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I. BACKGROUND 

The results of a recent study [McConnell et al., 19651 [McConnell et al., 

19671 indicated that the thermal conductivity of rocks and minerals is 

insufficiently well known, under the conditions of temperature and pres- 

sure in the interior of the moon, to be able to predict magma generation, 

migration, and crystallization adequately. 

At the relatively high temperatures that probably exist deep in the lunar 

interior, heat flow takes place by both lattice conduction and radiative 

transfer. The radiative transfer which should be dominant at the higher 

temperatures is caused by a process of repeated emission and re-absorption 

of radiation modified by the effect of scattering by discontinuities such 

as inclusions or grain boundaries. The rate of emission depends on the 

blackbody spectral distribution at the temperature of the medium and on 

the optical constants n and k of the medium which are, in general, strong 

functions of the wavelength. The rate of re-absorption also depends on 

n and k. The scattering depends on 

the discontinuities in n and k. 

the size and spatial distribution of 

This mechanism of heat transfer has been extensively discussed for hot 

glass [Gardon, 19611 [Kellet, 19521 [Czerny and Genzel, 19521 and ceramic 

materials [Lee and Kingery, 19601. These authors have considered that 

the thermal conductivity of any substance is effectively the sum of the 

ordinary phonon conductivity and the radiative conductivity. They obtain 

simple expressions for the radiative term of the form: 

16 n2cT3 cr = 3 -y-- (1) 

by considering the material to be gray. Here n is the refractive index, 

u is the Stefan-Boltzmann constant, T the absolute temperature and a is 

the absorption coefficient. The assumption of grayness means simply that 

a is independent of wavelength, finite, and nonzero. 

In this approximation, the T3 behavior of the radiative conductivity 

(neglecting the temperature dependences of n and a) when contrasted with 

the T -1 behavior of ordinary thermal conductivity above the Debye 
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temperature, shows that at high temperatures the radiative conductivity 

should be predominant. Clark [1957a] and others have applied the radia- 

tive transfer concept to' the thermal history of the earth. Clark derived 

a relationship for the radiative conductivity 

02 

k 
'r = 3 / 

+-+ w dX (2) 
, 

0 

where E is the extinction coefficient, B is the blackbody function, and 

A the radiation wavelength. The extinction coefficient is the sum of an 

absorption coefficient c1 (X,T) and a scattering coefficient s (h). This 

relationship removes the restriction to gray materials and so is greatly 

to be preferred for real materials such as minerals and rocks. Clark's 

approach was to separate the effects of absorption and scattering and to 

assume they could be simply summed. He made measurements on gem quality 

minerals [Clark, 1957b] in order to obtain reasonable values for cx at 

room temperature and used these to estimate the radiative conductivity, 

neglecting the scattering coefficient. The values he obtained are given 

in Table I. It is apparent from his admittedly approximate treatment 

that radiative transfer is important in the thermal conductivity of the 

earth's outer mantle and the interior of the moon as well. 

Volcanism and thermal conductivity are competing mechanisms in preventing 

complete melting in a radioactively heated planet. The uncertainty in 

the numerical values of planetary thermal conductivity is very important 

in attempting to establish the volcanic history of a planetary body such 

as the moon. 
TABLE I 

RADIATIVE CONDUCTIVITY [From Clark, 1957b] 

Values are given in Cal/cm set OC 

MINERAL 
1000 

Temperature OK 
1500 2000 2500 

Olivine 0.071 0.206 0.346 0.483 
Diopside 0.016 0.057 0.106 0.173 
Pyrope 0.001 0.005 0.018 0.044 

Almandine 0.001 0.004 0.010 0.051 
Grossularite 0.011 0.046 0.109 0.097 
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With this in mind we have started an investigation of a number of factors 

that enter into the precise determination of radiative conductivity. We 

have felt that the most important topics to be investigated were: 

1. The variation of the absorption and refractive 

index with temperature up to the neighborhood 

of the melting points of the relevant minerals, 

2. Refinement of the rather coarse current methods 

for estimating the scattering coefficient, 

3. An examination of the validity of treating the 

absorption and scattering coefficients as in- 

dependent entities that may be simply summed 

in the radiative transfer relationship. 

Finally, the results of these considerations have been utilized to modify 

the numerical values for the thermal conductivity expected in the lunar 

interior and earth's upper mantle. 



II. RADIATIVE CONDUCTIVITY IN TERMS OF THE MACROSCOPIC 

PARAMETERS ii, K ANU S 

Since it is impossible to specify the spatial distribution of n and k in 

microscopic detail, the scattering must be regarded as a statistical 

process. Under these conditions the radiative conductivity must first 

be calculated in terms of the macroscopic parameters ii, K and S which 

are, respectively, the average refractive index, absorption coefficient, 

and backscattering coefficient of the medium for diffuse radiation. 

These three parameters must then be evaluated in terms of a suitable 

microscopic model of the medium which specifies the spatial variations 

of n and k. 

An expression for the radiative conductivity can easily be derived by 

Schuster's [1905] two-flux method in which the diffuse radiation, per 

unit wavelength interval, crossing unit area of any horizontal plane is 

divided into an outgoing part I and an ingoing part J. The equations 

for the vertical variation of I and J are: 

dI= 
dz - (K + S) I + SJ + K Z2 B (3) 

dJ 
-dz = - (K + S) J + SI + K ?i2 B 

where z is measured vertically upwards. Eq. (3) states that the upward- 

going flux in crossing a layer of medium of unit thickness, decreases by 

an amount (K + S) I owing to absorption and backscattering, increases by 

an amount SJ owing to backscattering of the downward-going flux, and 

increases by the amount K ii2B owing to self-emission from the layer. In 

the emission term, B is the blackboiy flux density per unit wavelength 

interval in a vacuum. The factor a allows for the increased flux density 

in a medium of average refractive index ii that results from the reduced 

wavelength in the medium. 



- 

In the case of uniform temperature, for which I and J are equal and 

spatially uniform, Eq. (3) reduces to 

I = ii2B (5) 

which is the'correct expression for the flux density in a uniform temper- 

ature cavity of refractive index Ii. 

Under steady-state conditions the net flux I - J must be uniform. Thus 

5 (I - J) = 0 

Thus, on adding (3) and (4), we find 

I+J = 2ii2B (7) 

Subtraction of (3) from(4) then gives 

I 1 
-J=-- d (I + J) = - A & (X2B) K + 2s dz 

The total net flux for all wavelengths is 

m 

q = 
/ 

(1 - J) dX 

0 

(ii2B) dA 

0 

co 

as 

0 

The radiative conductivity is therefore 

dA 

'r 
q =y---2 

= %$!&A 
/ K + 2s 

-az 0 

(8) 

(9) 

(10) 
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Comparison of our result (Eq. (10)) with the result of Clark (Eq. (2)) 

shows a number of differences: 

1. The refractive index n appears inside the derivative 

with respect to temperature in Eq. (10). Apparently, 

Clark assumed that n was independent of T. 

2. The factor in front of the integral differs. This is 

explained below. 

3. The quantity K + 2s in Eq. (10) is not necessarily 

the same as the absorption coefficient for colli- 

mated radiation in a homogeneous medium plus a 

scattering coefficient of a non-absorbing medium as 

Clark implies in his paper. Both K and S are, in 

general, complicated functions of the optical constants 

of the individual grains of the medium, of the grain 

size, and of the wavelength. 

Evaluation of the integral in Eq. (10) requires that K and S be expressed 

in terms of the optical constants n and k and the geometry of the medium. 

To do this we will consider three models of increasing complexity. 

In the first model the optical constants are spatially uniform. Thus 

there is no scattering and the only problem is to evaluate the diffuse 

absorption coefficient K in terms of the collimated beam absorption coef- 

ficient a. The simple result K = 2a is obtained. 

