 0" 4 _qa ev. log -2 . D
E;(R,) E,(R,) {2TZro§ %Ry Tog »%o_ (D5)
1

A-15



Therefore by comparison with Eg.(65),1t follows that

E .(R,) - R
B {'E_s'('Ro ) } R

From this equation it is obvious that B8 1is positive for all nonzero
charge densities and approaches zero as the charge density approaches
zero. 8 1s essentially a measure of the fractional reduction in elec-
tric field at the outer boundary relative to its final value after charge

insertion.

An informative alternate form of Eq.(D6) is

Vv
E,(R ) =
3
°" Ro(8 + log 29) , (e7)
i
from which 1t follows that
Lim E3(R,) = 0. (D8)

B>

Thus, the electric field at the outer boundary is always greater
than zero for acceptable values of 8.
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APPENDIX E

Charge Optimization-

It follows immediately from Egs.(16), (52), (53) and
(54) that

r
T (p.) = — ?’p(r)r‘dr - eNy, f)dx‘ - eNL (E1)
o €o TTE . 2ne
r’l o I"i r o

Therefore Eq.(61) may be written

RO
I;_ 2T(ro) log 7- ] ‘
eN; = 2me,V aZ el i ., (E2)

L
ro  I(ry)
Eog ﬁg I«Poj]

1

Since
r r r
o o i
log ﬁ; = log F + log R (E3)
i i
Eq.(E2) may be written
R
2T (r_) log =2
1— o & Ry
a2 eV (Eu)
eNp = 2meoV =

T r I(r
[}og Hi + log F% - T%F%%
The left side of this equation 1s the total charge stored in
unit length of the rotating electron cloud. Optimizing NL
involves several operations: Maximizing NL with respect to
r;; maximizing N, with respect to o? but consistent with
the other requirements that o2 must satisfy; and determining
the behavior of NL as a function of other prescribed param-
eters such that values are prescribed which tend to optimize NL'
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Maximizing NL with respect to r, involves minimizing

the denominator of Eq.(EL) with respect to r;. Although the

ro 2

ratio ;; is fixed by prescribing a and B, either »r, or

[o}
ry may be prescribed independently. Full advantage may be

taken of this degree of freedom by prescribing that

r; = Ry + 8, (E5)
such that
8 §
—_ = << 1. (E6)
Ri i

This prescription is equivalent to locating the inner turning
point immediately outside the anode surface such that the elec-
trons pass by the anode at a distance just sufficient to assure
that they do not collide with the anode surface. Under this
condition & may frequently be neglected in the analysis

2 not close to 1). This simplifies the denominator

of Eq.(E4) and removes any explicit dependence on Ri since

(for o«

the first term may be written
Ui _ Sy, sy . 8
log 7= log (l*—Ri)—log (l+'ri) = T <<1 . (E7)

This operation maximizes NL with respect to ry while
r
leaving the ratio ;9 unchanged and without substantially

i
affecting the value of %%%ﬂl)
To
Maximizing NL with respect to a2 1s not so elementary.

A plausibility argument may be constructed, based on an approx-

imation to %é%?l) obtained by using the radial component of
o
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the electron velocoty applicable to negligibly low charge den-
sities. Although this approximation does not contain some of
the important parameters (for example B8 ), it must indicate
correctly at least the direction of the variation in NL as
2 That 1s, the result must correctly indi-
cate, even for non-negligible ¢harge densities, whether NL

is an increasing or decreasing function of a2 (it turns out

a function of «a

this is the only information required to maximize NL with
respect to a?). This conclusion follows from the fact that
p(r) has the same general shape for any value of NL. The
principal influence of NL upon p(r) is that variations in
N, raise or lower o(r) and only secondarily increase or de-
crease the distance between turning points (space charge
boundaries). The shape of p(r) 1s principally determined by
the form of the function (which is generally similar for any
NB and a2. The first integral of the charge density 1is in-
dependent of the shape of p(r). The ratio %é%%%) is inde-
pendent (explicitly) of NL and 1s principally a function of
the shape of the charge density distribution. Therefore, con-
clusions based on the shape of one charge density distribution
must be generally applicable to other similar charge density

distributions since their shapes do not differ substantially.

The derivation of the analytical expressions necessary to
expose the way that the ratio %é%%%) depends on a2 , is
connected intimately with the trajectory analysis in Appendix F,
which is therefore used freely in the following analysis.

Equation (F13) may be used to obtain an approximate value
for the charge integrals I'(r,) and I(r,). Substituting
Eq.(F13) into Eq.(52), substituting the result into Eq.(16)
and applying Eqs.(54) and (F16) gives
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(E8)

X
eNL 1
I'(r) = — B }
2me o [2ax - x2]
=—eNg 1 cos-1(1-X
2me. om ( a )s

0

where a 1is defined by Eq.(Fl4). Evaluating this equation at

ros (x = 2a), gives the expected result
e NL
I'(r = -
(ro) ore. (E9)

which is the same for all charge density distributions since
I'(ro) is independent of the shape of , (r).

Substituting Eq.(E8) into Eq.(17), performing the co-
dr

ordinate transformation of Eq.(F3) on = and applying
Eq.(55) gives

I(r) (E10)

eNL 1 ? 1 X ax

— . — cos 1 (1—=) :
2"0 m o a Zy+3(5’

where <y 1s defined in Eq.(F4) or (F1l2). It is convenlent to

make a new coordinate transformation such that

£ = cos ~1(1- g) , (E11)
with the limits
x=0,¢7 =0
(E12)
X=X°,C=1r

Equation (E10) may then be written
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_ e b 7 gsin £ at
I(r) = 2me El [ T .
o 1 - b cosyg (E13)
where
- it
I N CLICI L (E1H)
2a2- 2
Integrating Eq.(E13) by parts gives
eN . 1 1S
I(r)=— Tre, {= log (1-b cos §)- = [log (1-b cost)drt}. (E15)
(¢}

Since b << 1 (the leading term in its expansion as a function
of A is %) (see Egs.(F8) and (F12)), the logarithms in Eq.(E15)
may be expanded in powers of (b cos ¢ ). Second order and higher
terms may be neglected for the present purpose. After perform-

ing these operations, Eq.(E15) becomes

eN

L b .
I(I’)ti‘:--214”_:0 = (sing —¢ cos ). (E16)
Evaluating this expression atry,(z = 7), gives
eNy
I(ro) = — 21”:Ob . (E17)
From Eqgs.(E9) and (E17)
Iry) (E18)
I(r,)
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and from Eq.(E1l4)

I(ro) _ 1_- al—y2 -
I(r,) 2 (gaz_“Yz) , (E19)

and applying Eq.(Fl12) gives

(E20) i

I(rO) = l (l_az) A
Mr,) ~ 2 5 2)=3
Therefore the denominator of Eq.(E4) may be written
(for a? near 1)
r r I(r. ) r
1 o _ o o —o _ A (E21)
lOgRi + log ri m ~ log PR
o] i
and from Eqs.(F4) and (F1l2) it follows that
r‘O
log — = 4; (E22)
i
from which Eq.(E21) becomes
r r s
log =+ + 1og =2 — L(Fo) _ 8 2
g R, °g ry I(r,) I&+ 2 (E23)
=3,101 42
-r—i+2(l a‘),

Therefore, under the condition expressed in Eq.(E5) and for a2

near 1, the limiting value of the total charge stored in unit
length of the rotating electron cloud is

. RO
Lim eN_ = 2"50"1"4.1— 2T(ro)log R—]. (E24)

L § eV i
a2 1 L
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R
Using Eq.(65) to eliminate log ﬁﬂ , which in this dis-
cussion is an unimportant parameter, Eq.(E24) may be written
in the alternate form

Lim N = HreoBT(ro) r'i (E25)
a2 > 1 e? 8

from which it is obvious that ©N; 1increases with increasing
r, and decreases with increasing 6. This limiting charge
corresponds to a thin, high density charge sheet immediately
outside the anode surface, the electrons of which execute cir-
cular trajectories.

a2=1 1leads to serious practical difficulties since the

electron launcher cannot be made infinitesimally small. Long
electron life times can be achieved only if the electron tra-
jectory is sufficiently eccentric that the electrons miss the
launcher during the first few passes after injection (1t 1is
assumed that after the first few passes, the electron has drifted
far enough along the z-axis to miss the launcher altogether).
Therefore, optimization of Ny is not a simple maximization
operation. The optimum NL is that associated with the largest
a2 for which the trajectory is sufficiently eccentric that the
probability of collision with the launcher during the first few
orbits is negligibly small. It 1s only under this condition

that the charge density can be pumped up to its equilibrium value
all along the z-axis and a uniform charge density cahleved in
z-space (if the electrons returned to the launcher at the end of
the first circult of the anode, all the charge would be concen-
trated in the z-neighborhood of the launcher).

Concerning the remaining parameters in Eq.(EL4), it is ob-
vious that NL increases with 7V and increases with decreasing
R0

RI .
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APPENDIX F

Trajectory Analysis for Low Charge Density (Approximate)

If the total charge stored in the rotating electron cloud
is sufficiently low that the space charge dependent potential
distribution does not differ substantially from the space charge
free potential distribution, and if the electrons are Injected
into trajectories which are not very eccentric, then Eq.(26) may
be approximated by an integrable function. The results obtained
are not strictly applicable to the more interesting and useful
high density, moderate eccentricity space charge configuration,
however the results provide considerable insight into the low
density electron dynamics and may be used to clarify and assist
the correct interpretation of other results which are directly
applicable to moderate eccentricity, high density space charge
distributions.

