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h . 
I - I  

Relativistic Space -Times having Corresponding Geodesics 

by' Gareth Williams* 

Ab s t r ac  t 

P a i r s  of Relativistic Space -Times a r e  classified according to their  

Segre character is t ics .  

te t rads  a r e  constructed and the condition that the spaces should have c o r r e s -  

ponding geodesics i s  imposed. 

contain spaces with corresponding geodesics. 

me t r i c s  in these c lasses  a r e  derived. Of these met r ics ,  the vacuum ones 

a r e  shown to be algebraically special, in the sense of the Petrov classification. 

Suitable bases consisting of pseudo-orthonormal 

It i s  found that the [ 3 ,  11 and [ ( 3 ,  l)]  c lasses  

The most  general forms of the 

~~~~ ~ ~ 

:% This research  was supported in part by NASA Grant NsG-518. 
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1. Introduction 

Let Vn and V h  be two Riemannian n-spaces  with fundamental forms  

gab and hab. If the elementary divisors of gab and hab a r e  all r ea l  and s im-  

ple, as is the case  when gab is positive definite, then there  exist  n mutually 

orthogonal non-null eigenvectors. 

null eigenvectors may occur  and there is  the possibility that the elementary 

divisors  a r e  not simple.  

Relativistic space t imes a r e  Riemannian 4-spaces  and may be spanned by 

eigenvectors and generalized eigenvectors. 

However, when both spaces a r e  indefinite, 

In such cases  the eigenvectors do not span the spaces.  

Wong' has  developed the theory of quasi-orthogonal ennuples, which 

had previously been introduced by Lense', and applied it to the problem of 

finding p a i r s  of V3 with corresponding geodesics. 

vectors  and generalized eigenvectors forming quasi -orthonormal te t rad 

sys tems 3 y 4 y  

of the problem in four dimensions also.  

Bases consisting of eigen- 

a r e  h e r e  found to  be suitable frameworks for the consideration 

The correspondence between the geodesics of the Relativistic spaces 

would mean physically that motions of f ree  particles would be in correspon-  

dence. 

equations of tes t  par t ic les  in the second space.  

The equations of tes t  particles in the one space would also be the 

Of special  interest  a r e  empty relativist ic space-times having c o r r e s  - 
ponding geodesics. 

their  projective curvature  tensors  a r e  identical . 
tive curvature  tensor  and the conformal tensor  being identical, the Petrov 

classification he re  gives a classification of spaces with corresponding 

geode sic s , 

Two spaces have corresponding geodesics if  and only if  
7 In empty space,  the projec-  
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2. Quasi -Orthogonal Tetrad 

Let va, = 1 . . 4* be a basis which forms a quasi-orthogonal tetrad in 

The basis constructed in the [ 3 ,  13 and [ ( 3 ,  l ) ]  c lasses  consists the space gab. 

of two null vectors and two unit spacelike vectors.  

and va , the spacelike vectors va and v a , then they satisfy the following quasi-  

If the null vectors a r e  va 
(1) 

(2 )  (3  1 (4) 

orthogonal conditions: 

a a a v a v a  = 0 ,  v va = 0,  v v, = 0 ,  v v, = 1, v a v  = 1. 
( 2 )  ( 3 )  (2) (4) ( 3 )  (4) ( 3 )  ( 3 )  (4) (44 

The signatures of the spaces a r e  t2. 
a13 

Define invariants g , h and g 
aP aP 

Any tensor can be expressed in t e r m s  of the vectors  va and some 
(a) 

invariants. Fo r  example, a tensor of the third order  Aabc can be expressed 

In particular 

* Latin indices denote tensor components and Greek indices tetrad components. 
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The matr ix  representation of hab relative to the quasi-orthogonal 

bas i s ,  in the space gab, i s  given by h P , where h P P  = $ h 
a aP - a 

The bases in each case will consist of eigenvectors and generalized 

The matr ix  representations will thus eigenvectors of hab in the space gab. 

