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ABSTRACT

This report is a study of the unsteady flow of liquids in closed,
unbranched systems. It includes the derivations of the governing equa-
tions and their method of characteristics solution for systems containing
both distributed and concentrated losses. The appendix contains the re-

sulting computer program and sample outputs from this program.
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NOMENCLATURE

Acceleration, speed of sound in fluid in pipe
Moody friction factor

Constant relating force,. mass, and acceleration (32.174) <
lbf-sec

Mass
Time

Pipe wall thickness

Spatial coordinate
Pipe cross~sectional area

Wetted pipe wall area
Pannirig friction factor

Constant which relates the influence of constraints on longitudinal
movements of the pipe to stresses on a transverse cross-section
of the pipe . '

Pipe diameter

vii

ft-lbm
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Pipe wall material modulus of elasticity
Force

Flow loss coefficient

Length

Pressure

Pipe radius

Velocity, volume

Fluid bulk modulus

Strain

Slope of characterictic curves
Constant multiplier

Poisson ratio for pipe wall material
Fluid density

Stress

Shearing stress at wall
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Ave -
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v - Denotes static pressure including the hydrostatic pressure

SUBSCRIPTS
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Over-all

Time t

Time t + dt
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Average

Body force

v Hydrostatic

Left-hand face of fluid element
Right-hand face of fluid element
Total

Wetted area, pipe wall

Longitudinal, conditions upstream of a concentrated loss

Lateral, conditions downstream of a concentrated loss
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I. PHENOMENOLOGICAL DESCRIPTION OF THE UNSTEADY
FLOW OF LIQUIDS IN CLOSED SYSTEMS

1.1 The unsteady flow of liquids in closed systems is most com-
monly known as waterhammer. Before beginning a detailed mathematical
exploration of waterhammer, it will prove informative to discuss some of
the more salient features of this phenomenon on a physical basis. This
task is best accomplished by considering the academic case of instan-
taneous valve closure for the simple frictionless system shown in Figure
1(a).

1.2 Initially the fluid in the pipe is flowing with a uniform velocity
V and at the reservoir pressure. At time t = 0, the valve is closed in-
stantaneously thereby initiating the following sequence of events:

1, The fluid immediately adjacent to the valve is
brought to rest and its kinetic energy is changed
to elastic strain energy which compresses the
fluid and stretches the pipe walls. This process,
called a positive wave, propagates with acoustic
velocity back along the pipe until it reaches the
reservoir, Figure 1(b). The fluid behind the
wave is thus at zero velocity and at a pressure
higher than that of the reservoir, Figure 1l(c).

2. When this wave reaches the reservoir, the higher
pressure in the pipe causes the fluid at the pipe
inlet to flow back into the reservoir, thus lowering
the pressure to that of the reservoir and causing




the pipe walls to return to their initial size.
Since the system is assumed to be frictionless,
the elastic strain energy is recovered entirely
resulting in a velocity -V. This so-called
negative wave propagates back to the valve
with acoustic velocity, Figure 1(d). Behind
the wave, the fluid is at the reservoir pres-
sure, flows with velocity -V, and the pipe
walls are at their initial size, Figure 1l(e).

3. After the negative wave reaches the valve,
the inertia of the fluid and the pipe walls
causes the fluid at the valve to drop below
the reservoir pressure and the pipe walls to
contract below their originaly size, Figure 1(f).
This wave propagates back to the reservoir at
the acoustic velocity leaving the fluid in the
pipe at zero velocity, with a pressure less
than that of the reservoir, and with the pipe
walls contracted to less than their original

size, Figure 1(g).

4,  When this wave reaches the reservoir, the
higher pressure in the reservoir causes a flow
from the reservoir into the pipe, thus returning
the fluid to its initial velocity and pressure
and the pipe walls to their initial size,
Figures 1(h) and 1(i).

1.3 Since the system being considered is frictionless, this cycle
would be repeated indefinitely without attenuation. In a real system
viscous dissipation would damp out, the pressure surging in several
cycles and the fluid would eventually come to rest at the reservoir
pressure.
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II. ANALYTICAL DESCRIPTION OF WATERHAMMER

INTRODUCTORY REMARKS

2.1 In general, a fluid flow field is completely described by the
simultaneous solutions of the momentum, continuity, energy, and state
equations. It is well known, however, that for an isothermal liquid
flow field, or a liquid flow field having relatively small temperature
gradients, the momentum and continuity equations become uncoupled
from the energy and state equations. This report presents a study of
these specific cases. Thus, the spatial distributions of pressure and
velocity in the flow field will be determined by the simultaneous solu-
tions of the momentum and continuity equations alone.

BASIC ASSUMPTIONS

2.2 The derivations of the momentum and continuity equations are
based on the following assumptions:

a. . The flow is one-dimensional, that is, the flow
: variables and fluid properties vary in the flow
direction only and are therefore constant across
any transverse cross section of the pipe.

b. The static pressure at every point in the flow
*  field always exceeds the vapor pressure of the
fluid. ) '




‘%,I .

c. The pipes are full at all times.

Assumptions (a) and (b) are necessary to
assure a single-phase (liquid) flow field.

d. Pipes have circular cross sections.

e. Stresses in pipes are always below the elastic
limit.
f. "End effects" on stresses in pipes are negligible.

g. Pipe geometry is such that the "thin wall" case
is valid.

h. Pipe and liquid are perfectly elastic (all energy
dissipation is due to shearing stresses at the
walls).

. DERIVATION OF THE MOMENTUM EQUATION

2.3 Since the fluid under consideration is a continuous media, it

is reasonable to assume that the fluid properties vary in a smooth, con-
tinuous manner in a given region. If these variations and their derivatives
are continuous, it is possible to express a fluid property or flow variable
at a given point in the flow field in terms of the same property or flow
variable at a neighboring point. This relationship is given by a Taylor
series expansion (References [1] and [2] )Y as:

2
£b) = fla) +(3)  -a)+ 57 (a—fz> (b-a)?
X= :

a 90X X=a
3 .
+ L <a—f—> (b—a)3 + e o s o . (201)
31 3
OX /y=a

1/

Numbers in brackets designate references at end of report.




As point b approaches point a, the quantity (b-a) approaches the in-
finitesimally small variation dx and the higher order terms in the series
become negligible when compared with the first two terms. Therefore,
the series may be approximated by:

£(b) = £(a) + (—) (b-a) 2.2)

or, in general terms of the spatial coordinate x,

f
X

o

f(x + Ax) = f(x) + ( ) (dx) .. (2.3)

[«

These variations for an incremented length of pipe and fluid are shown in
Figure 2. :

—

)
&

Spatial coordinate X | X + dx

Diameter D - D + QP- dx
- oxX

Cfoss-sectional area A A+ g—i‘- dx

Pressure | P P' + -a—li- dx
oxX

Density p p + %-}% dx

FIGURE 2, VARIATIONS IN FLUID PROPERTIES AND FLOW VARIABLES
FOR AN INCREMENTAL LENGTH OF LINE AND FLUID
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Newton's Second Law For the Element

(2.4)

X -

where: the positive direction for forces, accelerations, and velocities is
to the right.

Forces Acting on the Element

The force on the left-=hand face is given by:

e
Il

P'A . - (2.5)
Similarly, the force on the right-hand face is given by:

(P' +§-I:-d>(A+—dx)

Or,

= e+ (E) () @’

PR \ 90X X

+ o () (@x) + (P') (&)@ . (2.6

Neglecting the higher order term:

- e+ @(E)wor e (B)aa . @




e e e e e

The frictional force due to shearing stresses at the wall is:

Foo= (ry ) (AAy) . (2.8)

The Fanning friction factor is defined as:

T
CF - _"'"_.w_""" . (2 . 9)
2
pV"
Solving for the shearing stress at the wall:
2
_ pv

The relationship between the Fanning and Moody friction factors is
known to be:

f |
Cp = o + (2.11)

Wetted area:

AAW = (average circumference) (length of element),

or

aAy, = [%—][nn + qD + (g—i’)(dx)][dx] . (2.12)



AAW = (m)(D)(dx) + <-;~><§l:->’ (dx)

Neglecting the higher order term:

AAy, = (1)(D)(dx) .

Substituting Eqs. (2.10), (2.11), and (2.14) in Eq. (2.8):

| Le\[ ov?
;= (L) 55 ) e

7

or, finally .

2
F, - <____9__"fD v )(dx) .

8
Ie

Mass of the Element

m = (average density) (volume of element)

o [Hle e+ (2)e][2]
[ a+ (32) ][]

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



Expanding this expression:

n = [3][@(prarian + (32)(3%) @’

+ @m (32) @’ + @) @’] @9

0,|3>

Neglecting the higher order terms:
= (p)(A)(dx) (2.20)

Body force on element — assume: component of the body force along the
axis of the element against the direction of the flow.

mg_
PB = (2.21)
. 9¢c
Substituting Eq. (2.20) in Eq. (2.21):
PA gx
I-‘B = (dx) (2.22)
g
c
Acceleration of the Element
daVv
.a = Ty (2.23)

10



]
Since the unsteady flow case is being considered:

V= f(x,1t), (2.24)
so that
2V () (), (2Y)
dt "(ax)(dt *\3/ (2.25)
But
-
which giires:
= 4v _ ﬂ) (é!)
a = & [(at + (& ] (2.27)

Substituting Eqs. (2.5), (2.7), (2.16), (2.20), (2.22), and 2.27) in
Eq. (2.4):

F -Fp - F - F, = l:g—:l] [(%11) + (V) (-2—%)] [_d ] (2.28)

or

[(P'”A) ~EVw - w3 (@ - (P')(%%) (dx)

2 pAg -
- <FL?-PL> (dx) - < x> (dx)]
| 9 9, «
- '[{g’—”:] [(g-t‘i) + (V) (-g-% } [dx] (2.29)

(o]

11




which reduces to:

@ (55) + ) (32) + <"_f§%§_"i>

--[2][EY - @YD) - 5= e

C

It has been empirically determined that the second term in the left-hand
member of Eq. (2.30) is negligibly small when compared with the remain-
ing terms in the equation. This gives:

\

3P mfD pV?
@ (5) * ( 59, )

‘ pPAg
[ [ED @] - [F] - e
9¢ 9¢c
Since the line has a circular cross-section:

7D%

A = 2

. '(2.32)

Dividing both sides of Eq. (2.31) by; the area and substituting Eq. (2.32):

3p'  fpv?
ox 2Dgc

o) -[RE] e

12




4

But;
|=
P P+ PH (2,34)
so that:
dP v
oP' _ P H
3x - 3x |t T3x ) (2.35)

Substituting Eq. (2.35) in Eq. (2.33):

3P H fpV2
9x 9x 2Dgc

- - [.;Lc} [(’a'a?\l') + (V) (%)}-[pggx:l . (2436

. (2.37)

Substituting this result in Eq. (2.36) (Ref. [3] ), gives the final form of
the momentum equatmn

-

o

or , fov2 _ _ [ |[(2v av.
3x © ZDg, - [gc]Rat)*‘v) <a ﬂ - (2.38)

13




DERIVATION OF THE CONTINUITY EQUATION

2.4 This derivation follows that given by Parmakian (Ref. [4]). It
consists of equating two expressions for the change in length of a differ-

ential fluid element during an infinitesimal time step, dt.

The first of

these expressions is derived from purely kinematic considerations, while
the second expression is obtained by considering the changes in shape

of the element due to the stretching of the pipe walls and compression of
the fluid. The fluid element in shown in Figure 3:

C

dx

-t
tx ‘: /\
\

/

-V

B D C F
Uittty ——— T R - 7
" ! \ L)
\ e——f -~ —— = ~
\ 1N ‘\ Ny
+x] ,\\ — :: :l : - \<
/7 N\ v/ ! \
AV — / ;
‘\ I' I'
Nl o e o o ot e (e - - G am e o o - - —— -—
.aV ‘—bav ) 3V L—» a av
V+ 6x,B *ge-dt Vi godxs Tx-(v+ -g-;-dx)CF
9 Y
+ = (v+ — dx)_dt
3(b). Fluid element at time t + dt

| FIGURE 3. CHANGE IN CONFIGURATION OF A FLUID ELEMENT

14



Change in Length of the Element from Kinematic Considerations

The total change in length of the element dx in moving from BC to DF is:

(AL)Tot = BD - CF .