The second model consists of alternating parallel layers with different 

optical constants. This model is mathematically tractable and demonstrates 

that the result K = 2a is still valid even when S is considerably different 

from zero. However, the model fails to give a realistic value of S since 

the contribution of refraction to backscattering is automatically excluded 

by the parallel layer geometry. 

The third model consists of a medium composed of two minerals A and B in 

which interfaces between A and B are randomly distributed both spatially 

and in angle. Calculation of S shows that refraction in many cases gives 

the dominant contribution to the backscattering. 

6 



III. UNIFORM MODEL 

When n and k are uniform the scattering coefficient S is zero. The dif- 

fuse absorption coefficient K can be calculated as follows. Figure 1 

shows a typical ray of the diffuse radiation crossing a thin layer dz of 

the medium at an angle 0 to the vertical. Since the distance traveled 

through the layer is dz/cos 8 a fraction 

adz -- 
1 - e =os e 

of the energy of the ray is absorbed in the layer. Here a is the parallel- 

beam absorption-coefficient given by 

FIG. 1 TYPICAL RAY OF DIFFUSE RADIATION CROSSING 

A THIN LAYER 

For diffuse radiation, the distribution in angle of the radiation passing 

upwards through unit area of the lower plane in Figure 1 is 

di = t I cos 0 dw (12) 

where I is, as before, the forward-going diffuse flux density and dw is 

an element of solid angle. Thus the change in the diffuse flux due to 

absorption in dz is 

-- 
d1 =- :1 

> 
cos 8 dw (13) 

7 
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Since dz is a differential quantity we can expand the exponential and 

neglect all higher order terms than the first. Thus 

a/2 
,jI 3:- i?+ 

/ 
dw = - 2 aIdz (14) 

e=o 

We can now compare Eq. (14) with the defining equation for the diffuse 

absorption coefficient K, which is: 

d1 
dz = - KI (15) 

Thus, for the uniform model, 

K = 2a 

S = 0 (16) 

The relation between K and a has been previously obtained by Kubelka [1948]. 

On substituting these values of K and S into Eq. (lo), we get 

m 

'1: = / 
1 a(n2B)dA 
a aT (17) 

0 

Eq. (17) differs slightly from the result of Czerny and Genzel [1952] and 

Eq. (2) in which a factor of 4/3 multiplies the integral (17). Czerny 

and Genzel calculated the radiative conductivity, not by the two-beam 

method of Schuster employed here, but by a direct integration of the 

emission from all points of the medium under the condition of an im- 

pressed temperature gradient. Their method, although much more compli- 

cated than the Schuster method, is undoubtedly correct. The question 

then arises as to the source of the discrepancy. 

The difference can be traced to the assumption Eq. (12) that the fluxes 

I and J are completely diffuse and therefore have a cos 0 distribution. 

This implies that the radiation in an element of volume has the angular 

distribution shown in Fig. 2a in which the radiation is isotropic in each 
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hemisphere but with a discont3nuity at 0 = 90". The correct distribution 

is shown in Fig. 2b in which the radiation in an element of volume is the 

sum of a uniform part and a part that varies continuously as cos 0 from 

e = 0 to 8 = 180". 

(a> (b) 

FIG. 2 ANGULAR DISTRIBUTION OF DIFFUSE RADIATION 

The flux per unit area derived from the distribution of Fig. 2b has a 

cos 0 part and a cos2 e part. The correction to the absorption integral 

Eq. (13) which contains only a cos 0 term, leads exactly to the required 

factor of 413 in Eq. (17). 

The original Schuster theory, based on Fig. 2a, is simpler to apply than 

a theory based on Fig. 2b and is much more easily extended to include 

scattering. We will therefore base our further discussion on the 

pseudo-diffuse approximation of Fig. 2a. 



IV. PARALLEL LAYER MODEL 

In the parallel layer model the medium consists of horizontal alternating 

layers of minerals A and B. The A layers all have optical constants 

nl, kl and thickness dl. The B layers all have optical constants n2, k2 

and thickness d 2' To calculate K and S for this medium we will compare 

the reflection and transmission coefficients of a "unit cell" of the 

medium of thickness dl + d2 with the reflection and transmission coef- 

ficients of a slab of homogeneous medium that is characterized by the 

parameters K and S. 

We choose the "unit cell," as shown in Fig. 3, in such a way that the 

reflection and transmission coefficients are the same for radiation inci- 

dent on the bottom or the top of the cell. The cell consists of a layer 

of B between two half-thickness layers of A. 

B 

'6 1 ---- ----------B--B- 
t 

A 

I5 t 

I4 
t J4 1 

I 

I 
d 
12 
I 

I3 t J3 I 
I 
f 

I2 t J2 t ~ 
A i dl 

---------m----m- A --- 

I1 t J1 I 

FIG. 3 LAYER MODEL UNIT CELL 
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Diffuse radiation 11, incident from below, gives a reflected flux Jl and 

a transmitted flux I 6' We wish to calculate the reflection coefficient 

R = Jl/Il and the transmission coefficient T = 16/Il. 

Let r be the reflection coefficient at the interface between A and B. 

Then we can write two energy conservation conditions for each of the A-B 

interfaces in Fig. 3: 

$3 = (1 - r) I2 + r J3 (18) 

J2 = (1 - r) J3 + r I2 (19) 

I5 = (1 - r) I4 (20) 

J4 = r I4 (21) 

Also, if l/a and l/b are the attenuation factors when the diffuse radia- 

tion travels distances d1/2 and d2/2 in A and B, respectively, then we 

have the following additional relations between the various fluxes shown 

I2 = Illa (22) 

J1 = 12/a (23) 

I4 = 13/b2 (24) 

J3 = J4/b2 (25) 

I6 = 15/a (26) 

The nine equations (18) - (26) can readily be solved for the ratios 

Jl/II and 16/Il. The results are 

J1 
R=T-= 

r (b4 + 1 - 2r) 

1 a2 (b4 - r2) 
(27) 

'6 
T 

b2( )2 l-r = 
Ty= 

a2 (b4 - r2 ) 
(28) 

11 
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Now, if al and a2 are the parallel-beam absorption coefficients in 

materials A and B, the diffuse absorption coefficients are 2al and 2a2, 

according to Eq. (14). Thus 

dl 
2a1 2 

4nkldl 

a = e = e aldl = e h 
(29) 

d2 4mk2d2 

b 2a2 2 x 
= e = e a2d2 = e 

Therefore Eq. (27) and (28) become 

-8rkldl 

x 
R= re 

x 2 
e -r 

b (k2d2 - kldl) 

T 
= (1 - r)2 e A 

16nk2d2 

A 2 
e -r 

(30) 

(31) 

(32) 

We now have to derive the reflection and transmission coefficients of a 

slab of material, of thickness dl + d2, characterized by the parameters 

K and S, as in Fig. 4. The differential equations for the fluxes I and J 

in the material are the same as Eqs. (3) and (4) without the self-emission 

terms: 

d1 
dz= - (K + S) I + SJ 

dJ 
-dz = 

- (K + S) J + SI 

(33) 

(34) 
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I2 t 

FIG. 4 HOMOGENEOUS MEDIUM EQUIVALENT TO THE LAYERED MEDIUM 

The general solution of these equations is 

I = Aeyz + BemY 

J . = y+K+S 
S > 

Ae~z + -Y+~K+S) 

where 

Y = 4 KL + 2KS 

The boundary conditions are: 

I = 
I1 ‘1 

( 
at z=o 

J = 
J1 

BeWYz 

(35) 

(36) 

(37) 

I = 
I2 \ 

( 
at z=d 

.I 1 + d2 = 0 
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These conditions give 

A+B = I1 (38) 

('+,+')A + (-'+,+')B = Jl (39) 

Ae 
Y Cdl + d2) 

+Be 
-Y Cdl + d2> 

= 
I2 (40) 

(y+K+S)Ae 
Y(dl + d2> 

+ (-y + K + S) B e 
--y$ + d2> 

= 0 (41) 