Under the above restrictions, the radial component of the
electron velocity is given by

1
. 1 r 2 rz 5
r = KT'{log £+ 2_(1___i)f, (F1)
where
_ 2 eV
K = —ﬂ—o- . (F2)

m log N
i

For mathematical convenience, let

H

i +x, (F3)

o3
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where r,
Y =
r (Fh4)
The trajectory turning points then occur at
r=r; , Xx=x3 =0, (inner turning point) , (F5)
and
r=r_,X=Xx_ = l1-y,(outer turning point) . (F6)

Recalling that the trajectories considered in this Appendix are
not very eccentric, y 1s near 1 and for even the maximum
value of x,

X << 1 . (F7)

Similarly, a? is not much less than 1 and may be written

(12=1“'A9 (F8)

where
0 < A& << 1. (F9)

From Egs.(Fl) and (F4), it follows that

2
log % + 2 (1__l2)

Y

]
o

(F10)

no|

The logarithmic term in this equation may be approximated by
the first two terms of the well known Taylor expansion in the
neighborhood of 1,

(F11)
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Substituting Eq.(F11l) into Eq.(F10) and solving the resulting
quadratic equation for y gives

= 1=-A = a‘, (F12)

a result which is needed frequently later on.

Using Eq.(F3) to eliminate r in Eq.(Fl) and performing
an expansion similar to Eq.(Fll) and taking account of Eq.(F10)
yields an approximate analytical expression for the radial com-
ponent of the electron velocity

1 1 1
. 7 2_y2y2 7]
P e S (250)" Paxx T, (F13)
where
2_42
a = v (5prlee) s 3-e2)=5. (P

The solution to this differential equation gives the electron
radial position as a function of time. Taking the zero time
reference to correspond to the inner turning point of the elec-

tron trajectory and integrating Eq.(F13) gives

cos—l(l—g). (F15) -

N
=
(o]
<
| N
N
w
R
N
N

A-26




From this equation, the orbit half-period +t' 1is found
immediately by setting r=r, (x=x,),

o
roy2 3
o= BRef (2 )7, (F16)
K 32—y 2
Using this result, Eq.(F15) may be written
= 2 1t
x = x, 8in® 5, (F17)
and transforming from x-space back to r-space, the radial
position of the electron as a function of time is given by
T2 1 — (1—y) cos2 & (F18)
ry Y 21" °

The position of the electron in 6-space may be obtained
as a function of time by substituting Eq.(F18) into Eq.(20)
and integrating (again taking the zero- 6 reference to cor-

respond to the inner turning point),
t

| t
LA (%) j G (F19)
= —2Z
1+y [1-(%}%) cos %% ’

[¢]

!

where +1' is again the half-period and éo is the angular
velocity at the outer turning point and is given by

1
§ = [2T(1"° )]7

o m rg ? (F20)
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and the outer turning point kinetic energy, T(rbx is given
by
2
eV
T(r) = — . (F21)
2 log —©
Ry

The coefficient of cos %% in the denominator of Eq.(Fl19) is

small compared to 1 since

'_l

—‘Y ~
+y

A
5 . (F22)

!

Therefore a satisfactory approximation of the integrand in
Eq.(F19) is obtained by applying the binomial expansion
theorem and retaining only the first two terms. Thils opera-

tion gives
t
. t
6 1! 9 d(_Tr__
0 2 1!
8 = ——(5—) S . (F23)
T 1+vy 1- nt
1-2 cos —
J [1-2(FFD) cos T

Performing the integration indicated in this equation gives
the #6-coordinate of the electron along its trajectory as a
function of time (both measured from the inner turning point),

Bot'( 2 2 2 -1;,3- ¥ nt
o = —2 (1+Y) —i ytan {[§?%l)tan§7,}‘ (F2l)

Using Eqs.(F2), (F16), (F20) and (F21), this may be written

b = o(et ey ytrangoyTren k.

T+Y 3y-1 21’ (F25)
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where the approximation has been made

[1-4(3X)77%2 - 1 (F26)

because of Eq.(F22). Setting ¢t=t' 1in this equation glves
the azimuthal half-angle of the electron trajectory

G e (ot P2y
o' == = )

(F27)
\3G2—’Y2’ \i4+a A I
Using this result, Eq.(F25) may be written in the alternate
form
o = 20'tan _1{(3—Y ) tan nt )
m 3y-1 2t (F28)

Using Eq.(Fl12), y may be eliminated from Eq.(F27) in favor of
o2 which gives

2

o' = —=2 2a2]
(3_(!2)% l+(12 3 (F29)
from which it follows that
Him ot = o5, (F30)
al->1

a result which was derived from other considerations in
Appendix C.
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Considering Eqs.(F18) and (F25) as a set of parametric
equations in t, r may be expressed as a function of 6
by eliminating t. The result of this operation (after using
Eq.(F12) to eliminate vy) is

1

r-ri _ (3a2—1‘tanz{(l+a2]2(3—a2)ig}
r —r 3-a2 2a2 2

(F31)

An immediate application of this equation is to compute
the values of a2 for which the electron trajectories are
closed and stationary so that these a's may be rejected in
prescribing the launch parameters. From Appendix C, the first
non-degenerate stationary trajectory has n=3, m=2. Therefore

at r=r, =%1. Substituting these values into Eq.(F31) gives

(l+a2)2(3—a2)%

P 3= 7%, (n=3, m=2) (F32)

from which it follows that

a2 = 0.95 , (n=3, m=2). (F33)

Similarly, the second closed, stationary trajectory occurs for

a? = 0.93 , (n=5, m=3). (F34)

The separation in a-space between successive stationary
trajectories decreases as n increases. This implies that
either the launch parameters must be controlled very precisely
or a? must be sufficiently small that n 1s large and the
charge clusters in the neighborhood of the 2n turning points
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overlap sufficiently to yleld an approximately uniform charge
density distribution in 6-space.
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PART II MAGNETRON GAUGE

1.1 INTRODUCTION

In the initial description of the magnetron gauge using
auxiliary cathodes, Redhead(s)
be used to 10~12 Torr but that it was non-linear below about
5 x 10'10 Torr. Later work(7)’(8), using different calibration
techniques and extending the measured low pressure limit to

showed that the gauge could

3 x 10713 Torr, confirmed Redhead's work. However, in total,
very little work has been carried out at pressures below
10~10 Torr where the aim has been to characterize the per-
formance of the magnetron gauge over the range of the many
varliables which exlst. For instance, in his original paper,
Redhead(6) used an anode voltage of 6000 v and a magnetic
field of 1000 gauss in measuring the variation of the cathode
current with pressure. Similarly, later work'?) has tended
to use similar values for the anode voitage and magnetic
field. However, work at the National Research Corporation(lo)
has shown that below 10~ 1° Torr, the sensitivity (S = 1*/p)
of the normal magnetron goes through a maximum as the anode
voltage is varied from 1000 to 7000 volts. More recently(ll)
Redhead has investigated changes in both anode voltage and
magnetic fleld over a range of pressures extending down to
1.3 x 10'11 Torr. Thilis work has shown that the magnetron
discharge exists in two states which may be characterized
by the nature of the radio frequency oscillations exhibilted
by the gauge. In the pressure range 1 x 10"10 Torr to

10"" Torr and at low magnetic fields (State I), the low
frequency noise was large and stable r-f oscillatlions were
not observed. At higher magnetic fields (State II), stable
oscillations of very narrow band width were observed in the
frequency range 15 - 100 Mc/s. (When used as a pressure
gauge, the magnetron is operated under the conditions

corresponding to State I.) In addition, Redhead reported
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that oscillations were not observed below 10"10

Torr and it
appeared that two separate states did not exist at these
pressures. These results suggested that the change in
oscillatory behavior may be closely related to the transition
from linear to nonlinear operation at approximately 2 x 10'10
Torr. They also suggested that the oscillations might
provide an indication as to whether or not a gauge was
cperating under linear conditions. The guestion also arose
as to whether the gauge was linear when operated in State II.
In general, it appeared that a wider range of variables

than hitherto investigated should be studied - particularly
the effect of anode voltage, magnetic field strength, and
pressure on gauge sensitivity. The results of thls work

are discussed below in section 1.2: Performance Characteris-
tics of Experiméntal Gauge. Several other aspects of
magnetron performance which were studied included further
experiments on the oscillatory behavior, the effects of
ultra-violet radiation and electron injection and a study

of some of the possible causes for anomolous currents

in the magnetron gauge. A photographic study of the dis-
charge within a magnetron gauge was also made. The results
are reported In the following sections.
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1.2 PERFORMANCE CHARACTERISTICS OF EXPERIMENTAL GAUGE
(8),(10)

calibration procedures below 10~

had shown that accurate, direct
10

Previous work
Torr required great care
and considerable effort. In order to cover a wide range of
such variables as anode voltage, magnetic field strength,
and pressure, it was decided that it would be more efficient
to use a simpler system 1nvolving comparison of the experi-
mental magnetron gauge with a standard Redhead gauge

(NRC 552). The reference Redhead gauge was operated at
fixed conditions - anode voltage 4800 v, magnetic field
strength, 1035 gauss.