(2.39)

The average velocity of face B in moving from B to D during the time

interval dt may be computed as:

v = Vi * Vit gt
Ave 2 ’

or, substituting the velocities shown in Figure 3:

v _ (V)+[V+ -g—XB_+ —g—Y-dt]
Ave 2 !
VAve=V+l%/——D %_g_t!'d '
The distance BD may now be computed as:
BD = (VAve>dt = [v + g‘-g-;‘i-ﬁﬁ + %%cv—dt:] dt
BD = vdt + g——-BDdt+ % (dt)

interval dt may be computed in a similar manner as follows:

15

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

The average velocity of face C in moving from C to F during the time



V. +V
t t+ dt

Substituting the velocities shown in Figure 3:

- oV oV
VAve - [%] [V+ X dx + V + ox dx
) oV — ) V. :l
+ == (v+ —axdx> F a2 (V+-—ax dx)dt . (2.46)
which reduces to:
_ oV o oV —
Vave = V* 3 dx* b5y (V+ S ax)CF

+ is-%-(V"“ %dx) dt , (2.47)

and CF is given by:

== - 2.48
CF (vAve) dt ( )
CF = [v+ -g%:-dx+ %a—ax-(w —g-‘}:-dx)c_:l?
3 3V
* b (v+ SLax) dt] [dt] (2.49)
or;
16




2

CF = vdt + —g-‘-’-d dt + é—Cth+ 3 > CFaxat
9X
3V 3%V 2
+ %'—a—t-(dt) % a at dx(dt) R (2.50)

Finally, noting that the distances BD and CF are of a smaller order than
dx and dt, the total change in length of the element may be computed as:

= (BD-CF) = - 2L dxdt (2.51)

(AL) =

Tot

Change in Length of the Element Due to Stretching of the Pipe
Walls and Compression of the Fluid

The change in the length of the element dx is caused by two factors:

(1) A change in the internal pressure causes the pipe
to expand or contract, and the resulting change in
cross-sectional area produces a change in length
in order to contain the same volume of fluid,

(2) The change in internal pressure causes a change
in the volume of the fluid and therefore a further
change in the length of the element.

This total change (ﬁ) - CF) in the length of the element dx is now com-
puted considering these two effects:

(1) This analysis assumes the pipe geometry is such
that the thin-wall case is valid. "A pressure
vessel is described as thin walled when the ratio
of the wall thickness to the radius of the vessel
is so small that the distribution of normal stress
on a plane perpendicular to the surface of the shell
is essentially uniform throughout the thickness of
the shell. Actually this stress varies from a

17



maximum value at the inside surface to a minimum
value at the outside surface of the shell, but it
can be shown that if the ratio of the wall thickness
to the inner radius of the vessel is less than .1,
the maximum normal stress is not more than 5 per
cent greater than the average." (Ref; [5])

For elastic deformations of a solid, the change in a linear dimension is
given by:

AL = (L)(¢€) . (2.52)
But ;
€ = -g— (2.53)
so that;
= 9
aL =@ (%) . (2.54)

Applying this to the radius of a thin-wall cylinder:

where; the average radius is defined as:

AR = RAve

t

w
RAVG = R + '—2— . (2.56)

In general, a change in the internal pressure in a cylinder will produce a
change in the stresses on both the longitudinal and transverse planes.
These stresses (Figure 4) are not independent, however, but are coupled
through the Poisson ratio.

18




%

Longitudinal
axis of pipe

FIGURE 4. STRESSES ON LONGITUDINAL AND TRANSVERSE
PLANES OF PIPE WALL ELEMENT

From the assumption of deformations in the elastic range only, it follows
that:

%
— = E (2.57)
€
1
and,
o) )
—EE_ = E . (2.58)
2
'Equating (2.57) and (2.58):
o o
L e 2 (2.59)
€ €2
or,
19




€2
o, = <—€—l-> oy . (2.60)

But the ratio of the lateral strain 3 to the longitudinal strain €, is

defined as the Poisson ratio (u) , which is an empirically determined
constant for each material. Thus,

0, = WO, . (2.61)

and therefore the over-all change in the stress on a longitudinal plane is:

(80y), = (a0p - waoy) . (2.62)
/0 \ “ 7

Substituting Eqs. (2.56) and (2.62) in Eq. (2.55):

tw

—_._-R+ET (a0, - nao,) . (2.63)

AR

However, since the pipe is assumed to be thin walled, by definition:

ty < (.1)(R) (2.64)
or,

tW v

- ‘< (.05)(R) , (2.65)

so that to a good approximation:

ar = (£) (ac, - nao,) . (2.66)

- 20




Similarly, the change in the axial length of the element is found to be:
dx
ax = (-F) (a0, - noo,) . (2.67)
The volume enclosed by the stressed element is:

dv = (m) (R + AR)Z (dx + Ax) . (2.68)

The change in length of the original element compatible with this change
in volume is:

AT { change in volume \ (n)(R+AR)2(¢x+Ax) - 7R dx
al = original area B 5 . (2.69)
9 TR
Expanding Eq. (2.69) and neglecting the higher order terms:
AL = Ax + (2)(AR) (2.70)

R L ]
Substituting Eqs. (2.66) and (2.67) in Eq. (2.70):

AL = [(Aol) (1-2p)+ (80,)(- ,u)} [—c—iﬁx—] . (2.71)

The stress developed on the longitudinal plane of a pressurized pipe de-
pends on the manner in which the movement of the pipe is constrained in
the longitudinal direction. If the pipe is anchored at one end, free to
move in the longitudinal direction throughout its length and has no ex-
pansion joints, then the stresses produced by a change of internal pres-
sure dP are given by:
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and,

R
AUZ = <—t—-—> dP

Substituting Eqs. (2.72) and (2.73) in Eq. (2.71) yields:

-

or,

length:

and,

or,

R
2ty

5
2 Ety

If the pipe is anchored against longitudinal movement throughout its

R

tw

R

—) (dP) (Z-u)] [—dgi

>(dP) (1-2u) + <

) (@P) (ax)

Ao, = <%> (dP)

Aoy = u(Ady)

aay = (£2) (ar)

Substituting Eqs. (2.76) and (2.78) in Eq. (2.71):

AL = [<__

4R
tw

>(dP)(1-2#) + <

22
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R

w

)(dP) M-#)J [%j‘—}

}

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)



or,

R
Ety

AL = (2>(1-u2)< > (dP) (dx) .

If the pipe has an expansion joint between anchors, then:

and,

Ao, = <-t-5—> (dp) .

w

Substituting Eqs. (2.81) and (2.82) in Eq. (2.71):

AL = (2 - 4) <Ef > (dP) (dx) .
w

(2.80)

(2.81)

(2.82)

(2.83)

Thus, by defining the constant CJ1 , Egs. (2.75), (2.80), and (2.83) may
be summarized as:

where:

CIR
AL = <—§q (dP) (dx)

Cl = <—;— - 2;1) (anchored at one end only)

(2) ( 1- “2) (anchored throughout entire length)

._O
i

1 (2 - ) (expansion joint between anchors)

Q
]

(2) The change in the volume of fluid in the element
due to a change in pressure dP is:
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v
=(X) (ap 2.8
av <ﬁ> (dP) (2.85)
or,
nRz
dv = (B >(dP) (dx) . (2.86)

The corresponding change in the length of the element is:

dv

AL = 5 . (2.87)

Substituting Eq. (2.86) in Eq. (2.87):

AL = (—:9-) (dP) (dx) . (2.88)

The total change in the length of the fluid element due to stretching of the
pipe walls and a change in pressure may now be found by adding Egs.
(2.84) and (2.88).

C,R 1

(AL)por = <_E—t—; + —E-> (dP) (dx) . (2.89)

Equations (2.51) and (2.89) give two independently derived expressions
for the change in length of the fluid element during the time interval dt.
Equating these expressions:

C.R
3V _ 1 1
- (‘a?) (dt) = (Etw + -B—> (dP) . (2.90)

But, since the unsteady flow case is being considered:
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. .

P = P(x, t) (2.91)
Taking the differential of P:
dP = (—Z-}PT) (dx) + (%’-) (dt) (2.92)
and,
dP = (—g—xli) (—gti) (dt) + (—2—5-) (dt) ., (2.93)
but,
Vv = gf : (2.94)

Substituting Eqs. (2.93) and (2.94) in Eq. (2.90) and rearranging gives:

2w () - - (o) (@) - e

Multiply and divide the right-hand member of Eq. (2.95) by _g_P_ to get:

C

S (35) = - If; o 2L, (2.96)

a = . (2.97)
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Substitute Eq. (2.97) in Eq. (2.96) to obtain the continuity equation:

2w (28) - - (22) ()
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III. SOLUTION OF THE GOVERNING EQUATIONS BY
THE METHOD OF CHARACTERISTICS

CLASSIFICATION OF THE GOVERNING EQUATIONS

3.1 The momentum and continuity equations as derived in the pre-
vious chapter are:

3P . foVv: _ [op >V 3V '

3= + ZDa, = l:gc] [_at + (V) <_ax >] (momentum) (3.1)
and,

oP 3P\ _ alp\ [ 3V L

=1 + (V) <ax) = - < o > (ax> (continuity) (3.2)

These equations may be described as a set of quasi-linear, hyperbolic,
partial differential equations of the first order in two dependent (P, V)
and two independent (x, t) variables. As previously stated, their simul-
taneous solution, taken with the appropriate boundary conditions, gives
a complete description of the flow field,

3.2 Because the equations are hyperbolic, both characteristics are
real, and thus the equations are amenable to solution by the method of
characteristics.
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GENERAL REMARKS ON THE METHOD OF CHARACTERISTICS -

3.3 The methods of solving quasi-linear partial differential equations
generally fall in one of two main categories:

(1) Methods which reduce the complexity of the equations.

(2) Methods which reduce the partial differential equa-
tions to ordinary differential equations.

The first category contains the small disturbance (perturbation) methods
which usually serve to linearize the equations.

The second category contains the method of characteristics, along with
other methods such as self-similar solutions and integral relations.

3.4 The fundamental idea behind the method of characteristics is to
find certain "characteristic curves" in the space-time domain along which
the partial differential equation simplifies to an ordinary differential equa-
tion. This ordinary differential equation plus the ordinary differential
equation which defines the characteristic curves themselves form a pair

of equations which are entirely equivalent to the original partial differ-
ential equation.

3.5 In general, for a system of n equations with n dependent vari-
ables there will be n characteristic curves through every point in the
space~-time domain. Thus, for the system of Egs. (3.1) and (3.2) there
will be two characteristic curves through each point in the x-t plane.

APPLICATION OF THE METHOD OF CHARACTERISTICS TO THE
WATERHAMMER EQUATIONS (Ref. [61])

3.6 . Equations (3.1) and (3.2) may be rewritten respectively as:
9\ /3P fy2 dV >V
I, = <p>(ax)+ 5t 5 T (V) (——ax)— 0 (3.3)
and,
' 2
_ [acp aV) (8P> 3P _
J2 = <gc >(ax W Rx) e O (3.4)
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Forming a linear combination of Eqs. (3.3) and (3.4):

] = I]. + AIZ (3.5)

1= (32)30) B+ w3

) ey wE . z]-e - oo

Grouping terms:

xa2p\ /v 3V fve
+[<V+ gc><ax>+ atJJ’ o - 0 - (3.7)

The simultaneous solutions of Egs. (3.3) and (3.4) may be written in the
form:

V = V(x, t) (3.8)
and,
P = P(x,t) , (3.9)
from which,
dv _ AV dx 3V
e <ax>(dt)+ 3t (3.10)
and,
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= ) &) e (3.0

Thus, inspection of Eq. (3.7) shows that the term in the first bracket

may be replaced by —g—-tp— if
g
c dx
-—XE +V = g ’ (3.12)
and that the term in the second bracket may be replaced by —gtl if
2
ra®p _ dx
Equating (3.12) and (3.13):
g 2
dt Ap 9
or,
2 .
g
2 c
AT = <-5'5‘> ’ (3.15)
which gives:
g
= 4 _C
A=t ap (3.16)

Therefore, when A assumes one of the values given by Eq. (3.16),
Eq. (3.7) reduces to the general characteristic equation for P and V as
follows:
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. .