Algebraically one can solve Eqs.(38)- (41) for the ratios Jl/Il and 

12/11: 

J1 
R=I= 

S sinh y (dl+d2) 

y cash y (dl+d2) + (K + S) sinh y (dl+d2) (42) 
1 

T = 
q= 

Y 
y cash y (dl+d2) + (K + S) sinh y (dl+d2) (43) 

Finally, the equations for determining K and S are obtained by equating 

the reflection coefficients (31) and (42), and the transmission coeffi- 

cients (32) and (43). The results are 

8Tkldl 16stk2d2 

S sinh y (dl+d2) x x re e + 1-2r > 
y cash y (dl+d2) + (K+S) sinh y (dl+d2) = 16rk2d2 (44) 

A 2 e -r 

2 
Y (l-r) 

8TT (k2d2-kldl) 
ex 

y cash y (dl+d2) + (K+S) sinh y (dl+d2) = 16nk2d2 (45) 

x 2 e -r 

where y =J-izG 
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It is to be noted that the righthand sides of Eqs. (44) and (45) are 

not symmetrical in kldl and k2d2. The reason for this is that in evalu- 

ating the reflection and transmission of a "unit cell" of the composite 

medium we assumed that the incident radiation started in medium A. If, 

instead, the radiation started in medium B, kldl and k2d2 in (44) and (45) 

would be interchanged. Therefore, to allow for the occurrence of both 

possibilities we must average the righthand sides with suitable weighting 

factors for the two cases before calculating K and S. 

The interfacial reflection coefficient r is given, with sufficient accuracy, 

by the Fresnel formula at normal incidence: 

h -n> 
2 

2 1 + (k2-k112 
r = 

(n2 + nl> 
2 

+ (k2+kI12 
(46) 

as the reflectance of unpolarized radiation at angles of incidence out to 

moderately glancing angles is generally not very different from normal 

incidence reflectance. 

The computer solution of the simultaneous Eqs. (44) and (45) for K and 

S for various combinations of nl, kl, dl, n2, k2, d2, and )\ shows that 

K is always very close to Zh, where F is the average absorption coeffi- 

cient no matter how much scattering there may be. 

Thus, Eq. (10) becomes 

co 
cr s 

/ 

a(ii;;)dh 

0 
CL+ s 

15 

(47) 



V. COMPUTER SOLUTION 

A computer program was written to solve Eqs. (44) and (45). Subroutines 

for independent solution of the righthand and lefthand sides of these 

equations were rapidly written and tested. However, it proved difficult 

to iterate the two equations to find the appropriate K and S for any set 

of optical parameters. While struggling with such convergence problems, 

we found a shortcut to solutions of these equations in a publication of 

S. Q. Duntley [1942]. In the paper, the author shows a plot using the 

lefthand side of Eq. (44) for the abscissa and the log of the reciprocal 

of the lefthand side of Eq. (45) for the ordinate with solutions in terms 

Kd and Sd shown as contours. In Fig. 5 we show this plot with the no- 

menclature changes to coincide with ours. Considerable insight into our 

problem was gained by using our computer program to find the values of 

the ordinate and abscissa on this plot and then reading values of K and S 

from it. Unfortunately, the range of the plot is limited and low values 

of K and S are difficult to estimate. Nevertheless, many answers could 

be obtained using this approach and in addition one source of some of 

our difficulties in the iteration can be seen. The contours of equiva- 

lent ti and Sx go from essentially perpendicular intersection near the 

origin to nearly parallel geometry at the top of the figure. This can 

also be seen in Fig. 6 where we have plotted the solution contours for 

Eqs. (44) and (45) schematically using P = (K2 + 2KS) l'2(dl + d2) as the 

ordinate and n = (K + S) (d 1 + d2) as the abscissa. By comparing these 

two graphs, it is easily seen that essentially perpendicular intersection 

of the contours near the 45" line changes to essentially parallel contours 

in the lower part of the graphs. 

Another problem that occurred in our computer solution for these equations 

is indicated by the 45" line. The area above this line is forbidden in 

that it represents negative values of S. 

A subroutine was written in FORTRAN II to solve two simultaneous equations 

of the form Fi(xl, x2) = 0 using the Newton-Raphson method [Wegge, 19661. 

This program starts with an initial estimate of xl and x2 and makes use 

16 
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FIG. 5 SOLUTION CONTOURS FOR EQUATIONS 44 AND 45 (AFTER DUNTLEY) 



FOR EPUATION (44) 

l- 

-4 

/ 
,/’ i I / i I 

/ i 
/ i 

i i 
i i 

k! 
! 

.Ol / 
.l 1 IO 

FIG. 6 SCHEMATIC SOLUTION CONTOURS USING p AND r) 
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of the iteration algorithm 

X. 
(n+l> = x. W 

1 1 
- 5 Dik-' Fk (Al, x2(n)) 

k=l 

where D ik is the Jacobian matrix whose i,j th element is 

aFi/ ax. evaluated at Cd, x h> 
J x1 2 > 

to carry out a sequence of iterations until convergence is obtained. 

When combined with a subroutine for Dik(xi) and Fk(xi) appropriate for 

Eqs. (44) and (45), this program was in most cases able to provide 

solutions. 

The results of computer solution of Eqs. (44) and (45) are shown in 

Figs. 7; 8, and 9. At the time we carried out the computer solution to 

these equations, we had not allowed for the factor of 2 between the 

diffuse and collimated beam absorption coefficients discussed above. 

Therefore the exponents of the exponentials in the righthand sides of 

equations used in place of (44) and (45) were in error by a factor of 2. 

Except for the influence of k on R, the only correction necessary to the 

results was to consider the solutions K and S to be correct for values 

of k smaller by a factor of 2 than those actually used. The effect of 

k on R is completely negligible except where the refractive indices of 

the two media are essentially equal as the n's dominate the Fresnel 

reflection coefficients in all cases of moderately transparent media. 

In Fig. 7 we have displayed the changes in K and S that result from 

varying the relative refractive index of the two materials at a number 

of constant values of kd/X. As might be expected in the range of inter- 

est, K appears to depend very little on the refractive indices of the 

two media while S is insensitive to the absorption index k only at low 

values of k. S does go to zero when the refractive indices of the two 

media are equal, though it should be pointed out that the cases we have 

19 
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run have involved small values of k compared to those for n in order to 

simulate expected values for minerals in the relevant spectral region. 
kl+ kz The k's on these figures are taken to be 2 and the d's are taken 

to be dl + d2. . 

In Fig. 8, K and S are shown as functions of k for different values of 

the n's, The behavior of the scattering curve near k = 10 -4 is due to 

the fact that y in the exponents of Eqs. (44) and (45) approaches unity 

in the calculations. 

In Fig. 9, we show K(d1 + d2) and S(d1 + d2> plotted versus the layer 

thickness, dl + d2. This scattering curve shows a drop in scattering 

coefficient with layer thickness which is to be expected for a Fresnel 

reflectance model as the number of scattering centers per unit length 

is decreased by increasing the path length. 

Our results show that K is effectively equal to 2a for any value of K 

and S. It is easily seen that the development of our computer model 

enables us to obtain graphs for a great number of combinations of varia- 

tions in the relevant parameters. It is, therefore, quite simple to 

explore the consequences of such a model. The program allows answers 

to be obtained in all but a very few cases of the input parameters 

(where an initial estimate of S equals zero). In general, the behavior 

of K and S with the various optical constants appears quite sensible to 

us. We feel that Clark's [1957a] use of (Y in Eq. (2) is justified. 

