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PREFACE

Objective

Systems engineering or systems engineering design has become an

accepted term to describe the multidisciplinary or interdisciplinary character

of the "systematic design" of any large engineering system. It emphasizes and

attempts to systematize, through the availability of modern techniques, the

design of modern, complex, multidisciplinary engineering systems. The term

seems to have originated in the aerospace field where the complexity of modern

aerospace systems demanded a systematically controlled approach to design to

insure that all factors of all subsystems, representing many disciplines, were

carefully integrated into the final system. The importance of the multidiscipli-

nary systems approach has been recognized by the National Aeronautics and

Space A_m__inistr_tion to the extent that they now support three engineering

systems design summer programs for engineering faculty fellows.

This report summarizes the results of one of these programs. This

study was conducted by 19 faculty members, representing some 14 engineering

colleges throughout the United States. The program was conducted by Auburn

University and University of Alabama at the Marshall Space Flight Center in

Huntsville, Alabama. The group received a great deal of technical assistance

from the Marshall Space Flight Center and from the many contractors that

assist the Center. The technical data contained in this report, however, do not

reflect the views or policy of the George C. Marshall Space Flight Center, nor

those of any other government agency or private corporation.

The Acknowledgments section lists individuals and companies to whom we

are especially indebted.

The University Affairs Office, National Aeronautics and Space Adminis-

tration, Headquarters, Washington, D. C., funded the project with the primary

objective of allowing the participants to obtain actual design experience as

members of a multidisciplinary design team. The engineering educational world

is indebted to NASA for this farsighted assistance to engineering educational

programs of this country.
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Organization

Very early in the program, the participants were briefed on the main

objectives, both technical and educational. They selected an interplanetary

orbiting vehicle as the primary design objective, then organized themselves into

groups and assigned tasks, according to the background of each faculty fellow.

Originally, there were four groups: Mission Profile, Spacecraft Configuration,

Telecommunications, and Experiments. Spacecraft Configuration eventually

split itself into several groups because of its size, and the final actual grouping

was more like the chapter headings in this report. The participants and their

educational backgrounds are listed in the next section.

The program had three phases. The first was an educational one during

which time the group organized itself, listened to extensive briefings by the

Marshall people and representatives of their associated contractors, and de-

veloped background material pertinent to the solution of the problems. This

phase covered approximately three weeks.

The next five weeks were spent evaluating alternate solutions to the prob-

lems as they developed, effecting trade-offs, and in preliminary design studies

and analysis. The last two weeks were occupied with the organization of the

material for the oral presentation and for the written material that appears in

this report.

The participants of this program sincerely hope that this report of their

ten weeks effort at the Marshall Space Flight Center will be of interest and value

to the Marshall Space Flight Center and to the space effort of the United States.

Any such benefit would be a real bonus since, as has already been pointed out,

the primary purpose of the program was to give a group of college professors a

feel for, and experience with, systems engineering. Comments, criticisms,

suggestions and questions will be answered as promptly as possible if they are
directed to the attention of Dr. R. I. Vachon, Alumni Professor of Mechanical

Engineering, Auburn University, Auburn, Alabama 36830.

This final report of JOVE (Jupiter Orbiting Vehicle for Exploration) is
broken into two volumes for convenience: Volume I, Mission and System Study,

and Volume II, Appendixes. It should be understood that both volumes represent

an integral part of the results of this program and both must be studied to obtain

the full story of the JOVE mission. The format selected by the fellows was to

keep the technical description directly related to the mission in Volume I, and to

place supporting engineering and scientific data in Volume II.
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ABSTRACT

JOVE (Jupiter Orbiting Vehicle for Exploration) is the preliminary

design of a Voyager-class space vehicle. The design has been integrated with

the present Voyager concepts in an attempt to utilize many basic components in

both vehicles. JOVE is a natural sequence to Voyager with a proposed launch

date in the late 1970's or early 1980's. Studies and trade-offs of complete

systems were made, and layouts are presented for a recommended configura-

tion and an alternate configuration. JOVE utilizes a standard Saturn V launch

vehicle and attaches to a special short shroud just above the Instrument Unit.

The total weight injected in the heliocentric transfer to Jupiter is approximately

19 500 pounds, with a total Jupiter orbiting weight of approximately 8000 pounds.

A number of unique features of the JOVE vehicle are:

1. An extended mission time of approximately 800 - 900 days in

transit, with at leat 100 working days in orbit around Jupiter.

2. Complete dependence upon eight radioisotope thermoelectric

generators for power over this extended period of time.

3. A fixed 20 foot high-gain antenna as opposed to the usual gimballed

antenna present on a 3-axis stabilized spacecraft.

4. A gimballed attitude control reference-axis system (Sun and Canopus

sensors).

5. A modular concept that allows the basic structure to be used for

other missions including use on uprated Saturn V boosters.

The unknown radiation environment near Jupiter dictated another unique

feature, a two orbit concept. It is proposed that the vehicle enter a highly

elliptical orbit with a perijove of 7 or 8 Jupiter radii, test the Jovian magnetic

and radiation environment and, if it is found tolerable, to retrofire to a lower

perijove of 4 or 5 Jovian radii.

The main spacecraft structural body, the midcourse engines, the

Apollo descent engine, the experimental packages, and the experiments and

instrument platform are quite similar to those presently proposed for Voyager.

The spacecraft is considered to be a simpler vehicle than either Voyager or the

Apollo Lunar Landing Vehicle, and it is pointed out that its simplicity helps
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overcome reliability problems that are associated with the long mission time.
Extensive micrometeoroid protection is applied in the structure of the vehicle
and it is completely insulated from outer spaceenvironment. It is anticipated
that heat rejected from the RTG units will be utilized as required for thermal
control within the spacecraft body. An extensive discussion of JOVE's science
packagesis presented, including instruments such as TV which will be used
only while in orbit around Jupiter. Several recommendations on the value of
the mission are included, particularly as pertains to the unknownenvironment
aroundJupiter and its effect on Jupiter Flyby missions.
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MISSION SEIFCT!ON AND OBJECTIVES

Motivation and Justification

Jupiter occupies a unique position in any planned exploration of the solar

system, including a search for its origin and the origins of life. It is a pivotal

planet in that its large gravitational field can be used to assist the boosting of

exploratory vehicles to any other place in the solar system through the now well-

known swingby concept. Jupiter is of interest, then, for at least the following
three reasons:

Jupiter Swinghy. Many advanced mission studies have already been con-

ducted by NASA and several private contractors. The results of these studies

clearly indicate that the energy requirements for missions to the outer planets,

and particularly to the sun, are significantly reduced if the spacecraft could

swingby Jupiter,thus utilizing Jupiter fs strong gravitational field and orbital

momentum to modify the velocity vector to the desired direction.

PlanetoloKv. Perhaps the most enticing aspect about Jupiter is its very

low mean atmospheric density, approximately one quarter that of Earth with an

average molecular weight less than helium. Occultation experiments between

spacecraft and Earth have been included in order to probe the atmospheric com-

position of Jupiter.

Jovian Life. In the past it was generally accepted that the Jovian

environment was too hostile to support any form of life. A recent report, July

1967, indicates that a U. S. physiologist, Dr. Sanford Siegel, conducted an

experiment in which he took a small spot of soil from an ancient open air urinal,

incubated it in a hostile ammoniac atmosphere, and fed it with a nutrient broth.

Within weeks a strange umbrella shaped microorganism appeared. Shortly

thereafter a Harvard paleontologist, Elso S. Barnhorn, reported finding two

billion year old microfossils in western Ontario. The microfossils he found

bore no resemblance to anything living but were very difficult to distinguish

when placed side by side with Dr. Siegel's discovery. The belief that Jupiter's

ammonia atmosphere has undergone little change since its formation leads one

to believe not only in the existence of Jovian life forms, but also that Dr. Siegel's

microorganisms might well be the ancestors to all life everywhere in the solar

system.
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Mission Statement

A tentative mission statement first adopted was, "To determine what

modifications or changes in the design of Voyager, as presently conceived, will

be necessary to accomplish a similar (to Mars and Venus) exploration of Jupiter

and what, if any, bonuses can be realized with a narrowing of the objective or

mission later, if it appears wise. This does not preclude the consideration of

other propulsion systems or potential future advances."

Not all of the objectives outlined in this statement were realized. The

result is JOVE, a preliminary design study of a Jupiter orbiting vehicle de-

signed to conduct experiments during the trip through interplanetary space

(including the Asteroid Belt) and then to orbit around Jupiter.

Mission Scientific Objectives

JOVE will return to Earth information about the solar atmosphere, and

about Jupiter's atmospheric and magnetic environment, its topographic features,

gravitational field, temperature distribution, and any Van Allen type Radiation.

Several particles and fields measurements will be made in route. Inter-

planetary data pertaining to the Asteroid Belt and solar flares, which should be

in abundance because of heavy solar activity anticipated during the selected

launch window of 1978-1980, are of particular interest. A planet scan platform

contains infrared, ultra-violet and television scanning instruments for use at

Jupiter. The high resolution television camera will have a resolution of 36

kilometers at the first perijove distance of 7 Jovian radii*. Jupiter's strong

magnetic field and hazardous trapped radiation particles, which might well be

100 times as intense as the earth's Van Allen belt, dictates the high orbit. A

primary objective of JOVE is to map the intensities of these particles and fields.

Mission Constraints

Four general constraints were recognized as the study of JOVE pro-

gressed. The first three are firm engineering constraints, while the fourth is

* JOVE's polar orbit will enable the TV, Jr, and uv instruments to get a

good look at the Great Red Spot, latitudinal color bands, and prevailing cloud

patterns.
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a restraint of convenience. Nevertheless, it too is based on sound engineering

judgment.

a. The long transit and total mission time forces an extended exposure

to the micrometeoroid flux; tho _n!3v pl_mn, the h-rd ......... and +_'-- ' ....

temperature of space (as well as a relatively high radiation dosage from JOVE's

RTG's). This presents a difficult reliability problem. It is felt that the sim-

plicity of the vehicle and careful design will help overcome this constraint.

b. The suspected strong radiation field around Jupiter dictated the

orbit size and the nearest approach to Jupiter, approximately 5 Jupiter radii

during the second orbit.

c. The communication distance between Earth and the spacecraft orbit-

ing around Jupiter will vary from about 400 million miles to approximately 500

million miles. This places severe constrai.-_son the communication, g"aidance

and control, and command systems and is highlighted by the fact that itwill take

45 minutes for a command or radio signal to travel from the transmitters on

Earth to the receivers on the spacecraft orbiting Jupiter. Thus, itwould be

I i/2 hours after commanding the spacecraft to perform a certain function be-

fore one would know ifthe spacecraft had properly carried out the instructions.

During this time JOVE willhave moved in itsorbit around Jupiter perijove

approximately 60 000 miles.

d. No sterilization or quarantine constraints were imposed on the vehicle

other than normal cleanliness because it is felt that it would be impossible for

the vehicle to impact Jupiter. It might, however, after a long period of time

impact one of the moons of Jupiter.

SUMMARY

The JOVE spacecraft is a large interplanetary unmanned vehicle. Its

total weight at heliocentric injection is approximately 19 500 pounds, with a

Jupiter orbiting weight of approximately 8000 pounds. Most of the weight dif-

ference represented by these two figures is expended in attaining a highly ellip-

tical orbit about Jupiter. JOVE is proposed for launch in either the 1978 or

1980 opportunity. The heliocentric transfer phase will take approximately 825

days. Following this time, a 90- to 100-day scientific investigative period in

orbit around Jupiter is planned. The suspected strong radiation field about

Jupiter will dictate a very cautious approach. JOVE will follow a two-orbit
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concept, i.e., the first orbit periapsis will be at approximately an altitude of
7planet radii abovethe Jupiter surface. Then if radiation environment tests
prove the VanAllen type radiation is not as large as anticipated, the second
orbit will be moved in to a lower periaiasis with an expected altitude of about

4 planet radii.

JOVE is completely dependent upon eight radioisotope thermal electric

generators for supplying electrical power over this extended mission time.

These eight RTG's are designed to supply 80 W from the radioactive decay ofe

plutonium. Each RTG is an independent entity, making a redundant power

supply possible. The RTG's are cooled by passive fins using radiative heat

transfer only. A fixed 20 foot diameter high-gain antenna, along with location

of the RTG's, proved to be the dominant factor in determining the configuration

of the spacecraft. This huge fixed antenna was required for acceptable trans-

mission rates from the tremendous distance of Jupiter. Theoretical trans-

mission rates from Jupiter, to the average distance of Earth, are approximately

3800 bits/sec. This transmission rate will allow many television pictures to be

transmitted while JOVE orbits near Jovian periapsis. The large fixed antenna

is backed up with a smaller, gimballed (3-foot diameter) antenna. The small

antenna will be used for transmission during the first 270 days of the heliocentric

transfer. After approximately 270 days in transit, the craft will be rotated to

point the large antenna at Earth, and it will be used for communications during

the remainder of the trip.

The large fixed antenna, while optimum for structural and transmission

reasons, puts some unique restraints on the attitude control system. These

restraints were resolved by adopting a gimballed attitude control reference

axis system (Sun and Canopus sensors). Such a system has apparently never

been flown, but there are no engineering reasons why it could not be developed

over the next ten years. Missions to outer planets may require large antennas

for communications, and it is apparent that it is much easier to fix these

antennas to the spacecraft, thereby requiring a gimballed attitude control re-

ference system.

The thermal control system of JOVE is essentially passive in nature.

The main thermal control is accomplished for the most part with three schemes:

1. Controlling the spacecraft surface absorbtivity and emissivity,

2. Utilizing louvers, and

3. Controlling heat rejected from the RTG units (as required).
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Many of the subsystems of JOVE are common to currently accepted

Voyager concepts. The main spacecraft structural body, the midcourse engines,
rr,.'IL._ K _ -11

.uv _lJU._o descent engine with its associated tankage, the experiment packages,

parts of the television experiment, and the experiment platforms are quite

similar to current Voyager concepts. JOVE, however, requires a unique micro-

meteoroite protective_ str,mt,,re...........that the vn_,__,_j-_,_. .._v_-_,_'_..v_'_thave. ._Abscnce of *_,_

Lander Capsule and sterilization restraints have made JOVE a simpler, more

reliable vehicle than Voyager concepts.

INTEGRATION WITH OTHERSPACE PROGRAMS

Study of the interplanetary exploratory mission to Jupiter fits appropriately
into the present long range plans of our space program, and follows the recom-

mendation of the Space Science Board. In July 1965, this Board said, '"Are

recommend planetary. _:¢plnr_tinn _ th_ rn,_t ....... _,,_ ,_,-,_,_-'_'_ ^_" _*:--^

the 1970-1985 period. " The Pioneer and Explorer series of spacecraft have

yielded information about the space between Venus and Mars, and the Mariner

projects to Mars and Venus are continuing to yield useful data. The Apollo

Program starts its flight phase this year and will be nearing completion some-

time in the middle 1970's. Scientific and engineering talent should very soon

then be available for post Apollo and interplanetary space projects planned in

the late 70's and early 80's. These projects include the Voyager Program de-

signed to orbit twin vehicles about Mars and Venus, and to land probes on each

planet during the middle 1970's.

Long range advanced planning for outer planetary missions is extremely

important because it takes almost three years after launch for the information

be be returned for analysis and use on Earth. The trip time from Earth to

Jupiter, for example, is a very sensitive function of the injection velocity

(hence payload weight), but reasonable minimum trip times that might be ob-

tained with nuclear upper stages are still larger than 500 days. These large

trip times dictate that outer planetary investigations be fully integrated programs

rather than single-mission oriented.

JOVE is an interplanetary vehicle designed to extend our knowledge of the

environment of the solar system between 1 AU and 5. 5 AU. Its unique mission

indicates that it could well establish several scientific and engineering "firsts."

Among these "first" accomplishments are: the first orbital mission to an outer

planet, the first penetration of the Asteroid Belt, the first extremely long

(planned) controlled flight, the first interplanetary craft depending completely

upon a nuclear power source, and the first planetary craft designed to investigate

Jupiter, one of the gas giants.
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SinceJupiter is a pivotal planet, it would be possible to realize many

bonuses from a project such as JOVE. Appendix C, for example, deals with a

single vehicle radio occultation experiment. A two vehicle occultation experi-

ment (the so-called "mother-daughter" concept) was not included because of

the communications problems related thereto. Study of the daughter vehicle

revealed the possibility that JOVE could carry additional payload packages when

launched during ideal launch opportunities. These packages could be probes to

outer planets or toward the sun that would utilize the Jupiter swingby technique

for velocity vector correction.

RECOMMENDATIONS

The studies and trade-offs that were made as the design of JOVE pro-

gressed indicated the need for additional research and development in many

areas. These are described below:

1. Since RTGrs appear to be the only feasible power sources for

missions beyond Mars, the development of more reliable and efficient medium

sized electric power sources and associated shielding should be accelerated.

2. While missions to the outer planets using the Jupiter swingby tech-

niques are possible with the present Saturn V, the development of a nuclear NERVA

third stage would greatly enhance these missions and allow considerably more
freedom with the selection of launch time and launch windows.

3. It is recommended that probes or flybys of Jupiter be launched within

the next four to seven years, so that the data collected could be utilized in the

final design of JOVE. Interplanetary space travel and the design of spacecraft

to effect this travel requires careful long range planning and systems engineer-

ing of the highest caliber.