be Jordan canonical fo rms ,  a unique representation f o r  each Segre case  8 . 
Coefficients of rotation’ a r e  a set  of invariants y defined by 

aP P 

The necessary and sufficient conditions for the congruence va to be 
(a) 

hypersurface orthogonal a r e  

In t e rms  of rotation coefficients, these become, for  a null congruence 

such a s  v a ,  
(1)  

y =  y = o ,  
131 141 

and for a spacelike congruence such a s  va , 
( 3 )  

y = 0, P , P # 3 .  
3[9P1 

Sufficient conditions for  null congruences such a s  va to be geodesic a r e  
(1 1 

y =  y = o .  
131 141 

** The slash is used to  denote covariant differentiation and a comma will be 
used for partial  differentiation. 

Round brackets around two o r  more  tensor o r  tetrad indices denote sym- 
me t ry  on the indices enclosed and square brackets will be used for skew 
symmetry . 

t 
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F o r  a space like congruence va , necessary  and sufficient conditions 
(3) 

for a geodesic a r e  y = 0 for  all a. 
a33 

Expansion 8 is defined by va . 

Let k b be a projection operator ,  projecting into the infinitessimal 

(a) (a) l a  
(a? 

3-space orthogonal to the non-null vector va and Ga = v a vb, then shear ,  
(a) (a) (a) J b  (a) 

u b is defined by 
(a? 

+ +  - 1/3 8 kab 9 

(a) (a) 
(a b) uab = V(a /b )  

In the case  of va being null and geodetic the shear  of the congruence 

(a) (a) (a) (a) 

(a) 

is given by 



3 .  [4 ]  Segre Characterist ic 

The canonical matrix representation ,hp of hab in the space gab is 

Here the only eigenvalue is A, repeated three  t imes.  

Let the base vectors for  this representation be za, ya, ta and xa 

defined by the following chain 

xa = (hab - A 6;) y b 

ta = (hab - A 6;) X b 

b za = (hab - A 6 g )  t 

(hab - A 6;) zb = 0. 

za is an eigenvector; t”, xa and ya a r e  generalized eigenvectors of 

ranks 2, 3,4 respectively. 

The relationships between these vectors will now be investigated. 

a implying that z is null. 

implying that ta and za a r e  orthogonal. 

implying that t” is null. 
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Since the spaces of interest  a r e  known not t o  admit rea l  orthogonal 

null vectors this case can be excluded. 

A similar approach was taken in each of the [2, 21 and [( 2, 2)]  Segre 

Classes .  There it was found, in each case,  that a pair  of null, mutually 

orthogonal eigenvectors o r  generalized eigenvectors had to exist .  

of interest ,  being of signature t2, a r e  known not to allow such vectors. 

Hence these c lasses  contain no Relativistic space-times having corresponding 

geodesics. 

The spaces 
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4 .  [3, 1 1  Segre Characterist ic 

The Jordan canonical matrix representation is 

A and A t B  being distinct eigenvalues. 

The base vectors f o r m  the chains 

xa = (hab - A bb) a b  y 

za = (hab - A bb) a b  X (4-1) 

a b  (hab - A hb) z = 0. 

a b  (hab - (AtB) 6b) t = 0. 

a a a 

and ya is a generalized eigenvector of rank 3 .  

z and t a r e  eigenvectors, x is a generalized eigenvector of rank 2 

It will now be shown that a unique quasi-orthogonal ennuple of the type 

discussed on Page 3 can be constructed satisfying these eigenvector conditions 

implying that za is null. 

a a implying that x and z a r e  orthogonal. 

a a a  

a a b  b b 

x must  therefore be spacelike. Normalize x , x xa = 1 .  

y za = y (h a - A ba) Xb = x xb = 1. 
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Contract the third equation of the set (4-1) with ta and the fourth with 

za. 

orthogonal to za.  

Subtraction, taking into account the fact that B # 0, gives ta a s  being 

ta mus t  therefore  be spacelike and can be normalized, tat, = 1. 

Similarly the second and fourth equations of (4-1) lead to xata = 0 and 

the first and fourth to yata = 0 .  