2
_av 4P fv2
J=57 ** 3 "33 = 0O (3.17)
or,
_ fvé _
(J) (dt) = dV + AdP + X0} (dt) = 0o . (3.18)

Substituting the values of A given by Eq. (3.16) in Eq. (3.18) gives the
two equations for P and V along the characteristic curves in the x-t
plane,

Il
o

(3.19)

. . gc fV2>
(J) (dt) dv + <—3_3-> (dP) + < D (dt)

and

Ic £y2 _
(J) (dt) dv - <-§F> (dP) + < Z3) > (dt) = 0o . (3.20)

The ordinary differential equations which describe the slopes of the char-
acteristic curves in the x-t plane are found by substituting the values
for A in Egs. (3.12) and (3.13).

g 2
{E; =V + < ") <a F’> (3.21)
ap 9o
{E? =V+a (3.22)
or,
dt 1
T = T3 = c* (3.23)
~and,
3]




dx _ -ap\/ 9%
v ) (%) 324

or,

dt  _ _ |
= = ¢ i (3.25)

Thus, the original partial differential Eqs. (3.1) and (3.2) have been re-
placed by two ordinary differential equations [(3.19) and (3.20)] which
describe the behavior of P and V along the curves in the x-t plane de-
scribed by Egs. (3.23) and (3.25). Summarizing these equations:

Along the Positive Characteristic (C, direction)

dx

dt - Tt a = 0 (3.26)
and,
9c fV2>
dv + <—-a—-p—> (dP) + <2D (dt) = 0 . (3.27)
Along the Negative Characteristic (C_ direction)
dx
dt - 55 = 0 (3.28)
and,
g 2
C fv _
av - <ap> (dP) + <2D > (dt) =0 . (3.29)
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NUMERICAL SOLUTION OF THE CHARACTERISTIC EQUATIONS

Method of Integration

3.7 The set of characteristic equations, (3.26) through (3.29), will
be integrated by using the first-order finite difference approximation:

X
/ 1f(x)dxz f(xo)(xl-xo) , (3.30)
X

@]

in conjunction with a simple extrapolation procedure. It has been shown
by Roberts (Ref. [7]) that this procedure, which is discussed in Section
3.10 of this report, increases the accuracy of the first-order approxima-
tion to that of a second-order approximation of the type:

X
/ "0 dx ~ [3] [Eeeo) + £ ] [ - %] (3.31)

X0

Furthermore, the second-order approximation would require the use of a
relatively time-consuming iterative technique.

Integration of the Characteristic Equations

Consider the intersection of two characteristics, C, and C_, as shown
in Figure 5.

tA

> X

FIGURE 5. INTERSECTION OF TWO CHARACTERISTICS AT A
GENERAL POINT D IN THE x-t PLANE
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Assuming the value of x at R is denoted by xg, and so on, if the values
of Xp+ Xgo g tg. VR , VS ' PR, and PS are known, then the values

of xp ., ty ., Vp . and PD can be determined by using the first-order

approximation to integrate the characteristic equations. Integrating along
the right-running (C+) characteristic:

/‘tD fXD 1
dt - ) - ,
; < (V+a dx 0 (3.32)

R R
or,
' 1

(to - &) - <V+a >R (%p = %) =0 (3.33)

and,
Vb g, b D /2
dv + <‘a—> dP + =D dt = 0 (3.34)
VR apr/ “rp tR

or,

(Vp - Vr) * <‘595> (Pp - Pg) * <—féyni> R(tD - tg) = 0 (3.35)

Integrating along the left-running (C_) characteristic:

tb /XD ) ‘
‘/t; at - J (V_a>dx = 0 (3.36)

S

or

1
(tp - ts) - <v-a>S(XD‘Xs) =0 (3.37)
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\Y2
D 9, Pn D [ ¢y2
dVv - [—— ap + —] dt = 0 (3.38)
v ap/Jp A 2D

or,

g £y2 ‘
(Vp - Vg) - <"aip> (Pp - Pg) * <_2VD->S (tp - tg) =0 (3.39)

Equations (3.33), (3.35), (3.37), and (3.39) have the four unknowns X
tD , VD , and PD and are therefore solvable. This solution is accom-

D 7

plished by using the method of specified time intervals as developed by
Lister (Ref. [8]).

SOLUTION OF THE INTEGRATED CHARACTERISTIC EQUATIONS BY
THE METHOD OF SPECIFIED TIME INTERVALS

3.8 This method employs specified intervals in the t-direction and
uses Egs. (3.33), (3.35), (3.37), and (3.39) to relate the values of P
and V at the beginning of each time interval to those at the end. Nota-
tion for this method is shown in Figure 6,

dt _ ~
TxC NG, Tl

— A X —r— AX—>

Y
b

FIGURE 6. NOTATION FOR SOLVING THE INTEGRATED CHARACTERISTIC
EQUATIONS BY THE METHOD OF SPECIFIED TIME INTERVALS
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The points A, B, and C are three adjacent points on the line t = ty (be-

ginning of the time interval) and are spaced Ax apart. Point D from
Figure 5 is located at the intersection of the lines t = tiy g (end of time

interval) and x =X~ . At points A, B, and C the pressures and veloci-
C

ties are known quantities, and the problem is to predict the pressure and
velocity at point D in terms of these quantities. This is accomplished
by using the integrated characteristic equations; however, it should be
noted that the points R and S do not, in general, coincide with nodal
points. It is therefore necessary to compute the pressures, velocities,
and spatial coordinates of points R and S in terms of these quantities at
points A, B, and C before the integrated characteristic equations can be
used.

Spatial Coordinates of Points R and S

Solving Eq. (3.33) for XR:

xg = xp - (V+a)g (tD —tR) . (3.40)

Assume that:

(V+a) = (V+a)g . (3.41)

This assumption is valid because "a" is constant throughout the flow
field, V << a, and Ax is sufficiently small. Noting that

At = tp - tp . and Xo = Xp . (3.42)
and substituting Eqs. (3.41) and (3.42) in Eq. (3.40) gives:
Xp = X5 - (V~+ a)c(At) . (3.43)

Similarly, solving Eq. (3.37) for Xg and assuming that
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(Vv - ::1)S = (V - a)C (3.44)
gives:
Xg = Xo - (V - a)C(At) . (3.45)
Velocgities at Points R and S
The slope of the positive characteristic has been defined as;
_ 1 _dt
¢, = ¥+35 ° Ix . (3.46)
Assume: Ax is chosen small enough such that
(E ) = (L) (3.47)

and that velocity is a linear function of x over the range x = X to x= X .

Then, the following linear interpolation can be made:

_ _ At
(T e = (L) = CEES) (3.48)
From the assumption of a linear velocity distribution:
X" ¥ F*c " *R Vo~ Vg
X - %X, Ax T V.-V ) (3.49)
C A C A
Therefore,
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V.-V

C R
Xo = Xy = | /| (4%)
C R <VC VA>

Substituting Eq. (3.50) in Eq. (3.48) gives:

_ (At)

(Cle = v

C R

<V .y >(Ax)
C A
After defining the variable,
6 = At '
X

Eq. (3.51) becomes:

(Vo = Va
(C ) = \"\7&;—_—\";‘ (6)

But, from the defining equation:

or, solving for VR:
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Ve = [Vo] [t - @ Wrag]+ @ (V) vrag | . (3.56)

Similarly, it can be shown that:

Vg = [VC:] [1 + (6) (V- a)c] - (8) (V) (V - a)g . (3.57)

Pressures at Points R and S

The derivations of the pressures at points R and S are similar to those
for the velocities at these points. That is, if pressure is assumed to be
a linear function of x over the ranges x = Xp to x = Xo and x = Xg to

X=X, then it can be shown that:

Py = [PCJ [1 - @) (V+a) ]+ (6) (By)(V+a)s | . (3.58)

Pg = [PC] [1 - (8) (V- a)C] - (@) (P)(V-a)g | . (3.59)

Pressure and Velocity at Point D

Assuming that

2 2 2
(), - (), - ()
R S C
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and noting that

C (3.61)

and

(tD - tc) = At (3.62)

Egs. (3.35) and (3.39) may be written as:

9o £y2 _
(VD-VR)+<a—p> (Po-Pr) +\m) a0 = 0 (3.63)
and,
<gc> fV2 _
(Vp-Vs) - \55) (Pp-Bs) + 7D ) AN T 0 (3.64)

Equations (3.63) and (3.64) are now solved simultaneously for PD and
VD . Subtracting (3.64) from (3.63) gives:

g
c —
VD—VR-VD+VS+|:-5—E-J [PD—PR+ PD—PS:I =0 , (3.65)

gC
(Vs -Va)*| =5 | [2Pp - P -Ps] = 0 . (3.66)
or,
P = <§§c>(vR - Vg) + (3 (Pg + Bg) i (3.67)
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Substituting Eq. (3.67) in Eq. (3.64):

(Vp - Vs) - [Z;] [( Zagi> (VR - V5)

2
+ () (PR+ PS)-PS} + <—fz%->c(At) =0 . (3.68)

Expanding and grouping terms:

(Vp = Vs) = (&) (Vg - Vs) - <%> (Pr* Ps)

g 2
+ <_a_cp_> (pg) + <%>C(At) = 0, (3.69)

g
-V, -1 iy, - [—S -
Vp = Vg = 3Vg + 3V <2ap>(PR+ Pg - 2Pg)

2
£V _
+<_"2D )C (At) = 0 (3.70)

Ve = (%) (Vg + Vo) - i P - Po)+ fv2 =0 71
p- B (Vr+Vs)- (335 Cr-Ps)* 5 GAn =0 3.

or,

2
Vp = (B)(Vg + Vg)+ <;§—p> (Pr ™ F5) - <‘%‘>C (an . (3.72
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BASIC CALCULATION PROCEDURE

3.9 The set of equations, (3.56), (3.57), (3.58), (3.59), (3.67)
and (3.72), forms the nucleus of all computations made by any computer
program using this method. (See Figure 7.)

o
Y/

Aty
Fan
7
Fary
WV

7.

LD

r+ (o
wm
O C
O—O0—0—0—0—
D
FasY
A\
Fany Fan
A4 ¢/
o
AN
3

4 O . 3 3 He—
D D
ty > 3 4 3¢ % 3¢
t, & C2 Cs C4 s ) l
ot TAO A, A, A, A, A Ag A,
o

FIGURE 7. NOMENCILATURE FOR DISCUSSION OF CALCULATION
: PROCEDURE IN x~-t PLANE

The basic calculation procedure is as follows:

(1) Pressures and velocities are given at points A,
through A7 .

(2) Pressures and velocities are calculated at points Bl
through Bé using the above-mentioned set of equations.

(3) The set of equations is used to calculate pressures
and velocities at points C2 through 05 and then to

make these same calculations at points D3 and D4 .
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Boundary Conditions

The area in the x-t plane encompassed by the points calculated in these
three steps is known as the "area of determinacy." The extent of the

area of determinacy is determined by the number of known points at t=tg.

It is obvious that calculations cannot proceed beyond this area without
making use of boundary conditions. When suitable boundary conditions
are given at x=x,; pressures and velocities may be calculated at all
points in Figure 7 marked by black dots. Similarly, if boundary condi-
tions are given at X=X , pressures and velocities may be found at all
points in Figure 7 marked by crosses. Thus, the computations may pro-
ceed for as long as desired if the boundary conditions are known at both
ends of the system.

The boundary conditions are incorporated in the calculation procedure as
follows:

(a) At the left-hand, or reservoir, end of the system
(Figure 8(a)), Egs. (3.57) and (3.59) are used to
calculate VS and PS , respectively. Then, if PD
is the known boundary condition, Eq. (3.64) is
rearranged as follows to calculate VD .

9c fy?
Vp = Vg+ <—a—;> (Pp - Pg)- <w>c (at)y . (3.73)

If, however, Vp is known, then Eq. (3.64)
is rearranged to give PD as:

| 2
_ ap _ ap 1
Pp = Pg+ <T> (Vp - Vg)+ <—gc > <-——2D )c (At) . (3.74)

C

(b) Similarly, at the right-hand, or valve, end of the
system (Figure 8(b)), Egs. (3.56) and (3.58) are
used to calculate VR and PR . Then, if PD is the
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known boundary condition, Eq. (3.63) is used to
calculate VD as:

9o £y
VD = VR - <—a-'—5-> (PD - PR) - <—ﬁ->c (At) . (3.75)

If VD is known, then Eq. (3.63) gives Py as:

2
_ ap ap Vv
Pp = Pg - <_5;_> (Vp - Vg) - <—g—c—> <———2D >C(At) . (3.76)

It should be noted at this point that Subroutine SURGE uses PD and mass

flowrate, respectively, as the left- and right-hand boundary conditions.
Pp is used in Eq. (3.73) (as described above), while the mass flowrate

is first used to calculate Vp, which in turn is used in Eq. (3.76).

t
A - Boundary A - Boundary

\\\%D D{//
i | j

bl s | |l ® ,
A C B Al C B
S aZAY G e A, X ]
P X > X
8(a). Left-hand Boundary 8(b). Right-hand Boundary

FIGURE 8. BOUNDARY CONDITIONS
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EXTRAPOLATION PROCEDURE

3.10 The use of a simple first-order finite difference approximation
to integrate the characteristic equations necessitates the employment of

_ an extrapolation technique due to Roberts (Ref. [7]) to increase the

accuracy of the computations.

Roberts' Technique

Consider a function f(x, t) which is to be determined at t=2nAt in
terms of its known value at t= 0. The function f(x, 2nAt) may be
found by repeating a linear process at a constant value of x for n steps
of 2At or for 2n steps of At . The results qf these two series of com-
putations are denoted by fz(x, 2nAt) and fl(x, 2nAt), respectively.
Roberts has shown that the average of the results given by

f(x, 2nAt) = 2f,(x, 2nAt) - £,(x, 2nAt) (3.77)

agrees with the true value f(x, 2nAt) if terms of the order (A t)2 are
neglected.