4. Extremely large communications distances required for exploration

of the outer planets place a premium upon developing subsystems which inter-

face with the communications problem. A few of these subsystems, or compo-

nents, which need additional research include:

a. Large deployable antennas,

b. High power (>- 100 watts) transmitting devices,

c. Gimbaled attitude control reference sensors,

d. Laser communication systems.
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5. Materials problems associatedwith long time exposures to the
environment of ou_r .qpar._ mu_t he in,T_stlg_,_,t _,_._,_t-o11_. _,_-_-._-_- tran-

sistors, for example, should be made less susceptible to radiation damage and

outgassing effects.
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CHAPTER II. MISSION ANALYSIS

DEFINITION OF SYMBOLS

a

A
Z

e

C 3

DLA

I
sp

GM

MR

n

P

r

r
a

r

P

Semi-major axis

Launch azimuth angle from north

Chord length

Injection energy ( C3 = VHD 2)

Declination of the launch outgoing helicentric asymptote with respect

to the ecliptic plane

Specific impulse

Gravitational parameter

For Earth

For Jupiter

For Sun

[weight before rocket burn_
Mass ratio \ weight after rocket burn ]

(ra)Apsidal ratio n = rp

Orbital period

Magnitude of the radius vector

Apoapsis distance

Periapsis distance

3. 9860 × 105 km3/sec 2

1.2671 x 108 km3/sec 2

1. 3272 x 1011 km3/sec 2
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DEFINITION OF SYMBOLS (CONTINUED)

R 4

t

V

V
es

VHD

VHp

AVa 1

AV B

0_

Jupiter radius (7. 14 × i04 km)

Time

Velocity

Escape velocity

Hyperbolic excess velocity at departure

Hyperbolic excess velocity at arrival

Retro impulse velocity at apoapsis

Capture orbit braking impulse velocity at periapsis

Sun-Spacecraft-Earth angle

Launch site latitude

Subscripts:

( )1 Initial capture orbit

( )2 Final capture orbit
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MISSION DESCRIPTION

The primary purpose of the JOVE mission is to place an unmanned

•_cientific pny!oad intn an orbit around the p]anet Jupiter so as to gather the

maximum amount of scientific data compatible with the design of the spacecraft

and the constraints imposed on the mission definition. To accomplish such a

mission, it is necessary to examine the interrelationships between the flight

mechanical and Jovian capture maneuver parameters consistent with launch

vehicle capabilities, orbit insertion limitations, communications, spacecraft

design, and scientific experiment requirements. This type of study permits a

systematic design of the spacecraft and mission which will insure a high degree

of probability of success.

For a Jupiter mission, launch opportunities occur about every thirteen

months, so that during the time period under eon_sideration, 1975-19R0, there

are six opportunities. Prime consideration is given to the 1978 and 1980 launch

opportunities. A 1978 launch has rather stringent requirements based upon the

trajectory injection energy, whereas the 1980 launch represents a fairly typical

opportunity for the time interval being considered. Examination of these two

mission conditions permits a certain degree of flexibility from the standpoint of

mission planning which can be realized through the appropriate selection of trip

time and Jovian capture orbit characteristics.

Selection of the interplanetary transfer trajectory is largely dependent

upon the capabilities of the launch vehicle to insert the vehicle onto the trajec-

tory and the trip time involved. A short trip time requires more injection

energy as well as more energy to perform the capture orbit maneuver, but it

improves the reliability of the system. Hence, it was decided to keep the trip

time to a minimum, consistent with the capabilities of the propulsion systems

and the communication limitations. This means that only Type I (transfer

angle < 180 °) trajectories were considered. In this connection, a parametric

study was made to determine the trip time which would place the maximum

gross weight in a capture orbit, still keeping the trip time relatively short.

The energy requirements for a retropropulsion system to place a vehicle

into an orbit around Jupiter necessitate that a highly elliptical capture orbit be
established. Another constraint on the orbit selection arises because of the

large trapped radiation belts which appear to be present around Jupiter. From

the standpoint of useful lifetime of the scientific and communications equipment,

the periapses of several Jupiter radii were, therefore, given primary considera-

tion in this study.
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Oncethe vehiele has beenplaced in a capture orbit andthe radiation
levels have beenassessed, it may be possible to alter the capture orbit size.
If analysis of the data indicates that a lower orbit with small periapsis distance
would not seriously endanger the mission objectives, then the retropropulsion
system would be activated at the apoapsis to accomplish this maneuver. Such
a procedure would permit anenlarged scope of scientific data to be gathered.
This techniqueof establishing a dual capture orbit was then carried throughout
the mission planning.

In the following sections, a summary of the parametric study of mission
performance will be presented alongwith a detailed description of the analysis
of eachtrajectory phase.

MISSION CONCEPT

Vehicle Concept

The spacecraft, designed around the retropropulsion system and the

fixed twenty foot high-gain antenna, is attached to a short cylindrical shroud by

means of a circular support ring. The three-stage Saturn V employing the

S-IVB as the third stage will be used as the launch vehicle.

Mission Profile

The vehicle is to be launched from Cape Kennedy along the AMR using

a variable launch azimuth consistent with range safety considerations. It will

follow a nominal two-dimensional ascent trajectory into a 185 km altitude

circular Earth parking orbit. The vehicle will remain in this parking orbit

until the desired position relative to the outgoing geocentric asymptote is

attained, at which time the S-IVB will be reignited to inject the vehicle on a

700-900 day heliocentric transfer trajectory. Scientific measurements will be

taken during the interplanetary coast phase, recorded, and transmitted to Earth

on command. In addition, attitude control will be maintained throughout the

coast phase and either two or three mid-course corrections (as required) will

be made during this phase. The final mid-course correction will ensure that

the approach asymptote is properly oriented for the Jovian capture orbit maneu-

ver. This capture is accomplished by a retro maneuver employing the retro-

propulsion system for braking at the periapsis position. Scientific data will then
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be gathered and transmitted to Earth at plannedintervals in the capture orbit.
Proper attitude co:_tro! of the spacecraft, antenna, and scan platform must be
maintained throughout the duration of the mission. An estimated useful lifetime
of about 90days in the capture orbit is plannedbasedon componentreliability,
attitude control propellants, and radiation damage.

Mission Sequence of Events (Figure II- I)

a. Launch from Cape Kennedy along AMR withSaturn Vlaunch vehicle.

b. First stage S-IC cut-off and staging. Second stage S-II ignites

after staging. Nose fairing shroud is jettisoned during S-II burn at 350 000
feet altitude.

c. S-II cut-off and staging. Third stage S-IVB ignition to boost into

185 km circular Earth parking orbit.

d. Parking orbit established and on-board systems checkout initiated.

e. Coast in parking orbit until favorable position relative to outgoing

geocentric asymptote is attained. S-IVB engine reignited to insert onto helio-

centric transfer trajectory.

f. S-IVB cut-off. Jettison S-IVB stage, spacecraft adapter, and IU.

Initiate search and acquisition mode for Earth and star sensors and trackers.

g. First mid-course correction executed.

h. Second mid-course correction executed, if necessary.

i. Scientific data collection, recording, and transmission during the
interplanetary coast phase.

j. Third mid-course correction executed just before entry into the
Jovian sphere of influence. This establishes the orientation of the Jovian

capture orbit.

ko

maneuver.
Retropropulsion system activated to perform the Jovian capture orbit

Tracking from Earth verifies capture orbit.

1. Experiment mode is activated.
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PARKING ORBITs4

\
\

\
\

VHD

1. LAUNCH FROM CAPE KENNEDY.

2. S-IC CUT.OFF AND STAGING; S-II

IGNITION.

3. S.II CUT-OFF AND STAGING; JETTISON

SHROUD; S-IVB IGNITION.

4. INJECTION INTO 185 Km CIRCULAR

PARKING ORBIT.

S. RE-IGNITE S-IVB ENGINE TO INJECT

ONTO HELIOCENTRIC TRANSFER.

6. JETTISON S-IVB STAGE, I.U., AND
SPACECRAFT ADAPTER.

7. 1ST MID-COURSE CORRECTION.

8. 2ND MID-COURSE CORRECTION.

9. COLLECTION AND TRANSMISSION

OF SCIENTIFIC AND ENGINEERING

DATA AT SELECTED INTERVALS.

10. 3RD MID-COURSE CORRECTION

PRIOR TO ENTRY INTO JOVIAN

SPHERE OF INFLUENCE.

j 1,

___-EARTH ORBIT

,\
8\

__JUPITER ORBIT

11. ACTIVATE THE RETROPROPULSION SYSTEM

FOR JOVIAN CAPTURE ORBIT MANEUVER.

12. INITIATE EXPERIMENT MODE.

13. DATA COLLECTION AND TRANSMISSION

WHILE IN CAPTURE ORBIT.

14. ACTIVATE THE RETROPROPULSION SYSTEM

FOR RETRO MANEUVER TO ESTABLISH LOWER

PERIAPSIS ORBIT.

15. DATA COLLECTION AND TRANSMISSION

WHILE IN NEW ORBIT.

FIGURE II-l. MISSION SCHEMATIC
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m. Vehicle remains in capture orbit, alternately collecting data and

transmitting data to Earth until system failure.

NO TE

For the alternate mission plan of estab-

lishing a dual capture orbit, the following

sequence would then proceed.
,I

n. After data analysis indicates that a lower periapsis is possible with-

out severe radiation damage, the retropropulsion system is reactivated at the

apoapsis of the first orbit to retro into a lower periapsis orbit.

o. Vehicle remains in new capture orbit, alternately collecting and

transmitting data to Earth.

TRAJECTORYANALYSI S

The Earth-Jupiter trajectory can be separated into three distinct phases.

Each of these phases may in turn be sub-divided and analyzed from fundamental

two-body mechanics concepts. These phases are as follows: Launch and Earth

parking orbit; Heliocentric transfer trajectory; and Jovian capture orbit. The

entire mission depends upon the careful mating of each of these phases since

they influence one another to some degree. Each will be discussed further.

Launch and Earth Parking Orbit Characteristics

The capabilities of the launch vehicle to place a vehicle into a 185 kin

circular Earth parking orbit determines to a large extent the weight of the

spacecraft which can be injected onto the outgoing geocentric asymptote. The

declination of this asymptote with respect to the ecliptic plane (DLA) cannot

exceed the maximum inclination to the parking orbit with respect to the ecliptic

plane. The factors which influence the maximum allowable DLA are the launch

azimuth, the launch site latitude, and the parking orbit coast time. Assuming a

parking orbit of one complete orbit or more, the maximunl DLA is given by the
following relationship.
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cos (DLA) = sin A cos X (1),
max. z

where A - launch azimuth measured from north
z

)_ - launch site latitude.

This is shown in Figure II-2 for launch from Cape Kennedy.

The required DLA as a function of launch data for constant trip times

for the 1978 and 1980 launch opportunities are shown in Figures II-3 and II-4.

Upon comparing these results, the launch azimuth for the Jovian mission will

be constrainted to 60 ° to 115 ° .

Heliocentric Transfer Trajectories

The heliocentric/transfer trajectory phase can be further divided into

three separate two-body mechanics problems:

a. Geocentric hyperbolic escape maneuver.

b. Heliocentric elliptical coast.

e. Planetocentrie hyperbolic motion during Jupiter encounter and before

capture maneuver.

This method of analysis is referred to as the patched conic technique

since the three phases are matched at the boundaries of the spheres of influence

of the Earth, Sun, and Jupiter, respectively. The two-body problem for the

motion of a particle in a central force field is completely described by the well-

known results from Kepler's Laws.

For a vehicle to leave the Earth's sphere of influence it is necessary for

it to acquire sufficient velocity to escape the Earth's gravitational field. The

velocity which will just permit this is parabolic or escape velocity, V =] 2GM.
es g r

The velocity at any point on a hyperbolic trajectory is given by the expression

V = +-- = + V (2)
es
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The hyperbolic excess velocity at departure is then given by the expression

VHD = _ (3)

A measure of the injection energy is then given by

C3 = VHD 2 (4)

A plot of the performance capabilities of the three stage Saturn V (third stage

S-IVB) is given in Figure II-5 as a function of C 3.

The heliocentric elliptical coast phase takes into account the three-

dimensional effects caused by the inclination and ellipticity of the planets' orbits.

For mission planning purposes it is desirable to determine the necessary trans-

fer trajectory required to go from a given planet departure date to a given planet

arrival date. By specifying these two dates the departure planet and the arrival

planet positions are determined as well as the trip time. Also the central angle

along the transfer trajectory is known. The method of Gauss is then used to

determine the characteristics of the transfer trajectory. This method is based

on Lambert's theorem which states that the time required by a body in a central

force field to pass through an arc section of any orbit depends only upon the

radial distance from the attracting source to the two terminal points of the arc,

the length of the chord connecting the terminals, and the semi-major axis of the

orbit, i.e.,

t = t(r l, r2, c, a). (5)

Hence, in the above relationship the only unknown is the semi-major axis, once

the two dates are specified. Through an iterative process the semi-major axis

can be determined along with the eccentricity of the transfer trajectory. With

these it is then possible to determine all of the transfer orbit characteristics

along with the departure and arrival velocity vectors. These velocities when

coupled with the geocentric and planetocentric phases determine the energy

requirements for the hyperbolic escape and Jovian capture maneuvers. These

data have been computed and collected for various launch dates for Jupiter

missions in Reference II-l.

In considering the various transfer trajectories, several types have been
identified. These are:

Type I Transfer angle < 180 °

Type II Transfer angle > 180 °
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Class I Target encounter before aphelion

Class II Target encounter after aphelion

In general, Type I/Class I has the shortest trip time and Type II/Class II has
the longest trip time. A number of trade-offs on departure energy, arrival
energy, trip time, communication distances, departure geometry, and arrival
geometry must be made in selecting a suitable mission trajectory plan. For
the purposesof this study it was decided to examine only Type I trajectories
becauseof the reliability advantagesafforded by the shorter trip times.

A launch opportunity for a Jupiter mission occurs about every thirteen
months or once each synodic period which is 399 days. During this interval the
launch energy requirements, C3, reach their lowest values. Typically there is
one launchdate during each launchopportunity when C3 reaches a minimum.
This is termed the minimum energy trajectory. It is also possible to determine
the minimum value of C3for a specified launch window. In Figure II-6 the
values of C3for a twenty-day launchwindow, minimum energy trajectory are
shownfor launchopportunities in the 1970-1980time period. Note that the de-
parture energy requirements are generally higher in the last half of this decade
than in the first half. As previously indicated, the 1978launch has the most
severe requirement and the 1980launch represents a more typical condition
during the 1975-1980interval being examined.

Onemethod used in mission planning is that of studying the effects of
various parameters which influence the mission performance while holding the
trip time constant. This usually places more severe requirements on the de-
parture and arrival energies than someother methods. It pent, its, however,
greater flexibility in mission planning and presents a conservative estimate of
the performance capabilities of the flight vehicle. This is the method which
will beutilized in the present study.

Hence, the injection energy and hyperbolic excess velocity at arrival
are shownfor constant trip times for the 1978and 1980launch opportunities in
Figures II-7 through II-10. The arrival velocities are specified as a fraction
of the Earth mean orbital speed(EMOS), which is 29.78 km/sec.

Jovian Capture Orbit Maneuver

To place a vehicle in a capture orbit around Jupiter it is necessary to

determine the velocity impulse required of the retropropulsion system to reduce
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the hyperbolic approachvelocity to the orbital velocity. The minimum impulse
is obtained whenthe retro maneuver is accomplished at the periapsis point as
illustrated in Figure II-11. The required braking impulse is given by the follow-

ing expression

= p2 + _P _AV B r _ (6)
P P

The results from this expression are shown in Figures II-12 through II-15 for

a range of values of the periapsis distance, rp,and the apsidal ratio, n = ra/rp.

The effect of decreasing the apsidal ratio, i. e., making the orbit more nearly

circular, is shown in Figure II-16. This emphasizes the fact that to establish a

tighter orbit requires considerably more braking energy.

The velocity impulse capability of the retropropulsion rocket engine is

given by

AV B=gIspInMR (7)

where I is the specific impulse and
sp

MR the mass ratio given by the ratio of the weight at arrival

to the gross capture weight.

The reciprocal of the mass ratio indicates the mass fraction of the spacecraft

which will be placed in the capture orbit.. Figure II-17 shows the effect of the

capture braking requirements on the mass fraction. Using the material from

Figures II-12 through II-17 it is then possible to make a parametric study of the

gross capture weight versus the hyperbolic excess velocity at arrival with the

weight at arrival as a parameter for each specified capture orbit. A selected

group of these studies is illustrated in Figures II-18 through II-21. These

graphs can be readily used in the parametric mission analysis study which is
described in the next section.

The dual capture orbit can be established with a minimum expenditure of

fuel from the retropropulsion system by applying the velocity impulse at the

apoapsis point as shown in Figure II-11. The velocity impulse required to per-

form this maneuver is given by

AVal = __ _ 2 (s)

2-20



H P

/
/

_vB//

L----PE RIAPSIS _--_ _,.......

APOAPS_

AVa 1

FIGURE II-11. CAPTURE ORBIT SCHEMATIC

2-21



8-

v
v

L.9

w
v

,n

w

F-
O.

U

,v

0

_n

7-

6-

5-

4.

3"

I-

/
/

/
/

/
/

/
1

1
J

/
1

I
/

/
/

l
v

i

0.1

..... MIN, AVB

rp IS OPTIMUM

1 1 1 i I

0.2 0.3 0.4 0.5 0.6

VHp AT ARRIVAL. (EMOS)

FIGURE II-12. VELOCITY INCREMENT REQUIRED FOR JOVIAN

CAPTURE MANEUVER- n = 5

2-22



uJ
u_

.,c

Z

n..
rn

uJ
r_

l-
b.