ya, being a generalized eigenvector of rank 3,  may be used to con- 

s t ruct  the following general eigenvector of rank 3 .  

-a Y = pya  t pxa t yza 

where p,  p, y a r e  sca la rs .  

The remaining vectors in the chain Fa and Fa would then be defined by 

Fa = pxa  t pza, Ta = pza. 
- 
y a  being a generalized eigenvector of rank 3,  Fa a generalized eigen- 

vector of rank 2 and za an eigenvector, all the identities previously found 

apar t  f rom the normalized resul ts  will be satisfied. 
-a - x 

sca la r  multiple. 

multiple. 

To satisfy the condition 

x a  = 1, p has to be unity. ta as defined in (4-1) can be chosen with in a 

However, the condition tata = 1 selects a unique sca la r  

The freedom remaining in the selection of the basis is therefore 

given by 
-a 
y = ya t pxa t yza, 

Fa = xa t pza, 

za = za. 

t = ta. -a 

The sca la rs  p and y will now be selected uniquely s o  that the two re- 

maining requirements of the quasi-orthogonal ennuple, namely Ta Fa = 0 and 
-a - y y a  = 0, a r e  satisfied. 

-a y - x a = 2 p t y x .  a a  
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Select the scalar  p to be equal to -1/2 yaxa. 
-a - 
Y Ya = yay, - 3 ~ '  t 2~ 

Select the sca la r  y such that this is identically zero.  

Hence a unique quasi-orthogonal ennuple exists, which gives a Jordan 

matrix representation for the l inear operator hab on the space gab. 

The sca la rs  g and h are  found, 
aP aP 

and 

These scalars ,  using the identities discussed in section 2, lead to 

Id have corresponding 

Here,  and throughout the remainder of this work, the covariant deriv- 

ative is with respect to the met r ic  gab. 
7 

The conditions of integrability of these equations a r e  Rabcd t x b a c d  = 0 ,  

These conditions a r e  
- 

where  Rabcd is the Riemann tensor with respect to hab. 

satisfied.  

, 



The components of this equation in the quasi-orthogonal basis a r e  
I 

(4-3) 2p h t 2 h  p t  h p t  h p = O .  
QPP QP P PP Q PQ P 

where 

and 

F r o m  the definitions 

h =  h and h = h .  
QP (QP) QPP ( Q P ) P  

giving 

( A +  Y )  B Y  
QPP P 41p 31P 

2 Y  B Y  + Y 
42P 32p 43p 

B Y  + Y  A t B  
32p 43p P P 

0 Y B Y  + Y  
12P 34p 13p 

0 

Y 

B Y  + Y  
34p 13p 

A t 2 y  
P 

where  
a A = A , ,  va and B = B,a v . 

P (P )  P (PI 

Equations ( 4 - 3 )  lead to certain conditions on the r o t a t i w  coefficients 

and on the eigenvalues. These conditions a r e  listed in Appendix 1. 

It is found that the congruence of za is null, geodetic, expansion free,  

hypersurface orthogonal and shear  free. Hence, by the Goldberg-Sachs 

Theorem", all vacuum metr ics  in this class a r e  algebraically special. z a 

need not be recur ren t  so  that the met r ics  need not be of Petrov type I11 o r  IId. 

The conditions on the rotation coefficients a lso give ta to be hyper- 

surface orthogonal. Using these and other properties of the rotation coeffi- 

11 

cients the me t r i c s  of the spaces a r e  now formulated. 
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a Let z be parameter along the congruence z , defined by za = vz, a 

where v is a scalar. 

cannot be t ransformed away. 

of freedom in the choice of za, it is necessary to define the original basis  

with xa being of convenient scalar  magnituded, not necessarily unity. 

brings in complications which a re  not worth the simplification obtained in the 

fo rm of za. 

Since there  is no freedom in the choice of za the scalar  

T o  get r id  of the sca la r  by introducing a degree 

This 

Since za is null, for  a displacement along this congruence, 0 = gll dz2 

implying that gll is zero.  

Let y be parameter  along the congruence of ya. 

The congruence ta is hypersurface orthogonal, spacelike. 

Then g22 is zero  also.  

Let t be the 

Let x be parameter  along the curves of xa. parameter  along this congruence. 

The vectors zaJ Yap ta and xa, in this coordinate system, can be 

wri t ten 