Computer Calculation Procedure Using Roberts' Technique

Since the set of equations in the basic calculation procedure comprises
a linear process of the type mentioned above, Roberts' technique was
chosen for use in Subroutine SURGE. A rough outline of the procedure is
as follows:

(1) Pressures and velocities are calculated for a time
interval of 2At using Egs. (3.56), (3.57), (3.58),
(3.59), (3.67), (3.73), and (3.76).

(2) Pressures and velocities are calculated for a time
interval of At using the same equations.

(3) Using the results of step (2) as initial values, the

pressures and velocities are calculated for a
second time interval of At.
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(4) The pressures and velocities obtained in steps
(2) and (3) are combined using Eq. (3.77) to
obtain the desired results.

Steps (1) through (4) are repeated until the calculation time limit is
reached.
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IV. APPLICATION OF THE WATERHAMMER EQUATIONS AND
THEIR METHOD OF CHARACTERISTICS SOLUTION
TO SYSTEMS CONTAINING CONCENTRATED LOSSES

INTRODUCTION

4.1 The waterhammer equations and their method of characteristics
solution as presented in Chapters II and III are applicable only to sys-
tems in which the energy losses are uniformly distributed. A method
(Ref. [8]) is now presented which extends the applicability of these
equations and their solution to systems which contain concentrated
losses (i.e., valves, orifices, and area changes) in addition to dis-
tributed losses.

CONTRACTOR'S METHOD FOR CONCENTRATED LOSSES

4.2 Basically, this method divides a system into sections having
only distributed losses. These sections are separated by concentrated
losses that are assumed to take place across the transverse planes con-
necting the sections. Thus, the upstream and downstream conditions at
a concentrated loss are represented as boundary conditions for the equa-
tions comprising the method of characteristics solution. This is shown
in Figure 9.

»The four unknown boundary conditions at a loss are PD1 , PDZ . VD1 ‘

and V . These variables are given in each case by the simultaneous
D

solution of the following equations:
(1) Right-running characteristic equation

(2) Left-running characteristic equation
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(3) Continuity equation

(4) Energy equation

Solutions are presented for the following cases:
(1) Area change with a loss (i.e., valves, conical sections)
(2) Loss without an area change (i.e.,valves, orifices)
(3) Area change without a loss (frictionless case)

(4) Change in line wall thickness and/or wall material
without & change in cross-sectional area

~ Concentrated loss at x=x¢

> X
Xc

FIGURE 9. NOMENCLATURE FOR FLOW ACROSS A PLANE
CONTAINING A CONCENTRATED LOSS
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Case 1 - Area Change with a Loss

The governing equations are:

g
C
Vp, - Vg) + Pp, - P
(Yp; - V) <aclp>( D, ~ Fr)
, ,
+ < fv > (At) = 0 (right-running characteristic)
2D C
g
Vp. - Vg) - (=2 (P -P>
(", - ¥s) <a02p> Pz 78

2
N <fv

2D

C,

A V
D; "D

PDz

ADzVDz

> (At) = 0 (left-running characteristic)

(continuity)

2
pVD1
>3 (energy)

C

These equations are solved simultaneously as follows:

From Eq. (4.3):

\Y

D

2

A
D,
A
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(4.2)

(4.3)
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(4.5)



Substituting Eqs. (4.4) and (4.5) in Eq. (4.2) gives:

(o) |25

2
#'p fy2
1
- (K) - < > (At) = 0 . (4.6)
ch S 2D C

2

(4.7)

a. p sz
L2 fV2> (A1) + (K) e )
Ie 2D /¢, 29, S

Substituting Eq. (4.7) in Eq. (4.1):

o, 52 [(55) () )

’val [ gy?
+ (K) 7o +Pg - P |+ <2D >c (At) = 0. (4.8)
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Expanding and grouping terms:

An iterative technique is used to solve Eq. (4.9) for VD1 .

(4.9)

Thus, the set of equations, (4.3), (4.4), (4.7), and (4.9), are used to

calculate the four unknowns for Case 1.

Case 2 - Loss without an Area Change

The governing equations are:

2
+ (fV ) (At) = 0 (right-running characteristic)
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2
+ (fV > (At) = 0 (left-running characteristic) (4.11)
C

2D
2
VD2 = VD1 (continuity) (4.12)
val
P = P - (K) (energy) (4.13)
DZ Dl ch

These equations are solved simultaneously as follows:

Substitute Eqs. (4.12) and (4.13) in Eq. (4.11):

9o pVDl + fVZ) _
<VD1—VS)- aCZP PDl-(K) Zo, - Pg (—-23- CZ(At)-o (4.14)

Solving Eq. (4.14) for PD gives:
1

aCZp
P = Ve -V
D, ¢ <D1 S)
a~ p
+< C, ><fv2>
gc 2D /¢

(4.15)

PVp
(At) + (K)< T 1> + Pg

2 C
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Substituting Eq. (4.15) in Eq. (4.10):

[6), - (22 (), g

1

An iterative technique is used to solve Eq. (4.17) for VD1

(4.17)
= 0
Thus, the

set of equations, (4.12), (4.13), (4.15), and (4.17) are used to calculate

the four unknowns for Case 2.
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Case 3 - Area Change without a Loss

The governing equations are:

g

(15, )+ (5255) (o, - 7)

2
+ <fV > (At) = 0 (right-running characteristic) (4.18)
C .

2D
1

(5,7 %) " (3057) (0, 7

2D

2
+ <fV > (At) = 0 (left-running characteristic)
C

2

A Vv = A \Y (continuity)
D1 D1 D2 Dz
2 2
PVD PVD
1
P + — = P + (energy)
D 29, D, 29,

These equations are solved simultaneously as follows:

From Eq. (4.20):
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(4.22)



From Eq. (4.21):

o) 2 2 >
P = P. + Ve -y (4.23)
D, D, <ch>< D, "D,

A 2 pV2

1 1
PD = PD + (1 - | = (4.24)

Substituting Egs. (4.22) and (4.24) in Eq. (4.19) gives:

ADl gc
—_— | (V -Val - P +
A ( D ) S a~ p D
D2 1 (32 1
2
2
ADl val <fV2>
+ |1 - - Pory+ (At) = 0 (4.25)
Solving Eq. (4.25) for PD1 gives:
aczp /ADI
P = ‘ <v > -V
D, 9, \ADz D, S
5 (4.26)
2
aczp . AD1 pVDl
+ ) (At) + - - 1 5 + Pg
g Cz DZ gC
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Substituting Eq. (4.26) in Eq. (4.18) gives:

A
9 aczp D,
Ve =V )+ (v )
( D, 'R 3¢, P c D, D,
<3029> (acz”> £y?
- Vo) + < > (At)
S
gc ( ) gC 2D C,
2 2
ADl pVDl fyv2
+ el B 1 25 + PS - PR + <""ZD—> (At) = 0 (4.27)
D2 c Cl

Expanding and grouping terms:

A_ \2 a A
D, 1 2 C, D,
A -1l 33 Vp [T |1+l 3 A Vb
D, C, 1 c, D, 1
a
C g
2 C
- \=03 (Vg) + vg|+ <ac p> (Pg - PR) (4.28)
1 1
a
2 C 2
¥ <f2\§3> T3 - <f2\113> [at] = o
Cy C, c,

An iterative technique is used to solve Eq. (4.28) for VD1 . Thus, the

set of equations, (4.20), (4.21), (4.26), and (4.28), are used to calculate
the four unknowns for Case 3.
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Case 4 - Change in Line Wall Thickness and/or Wall Material
without @ Change in Cross-sectional Area

The governing equations are:

(le - VR) - <32:p> <PD1 - PR)

2
+ i\/__) (At) = 0 (right-running characteristic)
2D c

2
+ <fV > (At) = 0 (left-running characteristic)
C

2D
2
VD = VD (continuity)
1 2
P = P (energy)
D, D,

These equations are solved simultaneously as follows:

Substitute Eqgs. (4.31) and (4.32) in Eq. (4.30):

<VD1 -VS> - <a2:p> (PDI - PS> + <f2\§>cz (At) = 0
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(4.30)

(4.31)

(4.32)

(4.33)



Solving Eq. (4.33) for PD1 gives:

a. p a. p
C c 5

= 2 i} 2\ [tV
PDl - < g ><VD1 Vs) + < 3, > < 5 >CZ(At) + Pg (4.34)

Substituting Eq. (4.34) in Eq. (4.29) gives:

Vna - Vo) + Ve -V
<D1 R> 3c, P g (Dl S)

°c, P 2 2
2 fv fv _
+< 3. ><2D >CZ(At)+PS—PR + <—2—D—>C (At) = 0 (4.35)

Expanding and grouping terms:

(2] e[ () 00

Ie fV2>
+ <a01p> (PS PR) + [( 757 (4.36)

(2) ), e

The set of equations, (4.31), (4.32), (4.34), and (4.36), are used to
calculate the four unknowns for Case 4.
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Comparison of the Four Cases

A comparison of the four sets of governing equations shows that the
equations for Case 1 may be regarded as a "general" set of equations
that applies to each of the four cases; that is, when the Case 1 equa-
tions are applied to Cases 2, 3, and 4, the inapplicable terms auto-
matically drop out. The only anomaly which occurs when using the
equations in this fashion is that the flow loss coefficient K in Case 3
A 2

21

AD2

must be set equal to the factor -1 .
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(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]
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SUBROUTINE SURGE

This subroutine uses the method of characteristics to solve the

.full nonlinear momentum and continuity equations which describe the

unsteady flow of liquids in closed, unbranched systems.

CALLING SEQUENCE

CALL SURGE

SOLUTION METHOD

Initialize the following variables -

Hydrostatic pressure,

1. PDELH = 0

Time.

2., TIME = 0
Integration time interval,
'3, DELTZ = 576

4, Do 14, I=1, NS

Number of divisions in each section,
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5. XN(I) = N(I)

Number of divisions in ‘each séction plus one.
6. NN = N(I)+1

7. Do 8, J=1, NN

Velocity.

8. V(I, 1) = ((576)/(3.1416)) (WDOT)/ ((RHO)(D (1))* )
Length of each division in a section. |

9. DELX(I) = (XL (I))/(XN(I))
Pressure d;op for each division of a section.

10. PDELF(D) = ((F(D))/(12)) ((DELX (1))/(D (1)))
(RHO) (V (1, NN)2/((2) (GC))
Speed of sound in the liquid.
11. A(D = SQRT ((144)/((RHO)/(GC)(C1 () (R (1))/
(E (1)) (PWT (1)) + (1)/(BETA)))

Integration time interval.

12, DELT1 = (DELX(I))/(A(I))

Pick smallest DELT1 of all sections and‘set into DELT2.

- 13, .If DELT1 < DELT2, DELT2 = DELT1, goto 14

- If DELT1 = DELT2, goto 14

14, Continue
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.16, DELT2

Integration time intervals.
15. DELT! = DELT2

(DELT2)(.5)

Distances from the reservoir along the longitudinal axis of the

pipe to the beginning of each section.

17. AA(1l) = O
18, Do 19, I=2, NS
19. RAA(I) = AA(I = 1)+ XL(I-1)

Pick off pressure for first section using Subroutine NTERP.

20, IL = 0
21, IK =0
22, T =0

23, CALL NTERP (TIMT, PDT, 100>, o, P(1,1),8,1,IK, L)
Check if error return from NTERP, o
24, IfL # 0, gotoll9
If L .= 0, goto?25
Reset NTERP indicator.
25, IK =0
26, Do 32, I=1, NS
Set NI = number of divisions in this section plus one.

27, NI = N(I)+1
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Calculate initial pressure distribution throughout the system

28. Do 29, J=2, NI
Initial pressure distribution along each section,
29. P(,J) = P(I, J~-1)=PDELF(I)
Check if this is last section.
30, IfI = NS, goto32
If I # NS, goto3l
Pressure drop between sections.
31. P(I+1, 1) = P(I, NI) - ((FLC (1)) (RHO)/ ((288) (GC)))
(ABS (V (I, NI))) (V (I, NI))
32, Continue
Set integration time interval .
33. DELT = DELTI
Set indicator.
34, T =0
Set initial pressure distribution_.
35, PD(1,1) = P(1,1)
36, Goto 96
Print out pressures and velocities at time = 0,
37. CALL PRNT

38, I ='1'
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39. Gotol2
Pick off pressure at reservoir for this time step.
40, CALL NTERP (TIMT, PDT, 100, T, PD(1, 1), S, 1, IK, L)
Check if error return from NTERP.
41. IfL # 0, goto 119
IfL = 0, goto 42

Velocity at reservoir at end of integration time interval

Ratio of integration time interval to increment of spatial coordinate.
42, DELTDX = (DELT)/(DELX (1))

Dummy variable.