U

0

3_

81

_I
/-

6"

5-

4

3,

2-

o

o

n = ra= 10
rp

rp IN JOVIAN RADII

/

....... MINIMUM AVB

rp IS OPTIMUM

!

0.1

FIGURE II-13.

I I I I

0.2 0.3 0.4 0.5

VHp AT ARRIVAL (EMOS)

VELOCITY INCREMENT REQUIRED FOR JOVIAN

CAPTURE MANEUVER - n = 10

I

0.6

2-23



v

t_

X

-m
b-
gL

U

O
L

7"

6"

5'

4-

ro_

n--_.- 15

rp IN JOVIAN RADII

....... MINIMUM AVB

rp IS OPTIMUM

0
| | i I i0 01 0.2 0.3 0.4 0.5 0.6

VHp AT ARRIVAl- (EMOS)

FIGURE II-14. VELOCITY INCREMENT REQUIRED FOR JOVIAN

CAPTURE MANEUVER - n = 15

2-24



6-

5-

U
w

v

O 4-
Z

,.v

lu

--'1

I-
a.

U 3 o

r_
0

n_

2-

0

0

n = ro= 20
rp

rp _N JOVIAN RADii

f

'\

/

/

---- -- MIN AVB

rp IS OPTIMUM

I i I I i

0. I 0.2 0.3 0.4 0.5

VHp AT ARRIVAL (EMGS)

FIGURE II-15. VELOCITY INCREMENT REQUIRED FOR JOVIAN

CAPTURE MANEUVER - n = 20

2-25



U

Z

_f

W

I-
O.

U

0
U.

S o

4o

3"

2-

0

0

rp= 5

rp= 7 ......

rp = 10 ....

! i

n = _ APSIDAL. RATIO

2'S

FIGURE II-16. EFFECT OF APSIDAL RATIO ON BRAKING

REQUIREMENT

2-26



0,8 °

o

J

U
0

13.

0.7

0.6

0°5 -

0,4 -

0.3

0.2

0.1

0 ! I I I I

0 1.0 2.0 3.0 4.0 5.0

AV B FOR CAPTURE BRAKING (KM/SEC)

FIGURE II-17. MASS FRACTION VARIATION WITH BRAKING IMPULSE

2-27



A

O

ILl
v

,--I

>.

rv
n,,

I-

n

"r

.5-

.4--

.1-

oi
4.000

rp= S _-- !5

NET INJECTED WEIGHT (POUNDS)

18,000

I I I I |

6S000 8S000 10 w000 12eO00 14,000

GROSS CAPTURE WEIGHT (POUNDS)

FIGURE II- 18. PARAMETRIC CAPTURE BRAKING PERFORMANCE-

r = 5R4 , n = 15
P

2-28



O

tu
v

.J

>

b-

o.

"I"
>

.5

o

6,000

\

!

8,000

rp=5 n=20

NET INJECTED WEIGHT (POUNDS)

o0o

ooo

! I

10,000 12,000

GROSS CAPTURE WEIGHT (POUNDS)

I

14,000

ooo

!

16,000

FIGURE II-19. PARAMETRIC CAPTURE BRAKING PERFORMANCE -

r =5R4, n =20
P

2-29



.5
n=10

rp--7

O

v

_1

iv
rv

I--

13.

"t-

NET INJECTED WEIGHT (POUNDS)

000

000

20,000

0

4,000

!

6,000

i I

8,000 10,000

GROSS CAPTURE WEIGHT (POUNDS)

i

12,000

!

14,000

FIGURE II-20. PARAMETRIC CAPTURE BRAKING PERFORMANCE -

r = 7R4 , n = i0
P

2-30



u-i
0

_E
LU

n,,

I--

o.
"r

.5-

.4-

.3-

.2-

.1-

rp=7 n=15

NET INJECTED WEIGHT (POUNDS)

0
I I I I 1

4,000 6,000 8,000 100000 12,000 14w000

GROSS CAPTURE WEIGHT (POUNDS)

FIGURE II-21. PARAMETRIC CAPTURE BRAKING PERFORMANCE -

r = 7R4, n= 15
P

2-31



ra
where n 1 - (9)

r
pl

ra
n 2 - (10)

r
p2

The total velocity impulse required to establish the dual capture orbit is there-
fore

AVtota I= AV B + AVal (ii)

Hence, the retropropulsion engine needs to provide

AVtota 1= gIsp In [(MR) 1 (MR) 2] (12)

where
Weight at arrival

(MR) 1 - Gross capture weight in orbit 1
(13)

Gross capture weight in orbit 1
(MR)2 - Gross capture weight in orbit 2

(14)

Weight at arrival
Thus, (MR) 1 (MR)2 - Gross capture weight in orbit 2

(15)

As a result, a parametric study similar to the one examined for the single

capture orbit mission was made and is shown in Figures II-22 through II-25 for
a selected number of dual orbit maneuvers.

The orbital period for the vehicle in the capture orbit is given by the

following expression

2_ [rP I 3/2P- G_--M 2- (n+l (16)

This is plotted in Figure II-26.
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Mission Parametric Study

The material presented in the previous sections on launch capabilities,

transfer trajectories, and capture orbit conditions is brought together in this

section to analyze the overall mission performance. This analysis concentrates

on the 1978 and 1980 launch opportunities as representative of the 1975-1980

time period of prime interest.

A block diagram illustrating the interrelationship among the three tra-

jectory phases is shown in Figure II-27. The launch conditions determine the

net injected weight onto the transfer trajectory and the arrival conditions

coupled with the specified capture orbit determine the necessary braking veloc-

ity impulse. When this information is tied into the retropropulsion system per-

formance, the gross weight in the capture orbit is obtained and ultimately the

useful payload remains.

A parametric study for a wide variety of launch and capture orbit condi-

tions can be made using a schematic as shown in Figure II-28. Curves of

C 3 (C 3 = VHD ) and hyperbolic excess velocity at arrival, VHp, versus launch

date with trip time as a parameter for each launch opportunity are required and

shown as graphs (_) and (_) , respectively.

For a given launch window and trip time the required C 3 is obtained along

with the VHp at arrival. From a plot of the Saturn V capabilities, illustrated in

graph 3 , the net injected weight for the corresponding C 3 is available. For a

given capture orbit, r and n specified, and the VHp and weight at arrival ob-P
tained from the above steps, the gross capture weight can be read from graph

(_). The difference between the net injected weight and the weight at arrival is

the weight required for mid-course corrections and attitude control during the

coast phase. Subtracting the spacecraft inert weight from the gross capture

weight leaves the weight for the useful payload in orbit.

This type of analysis permits a great deal of flexibility in examining a

large number of launch conditions, trip times, and capture orbits. This per-

mits a number of trade-off analyses to be made, continuing to recognize that a

short trip time improves reliability and enhances the probability of mission

success.

Such a parametric study was conducted to analyze the JOVE mission.

One of the items of primary interest was the maximum gross weight which could

be placed in a Jovian capture orbit. The effect of trip time on this was examined

for some selected capture orbits using the parametric method. The results of

this study are shown in Figures II-29 through II-32. In general, the gross
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capture weight increases with increasing trip time, reaching a maximum near

an 800 day trip time. Hence, it was decided to examine the details of an 800

day trip for JOVE more thoroughly.

The above mentioned graphs can be used in several oLher ways. if the

gross capture weight is specified, then the trip time corresponding to the de-

sired capture orbit can be obtained. Or, if the trip time and gross capture

weight are specified, then the capture orbit apsidal ratio can be estimated quite

accurately. The effect of decreasing the apsidal ratio is readily seen from
these figures.

One item to be concerned with in mission planning is the relative posi-

tions of the Earth, spacecraft, Sun, and Jupiter throughout the expected mis-

sion lifetime. This plays a large role in determining communication capa-

bilities, attitude control requirements, and spacecraft thermal control. These

constellations were calculated for an 800 day trip during the i980 launch oppor-

tunity. To perform such calculations it is necessary to know the semi-major

axis and eccentricity of the transfer trajectory as well as the orientation of the

transfer trajectory. This information is available for a particular mission in

NASA SP-35, Volume 3, Part 5, "Space Flight Handbook, " 1966. Using this

information together with Kepler's equation relating position and time, and the

polar form of the orbit equation, the variation of the angular position and the

magnitude of the radius vector with travel time can be plotted as in Figure II-33.

From this information, a diagram illustrates the relative positions of the Earth,

Jupiter, and the spacecraft JOVE throughout the mission { Fig. II-34). Two

items are of significance for this 800 day mission.

a. The Sun-Spacecraft-Earth angle, _, is quite large at arrival and the

communication distance is _bout average. This is further illustratedin Figure
II-35.

b. During the expected orbital lifetime of JOVE, about 90 days, the

angle a does not become zero and the communication distance continually
decreases.

Both of these points are important from a communication standpoint. When

becomes zero either there is a Sun occultation by the Earth or an Earth occulta-

tion by the Sun. Tim latter means that the Earth-spacecraft communication is

degraded to some extent. Both of these conditions are undesirable at arrival

and during the orbital lifetime. Figure II-35 indicates that there will be two

Sun occultations, one at about 80 days after launch and one at about 535 days.

Also, there are two Earth occultations at 320 days and at 720 days after launch.

On this figure, the distance of the spacecraft from the Sun is shown and below it
the communication distance.
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FIGURE II-34. 800 DAY MISSION TRAJECTORY
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_r_ mid-course ...... +_....... * also be ........................... o ,.,_ p_u,m_u so a_ to avoid the

occultation points so that good tracking data will be available.

Planet Approach and Targeting

The orientation of the capture orbit will depend primarily upon the

hyperbolic excess approach asymptote. The plan for the JOVE mission is to

place the vehicle into a near polar orbit with the periapsis region near the termi-

nator of the planet. This orientation of the orbit will permit good coverage of the

planet from the planetary scientific instruments. Also, since the orbit is highly

elliptical, the magnetosphere of the planet on the backside of the planet will be

covered quite thoroughly. The orbits of the moons of Jupiter lie primarily in

the orbit plane of Jupiter, hence, the possibility, of encountering one accidentally

is quite remote. The perturbing effect of the moons on the motion of the space-

craft could be significant, however.

The pointing of the approach asymptote by the final mid-course correc-

tion will permit nearly any orbit orientation desired.

SUMMARY OF MISSION STUDIES

The material presented in the previous sections on mission analysis

permits a great deal of flexibility in planning a JOVE mission which will carry

out the scientific and engineering objectives. Many analyses of the effects of

any number of parameters on the overall mission performance could be con-

ducted and were examined to some extent in this study. Of particular interest

were the effects of trip time and apsidal ratio on the gross capture weight in a

Jovian orbit. One item that must constantly be kept in mind, however, is the

systems reliability associated with a long trip time. Hence, it was desirable to

keep the trip time as short as possible consistent with the overall mission

operation.

A number of missions were examined and some of the results are sum-

marized in the following tables. Table II-i is for an 800 day mission during the

1978 launch opportunity and Table II-2 shows the results for a similar mission

during the 1980 launch opportunity. The first four cases are single capture

orbit missions and the last two cases are dual capture orbit missions.
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Several general observations can be made concerning a mission.

i. The shorter the trip time, the greater the injection energy and the

orbit capture braking requirements, hence, the smaller the gross capture

weight in orbit.

2. The tighter the capture orbit, i.e. , smaller apsidal ratio, the

greater the orbit capture breaking requirement, hence, less gross capture

weight in orbit.

3. The longer the launch window, the greater the injection energ_y and

capture orbit braking requirements.

4. The dual capture orbit maneuver requires more energy than the

single capture orbit for the same size final capture orbit, hence, less gross

capture weight in orbit for the dual capture orbit maneuver.

The results of this study show that the JOVE mission can be accomplished

using the three-stage Saturn V launch vehicle throughout the 1975-1980 time

period being considered. There is sufficient flexibility between the selection of

a mission trip time and the capture orbit size to permit a mission to be flown

even during the most demanding 1978 launch opportunity. The precise mission

selection and planning will depend upon a more detailed analysis of the JOVE

spacecraft and how it relates to the mission performance capabilities.

For most of the missions it will be necessary to "off-load" the fuel for

the retropropulsion system in order to meet the limitations on the weight that

can be injected onto the transfer trajectory. This will permit a greater variety

of missions to be flown as the Saturn V launch vehicle is uprated.
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CHAPTER III. SCIENTIFIC SYSTEMS

DEFINITION OF SYMBOLS

.y

G

M

K

AU

co

H

B

e

m

c

g

F L

M

V

R

Q

E

Z

I(_)

I(o)

Intensity of magnetic field (I gauss = 105 gamma)

Solid angle subtended by the objective of an optical instrument

(steradians)

Angstrom unit = 10-8 cm

i0 _

I0 6

10 3

Astronomical units

Angular frequency

Intensity of magnetic field

Magnetic induction

Electronic charge

Electronic mass, also magnetic moment

Speed of light

Lande' factor for atomic species

Larmor frequency

Mass of charged particle

Velocity of charged particle

Radius of circular path of charged particle

Charge of particle

l_lectrostatic field strength

Atomic number

Intensity at angle = a"

Intensity at angle = 0 °
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INTRODUCTION

The experiments for the JOVE mission were selected for two primary

objectives. First, to study the temperature of various zones of the face of

Jupiter, as well as the composition of its upper atmosphere and to measure the

magnetic fields, the trapped radiation belts, and the micrometeoroid environ-

ments of the planet; and the second, to take advantage of the long travel time

to make a detailed study of the solar plasma, interplanetary magnetic field,

galactic cosmic rays, and micrometeoroid environments in the range of 1 AU

to 5 AU.

Therefore, the experiments on this mission may be divided into two

groups. The first group consists of the experiments performed during the

interplanetary or cruise part of the mission. The instruments used will be

the magnetometers, solar plasma detector, cosmic ray detector, micro-

meteoroid detector, and charged particle detector. These instruments will

be activated immediately after injection into the transfer trajectory and will
be used for the remainder of the mission.

The second group of instruments will consist of television cameras,

infrared and ultraviolet spectrometers, a photometer, and infrared and
microwave radiometers. These instruments will be turned on after an orbit

of Jupiter is achieved.

The experiments recommended [ Ref. III-l, III-2, III-3, HI-4, III-5]

for an early Jovian mission are summarized in Table III-l. Many of these

experiments will be carried by JOVE, but some must be left behind.

The anticipated first periapsis of JOVE is 7 Rj. This may be lowered

to 5 Rj if the radiation conditions encountered indicate the feasibility of a

lower orbit. This large periapsis eliminates a topside sounder because all

currently envisioned sounders have a maximum range of 40 000 km [ Ref

III-6, III-7, III-8] which is slightly more than 1/2 Rj. Additionally, a

recommended search for a trapped proton belt will not be made because the

required periapsis distance of 3 Rj will not be achieved.

In Table III-2 is found a detailed list of the instruments to be carried

by JOVE, and it shows their sizes and characteristics as well. A more de-

tailed discussion of each instrument will follow. Table III-3 is a summary of

the experiment packages, giving the time of operation, package weights, and

location of each category of experiment.
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TABLE III-2. EXPERIMENTS

INSTRUME NTS

1. Magnetometer

(Rb)

2. Fluxgate

Magnetometer

3. Trapped

Rad. Det.

4. Curved Surface

Plasma Anal.

5. Faraday Cup

Plasma Anal.

6. Cosmic Ray

Telecsope

7. Cosmic Ray

Charge& Mass Det.

8. Solar Flare

I:)et.

9. Micrometeoroid

Det.

10. Visible & U.V.

Photometer

11. LR.

Radiometer

12. Microwave

Radiometer

13. T.V. System

14. I.R.

Spectrometer

15. Visible & U.V.

Spectrometer

WEIGHT POWERNo SIZE (in.) (Ib) (watts)

INTERPLANETARY MEASUREMENTS

1 8x8x6 2.2 7, 0

Cup 3 Dia x ½

1 3 Diax 6 4.4 6.0

Long 6x6x4

(Ele)

2 6x6x4 8.8 2.0

1 12x12x5 4.8

1 6x6x6 Cup 2.7

3 Diax 1.5

1 9x9x6 2.6

1 4x4x5.5 10.5

8xSx8

1 4x4x5.5 10.5

8x8x8

3 9x9x4 _ 7.5

2x9x4

ENVIRONMENT NOTES

RESTRICTIONS

Sensor 25-45°C

Low Mag. Field

3 Detectors -

mutually at right

angles. One on

spin axis

Clear view of

outside

1.5 Orient towards

Sun

0.5 Orient towards

Sun

0.6 Orient away

from Sun

1.7 Orient away
Sun

1.7 Orient towards
Sun

0.6 Spaced equal

distant aromld

craft

UNIQUELY ORBITAL MEASUREMENTS

1 4x5x6

1 4x6x6

60 Dia
1

Ant. 6

Depth

1 5x7x14

1 10x12x14

1 10x13x16

6.0

5.0

22.0

30.0

16.0

20,0

5.0 No Sunlight

can enter

Filters and

Polarizers

3.0 "

10.0 " Needs own
antenna

20.0 " 400lines - Y
1000 lines - 10 °

5.0 Detector 25°K

i0.0
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TABLE III-4. SUMMARY - TELEVISION EXPERIMENT

Distance

from

Center-Rj

Camera #1 - 10 ° view

11.0

7.0

5.0

4.0

3.0

Camera #2 - 1 ° view

11.0

7.0

5.0

4.0

3.0

Distance

from

Surface-km

700 000

420 000

280 000

2i0 000

140 000

700 000

420 000

280 000

210 000

140 000

Area Covered -

km on a side

114 000

73 000

49 000

36 000

25 000

12 000

7300

5000

3700

2400

Maximum Theoretical

Spatial Resolution-km

23O

150

100

7O

5O

60

35

25

18

12

Size: 5 in. x 7 in. x 14 in.