za  = (V, O,O, 0) ; 

ta = (O,O,  C, 0) ; 

Y a  = (yip Y2J ~ 3 ,  ~ 4 )  ; 

X a  = (XI, xz, ~ 3 ,  x4) 

where  y1 . . y4, x1 . . x4, and C a r e  a s  yet unknown sca la rs .  

The line element of the space gab, in this coordinate system is 

ds2  = c2 dtz t D2 dx2 t 2Edzdy t 2Fdzdx t 2Gdydx, 

where  D, E, F and G are scalars. 

The vector components and the met r ic  coefficients m a y  be related 

using expression (4-2) for gab, to give 

G = 0,  
1 1 2  

Ya = 7 ( - -Q 

xa = (Q, 0 9 0 ,  D). 

Ej 0 ,  F-DQ), 2 (4-4) = (V, O,O, 0 )  9 

t, = ( 0 9 0 ,  c ,  0) 9 

Here Q is an unknown scalar .  Both Q and V, if they exist, a r e  unique. 

The rotation coefficients may now be calculated. Knowledge of some 

of the rotation coefficients has  already been used, of course,  in the construc- 

tion of the line element. Comparison will be made with the table of rotation 
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coefficients to give the remaining information concerning the spaces.  

table of rotation coefficients based on the above vectors i s  given in Appendix 2 .  

The 

An identity that can be used for simplifying some of the rotation coef- 
a ficients is obtained from the knowledge that z ZalbZb being pro- 

portional to za implies, in this coordinate system, that {iC1} = 0, c # 1, giving 

is geodesic. 

FE,1 - E F , l  = 0 or  F = 0. 

It is found that the spaces can be represented by the following met r ics :  

Space gab, 

Space hab, 

ds2 = C2dtZ t D2dx2 t 2Edzdy t 2Fdzdx 

ds2  = 2VQdz2t CZ(AtB)dtz t AD2dx2 t 2AEdzdy t 2(AF t VD)dzdx 

The conditions on the coefficients a r e :  

F = 0 o r  FE,1 - E F , I  = 0. 

V,2 = V,3 = C,2 = C,4 = D,2 = D,3 E,3 = F,3 = Q,3 = 0 .  

V 2Q 2(E,4 - F,2) - -4ABC,1 A , 1 - , 4 = , 2 -  - - - 
2V VD E E D  3 (AtB)CV 

a,, [3VD - 2A(QD-F)] = 2A(Q,4-D,1). 
E 

r 1 

A and B a r e  functions of z only. 

The following functions cannot take the value zero,  A, B, AtB,  E ,  D, 

V,  C. z ,  y, t and x a r e  labelled 1, 2, 3 and 4 coordinates respectively. 

In order  that the signature of both the spaces be t2 ,  i t  is necessary  

and sufficient that all the functions appearing in the met r ic  coefficients be 

rea l ,  that A > 0 ,  A t B > 0 .  



5. [ ( 3 ,  l ) ]  Segre Character is t ic  

The Jordan canonical fo rm is now 

A being the single repeated eigenvalue. 

chains 

The base vectors a r e  defined by the 

xa = (hab - A 6:) y b 

The following identities a r e  found in exactly the same  manner as in  

section 4 ,  

a a = 1, zaxa = 0 ,  tat  = 1, xaxa = 1 ,  xat, = 0 zaza = 0 ,  z ta = 0,  z ya a 

To complete the quasi-orthogonal ennuple basis ,  the identities 

yaya = 0 ,  yata = 0, and yaxa = 0 a r e  s t i l l  required. 

Starting with an a rb i t r a ry  generalized eigenvector of rank 3 ,  ya, the 

mos t  general  transformation preserving this property is 

ya  = pya t pxa t yza  t qta 

where p ,  p, y, q a r e  a rb i t r a ry  scalers .  
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The remaining vectors in the chain, Z a  and 'Za are given by 

Fa = pxa t pza 

-a a z = p z .  

The two dimensional eigenspace allows t 
-a 

defined byxa  = Ata t bza to 

be an eigenvector. However, the restriction that Fa should have magnitude 1 

causes X = 1 and 6 = 0. 

The condition y -a- ya= 1 makes p = 1. 

ALL the other identities are  of course satisfied since ya is an eigen- 

vector of rank 3, Za an eigenvector of rank 2 a n d Z a  an eigenvector. 

degrees  of freedom remain to construct an  ennuple that satisfies the three 

remaining conditions. 

Three 

-a- 
y x, = yaxa t 2p. 

Select the appropriate sca la r  p to make iJaSia = 0. 

-a- 
Here select  the appropriate '7 to make y t, = 0. 

-a- 
Y Y a -  - Y a Y a  - 3p2 - '72 t y. 

Here  again by selecting the appropriate y, ya is null. 

Hence the quasi-orthogonal ennuple can be selected a s  the basis in this 

Here again i t  is unique. case.  