The experlimental apparatus constructed for the magne-
tron studles 1s shown schematically in Fig. 9. The baslc
vacuum system consisted of a mechanical pump backlng
two oill diffusion pumps in series, a 2 in. diffusion pump
being used to "back" a 4 in. diffusion pump (NRC HKL4-750).
Dow Corning 705 Silicone o1l was used in both pumps.

A speclally adapted liquid nitrogen trap was mounted
on the 4 in. diffusion pump. The trap was optically
black and contained an anti-migration barrier. An R.C.A.
high vacuum valve was mounted on the trap. The pressure
above the liquid nitrogen trap was measured with a standard
Redhead gauge (NRC 552). The R.C.A. valve was modified
so that both the experimental magnetron gauge and the
reference gauge could be tubulated onto the valve above
the valve seat 1in such a way that there was high conductance-
approximately 20 liters/sec - between the gauge volumes.

In order to extend the low pressure performance capabili-
ties of the system to below 10714
pump was lnstalled below the high vacuum valve. The cryopump

Torr, a liquid helium cryo-

was designed to have a high conductance for gases not con-
densed at 4.2°R. 1In addition, it produced low pressures
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which were stable for many hours of operation because of
low heat losses and exceedlngly small temperature variations
over the cryopumping surface.

The gauge structure of the experimental magnetron was
mounted on relatively heavy (0.100 in. diameter) stainless
steel support posts, which also formed the electrical feed-
through. Eight high impedance alumina feedthroughs were
mounted in a 4 3/4 in. OD stainless steel (304) flange.

The general arrangement of the magnetron is shown in Fig.10.
A number of speclal features were included in the design
and construction of this gauge. Some of the more important
were:

1) The entire gauge assembly was mounted on the. feed-
through posts on a single flange. The arrangment facilitated
the assembly and accurate allignment of the magnetron elements.
It also permitted relatively rapld changes to be made in the
gauge constructlion without major disassembly of the gauge-
vacuum system.

i1) A radial slot (width 0.040 in.) was cut in the
cathode end-plate and a mirror mounted close to the anode of
the gauge. These arrangements were required for the photo-
graphlic measurements aimed at defining the spatial distri-
bution of the discharge within the magnetron volume. See
Section 1.6.

1ii1) A tungsten filament (0.007 in. diameter) was mounted
opposite the anode. This filament was 1nstalled in order
that the entire gauge assembly could be degassed by electron
bombardment.

iv) A small hole (0.125 in. diameter) was drilled in one
of the cathode end plates at a position one third of the
distance from the cathode to the anode. In addition, a small
tungsten coil fllament was mounted opposite the hole outside
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the magnetron volume. The purpose of this arrangement was
to permit the additlon of electrons to the discharge. See
Section 1.5.

v) The magnetron was enclosed in a metal gauge volume
to provide adequate shielding. Only single conductor
ceramlic feedthroughs were used. Since these were mounted
in the metal flange, a high degree of 1solation and
shielding was achieved between each of the electrical feed-
throughs. In addition, metal skirts were placed around
the ceramlic 1nsulators on the vacuum side of the flange.
The purpose of these skirts was to prevent the build up
of a conductive coat on the ceramic during high tempera-
ture degassing of the metal elements of the gauge.

A Granvlille-Phillips variable leak valve was tubulated
to the chamber of the experimental gauge. High purity gases
could be added to the system through this valve or the
magnetron volume could be pumped out through it,.

The entire system above the main diffusion pump, in-
cluding the liquid nitrogen trap, helium cryopump, high
vacuum valve and the three magnetron gauges could be
baked to 450°C. Gold seals were used for all flange
seals. Elastomeric materlals were excluded from the entire
system.

The magnetic field for the experimental magnetron was
supplied by means of two electromagnets arranged as an
Helmholtz pair. This arrangement was chosen because of
the high degree of field homogeneity that it produces. For
example, the magnitude of the magnetic field varied less
than 0.1% over a spherical volume of 2 in. diameter in the
experimental setup used in the present work. The field
ripple, as detected by a Hall effect probe, was also less
than 0.1%. The magnetic field could be varied over the
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range of 0 - 2200 gauss with the power supplies available.
In general, however, fleld variations over the range 400 -
2000 gauss were adequate for most of the experimental work.

The procedure used for determining the main performance
characteristics of the experimental magnetron gauge was as
follows. After thorough degassing of the system and gauge,

a known pressure was established in the experimental gauge.
This was usually done by admltting argon into a section of
the system above the high vacuum valve. The pressure was
measured by the reference Redhead gauge. The cathode current
from this gauge was converted to pressure (Torr N2) by means
of Fig. 1l1. Since the latter takes into account the non-

linearity of the gauge below 2 x 10-10

Torr, the reference
pressures quoted in the following discussion correspond to
actual Torr N2. After establlishing a definite pressure,

the experimental gauge was operated at 1000 gauss and

10,000 v for a period of at least 45 minutes before starting
a serles of measurements at lower anode voltages. This
procedure was found to glve more reproduclble results -
particularly at the lower pressures. It is not unlikely
that the gauge may tend to clean itself at the higher

lonizatlon rates.

In the major part of the work, emphasis was not placed
on the measurement of low pressure. It was more to the
purpose to investigate a wide range of variables around
the region where the gauge changes from linear to non-linear.
The main conditions investigated were:

8 10

Pressures (Torr N2): 5.2 x 1077, 5.2 x 10~
2.7 x 10-11, 1.2 x 10711,
Anode Voltages: 1000 - 8000 in 1000 volt steps.

Magnetic Fileld Strength: 400 - 2000 gauss in 100 gauss steps.

This program thus covered some 500 combinations of pressure,
anode voltage and magnetic field. The data apply to a magnetron
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with a geometry essentially the same as that described by
Redhead(6) and previously tested(8)’(lo). It 1s consldered
very unlikely that the cathode hole and slits and method of
support of the gauge elements would make the performance
characterlstics of this experimental gauge different from
those previously 1lnvestigated. Differences - and perhaps
improved performance - were more likely to be associated

with such factors as shielding by the metal envelope,

magnetic field homogeneity and isolation of the high impedance
feedthroughs. The results obtained are summarized in Tables I
through IV. The performance characteristics have been
specifled 1n terms of gauge sensitivity, S, measured as

amps/Torr N2. One of the reasons for presenting the results
in terms of the sensitivity, S, is that, other things being

equal, S should be proportional to the average number of
electrons trapped in the magnetron volume. In the tables,

it will be noticed that 1n some cases two sensitivity values
are gilven at particular values of Va and B. The values refer
to the minimum and maximum values recorded when the output of
the gauge was oscillatory and very noisy. These results will
be discussed in more detail in a later section (1.3).

Some of the data have also been plotted in Figs. 12, 13
and 14. Some of the points worthy of note are dlscussed

- below.

At pressures (above 2 x 10~10

Torr) where the gauge is
linear for normal operating conditions, the gause sensitivity
at any particular anode voltage Iincreases with magnetic field
once the magnetic fileld 1s above that required to maintain
stable operation. Further increases in magnetic field result
in a maximum sensitivity being reached after which the
sensitivity decreases. At relatively low anode voltages
(1000 - 2000 volts), the maximum is relatively flat with

the sensitivity changing little with B. The sensitivity

95



*SUOTHBTITOSO BUTJNP DPIPJICOaI SaNTeA WNWIUTW pue wnuixew sYyjg jussaxdsa Lsyjz uaaT? age LJTATITSUSS JO SaNTBA OM] BJ3UM

96 . Ll L 2l £°L 2L 9
696 L' 2 n G8°9 wel 9€° . L9 ¢'9  6°'8 L6 0°0T 2874 69 9 G6°G 3no 3no 0008
L9
0°¢ 09°€ £6°6 £z 9 §E°9 ¢'9 €9 6°G 20°8 2e'8 G'g LE" L 2'9 8°G 18°6 3no 3no 000L
. 289 £9°9
A en"s T4 g 0°'G £°G 06 8°g 6°G w1l 9 2h L LE L £1"9 T AL S h 3no 3no 0009
S h ens Sh'h €T h
12 2 e g'c L2 1€ 62 o' 0'% G2°G 2Eh he"s 186 8T'9 89°# GlL'€ 2°€ 3no 0009
geh gn'e GlL 2
09°T 7G°'1 65°1 £9°1 g T 02 olL'e I8'T O0f°E L9°€ 2T € G6° ¢ £ n €9°h €€ g€ jno 000h
121 022 ly'e 0°z
86" 96" T0°'1 86" 00°T IT'1 6€° T LE'T 26°T 02 Ge¢e 672 6w e 90°¢ Ge" € €2 102 000€
91" gg* En'T  0L'T G6'T 2an'T
(A Ht” 64" 64" 16° A 61" €6 219 G9- 7o' T 121 'l GeE'T 99°1 2971 221 0002
91" LT 06" £9°
(A HT® nt” ST a1 61" wet: GIT” €T LT gz T oe- () on- 1N 9¢° 000T
EX-CES TN
0002 00671 008T  00.T 009T 0061 00H#T 00ET 0021 00TT 000T 006 008 00.L 009 00% 00% apouy