Weight: 30 Ib

Power: 20 watts

Bits: l%/rdg (1000 lines)

0.4 x 106/rdg (400 lines)

Frequency of rdg -- 4/orbit for i000 line camera

= 41/orbit for 400 line camera
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INTERPLANETARY MEASUREMENTS AND INSTRUMENTS

-Magnetometers

Introduction. Radioastronomical measurements of the decimeter

radiation from Jupiter have provided estimates of the Jovian magnetic field

[ Ref. III-9]. If this radiation is synchrotron radiation from relativistic

electrons, the field strength at 3 Rj would lie in the range of 0.1 to 10 gauss.

Measurement of this field is most essential as its magnitude and extent will

control the intensity and energy of the trapped radiation belt around Jupiter.

For this reason, the measurement of the magnetic field is considered the most

important experiment in any Jupiter mission. Further, the greater than two

year transit time of the mission provides an unequaled opportunity for measuring

interplanetary magnetic field in the region of 1 AU to 5 AU, whose magnitude

probably lies in the range of 0. 1 to 10 gammas [ 1 gamma = 105 gauss]. The

period 1977 through 1980 covers the peak of a sunspot cycle. Hence, the

possibility of seeing one or more solar flares during tae flight, with the result-

ing changes in the solar magnetic field, will be excellent. Because of the wide

dynamic range of measurement and the importance of the measurement, two

magnetometers will be carried. One, a flux gate magnetometer, will be opti-

mized for low field measurements in the range of 0 to 300 gammas, but it will

operate in higher magnetic fields with reduced accuracy. Tr_e other, a rubidium

vapor magnetometer, wita a range of 3 to 104 gammas will be used for high

field measurements and in calibration of the flux gate magnetometer.

Flux Gate Magnetometer. This magnetometer consists of three in-

dependent orthogonal elements, one oriented along the spacecraft roll axis, the

other two perpendicular to one anotaer in a plane ortnogonal to the roll axis.

Each element provides an output proportional to the intensity of the magnetic

field and its direction.

Each sensor of the flux gate magnetometer consists of a torodial core

to which two windings are applied (Fig. III-1). One, the primary winding, is

fed by a driving oscillator at a frequency w. The other, the secondary winding,

feeds an output filter whose frequency is 2_. The ambient field to be measured,

H1, and the field provided by the driving oscillator, H sin wt are both applied

to the core. The value of H is chosen to be large enough to drive the core to

saturation at its maximum value (Fig. III-2). The magnetic induction of the

core is modified by the saturability of the core. During the peaks of the gating

field, H sin wt, the toroidal cores are saturated at a value + B and the ambient

field is gated. Between the peaks the value of the magnetic induction is given

by

3-7
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FIGURE III-2. FLUX GATE MAGNETOMETER HYSTERESIS LOOP
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B = #[ H sin cot ± Hi].

The ambient field, Hi, therefore, introduces an asymmetry into the

induction cycle. If the total induction is expanded in a Fourier series

B = a 0 + Z a n cos nc_t + _ bn sinnwt

it may be shown that the source of this asymmetry, the ambient field Hi,

also gives rise to the even harmonics in the Fourier series expansion [ Ref.

llI-10]. Therefore, the filter at 2c0, which is fed by the secondary coil,
selects the second harmonic which is proportional to the ambient field. A

block diagram of the flux gate magnetometer to be flown is shown in Figure

III-3. An auxiliary coil is used in this experiment to allow the nulling out of

the spacecraft's magnetic field and also the application of a known calibration

magnetic field to the coil during the mission.

Rubidium Vapor Magnetometer. The second magnetometer will be a

rudibium vapor magnetometer. This device depends upon the Zeeman effects,

or in other words, upon magnetically split atomic energy states for its operation

(Fig. III-4). Its output depends only upon the magnitude of the magnetic field

and thus, although it gives no directional information, it gives us the absolute

value of the magnetic field. The operation of this device is shown in Figure

III-5. The interference filter transmits only the D 1 line of the rubidium spectrun

into the rubidium vapor cell and through the circular polarizer. Because of the

circular polarization of the light, the magnetic quantum number, m, must

change by +1. Hence, the atoms are pumped into 2S!/2, m = 2 (Fig. III-4),

metastable state. During this process, the cell absorbs the D 1 light and the

output of the photocell is low. When the process is completed the cell becomes

transparent to the D 1 line and the output of the photocell rises.

If, at this point, radiofrequency radiation at the Larmor frequency,

eH
F L = g 41r2mc

is applied to the cell, the atoms will redistribute themselves to all the sub-

levels and the cell's transmission of the D 1 light is again reduced as it is now

capable of absorbing the radiation and repumping itself to the metastable state

[Ref. III-11, III-12, III-13].
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Such a cell may be made self-oscillating at the Larmor frequency and

if two cells and a central lamp are used (Fig. III-5) the oscillations in light

output seen by one photocell are of the correct phase to de-excite the other

Rubidium vapor cell and the whole system will then oscillate at the Larmor

frequency. From the above equation for the Larmor frequency it may be seen

that the measured frequency, and, hence, the field strength are related by

known atomic constants. Therefore, the absolute value of the field may be

determined. These magnetometers have been constructed and flown (Explorer

X) for magnetic field of 3 3, to 104 _.

A magnetometer of this type will not yield useful signals if it is within

+12 ° of an orientation parallel to the field or +7 ° of perpendicular to the field.

Additionally, the rubidium vapor cell must be maintained between the temperature

limits of 25-45 ° C. Using the two magnetometers permits calibrating the flux

gate magnetometer with the rubidium vapor magnetometer, and using the flux

gate magnetometer if the rubidium vapor magnetometer is inoperative because

of its orientation. In order to obtain valid results with either magnetometer

the magnetic field of the spacecraft in the vicinity of the magnetometer must be

kept as low as possible (close to 1 gamma or less). The output of each element

of the flux gate magnetometer is a voltage proportional to the intensity of the

magnetic field. The output of the rubidium vapor magnetometer is an alter-

nating voltage whose frequency is equa] to the Larmor frequency. Vital statistics

of both magnetometers are summarized below:

Weight: 2 kg (4.4 lb}

Power: 6 watts

Data: (bits/scan) 30 (10 each axis)

Size: Sensor: cylinder 3 in. diameter by

6 in. long

Electronics: one box 6 in. x 6 in. x 4 in.

Rubidium vapor:

Weight: i kg (2.2 lb)

Power: 5.5 watts

Data: 10 bits/sample

Size: Sensor: cylinder 3 in. diameter by 12 in

long
Electronics: one box 8 in. x 8 in. x 6 in.
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Trapped Radiation Detectors

Introduction. Based on astronomical studies of its radio emission,

Jupiter is believer to have an intense trapped radiation belt [ Ref. III-14,

IH-t5]. Planned future missions to other planets have proposed the use of a

Jupiter swingby trajectory to obtain the required energy without sacrificing

payload. Since the amount of energy which may be added depends upon the

closest approach to the planet and since, therefore, future Jovian missions

will desire a close approach to the planet, it is imperative that experiments
be carried out to measure the extent of the Jovian radiation belt.

Instrumentation. The trapped radiation detector to be carried will be

similar to that in the Mariner-Mars experiment [ Ref. III-16], and will consist
of three Geiger-Mueller tubes and a solid state detector. A functional block

diagram of the apparatus is given in Figure III-6. Detectors a, b, and c are

end window Geiger-Mueller tubes (G-M tubes) having energy thresholds of

40 keV for electrons and 500 keV for protons. They are shielded so that

particles of low and medium energies may enter only through the windows.

High energy particles may enter only through the side. Detector b has been

shielded to increase its threshold to 130 keV for electrons and 3 meV for

protrons. Detector c has been shielded to increase its threshold to 1 meV for

electrons and 20 meV for protons. This permits one to obtain a course energy

discrimination of the charged particles found in the radiation belts. Detector

d, a solid state detector, is designed to measure the proton flux, thus per-

mitting an analysis of the proton and electron components in the trapped

radiation belt. The two discriminators provide energy resolution in the ranks

of 500 keV to 11 keV to 4 meV. Data from the five outputs is sent to the SDS

where it is accumulated in five 10-bit registers until time for readout for

transmission to Earth. Readout of the accumulated counts in each 10-bit

register is accomplished once each data frame. There will be two complete

detector systems carried because of the importance of the experiment. The

SDS will store data from each system in the accumulators alternately so that,
although trapped radiation data will be readout each data frame, it will be

supplied by system 1 and system 2 in alternate frames. Vital statistics of the

trapped radiation detector are summarized below:

Mass: 1 kg (2.2 lb)

Power: 0.4 watts

Data: 10 bits/sensor (5 sensors)

Size: box 6 in. x 6 in. x 4 in. with 4 sensors,
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I in. diameter x 4 in. long extending
from 6in. x4in. side

F maxilla I I UU_._

Introduction. The majority of the matter in the universe is found in the

plasma state [ Ref. III-17]. The JOVE mission will spend over two years in

this medium during its transit from Earth to Jupiter and thus, it will provide

long term observations of the solar wind, solar flares and galactic cosmic

ray flux in a region of space from I AU to 5 AU which, up to now, have not

been explored. Additionally, the eccentricity of the orbit chosen about Jupiter

will permit a study of the interaction of the solar wind with the magnetic field

of the planet and the resulUng hydromagnetic shock waves and the creation of

a magnetosphere containing the magnetic field of the planet.

The need for more data on solar flares and the Forbush decrease in

cosmic ray intensity during solar flares plus the possible hazards to manned

missions resulting from solar flares combine to make analysis of the solar

plasma an experiment of extreme importance, perhaps second only to the

magnetometer and trapped radiation experiments in importance. The launch

period from 1977 through 1980 covers a peak of a sunspot cycle. The solar

flare cycle has been shown to correlate with the sunspot cycle. Hence, there

is a high probability of seeing one or more solar flares during the mission.

Three plasma probes will be carried on the spacecraft. Two of them will be

low energy devices to study the solar wind and to do an energy analysis of the

low energy protons which make up the majority of the solar wind and to attempt

to measure the proton-alpha ratio. The third detector will be a cosmic ray

detector sensitive to high energy particles to study the energy distribution of

the high energy protons from solar flares which may have energies as high as

103 MeV and which have large numbers of particles with energies of over 20
MeV.

Curved Surface Plasma Detector. This is an electrostaUc analyzer

[ Ref. III-1B, III-19] whose principle of operation is shown in Figure III-7.

By equating the electrical and centrifugal forces one obtains:

MV 2
- QER
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where M = particle mass

V = particle velocity

R = the radius of the circular path of the particle

Q -- 4-h_ _,_4-4_1.,_T_ r_l_4--r_ _l_^

E = the electrostatic field between the plates (this is deter-

mined by the voltage and the geometry of the plates)

MV 2

Hence, for a given E only particles for the specified QR will be collected.

Therefore, this detector provides a differential energy spectrum the energy

resolution of which is determined by the number and size of the voltage steps

applied to the deflecting plates (Figure III-8). This type of detector is excellent

for the range of proton energies from 102 to 104 electron volts.

Faraday Cup Probe. The Faraday Cup Probe will be used to measure

the low energy component of the solar plasma [ Ref. III-19, IH-20, IH-16].

It will measure the plasma density in the energy range of 10 to 1000 eV. The

geometry of the probe is shown in Figure III-9. In this figure G 1 is grounded

to the spacecraft. G z is a modulating grid to which positive voltage steps are

applied for energy discrimination of the incident particles. G 3 is a grounded

shield grid and G 4 is used to supress photoelectrons. The detector to be flown

will be similar to the Mariner-Mars detector. It will have a split collector.

The collector will be split into three sections which will permit a course angu-

lar discrimination of the incoming flux since the side walls of the detector will

shadow the sections of the collector by differing amounts. In addition, the

modulating voltage will have sixteen steps. This will permit sixteen energy

windows. The analysis will be as follows:

(1) All three sections of the collector will be analyzed together and

the sixteen voltage steps applied to give an energy spectrum without angular
discrimination. This will total sixteen measurements.

(2) Sequentially the left side, center and right side of the collector

will be analyzed for the sixteen voltage steps giving an additional forty-eight

individual measurements. Eight other measurements for timing and calibration

yield a grand total of 72 measurements per complete scan of the instrument.

(3) In each data frame only one measurement will be read out. There-

fore, 72 data frames will be required to give a complete scan of the instrument.

The scientific data system will give the stepping signal to the modulating voltage

source and therefore, time the entire procedure. This device collects all pro-

tons whose energies are greater than the modulating voltage. Therefore, it

produces an integral energy spectrum.
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Solar Flare Detector. This detector will be flown expressly to observe

the high energy particles from the solar flares expected during the mission.

It will also measure the high energy component of the solar wind. It will be

identical to the scintillation counter telescope to be flown for charge and mass

identification of primary cosmic rays, except that it will lack the scale changing

capability of this instrument, and will operate in the electron, hydrogen, and

helium analysis mode only. A detailed description of this device will be given

in the section on cosmic ray experiments. It will provide flux measurements in

the energy range of 10 to 5 x 102 MeV.

Instruments should be mounted in such a manner that they are oriented

toward the Sun while they are taking data. The cosmic ray experiments, on

the other hand, should be mounted pointing away from the Sun so that they will

see the galactic cosmic ray contribution and not the solar cosmic radiation.

Therefore, the cosmic ray experiments and the solar flare detectors will be

mounted on a small platform called the Solar Scan Platform. The solar flare

detectors will be mounted on the end of this platform which faces the Sun, while

the cosmic ray detectors will be mounted on the opposite end facing away from

the Sun.

Important characteristics of the plasma probe detectors are summarized
below:

Curved Surface Detector:

Mass:

Power:

Data:

Size:

2.2kg (4.8 lb)

1.5 watts

(bits/sample) l0

one box 12 in. x 12 in. x 5in.

Faraday Cup Detector:

Mass:

Power:

Data:

Size:

1.3 kg (2.7 lb)

0.5 watts

l0 bits/sample, 72 samples/scan

Sensor: cup 3 in. diameter x 1.5 in. deep
Electronics: 6 in. x 6 in. x 6 in.
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Solar Flare Detector:

Mass:

Power:

Bits:

Size:

4.5 kg (10.5 lb)

1.7 watts

20 bits/sample

Sensor: 4 in. x 4 in. x 5 in.

Electronics: 8 in. x 8 in. x 8 in.

Cosmic Ray Experiments

Introduction. Cosmic rays are energetic particles originating outside

Earth's atmosphere [Ref. III-21]. Primary cosmic rays, that is, energetic

particles ,:_-'-_, _-,-,_ -, .... h_,_ may ha 4_r14_4 infn two e,tegories:I..[.[IIIIUUIII_IA by ._cta. bla _ aL, xtJv_lJx_ , ......................

solar cosmic rays originating in solar flares and characterized by transient high

intensity bursts of radiation lasting only a few days, and galactic cosmic rays

presumably originating within our galaxy. The solar cosmic rays are primarily

protons and helium nuclei with a maximum observed energy of 20 to 30 Gev,

while galactic cosmic rays may have energies as high as i0 tl Gev. Solar cos-

mic rays are detected by the solar flare detector. Hence, this discussion is

limited to those detectors to be flown to study the galactic cosmic ray flux from

1 AU to 5 AU. They will measure the energy of the primary cosmic ray parti-
cles and the isotopic distribution of these particles and look for the Forbush

decrease during solar flares.

Cosmic Ray Telescope. The cosmic ray telescope is designed to

measure the absolute flux levels and energy spectrum of the two main components

of the primary cosmic radiation - protons and helium nuclei in the energy range

of 1 to 170 MeV per nucleon [Ref. IH-/6].

It will also identify cosmic rays with energies greater than 170 MeV

per nucleon. It consists of three silicon surface barrier detectors separated

by absorbers to produce a telescope with an acceptance cone having a half-

angle of 20" (Fig. III-10). To penetrate the window and produce a count in

detector, Dr, the particle must have a minimum energy of 1 MeV per nucleon.

To penetrate to D2, requires 15 MeV per nucleon, and to penetrate to D3, at

least 70 MeV per nucleon. Figure III-11 shows the energy loss in the D1 detector

as a function of the particle energy. Particles penetrating the D 1 detector com-

pletely deposit less and less energy in the D1 detector as their energy increases

because of the decreasing rate of energy loss with the increasing energy, until

the minimum ionizing particle level is reached [ Ref. III-22, III-23].
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In the case of the proton, the ionization drops below a measurable value
at about 170 MeV. Sincethe rate of energy loss is proportional to _2, the
helium nuclei are separated from the hydrogen nuclei by their energy loss in
the 15- to 70-MeV range, andfor helium nuclei there is no limit for detection
above 170MeVbecauseeven as minimum ionizing particles, they still leave
measurable amounts of energy in D1. Coincidence circuitry is fed by the
outputsof discriminators which are fed from the detectors. This coincidence-
anticoincidence circuitry produces as its output three counting rates corres-
pondingto the previously mentioned energy ranges: the D1singles counting
rate givenby the D1D2 (D1 and D2coincidences), the D1D2D3counting rate,
and D1D2D3. The data for the three count rates is prescaled and stored in a
single 10-bit register. The energy lost in the D1detector is analyzed for D1D2
and DID2D3eventsby recording the pulse height for the first DiD2event after
each readout. In addition, indicator bits record whether this event was a double
or a triple coincidence, andwhether the energy loss in D3was large or small.
This information permits distinguishing the particles and discriminates against
those entering the rear of the telescope.

