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Relativistic Space-Times having Corresponding Geodesics

by Gareth Williams*

Abstract

Pairs of Relativistic Space-Times are classified according to their
Segre characteristics. Suitable bases consisting of pseudo-orthonormal
tetrads are constructed and the condition that the spaces should have corres-
ponding geodesics is imposed. It is found that the [3, 1] and [(3,1)] classes
contain spaces with corresponding geodesics. The most general forms of the
metrics in these classes are derived. Of these metrics, the vacuum ones

are shown to be algebraically special, in the sense of the Petrov classification.

* This research was supported in part by NASA Grant NsG-518.



1. Introduction

Let V, and V/ be two Riemannian n-spaces with fundamental forms
gap and h . If the elementary divisors of g,) and h,}, are all real and sim-
ple, as is the case when g,} is positive definite, then there exist n mutually
orthogonal non-null eigenvectors. However, when both spaces are indefinite,

null eigenvectors may occur and there is the possibility that the elementary

divisors are not simple. In such cases the eigenvectors do not span the spaces.

Relativistic space times are Riemannian 4-spaces and may be spanned by
eigenvectors and generalized eigenvectors.

Wongl has developed the theory of quasi-orthogonal ennuples, which
had previously been introduced by Lense?, and applied it to the problem of
finding pairs of V3 with corresponding geodesics. Bases consisting of eigen-
vectors and generalized eigenvectors forming quasi-orthonormal tetrad

3:425 5re here found to be suitable frameworks for the consideration

systems
of the problem in four dimensions also.

The correspondence between the geodesics of the Relativistic spaces
would mean physically that motions of free particles would be in correspon-
dence. The equations of test particles in the one space would also be the
equations of test particles in the second space.

Of special interest are empty relativistic space-times having corres-
ponding geodesics. Two spaces have corresponding geodesics if and only if
their projective curvature tensors are identical’. In empty space, the projec-
tive curvature tensor and the conformal tensor being identical, the Petrov

classification® here gives a classification of spaces with corresponding

geodesics.



2. Quasi-Orthogonal Tetrad

Let v, = 1. . 4% be a basis which forms a quasi-orthogonal tetrad in
the space g,;,- The basis constructed in the [3,1] and [(3, 1)] classes consists

of two null vectors and two unit spacelike vectors. If the null vectors are v2

(1)

and v, the spacelike vectors v* and \(7 ), then they satisfy the following quasi-
(3) 4

orthogonal conditions:

a a a
vav =1, vv, =0, v vy =0, VaV =0, vivy, =0,

(1)(2) (1)(3) (l)(4) (l)(l) (2)(2)

va v, =0, VaV = 0, vav = 0, vav =1, va'v = 1.

(2) (3) (2) (4) (3) (4) (3) (3) (4) (4)

The signatures of the spaces are +2.

aB
Define invariants g , h and g
ap ap
aB
g=gabvavb, h=h Va'vb, g g =06 .
aB (a) (B) 0B (a) (B) Bp P

Any tensor can be expressed in terms of the vectors v® and some

(a)

invariants. For example, a tensor of the third order A, , = can be expressed

aBp
= A V, Vy V,

(@) (B) (p)
In particular

aB
Bab = & V5 Vp
(a) (B)

Aabe

ap
and h,p, = h Vy Vy
(@) (B)
ap BN
where h is defined to be g g h)\.
p

* Iatin indices denote tensor components and Greek indices tetrad components.



The matrix representation of h,}, relative to the quasi-orthogonal

basis, in the space 8,p’ 1S given by ahﬁ, where ahﬁ = ng h.
ap

The bases in each case will consist of eigenvectors and generalized
eigenvectors of h,} in the space g,1,. The matrix representations will thus

. . . 8
be Jordan canonical forms, a unique representation for each Segre case .

Coefficients of rotation’ are a set of invariants y defined by
afp
ok
Y = valp vd& P
aBp  (a)  (B) (p)

They have the property that y = O.T
(aB)p

The necessary and sufficient conditions for the congruence v2 to be

(a)

hypersurface orthogonal are
\4 \4
(@) [2 (@)Ple] =0

In terms of rotation coefficients, these become, for a null congruence

such as v ,

(1)

. a
and for a spacelike congruence such as v

(3)

2

Yy =0, B,p#3.
3[Bp]

Sufficient conditions for null congruences such as v2 to be geodesic are

sl
%K

The slash is used to denote covariant differentiation and a comma will be
used for partial differentiation.

t Round brackets around two or more tensor or tetrad indices denote sym-

metry on the indices enclosed and square brackets will be used for skew
symmetry.