(ssnep) g yzdusais pITatd °Tjoudey

(°N agog/due 4/, 1 = § ‘A37ATITSUSS)
(°N MUOL)g_OT X 2°S 40 FWNSSTUA FOVHEAV NV IV FONVD NOMIANOVH 4O SETLIALLISNIS
I 274vd

96




*SUOT3BTTTOSO Butanp

pPOpJIOOSJ SONTEBA WNWTUTW DU WNWIX®BW ayj jussagdsa £syjz UsATS aas L3TATITSUSS JO SaNTBA OM] 2JI9UM

glL* 6L° 6L° 21e 6°1
g € ST'T  96° 9°8 L9 20t 211 t°0T Ll2°'9 28°'%h 269 GlL'9 €£°'§ St € 09°'0 3no 3no 0008
£°8 0°T 0°'T tl° 8T 22
g€ o't 98" 8°8 88 66 00T 2'0T Sh'G 25°L 9.°G 89°'&G 79 € 09°'1 3ano ino 0001
66" €9° 69" 28" 09° 221 gL'l
26" gL’ 8g"° L2°€ gL 89°€ g9e'g 0'8 89°8 0.9 09°'9 2L°G T12°S go't Ge-e no 3no 0009
on” AN 1 16" 98" L0°1
99° 8°'s 0'9 99" tg” . 8G°2 2°€ Gn'9  S9'9  L9°G  gy°G 0E°q 26°¢ gs'e 88’ jno 0004
92" ge” 92" 92° ¢ 1¢€° 8h° gEe”
06* ls® 6% ©  6%° T 0s* 88" 1T 88°T €£K°§ €E'S  G6°f T'6 Hl'n 91°€ w1'e  9¢°'1 3no 0001
1T 2T HT” Lt ¢g:
9T A wT” ne: 1€° 1€” n9'e g9¢" ge ¢ 99°T gE"E 2h°E FARES 2L 0°e 14 AN 000¢
geo " 620" €0 20't  etr €0°'T
91" 8T T 90°'1T 91" AN S0° 690" LE°T 02°'T 20°'T 0L'T 6.L°'T 69°T o02'T ¢0'tT  €9° 0002
81" 12"
ce” e Gg" gg TE" gg” 9g” 2g: Tg” we® Le° o0 gt 06 06" € G682 0001
93B3 TOA
0002 006T 008T 00.LT 009T 004T 00%T 00E£T 002T 0OOTIT 000T 006 008 00l 009 00¢ 00 spouy

(ssnepn) g ysduaass prsTd oTgzsudey

(°N aaor/sdue = gy x Ty o g/ 12 g A3paTaTsuss)

HHOL _0T ¥ 2°G 40 FUASSHYd FDVHEAY NV IV FDHNVD NOHIINOVW 40 SHTLIATILISNIS

0T

II 374Vl

91




*SUOTABTITOSO BUTJANp PapIoOdad SSNTBA WNWTUTW DPUB WNWEXEW Y3 jussaadad Aaysz UsAT® 848 K4TATITSUSS dY3 JO SINTBA OM] SI3UM

2N axof 11-0T X L2 = sanssaad aJoJsasyl

.mz JIJ0], OH|OH X 2 MOT3q 0G°'T 8aJdnd £3Tafaisuss Jo adors - dury HH|OH X ¢*G a8nep sousasjsy Bulpesd 9FBISAV4
66T 68° of* IT° 110° 10"
0€°6 6G6°8 08° L 20" . LL°9 00°9 L0°S 29°h gg-e 0L*2 f0°'2 £e°1 £g9” 81"’ 110° L00" 600° 0008
0S°8 €18 2ol 69°9 82¢°9 06§ L1°6 TAR | gn-t Ll*e 222 ge" 1 IT°t 9% " #OT" 120° 120° 000.L
gTo" 110" 600"
€L L §6° L 06°9 he9 98°§ 9£°§ 98°n 9Tk LE"€ Ll'z E1°¢ LS'T L60 060 LTO° 600" Loo* 0009
96¢” q10° 800"
0L°9 02°9 61°9 00°9 LE*S £EQ°h Sy G6-¢ 8T ¢ 0lL'e 60°2 69°T 60°T Gel* ge-’ £T0° 900" 0004
06°¢ 06°¢ 69°¢€ Q1" 120°
612 Tl'h £8°h wl'h GG h £ h IS 0E-¢ 162 862 90°2 c9°T 92 1 69° 6 et 2o- 000t
96°¢ A4
£z € ge ¢t 8T"¢ 9T'¢ g€t L6°2 £6°¢ 19°¢ gge G122 28°'T IAIRRE G1°1T 18° ch” 610" co-’ 000¢
9nI ¢tz®  0L0°
26°1 06°T €6°T 06°T 16°T g1 EnT 2T g T €r°T 92°'T S1°T 26’ g9-° 9 ” 0c” G60° 000¢
n6T* I3 £1E” T8¢’ L9T" 260"
£TT” T LhT” 611" 891" 9.LT" Gg1" 91" 1te” Lee L2 98e " 4 gée* 992" q1° 650° 000T
EREES TN
0002 0061 008T 00.T 0091 006T 00T 00€T o002t 00TT 000T 006 008 00L 009 006 00t apouy
(ssnepn)g yadusaias pIaTd oT33udeq
c . Ja2d + T _ _ ¢
L(ON on/due wote X gra— g = 4/, T =S £3TAT3TSUSS)
HYOL 0T ¥ L*2 40 THNSSHAYd FDYHIAY NV IV IDNVH NOHIANDYW 40 SHILIAILISNIS

1t~

III JT4VL

98




paJnsesuw 30U = *‘p‘uU
0£°9 0T°'G 09'h G0'h gG°E€  Gg°2 #9'z TE'2 8T wk'T  20°T 799"  hpE" 0008
9%'9 2T'9 G2'S 22§ *pP*u ‘pPru ‘pru ‘pPru 9g9°T  2E'T  90°T 966G  62%°  E£LT’ 0004
‘p*u ‘pru ‘pru ‘pru *P*u *pP'u  ‘pru 'pru GL'T E€°T  G0°'T 6LL°  6wET  L6T°  Ggo* 0009
Lo*h  L6E  €£8°E  GG°€ 4T°€ 82 06z €0z 62°'T 20°T 98L° 619" ETET fI2° 460" 0006
80" € 662 062 6.2 99°2 £n-e L0°2 Ig°1T T€°T 20T Lgl: 2 PAN AN ooc* OET" o000t
I9°T  €9°T 49°T  19°T 85°T €L°T 89°T 46°T 2T1°T 00°T 89L° 065 98¢ G9z°  92T° 000¢
89* 799"  Gl9* 689" STL°  owl® ®SLT 4Gl 0GL® 689"  G6G*  L0GT  €9&° L2zt InT” 0002
960"  GOT*  60T°  G2T* 02T* 21" €RT° pETT ®ETT 2RI £9T° 69T G9T° &I xeT® 00071
0002 006T 008T 00.LT 009T 00ST 00T 00ET  002T OO0TIT  000T 006 008 001 009 @3e3TOoA
spouy

(ssnepn) g yzBusass prsTd OoT3sudey

2 - ‘
(°N agop/dure ge——r T = S “Aararagsuss)
SEILIAILISNAS

HHOL HHlOH X ¢°T 40 JHNSSHYd HDVHIAY NV IV IDAVD NOYIINDYW 40

AT d1dVL

99




(ssnedoTiy) °d

0'z 6°T 8T LT 9T ST %71 ¢T1T 2T T1T'T 0T 6° 8° L 9 ¢y

Y T T T : T T T T v T { | 0
- ~— i R . _A0OOT _ e—
o A0002 ’
T
2
¢
U .H.Hom_\m@s.m
G d
/4T
9
L
8
6
| , . _ N
(°NyaTog ;0T X 26 4 | ot
XLIATLISNES NOUHLANOVIW NO HAHVILTIOA HAONV ANV qIHIA OILANDVW 0 L2dd4H
B 2T 'DId
1 1 | | | L § i | 1L i | 1 | |

100




8'T L'T 9T

ST #°'T €°'T

(SSAVDOTIIN) g QTdI4 OILANOYH

¢'t ¢'t 1T°T 0o0°'tT 6° g* L’ 9°

C/

T t 1 L]

1 T T !

I
— -

SNCILVTIIIOSO
d0
= NCIDIH

— A0O00Y¥

A000T -

II0%,- 0T X § = g

ALIATLISNES NOHLANDYW
NO HDVITOA HAONV daNV
JTdId OILANDVIW 40 LOHAdAH

€T P14

v,
\‘\.
1
b I
-1Z
-1¢
i 1207, /g dure
i
~4c o
= d
‘e T
19
.
-
.
T
0°1T
)|




0

c

6°1

8°'T L°

(SSAYHOTIIN) ATHAIL DILINDVK

T 9°1

J

alo

| §

| I P

P

T 4 1 ¥

G'T #'T €T 2T T'T 6°
1

T 000T

>

DYLTIOA HAONY - SHIALIWVIVJ
(°N) 2J011T-0TXL'2 FHASSTUd

dTd3I4 ODILINOVW “SA ALI

AILISNHES

NOHLANDVH
RT "OId

0T

phoa\maw

102




also increases with anode voltage and the results presented
in Figs. 12 and 13 suggest that there is an upper limit or
envelope for the sensitivity at values of B less than those
for maximum sensitivity at any particular anode voltage.
This upper limit or asymptote is approximately linear with
magnetic fleld. The slope appears to be somewhat higher

at 5 x 10"8 than at 5 x 10°%° Topr. However, this may

be assoclated with the fact that the gauge was much
noisier at 5 x 10"8 Torr at low values of B than at 5 x 10~
Torr. This contrasted sharply with the situation at higher
magnetic flelds after the maximum sensitivity values had

10

been reached. At 5 x 10_8 Torr the sensitivity dropped
relatively slowly and there were few conditions where

noise and oscillations were noted. At 5 x 10'10

Torr, the
sensitivity decreased abruptly after the maximum and there
were many condlitions where the sensitivity oscilllated as
indicated by the output from a Keithley 410 electrometer.
There were, in additlon, a few 1solated conditions at high
magnetic fields where the gauge returned to relatively
high sensitivity. Some of the aspects of this oscillatory
behavior will be described later under Section 1.3.