Charge and Mass Identification Telescope. This instrument, minus

the mode switching for analysis of heavy ions is used as a solar flare analyzer

and since the operation of both devices is otherwise identical, both are dis-

cussed here. This instrument will determine the relative abundances of nuclei

of _ from 1 through 8 (oxygen} and measure their energy spectrum over a

range of 10 to 20 MeV per nucleon [ Ref. III-24, III-25]. A thin cesium iodide

scintillator (Fig. III-12) measures dE and the remainder of the energy is
dx

deposited in the E scintillator. A particle passing completely through the E
scintillator will cause a scintillator in the guard scintillator which is operated

in anticoincidence to discriminate against incomplete energy deposition in the

E scintillator and against particles entering from the rear. Normally the system

operates in a high gain mode, but if either the d_E or E pulses is greater than
dx

a pre-set amplitude the gain of both the dE and E amplifiers is automatically
dx

shift to the heavy particle mode. The _ and E measurements arereduced to

analyzed separately to 128 energy increments and stored in separate 10-bit

registers with an indication when the analyzer is in the heavy particle mode.

Hence, the analyzer can handle only one analysis per scan. A third 10-bit

register will record the total number of d__E.Eand E but not counter coincidences
dx

to indicate the total number of events detected in the measurement interval.

This last 10-bit register is read out only once for every third reading of d__EE
dx

and E. Figure III-13 [ Ref. IH-24] indicates how the data may be analyzed
to obtain Z and E information for cosmic radiation.
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Important characteristics of cosmic ray experiments are outlined below:

Cosmic Ray Telecsope:

Mass:

Power:

Data:

Size:

1.1 kg (2.4 lb)

0.6 watts

20bits/sample

9in. x 9in. x 6in.

Charge and Mass Telescope:

Mass:

Power:

Data:

Size:

4.5kg (t0.51b)

1.7 watts

30 bits/sample

Sensor: 4in. x4in. x 5.5in.

Electronics: 8 in. x 8 in. x 8 in.

Micrometeoroids

Introduction. Ever since man has studied the heavens, it has been

known that the solar region is occupied by a large number of small particles

in addition to the Sun, planets and their moons, and asteroids. These particles,

smaller than 1 mm in diameter, are arbitrarily called micrometeoroids.

These particles are too small to be burned up when they enter Earth's atmosphere.

A large number of such particles are found in the space occupied by our solar

system. A space vehicle traveling in this region may encounter and collide

with some of these particles. These particles have a finite mass and a fairly

high velocity relative to the spacecraft and may either penetrate the craft or
cause erosion of various parts of its structure. Those particles having sufficient

momentum or kinetic energy to puncture pressurized chambers of the space-

craft or the fuel system are dangerous to the mission. If the number of parti-

cles is large and even though the momentum of each particle is insufficient for

penetration, erosion of the various members of the spacecraft may result.
Such erosion could either weaken the structure or cause a change in the thermal

property of the radiators or the performance of the energy absorbers. In this

way, the performance of the craft may be degraded and the mission may fail.
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The designers of space vehicles should be aware of the probability of

penetration and the extent of erosion caused by micrometeoroids. Erosion

caused by micrometeoroids may not be important on short missions, but in

missions extending over a long period of time, erosion may become very

serious [ Ref. III-26].

The micrometeoroid flux in cislunar space has been measured and is

fairly well understood. Such earlier satellies as Vanguard, Explorers and
Pioneers carried micrometeoroid detectors. Most of these detectors could

measure only the number of impacts and the momentum of the particles. The

velocity of the particles and/or their mass was undetermined. The cumulative
mass-distribution curve obtained in various earlier satellite flights in the

vicinity of the Earth is shown in Figure III-14 [ Ref. III-10]. The masses of

the particles were obtained by assuming a constant mean velocity of the micro-

meteoroids.

Now that travel to the outer planets is anticipated, a knowledge of the

micrometeoroid population in this part of the solar system becomes important.

Even though the probability of penetration may be small, penetration becomes

an important factor when the time of flight becomes great, Also even though

the erosion rate may be small, the times involved in travel to the outer planets

are large enough that the total depth of erosion may be significant. So a

knowledge of the micrometeoroid flux in this region of outer space is important

to the designer of future spacecraft planned for the exploration of the outer

planets.

Micrometeoroid Measurements on JOVE. JOVE is planned to traverse

the space between Earth and Jupiter and then to orbit Jupiter. This vehicle

will carry detectors to measure the number and penetrating power of the micro-
meteoroids in this region. Such information will be of interest for the cosmolo-

gists and will aid the designers of future space vehicles planned for use in this

region of the solar system.

The micrometeoroid detectors utilized on JOVE will be similar to those

used by JPL on the Mariner-Mars spacecraft. These detectors consist of

aluminum plates 22 cm by 22 cm to which is fastened a crystal acoustical
transducer. Whenever a micrometeoroid strikes the plate, the crystal will

emit an electrical pulse. Each side of the aluminum plate is covered with an

insulating and a conducting film thus forming a capacitor type of detector. A

potential is placed across this type of capacitor detector and when a micro-

meteoroid punctures the insulation of the capacitor an electrical discharge

occurs. Such capacitor detectors are self healing. It is, therefore, good for
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repeated use. When the output of the acoustic detector is in coincidence with

one or the other capacitor detector outputs, the direction of the micrometeoroid

can be determined. Three of these detectors will be mounted with equal

spacing around the outside of the spacecraft.

Detectors giving the velocity as well as the momentum should be car-

ried on this mission but since such detectors are as yet not available, pre-

sently available detectors will be carried. If new micrometeoroid detectors

are available by the time JOVE is schedules they will be carried in place of
or in addition to those described above.

The detector described is shown in Figure III-15 [ Ref. III-16], and

the corresponding electronic circuit is shown in Figure III-16 I Ref. III-10].

UNIQUELYORBITAL MEASUREMENTSAND INSTRUMENTS

Photometers (Visible and Ultraviolet)

A photometer will be used to measure reflected brightness at various

phase angles allowing for a determination of the planet's phase function

(_) = I(0) " A filter wheel giving transmission at 1216, 3888, and 6402

/_ will be used. The narrow band photometry above will be used to look for

hydrogen, helium, and neon, respectively.

Combined photometric and polarization measurements will give an un-

ambiguous fit of a model atmosphere. This is possible because the polarization

caused by Rayleigh scattering dust particles, thin clouds and reflected light

from the planet can be separated and a model constructed that fits the measured

polarization. The polarization cannot be determined by viewing in one direction

and is therefore not possible from Earth because the phase angle is never

greater than eleven degrees. A polarimeter will also give data on particle

size and distribution in the atmosphere and will aid in determining albedo.

In-flight calibration will be accomplished by injecting a standardized

calibration current into the input amplifier or looking at a standard bright-

ness source. This instrument is mounted on the scan platform and must be

shielded from direct or reflected sunlight.
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III-17.
A block diagram of a typical ultraviolet photometer is shown in Figure

Other specifications are summarized below:

Weight: 6 lb

Size: 4in. x 5in. x6in.

Power: 5 watts

Bits/rdg. 120

Scan frequency: maximum - one/min

Radiometers

Infrared. This will measure radiation flux in the infrared region of the

spectrum to allow for a temperature _ of *_^ -' ^"_-..... _. _.l_ _uuu_ or surface when it is

visible. The device, similar to the one used in Mariner II (Fig. III-18, IH-19)

contains two optical sensors, each with a focal length of 3 inches and an f

number of 2.4. One of the sensors is used to scan the planet, the other one to

obtain internal reference readings. Radiation enters the optics, passing through

a rotating disk with two opertures positioned so that the two sensors can see

their respective targets. The light beam is chopped at 20 cycles per second.

The beam is then split by a dichroic filter into two components polarized at

right angles. There two beams fall upon thermister bolometers. The tem-

perature of the sensors is proportioned to the intensity of the incident radiation.

By selecting suitable filters any infrared wavelength can be studied. These

filters will transmit the 1 through 9 p, the 9 through 13p, and the 13 through

16 # (micron) bands.

Use of a broad band flux measurement will determine whether Jupiter

radiates more energy than it receives. Scanning with this instrument will

give the wavelength dependence of the atmospheric opacity and its variation over

the disk of the planet. These measurements cannot be made from Earth with

anywhere near the resolution obtainable from an orbit of Jupiter.

Some characteristics of the device are shown below:

Weight 5 lb

Size: 4in. x6in. x6in.

Power: 3 watts

Bits/rdg. 2O

Scan frequency max. one/min
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Microwave. Two types of microwave radiation are eminating from the
planet Jupiter; thermal radiation and non-thermal radiation.

The thermal radiation is in the millimeter and low centimeter region

and the non-thermal radiation is in the decimeter and decameter region.

The non-thermal signals seem to come from accelerated electrons in

the magnetic field of Jupiter. The radiation in the decimeter range apparently
comes from synchrotron electrons.

Measurements of the radio signals from Jupiter have been made from

the earth. Thus it has been possible to map the surface of Jupiter of the side

facing the earth. However, it has not been possible to map the region facing

away from the earth for this type of radiation. Therefore, it seems highly

desirable to carry instrumentation for this type of measurement on a Jupiter
orbiting spacecraft.

For measurements of the microwave signals from Jupiter, a microwave

radiometer similar to the one used on Mariner II will be carried on JOVE.

This radiometer will also be a fixed frequency radio receiver picking up signals

in two frequency regions: 3 cm and 30 cm. In all other respects a microwave

radiometer similar to the one used on Mariner II will be carried. This instru-

ment is shown in Figure III-20.

The radio signals eminating from the side of Jupiter which faces the

earth can be measured more accurately from the earth than from a spacecraft.
It is suggested therefore, that the microwave radiometer not be turned on

during the time of flight of the vehicle from the Earth to Jupiter, but that it be

operative just before the spacecraft begins its orbital path around Jupiter.

The signals in the 3 cm region will be used to measure the temperature

of various regions of Jupiter. In view of this, the measurements taken by
the microwave radiometer should be taken at the same time and in the same

region as the measurements taken by the infrared radiometer. The microwave

radiometer should be mounted on the same gimballed platform as the infrared
and ultraviolet radiometers.

The microwave radiometer will be about 22 pounds in weight and will

use 10 watts of power. The information is read out at the rate of 20 bits/

reading. The diameter of the antenna used by the microwave radiometer is

about 5 feet.
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FIGUREIII-20. MARINER-2 MICROWAVERADIOMETER-DISH
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The resolution of the microwave radiometer [ Ref. III-27, III-28], is
given by the relation:

Resolution = Beamwiath x Distance

For wavelength of 3 cm

B. W. = 1.5"

Res. = 12 000 km.

For wavelength of 30 cm

B. W. = 15"

57.3

Res. = 120 000 km.

Figure Ill-21 shows the electronic circuits associated with the microwave
antenna.

Television

Introduction. Direct visual pictures of Jupiter can best be obtained

through the use of a television system. Photography is ruled out because of

the sensitivity of photographic emulsions to the radiation that will be encountered

in space, near Jupiter, and from the RTG units on the spacecraft itself.

The use of television greatly increases the data storage problem but
this is justified by the greater resolution that is obtainable over Earth-based

telescopes, as well as the favorable public relations effect of "pictures" of
Jupiter. The best resolution as seen from Earth is on the order of one thou-

sand kilometers allowing us to see only the grossest features such as the red

spot and the latitude banding. Telescopes in orbit about Earth could give a

resolution of two hundred kilometers but there is no plan at present to orbit such

a telescope. While it is not absolutely clear what the higher resolution will

show, it is believed that there are many things that are now on the border of

this higher resolution that appear to be very interesting.
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Instrumentation. Resolution on the order of 60-70 kilometers will allow

observation of some structure in the red spot, boundaries between the latitude

bands, and behavior of the general circulation around the edges of the red spot.

The TV cameras will also get information regarding the meteorology of the

outer Jovian atmosphere. On the dark side of the planet, the TV experiment

will show lightning flashes and near the limb aurora effects will be shown_,

eyn,:,_ou ..... _*_'_ I0 _ -30: of the magnetic poles.._j_ _4._L V VV J. blJbl. IJL

The television system will be mounted on a scan platform such that it

never sees direct sunlight or scattered light reflected from the spacecraft lest

the sensitive phosphors be damaged by this intense light. Three spectrally

separated filters will be mounted on a shutter wheel to look at the color com-

ponents separately. These filters will be stable in the space environment.

An electrostatic type vidicon tube will be used because of its simplicity, weight,

size, ruggedness, and ability to operate itself. The image will be stored on the

face of the tube for 20-30 seconds with negligible degradation while it is being

read out and converted to a digital output. The picture is erased by flooding
the ..1. ,. ...._,aosp_uL_ with electrons, preparing for the next picture. Only a few wide

angle pictures for orientation will be taken, but many narrow angle pictures
for detail will be available.

The optical system will be made of materials that minimize focal shifts

and distortions caused by thermal expansion and radiation. To keep lens trans-

mission loss less than ten percent an optically flat piece of radiation resistant

fused quartz will be used as a lens cover. This cover will be several tenths

of an inch thick and will also serve as thermal protection for the system.

The television system will consist of two cameras: (1) a 1000 line

system with a 10 ° view and (2) a 400 line system with a 1° view.

The spatial resolution of the two cameras is shown in Table III-4 for

various distances from the center of the planet Jupiter. Pertinent physical

parameters for both cameras are included.

Spectrometers

Infrared. At present the energy balance of Jupiter is not understood.

Jupiter absorbs radiation from the sun and emits infrared radiation largely

between 10 and 50 microns. Ammonia, a known constituent of Jupiter's

atmosphere is an absorption band in the region of 9 to 13 microns. It is
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suspectedthat there are other infrared absorbing constituents in the atmosphere
of this planet since its surface temperature is higher than wouldbe the ease if
more of the emitted infrared escapedinto outer space.

An infrared spectrometer is neededto scan the planet at wavelengths
from 5 to 30 microns with sufficient resolution (about 1 micron) to detect

infrared active constituents in its atmosphere. From these data one can

determine the presence and concentration of infrared active gases. It will

also be possible to measure atmospheric temperature for thermal wavelength

regions and get an indication of surface conditions at the poles, which are

relatively free of clouds. Scientists have not been able to obtain these meas-

urements from Earth because of atmospheric and energy considerations.

This instrument can also detect some of the Sinton bands between five

and sixteen microns that will be indicative of organic molecules on the surface.

Carbon dioxide and water can also be detected with a slightly extended range

instrument (Fig. III-22).

Dispersion is obtained with a diffraction grating but detection in these

wavelengths is limited to a Golay gas cell or a germanium-zinc simiconduetor,

the latter of which will be used.

If the angle of view is 2 ° , the solid angle subtended is 0 = 4 x 10 -2

steradians. At N Rj distance, the percent of surface area covered is about

N20 or about 0.01N 2 percent per degree of view. Using Stefan's law the

21r 10 -2 watts

power received at the probe is N2 CM 2 for a planet temperature of
150"I{.

Some inportant characteristics of the instrument are given below:

Weight:

Power:

Siz.e:

Bits/rdg:

Scan:

16 lb

5 watts

10 in. x 12 in. x 14 in.

5000

once every thirty minutes (maximum)

This instrument will be mounted on the scan platform and the detector will be

kept at a temperature near 25 ° K.
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Visible and Ultraviolet. An instrument with a i000 - 5000 A resolution

(and sufficientspatialresolution to determine limb and terminator effects)will be

used to examine the cloud cover and surface obtaining information about the

constituents, pressure, and temperature. This close spectroscopic examination

is to identifyconstituents whose absorption bands are either too weak to be

observed on Earth or are below the atmospheric cutoff. These data can lead to

estimates of pressure, temperature, and abundance of gases which will aid in

formulating a model of the Jovian atmosphere.

Identification of C-N-H compounds will aid in explaining the periodic

color changes observed in the clouds and will help to describe the history and

internal composition of Jupiter. Scanning the red spot may give useful data.

A scan of the limb will give a pressure measurement, while a scan over the

terminator will give atmoshperic absorbtion and aurora information.

This instrument must be mounted on the scan platform and no direct or

scattered sunlight can be allowed to impinge on the detector. Characteristics

are given below:

Weight: 20 lb

Size: 10 in. x 13 in. x 16 in.