However, our calculation of S, using our Fresnel layer model, indicates 

a considerable dependence on CL. The scattering estimate must therefore 

be made very carefully. As an example of this we made a calculation of 

the magnitude of S using similar values of the optical constants, char- 

acteristic sizes and volume fractions as those reported in Fig. 2.16-2 

of our previous final report [McConnell et al., 19651. For the case of 

a 0.1 cm radius, a discrepancy of approximately three orders of magni- 

tude was discovered for the case of a very small refractive index 

difference between minerals. This large discrepancy was trace to two 

factors. First, the method of calculation previously used was based on 

an isolated scattering center treatment [Lee and Kingery, 19601 in which 

the total scattering coefficient was used in lieu of the back scattering 
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coefficient that is really applicable in radiative transfer. The factor 

relating these two coefficients is a function of opacity, relative re- 

fractive index and particle size. For the case under consideration here, 

this may be a large number. In addition, our layer model can only 

involve the Fresnel reflectance part of the back scattering. We are 

satisfied that neglect of the diffracted part of the back scattering is 

justified for the large particles under consideration but will show that 

in general there is a refractive term which is quite large for the particu- 

lar optical constants that we are considering (see next section). 
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VI. RANDOM INTERFACE MODEL 

In the random interface model we assume 

1) that a straight line drawn in the medium in any 

direction randomly intersects interfaces between 

materials A and B, with an average number N of 

intersections per unit length, and 

2) that the normal to each interface has a random 

direction uncorrelated with any other interface. 

Fig. 10a shows a ray entering a thin horizontal layer of medium of thick- 

ness dz at a grazing angle 8. The ray intersects an interface A-B at 

such an angle that backscattering by reflection occurs. In Fig. lob, a 

ray intersects an interface C-D at such an angle that backscattering by 

refraction occurs. We wish to calculate the fraction of the diffuse 

radiation that is backscattered by each process. The fraction of the 

rays in a solid angle dw at the angle B is sin f3 dw/n. The chance 

that such a ray intersects an interface in traveling the slant distance 

dz/sin B is N dz/sin B. The fraction of the rays in dw that strike an 

interface is the product of the two expressions which is N dz dw/n. Per 

unit length in the z-direction the fraction is N dw/sr. 

Now let f(B) be the fraction of interfaces that are favorably oriented 

to give backscattering by reflection and let 5i: be the average reflection 

coefficient. Then the contribution of reflection to the backscattering 

coefficient is the product of N dw/r and f(b) and K. Thus, the total 

contribution due to reflection is 

_ 7112 
S = 

reflection / 
y f(B) K = f 

s 
f(B) dw 

8=0 

Likewise, if g(B) is the fraction of the interfaces that are favorably 

oriented to produce backscattering by refraction, the total contribution 

due to refraction is 

S = N(1 
refraction 51 (49) 
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The backscattering coefficient is then 

S = s reflection + s refraction (50) 

The function f(8) is the fraction of all reflected rays that are back- 

scattered. Since the interfaces are randomly oriented the reflected 

rays are uniformly distributed over all angles for any value of 8. Thus, 

exactly one half of the rays are backscattered. Therefore 

f(8) = 3 (51) 

Thus, from Eq. (48), 

n/2 
S =NK 

reflection 2n / 
dw = NT (52) 

8=0 

The calculation of g(8) can be carried out with the help of Fig. 11 in 

which the large circle represents a unit sphere surrounding the point 

of incidence of the incident ray on an interface. The incident ray, when 

projected, intersects the sphere at the point P. The horizontal plane 

through the point of incidence intersects the sphere in the great-circle 

ACE. The line PC is part of a great circle, perpendicular to ACE, and 

is of length 8. The spherical cap around P bounded by the small-circle 

BFD includes all possible refracted rays for all orientations of the 

interface. The size of the cap is defined by the angle x of maximum 

deviation produced by refraction. This angle is given by 

nl cosx = - 
n2 

where n < n 1 2' 
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FIG. 11 UNIT SPHERE 

The dotted area BFDCB includes all refracted rays that are backscattered. 

The function g(b) is the ratio of this area to the area of the whole 

circular cap. The area of the cap is 237 (1 - cos x). The area of the 

portion of the cap PBFD is 24 (1 - cos x). The area of the spherical 

triangle PBCD is 2$ + 2Y - IT. Thus the area of BFDCB which is the differ- 

ence of PBFD and PBCD is IT - 29 cos x - 2Y. 

Therefore 

g(8) = 
lT - 24 cos x - 2Y 

2i7 (1 - cos x) (54) 

The angles $ and I are indicated in Fig. 11. From spherical trigonometry: 

cos$ = tan B 
tan x 

sinY = sin B 
sin x 

(55) 

(56) 
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Thus Eq. (54) becomes 

IT - 2 cos x cos -1 tan 8 _ 2 sin-l 
( x) 
- 

g(B) = 
tan 

2Ti (1 - cos x) (57) 

We can now calculate Srefraction from Eq. (49). The upper limit of the 

integral must be taken as x since Fig. 11 shows that there is no back- 

scattering when B > x. On substituting for g(B) from Eq. (57) and 

writing 2~ cos BdB for the element of solid angle dw, we get 

S refraction 
'II - 2 cos x cos 

(58) 

cos BdB 

The three integrals can be integrated by standard methods to give: 
.I x 

j-cos Bd8 = sin x 

&OS-~ (e) . cos BdB 

Fsin-1 (c) * cos BdB 

0 

Thus 

(59) 

= x (60) 

= ( 1 ;- 1 sinx 

S = 2 N (1 - E) (sin x - x cos x) 
refraction lT (1 - cos x) 

For small x, Eq. (62) becomes 

S refraction 
z +- N (1-R) x 

(62) 

(63) 

29 



Fig. 12 shows the dependence of Sreflection and Srefraction on the re- 

fractive index ratio n2/n1, as calculated from Eqs. (52), (53),and (62). 

The ordinate is in units of N, the number of interfaces per unit length. 

The curve for refraction has a vertical tangent at n2/nl = 1 while that 

for reflection has a zero slope. Thus refraction is the dominant 

mechanism for backscattering when n2/nl is near 1. 

As an example, let N = 10 interfaces per cm and n /n = 1.2. 

S = 0.1 cm -1 and S 
-12 l 

Then 

reflection refraction = 2.5 cm . 

The contribution of diffraction to backscattering is completely neg- 

ligible compared with that of refraction. Since the linear dimensions 

of an interface are of the order of l/N, the diffraction cone has an 

angle x diffraction given approximately by 

'diffraction = NA 

The cone angle for refraction is, from Eq. (53) 

-1 nl 
'diffraction = 'OS "2 (65) 

Let N -1 = 10 cm = 
, 

X 3~ and n2/nl -3 = 1.2. Then 
'diffraction 

= 3 x lo 

radian and xrefraction = 0.59 radian. 

This model disregards the effect on scattering of the absorption coeffi- 

cient. Much of this effect is shown in the Fresnel layer model discussed 

above but the inordinately large refractive effect of the slant path rays 

would undoubtedly be reduced by absorption. 

In conclusion, it seems apparent to us that assuming relatively large 

grain size, scattering is even less important than formerly thought 

[McConnell et al., 19651 [McConnell et al., 19571 [Clark, 1957al. 
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VII. ABSORPTION COEFFICIENT AND ME-AN FE&E PATH 

The important parameters in radiative transfer according to Eqs. (l), (Z), 

and (10) and the expressionsfor E, K and S are ~1, the absorption coeffi- 

cient and n, the refractive index. Under conditions where scattering is 

small, the principal function to be evaluated is the magnitude of the 

spectral absorption coefficient cr(A,T) at the relevant temperatures and 

wavelengths. 

As we are interested primarily in temperatures below the melting tempera- 

tures of olivine, blackbody considerations show that the most important 

spectral region for radiative transfer is the near infrared. For most 

rock-forming minerals this is a moderately transparent region, lying 

between the vibrational region of the infrared and the intrinsic 

"semiconductor" band gap region of the ultraviolet, although electronic 

absorptions such as those due to Fe ft [White and Keester, 19661 [Farrell 

and Newnham, 19651 occur in the region. 