The above results follow the same general pattern as
those of Redhead(ll).
magnetic fields corresponds to Redhead's State I and the

The high sensitivity region at low

lower sensitivity at high magnetic flelds corresponds to
State II. The above results pertain to pressures above
2 X lO"10 Torr. At lower pressures where the gauge 1s
non-linear, the general nature of the curves appears to
change drastically (Fig. 14). The rate of increase of
sensitivity with magnetic field is much lower than at

the high pressures.

At 2000 volts and 3000 volts the sensitivity is con-
stant for a large range of values of the magnetic field
strength. There is also some evidence of a flat maximum in
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sensitivity being achieved at 700 gauss and 1000 volts. The
general nature of the curves in Fig. 14 suggests that at the
higher anode voltages, e.g., 6000 - 8000 volts, magnetic
fields in excess of 2000 gauss would produce a range of con-
stant sensitivity. It is not unlikely that even higher
magnetic flelds would give decreased sensitivity. The effect
of magnetic fileld and pressure on the sensitivity at an
anode voltage of 5000 v is shown in Fig. 15. At 5 x 10~
Torr, the sensitivity is a maximum at about 1100 gauss. (Note
that at 5 x 10"8 Torr the maximum at 5000 volts was at about
800 gauss. See Fig. 4.) At both 2.7 x 10”11
1.2 x 10'll Torr no maximum is shown. The variation in

10

Torr and

sensitivity 1s approximately linear with magnetic field
at 2.7 x 10~% Torr and 1.2 x 1011 Torr. The slope

decreases with pressure.

It should alsoc be noted (Fig. 13) that at a magnetic
field strength of, say, 1500 gauss the gauge sensitivity
1s greater at 2.7 x 10™'! Torr and 1.2 x 10711
it is at 5 x 10_lO Torr. Similarly, at 1500 gauss and
5000 volts the sensitivity 1s greater at 2.7 x 10714

than at 5 x 10"8 Torr.

Torr than

Torr

If 1t is assumed that the number of magnetically
trapped electrons (N) 1s proportional to the sensitivity,
the above results indicate that at the specific conditions
taken above, N 1s lower at the higher pressures where the
input rate of electrons from the volumetric ionization
process 1s greater. In general, it would be expected
that the higher input rates would tend to add to rather
than subtract from the number of trapped electrons. In
this situation, one is tempted to seek an explanation 1n
terms of the r-f oscillations which have only been
detected at the higher pressures (Redhead).(ll) It
might be assumed that these oscillations effectively reduce
the number of trapped electrons. However, as 1s shown by
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Redhead,(lo) it 1s likely that the r-f oscillations are asso-
ciated with the rotation of the electron cloud. Hence, at
the same values of Va and B 1t 1s more difficult to see why
increasing‘the electron production rate (and loss rate)

by increasing the pressure should cause oscillations to
develop in the electron cloud. The simpler explanation that
and B and essen-

A
tially independent of pressure - above 2 x 10'lO Torr - seems

the oscillations are dependent only on V

more acceptable. Further work should be carried out to
measure the frequency and relative intensity of the oscilla-
tion under conditions of equal gauge sensltivity. It may
well be that strong r-f oscillations do in fact exist at,
say, 2.7 x 10”11 Torr, 1500 gauss and 5000 volts. It is,
nevertheless, posslble that the ion current is far from
constant at any pressure and that there are growth and

decay processes continually taking place in the electronic

-10 Torr),

space charge. At high pressures (above 2 x 10
these processes which are probably associated with surface
reactions at the cathode and anode possibly 1initilate

or produce distortions in the electron cloud which result
in stable r-f oscillations. At low pressures, the surface
controlled initiation processes may be too small to produce

oscilllatory behavior.

From the data presented 1n Tables I through IV it is
a simple matter to determine those sets of conditions at
which the gauge has the same sensitivity at various pres-
sure. That is, the conditions under which the gauge 1s
linear. The results are presented in Fig. 16.

The data associated with line A in Fig. 16 where ob-
tained by plotting those conditions at which the sensltivity
at 5.2 x 10~0 equal that at 5 x 10~ 10
conditions where the sensitivity at 5.2 x 10—8 Torr equaled

that at 2.7 x 1071 Torr, Along both line A and line B,

Torr. Line B was for
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the sensitivities increased with anode voltage (and magnetic
field). Line A is approximately parallel to line B, and

at any anode voltage, line B 1s located at a magnetic field
strength which 1s approximately 350 gauss higher. The
normal operating conditions for the 552 magnetron gauge are
1000 gauss and 5000 volts. This lies on line A. The data
of line B then suggest that at, say, 3000 volts and 1100
gauge, the magnetron gauge would be linear down to at
least 2.7 x 107t Torr. Thi: requires that the cathode
current vary monotonlcally over the pressure range

5.2 x 10"8 Torr - 2.7 x 10”11 Torp. A number of pressure
varlation tests were carried out at 3000 volts and 1100
gauss and also at 4800 volts and 1250 gauss. : The results
for 3000 volts and 1100 gauss are presented in Fig. 17.

The best line through the data gives a slope of 0.90 down
to approximately 1 x 10-lO Torr. At lower pressures there
1s evidence that the slope increases to approximately 1.8.

. The data for the lowest two pressures were taken from
separate experiments as recorded in Tables III and IV,

The slope obtained in this work in unusual in that it is
less than one. It 1is possible that the Reference gauge
changed from a slope of 1.0 to something leés, but this is
unlikely. However, the decrease in sensitivity from 2.15
amps/Torr at 2.7 x 10" Torr to 1.0 at 1.2 x 107 Topp
(see Tables III and IV) indicates that operation in State II
1s not likely to give high sensitivity performance at very
low pressures. The data taken at 4800 volts and 1250 gauss
also gave a slope of 0.90. Interpolating from the data in
Tables III and IV indicated that within experimental error
the slope remained constant down to the lowest pressure
measured, 1.2 x lO_ll Torr. However, a comparison of the
data in Tables III and IV at higher anode voltages and
magnetic fields shows that there is a decrease in sengitivity

2t the lower pressures. This i1s also clearly shown in Fig. 15.
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The data at 4800 volts
more scatter than the data
obtained in the early part
affected by the R, L, C of
instance, at some specific

range 6 x 10-10

and 1250 gauss showed considerably
of Fig. 17. Some of the scatter
of the experiment was found to be
the electrometer circuit. For
pressures, particularly 1in the

Torr to 2 x 10~2 Torr, a 410 Keithley

electrometer would osclllate between specific values. A
study of some of this oscillating behavior indicated that
several types of osclllatory behavior may be observed when
measuring pressures in State II. These are discussed more

fully in the section below.
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1.3 OSCILLATORY BEHAVIOR

Redhead(ll) has glven an extensive description of the
r-f oscillations which exist in the magnetron gauge when
operated 1n State II. Redhead's results on the effects of
magnetlc field strength and anode voltage in the frequency
have been confirmed in the present program. The specific
frequencies have been observed in a number of ways including
field intensity meters, tuned r-f receivers and by means
of a high frequency oscilloscope. The coupling may be
carried out in a number of ways, including direct coupling
to the auxiliary cathode on main cathode, capacitive
coupling to the anode or by means of a small antenna

supported axlally near the gause anode.

One of the aims of the present program was to measure
the variation in intensity of the r-f signal as a function
of pressure. Redhead has reported that the r-f oscillations
were not detected below 2 x 10-1° Torr. & number of attempts
were made to measure the effect of pressure on the signal
intensity but with little success. Using a tuned r-f
recelver and a signal intensity meter some data (Fig. 18)
were obtained which tended to suggest that the maximum signal
intensity at any pressure decreased as the pressure decreased.

-10 Torr.

At no time was an r-f signal detected below 2 x 10
However, the data showed considerable scatter and cannot be

regarded as more than minimal evidence. 1In this part of the

work, experimental procedures were greatly hindered by an

exceedingly strong 80 Mc/s signal from an external source

beyond our control. The metal system Helmholtz coils,

electrical and cooling water systems all acted as antennae

for the signal. Attempts to filter the signal and its

harmonics were not successful and i1t was beyond the limita-

tions of the program to install adequate shielding.
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When operating in State II a different type of oscillatory
behavior was noted. In this case, electrometer oscillations

would develop above and below previous mean steady state values.