43, PSVS = (DELTDX)(V(1l, 1) - A(l))

Velocity at start of integrétion time interval at point on a
left-running characteristic.

44, VS = (V(1, 1))(1 +PSvVS) - (PSVS)(V(l, 2))

Pressure at start of integration time interval at point on a
left-running characteristic.

45. PS = (P(1, 1))(1+ PSVS) - (PSVS) (P (1, 2))

Velocity at reservoir at end of integration time interval.

4. VD(, 1) = VS + ((144) (GC)/ (A (1)) (RHO))
(PD(1, 1) = PS) = (F(1))(V(1, 1))

(ABS(V (1, 1)))(12)/((2) (D (1))) (DELT)
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>
.

Pressure and velocity at end of integration time interval for
each nodal point in a section

47, Do 71, I=1, NS
Set NI = number of divisions in this section plus one.
48, NI = N(I)+1

Ratio of integration time interval to increment of spatial
coordinate.

49, DELTDX = (DELT)/(DELX(I))
50. Do 58, J=2, NI |
Dummy variable.

51, PSVS = (DELTDX)(V(I, J) +A(I))
Dummy variable

52. PSVT = (DELTDX)(V(I, J) - A(I))

Velocity at start of integration time interval at point on a
right-running characteristic,

53, VR = (V(I, (1 - PSVS) + (PSVS)(V(I, J - 1))

Velocity at start of integration time interval at point on a
left-running characteristic,

54, VS = (V(I, 1))(1 + PSVT) = (PSVT)(V(I, J + 1))

Pressure at start of integration time interval at point on a
left-running characteristic.

55, PS = (P(I, 1)){(1 + PSVT) - (PSVT)(P(I, J + 1))

Pressure at start of integration time interval at point on a
right-running characteristic. '
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56. PR = (P(I, 1))(1 -PSVS) + (PSVS)(P(I, J - 1))

Velocity at nodal point at end of integration time interval.

57. VD(I, J) = (.5)(VR + VS) + ((144) (GC)/ ((2) (RHO) (A (I))))
(PR - PS) - (F(I))(V (I, 1)) (ABS(V(I, 1)) ((12)/
((2) (D (1)))) (DELT)

Pressure at nodal point at end of integration time interval.

58, PD(I, ) = (A(I))((RHO)/((288)(GC))) (VR - VS)

+ (.5)(PR + PS)
Check if this is last section of the system.,
59. If I = NS, goto72
If I # NS, goto60

Pressure and velocity at end of integration time interval for last
nodal point in a section and first nodal point in the succeeding section

Dummy variable,
60. PSVT = ((DELT)/(DELX(I+ L)))(V(I+ 1, 1) -A(I+ 1))

Velocity at start of integration time interval at point on a
left-running characteristic.

61, VS = (V(I+1, 1))(1+PSVT) - (PSVI)(V(I+1, 2))

Pressure at start of integration time intewal at point on a
left-running characteristic.

62. PS = (P(I+1, 1))(1 + PSVT) - (PSVT)(P(I +1, 2))

Clear ESTM loop control counter.
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|

63. IDL = 0

Estimate of velocity at last nodal point in a section at end of

integration time interval.

64, VD(I, NI) = V(I, NI)

Dummy variable.

65, DUM = (FLC(I))((.5)/(A(I)))(ABS (VD (I, NI))) (VD (I, NI))
# (1 + (DD (T + 1)%) (A + 1))/(AMDNVD(, NI))
- (((A (I + 1))/(A(1))) (VS) + VR) + ((F (I))((6)/ (D (1))

((ABS (V (I, ND))) (V (I, ND) + (A (1 + 1)/AIE( +1))

~ ((6)/(D(1+ 1)) (ABS (V (I + 1, 1))(V(L + 1, 1)))(DELT)
+ (GC)((144)/ ((A (1)) (RHO))) (PS - PR)

Velocity at last nodal point in a section at end of integration time
interval.

66, CALL ESTM (IDL, 1, TABl, TAB2, DUM, VD(I, NI), LUPNAM)
67. 1If ABS(DUM) > CMULT, go to 65
If ABS(DUM) < CMULT, goto 68

Velocity at first nodal point in succeeding section at end of
integration time interval. :

68. VD(I+1,1) = (VD(I, NI))((D(I))/(D(I + 1)))°

Pressure at last nodal point in a section at end of integration time
interval. s '
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69. PD(I, NI) = (A(I + 1)) ((RHO)/ ((144) (GC))) ((D (1))/ (D (1 + 1)))2
(VD (I, NI) - VS) + (({A(I + 1)) (RHO)/((12) (GC)))
(F(I+1))/(2) (D (I+1)))NABS(V(I+1, 1)V (I+1, 1)))
(DELT) + ((FLC (I)) (RHO)/ ((288) (GC)))
(ABS (VD (I, NI)))(VD (I, NI)) + PS.

Pressure at first nodal point in succeeding section at end of inte=~
gration time interval.

70, PD(I+ 1, 1) = PD(I, NI) - ((FLC (1)) (RHO)/ ((288) (GC)))
(VD (I, NI)) (ABS (VD (I, NI)))
71,  Continue

Pressure and velocity at last nodal point in system at end of inte-
gration time interval

Mass flowrate at valve end of systém.
72. CALL NTERP (TITA, WDOTT, 100; T, WDOT, S, 11L, L)
Check if error return from NTERP. | |
73. If L # 0, goto 121
IfL = 0, goto 74

Veloocity at last nodal point in system at end of integration time
interval. ‘ '

74. VDI, NI) = ((576)/(3.1416)) (WDOT)/ ((RHO) (D (I)*)

Pressure at last nodal point in system at end of integration time
interval.
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75. PD(I, NI) = (A(I))((RHO)/((144)(GC))} (VR -VD (I, NI))
- ((A (D) (RHO) (F (1)) (V (I, NI)) (ABS (V (I, NI)))
/ ((24) (D (1)) (GC))) (DELT) +. PR
76. Goto (77, 87), IJ

Store velocities and pressures

77. Do 81, I=1, NS

Set NI = number of divisions in this section plus one.
‘78. NI = N(I)+1

79. Do 81, J=1, NI

. Store velocities.‘

80. VI(I, ]) = VD(L, ])
Store pressures. .
81. PI(I, J) = PD(IL, ])
Increment dummy time,

| 82, T = TIME + DELT2
Set integrationv time interv;l.
83, DELT = DELT2

Set indicator.

84, JJ] = 2

- Set control variable.

85, K =1
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86, Go to 40

87. Goto (88, 96), K

88, Do 92, I=1, NS

Set NI = number of divisions in-this section plus one.
89, NI = N(I)+1

90, Do 92, J=1, NI

Store velocities.

91. V(I, J) = VD({,])

Store pressures.

92. P(I,]) = PD({, ])

Increment dummy time.

93, T = TIME + DELTI

Set control variable,

94. K =12

95. Go to 40

96, Do.110, I=1, NS

Set NI equal to number of division in section plus one.
97. NI = N(I)+1 |

98, Do 110, J=1, NI

Check if entry is for initialization only.
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99. If J] = 0, goto37
If JJ] # 0, goto100
Velocity at each nodal point.
100. V(I, J) = ()(VD(, J)) -VI(I, ])
Pressure at each nodal point (not including hydrostatic pressure).
101, P(I, J) = (2)(PD(I, 1)) - P1(I, J)

Hvdrostatic pressure calculations

Check to determine if hydrostatic pressure calculations will be
performed.

102, If HYDFL = 0, gotoll0
If HYDFL # 0, go to 103

Set acceleration, .

103, G = Gl

Check to determine if constant or time varying acceleration will
be used in hydrostatic pressure calculations.

104, If HYDFL < 2, goto 106
If HYDFL = 2, goto 105
Pick value of acceleration. |
105, CALL NTERP(GIND, GDEP, 100, TIME, G, S, 1, KK, LL)

Number of spatial increments along pipe section up to nodal
point J. L

106, .XJ = J=1"
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point J.

Distance along longitudinal axis of a section of pipe up to nodal

107. XJD = (XJ) (DELX(L))

Distance below bottom of reservoir,

108. X = AA(I) + (AC (1, 1)) (XJD) + (AC (2, I))(X]’D)z

+ (AC (3, 1)) (ID)® + (AC (4, I)) (xjD)*

' Hydrostatic pressure.

. 109. PDELH = (RHO)(X)(G)/ ((144)(GC))

Pressure at each nodal point (including hydrostatic pressure).
110, PP(I, J) = P(I, ]J)+ PDELH
Check if entry to here was fc,)r initialization,
111, IfJJ = 0, goto37
If JJ # 0, goto 112

Check if pressure less than allowable minimum.

112, .If PP(I, J) < PMIN, goto 126

If PP(I, J) = PMIN, goto 113

Increment time.

113, TIME = TIME + DELTI1

Print for this time step.
114, CALL PRNT

Set integration time interval.
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115, DELT = DELTI

Set indicator.

116, JJ =1

Determine if time limit achieved.
117, . If TIME < TLIMT, goto 40

If TIME > TLIMT, goto 118

. 118, Return

. Set up error printouts

119. JKL =1

120, Go to 122
121, JKL = 2

. 122, IfL > 0, gotol24

IfL < 0, goto 123

2

123, L

. Print error message.

. 124, CALL ERPRNT (L, T, JKL)

Error return.
125, CALL CTROL
Print error message.

126, . CALL PRNTER(I, J)
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Error return.

127, CALL CTROL

. End
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Symbol

AC

BETA

Cl

CMULT

DELT

- SUBROUTINE SURGE NOMENCLATURE

Description

Speed of sound in fluid
in pipe

Array containing distances
from reservoir along longi-
tudinal axis of the system
to the beginni?g of each
section

Array containing coefficients
of a fourth order polynomial
which gives the distance
below the beginning of a
pipe section as a function
of axial distance along the
section

Fluid bulk modulus

Constant which relates the
influence of constraints on
longitudinal movements of
the pipe to stresses on a
transverse cross=-section
of pipe

Tolerance used in computing
fluid velocity at last nodal
point in a section

Pipe diameter

Integration time inferval

77

.Units

i

' sec

ft

- in

sec

Reference

/WHAM/, 11, 12, 43,

46, 51, 52, 57, 58,
60, 65, 69, 75

DIM, 17, 19, 108

/WHAM/, 108

/WHAM/, 11

/WI-IAM/,l. 11

67

/WHAM/, 8, 10, 46,
57, 65, 68, 69, 75

33, 42, 46, 49, 60,

65, 69, 75, 83



-

Symbol
DELTI

DELT2

DELTDX

DELX

DUM

_FLC

Gl

GC -

SUBROUTINE SURGE NOMENCILATURE (cont.,)

Description v Units
Integration time interval sec
Integration time interval - sec

Ratio of integration time sfic
interval to increment of

spatial coordinate

Length of each division ft
of a section of pipe '

- Dummy variable ) ft/sec
Modulus of elasticity of -&fz-
pipe wall material in
Pipe (Moody) friction | : —
factor
Flow loss coefficient | —
between sections

‘ 4 ft
Acceleration : ‘ >
: " sec
ft
Acceleration >
- sec

Constant relating force,

mass, and acceleration - 1bf - se.c2
(32.174)

78

ft -1bm

Reference

/WHAMR/, 13, 15,

33, 93, 113, 115

3,13, 15, 16, 82, 83

42, 43, 49, 51, 52

/WHAMR/, 9, 10, 12, -
42, 49, 60, 107

65, 66, 67

/WHAM/, 11

/WHAM/, 10, 46, 57,

- 65, 69, 75

. /WHAM/, 31, 65, 69,

70

103, 105, 109

/WHAM/, 103

/WHAM/, 10, 11, 31,
46, 57, 58, 69, 70,
75, 109



Symbol

GDEP

GIND

HYDFL

SUBROUTINE SURGE NOMENCLATURE (cont.)

Description

Array containing the
dependent variables of
acceleration for inter~
polation of acceleration

Array containing the
independent variables
for interpolation of
acceleration

Variable used to denote

method of hydrostatic

. pressure calculations

. Units

ft

sec

sec

HYDFL = 0, no hydrostatic
. pressure calculations are

performed

HYDFL = 1, hydrostatic

- pressure calculations are
performed with a constant .

acceleration

 HYDFL = 2, hydrostatic
pressure calculations are
performed with a time-

varying acceleration

Loop control dou_nter denoting -

pipe section

79

Reference

: }/mn&ALA/,,los

-/WHAM/, 105

/WHAM/, 102, 104

4,5,6,8,9, 10,
11, 12, 18, 19, 26,
'27, 29, 30, 31, 47,
48, 49, 51, 52, 53,
54, 55, 56, 57, 58,
59, 60, 61, 62, 64,
65, 66, 68, 69, 70,

74, 75, 77, 78, 80,

81, 88, 89, 91, 92,
96, 97, 100, 101,
107, 108, 110, 112,
126



- Symbol

IDL

- IK

IL

I

JKL

LL

- LUPNAM

NI

SUBROUTINE SURGE NOMENCIATURE (cont.)