Power: 10 watts

Bits/rdg: 10 000

Scan: once every 30 rain

Calibration: internal
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CHAPTER IV. TELECOMMUNICATION SYSTEM

DEFINITION CF SYMBOLS

p ____

r

Pt =

Gt =

G =

G

r

a

f

L

a

rain

S i

N.
1

B =

S

N

H

p

rain

k

W

received signal power, watts

transmitted signal power, watts

transmitting antenna gain

antenna gain

receiving antenna gain

free space path loss

system loss

communications efficiency

minimum energy/bit

noise power spectral density

predetection signal-to-noise ratio

predetection signal bandwidth

postdetection signal-to-noise ratio

message bandwidth

minimum received power, watts

Boltzmann's constant, 1.38 x 10 -23 Joules/

effective noise temperature °K

O
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DEFI'NITION OF SYMBOLS (Continued)

A =
em

Aphys_

D =

DX =

R =

0 =

F(r) =

r =

R(O) =

BW =

i

t

T

a

Ts(O, _b)=

G(O, _b) =

S

T =
S

wavelength, meters

maximum effective aperture, square meters

physical aperture, square meters

reflector diameter, meters

reflector diameter, wavelengths

range

angle

aperture field distribution

plane-projected radial distance from vertex to point on the

paraboloidal surface

radiation field intensity

beamwidth, degrees

polarization loss

transmitting antenna axial ratio

receiving antenna axial ratio

antenna noise temperature, ° K

source brightness temperature

antenna gain

solid angle subtended by source at the point of observation

average source temperatures
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s

0b =

S =

df =

b
Pc :

Pd =

Fc :

D =

=

L :

N/B :

N =

Pi =

PN =

S =

w
Pc =

A/D :

CC& S =

DEFINITION OF SYMBOLS (ContiniJed)

plane angle subtended by the source

plane angle 3 dB antenna beamwidth

flux density, watts/m 2 cps

frequency interval

bit error probability

bit period

clock frequency supplied to PN generators

command bit

half addition, or modulo 2 addition

length of PN code

noise spectral density per cycle/second

number of bits per word

probability density function

pseudorandom

signal power

word error probability

analog to digital converter

central computer and sequencer
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DEFINITION OF SYMBOLS lConcluded}

DSIF =

DSN =

EDE =

MTR =

NRT =

PSK =

PCM =

SDS =

deep space instrumentation facility

deep space network

engineering data encoder

magnetic tape recorder

non-real time

phase shift key

pulse code modulation

science data system
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INTRODUCTION

The purpose of the JOVE telecommunications system is to provide a

mean_ of information transfer and control of sufficient quality to accomplish

the mission of unmanned reconnaissance of Jupiter. In order to achieve the

stated purpose efficiently, it is necessary to rely upon the existing and/or

planned capabilities of the NASA-JPL Deep Space Network for the Earth-based

portion of the telecommunication system. However, the emphasis in this

section will be mainly on the transmission medium and the spacecraft portion

of the telecommunication system. An understanding of capabilities and con-

straints of the existing Earth-based system, however, is essential for effective
system integration.

FUNCTIONAL DESCRIPTION OF THE
TELECOMMUNICATION SYSTEM

The telecommunication system performs four basic functions on un-

manned interplanetary spacecraft: tracking, data acquisition, command, and

control. Tracking is the function of locating the spacecraft, calculating its

distance, velocity vector, and position, and following its course in order to

correctly interpret scientific data. Data acquisition consists of the recovery

of information from the spacecraft in the form of telemetry of the recorded

measurements of the condition of the spacecraft and of the scientific data

obtained by the spacecraft. The command function involves the sending of

signals to the spacecraft to guide it in its flight and to operate scientific and

engineering equipment on board the spacecraft. Control refers to making

command decisions from a central facility and to the overall direction of

flight operations during a mission. The manner in which each of the functions

is performed will be developed in the following sections.

CCMMUNICATION SYSTEM DESIGN CONSTRAINTS

The communication system design must provide for telemetering of

engineering and scientific data on the downlink from the spacecraft to DSIF

stations in a reliable yet flexible manner. The JOVE telemetry system will
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have thecapability of adding or deleting measurements as a function of specific
flight phase. An example is that of the mid-course correction maneuver phase,
when extensive measurements must be made on the mid-course motor but are
not required at any other time during flight.

In addition to telemetry, the communication system must provide an
Earth-to-spacecraft command-link for the initiation and modification of various
spacecraft functions. The data rate for the commandsystem is very low, but
the requirements on accuracy are severe. Since the command system must be
used for correcting possible malfunctions in the attitude control system of the
spacecraft, the spacecraft commandsystem's receivers must be accessible in
any spacecraft attitude. This requires omnidirectional antennacoverage. The
system must also provide two-wayDoppler information for the purpose of accu-
rate trajectory determination and allow automatic angle tracking of the space-
craft at the receiving sites as well.

The study of possible Earth-Jupiter trajectories revealed early in the
designprocess that the communication system must be capable of operating over
a distance of 825x106km (500x106mile). This enormous communication distance
causes a great attenuation {278.7 dB) of the radio waves from the spacecraft,
as well as from the Earth-based communication stations. Since radio waves
travel at a finite velocity (3x108meters per second), the round trip communica-
tion delay time (92 minutes) makes real-time control of the spacecraft out of
the question. Thus, commandsignals for the control of the spacecraft must be
sent well in advanceof the time of execution, or stored as pre-programmed
instructions in the spacecraft computer and sequencer.

Oneof the major elements of the spacecraft system desig_ is a three-
axis attitude stabilization system. Sun-seekingdevices will first orient the
1cngitudinal axis of the spacecraft in the direction of the sun, establishing two-
axis stabilization, and a star seeking system will orient the third axis toward
the star Canopus, thereby achieving third axis control. After acquisition, a
gimballed medium-gt_inantennamay thenbe pointed at the Earth during early
phasesof the mission. During later phasesof the mission, the Sunsensors
will be gimballed, and a high-gain parabolic antennawill be pointed toward the
Earth. However, at launch and until such time as attitude control is achieved,
communications must dependupon a nearly omnidirectional antennasystem.

The lifetime of the mission, 850 to 900 days of heliocentric coast,
places severe requirements uponcomponentsof the communication system.
Choiceof power amplifiers, for example, is predicated upon the lifetime of
the devices. Also, the expectedradiation environment in the vicinity of
Jupiter rapidly degrades semiconductor performance.
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Becauseof the spacecraft-sun-Earth relationship during the extended
cruise to jupiter, there will be periods whencommunications with the space-
craft will not be possible. The times of critical maneuversduring the space-
craft flight will be chosento occur whenthere is communication with the
spacecraft. If this is not nossible, _honincf .... +{"*'_ for *_ .....• _.............. ..v..o v,,w maneuver Will ])e

pre-programmed or transmitted via the command link well in advance of the
execution time for the maneuver.

A spacecraft which is dependent upon solar cells for power would be

severely limited in a cruise to Jupiter, since the solar flux and temperature

decrease rapidly with increasing distance from the sun. The decision to use

RTG's for spacecraft power means that the available power is almost constant

throughout the cruise and is independent of the spacecraft orientation. However,

since the RTG emits radiation which is damaging to semiconducting materials,

the presence of the RTG on the spacecraft imposes a design constraint on the

placement of electronic eqttipment.

A further important constraint imposed upon the communication sys-

tem is that it must be compatible with, and use to the fullest extent pos-

sible, the existing NASA-JPL Deep Space Network (DSN) [ Ref. IV-l, IV-2].

A discussion of the capability and constraints imposed by the DSN is the subject
of the next section.

EARTH-BASED SYSTEM- DSN

This section contains a summary of the cap_)ilities of the Deep Space

Network (DSN) which is a facility of the National Aeronautics and Space Adminis-

tration (NASA). The DSN is managed by the Jet Propulsion Laboratory (JPL)

under contract to NASA for research, development, operation, and maintenance
of the DSN stations.

DSN Description

The Deep Space Network is a precision tracking, communications

and data handling system which is used to support deep-space missions at

Earth-referenced distances of more than 10 000 miles (16 090 kin) and within

+ 30 degrees Earth latitude. The Deep Space Network (Figure IV-l) com-

prises three major elements:
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The DeepSpaceInstrumentation Facility (DSIF)
The DSNGround Communications Facility (DSN)
The JPL SpaceFlight Operations Facility (SFOF)

DSIF Description. The DSIF is a worldwide chain of Deep Space Sta-

tions (DSS) that provide radio contact with the spacecraft. The DSIF for JOVE

will probably consist of the space communication complexes and Deep Space

Stations (DSS) shown in Table IV-1. To maintain continuous mission coverage,

the stations are located approximately 120 degrees apart in longitude around the

Earth, so that the spacecraft is always within the field of view at least one of

the ground stations.

Radio contact with JOVE begins when it is poised on the launch pad at

Cape Kennedy and, except for intervals during the sun's occultation of JOVE,

is maintained throughout the mission. The Cape Kennedy Station supports the

final checkout before launch, verifies the compatibility between the DSN and

JOVE, measures JOVE frequencies during the countdown and provides limited

telemetry reception during and immediately after launch. Later in the launch

trajectory, while JOVE is relatively low in altitude, the signal is picked-up

by the 30-foot diameter antenna at Ascension Island. Once JOVE is in orbit,

the Deep Space Stations, with large antennas, low-noise phase-lock receiving

systems, and high-power transmitters take over radio communications and

follow JOVE to its destination. These stations obtain angular position (two

angular coordinates), velocity (Doppler), and distance (range) data for JOVE

and provide command control (up-link) at 2113 MHz and data reception (down-

link) at 2295 MHz for JOVE. The standard 85-foot diameter antennas in use at

the Deep Space Stations have gains of 53 dB at 2295 MHz, permitting the receipt

of significant data at distances as far as Mars (1.5 AU). An improved data

rate and distance capability are provided by a 210-foot diameter antenna having

a gain of 61.81 + 0.32 dB at 2295 MHz which has been built at DSS 14. Two

additional antennas of this size are planned for installation by 1971, at DSS 43

and DSS 63. In the present configuration, all stations listed in Table IV-1 are

full S-band.

Deep Space Network/Ground Communication System (DSN/GCS). The

DSN/GCS is an integrated communications network linking the various stations

of the DSN when supporting spaceflight operation and miss'ion test. It includes

voice, teletype, and high-speed data links between the DSIF stations and the
SFOF. The functions of the GCS are:
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TABLE IV-1. SUMMARY OF DEEP SPACE INSTRUMENTATION

FACILITY (DSIF)

DEEP SPACE

C OM MUNICA TION

COMPLEX (DSCC)

Goldstone

C anber r a

Madrid

DEEP SPACE

STATION (DSS)

DSS SERIAL

D ESIGNA TION

GEODETIC

LONGITUDE,

DEG.

Echo 12 243.2E

Mars 14 243.1 E

Booroomba A 43 -

Rio Corfio B 63 -

Cape Kennedy 71 279.4E

(Spacecraft

Monitoring)

72 345.7EAscension Island

( Spacecraft Guid-

ance and Command)

Astation not yet authorized - Geodetic longitude will be approximately 149E.

Bstation not yet authorized - Geodetic longitude will be approximately 356E.
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• to relay data and information received by the DSIF to the SFOF;

• to relay status information, operational instructions, ,and JOVE

commands originating in the SFOF to the DSIF.

SFOF Description. The SFOF, located at the Jet Propulsion Labora-

tory in Pasadena, California, contains the ceu_ai control and data operations

complex, providing the means by which mission, flight, and DSN control may be

exercised during the conduct and execution of spaceflight operations. Selected

manned space flight network stations or ships may also be used for early orbit

coverage.

Data System Descriotion I'Ref. IV- 

A block diagram of a Deep Space Station (DSS) is shown in Figure IV-2.

Automatic angle tracking using a simultaneous lobing technique is pro-

vided on both the 85-foot and 210-foot DSIF antennas. In addition, the antennas

will be capable of being pointed with an antenna-pointing computer, using

predictions generated at the SFOF. Automatic angle tracking is available only

in the coherent mode; that is, when the received carrier is locked with a phase-

lock loop. A wide angle, low-gain acquisition antenna is employed for initial

acquisition with 85-foot antennas. Tracking is transferred to the 85-foot high-

gain antennas as soon as practicable. The acquisition feed is mounted on the

85-foot reflector structure and hence has the same rate and acceleration limi-

tations. The mechanical characteristics of DSIF station antennas are listed in

Table IV-2.

Angle data is not an extremely useful orbit determination parameter

for slant ranges much in excess of 100 000 miles (1.6x105 km); the primary

value of angle tracking is to provide convenient antenna pointing in the absence

of accurate angle predictions. Angle data is digitally encoded directly from

antenna shaft positions on the 85-foot antennas, and from a master equatorial

unit which is optically locked to the antenna structure on the 210-foot antenna.

One-way and two-way Doppler measurement capability will be available

at all stations in the DSIF. Two-way Doppler data is presently the most valuable

tracking parameter for orbit determination purposes. The technique involves

transmitting a precision carrier to JOVE where it is coherently shifted and sent

back via the down-link. The ground receiver then compares the phase of the

received carrier with that of the transmitted carrier to extract the Doppler

data. The distance at which the DSIF stations can obtain Doppler data is, of

course, dependent on the sensitivity of JOVE's receiver and the power output
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TABLE IV-2. ANTENNA MECHANICALCttARACTERISTICS
I Ref. IV-2]

85-Foot Acquisition 210-Foot 30-Foot
Antenna Aid Antenna Antenna

DSS-72

Mount

Auto Track l

Maximum Track Rate
(Each Axis)

(EachAxis)

HA-DEC On 85 ft Antenna ALT-AZI

Yes Yes Yes

0.85°/Sec 0.85°/Sec 0.2°/See

_.o /o^_2 0.0. o / o_ 6°/See 2 0. i ° See 2

AZ-EL

Yes

6°/See-AZ

3 °/See- EL

5°/8ec 2

Pointing Error 0.02 ° 0.02 ° 0.02 ° 0.01 °

Max. 2 rms rms rms rms

1Can also be pointed by computer according to predictions.

2During the periods in which angle tracking accuracy is most significant

(e. g. , when data for an initial ephemeris calculation are required), when

strong signal levels are available. The rms tracldng error at receiver

threshold increases to approximately 0.05 degrees.

of JOVE's transponder; if the carrier can be loeked, Doppler can be made

available. Two-way radio-frequency lock is not attempted until one-way lock

has been achieved and requires ,an additional 1 to 3 minutes when the round-

trip transmission time is short. At the communication distance of Jupiter,

the round-trip transmission time is the controlling factor.

One-way Doppler is available by merely locking the receiver to the down-

link carrier. However, the accuracy of one-way Doppler data is limited pri-

marily because of unknown spacecraft auxiliary oscillator drift and has limited

use for precision orbit determination purposes. The one-way Doppler is usually
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no more accurate than • 30 meters/sec. (In the two-way system, the frequency

control is maintained by the ground transmitter exciter and is known precisely. )

After angle acquisition, radio-frequency lock to the spacecraft auxiliary oscil-

lator signal is achieved in 1 to 2 minutes. A priori information about the ex-

pected received frequency considerably reduces the time required to lock the

carrier. It is usually necessary that the signal level be 3 to 6 dB above the

receiver threshold in order to establish carrier lock. The absolute threshold

for maintaining lock is usually taken to be 0 dB signal-to-noise ratio in the

noise bandwidth.

Doppler tracMng rate capability is dependent on the signal level and on

the receiver bandwidth setting. The phase-locked loop included a limiter;

hence, in any one bandwidth position, the bandwidth is a function of predetection

signal-to-noise ratio. Table IV-a I fief. IV-2] is a listing of the strong signal

and threshold loop bandwidths of the Doppler tracking system and the equivalent

maximum frequency rate capability (30 ° phase error) at strong signal.

TABLE IV-3. DOPPLEll TRACKINGSYSTVM SUMMAI/Y

[ l/ef. IV-2]

Threshold Noise

Bandwidth, llz

Strong Signal

Noise Bandwidth, llz
Maxim um

5 50 25 llz/sec

12 120 150 llz/sec

48 255 1200 llz/sec

152 500 7000 llz/sec

The Doppler tracking range will be approximately , 70 Khz/sec,

(AV = ± 45kin/see) from nominal center frequency before a change in center

frequency is required.

Precision ranging capability is also available at each station. The

range measm;ement is related to the time difference between two identical,

separately generated, pseudo-random signals, one generated at the trans-

mitter and the other generated at and synchronized by the receiver for cor-

relation detection. The spacecraft transponder will use a correlation

technique for bit synchronization to reconstruct the code sequence before

retransmission to Earth, or may use a simple turn-around system for the

up-link range code modulation.
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The present ranging system has a maximum unambiguous code length

of 800 000 kin. It is designed mainly for mid-course maneuver orbit pre-

determination and lunar orbit and landing purposes. The present lunar ranging

system in the DSIF has a resolution of 0. 007 p sec round-trip time, corres-

ponding to a range uncertainty of ± 2.1 meters. Worst-case range error

estimate, because of unknown _y_t_m _,_1 .... ;_,.._:--........... _o, .... _,,u_l_ trmi_ponder delay, is

approximately + 15 meters, one way. It is planned that the planetary ranging

system will have comparable accuracy at ranges out to about 10 8 km. This

unambiguous code length would accommodate Voyager-Mars and Venus missions

adequately. Some additional "bookkeeping" would be required to resolve range

ambiguities in JOVE's mission to Jupiter unless the code length is increased
further.

The precision ranging detection system is operable as long as carrier

phase coherence is maintained in the two-way system. The ranging signal is

phase-modulated on the RF carrier. The modulation input is direct-coupled

and has a maximum bandwidth (3dB) of 2 MIIz. The general mode of operation

for the ranging system will be to initiate range modulation, establish range-

lock, and then to remove range modulation and count carrier Doppler cycles to

maintain the range tally.

Planetary ranging equipment with a noncoherent clock will be available

at the 210-foot stations. A noncoherent clock allows a ranging fix without first

locking the Doppler system.