The frequency was on the order of 0.1 - 1.0 cycles/sec. The
period of the oscillation increased with decreasing pressures.
These types of oscillations were often evident with an electro-
meter such as a Kelthley 410. 1If the input capacitance of

the electrometer was reduced, as with a Keithley 600 or 610
operating in the fast mode, oscillations did not occur. The
R-C constants of the entire electrometer circuit should be

such as to eliminate such low frequency oscillation. The use
of a high quality vacuum capacitor to shunt high frequency
components of the cathode current to ground 1s recommended.
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1.4 EFFECTS OF ULTRA-VIOLET RADIATION

A convenient method of decreasing the starting time of
a magnetron gauge at low pressures is by irradiating the
gauge with ultra-violet. The mechanism by which photo-
radiation assists in initiating the build up of the discharge
has not been determined. One, or a combination, of the follow-
ing processes may play a part.

i) Photo-emission of electrons from cathode.
i1i) Photo-desorption of neutral gas species previously
adsorbed on gauge elements, walls, etc.
111) Photo-ionization of a neutral, free or absorbed gas
species.

Experimentally, it 1s not easy to differentiate between
these processes and other effects - especially thermal de-
sorption effects assoclated with the radiation. However,
1f the non-linearity of the magnetron gauge 1s caused by
8 deficiency in the number of electrons in the discharge,
an increase in the number of electrons emitted by the
cathode should tend to make the gauge more linear. Bryant(7)
hes shown that a cesliated magnetron gauge has a non-linear
characteristic, which has a lower slope than an uncesliated
gauge. Presumably, lowering the work function of the
cathode results in at least a partial increase in the number
of desired electrons in the discharge. As a practical
procedure for low pressure work the use of cesium has
obvious drawbacks. Another possibility of testing the
electron deficiency thesis appeared to 1lie in attempting
to stimulate photo-emission by the use of ultra-violet.

The radiation from a low-pressure mercury lamp, was shone
through the sapphire window of the experimental gauge.
The output of the mercury lamp peaked at 2537 A and the
sapphire window had a 1imit of transmission of about

1400 A (9 ev). Typical results were as follows: At a
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pressure of 3.7 x 10"ll Torr the output current of the gauge

rapidly rose from 6.8 x 10711 amps to 9.8 x 10711 amps. Within
5 minutes 1t decreased from this value and leveled off at
7.5 x 10714 amps. It remained constant at this value for as
long as the u.v. lamp was on (2 hrs.). However, this 10%
increase 1n the output of the magnetron gauge was too small
to be attributed to an increase in gauge sensitivity. Even
though.this was a steady increase in output current, it is
more likely that 1t was caused by thermal desorption of gas
which was temperature and not time dependent. 1In any case,
even if it were all attributed to an increased gauge
sensltivity, the increase 1is only 12% of that required to
give a linear gauge. More work using a system in which a
concentrated beam of ultra-violet radiation is focussed on
speciflc areas within the gauge 1s recommended. In this
work, temperature variations should be investigated to alter
the effects of thermal and photodesorption of physically
adsorbed gas. It is, however, likely that the magnetron
discharge 1s already an efficlent source of ultra-violet

and X-ray radiation so that external sources may only have

secondary effects.
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1.5 ELECTRON INJECTION

As shown in Fig.1l0, the experimental magnetron was de-
signed so that an external filament could be used to inject
electrons through a small hole in one of the cathode end
plates and along the lines of magnetic flux. The hole in
the cathode end plate was 1/8 in. diameter and its center
was located 1/3 of the distance from the surface of the
central cathode rod to the anode diameter. The tungsten fila-
ment was coiled to an 0.D. of about 0.08 in. In order to
prevent electrons moving directly to the cathode, it was
first necessary to determine the bilas required on the
filament supply to prevent this. This was done with the
magnetron gauge not operating (Va = 0) but with the range
of B flelds planned for experimental use. With the filament
at 1050°C, it was found that a bilas of U4 volts was sufficient
to reduce the electron current to the cathode to less than
5 x 10—14 amps. The gauge was then degassed by electron
bombardment and the temperature of the filament ralsed to
1350°C for about 1 hour. The output current of the ex-
perimental gauge was then measured with the filament at
1050°C and biased 4 to 6 volts above ground. At a pressure
of 3 x 10—11, these conditions caused an increase 1in the
cathode current of about 10%, but once again it 1s doubtful
whether this current could be attributed to an increase 1n
gauge sensitivity. Even though very careful degassing
procedures had been used, the magnitudes of the pressure
changes in the experimental and reference gauges were
commensurate with increased thermal desorption rates in the

gauge.

Since the electric fields within an operating magnetron
gauge are not known, it is difficult to inject electrons
into the discharge. If the electrons do not have sufficlent
energy, they will not penetrate to the discharge. If they
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have too much energy, they will pass through the discharge to
the opposite cathode plate. In a later model of an experi-
mental gauge, a small accelerating grid was placed between
the filament and the cathode plate. It is anticipated that
this may allow more control and perhaps permit adequate
testing of electron injection techniques. It may be advan-
tageous to place holes in both cathode plates so that
electrons with excess energy would not be collected by the
back cathode plate but would move on to a dummy cathode
behind the hole in the true cathode.
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1.6 PHOTOGRAPHIC STUDIES

If a normal magnetron gauge 1ls allowed to operate at
relatively high pressure - say lO_u or 10~° Torr - a
characteristic purple glow 1s clearly visible within the
gauge. In a darkened room, this glow 1s still discernible
at much lower pressures, particularly 1f 10 or 15 mlnutes
is allowed for eye accommodation. It was the aim of this
part of the program, to attempt to determine the distribution
of the discharge within the gauge by photographic techniques.
It was hoped that not only would 1t be possible to map the
discharge within the linear region of the gauge but that
the techniques could be made sufficiently sensitive so that
the distribution below 2 x 101
mined.

Torr could also be deter-

The experimental magnetron gauge, Figure 10,was assembled
so that one of the cathode end plates could be viewed
directly through the sapphire window in the flange of the
magnetron chamber. A radial slot (1 mm wide) was cut in
the cathode end plate from the outer edge to within 1.4 mm
of the central cathode rod. A mirror was also mounted at
approximately 45 degrees to the magnetron axls outside the
anode screen. However, this mirror was of limited usefulness
in measuring the axial distribution of the glow because of
parallax problems assoclated with the relatively small
sapphire window. It was experimentally easier to photograph
the axial distribution directly through the glass of the
reference gauge, a NRC 552 gauge.

Most of the photographs were taken with a Linhof Technilka
Camera, using Xenar 1:4.5/150 lens. For the major fraction of
the work, Polaroid Type 57 film (ASA 3000 speed) was most
sultable. At the lower 1light levels, Polaroid Type 410
(ASA speed 10,000) was also used. In general, the camera was
operated with a lens opening of f 4.5 at approximately 7 in.
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from the magnetron assembly. The resultant image had a
magnification of 1.47. When taking photographs of the
experimental magnetron, the shutter mechanism failed to
operate in the high magnetic fields associated with the
Helmholtz pair. However, time exposures were generally
necessary so that it was entirely satisfactory to use
plate slldes to glve the desired exposure.

The main part of the experimental work was devoted to
the determination of the effects of pressure, magnetic
fleld strength, anode voltage and gas composition in the
shape, location and lntensity of the discharge. The
major results are summarized below.

A representative photograph of the radial variation
of the intenslty of the discharge is reproduced in Fig. 19.
The figure 1is a view of the discharge at 4.2 x 10'6 Torr
through the radial slot in the cathode end plate. The
slot extended from the anode to within about 0.07 in of the
surface of the central cathode rod. The photograph shows
that the glow extends from the surface of the cathode rod
to about half way out to the anode. The intensity appears
to be relatlvely constant to approximately 1/2 (ra - rc)
and 1t then drops rapidly to a negligible value. Photo-
graphs of the discharge as seen through the perforated anode
were used to obtain an estimate of the axial distribution
of the discharge. By taking a series of photographs at
slightly different angles, varlous sections through the
discharge could be photographed. This series of photo-
graphs, when taken in conjunction with the radial photo-
graphs, has suggested that the distributions within the
gauge are as shown in Fig. 20,

The discharge extends out from the cathode rod to about
half the anode distance. The axlal length of the discharge 1is
considerably less than the distance between the cathode end
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VIEW OF DISCHARGE THROUGH RADIAL SLOT
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plates. That 1s, the discharge does not appear to extend to
the cathode end plates. The general shape of the discharge
resembles that of a doughnut around the cathode rod. There
was some evidence that the maximum light intensity was not
at the cathode rod but somewhat removed from it, as shown

in Figure 20. However, this increase in intensity was
relatively small. The axial length of the discharge appears
greatest at the cathode rod so that the radial sectlons
appeared to give an intensity which was elther constant

out to 1/2 (ra - rc) or at a maximum at the surface of

the cathode rod.

The above results were obtained with the gauges operating
in Argon at 4.5 x 10™8 Torr (N,) at normal conditions - anode,
4800 volts; magnetic field, 1000 gauss. The effects of
variations in pressure, magnetic field, anode voltage and

gas composition are summarized below.