Although it is generally recognized that the absorption coefficient is 

temperature dependent, it has been customary in most calculations of the 

thermal history of planets to assume that it is constant [MacDonald, 

19591. On the assumption that the absorption spectrum is independent 

of temperature, Clark [1957b] was able to estimate the temperature de- 

pendence of the radiative conductivity for olivine, diopside, pyrope, 

almandine, and grossularite. His calculations utilize room temperature 

spectral data and thereby neglect any spectral changes that might occur 

at the relevant temperatures. Unfortunately, high temperature absorption 

coefficient and refractive index data in the relevant spectral region for 

minerals was not available. However, the small amount of experimental 

data on other materials which had been reported indicates that high tem- 

perature may have a drastic effect on absorption spectra in this region. 

In a study of the absorption coefficient and refractive index of A1203 

up to 2300"K, Gryvnak and Burch [1965] observed a large increase in the 

absorption coefficient with increasing temperature, which was followed 

by a further large discontinuous increase on melting. The refractive 

index on the other hand only increased 0.05 up to 1970°K. Available data 
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on glasses [Grove and Jellyman, 19551 [Genzel, 19511 indicates a drop 

or very little change in absorption coefficient with increasing tempera- 

ture to the vicinity of lOOO-1400°C except for lead glass [Neuroth, 19521. 

There appears to be an initial drop in absorption for all glasses and 

then an increase with increasing temperature. Some of the changes are 

irreversible, however. 

In order to refine the estimates of the radiative conductivity we have 

begun a program of high temperature spectral measurements of likely 

mineral constituents of the mantle. The first minerals chosen for this 

program were peridot,d$opside and oligoclase. These minerals were 

chosen for their relevance to our earlier work [McConnell et al., 19651 

[McConnell et al., 19671 and their relative availability in reasonable 

size and clarity. 
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VIII. THE EXPERIMENTAL METHOD 

There are in principle a number of ways of measuring the optical constants 

of materials. In general, two measurements must be made corresponding to 

the two parts of the complex refractive index 

ii = n - ik (66) 

although by use of the Kramers-Kronig relations one measurement at all 

frequencies may be substituted. The two experimental measurements can be 

either reflectance at two angles of incidence or polarizations, or trans- 

mittance using two sample thicknesses, or a combination of reflectance 

and transmittance. 

The technique we have chosen is the combination measurement of normal in- 

cidence transmission and reflection. We have chosen this method in 

preference to the more common two thickness transmission measurement 

[for example, Gryvnak and Burch,1965], as mineral species are very diffi- 

cult to duplicate exactly. The two thickness transmission method requires 

not only cancellation of identical reflection losses but identical absorp- 

tion properties, as the measurement is, in essence, a determination of the 

absorption due to the excess path length in the thicker sample. For 

mineral species, therefore, the variation in absorption of two samples 

could be large enough to render the measurement one of sample variability 

rather than any inherent property of either sample. 

It is sometimes the practice to correct a single transmission measurement: 

TJr = ( 1 - r) 2 e-crd 

l-r2e 
-2crd 

where r* is the apparent transmittance [McMahon, 19501 by disregarding the 

small effect of multiple reflections that is neglecting the denominator to 

give: 

T* = (1 - r)2 e-ad 
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by using the normal incidence Fresnel relationship: 

2 2 
r = (n-l) +k 

(n + 1)' + k2 

in simplified form when k < < n 

(n - 1) 
2 

r = 
(n + 1)' 

(69) 

(70) 

with handbook values of n or to assume that the highest apparent trans- 

mittance value corresponds to the reflectance losses. Both of these 

methods run into difficulties other than apparent in the explicit assump- 

tions. The first neglects dispersion which can be significant near the 

beginning of an absorption region and the second does not allow for the 

possible effect of the wings of the remote absorption bands. Finally, 

the optical constants are functions of incident angle. For all these 

reasons we have chosen to measure transmission and reflection on the same 

sample at the same angle of incidence. 

Our method is best suited to a non-scattering, perfectly parallel slab. 

Once again, real mineral samples of this type are exceedingly rare, and 

the alternative is to make hemispherical measurements. Such measurements 

are more difficult experimentally so we have spent considerable effort to 

obtain the least-scattering samples possible. An attempt is made to 

correct the measurements for the finite scattering that does occur in 

these samples. Fig. 13 shows a photograph of our samples as they appeared 

after grinding and optical polishing plane parallel faces. A brief de- 

scription of the salient facts about these crystals is given in Table II. 

It is important to make the observation that we are not 2 priori assuming 

the lunar interior or the earth's upper mantle to consist of such 

ttflawless" stones. The need for optical clarity is an artifact of the 

measurement technique in that we are attempting to measure absorption 

phenomena in the absence of scattering for strictly experimental reasons. 

The data from our experiments are obtained as R* and T*, the apparent 
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reflectance and transmittance. These quantities involve the true reflec- 

tance and transmittance and the effects of multiple reflections. The 

apparent quantities can be reduced to the true quantities by computer 

techniques or simply by the use of the thermal radiation chart given by 

McMahon [1950] who developed this entire treatment. 

This treatment essentially just combines Eq. (67) and a similar equation 

for apparent reflectance. 

R* = 1 (71) 

The true transmittance, r and reflectance, r are then converted to the 

optical constants n and k by use of the Fresnel relationship (for normal 

incidence Eq.(69)) and the definition of transmittance, i.e., 

--(Yd T= e (72) 

where 

4rk c1= x (73) 

MINERAL 

Corundum/Sapphire 

Peridot 

Diopside 

Oligoclase 

TABLE II 

CRYSTAL DATA 

SOURCE 

The Linde Co. 
Synthetic 

ORIENTATION 
STUDIED THICKNESS 

001 1.03 mm 

Wm.V.Schmidt Co. 3" off 100b 4.3 mm 

Harvard Universitya 7-1/2O off 100b 3.48 mm 
H88405 

Rotenkopf, Tyrol 

Harvard Universitya 3" off OOlb 6;77 mm 
Hawk Mine,Bakersville 
North Carolina 

a. Courtesy of Professor C. Frondel. 

b. Orientations obtained by X-ray techniques by Dr. Tony Marianno of 

the Kennecott Copper Ledgemont Laboratories. 
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IX. EXPERIMENTAL APPARATUS 

Photographs of the experimental apparatus are shown in Figs. 14, 15, and 

16. An optical diagram is given in Fig. 17. The apparatus was designed 

with a vertical tube furnace so that further measurements may be made on 

molten samples. It consists of two sets of fore optics, one for trans- 

mission measurements and one for reflection measurements. They are 

located below and above the vertically mounted tube furnace, respectively. 

Each assembly contains two source units, a globar and spherical mirror 

for the longer wavelengths and a tungsten ribbon lamp with a lens for the 

shorter wavelengths. A chopper is common to both sources. It is driven 

by a "Synchro" motor in synchonism with a camshaft of the phase sensitive 

demodulator at the output of the amplifier. A rotatable diagonal mirror 

on the transmission assembly and a similarly mounted aluminum coated 

calcium fluoride beamsplitter on the reflection assembly is turned to 

select either one of the two sources and directs a narrow cone of radia- 

tion into the tube furnace where it comes to a focus on the sample. This 

arrangement insures relative insensitivity of the transmitted or reflected 

beam to angular misalignment or wedge of the sample. The image of the 

sources on the sample is slightly larger than the intended sample area. 

After leaving the sample (again via the beamsplitter in the reflection 

mode) the radiation is reflected by another diagonal and focused by a 

spherical mirror on the entrance slit of a Perkin Elmer model 98 single 

pass, single beam prism monochomator. This optical arrangement defines 

the active area of the sample as the slit image in the sample plane. A 

device to illuminate the slits from the inside of the monochromator has 

been provided so that this image and hence,the active area can be directly 

observed and therefore positioned properly. One must, of course, take 

care that the image of the source and the angle of its cone of illumina- 

tion is always sufficient to fill the monochromator optic. 