(4-2)  with B = 0. 

The representation of gab and hab a r e  a s  in 

The geodesic condition leads to the same identities a s  in the [3,  11 

These now have to be simplified under the condition B = 0. 

A = 0 ,  B = 0 need not be considered, a s  here  the space hab becomes 

case.  

two dimensional. 
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A # 0, B = 0 in the identities give p, = p, = p, = p, = 0,  implying that p, is 
1 2 3 4  

constant. This  in turn implies that A is constant. 

The only possible non-identically zero  rotation coefficients a r e  y 
230, 

and y , these being independent apart  f rom the skew symmetry  relationship. 

Hence the za congruence is again null, geodetic, expension free,  hypersurface 

orthogonal and skew free,  

sion in the introduction all vacuum metr ics  in this c lass  are algebraically 

special. 

3 20. 

By the Goldberg-Sachs Theorem and the discus- 

The conditions on the rotation coefficients a lso imply that the con- 

gruence Xa is hypersurface orthogonal. 

a manner similar to those of the [3 ,  13 case.  

cases is used in the construction, 

The met r ics  a r e  now constructed in 

The analogy between the two 

It is found that the spaces can be represented by the following met r ics  

having signatures t 2: 

ds2 = dx2 t D2dt2 t 2Edzdy t 2Fdzdt 

and 

ds2 = Adx' t AD2dt2 t 2AEdzdy t 2AFdzdt t 2Vdzdx 

The conditions on the coefficients a re :  

D Y 2 =  D , 4 =  E, ,  = F, ,  = E,, - F , 2 =  0 

D, V,  E do not vanish. 

D, E, F ,  V are r ea l  valued. 

A is a real positive constant. 

V is a function of z only. 

Here ,  z ,  y ,  t and x are labelled 1, 2,  3 and 4 coordinates respectively. 

The two spaces then have corresponding geodesics. 



6. Discussion 

The Segre Class having simple elementary divisors and simple eigen- 

values has been discussed by Eisenhart7. Levi-Civita” has discussed the 

Segre Class having simple elementary divisors with repeated eigenvalues, 

when the fundamental forms a r e  positive definite. An extension of this work 

to relativist ic metr ics  and also the investigation of the [2,  1, 13 class and i ts  

sub c lasses  st i l l  needs to be car r ied  out. 

corresponding geodesics exist in these categories. 

real is t ic  gravitational wave would have a certain amount of shear i t  would be 

of interest  to find metr ics  other than algebraically special ones having cor re-  

sponding geodesics. 

I t  i s  expected that spaces allowing 

Since any physically 

These may exist in the c lasses  s t i l l  to be considered. 

The author wishes to express  his thanks to D r .  Alan H. Thompson 

for valuable discussions and to Dr. F. A. E. Pirani  for cr i t ic ism of the 

manuscript .  
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Appendix 1 

Conditions on the rotation coefficients 

Y =  
4 3 4  

0 

0 

k0 

0 

2B 123 

9 122 

0 

0 

- A Y  

- A Y  
3 122 

2B 123 

Y 
122 

0 

A t B  y 
2B3 123 

0 

Y 
123 

0 

A t B  y - 
3B 

0 

- A Y  
3 122 

0 

A t B  y - 
2 B 2  123 

- 1 Y  
3 122 

0 

- -A Y 
2B 123 

0 

0 

- A Y  
- 2B 123 

A t B  y - - 2 ~ 3  123 

0 

A t B  y - - 2B2 123 

0 

A t B  y 
- 3B 122 

0 

0 

- 

0 

A t B  
- 2B2 

0 

- 

- A y  
- 2B 123 

- 9 122 

A t B  y 

0 

- 2B-2 123 

0 

0 

0 

- 3 122 

0 



Conditions on the eigenvalues 

A , ,  = A , ,  = B , ,  = B , ,  = 0 

19 



Amendix 2 

The following rotation coefficients a r e  identically zero: 

y , for  all a, (3, by skew symmetric property of rotation coefficients. 
aa P 
y , y , y y , y , y and rotation coefficients obtained f r o m  these using the 
131 141 341 133 143 134 

skew symmetr ic  property. 

The non-zero rotation coefficients are:  

v, 2 y = -  
121 E 

-E, 2 
132 = 2EC 

E, 3 (QD - F) F, 3 QD, 3 

342 = 2CDEV 2CDV CDV 
t - 

v,, E 9 3  

= VC - 2EC 123 

a 

- C , *  

z3=  cv 

3)J3=  CD 
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