The tracking data handling system (Figure IV-2) processes all tracking

data for transmission to the SFOF by way of the GCS. Processing includes for-

matting the data, adding quality bits, and also time tags.

A command system data processing and transmitter phase modulation

capability will be provided by the DSN at each DSS. A command verification

technique will be used whereby the incoming command message is verified

and translated by the Telemetry and Command Processor into the proper

spacecraft language, and is then transmitted. During transmission, a bit-by-

bit comparison is made for final verification or for command inhibit in case
of error.

The basic design of the DSIF telemetry receiver provides for phase

detection of the telemetry spectrum. In addition, interface equipment and

general purpose computers will provide bit and work detection, special cor-

relations, or other project requirements for special demodulation
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The Telemetry and Command Data Processing (TCP) subsystem provides

on-site data processing capability for digitalcommands and telemetry. Some

limited A/D capability for handling analog signals is planned, but significant

analog processing (such as analog TV, for example) is not foreseen for the

Voyager era, and probably will not be required for JOVE.

The basic deep space frequencies now used by the DSIF are 2290-2300

MHz for receive and 2110-2120 MHz for transmit. The present Doppler system

is designed for a receive-transmit frequency ratio of 240/221.

Hardware System Design

Microwave and Antenna Performance. Performance data are shown in

Table IV-4. The microwave equipment is designed to operate in a diplexed

mode, transmitting at high power, while simultaneously receiving at low noise

temperatures. Both 85-foot and 210-foot antennas will be equipped with a

primary and a backup maser for low-noise reception. A parametric amplifier

is presently used with the acquisition antenna, and with the 30-foot antenna,

DSS-72.

Receiver Performance. The DSIF stations incorporate extremely

sensitive and stable receivers that are designed to track the phase of the

received RF carrier and to detect both amplitude and phase modulation. The

receiver consists of a low-noise preamplifier, mixer, carrier, and sideband

IF amplifiers, detectors, and a voltage-controlled local oscillator, the com-

bination of which constitutes a double conversion superheterodyne automatic-

phase-tracking receiver. Doppler-data are derived from the local oscillator

signal, telemetry data from separate detection channels, angle error data

from separate angle-error detection channels, and range data from a ranging

receiver.

At present each station has two reference receiver channels and two

angle error detection channels. The 85-foot antennas have two additional

angle channels for the acquisition aid antenna. A coherent AGC system is

used which provides gain control for the receiver and an indication of received

signal level.

Transmitter Performance. The DSIF transmitters, operating with the

antenna and receiver subsystem, perform the ftmction of transmitting RF car-

rier frequency, range code modulation, and command information to the space-

craft. Planned capability of the DSIF transmitters is 100kW per channel on

two channels simultaneously, and 400kW on a single channel
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TRANSM ISSION ENVIRONMENT

The design of the telecommunication system for JOVE involves trade-

offs between transmitting power, transmitting antenna gain, and receiving

antenna gain, with modulation and encoding techniques, operating frequency,

path link and other factors in the transmission environment playing important

roles. The influence of these factors on the required effective radiated power

can be seen by examining the communication equation [ Ref. IV-3]

GtG r

P = Pt (1)
r LfL a

where Gt and Gr are the transmitter and receiver antenna gains respectively.

Lf is the free space loss, Lf = (4 ¢R/_)2 where R is the communication dis-

tance in meters and _ is the operating wavelength in meters. L is the system
a

loss and Pt is the transmitter power in watts. The effective radiated power

is the product PtGt .

The effect of various modulation and encoding schemes can be intro-

duced into the communications equation by defining a quantity fi called the

communications efficiency.

E rain
,, . (2)

A plot of/2 versus bit error probability is shown in Figure IV-3. A com-
parison of several modulation methods by Sanders I Ref. IV-4] shows that in

many cases the trade-off between signal-to-noise ratio and bandwidth can be

expressed as

where is the predetection signal-to-noise ratio. B is the prcdetection

--i 7S \
bandwidth, _-_--) is the post-detection bandwidth, and II is the message b_md-

width. Then equation (2) can be expressed as
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P p
min min

fl- e2H - kTH " (4)

Solving (4) for Pmin' substitutinginto (I) and solving for H gives the bit rate

H = /-7 = kTflLfL a (5)

For the case of parabolic reflector antennas, the gain of the antenna

is given by

4n 47r (___D_)2G = k2 Aem _ [0.55 Aphys.] k2 - 0.55 (6)

whereA _ 0.55 Ap .em hys.

Introducing the expression for gain of a parabolic antenna into equation (5) and

fixing certain parameters results in a relation between bit rate, antenna dia-

meter, and range of the form

H = KP t (7)

The constant, K, can conveniently be chosen so that P is in watts. D is in

feet, and R is in astronomical units. Equation (7) c t be used conveniently to

extrapolate the communications parameters for a Voyager mission to Mars

to the distances of Jupiter in order to get an idea of the increased requirements

for these distances. Typical communications parameters for Voyager-Mars

are listed in Table IV-5. For comparison, the corresponding quantities for a

Voyager-Jupiter mission are also listed in Table IV-5. To keep the

same telemetry bit rate, without an increase in transmitter power, requires

that the antenna diameter be increased. From equation (6), it can be seen that

the ratio of the antenna diameters for the two missions will be equal to the

ratio of the communications distances in astronomical units. This means that

the 7-1/2 foot antenna for a Voyager-Mars mission would be increased to 25.3

feet for the JOVE-Jupiter mission. This antenna diameter, however, is larger

than the allowable shroud dimension for the launch vehicle. Therefore, the

antenna diameter is necessarily limited to 20 feet. In order to maintain the

4-19



10-2"

10-3

>-
I-

/

n_

0

e., 10.4
rt

n,,

O
n..
n,,
tl.I

l'-

nn

10"5

10-6

-4

COHERENT PSK j

jCOHERENT

FSK

,db

I i I 1'60 4 8 lW2

STd RECEIVED ENERGY BIT

_3 = N 'B NOISE POWER UNIT BANDWIDTH

i

2O

FIGURE IV-3. BIT ERROR PROBABILITY VS. /_

4-20



TABLE IV-5. TELECOMMUNICATION PARAMETERS

A. Voyager-Mars [Ref. IV-6]

Telemetry data rate

Command data rate

Range at encounter

Space attenuation

Radio Delay
Antenna

15 kb/sec

i bit/sec

1.63 AU

266.5 dB

27.2 rain

7-1/2 ft

B. JOVE-Jupiter

Telemetry data rate
Command data rate

Range at encounter

Space attenuation

Radio delay
Antenna diameter

15 kb/sec

I bit/sec

5.5AU

278.7 dB

92 min

25.3 ft
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same bit rate in the communication system, an increase in transmitted power

from 50 watts (Mars) to 74 watts (Jupiter) is required. Thus, it can be seen

that with comparable experiments for the two distances, a reasonable increase

in both transmitter power _md antenna gain are required for communication

over the longer distances.

For an intelligent application of equation (5), the factors in the right

hand side of the equation must be examined in detail. The transmitting antenna

gain. in general, is a function of the aperture size and the frequency. Also, in

general, higher antenna gains result in narrower bcamwidths with the concomitant

difficulty of stringent requirements on attitude control. The most efficient antenna

type for a given aperture size is the parabolic reflector antenna. For this antenna,

the transmitting antenna gain is given [Rcf. IV-7] by the equation

G : 0.55 rre l)k2 (8)

and the bcamwidth is given by

58

0 = I) degrees. (9)
X

Since the attitude control system in a :l-axis stabilized sp'mecraft will

not maintain the spacecraft pointed exactly in the desired direction, the question

arises as to what is an allowable dead-band bandwidth for the attitude control

system from the standpoint of transmitting antenna pointing loss resulting from

misalignment of the antenna. This question cannot be answered exactly without

a detailed knowledge of the transmitting antenna radiation pattern which is not

unique to the parabolic reflector type of antenna. The radiation pattern of the

parabolic reflector antenna depends upon the way in which the reflector is

illuminated by the feed system, llere, only typical results can be stated. One

of the earliest cases to be studied [ ltcf. IV-8. IV-g] is that in which the apcr-

turc field distribution is of the form

F(r) = (l - r2) p , P:1,2.3. ,... (10)

For this case, the half-power bcamwidth will be approximately

46 (ll)
BWdeg _ DX

and the radiation field will be given

R(0)
V20 2

: _ e (12)
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where

7O

BWdeg
(13)

.............. v.._ v 0_-- _-and 0, in radians, has been assumed to be smM1 C_lo,,i.t_,,,,_ f"r a .....

(6.1 meter) diameter antenna using these equations shows that dead band-

width would be approximately 0.2* for a 1 dB loss.

Balakrishnan [Ref. IV-10] states that, as a rule of thumb, the antenna

design requires attitude stability good.to at least one-tenth of the antenna beam-

width in order not to lose more than about 1 dB of signal strength. Using

formulas (8) and (9) for the transmitting antenna gain and beamwidth, and

applying this rule of thumb shows that for a 1 dB pointing loss, the dead band

bandwidth of the attitude control system would be in the order of 0. 15". Also,

on page t66, Balakrishnan shows a figure which indicates the pointing accuracy

for 0. 25 dB loss vs. gain. Extrapnl_tion ,w t_ e_..... _,..... +_-_* _ _............... _,........ o _,,a_ a _v-uB gain

antenna would have a pointing loss of about 0.25 dB with an attitude control

system dead band bandwidth of around 0. 25". These calculations indicate

that the dead band bandwidth for the high gain antenna will be of the order of a

few tenths of a degree. On the other hand, the dead band bandwidth for the

medium gain antenna would be on the order of i* to 2*.

A space loss is incurred which is caused by the spreading out of waves

from the source. The space loss (Figure IV-4) is given by the equation

Lf = (47rR/),) 2 The free space transmission loss over a distance of 5.5 AU

is 278.7 decibels.

Faraday rotation is the rotation of a plane polarized wave by virtue of

its interaction with the ionosphere. Theoretically, infinite attenuation, cor-

responding to complete cross-polarization, could occur if the receiving station

had only one plane polarized antenna. If two orthogonal antennas and diversity

reception are used, or one circularly polarized antenna, the maximum loss is

3 decibels. Faraday rotation is inversely proportional to the square of the

frequency, but in the worst case, does not become negligible dropping below

10 ° until about 10 GHz is reached. Under average conditions, it is negligible

at 5 GHz but cannot be neglected at 2 GHz. For two circularly polarized

antennas with the same sense of polarization the Faraday rotation would be 0 °.

It is extremely difficult, however, to synthesize and maintain complete circular

polarization. The antennas of the DSS are ellipitcally polarized, and if the

spacecraft antennas are designed with the same sense of ellipitieal polarization,

then the polarization loss between the spacecraft and ground station antennas

can be computed [ Ref. IV-l] as
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4 AtAr + (1-A_)(1-A2) Cos2e ]K _ _ 1+ r
p L (1 + A_) (i + A2) jr-

(14)

(0 equals the orientation angle between _polarization e!!ipses, _..__n__ _.._,,.,__*_-*_

same and opposite sense polarization respectively. )

A sample calculation will clarify the use of equation (14). It is assumed

in the following example that 0 = 90 ° , and that the same sense of polarization
prevails.

4AtA r + (1 -At2 ) (1 - A2r) Cos 180" -]K _1 1+ J
P (I+A_) (l+A2r)

A t = 1.0 + 1.0dB A = 0.8dBmax.
r

I'1= 0.9 or ...A = 0.93 max.
r

7

4 (0.9) (.93) + (1 -0.92 ) (1 - 0.932 ) (-1) /

(1+ 0.92 ) (1 + 0.932 ) ]

K _ 0.05dB
P

The characteristics

Table IV-4.

+ 0. 01dB

- 0.17dB

[ Ref. IV-2] of the DSS antennas are shown in

One of the parameters that determine telecommunications system per-

formance is the system noise temperature, or the noise spectral density. In

turn, the noise spectral density depends on the antenna temperature and the

equivalent noise temperature of the receiving devices. The measured contri-

butions to the antenna temperature will be thermal noise intercepted by the

side-lobes of the ground antenna, and noise caused by the ground or spacecraft

antenna pointed at the sun or Jupiter. If the sun appears in the beam width of

the spacecraft or ground antennas, its effect will be to increase the total receiving

system temperature. Considering the antenna to be a generator of noise power

for the rest of the system, it can be considered a resistor, the value of which
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is the radiation resistance of the antennaat temperature T. This temperature
is defined as that which a resistor must haveto produce noise power equal in
amount to the antennanoise power. Computer trajectories indicate that the
sun-spacecraft-Earth angles at certain instances will be approximately 0°.
This meansthat the spececraft antennaand the DSIF antenna, during these
periods, will be pointed at the sun. Whenthe spacecraft is in the vicinity of the
target, the DSIF antennamay be pointed directly at Jupiter for a short period
of time. Again, whenthe probe gets behind Jupiter, the planet may be in the
spacecraft antennabeam. Sincethe sun andJupiter radiate a considerable
amount of noise in the range 2100to 2300MHz, this noise will increase antenna
noise temperature and degrade system performance somewhat. The amount of
radiation from Saturn, Neptuneand Uranus is much smaller than that from
Jupiter andwill not degrade system performance.

If the antennais in thermal equilibrium with its surroundings, its equi-
valent temperature can be expressed (Ref. IV-9) as

Ta = __14;r f f_2 G(0, _b) T s (0, _b) d_2s. (15)
S

Assuming that the source is directly on the antenna beam axis for the case when

antenna beam solid angle _2b is much smaller than _2s, Ta can be approximated
by

(16)

In the other extreme, when the source is much larger than the antenna beam

width, T is approximately equal to T . The average source temperature can
a s

be computed from the measured flux densities using the expression

where

S )k 2

T - (17)
s 2k_

S

2k_ T
S S

s = _2 " (18)

For small solid angles _2 can be accurately approximated by _ _ _-- 0 2
s s 4 s"

This last relation expresses the total noise radiation power density, randomly

polarized, emitted from a black body at a temperature T within a frequency

band df. Only half of this energy can be received by a single given antenna.
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An antenna can be sensitive, however, to only one of any two possible orthogonal

polarization modes [Ref. IV-12]. That i_, an antenna cannot be simultaneously

right and left hand circularly polarized, or simultaneously vertically and hori-

zontally polarized. Thus, in terms of the power density available per polari-
zation mode, we have

kT
S df - )_2 dr. (19)

At 2.3 GHz, the planet Jupiter represents a black body source of temperature

1000 ° K [ Ref. IV-13] while the quiet sun represents a black body source of

temperature 100 000"K [ Ref. IV-14]. The disturbed sun temperature is

approximately 200 times greater.

An analysis of the antenna temperature contributions caused by the sun

and Jupiter was made and the results {Figs. IV-5 and IV-6) indicate that for

distance of 3 AU or less, the increase in antenna _mperat,,_re hey._ _v-.,,v_gnf_ para-

bolic antenna looking at the sun will be appreciable. Also, the increase in

antenna temperature caused by the DSIF station looking at the sun will be over-

powering. The increase in antenna temperature of a medium gain parabolic

antenna would probably be considered negligible in comparison to the inherent

noise of the receiving system for the spacecraft at distances from the sun of 1
to 2 AU.

If the planet Jupiter appears in the beamwidth of the DSIF station during

the encounter, the increase in antenna temperature will be only approximately

5 ° K which would be considered a negligible increase. On the other hand,

during orbital operations at the planet Jupiter, the planet would subtend the

beam width of the 20-foot parabolic antenna, and in those attitudes in which

the spacecraft looks directly at the planet, the increase in antenna temperature

would be 1000°K. This would approximately double the noise power in the

receiver, assuming a crystal mixer RF front end.

JOVE RAD I0 SYSTEM

The JOVE radio subsystem is similar to the radio subsystem envisioned

for Voyager class vehicles. Designed to be compatible with the existing DSIF,

the radio subsystem must perform the functions of telemetry modulation and

transmission during all phases of the JOVE mission, command reception and

demodulation, and turn-around frequency translation and transmission over

the ranging channel.
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Block Diagram

A block diagram of the JOVE radio subsystem Figure IV-7 shows that the

system combines three transmitters and three receivers in a redundant fashion.

Some of the general considerations of this design are:

a. No single failureof the radio subsystem will result in a failure to

achieve mission objectives.

b. Three traveling wave tubes {TWT) amplifiers are used and are con-

nected such that the two 50-watt amplifiers can be operated separately or in

parallel. The reasons for choosing to use two amplifiers in this connection

are thermal control and reliability. A single high power high wave tube con-

centrates a great deal of thermal energy in one location. It becomes difficult to

reject the dissipated heat with thermal control louvers of a standard size. By

using the lower power devices in a parallel approach the 100-watt range of RF

power can be obtained, and if one of the TWT's quits working there is a modest

degradation of power, not the complete outage that would result if a single high

power tube failed. Also, the lower power tubes are likely to be more reliable

since higher powered tubes require higher voltages, high cathode current

densities, and temperatures. This means they have shorter operating lifetimes.

There is no information currently available on the lifetimes of high powered

devices, but available data indicated that relatively low powered tubes, up to

20 to 30 watts, can be expected to last at least five years, and perhaps as long

as ten years. Presumably, by the time JOVE is launched, 50 watt traveling

wave tube amplifiers will have reached the same level of reliability.

c. Any of the three exciters shown may be used for any one of the three

power ampiifers, or for the two 50-watt amplifiers in parallel.

d. Switching and diplexing will be arranged so that itis possible to call

up the receivers through any antenna, and to transmit through a selected antenna.

e. A receiver selector gate will inhibit receiver outputs to the command

and ranging units unless the receiver is in phase lock. If more than one receiver

is in phase lock, receiver outputs will be selected with a priority in onr of two

modes, a maximum coverage mode or a maximum gain mode. Telemetry in-

formation is applied to all exciters in parallel.
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Referring to the functional block diagram of the JOVE spacecraft portion
of the communication system (Figure IV-7) the major subsystems will now
be described.