Description
ESTM loop control c¢ounter
Used by Subroutine NTERP
Used by Subroutine NTERP
Loop control counter de~

noting nodal point in a
section

Indicator

" Error indicator

Control variable

| Used in Subroutine NTERP

Error indicator for Subroutine

NTERP
Used in Subroutine NTERP
Used by Subroutine ESTM

Number of divisions in a |
section of pipe :

Number of division in a
section of pipe plus one

80

Units

Reference

63, 66

21, 23, 25, 40
20, 72

7, 8, 28, 29, 50,51,
52, 53, 54, 55, 56,
57, 58, 79, 80, 81,
90, 91, 92, 98, 100,
101, 106, 110, 112

34, 38, 76, 84, 99,
111, 116

-119, 121, 124

85, 87, 94
105

23, 24, 40, 41, 72,
73, 122, 123, 124

105

66

/WHAM/, 5, 6, 27,
48, 89, 97

27, 28, 31, 48, 50,
64, 65, 66, 68, 69,
70, 74, 75, 77, 78,

- 79, 88, 89, 90, 97,

98



Symbol.
NN

NS

PP

Pl

PD

PDELF

PDELH

SUBROUTINE SURGE NOMENCILATURE (coit.)

Description

Number of divisions in a
section of pipe plus one

Number of sections in
system ‘

Pressure at nodal point
(not including hydrostatic
pressure)

- Pressure at nodal point' -

(including hydrostatic

pressure)

Array used for temporary
storage of pressures

Pressure at nodal point at
end of integration'time
interval

Steady-state pressure drop
for each civision of a
section of pipe

Hydrostatic pressure

81

Units

Reference

6, 7

/WHAM/, 4, 18, 26,
30, 47, 59, 77, 88,

96

/WHAMR/, 23, 29,
31, 35, 45, 55, 56,
62, 92, 101, 110

. 110

/WHAMR/, 81, 101

/WHAMR/, 35, 40,
46, 58, 69, 70, 75,
81, 92, 101

/WHAMR/, 10, 29

1, 109, 110



PMIN

PR -

PS

PSVS

PSVT

PWT

SUBROUTINE SURGE NOMENCLATURE (cont.)

Description

Array containing the
dependent variable of

pressure for interpolating

pressure at reservoir

Fluid vapor pressure

Pressure at start of

integration time interval
at point on a right-
running characteristic

" Pressure at start of

integration time interval
at point on a left-
running characteristic

Dummy variable

Dummy variable

Pipe wall thickness '

Pipe rédius

Fluid density

. Units

1bf

in2

1bf
in

1bf/in®

in

in

lbm/ft>

- 82

62, 65, 69

Reference

/WHAM/, 23, 40

/WHAM/, 112

56, 57, 58, 65, 75

45, 46, 55, 57, 58,

43, 44, 45, 53, 56

52, 54, 55, 60, 61,

62

/WHAM/, 11

| /WHAM/, 11

/WHAM/, 8, 10, 11,
31, 46, 57, 58, 65,
69, 70, 74, 75, 109



. . ’ .

Symbol

TABI1

. TAB2

TIME

TIMT

- TITA

- TLIMT

Vi

SUBROUTINE SURGE NOMENCLATURE (cont.)

Description Units
' Dummy variable for ' -—

Subroutine NTERP

Dummy time sec

Array used in Subroutine —
- ESTM )

Array used in Subroutine -
. ESTM

Time sec

Array containing the " sec

independent variables of
time for interpolating
pressure at reservoir

Array containing the sec
independent variables of ' :
time for interpolation of

fluid mass flowrate

. Calculation time limit sec
Velocity at nodal point o ——
. sec

ft

Array used for temporary

ec
storage of velocities s

Reference

23, 40, 72, 105

22, 40, 72, 82, 93

66
66

/WHAMR/, 2, 82, 93,

105, 113, 117

/WHAM/, 23, 40

72

/WHAM/, 117

/WHAMR/, 8, 10, 31,
43, 44, 46, 51, 52,
53, 54, 57, 60, 61,
64, 65, 69, 75, 91,

. 100

/WHAMR/, 80, 100



Symbol

VD

'L

WDOT

WDOTT

XJD

SUBROUTINE SURGE NOMENCLATURE (cont.)

Description

Velocity at nodal point at
end of integration time
interval

Velocity at start of inte-
gration time interval at
point on a right-running
characteristic

Velocity of start of inte=
gration time interval at
point on a left-running
characteristic

Fluid mass flowrate

Array containing the de-
pendent variables of mass
flowrate for interpolation
of mass flowrate at valve
end of system

" 'Distance below bottom

of reservoir

Loop control counter J,

minus one. Denotes number

of spatial increments
along a section of pipe
up to nodal point J

Distance along longitudinal
axis of pipe to nodal point J

Units

ft

sec

i lbm
sec

1bm

sec -

ft

Reference

/WHAMR/, 46, 57, 64,

65, 66, 68, 69, 70, 74,

75, 80, 91, 100

53, 57, 58, 65, 75

44, 46, 54, 57, 58, 61,
65, 69

/WHAM/, 8, 72, 74

72 -

108, 109

106, 107

107, 108

1



Symbol

B

SUBROUTINE SURGE NOMENCLATURE (cont.)

Description

Length of a section of pipe

Array containing the number
of divisions in a section of

pipe

Units

ft -

Reference

/WHAM/, 9, 19
DIM, 5, 9
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$IBFTC SURGED FULIST,DECK
SUBROUTINE SURGE
COMMBN /WHAMR/ V(20,101), P(20,101),PD(20,101), VD(20,101), TIME,
1 P1(20,101), V1(20 101),PP(20 101), DELX(ZO) PDELF(ZO) »A(20)
2, DELT1
COMMON /WHAM/NS,N(20),WD@T,XL(20),F(20),D(20),RHB,GC,C1(20),
-R(20),E(20), PWT(ZO),BETA TlMT(lOO) PDT(IOO), Gl FLC(20),
CMULT TITA(100), WDQTT(lOO) TLIMT,PDTIM, PV¢PT HYDFL,
GDEP(100), GIND(IOO) AC(# 20), PMIN
INTEGER PV@PT,HYDFL
DIMENS I ON TABI(ZO) TAB2(20),XN(20) .AA(ZO)
DATA LUPNAM /2HVD/
PDELH= O.
TiME= O.
C . SET DUMMY VALUE INT@® DELTZ
' DELT2= 576.
0@ 2 I=1,NS
XN(1)=N(1)
NN= N(I) +1
00 3 J=
3 V(l,J)= 576 /3. 1416%WDBT/ (RRG*D (| )**2)
DELX(I)— XL(E)/XNCL)
PDELF(i)= F(1)/12. * DELX(1)/D(1) * RHG*V(I,NN) **2/(2 *GC)
144,/
1) /

\»N"‘

A(l)= SORT( (RHO/GC *(Cl(l)*R(l)/(E(l)*PWT(I)} + 1./BETA) ) )
DELT1= DELX(}) /7 A(l) _

|F(DELT? .LT. DELT2) DELT2 = DELT1

CONT I NUE -

DELT1= DELT2 .

DELT2= DELT2%*.5

AA(1)= 0.
D@ L4 I= 2,NS :
. L AA(! )= AA(I—]) + XL(1=1) .
IR O PICK OFF PRES FOR FIRST SECTION USING NTERP
iL= 0
IK= O
T= 0.

CALL NTERP (TIMT,PDT,100,0.,P (1,1),5,1,1K,L)
IF(L .NE. 0) G@ T@ 700

K= 0
D@ 15 1= 1,NS ~
Nim N(I )1 .
DB 9 J= 2,NI
9 pP(1,J) = P(1,J-1) = PDELF(I)
C e DETERMINE WHICH EOS T6 USE F@R PRES. AT START @F NEXT SECT.

I\F (I .EQ. NS) G# T@ 1

10 P(1+1,1)= P(I,NI) = FLC(I)*RHﬁ/(288 *GC) *ABS(V(I NED)*V(I,NI)
15 CONTINUE |

" DELT= DELT1

JJ= 0

PD(1,1)= P(1, 1)

FIGURE A.l1. SYMBOLIC LISTING OF SUBROUTINE SURGE
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Gg T@ 109
14 CALL PRNT

Jd= 1

G@ T@ 12

C b PICK @FF PRES F@R FIRST SECT.

13 CALL NTERP(TIMT,PDT,100, T,PD(1,1),S,1,I1K,L)
IF(L .NE. O) G# T@ 700
12 DELTOX= DELT/DELX(1)
PSVS= DELTDX*(V(1,1)=-A(1) )
VS= V(1,1) * (1.+PSVS) = PSVS* V(1,2)
PS= P(1,1) * (1.4PSVS) - PSVS* P(1,2)
vD(1, 1)= VS + 144 *GC/(A(I)*RHﬁ)*(PD(I 1)-PS)-F(I)*V(1 1) *

1 ABS(V(1,1))%12./(2.%D(1)) * DELT
DG 200 I= 1,NS
Ni= N(I)+1

DELTDX=DELT/DELX(I)
DB 90 J= 2,NI
PSVS= DELTDX *(V(1,J) + A(l))
PSVT=a DELTDX *(V(I,J) — A(l)) _
VR= V(l,J) % (1.-PSVS) + PSVS*V(I|,J=1)
VS=  V(I,J) * (1.+PSVT) = PSVT*V(1,J+1)
PS= P(l,Jd) *(1.+PSVT) = PSVT*P(I,J+1)
PR= P(l,J) *(1.=PSVS) 4 PSVS*P(Il,J=1)
VD(l,d)= .5*(VR+VS)+144 *GC/ (2. *RH¢*A(I))*(PR-PS)-F(I)*V(l J) *
1 ABS(V(1,J)) * 12./(2.%D(1))*DELT
90 PD(Il,Jd)= A(I)*RHQ/(288 *GC )*(VR=VS) + .5%(PR+PS)
CHECK IF THIS 1S LAST SECTION @F THE SYSTEM
IF(1.EQ. NS) G§ T@ 92 \
PSVT= DELT/DELX(I+1)* (V(I+1,1) = ACI+1) )
VS= V(I+1,1) *(1.,+PSVT) = PSVT*V(I+1 2)
PS= P(l+1,1) *(1.4PSVT) ~ PSVT*P(1+1,2)

96 10L=0
VD(I,NI) = V(I,NI) o |
97 DUM=FLC(1)*.5 /A(1)*ABS(VD(I,NI ))*VD(I,NI  )+(1.+(D(1)/D(I+1))**2
A *A(1+1)/A(1) ) *VD(I,NI ) =(ACI+1)/ACI)*VS +VR) + (
2 F(1)%6./D(1)%ABS(V(I,NI))*V(1,NI)+A(1+1)/A(1)*F(1+1)%6./D(1+1)
.3 *ABS (V{141,1))%V(141,1) Y*DELT + GC*1kk,/(A(l )*RHB)*(PS =PR)
CALL ESTM(IDL,1,TAB1,TAB2,0UM,VD(1,NI),LUPNAM) ' ‘

IF( ABS (DUM) .GT. CMULT) GO TP 97
VD(I1+1,1)= VD(I N1) *(D(1)/D(1+1))%*2
PD(I NI)- A(I+1)*RH@/(144 *GC)*((D(1)/D(1+1))%*2

A *VD(1,Nl)=VS) +(A(1+1)*RHO /
1 (12.%GC)*F (1+1)/(2. *D(I+1))*ABS(V(!+1 1))*V(i+1,1) ) *

2 DELT+ FLC(1 )*RH@/ (288.*GC)*ABS(VD(!, NI))*VD(I,NI)+PS
PD(1+1,1)= PD(I,NI)=FLC(1)*RH@/(288. *GC)*VD(I NI )*ABS (VD(l, NI))

200 C@NTINUE
92 CALL NTERP(TITA,WD@TT,100,T,WDBT,S,1,IL,L)
IF(L .NE, 0) G@ T@ 701
VD(1,Nl)= 576./3.1416 * WD¢T/(RH¢*D(I)**2) .
PO(I,NI )= A(l)*RHﬁ/(Ihh *GC) * (VR-VD(I NIE)) = A(I)*RHB*F (1) *

FIGURE A.1. SYMBOLIC LISTING OF SUBROUTINE SURGE (cont.)
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. . . 4