The monochromator is equipped with a high sensitivity (Charles Reeder,Inc.) 

thermocouple detector and a calcium fluoride prism, chosen for its good 

dispersion and transmission in our wavelength region and its insensitivity 

to normal handling and normal laboratory atmospheric conditions. 
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FIG. 14 EXPERIMENTAL APPARATUS 



FIG. 15 EXPERIMENTAL APPARATUS WITH FURNACE IN PLACE 



FIG. 16 REEECTANCE SOURCE OPTICS 
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The windows of the tube furnace, mounted in cooled windowholders, are 

also made of calcium fluoride. The furnace, while standard in principle, 

is made rather more solid and better insulated than normal. It is 

mounted on arms from a vertical shaft, so that it can be swung in and 

out of the optical path for ease of optical alignment of the sample and 

furnace. Cooling coils on all outside surfaces of the furnace carry away. 

its maximum dissipation of almost 1 KW and thus avoid heating of the 

spectrometer and associated optics. 

The furnace (see Fig. 17) consists of a 1 inch I.D. alumina tube having 

3116 inch thick walls and is lo-112 inches long. The center ca. 6-l/2 

inches are wound with Kanthal wire. In order to reduce temperature 

gradients in the center portion of the tube, the tube is more densely 

wound toward the ends. The winding is covered with an alumina cement 

in which three thermocouples of Pt - Pt/Rh are imbedded. One thermocouple 

is located centrally and the other two are located an inch above and 

below the center, respectively. The thermocouples are electrically in- 

sulated from the heater wires by about l/8 inch of alumina cement. The 

tube, with its heater and thermocouples is mounted in the end plates of 

a cylindrical furnace housing of about 10 inch diameter. The space be- 

tween the tube and the shell is filled with insulation consisting of very 

fine alumina spheres. 

At the very center of the tube is the sampleholder which stands on three 

alumina legs made of l/8 inch diameter thermocouple tubing. One of the 

legs carried two 0.005 inch diameter Pt - Pt/Rh wires that are joined as 

a thermocouple inside the sample holder. As a further check on tempera- 

ture, a small blind hole is provided in the top surface of the sample- 

holder, so that an optical pyrometer can be sighted through the top 

window of the furnace at this miniature "blackbody" cavity. 

The entire arrangement was designed to enclose the sample as far as pos- 

sible in an isothermal cavity, so that the sample temperature could be 

deduced accurately from the cavity temperature. The three outside 

thermocouples were intended to ascertain the gradient in the tube. The 

thermocouple in the sampleholder was designed to measure the temperature 

close to the sample and the radiation pyrometer would serve as a check on 

the sampleholder thermocouple. 
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In operation, the three outside thermocouples read values, as for instance: 

T (upper) = 780°C, T.(center) = 1015OC, T (lower) = 875°C when the 

thermocouple inside the holder reads: T (holder) = 104O"C, and the pyrom- 

eter reads: T (pyrometer) = 1029°C. 

These numbers which give a typical pattern show agreement better than 

needed for the purpose of the experiment. The low reading of the radiation 

pyrometer is due to reflection losses in the window and to some transpar- 

ency of the sampleholder material at the wavelength of operation, i.e., at 

about0.6micron, which allows the pyrometer to partly sense the colder 

furnace end. The large difference between the upper and lower thermo- 

couple readings is not understood. Simple calculations also show that 

the sample temperature must be very close to the tube temperature. 

The power in watts radiated from the sample into each of the syrmnetrical 

hemispheres is given by: 

P = UE aT4 (74) 

where e is the sample emissivity and a is the sample area. 

An equal amount is radiated back if the sample is in equilibrium inside 

a perfect cavity. If however the cavity has a small window (such as the 

windows of our furnace) to the relatively cold surroundings, the sample 

must be colder than the cavity in order to radiate no more power than it 

receives. In temperature equilibrium the relative difference in power 

would have been: 

AP 
iT= 

NARa 
Nra (75) 

where A Q is the solid angle subtended by the cold window. The radiance 

N in watts/sr cm in any direction from a radiator which follows 

Lambert's law is defined by: 

TN = ocT 4 
(76) 

The relative temperature difference required to redress this imbalance is 

then: 

AT NN AP z AR 
r 4p G (77) 
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The solid angle of the cold window in this case is calculated to a first 

approximation from the tube's internal diameter and the length of the 

heated zone, measured from the center. 

For an internal diameter of one inch and a length of three inches,we obtain 

ATlT~0.74: which approximates the experimental evidence. The small discrep- 

ancy is probably due to overestimating the tube emissivity at grazing angles. 

We chose to make our measurements in an argon atmosphere in order to mini- 

mize thermal gradients at the sample and vaporization of the samples at high 

temperatures. The apparatus is run with a positive argon pressure to pre- 

vent atmospheric gases from entering the system. During early runs we dis- 

covered that an error due to tilting of the holder during the heating period 

was possible so an adjustment was provided. In order to minimize the dangers 

of cracking our specimens on heating, we have built a variac drive mechan- 

ism so that our samples can be heated slowly (73.5'C/hour) overnight to 

measuring temperatures. We heated spare samples of each of the minerals 

that we planned to run to high temperatures under argon in order to observe 

the type of problems that may be expected to occur. All samples withstood 

the temperatures involved although the "LAVA" (American Lava Corporation) 

sampleholders originally used cracked. We therefore had the high purity 

alumina holders machined for our actual runs. Some condensate of unknown 

origin has been found to form on our windows during the course of some runs. 

A check of spectral purity was carried out by measuring the transmission of 

a National Bureau of Standards transmission filter between 0.6 and 2.4~ and 

comparing our measurements with values given by NBS (Fig. 18). We appear to 

be within 0.5% of their values over most of the curve, departing from their 

results by at most 3% in limited wavelength regions near 0.7 and 1.8~. 

Spectral purity was also checked by means of a transmission run on a 2 mm 

sample of germanium. The results are shown in Fig. 18. The results of our 

mineral studies (vide infra) show our crystals to become almost opaque near 

4.5u. This indicates a lack of significant stray short wavelength radiation 

in the long wavelength regions. 

The reference background used for the reflection measurements is a vapor 

deposited gold film (ca. 3000 8 thick) on a 2 mm sapphire disc. The reflec- 

tance of this standard is taken from Bennett and Ashley [1965]. 
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X. CRYSTAL SAMPLES 

The pertinent data for the various samples used is shown in Table II. 

The best samples we were able to obtain were a clear crystal of oligoclase 

(approximate dimensions, 10 mm x 15 mm x 20 mm) as well as a long (approx- 

mate dimensions, 58 mm x 7 mm x 5 mm) clear diopside crystal from 

Professor Frondel of Harvard University, and a peridot gem stone obtained 

from Wm. V. Schmidt Co., Inc., a New York jeweler. Its approximate di- 

mensions were 13 mm x 11 mm 6 mm. These samples were cut to suitable 

shapes and optically polished for our measurements. The crystals were 

cut to take advantage of the largest cross-sections available and for 

each crystal a second cut was made at a known crystal orientation. The 

light green peridot has a working cross-section of ca. 9 mm x 6 mm and a 

thickness of 4.3 mm. Some small inclusions are visible. The second cut 

was made perpendicular to the b axis and a 9 mm thickness was obtained. 

The cross-section is somewhat greater than 4 mm x 6 mm. The diopside 

sample was cut into three sections. It has a green area at one end that 

changes rather abruptly to a clear colorless crystal. The polishing 

revealed a series of cracks running lengthwise in the colorless part of 

this crystal (see Fig. 13). Measurements were made on the colorless ca. 