Photographs obtained of 4.5 x 10~7 Torr, 4.5 x 10'8 Torr

and 4.5 x 10—9 Torr indicated that the intensity of the dis-
charge was directly proportional to the cathode current.
Quantitatlive densitometer measurements of the intensity of
the discharge were not made but by varyling exposure times

at different pressures and using visual comparison of the
photographic density, a failr estimate of the degree of
proportionality could be obtained. Future work would be
greatly facilitated by densitometer measurements. In order
to obtain a reasonable picture of 4.5 x J.O'8 Torr, an
exposure time of 10 minutes was required with the 3000 speed
film. Unfortunately, no photographs of the discharge

-10 Torr,

were obtained in the non-linear reglon below 2 x 10
even though exposure times in excess of 12 hours wilth
10,000 speed were used. Unfortunately, the films used lose
reciprocity for exposure times greater than about 8 hours

8o that larger exposure times are not beneficial.
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The effect of varying the anode voltage was investigated
at two levels of magnetic fleld - 1000 gauss and 500 gauss.
The pressure was 4.5 x 10'8 Torr and the gas, argon. In
order to compare the results, an arbitrary scale has been
used to estimate and specify the intensity. A range of 1
through 10 was used for 10 minute exposures of 3000 speed
film. Intensity 1 was barely discernible - and 10 was
complete exposure of the film. Intensities outside this
range were obtained with exposure times other than 10
minutes.

In some instances, considerable variations in film
sensitivity were noted from pack to pack. In general,
fresh packs were used for each series of experiments and
there was then good consistency within a series. Where
comparison between serles was required, the estimated
sensltivities were normalized so that intensities at
5000 volts and 1000 gauss were consistent. The results
have been summarized in Table V. The distance which
the dlscharge extends out from the cathode is specified
in terms of R - the fractlion of the cathode to anode
distance from which light 1s emitted.

TABLE V
EFFECT OF ANODE VOLTAGE (Vp) VARIATIONS
ON INTENSITY OF DISCHARGE IN ARGON

Pressure vy B 1*Exp. Relative

(Torr N») (Volts) (Gauss) (Amps) R Intensity

4.5x10-0 8000 1000 7.4x10-7 .53 15
7000 1000 6.5x10-7 .55 12
6000 1000 5.0x10-7 .51 9
5000 1000 3.6x10-7 .52 7.5
4000 1000 3.1x10-7 .52 3
3000 1000 1.5x10-7 .36 1.2
4800 500 1.9x10-7 .48 7.5
4500 500 1.9x10-7 .54 12.0
4000 500 1.5x10°7 .53 9.0
3000 500 1.2x10"; .51 6.0
2000 500 1.0x10‘8 .55 6.0
1000 500 2.5x10"° nd. .6
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In Figure 21 an attempt has been made to estimate the
variation of the light intensity as a function of the radial
position. There appears to be a rapld decrease in intensity
at about half the radial distance to the anode. Increased
anode voltage resulted in higher intensities but this
increase was greatest at the cathode. At 5000 and 6000
volts, the intensity appeared to be relatively constant
for a considerable fraction of the distance out from the
cathode. The results obtained on varying the magnetic
field from 600 to 2400 gauss are summarized in Table VI,

TABLE VI

EFFECT OF MAGNETIC FIELD VARIATIONS (B)
ON INTENSITY OF DISCHARGE ON ARGON

Pressure ' B it Exp. R Relative

(Torr N,) (Vélts) (Gauss) (Amps) Max. Intensity
4.5x10~8Torr 4800 600 2.0x10-7 .52 5

4800 800 2.9x10-7 .58 7.5

4800 1000 2.2x10-7 .56 7.0

4800 1200 2.5x10-7 .59 8.0

4800 1400 1.4x10-7 .51 6.3

4800 1600 1.4%10-7 .58 6.5

4800 1800 1.2x10-7 .58 6.1

4800 2000 1.15x10-7 .56 6.0

4800 2400 1.15x10-7 .56 6.0

In Figure 22 an attempt has again been made to estimate
the variation in the radial light intensity as a function of
the magnetic field intensity. It 1is noteworthy that the
gauge has the highest sensitivity at 1200 gauss - a condltion
where the intensity was the highest and constant for a
considerable fraction of the radial distance. At both higher
and lower magnetic fields the intensity was lower, and
appeared to decrease continually from the maximum value at
the cathode. 1In general, the areas under the curve
correlated with the gauge sensitivity - except at
extreme values. For instance, the sensitivity of the gauge at
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ESTIMATED RELATIVE INTENSITY

FIG. 21

EFFECT OF ANODE VOLTAGE ON RADIAL
DISTRIBUTION OF LIGHT

ARGON 4.5 x 10_8Torr
B = 1000 GAUSS
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R = FRACTION OF CATHODE TO ANODE DISTANCE
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600 gauss was T4% higher than at 2400 gauss. However, the
data suggest that Increased sensitivity of the gause is
associated with higher intensities of the discharge at
larger distances from the cathode.

In all of the work reported above, argon was used.
Photographs were also taken for helium and hydrogen.
These gases were chosen because they have spectra which
are very significantly different from each other and argon.
When the gauges were operated at the same cathode current
levels, there was no significant difference in the shape
of the discharge. However, the intensity of argon was
greater than that of helium which in turn was greater than
hydrogen. The relative intensities at 4800 volts, 1000
gauss in U4.5 x 10‘8 Torr N, were estimated as follows:
argon 7, helium 3, and hydrogen 2.

The maln results of the photographic studies may be
summarized as follows:

1) In the linear reglon of the gauge, the glow is
located around the cathode rod. It extends about half way
to the anode but not to the cathode end plates. It is
roughly doughnut shaped.

11) The intensity is approximately constant within the
major part of glow region. The intensity appeared to be
more nearly constant at those V, - B.conditions which gave
highest gauge sensitivity, e.g., 4800 volts, 1000 gauss.

iii) The intensity is a strong function of pressure. It
appeared directly proportional to the cathode current.

iv) The location and intensity of the discharge appeared
to be essentlally independent of anode voltage and magnetic
fleld. Any change in intensity observed on varylng elther
the anode voltage or magnetlc field could be attributed to
the change in the cathode current.
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v) It was not possible to obtain photographs of the dis-
charge below the linear region of the gauge. ’

The fact that the intensity of the emitted light is
directly proportional to the cathode curfent suggests that
the glow 1s 1n fact directly associated with the ilonization
process. While a number of possible processes may be
suggested to account for the generatlon of light, the
simplest overall explanation is probably as follows. Within
the glow regions, electrons have the required energies to
cause lonlzation. Some of the excess energy of the electrons
then appears as photons after the impact

e + A » A+ + e+ e + v,

The fact that the intensity appears relatively constant
within the discharge at the optimum operating parameters
of the gauge suggests that the volumetric ionization rate
is constant and therefore the electron density is approxi-
mately constant in its glow reglon. It also suggests
that the magnitudes of the radlial electric filelds within
the glow reglon are relatively small, and most likely
constant. This is consistent with the fact that the volume
of the discharge was essentlally independent of the anode
voltage. This would result in constant values of the
cycloidal diameter, 4 = gg% for the electrons in the glow
region. It is interesting to note that the glow appears
to extend out to slightly beyond the radius value
(0.45(r, - r ))at which the radial electric field is a
minimum for the space charge free case. (The space charge
free potential distribution has been measured by Redhead(l2)
using electric analogue techniques.)

The above interpretations are largely dependent on the
assumption that the region of ionization is essentially con-
fined to the region emitting the light as evidenced by the
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photographic technlques. However, the apparent limitation of
the useful discharge to within about half the cathode-anode
distances may have other explanations. For instance, it was
not unlikely that significant radilation was emitted beyond
half the cathode-anode distance, but that 1t was absorbed in
either the camera lens or the film. Tests with a pinhole

camera did not resolve the problem because the film gelatin
starts to absorb at ?200A and reaches a maximum at 30008

M Shenvn - o dmatdWmaia A A Y]

What 1s required 1s a high speed film with special sensitlvity
o)

down to at least 1800A. It is not unlikely that such a

film will shortly be available commercilally.

In one overexposed photograph of the radial distribution
taken at 5 x 10'7 Torr, a dark space was observed between
0.73 and 0.82 of the cathode-anode distance. However, beyond
0.82, a faint glow was evident. The intensity of the light
in the anode region was at least an order of magnitude
lower than measured closer to the cathode. However, it
does ralse the question as to whether the dark space was
attributable to gelatin absorption and that anode glow was
perhaps agsociated with light with a wavelength of less
than 3000A where the gelatin has a higher transmissivity.

If this is the case, it would appear that there are con-
sistent radial variations of the spectral distribution.
However, the use of filters with cut-offs above 3200A did
not indicate that the above was in fact the case. Because
of the nature of the ionization process, it is unlikely
that the emitted light would be a single function of the
radial position. Further work with a film of such
spectral sensitivity would be warranted to resolve this
question.
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1.7 ANOMOLOUS CURRENT STUDIES

Pressure measurements 1n the XHV range are made difficult
by the problems assoclated with reliable low current measure-
ments. The highest sensitlvity pressure sensor at present
available in this region 1s the cold cathode magnetron gauge.
At pressures below 10-13 torr, a readout current of less than
10-14 amp must be measured.