For a space like congruence V3a , necessary and sufficient conditions
for a geodesic are y = 0 for all a.
a33

is defined by (‘a’?l a

Expansion 6
a

(a)
Let (k?b be a projection operator, projecting into the infinitessimal
a

a a _

3-space orthogonal to the non-null vector v% and v2 = Va]b vb, then shear,
)

(a) (a) (a (a)
(g?b is defined by

Oap = V(ab)+ {’(avb) -1/3 2] kab9
(a) (a) ()" (a) (a) (a)
In the case of v? being null and geodetic the shear of the congruence
a
is given by

IO'IZ =1/2 (V(alb) valb - 26%).
(a) (a) (a)



3. [4] Segre Characteristic

The canonical matrix representation ahﬁ of hyt in the space g,y is

A 1 0 0
0 A 1 0
0 0 A 1
0 0 0 A

Here the only eigenvalue is A, repeated three times.
Let the base vectors for this representation be z#, y?, t* and x*

defined by the following chain

x* = (h? - A 62) yP

t? = (ha‘b - A 613')) xb
z% = (h¥, - A 6%) tb
(h%, - A 8§ z° = 0.

. . a . .
z% is an eigenvector; t%, x° and y2 are generalized eigenvectors of

ranks 2, 3, 4 respectively.

The relationships between these vectors will now be investigated.

zaza = (hab - A 6%) tbza 0,

implying that z° is null.

0,

It

b
‘ca‘za = (hab - A 6%) X 2z,

implying that t and z* are orthogonal.

a a a, b a
tta:(hb—A6b)xta—zza

= (ha - A 6%) sz = 0)

b a

implying that t* is null.



Since the spaces of interest are known not to admit real orthogonal
null vectors this case can be excluded.

A similar approach was taken in each of the [2, 2] and [(2, 2)] Segre
Classes. There it was found, in each case, that a pair of null, mutually
orthogonal eigenvectors or generalized eigenvectors had to exist. The spaces
of interest, being of signature +2, are known not to allow such vectors.

Hence these classes contain no Relativistic space-times having corresponding

geodesics.




4, [3,1] Segre Characteristic

The Jordan canonical matrix representation is

A 1 0 0
0 A 1 0
l‘ 0 0 A 0
0 0 0 (A+B)

A and A+B being distinct eigenvalues.

The base vectors form the chains

x® = (b2, - A 53 yP

b

a a a, b
(4-1) 2% = (b - A8l x

a a, b _

(h'y, - A 87) 2 = 0.

(h*, - (A+B) &p) =0,

z% and t° are eigenvectors, x* is a generalized eigenvector of rank 2
and ya is a generalized eigenvector of rank 3.
It will now be shown that a unique quasi-orthogonal ennuple of the type

discussed on Page 3 can be constructed satisfying these eigenvector conditions.

2% 2 = (h% - A 82) x"z, = 0,
implying that z2 is null.
z xazza(hab-Aag) ¥y, = 0,

implying that x> and 2% are orthogonal.

x® must therefore be spacelike. Normalize x?, xaxa = 1.

b
yaza = ya h™, -A 6;’) X} =xbxb =1.




Contract the third equation of the set (4-1) with t; and the fourth with
z5. Subtraction, taking into account the fact that B # 0, gives t® as being
orthogonal to z*

t* must therefore be spacelike and can be normalized, tata = 1.

Similarly the second and fourth equations of (4-1) lead to x®t, = 0 and
the first and fourth to y®t; = 0.

v2, being a generalized eigenvector of rank 3, may be used to con-
struct the following general eigenvector of rank 3.

V2 = py? + px® + yz?
where p, |, y are scalars,

The remaining vectors in the chain X® and Z2 would then be defined by
x2 = px® + p.za, z2 = pza.

v 2 being a generalized eigenvector of rank 3, x2

a generalized eigen-
vector of rank 2 and z% an eigenvector, all the identities previously found
apart from the normalized results will be satisfied. To satisfy the condition
X% X, = 1, p has to be unity. t> as defined in (4-1) can be chosen with in a
scalar multiple. However, the condition tata = 1 selects a unique scalar
multiple.

The freedom remaining in the selection of the basis is therefore

given by
7% = y? ¢ px? + yz?,
X2 =x%+ pz2,
z23 = 22,
T2

The scalars p and y will now be selected uniquely so that the two re-

maining requirements of the quasi-orthogonal ennuple, namely 72 X5 = 0 and

v Ya =0, are satisfied.