1 V(I,NI) * ABS(V(I,NI))/(2L4,*D(1)*GC) * DELT 4+ PR
100 GO TP(104,105),Jd
104 D@ 106 1= 1,NS
Nl= N(|)+1
0@ 106 J=1,Ni )
Vi(1,Jd)= VO(1,J)
106 P1(1,J)= PD(1,J)
T= TIME + DELT2
DELT = DELT2
Jdm 2
K= 1 .
GO TO 13 : ’
105 G@ T@(108,109),K | g
108 0@ 110 1= 1,NS :
Nis= N(|)+1
DG 110 J=1,Ni
V(1,J)= VvD(!,J)
110 P(1,J)= PD(I,J)
T= TIME + DELTI
K= 2
GO TO 13
109 D@ 111 1= 1,NS
Ni= N(I)+1
DG 111 J=1,NI
IF(JJ .EQ. O) GB T@ 112
V(1,J)= 2.%VD(1,d) = VI(
 P(1,Jd)= 2.%PD(1,J) ~ P1{(
112 IF(HYDFL .EQ. O) GO TO
G= GI
[F(HYDFL .LT. 2) G@ T 300
CALL NTERP(G!ND,GDEP,100,TIME,G,S,1,KK, LL)
300 XJ= J-1
XJD= XJ*DELX (1)
X= AA(1) + AC(1,1)*XJD + AC(2,1)*XJD*¥*2 4 AC(3,!)*XJD**3 4+ AC(L4,!)
1 *XJD¥*h , :
PDELH= RH@ * X * G / (144.*GC)

1,J)
| ,J)
111

111 PP(i,J)= P(I,J) + PDELH

IF(JJ .EQ. 0) GO T@ 14 S
IF( PP(1,J) LT. PMIN ) GO T@ 900
" TIME= TIME + DELT1 ' -
CALL PRNT '
DELT = DELT! ,
Jd= T ; . ’
IF(TIME .LE. TLIMT) Gﬂ T¢ 13 _ : )
’ RETURN '
700 JKL= 1
GO T 702
701 JKl= 2
702 LF(E «GT. 0) Gﬁ T0 703

FIGURE A.1. SYMBOLIC LISTING OF SUBROUTINE SURGE (cont.)’
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703 CALL ERPRNT(L,T,JKL)
CALL CTROL

900 CALL PRNTER(I, J)
CALL CTROL |
RETURN
END

P

FIGURE A.1. SYMBOLIC LISTING OF SUBROUTINE SURGE (cont.)
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‘SUBROUTINE WMAIN

This subroutine controls the inputs of Subroutine. SURGE.

- CALLING SEQUENCE

CALL WMAIN

SOLUTION METHOD
Read inputs using NAMELiST feature.
. 1. READ
.Initialize page number for printing inputs.
.2, IP =1 |
Write page heading.
3, WRITE, IP

Print inputs.

4. WRITE WDOT, RHO, GC, BETA, TLIMT, CMULT, PDTIM,
PMIN, G1, PVOPT, HYDFL, NS

5. WRITE OUTP (1), (XL(I), I =1, NS)

o

90




6. WRITE OUTP (2), (F(I), I =1, NS)

7. WRITE OUTP(3), (D(I), I=1, NS)
8. WRITE OUTP (4), (C1(I), I=1, NS) ’
9. . WRITE OUTP (5), (R(I), I.=1, NS)
10, WRITE OUTP(6), (E(I), I=1, NS)
11. WRITE OUTP(7), (PWT(I), I=1, NS)
12. WRITE OUTP (8), (FLC(I), I=1, NS)
Increase page number.

13, IP = 2

- Eject page, print heading and continue printing inputs.

14. WRITE IP

15, WRITE OUTP(9), (TIMT(I), I=1, 100)

16, WRITE OUTP(10), (PDT(I), I=1, 100)

Increase page number.

17, IP = 3

Eject page, print heading and continue printing inputs.
18, WRIIE IP |

19, WRITE OUTP(11), (TITA(I), I=1, .100)

20. WRITE OUTP(12), (WDOTT(I), I =1, 100)

: Check whether hydrostatic inputs are present. "

91
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21, If HYDFL = 0, goto 29
If HYDFL # 0, go to 22
Increase page number,
22, IP = 4
Eject page, print heading and print hydrostatic inputs.
23. WRITE IP
24, WRITE OUTP(13), (GDEP(I), I=1, 100)
25, WRITE OUTP(14), (GIND(I), I =1, 100)
Increase page number.
26, IP =5
Eject page, print‘ heading and finish printing inputs.

27. WRITE IP

' 28. WRITE OUTP(15), (AC(I, J), I=1, 4), T=1, 20)

29, CALL SURGE .

‘ Return.

. End
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Symbol -
AC

BETA

Cl

CMULT

F1LC

Gl

SUBROUTINE WMAIN NOMENCLATURE

Description Units
Array containing coefficients —

of a fourth order polynomial
which gives the distance
below the beginning of a
pipe section as a function
of axial distance along the

section
Fluid bulk modulus —“izf-
Constant which relates the —
. influence of constraints on '
longitudinal movements of a
pipe to stresses on a trans=
verse cross section of the
pipe
. . ft
Tolerance used in computing Sec
fluid velocity at last nodal
point in a section
Pipe diameter ' in
o s 1bf
Modulus of elasticity of —
of pipe wall material in
Pipe (Moody) friction factor -—
Flow loss ,coefficient be~ -
tween sections '
Acceleration ‘ | ft

93

2
- sec

Reference

/WHAMM/, /WHAM/,

| /WHAMM/, /WHAM/,

/WHAMM/, /WHAM/,

/WHAMM/, /WHAM/,

/WHAMM/, /WHAM/,

/WHAMM/, /WHAM/,

/WHAMM/, /WHAM/,
- /WHAMM/, /WHAM/,

- /WHAMM/, /WHAM/,

28

10

12
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Symbol

GC

- GDEP

GIND

HYDFL

SUBROUTINE WMAIN NOMENCLATURE (cont.)

Description

Constant relating force,
mass, and acceleration —
(32.174)

Array containing the de=-
pendent variables of
acceleration for inter-

. polation of acceleration

Array containing the in- -
dependent variables of
time for interpolation of

" acceleration

Variable used to denote
method of hydrostatic
pressure calculations

HDFL = 0, no hydro-

static pressure

~calculations
are performed

.HYDFL= 1, hydrostatic
' pressure cal-
culations are
performed with
a constant
acceleration

" HYDFL= 2, hydrostatic
oo pressure cal-
culations are

performed with

- a time=varying
acceleration

94

Units

ft

ft-1bm
lbf-sec

2

sec’

secC

Reference

/WHAMM/,_ /WHAM/, 4

/WHAMM/, /WHAM/, 24
/WHAMM/, /WHAM/, 25

/WHAMM/, /W'HAM/, INT,

4, 21



. . ’
.

Symbol

IP

NS

OUTP

PDT

PDTIM

- PMIN

PVOPT

PWT

SUBROUTINE WMAIN NOMENCLATURE (cont.)

Description

Loop control counter de-
noting pipe section

Page number

Loop control counter de-
noting nodal point in a
section

Number of sections in

system

Array containing input
names for printout

] Array containing the de-

pendent variable of

Units

pressure for interpolating |

pressure at reservoir
Print time multiplier

Fluid vapor pressure
Print option indicator

Pipe wall thickness

Pipe radius

in

in

95

Reference

5,6,7,8,9, 10, 11,

12, 15, 16, 19, 20,

24, 25, 28

2, 3,13, 14, 17, 18,
22, 23, 26, 27

28

/WHAMM/, /WHAM/, 4,
5,6,7, 8,9, 10, 11,
12

“DIM, DATA, 5, 6, 7, 8,

9, 10, 11, 12, 15, 16,

.19, 20, 24, 25, 28

- /WHAMM/, /WHAM/, 16

/WHAMM/, /WHAM/, 4 -
/WHAMM/, /WHAM/, 4

/WHAMM/, /WMAIN/,
INT, 4

. /WHAMM/, /WHAM/, 11
/WHAMM/, /WHAM/, 9
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Symbol

RHO

TIMT

- TITA

TLIMT

WDOT

WDOTT

SUBROUTINE WMAIN NOMENCLATURE (cont.)

Description Units

Fluid density : lbm/ft3
Array containing the " sec

independent variables
of time for interpolating
pressure at reservoir

. Array containing the sec

independent variables
of time for interpolation
of mass flowrate

. Calculation time limit ' sec

Fluid mass flowrate ____lbm
sec

Array containing the ’ o ls%rg-
dependent variables of
mass flowrate for inter-
polation of mass flowrate
at valve end of system
Length of a section of ft

pipe

96 -

Reference

/WHAMM/, /WHAM/,
/WHAMM/, /WHAM/,

/WHAMM/, /WHAM/,

/WHAMM/, /WHAM/,
/WHAMM/, /WHAM/,

MHAMM/, /WHAM/,

/WHAMM/, /WHAM/,

15

19

20




E '
. ‘ .

SIBFTC WHMAIN FULIST,DECK

SUBREUT I NE WMA T N
COMMON /WHAM/NS,N(20),WD@T,XL(20),F(20),D(20),RHB,GC,C1(20),

1 R(20),E(20), PWT(ZO) BETA TIMT(lOO) PDTUOO). G'l FLC(ZO),
2 CMULT TITA(IOO) WDﬂTT(lOO) TLIMT,PDTIM, PV@PT HYDFL,
3 GDEP(100), GIND(‘IOO) AC(’+ 20), PMIN .

INTEGER PV@PT,HYDFL

NAMEL [ST /WHAMM/ NS,N,WD@T,XL,F,D,RH®,GC,C1,R,E,PWT,BETA,TIMT,PDT,
1 FLC, CMULT,TITA,WOBTT,TLIMT ,PDTIM,PVBPT HYDFL,GDEP,
2 GIND,AC ,PMIN ,Gt

DIMENS I GN @UTP(15)

DATA (BUTP(1), 1=1,15) /

1 90H XLe= Fm D= Cl= Rms Ex PWTs= FL ‘
2C= TiMT= PDTm TlTAuWDﬂTT- GDEP= GIND= ACw= /
11 READ(5,WHAMM)
|P=1
WRITE(6,1) 1P

1 FORMAT(1H1 LOX,22H WATERHAMMER INPUTS 35X,5HPAGE  11///)
"WRITE(6,2) WD@T,RH®, GC ,BETA, TL IMT,CMULT,PDTIM,PMIN, G1,

1 PVEPT,HYDFL, = NS

2 FORMAT(THO /5X. 7H WO@T= £16.8,2X,7H RH@= E16.8,
1 2X, 7JH GC= E16.8,2X,7H BETA= E16.8/5X,7HTL IMT= £16.8,2X,

2 7HCMULT= E16.8, 2X, JHPDT IM= E16.8,2X.7H PMIN= E16.8/

3 5X,7H Gl= E16.8, 2X,7HPVOPT= I1,17X,

L 7HHYOFL= 11,17X,7H  NS= 12)
WRITE(6,6) (N(1), i=l1,NS)

6 FORMAT(TH 6X, 6H Na 2016 )
WRITE (6,3) @UTP(1),(XL(1),I=1,NS)
WRITE (6,3) .BUTP(2),(F(1),I=1,NS)
WRITE (6,3) @UTP(3),(D(1),!=1,NS)
WRITE (6,3). BUTP (L), (CT(1 ), 1=l,NS)
WRITE (6,3) @QUTP(5),( R(1),I=1,NS)
WRITE (6,3) @UTP(6),( E(1),1=1,NS)
WRITE (6,3) @UTP(7),(PWT(1),I=al,NS)
YRITE (6,3) @UTP(8),(FLC(1),i=1,NS)
Pa 2 .
WRITE(6,1) IP
WRITE (6,3) GBUTP( 9),(TIMT(1),1=1,100)
vngE.(é.B) GUTP(10), (PDT(1).1=1,100)
= 3
WRITE(6,1) IP A -
WRITE (6,3) @UTP(11),(TI1TA(1),1=1,100)
WRITE (6,3) @UTP(12), (WDOTT(1),1=1,100)
3 FORMAT (1HO4X,A6, €17.8,4E25.8/(11X,E17.8,4E25.8 ) )
IF(HYBFL .EQ. 0) GO T8 5 ‘
WRITE(6 1) P _
WRITE (6, )¢ P(13), (GDEP(!),1=1,100)
Y?'Tsé 3) gUTP(14), ( GIND(I),Im1,100)

FIGURE A.2, SYMBOLIC LISTING OF SUBROUTINE WMAIN
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WRITE(6,1) Ip |
WRITE (6,4) BUTP(15), ((AC(1,J), Im1,b4),J= 1,20)
L FORMAT(1H 4X,A6,E17.8,3E25.8/(11X,E17.8,3E25.8) )
5 CONTINUE | . :
CALL SURGE
RETURN
END

- FIGURE A.2. SYMBOLIC LISTING OF SUBROUTINE WMAIN (cont.)
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SUBROUTINE PRNT

This subroutine controls the output for Subroutine SURGE.