A number of possible sources of erroneous current can
effect the relliability of low pressure measurements. These
are related to four fundamental electrical vroperties of glass
and ceramic insulators used as vacuum feedthroughs}3 They are:

Volume Electrical Resistivity - The volume resistivity
of a dlelectric has two components}“ The flrst is the usual
conduction term similar to that for metallic conductors which
obey Ohm's law. The second term 1is associated with a transient
current which may be many times greater than the conduction term.
The net result 1s that dielectrics exhibit a conduction current
which not only depends on the applied voltage and temperature,
but also on the elapsed time after the initial application of
the voltage. This time dependence 1s also effected by the
electrical and thermal history of the dielectric.

Surface Electrical Reslistivity - The adsorption of a film
of extraneous impurities on a dielectric surface wlll generally
result in a decrease of 1its electrical resistivity. The
adsorption effect can be significantly reduced by chemical

cleaning and bakeout prior to pressure measurement. In addition,

when charged particles come 1into contact with a dlelectric

15,16 Results of experi.

surface a similar effect can take place.
mentally induced surface charging of a borosilicate glass by
Muray show that millisecond time constants for resistance changes
were obtalned in a 10'8torr background vacuum. These measure-

ments were carried out at stress levels in the dielectric of up
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to 600 volts. The effect of surface charging in the 10‘1“ amp

range and at XHV pressure has not yet been investigated.

Dielectric Constant - The dilelectric constant 1is effected
by dielectric absorption in a way similar to the effects des-~
cribed for volume electrical resistance. The dielectric ab-
sorption current, as will be shown, 1s caused by the finite
time required for dielectric dipole moments to accommodate their
orientation to the applied field.17

Dielectric Strength - In normal operation of the Redhead
Gauge, the pressure dependent lon current is measured between
the maln cathode and ground. The auxiliary cathode is held
at ground potential. The potential difference between measuring
electrodes and ground 1s approximately 1 mV in the lowest pres-
sure range when conventional electrometers are used. Hence,
induced current in a dielectric due to high voltage breakdown
is not of interest in XHV pressure measurement due to the low value
of applied voltage.

This section of the report deals with influence of the
dielectric absorption current in the insulation region separating
the main cathode and auxiliary cathode electrode on electro-
meter currents in the 10-14 amp region. Surface resistivity
effects were not investigated although a complete evaluation
of thls effect is suggested.

Dielectric polarization phenomena result when charges
are displaced interior to a dielectric. Two types of dipoles
may result:

i Permanent dipoles interior to the dlelectric material,
which are randomly orlented without the field, but
which may be selectively oriented when the field 1is
applied.

i1 Induced dipoles created by the appllication of the

external field.
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For the purposes of this report, gases and liquids will not
be considered. 1In solids, if molecules with permanent dipole
moments are allowed to rotate, however small, they can con-
tribute to the total polarization by increasing the number and
degree of alignment with the increased external field.

Induced dipole moments occur only in the presence of the
applied field. The value of the dipole moment induced in the
dielectric depends, among other things, on the magnitude of
the applied field. The induced dipole may be caused by three
types of interaction of charge particles with the applied fleld.
The first of these 1is the distortion of ionic bonding by the
applied field. This is often referred to as atomic polari-
zability, and is caused by the relative motion of ions in
the solid material. The second source is caused by the
deformation of the electron cloud at 1ndlvidual atom sites.
In this type, the center of charge of the electron cloud is
displaced from the nucleus. This type of polarization is
often referred to as the electronic polarizability of the
solid. The third type of induced dipole moment 1s cause-
by the movement of free electronic and/or ionic charges in
the applied field. If the movement of the free charge 1is
restricted at crystalline boundaries, a dipole moment will
'result, but if the charges move freely to the electrode
then a component of the dc¢ conduction results.

The total effect of both permanent dipoles and induced
dipoles in the dielectric is to create an average dipole
moment associated with the dielectric which depends on the
applied field. This dipole moment is given by:

u=alkE
where u = the average dipole moment per molecule
o = the total polarizability |
E = the local electric field.
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The total polarizability 1s given by:

o = o4 + aa + de + af

ay = the polarizability for permanent dipoles

ag = the polarizability for induced ionic dipoles

ae = the polarizability for induced electronic dipoles
ap = the polarizabllity for induced free dipoles.

The tctal pclarization is given by:
P=NalkE

where:
N = the total number of dipoles in the solid dielectric.

From macroscopic theory, it can be shown that

*
.K___...._];=L N a

K* + 2 3
where
K% = the complex dielectric constant
E = the externally applied field.

This equation defines the relationship between the
polarizability and the complex dilelectric constant K#,

When a constant electric field is applied to a set of
condenser plates which have a dielectric placed between them,
the resulting electronic dipoles induced 1in the dielectric
material are oriented almost immediately. This polarization
is often referred to as P_ (the initial polarization or
the polarization at very high frequencies).

The polarization will increase gradually as the orienta-
tion of the dipoles or the displacement of the ions takes
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place. This increase will continue until equilibrium is established

and the dielectric approaches the static polarization condition,18’19
P,. The equatlon describing the change in polarization in the
dielectrlic with time 1s given by:

- t-t
P, = [Po - P_J[1 - exp.( - - 23

where t 1s the well known relaxation time for this process (see
Figure 23). The polarization process is analogous to a
diffusion process where the relaxation time =t is given by:

T =T, eq/KT
where q 1s the activation energy and T is determined by
calculating the vibrational frequency of particles 1in a potential
well and is of the order of 10-13 sec.

To determine if volume polarization effects substantially
influence the current readings in Redhead Gauges at low current
levels(<10'1“ amps) the experiment shown in Figure 24 was per-
formed. 1In this experiment low voltage pulses were applied
between the auxlliary cathode and the main cathode of a model
552 Redhead Gauge. Typical charging and discharging procedure
was as follows: 1) open Sos 2) close Sqs 3) short input of
the electrometer, 4) allow a charging period of 1 - 40 minutes,
5) open the input to the electrometer, 6) short So, T) open
Sl’
meter.

8) observe the decay of current recorded by the electro-

This procedure assured that the full battery voltage would
not appear across the input terminal of the electrometer. The
potentlal divider network of the supply was designed to allow
its output terminal to be grounded without significantly reducing
the battery emf. The voltage pulses applied were between 0.1
and 0.5 volts in amplitude for periods of time not less than
1l minute. The gauge was not operative for long periods of
time (e.g. one week) prior to application of the voltage pulse.
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to t

POLARIZATION P AS A FUNCTION OF TIME t AFTER A
CONSTANT ELECTRIC FIELD IS APPLIED TO THE DIELECTRIC

FIG. 23
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This assured that no surface charge was present on the interior
dielectric surface of the gauge surrounding the electrode
feedthrough. The gauge was inoperative during the measurement,
i.e., no magnetic field or anode voltage was applied. This
test was used to determine if the normal voltage stress level
in the dielectric was sufficient to create long term anomolous
charging currents which could be seen by the external instru-
mentation.

It 1s important to note that this stress level far exceeds
(>100 times) those levels found in normal operation of the gauge.
A characteristic response curve 1s shown in Fig. 25. This
curve shows that the current to the electrometer was in the
noise level in less than one minute after the removal of applied
voltage stress. This strongly suggests that anomolous charging
current in the dlelectric separating the auxiliary cathode from the

main cathode cannot be considered the major difficulty in making
XHV pressure measurement.

Figure 26 shows the effect of high voltage disturbances at
the anode on the electrometer current measurements at the metering
terminal. This graph shows that large voltage changes resulting
from high voltage turn off and local disturbances in the vicinity
of the anode, 1.e., removal of the anode lead, give rise to
measurement current perturbations which persist with time
constants of approximately 40 minutes.

Instrument time constants assoclated with the Kelthley
electrometer and Moseley recorder were evaluated during the
measurement cycle. Periodically the electrodes of the auxiliary
cathode and main cathode were shorted at the input to the
electrometer thus assuring that the free charge on the
surface of the dielectric under investigation would be neutralized.
When the monitoring instruments were reconnected, the decay
curve was retraced thus indicating that the decay was due to
an internal relaxation phenomena.
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The results of this preliminary investigation into the
influence of polarization currents on vacuum measurement 1in the
XHV region indicate that:

i Low voltage stress of the auxiliary cathode to main
cathode dlelectric does not result in long term
polarization current in the 10-14 ¢o 10-15 amp

level measurement reglon.

i1 High voltage stress transients at the anode have
pronounced long term effects on the current measure-

ments.

The results of this investigation do not preclude the
effects of surface polarization currents induced on the interilor
dielectric surface when the gauge 1s in operation as the
existence of dielectric adsorption at current levels below
10-15 amp. A complete analysis of this problem should be
carried out utilizing:

i A modulated anode supply. The use of such a supply
will allow the potential of the electron space
charge to be varied and hence any electron charge
arriving at the dielectric surface will have an
ac component.

ii The use of temperature control of the gauge envelope.

iii The removal of the magnetron fleld while the gauge
is in operation. This should cause the scattering
of the electron space charge over the gauge envelope
thus creating the ultimate charging condition on the
interior dielectric surface.
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