?a'ia = 2p + ya'xa.
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| Select the scalar p to be equal to -1/2 yaxa.
T Va = vy, - 30° + 2y
Select the scalar y such that this is identically zero.
Hence a unique quasi-orthogonal ennuple exists, which gives a Jordan

| matrix representation for the linear operator h,}, on the space gyy,-

The scalars g and h are found,
ap af
g=gviv= /0 1 0 0
ap (a) (B) . o o o
0 0 1 0
0 0 0 1
and
h =hyyv®vP= /0 A 0o 0
op @® [, o 1
0 0 (A+B) O
0 1 0 A
These scalars, using the identities discussed in section 2, lead to
(4-2) g p = X% + ZZ(a Vp) * tatp:
and

hap = Agab + 22(3 Xp) + B tyty,.
The condition that the spaces h,; and g, should have corresponding

geodesics is that there exist a scalar p such that
- n 7
Zuhablc + Zhabp‘, c + hbcl.l.,a + hcal».l.,b = O.

Here, and throughout the remainder of this work, the covariant deriv-
ative is with respect to the metric g,y,-
The conditions of integrability of these equations are -ﬁabcd +-§bacd= 0,

where R 4 is the Riemann tensor with respect to hy,. These conditions are

abc

satisfied.



The components of this equation in the quasi-orthogonal basis are

(4-3) 2. h +2h p+ hp+ hp=0.
afp aPp Ppa paP

where
h = hyple v* vP e
aBp (a) (B) (p)
and
M= g ve.
a {a)

From the definitions

h=h and h = h .
ap  (ap) app  (aB)p
giving
h=/0 (A+ vy) By 0
afp P 41p 31p
Aty 2y By + vy Y
P 41p 42p 32p  43p 12p
By By + vy A+B By + vy
31p 32p 43p P p 34p 13p
0 Y By + vy A+2y
12p 34p  13p P 14p
where
A=A v®and B =B va.
’a ’
p (p) P 2 (p)

Equations (4-3) lead to certain conditions on the rotation coefficients
and on the eigenvalues. These conditions are listed in Appendix 1.
It is found that the congruence of z® is null, geodetic, expansion free,

hypersurface orthogonal and shear free. Hence, by the Goldberg-Sachs

1

Theorem'® >

, all vacuum metrics in this class are algebraically special. z

need not be recurrent so that the metrics need not be of Petrov type III or IId.

The conditions on the rotation coefficients also give t* to be hyper-
surface orthogonal. Using these and other properties of the rotation coeffi-

cients the metrics of the spaces are now formulated.

11
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Let z be parameter along the congruence z2, defined by z, = vz, 5
where v is a scalar. Since there is no freedom in the choice of z2 the scalar
cannot be transformed away. To get rid of the scalar by introducing a degree
of freedom in the choice of z?, it is necessary to define the original basis
with x® being of convenient scalar magnituded, not necessarily unity. This
brings in complications which are not worth the simplification obtained in the

form of z,.

2 is null, for a displacement along this congruence, 0 = gj; az®

Since z
implying that g;; is zero.

Let y be parameter along the congruence of y*. Then g,; is zero also.

The congruence t? is hypersurface orthogonal, spacelike. Let t be the

parameter along this congruence. Let x be parameter along the curves of x.

The vectors z,, ya, ta and x,, in this coordinate system, can be

written
za = (V,0,0,0) ; Ya = (Y1 V2 Y3, V)
ta =(0,0,C,0) ; Xa = (X1 Xzs X3, X4)
where y; . . yg X1 . . X4, and Care as yet unknown scalars.

The line element of the space gah, in this coordinate system is
ds? = c? at® + D? dx® + 2Edzdy + 2Fdzdx + 2Gdydx,

where D, E, F and G are scalars.
The vector components and the metric coefficients may be related

using expression (4-2) for 81’ to give

G=0,
11
(4-4) =z, = (V,0,0,0), Ya =3 (-'?:QZ,E,O,F-DQ),
ty = (0,0,C,0), xa = (Q,0,0, D).

Here Q is an unknown scalar. Both Q and V, if they exist, are unique.
The rotation coefficients may now be calculated. Knowledge of some
of the rotation coefficients has already been used, of course, in the construc-

tion of the line element. Comparison will be made with the table of rotation



coefficients to give the remaining information concerning the spaces. The

table of rotation coefficients based on the above vectors is given in Appendix 2.

An identity that can be used for simplifying some of the rotation coef-
ficients is obtained from the knowledge that 2% is geodesic. zalbzb being pro-
portional to z, implies, in this coordinate system, that {1(:1} =0, c £1, giving

FE, - EF,;=0o0or F = 0.