CALLING SEQUENCE
CALL PRNT
The following are entries for error print-outs:
CALL ERPRNT(L6, T, JKT)

CALL PRNTER({IJ, JI)

.SOLUTION METHOD
Check if first time into the routine.
1. If TIME # 0, goto 59
If TIME = 0; goto 2

Initialize line counter, page number and,time to print.

2, LC =0
3. IP =1




for each

Set up array NI to contain the number of divisions plus one
section.

5. Do 6, J=1, NS

6. NI(J) = N(J)+1

Write page heading.

7. WRITE IP, DELT1
Determine print option.

8. Go to(9, 26, 41), PVOPT

Set K = section, J = number of divisions in section.

"9, K =1

10. J = NI(1)

Write out print liﬁe.

11. WRITE TIMB, PP(1, 1), PP(1, D), V(1, )
Increase line count.

12, LC = LC+1

Check if more than one section.

13. If NS < 2, retum

If NS = 2, gotol4

Set K2 = section number, KNS = number of sections.
14, K2 = 2 |

15. KNS = NS

100



Check if more room on this page.
16. If (LC + NS-1) < 54, gotol8
If (LC + NS-1) 2 54, go to 17
Set KNS to maximum lines to print on page.
17. KNS = 54 -1LC
18. Do 21, K=Kz, KNS
Increase line count.
19, LC = LC+1
20. J = NI(K)
21, WRITE ?P(K, N VK, T)
Check if all sections have been output.
22. IfK = NS, retumn
If K # NS, goto23

Initialize for rest of section.

~.

23, K2 = KNS +1

24, KNS = NS

25. Go to 66

-Set up print constants

26, K =2
27. J =1

Print a line for print option 2.
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. '

.38, K2 = KNS +1

28. WRITE TIME, PP(1, 1), PP(2, 1), V(2, i)
See if more sections to be output.
29. If NS < 3, retumn

If NS = 3, goto 30

Set up print constants for remaining sections.

.30, K2 =3

31, KNS = NS

Determine if more room on this page.

32, If (LC+NS -2) < 54, goto 34
Set. KNS to maximum lines for this page. |
33, KNS = 54 -1C

34, Do 36, K=Kz, KNS

Increase line count. -
35. LC = LC+1 |

36. WRITE PP(K, 1), V(K, 1)
Determine if more sections to be output.
37, If K = NS, return |

If K # NS, goto 38

~ Set print constants.

39. .KNS = NS
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40, Go to 66

Set up print constants for print option 3.
41. J = NI(1)

42. L =1

43, K 2

Increase line count.
44, LC = 1LC+1
45, WRITE TIME, PP(1, 1), PP(1,J), V(1,])
Check if only one section in system. .
46, If NS < 2, return
If NS 2 2, go to 47

Initialize for looping, -KZF = current section number, KNS =

‘maximum section number. '

47. K2 = 2
48. KNS = NS
Determine if all sections can be printed on this page.
49. .If (LC + (2)(NS) - 2) < 54, goto52
If (LC + (2)(NS) -2) 2 54, go to 50

A

50. KNS = (54 -LC)/2

‘51, If KNS < 3, KNS = 2

52. .Do 55, K=K2, KNS -
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Set J = number of divisions in this section.
53. J = NI(K)
Increase line count.
54, LC = LC+2
55, WRITE PP(K, 1), V(K, 1), PP(K, J), V(K, ])
56, If K = NS, return
If K # NS, goto 56
Increase for remaining sections.
57. K2 = KNS+ 1

58, KNS = NS

. 59, Go to 66

-Determine if it is time for print.

60.  If TIME < (IT + (PDTIM)(DELT1)) and
TIME < TLIMT, return
If not, go to 61

Reset time for next print.

61. TT = TIME

Check if line count exceeded.
62, If LC < 52, goto 8
If LC = 52, go to 62

Increase page number and clear line count.
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63. IP IP +1

64. LC = 0

Write page heading.
65. . WRITE IP, DELT1
66. Goto8

Increase page number.
67. IP =1P+1
Write page heading.
68. . Write IP, DELTI1
- Clear line count.

69. LC =0

v

Determine correct entry back.

s .
70. If PVOPT

=1, goto 18
"If PVOPT = 2, go to 34
If PVOPT = 3, go to 52

. _ENTRY ERPRNT
‘“Write NTERP error message.
71. WRITE TIME, T, TBL(L6)., TBL (L6 '+ 4), TBL(JKT + 2)

72. 'Retum

- 105




ENTRY PRNTER
Write error message.
73. .WRITE PP(IJ, JI), PMIN
74. - Return

+ End
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Symbol
DELTI1
1J

P

J

JI

JKT

K2

. KNS

- Lé

. LC

SUBROUTINE PRNT NOMENCLATURE

Description

Integration time interval
Index counter

Page number

Loop control counter
denoting nodal point in
a section

Index counter

Index counter

.
.Loop control counter

Loop control counter

Section number for loop
control

Print line constant -

-~ Index counter

Line counter .

Array containing number
of divisions in a section

107

Units

sec

Reference
/WHAMR/, 7, 65, 68
CALL, 73
3,7, 63, 65, 67, 68
5, 6, 10, 11, 20, 21,
27, 41, 45, 53, 55
CALL, 73
CALL, 71
9, 18, 20, 21, 22, 26,
34, 36, 37, 43, 52, 53,
55, 56

14, 18, 23, 30, 34, 38,
47, 52, 57

15, 17, 18, 24, 31, 33,
34, 38, 39, 48, 50, 51,
52, 57, 58
42
.CALL, 71

2, 12, 16, 19, 32, 35,

" 44, 49, 50, 54, 62, 64,

69
- /WHAM/.,' 6

?
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Symbol

NI

NS

PDTIM

PMIN

. PP

PVOPT
TBL

TIME

TLIMT

TT

SUBROUTINE PRNT NOMENCIATURE (cont.)

Description

Array containing number of
divisions in a section plus

one
Number of sections in
system

Print time multiplier

Fluid vapor pressure

Pressure at nodal point

(including hydrostatic -

pressure)

Print option flag

- Dummy time

print words for error
message

Time

Calculation time limit

. Array containing Hollerith

Contains time of last print

Velocity at nodal point

108

Units

sec

sec

sec

secC

- 86C

Reference

DIM, 6, 10, 20, 41, 53

/WHAM/, 5, 13, 15, 16,
22, 24, 29, 31, 32, 37,
39, 46, 48, 49, 56, 58

/WHAM/, 60

/WHAM/, 73

/WHAMR/, 11, 21, 28,
36, 45, 55, 73

/WHAM/, INT, 8, 70

CALL, 71

" DIM, DATA, 71

/WHAMR/, 1, 11, 28, 45,
60, 61, 71 '

/WHAM/, 60
4, 60, 61

/WHAMR/, 11, 21 28,-36,
45, 55



$IBFT

C PRNTWH FULIST,DECK

SUBROUTINE PRNT

COMMEN /WHAMR/ V(20,101), P(20,101),PD(20,101), VD(20,101), TIME,
1 P1(20,101), V1(20,101),PP(20,101), DELX(20),PDELF(20) A(20)"
2, DELTI

DIMENSI@N NI (20)

DIMENS | @N TBL(6)

DATA TBL /6H .GT. ,6H .LT. ,6H TIMT ,6H TITA ,6H MAX ,6H MIN /
COMMBN /WHAM/NS,N(20),WDBT,XL (20),F(20),0(20). RH¢ GC ,€1(20),

1 R(20),E(20), PWT(ZO) BETA TIMT(100) PDT(IOO) FLC(20),
2 CMULT TITA(100) WDQTT(IOO) TLIMT, PDTIM PVﬁPT »HYDFL,
3 GDEP(100), GIND(IOO) AC(# 20), PMIN

INTEGER PV@PT,HYDFL
| F(TIME .NE. 0.) GO T8 50

LC= 0
|P= 1
00 4 J= 1,NS
L NI (J)=m N(J)+1
2 WRITE(6,1) IP,DELTI
llFﬂRMAT(}?135X » 20H WATERHAMMER @UTPUT 35X,S5HPAGE 13/ 8X 7HDELT1-
5Gp T9 (10,20,30), PVﬁPT
10 K= 1
J= NI (1)
‘WRITE(6,100) TIME,PP(1,1),K,J PP(l J),K,J V(l J)
LC= LC+1
IF(NS .LT. 2) RETURN
K2= 2
KNS= NS 4
IF(LC+NS=1 .LT. 54) G@ T@ 12
KNS= (54 -~ LC)
12 D@ 11 Ka K2,KNS .
LC= LC+1 N
= Ni(K) .
11 WRITE(6,101) K,J,PP(K,J),K,J,V(K, J)
1F(K EQ. NS) RETURN
. K2= KNS+1
KNS= N2
GO 30 5
2 K= 2
Ja 1
LL= LL+1
6RR3N(6,1) 3IME,PP(1,1), Kod PP(Z 1), K J, V(2 1)
1F (NS .LT. 3) RETUR
K2 = 3
KNS= NS
- VF(LC+NS=2 .LT. 54) GO TO 22
. KNS= (54~LC)
22 00 21 Kma K2,KNS

FIGURE A.3. SYMBOLIC LISTING OF'SUBROUTINE PRNT
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. . . .
. , -
. : » - - R . . .

21

100
101
30

32

31

_301

So

500

6.
1 2,
FORMAT(1H 51X,5H PP
1 LH

LCa LC+1 |

WRITE(6,101) K,J,PP(K,1),K,J,V(K,1)

IF( K.EQ. NS) RETURN

K2= KNS+1

KNS= NS

G@ T 500

FORMAT(7H TIME= E1
SH PP(l

PP(1,1)= E16.8, 2X,

8
} BT)u E16. 8,2X,4H V(IZ 1H,13,3H)= E16.8)
, .
1
’

- T e

3,3H)= E16.8, 2X,
| H,13,3H)= £16.8)
J= NI (1)
L= 1
Ks 2
LC= LC+1
WRITE(6,100) TIME,PP(1,1),L,J,PP(1,J),L,J, V(1 J)
IF(NS.LT. 2) RETURN
K2= 2
KNS= NS .
IF(LC + 2%NS-2 LT. 54) GO TO 32
KNS= (54~LC)/2 :
IF(KNS .LTe. 3) KNS= 2
D@ 31 K=K2,KNS

~J= NI(K)

LC= LC+2 '
WRITE(6,301) K,L,PP(K,1),K,L,V(K,1),K,J,PP(K,J),K,J,V(K,J)
“IF(K .EQ. NS) RETURN _

K2= KNS+1

KNS= NS

G# T@ 500

BORMAS(TH 52X,4H PP(12,1H,13,3H)= E16.8,2X,4H V(12,1H,13,3H)=
1 £16.8/53X,4H PP(12,1H. 13,30 )= £16.8,2X.4H  V(12,1H,13,3H)= E16, 8).
IF(TIME .LT. (TT+PDTIM*DELT1) -AND. TIME JLT. TLIMT) RETURN

TT= TIME

IF(LC .LT. 52) GO 30 5
IP= |P+1 |

LC = 0 |

WRITE(6,1 ) IP,DELT1
GO T@ 5

IP= 1P+l

WRITE(6,1) IP,DELTI

- LC= 0

IF(PVEPT .EQ. 1) GO TO 12
IF(PVOPT.EQ. 2) GO TO 22

GO TP 32

ENTRY ERPRNT(L6,T, JKT)

WRITE (6, 700)TIME ,TBL(L6),TBL(L6+4),TBL (JKT+2)

700 FﬁRMAT(hSHO %kxk  ERROR ENCOUNTERED IN NTERP AT TIME= E16, 8,1H./

1 10X,2HT(E16.8,5H) IS A6,4HTHE A6,1LHVALUE @F TABLEA6,1H.)
RETURN |
ENTRY PRNTER(1J,J1)

FIGURE A.3. SYMBOLIC LISTING OF SUBROUTINE PRNT (cont.)
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WRITE (6,900) 1J,J41,PP(1J,J1) , PMIN
RETURN
900 FORMAT (12H1 #wkws PP (12,1H,13,3H)= E16. 8 19H 1S LESS THAN PMIN(
"1 E16.8,26H) CASE TERMINATED, ek
END

FIGURE A.3., SYMBOLIC LISTING OF SUBROUTINE PRNT (cont.)
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SAMPLE RESULTS FROM SUBROUTINE SURGE

The output from Subroutine SURGE is shown graphically for the
following cases:

Case 1 (Fiqure A.4)

Linear valve closure in a 50~-foot long horizontal pipe
with friction included.

Case 2 (Figure A.5)

Linear valve opening in a 50-foot long horizontal pipe
with friction included.

Case 3 (Figure A.6)

Instantaneous valve closure in a 50~foot long horizontal
pipe with no friction.
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