21 mm x 6 mm sample (thickness 3.48 mm). Approximately half of one 

crystal is green but the color is somewhat variable. Measurements were 

also made on the green portion of this crystal and the results used in 

correcting for the scattering behavior on the colorless sample. The 

oligoclase sample has a cross-section of ca. 15 mm x 11.5 mm (thickness 

6.77 mm). The second cut was made perpendicular to the apparent c axis 

(cross-section 12 mm x 7.5 mm and thickness ca. 11 mm). This sample on 

polishing shows a large number of small bubbles similar to those de- 

scribed by Smith [1963] (see Fig. 19). We planned to estimate the room 

temperature bubble scattering by making measurements below and above the 

temperature at which the bubbles disappear (lot tit) but as serious cracks 

occurred during heating we decided to proceed to the highest temperature 

immediately instead. The crystal orientations for all samples were ob- 

tained thanks to the efforts of Dr. Tony Marianno of the Kennecott Copper 

Laboratories. The peridot face we are measuring is 3" off the 100 face. 

The oligoclase data is for a face 3" off the 001 face and the diopside data 

is for a faee 7-l/2' off the 100 face. 
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XI. EXPERIMENTAL RESULTS 

Sapphire 

The spectroscopic apparatus was first used on 1.03 mm z-cut sapphire. 

This was done in order to ascertain the overall performance of the ap- 

paratus by comparing our results with those of other workers. Experi- 

mental difficulties were shown up by this means prior to obtaining the 

results shown below. 

The apparent transmittance and reflectance of sapphire are shown in 

Fig. 20. The effect of heating to 1203'C is apparent in the broadening 

of the long wavelength absorption band. The data in Fig. 20 is in 

reasonable agreement with that given by Gryvnak and Burch [1965], except 

in the very transparent region near 2~. The data in this region shows a 

T* and R* value greater than 1 which indicates an experimental error. In 

such a transparent region, such data cannot be converted to optical con- 

stants. 

Peridot 

The first silicate mineral that we ran was a green peridot gem stone. 

The room temperature spectrum is shown in Fig. 21. This spectrum is quite 

similar to data shown by Clark [1957b]. The apparent rise in reflectance 

at those wavelengths for which transmittance is a maximum is easily under- 

stood in terms of the greater amount of energy passing through the crystal, 

as compared to absorbing regions, and hence available to be reflected from 

the back face. 

The strong absorption band centered at about 1.1~ has often been cited as 

the cause of the green color of many common silicates and ascribed to the 

presence of ferrous iron [White and Keester, 19661 [Farrell and Newnham, 

19651. It is presumed due to a 5T 
2g 

-f 5Eg electronic transition of Fe +I- 

in octahedral coordination. The high frequency wing of the transition is 

thought to attenuate the red wavelengths resulting in a green color in 

transmission. Shankland [1966] has criticized this simple explanation of 

the color in olivines and posed a different interpretation. The most im- 

portant points he makes are that the color is due mainly to a small number 

of impurity atoms at low symmetry interstitial or certain specific Mg 
* 
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positions, and that color changes due to altered annealing atmospheres 

are due to changing valence states or locations of this smaller number 

of impurity ions. 

When this crystal was heated to 1200°C it became opaque and the reflec- 

tance increased substantially. We reran the crystal at room temperature 

after cooling in order to ascertain how much of the changed properties 

might be ascribed to an irreversible change and how much to a strictly 

high temperature optical property change. The results are shown in 

Fig. 21. It can be seen that both effects occur. The extent to which 

radiation can be transmitted by the sample after cooling is probably an 

indication of a real temperature dependent effect as the sample is essen- 

tially opaque at high temperatures. The reduced level of transmission, 

however, indicates an irreversible change that was confirmed on visual 

examination. The surface was metallic in appearance but the thickness 

of the film was sufficiently small so that a yellow-golden color could 

be seen in transmitted light. 

A small chip had fallen out of the crystal and it was magnetic although 

magnetism is not always apparent when the alteration occurs. Several 

attempts to identify this thin film by X-ray and electron diffraction 

techniques failed. The same thin film appearsto occur when the material 

is heated in the open. When the material is crushed and heated, X-ray 

diffraction shows hematite and forsterite. We assume that the film has 

a composition near magnetite. Shankland [1966] has recorded seeing the 

same material and stated that some green translucence can be restored by 

reheating in hydrogen. 

We repolished the original crystal and found that the principal attack 

was concentrated in a very thin surface layer. Mr. Cooley of A.D.Jones, 

Inc., indicated less than .OOl" had to be removed in repolishing the 

crystal. The crystal's color was then essentially recovered although a 

slight yellowing of the original green color may have occurred. 

We ran a number of small peridot chips under conditions where oxidation 

should have been minimized, i.e., in high purity argon (in one case with 

a special assay of < 1.5 ppm of 02, < 3 ppm H20, c 4 ppm N2 and no 
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detectable hydrocarbons) to make certain that the tank actually contained 

its nominal impurity specifications. The attack occurred in every case 

demonstrating that the oxidation was not simply due to changing the fur- 

nace windows at temperature as was done in the original run to prevent 

window fogging. This practice was abandoned however and the low O2 con- 

centration in the argon seems to indicate that the oxidizing agent may 

have come from the ceramic tube. Finally, we learned to circumvent this 

problem by controlling the oxygen activity with an argon-l% hydrogen 

mixture that was passed through a source of H20 vapor at 40°C [Bookey and 

Tombs, 19521. The idea is to use a large excess of H20 and H2 to control 

the partial pressure of 02 at about 10 -9 atm. using the equilibrium 

H2° :H +02 2 

The source of H20 vapor is oxalic acid dihydrate. This method can be 

used in future runs on this mineral. The spectrum of peridot taken after 

the high temperature run indicates the formation of a long wavelength 

shoulder. 

Diopside 

The diopside crystal as previously mentioned was found to have a series 

of cracks running lengthwise in the colorless section. We therefore 

originally intended to run the green crack-free (and hence lower scatter- 

ing) portion of the crystal. When we discovered the extent of the 

"oxidation" problem for the green peridot, we decided not to risk the 

green section of the diopside crystal and so determined to run the color- 

less section. In order to make a correction for scattering from the 

cracks we decided to run the green area at room temperature and to compare 

it with the room temperature spectrum of the colorless crystal also used 

for the high temperature studies. By using a part of the spectrum in which 

there is little or no absorption due to the iron that is responsible for 

the green coloration, we obtained a "non-scattering" transmission mea- 

surement that enabled us to correct the data for the colorless crystal 

to less scattering conditions. The correction used assumed that the 
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scattering is independent of wavelength in the relevant spectral region 

and neglects multiple reflections as being of minor importance in com- 

parison with the other assumptions involved. The correction is obtained 

as follows. Using Eq. (68) under non-scattering conditions as: 

* 
T 0 

= (1 - r)2 emad 

and under scattering conditions: 

* 
T = (1 _ r)2 e-(a+s)d 

where s is a scattering coefficient, one obtains 

* 
T 

0 sd *=e = A 
7 

(78) 

(79) 

when s is independent of wavelength and temperature. By using this con- 

stant, obtained from room temperature data from the green and colorless 

portions of the same crystal at wavelengths where there is no difference 

in cx or r due to the green coloration material, we can correct the color- 

less crystal spectrum to a non-scattering situation. 

During the heating of the diopside to high temperatures we observed an 

accentuation of the cracks with attendant increase in scattering. We are 

correcting for this change by the same method, by repeating our room 

temperature measurements after heating. The transmission and reflection 

data obtained at room temperature are shown in Fig. 22. It is easily seen 

that the scattering effects are in the correct direction in the three 

spectra. The scattering is, of course, more important in the transmission 

data than in the reflection data as all radiation removed from the incident 

beam by scattering appears as an apparent absorption. In the reflection 
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data, only that portion scattered directly backwards adds to the reflec- 

tion. On the other hand, the portion removed from the beam by scattering 

is prevented from being reflected from the second surface (or, multiple 

bounces). A similar correction to that described above is made for the 

apparent reflectance. 