It is found that the spaces can be represented by the following metrics:
Space g,y ds®= C’dt® + D’dx’ + 2Edzdy + 2Fdzdx
Space hap, ds® = 2VQdz? + C}(A+B)dt? + AD?dx’ + 2AEdzdy + 2(AF + VD)dzdx

The conditions on the coefficients are:

F =0or FE,, - EF,; = 0.

V,2=V,3=0C,2=C,4=D,,=D,3=E,3=F,3= Q,3 = 0.

3vQQ,,
’ - E’ = T . .
EQ,, - QE,; oA
A91 _ V)4 _ ZQ,Z _ 2(E,4 - F’Z) _ -4ABC:1
2v VD E ED " 3(A+B)CV
B _ (3B'A)Vs4
L= 2AD

% [3VD - 2A(QD-F)] = 2A(Q,4-D,1).

915—2 [9V - 2AQ] = 2A V\;l - QVVD’4 - EE’I

A and B are functions of z only.

The following functions cannot take the value zero, A, B, A+B, E, D,
V, C. z, y, tand x are labelled 1, 2, 3 and 4 coordinates respectively.

In order that the signature of both the spaces be +2, it is necessary

and sufficient that all the functions appearing in the metric coefficients be

real, that A >0, A +B > 0.

13



5. [(3,1)] Segre Characteristic

The Jordan canonical form is now

A 1 0 0
0 A 1 0
0 0 A O
0 0 0 A

A being the single repeated eigenvalue. The base vectors are defined by the

chains

o]
t

= (h3, - A 83) yP

N
{

2 = (b3, - A 83) xP
(h*, - A 83 zP=0

(h?, - A 82) tP = 0.
The following identities are found in exactly the same manner as in
section 4,

a - a - a — a - a — a — a -
zza—O,zta-O,zya-l,zxa—O,tta—l,xxa-l,xta-O

To complete the quasi-orthogonal ennuple basis, the identities
y2ya = 0, y*t, = 0, and y*x, = 0 are still required.

Starting with an arbitrary generalized eigenvector of rank 3, y?, the
most general transformation preserving this property is

T2 = py® + px® 4 yz® + nt?

where p, B, Y, nare arbitrary scalers.

14 -
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o s . . -—a — .
The remaining vectors in the chain, X% and Z2 are given by

X2 = px® + pz?

Z2 = pz?,

The two dimensional eigenspace allows T2 defined by t® = At? + 622 to

be an eigenvector. However, the restriction that t > should have magnitude 1

causes A= 1 and 6§ = 0.
The condition 7a37a= 1 makes p = 1.

All the other identities are of course satisfied since ¥2 is an eigen-

vector of rank 3, X2

an eigenvector of rank 2 and Z2? an eigenvector. Three
degrees of freedom remain to construct an ennuple that satisfies the three

remaining conditions.

y2%, = yex, + 2p.
Select the appropriate scalar p to make ?aia = 0.
_a-—-

Yy ta=yata+ n.

_a_
Here select the appropriate nto makey t, = 0.

—_a—

VY, = vy, - 38

—n2+\(.

Here again by selecting the appropriate y, T2 is null,

Hence the quasi-orthogonal ennuple can be selected as the basis in this
case. Here again it is unique. The representation of g, 3, and h,p are as in
(4-2) with B = 0.

The geodesic condition leads to the same identities as in the [3, 1]
case. These now have to be simplified under the condition B = 0.

A = 0, B = 0 need not be considered, as here the space h,}, becomes

two dimensional.



A # 0, B = 0 in the identities give p = p = p = p = 0, implying that p is
1 2 3 4

constant. This in turn implies that A is constant,

The only possible non-identically zero rotation coefficients are vy
23a

and vy, these being independent apart from the skew symmetry relationship.
320

Hence the z2 congruence is again null, geodetic, expension free, hypersurface
orthogonal and skew free. By the Goldberg-Sachs Theorem and the discus-
sion in the introduction all vacuum metrics in this class are algebraically
special.

The conditions on the rotation coefficients also imply that the con-
gruence X? is hypersurface orthogonal. The metrics are now constructed in
a manner similar to those of the [3, 1] case. The analogy between the two
cases is used in the construction.

It is found that the spaces can be represented by the following metrics

having signatures + 2:

ds?

dx? + D3dt? + 2Edzdy + 2Fdzdt
and

ds?