It should be noted however, that even the green diopside at the peak of 

its transmission near 3.2p, still has either some scattering or true ab- 

sorption caused by the overlapping wings of bands, as r* + R* does not 

sum to 1. We assume that this is true absorption. 

A comparison of the spectra from the green and clear diopside areas is 

particularly interesting in the light of previous discussions of the 

origin of the green color in various crystals and glasses. White and 

Keester [1966].and Clark [1957b] have measured the spectrum of diopside 

and both observed a strong absorption feature centered near 1.08~. As 

stated by White and Keester, this feature is due to ferrous iron in 

sixfold coordination as in other minerals. This absorption has also been 

ascribed to the ferrous iron in glass [Grove and Jellyman, 19551. 

As with peridot, it is generally presumed that the green color of diopside 

is due to the tail of this band absorbing in the red. Comparison of the 

spectra of our colorless and green samples tends to indicate that the green 

color in our sample is rather due to the tail of the side band that appears 

as a shoulder near 0.7~ than to the tail of the main absorption. It is 

true that the main band is relatively stronger in the green sample as might 

be expected. The other noteworthy differences between the spectra of the 

green and colorless,samples are the presence of a pronounced absorption at 

2.77~ with a long wavelength shoulder and a broad absorption near 2.3~ for 

the green sample. White and Keester [1966] originally ascribed the broad- 

band at 4420 -' cm (2.26~) to ferrous iron in fourfold coordination but have 

recently decided otherwise [White, 19671. The band at 2.77~ is probably 

due to water in the crystal as has been discussed for glasses [Grove and 

Jellyman, 19551 [Adams .and Douglas, 19591, though these authors also 

ascribe a band at 2.2~1 to water. 
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During the course of the high temperature runs, we had several experimen- 

tal difficulties. These included a chopper breakdown and the reflectance 

glowbar burning out. As continuous calibrations and checks were run, we 

managed to salvage all the data except for the 1040°C reflectance. The 

high Itemperature reflectance and transmittance data are shown in Fig. 23 

along with the room temperature data taken after cooling. These spectra 

clearly show the importance of using high temperature spectra in radiative 

transfer calculations in place of room temperature data. Both the long 

wavelength absorption due to the edge of the vibrational bands and the 

ferrous iron electronic transition band centered near 1.1~ broaden sig- 

nificantly with temperature. This leads to a significant increase in the 

absorption coefficient, even at wavelengths between the bands due to the 

overlap of the wings of both bands. It should be noted that there is no 

decrease in intensity at the ferrous band-center to compensate for the 

intensity increase in the wings. 

In Fig. 24 we show the absorption coefficient derived from these measure- 

ments corrected for scattering as discussed previously. These data have 

been used to calculate the radiative conductivity shown in Table III. 

The spectra were used in the same way to calculate "approximate" radiative 

conductivity values at other high temperatures shown in the table 

Olipoclase 

The room temperature spectra are shown in Fig. 25. Once again spectra 

were measured before and after the high temperature run. The plan had 

been to make measurements just below and above the temperature at which 

the bubbles [Smith, 19631 disappeared in order to allow for scattering 

from them. After the room temperature data were obtained we proceeded 

to heat the crystal. Unfortunately a large crack appeared in the crystal 

directly in the optical path during heating to the vicinity of 4OO'C. 

We moved the crystal so as to make our measurements on an undamaged area 

and continued heating to 1030°C. Many further fractures occurred but the 

crystal retained its integrity so that high temperature measurements were 

made. We then returned to room temperature and repeated those measure- 

ments in order to be able to correct for the changes in scattering behavior 
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of the sample. The 1030°C measurements are also shown in Fig. 25. As 

the crystal had been moved, considerable fracturing had occurred during 

heating and the original crystal contained a number of small bubbles, it 

is somewhat difficult to know precisely how to correct these spectra for 

scattering. We decided to apply the same kind of correction discussed 

previously using the room temperature data obtained prior to heating as 

"non-scattering." Visual examination of the original crystal and the 

fractured crystal suggest this as the best expedient. The "corrected" 

data was used to obtain the absorption coefficient shown in Fig. 26 and 

the radiative conductivities given in Table III. 

Comparison of the high temperature data with that obtained at room tem- 

perature clearly shows the broadening of the vibrational bands toward 

shorter wavelengths as in previous cases. The other important feature 

is centered near 3.2~ for the room temperature data and near 3~ at 

1030°c. These appear to be significantly displaced from bands reported 

due to H20 of crystallization in feldspar [Saksena, 19611. 
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Diopside 

Using Room Temperature 

Spectral Data 

Using 1513'K 

Spectral Data 

Oligoclase 

Using Room Temperature 

Spectral Data 

Using 1303°K 

Spectral Data 

TABLE III 

RADIATIVE CONDUCTIVITY (This Work)* 

Temperature OK 
1000 1303 1513 

watts/cm'K Cal/cm sec'K watts/cm'K Cal/cm sec'K watts/cm'K Cal/cm sec"K 

.151 .0361 .349 .0834 .516 .123 

.032 .0076 .0705 .0168 &g .0244 

.156 .0373 ,425 .102 

.0877 .0210. .255 .0606 

*All results corrected for scattering behavior as described in text. 

Integration from .60~ to 5.82~. 
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XII. IMPLICATIONS OF THERMAL CONDUCTIVITY DATA FOR LUNAR THERMAL 

HISTORY AND HEAT FLOW 

It is clear from the above results that our suspicions that earlier 

estimates of thermal conductivity at high temperature based on room tem- 

perature data might be seriously in error were well founded. Our pre- 

liminary results indicate that an increase in absorption coefficient with 

temperature, as expected, occurs in rock-forming minerals both with and 

without iron. Our best data are those for diopside from which radiative 

thermal conductivities at 1513°K calculated from the high temperature 

spectra are only l/5 of the value calculated from room temperature spectra. 

In our previous report it was noted that a factor of three in thermal con- 

ductivity could make the difference between melting and not melting within 

the moon. Shoemaker [private communication] has recently suggested that 

many of the lunar maria are relatively young. As we showed that volcanic 

activity could occur late in the moon's history only for very low thermal 

conductivities and relatively low concentrations of radioactive heat 

sources compared to those generally accepted for the moon or the earth, 

the preliminary data on diopside and plagioclase would seem to indicate 

that effects of temperature are in the right direction. If olivine and 

other upper mantle minerals behave similarly, a consistent picture of the 

thermal history of the moon would seem to be within reach. If Shoemaker's 

dating of the maria is correct, and if further work on the spectra of 

minerals substantiates our above conclusions, then lunar radioactivity 

and heat flow may be considerably less than estimated by most other 

workers. This point will be discussed in more detail in the final report 

for Contract NAS9-5839. 
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XIII. SUGGESTIONS FOR FURTHER WORK 

As anticipated, we have spent considerable time in setting up and refining 

the apparatus for measuring high temperature mineral spectra. The first 

few minerals have indicated the kind of results to be expected. We feel 

that the relative effects we have measured are more reliable than the 

precise numbers obtained particularly because of the problem of correcting 

the data for changes in scattering behavior on temperature cycling. 

We believe that the apparatus we have developed should be used to make a 

series of measurements on a number of different mineral samples and at 

different crystal orientations. This would greatly improve the reliability 

of the numbers obtained. We also believe it would be most valuable to ex- 

tend the temperature range upwards and to include measurements through the 

melting temperature. Our apparatus was so designed that this could be ac- 

complished with a minimum amount of effort, using a platinum cup with 

polished bottom for molten samples. 

The theory of scattering as presently developed is badly in need of ex- 

perimental checks. We would propose to carry some out by means of both 

thermal conductivity and optical measurements on model systems. 

Finally, we believe it would be valuable to extend our random orientation 

interface model to include absorption in a similar way to that used in the 

plane layer Fresnel reflection model. This would become important if the 

mantle really consists of crystallites much smaller than about 1 mm. 
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