Adx? + AD%dt? + 2AEdzdy + 2AFdzdt + 2Vdzdx
The conditions on the coefficients are:

D,Z=D,4=E,4=F)4=Es3-F’z::o

Ey,_Vg
E v

D, V, E do not vanish.
D,E,F,V are real valued.
A is a real positive constant.

V is a function of z only.

Here, z, y, t and x are labelled 1, 2, 3 and 4 coordinates respectively.

The two spaces then have corresponding geodesics.

‘16



6. Discussion

The Segre Class having simple elementary divisors and simple eigen-
values has been discussed by Eisenhart’. Levi-Civita!’ has discussed the
Segre Class having simple elementary divisors with repeated eigenvalues,
when the fundamental forms are positive definite. An extension of this work
to relativistic metrics and also the investigation of the [2, 1,1] class and its
sub classes still needs to be carried out. It is expected that spaces allowing
corresponding geodesics exist in these categories. Since any physically
realistic gravitational wave would have a certain amount of shear it would-be
of interest to find metrics other than algebraically special ones having corre-
sponding geodesics. These may exist in the classes still to be considered.

The author wishes to express his thanks to Dr. Alan H. Thompson
for valuable discussions and to Dr. F. A. E. Pirani for criticism of the

manus cript.



Y = 0
ap
0
0
0
Y = 0
afz
- Y
122
Ay
2B 123
Ay
g9 122
Yy = 0
afis
-Y
123
0
0
Y =
ap4
Ay
3 122

AEEendix 1

Conditions on the rotation coefficients

123

A+B vy

-A
Z—Ig 123

Ay
ZB 123

A+B vy
- 2B3 123

A+B vy
- S p? 123

A+B vy

3B 122

A+B
2B?
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0
Ay
3 122
0
0
Ay
= 9 122
A+B vy
ZBZ 123
0
0
0
0
0
1y
- 3 122
Ay
2B 123
0



Conditions on the eigenvalues

A,,

A,

A,,

B’l

B;3

n

A,,=B,,=B,,=0

Q B8A

= r——

A:3B 9

Eyl

Qv,,

5
A%

T E

2DV

]
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Appendix 2

The following rotation coefficients are identically zero:

Y , for all a, B, by skew symmetric property of rotation coefficients.
aaf

Y, Y» Y» Y, Y, Y and rotation coefficients obtained from these using the
131 141 341 133 143 134

skew symmetric property.

The non-zero rotation coefficients are:

y =2
121 E
N _-E.3
231 2CE
- ) F, - E,
y = Q. (K., 4)
241 E 2DE
vV, QV,, E»1+(E:4-F»2)Q
1\;2— v? V2D EV EVD
y = -E.
0, 2EC
F’ - E:
Y. : " ED
142
_-D,,0° E,;QRF-QD)  F,;0
4.~ CDV? 2CEDV? CDV?
_QE,1+Cf(F,,-E4) QD,; 9, (20F - 0% L 940
ne  E 2ED D ' 2ED D
_E’l(QD'F)_’_ F13 QD,3
4.~ 2CDEV 2CDV ~ CDV
y = V,3 ) E, 3
s VC T 2EC
y =2
233 CV
_C’l



A F

_V’4 (E!4‘F’2)

<
I

124 VD 2ED
y = YD,
14e ED
y:E’3(F'QD)_ F, 3 +D,EQ
234 2CDEV 2DCV CDhVv
Y =Q)2(F-QD)_Q’4 D,]
244 DEV VD VD

D,
y ===
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“a

o U1 b WV

10.

11.

22

Bibliography

Wong, Y., Annals of Mathematics, Vol. 46, No. 1, 158 (1945).
Lense, J., Math Zeitschrift 34, 721 (1932).
Sachs, R. K., Proc.Roy Soc., 264, 309 (1961).

Goldberg, J. N. and Kerr, R. P., J. Math Phys., 2, 327 (1961).
Newman, E., J. Math. Phys., 2, 324 (1961).

Jordan, P., Ehlers, J. and Kundt, W., 1960, Akad. Wiss. Mainz,
Abh. Math-Nat. Kl., Jahrg. 1960, No. 2.

Eisenhart, L. P., Riemannian Geometry, Princeton (1926).
Schouten, J. A., Ricci-Calculus, Springer-Verlag (1954).

Ehlers, J. and Kundt, W., Gravitation-An Introduction to Current
Research, 49, Wiley and Sons (1962).

Goldberg, J. N. and Sachs, R. K., Acta Physica Polonica, XXII, 13
(1962).

Levi-Civita, T., Annali di Matematica, ser. 2, Vol. 24, 255-300.

Department of Mathematics
University of Denver
Denver, Colorado