Antennas

The high gain parabolic antenna will be used for transmission at 2295

MHz and for reception at 2113 MHz. It will be 20 feet (6.1 meters) in dia-

meter, with a maximum gain, at 2295 MHz, of 40 dB above isotropic, and a

beam width of about 1.5 degrees full cone angle. The ratio of focal length

to diameter is 0.4. In its presently conceived mechanization, the feed assembly

is a Cassegrainian type [ Ref. IV-12, IV-15, IV-16] with a hyperboloidal subre-
fleetor located with its focus at the paraboloidal focus and an S-band microwave

horn located at the other focus of the hyperboloid. The hyperboloidal surface

has the property that it is the locus of points such that the difference in distances

to the two foci is a constant. Thus, radiowaves emanating from the microwave

horn and reflected from the hyperboloidal subreflector reach the paraboloid with

the same relative phase relationship they would have had if they had originated

at the focus of the paraboloid. This results in a collimated radio beam from the

antenna which is desirable from the standpoint of gain, and at the same time, it

simplifies the location and support of the horn feed. There is, of course, some

aperture blocking by the subreflector but experimental optimization of the feed

system can result in antenna efficiencies at least as high as those obtained with

conventional feed systems.

The use of a large fixed parabolic antenna imposes severe requirements

on the attitude control system. The entire spacecraft must be oriented in order

to point the antenna in the desired direction. In order to keep the pointing loss

or loss because of misorientation of the antenna below about 1 dB, it is necessary

to maintain the pointing accuracy to within 1/10 of a beam width. This means

(Fig. IV-8) that the pointing accuracy must be within 0.15 degrees. A study of

the cold gas requirements for attitude control to this accuracy in a cruise to

Jupiter has shown that it is feasible to maintain this pointing accuracy. A sur-

vey of attitude control sensors has shown that it is feasible to maintain the

spacecraft attitude to within this accuracy.

A study of the communication circuit for this mission shows that a medium

gain antenna can be used for telemetry and command communication during the

early phases of the flight. A two-axis gimballed 36-inch diameter parabolic

reflector antenna is used for the medium gain antenna. This antenna is mounted
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on a boom, is stowed during the spacecraft launch, and is deployed after injection

into the heliocentric cruise. The feed system for the medium gain antenna is a

pyramidal cone. The medium gain antenna has a variety of uses. It can be used

as a backup system for the high gain antenna, and it can be used as the primary

telemetry antenna during the early phases of the heliocentric cruise phase.

Transponder

This section contains a discussion of the transponder, Figure IV-9° The

transponder selected for the JOVE mission is similar to the Mariner trans-

ponder, a reliable design which is comparable with the DSIF requirements. The

operation of the transponder is described below.

The transponder is designed to receive the uplink signal consisting of a

carrier phase modulated by the ranging and command information. A synchronous

detector controlled in phase by a phase lock loop separates the composite com-

mand signal and PRN range code from the carrier, and sends the composite

command signal to the command demodulator. The PRN range code is trans-

ferred to a downlink phase modulator. The downlink consists of a 2295 MHz

carrier phase modulated by the PRN range code, and a phase modulated tele-

metry subcarrier. The transponder itself comprises a triple conversion super-

heterodyne receiver, and a phase-modulated transmitter. The phase of all local

oscillators is controlled by means of an automatic phase control loop which is

locked to the uplink signal. Frequency and phase information for the first and

second detectors of the transponder is obtained by means of harmonic frequency

multiplication of the VCO signal.

The frequency acquisition procedure for the spacecraft transponder is as

follows. If the spacecraft receiver is not in phase lock, the transmitter fre-

quency is derived from a crystal controlled auxiliary oscillator. For a space-

craft frequency of 2295 MHz, the frequency of the auxiliary oscillator would be

19. 125 MHz. The frequency of this auxiliary oscillator is multiplied by 240

to the frequency 2295 MHz and transmitted by means of the spacecraft antenna

to one of the DSIF stations. When the DSIF antennas are pointing in the proper

direction, they receive the downlink signal from the spacecraft and the uplink

signal derived from the DSIF frequency standard by means of a frequency syn-

thesizer is transmitted to the spacecraft on a frequency of 2113 MHz. When

this signal is acquired by the spacecraft phase lock receiver, a transfer com-

mand from the spacecraft AGC system, this connects the auxiliary oscillator

and the exciter frequency is derived from the lock loop voltage controlled
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oscillator (VCO). The VCO signal is then multiplied, amplified, and trans-

mitted by means of the spacecraft antennas (downlink) to the DSIF. At this

time, two-way Doppler tracking and automatic angle tracking become available.

Power Amplifiers [Ref. IV-5, IV-18 

Successful communication from the spacecraft at the distances involved in

this mission depends, to a great extent, on the devices generating the output

signal. A large array of devices present themselves for possible application.

Among these devices are: tunnel diodes, bulk effect devices, transistors, diode

multipliers, parametric up converters, vacuum triodes, klystrons, amplitrons,

and traveling wave tubes.

The power levels of solid state devices at present is less than a few watts,

thus ruling out these devices in a Jovian mission. We are, therefore, con-

strained to the use of vacuum tube sources, among which are: triodes, voltage

tunable magnetrons, klystrons, amplitrons, and traveling wave tubes. The

voltage tunable magnetron has the advantage of simplicity in some applications,

since it is essentially a power oscillator which can be directly frequency modu-

lated by varying the anode voltage. Frequency stability and noise characteristics,

however, present a problem in an interplanetary mission, since good frequency

stability is important. Triode cavity amplifiers can supply power levels of 20

watts at 2 GHz. The lifetime of tubes operating at high power levels is around

10 000 hours. Electrostatically focused klystron amplifiers (ESFK) are avail-

able for high-power, narrow-band applications. Prototype models of 50 watt

ESFK power amplifiers now exist. They are basically 20-watt versions operated

at higher supply voltages. Some developmental work would be necessary in order

to develop a flight-qualified Electrostatically Focused Klystron amplifier.

Efficiency would probably run around 25 percent and weight for a 20-watt unit

would be around 2 pounds with 3-1/4 inches diameter. Bandwidth for the klystron

amplifier would be in the neighborhood of 0.1 to 0.3 percent. The expected life
would be in the order of 50 000 hours.

Amplitrons (crossed field backward wave amplifiers) present an attractive

advantage in that redundant amplifiers can be provided without RF switching.

With amplitrons, series connection is used and the deactivated unit presents

about 0.5 dB insertion loss. Further problems with the amplitron tube, how-

ever, such as the requirement for a complex high-voltage power supply mated

to the individual tubes characteristics, lifetimes in the neighborhood of 10 000

hours, sensitivity to loading and to power supply voltages make the amplitron

unattractive, at the present, for the JOVE mission.

4-36



Traveling wave tube (TWT) amplifier flight experience is extensivc.
Telestar, Relay, Syncom, Surveyor and Pioneer6 are some examples. Tests
on a WJ-274 indicate that an overall efficiency of 35 percent can be expected
by careful selection and matching of the tubeand power supply. Tests also
•,,_,.,_ Ll_aLL_ 20-watt tube canbe operated at a 50-watt level, with 40 percent
efficiency, by changingthe power supply voltages. No information was found
on the WJ-274 lifetime operated at the higher power level. Traveling wave tubes
have demonstrated typical lifetimes of around30 000 hours, and life is pre-
dicted to reach as high as 90 000 hours for some low-power units in development.
Wide bandwidth, about 50 percent, is commonplace, eliminating temperature
effects on center frequency, common with cavity loaded triodes and klystrons.
It seems reasonable that in the time period of the JOVE mission, 50-watt
traveling wave tubes, with high efficiency andrealiability, will have beendeve-
loped and space qualified.

There seems to be no needat present to consider power levels higher than
about 50 watts, becauseof thermal control problems and reliability. If two 50-
watt amplifiers are operated in parallel, the total power output is 100watts.
A single high-power traveling wave tube would concentrate a great deal of thermal
energy in one location. It would then becomedifficult to reject the dissipated heal
with thermal control louvers of reasonablesize. By using two lower power de-
vices in parallel, the t00-watt range of RF power can be obtained, and if one of
the TWT's quits working, there is a modestdegradation of power, 3 dB, not the
complete outagewould result if a single high-power tube failed. Also, the lower
power tubes are likely to be more reliable, since higher power tubes require
higher voltages, high cathodecurrent densities, and temperatures. This means
that they have shorter operating lifetimes. Therefore, a combination of two
50-watt traveling wave tubes and one 20-watt traveling wave tube was chosenfor
the power amplifier section of the JOVE spacecraft.

Switching is to be arranged so that the two 50-watt traveling wave tubes
can be operated separately, or in parallel for high power requirements. A 20-
watt WJ-274 traveling wavetube (Table IV-6) [Ref. IV-24] is provided as a back-
up amplifier and can be used at the shorter distances where the high power levels
are not required. The WJ-274 has its own power supply which provides all required
voltages, high voltage time delay function, telemetry signal conditioning of impor-
tant currents and voltages, and RFI suppression whenmountedin the appropriate
enclosure. The tube and power supply are in a common housing with conduction
through the bottom surface to a heat sink.
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TABLE IV-6. CItARACTERISTICS OF 20 WATT TWT

4-38

A. WJ-274 Characteristics

Performance:

Frequency Range

Minimum power output

R- F input

Overall efficiency

(includino heater)

Total D-C power input

(including heater)

Cooling

Focusing means

2.2 - 2.4 Gllz

22 watts

_-22 dbm

35% minimum

64 watts maximum

Conduction only

PPM

Electrical:

l leater voltage

lleater current

Anode voltage

Anode current

llelix voltage

Collector voltage

Collector current

Cathode voltage

Cathode current

3.0 volts

0.95

+i00 volts

1.2ma

Grotmd potential

-520 volts

44 ma

-1610 volts

52.2 ma



TABLE IV-6.

Mechanical:

Len_h

Cross section

(excluding connectors)

Weight

D-C connector

R- F connectors

CHARACTERISTICS OF 20 WATT TWT

( Continued )

vo AL_L_ O

0.90x0.95 in. max.

12 ounces

Fly leads

TNC female

B. WJ-274 Power Supply Characteristics

EIectricah

Power supply efficiency 85 percent

(dc-dc) including telemetry and

time delay, at worst case conditions

(high line voltage and high temperature)

Regulation caused by time and

temperature

Temperature Range

0.07 percent

-40 to +85 ° C

Power input for 63 watt D-C

output

74 watts

Mechanical:

Dimensions

Volume

3
2 x 1-_- in.

58.5 cu in.

Weight 3.5 lb

Cooling Conduction only

4-39



Telecommunications Design Control Tables

The telecommunication design control tables for the JOVE spacecraft/

DSIF telemetry link and the DSIF/JOVE spacecraft command link are given in

Tables IV-7 and IV-8. In the telemetry link calculations, it is assumed that

the spacecraft is transmitting 100 watts power, using the 20-foot diameter

antenna (40 dB gain), and that the 210-foot diameter DSIF and low noise receiver

are used. Elliptical polarization of both the spacecraft and DSIF antennas is
assumed.

In the command link calculations, it is assumed that the DSIF transmitter

output power is 400 kW, that a 210-foot diameter DSIF antenna (61 dB gain)

is used, and that a 5-dB gain spacecraft antenna is used. Both the trans-

mitting and receiving antennas are assumed to be ellipitically polarized, with

the same polarization loss as assumed in the telemetry link calculations.

The bit rate varies inversely as the square of the distance. Thus, the

bit rate is diminished by a factor of four when the distance is doubled (Fig.

IV-10). The telecommunications system for JOVE has significant growth

potential and as currently configured will provide significant telemetry rates

at the greater distances of the outermost planets of the solar system

TELEMETRYSUBSYSTEM

Function

The principal functions of the telemetry subsystem on the spacecraft are
to time multiplex engineering and scientific data samples and to encode them

for efficient modulation of the spacecraft to Earth RF carrier. The subsystem

is specifically required to perform the following tasks:

a. Transduce engineering parameters into electrical signals.

b. Time multiplex engineering and scientific measurement signals.

c. Convert engineering data samples to binary words.
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TABLE IV-7. TELECOMMUNICATION DESIGN CONTROL

PRCIT 1,'CT. .JOVE"

CHANNEL: SC/DSIF Telemetry

MODE: 100w/ 20 ft Ant./210 ft Ant.

NO.

1

2

3

6

7

8

9

10

11

12

13

14

15

it)

17

18

19

2O

21

PARAMETER VALUE TOLERANCE SOURCE

Total Transmitter Power 50 dbrn Assumed

Transmitting Circuit Loss -3, 00 dB -1.00 dB Assumed
F3.00 dB

Transmitting Antenna Gain 40.00 dB .1.00 dB Assumed

Transrnitting Antenna Pointing Loss -1.5 dB +1.50 dB Assumed
-0.50 dB

Space Loss -278.7 dB Calculated

Polarization Loss

lleeeiving Antenna Gain

l/eeeiving Antenna Pointing Loss

-0.05 dB

61.0

_0

-2o 00

+0.01

-0.17

_1.00

Included in 7

Iteceiving Circuit Loss 0 Unknown

Net Circuit Loss -182.25 _6.51 Calculated
-5.67

Total Received Power Calculated

Receiver Noise Spectral Density (N/B)

T Sfstem = 50°K

-132.25

dbm

-182.12

dbm

-3. O0Carrier Modulation LOss

Received Carrier Power

Carrier APC Noise BW (2BLo= 24 llz)

CAI_RIER PI,:RFORMANCE - TRACKING

(One-way)

Threshold SNR in 2BLo (2BLo = 24 II_)

F6.51

-5.67

C alcul ated

EPD-283

Included in 7

Assumed

+0, 92
Calculated

-1.04

EPD-283

Unknown Assumed

EPD-283

*6.51
-132. 25

dbm -5.67

+0.0
13.8

-0.0

0.00

-168.32 _7.43

dbm -6.71

÷7.43
+33.07

-6.71

2.00

+7.43
-166.32

-6.71

+7.43
_31, 07

-6.7I

Assumed

Threshold Carrier Power

Performance Margin Calculated

CARI/IER PERI,'ORMANC E-TRACKING

Tuo- way)

Threshold SNR in _')BLo (2BLo : 24 IIK) Assumed

Tllreshold Carl'ier Power
Calculated

Performance M,n rgin Calculated
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TABLE IV-7. TELECOMMUNICATION DESIGN CONTROL

(TELEMETRY) (Continued)

PROJECT: JOVE

CIIANNE L: SC/DSIF/Telemctry

MODE: 100 w/20 ft Ant./210 ft Ant.

NO. PARA M ET ER VA LUE TOLERANC E SOURC E

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

CARRIER PERFORMANCE

Threshold SNR in 2BLo (2BLo : 24 tI_)

Threshold Carrier Power

Performance Margin

DATA CIIANNEL

Modulation Loss

Received Data Subcarrier Power

Bit Rate (Bit Rate = 3740 BPS)

Required ST/N/B (Pb e = 1 x 10 -3)

Threshold Subcarrier Power

Performmnce Margin

SYNC CIfANNE L

Modulation Loss

Receiver SYNC Subcarrier Power

SYNC APC Noise BW (2BLo = 1.00 II_,)

Threshold SNR in 2BLo

6.00 dB - Assumed

-162.32 _7.43 dB Calculated

dbm -6.71 dB

-7.43 dB
+27.07 dB Calculated

-6.71 dB

4.50 dB

-139.75

dbm

35.73 dB

7.00 dB

-145.12

dbm

L6.51

-5.67

*7.43 dB

-6.71 dB

+7.43 dB

-6.71 dB

Assumed

Calculated

Assumed

Fig. IV-3

Calculated

0 Calculated

-4.50 Assumed

_'(;. 51
-139.75 Calculated

-5. 67

0 - A s s u m e d

24 dB - Assumed

Threshold Subcarrier Power -158.12 Calculated

7.43 dB

Performmme Margin _18.37 -6.71 dB Calculated
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TABLE IV-8. TELECOMMUNICATIONDESIGNCONTROL
(COMMAND)

PROJECT: JOVE

CHANNE L: DSIF/SC/-Com mand

MODE: 400 Ioh,/210 ft Antenna/5 dB Antenna

NO.

i

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

18

19

2G

21

P_RAMETEII

Total Trnnsmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing I_ss

Space Loss

Polarization Loss

Receiving Antenna G_dn

Receiving Antenna Pointing Loss

Receiving Circuit Ix>ss

Net Circuit Loss

Total Received Power

Receiver Noise Sl_-'etral Density (N/B)

TSystem : 26G0°K (10dB N-F)

Carrier Modulation l_)ss

Received Carrier Power

Carrier APC Noise BW (2BLo = 24 [lz)

CARRIER PERFORMANC E-TRACKING

(One-way)

Threshold SNI1 in 2BLo (2BLo = 24 I1_)

Threshold Carrier Power

Performance Margin

CARHIEII PERFORMANC E-TRACKING

(Two-way)

Threshold SNR in 2BLO (21,LO : 24 II_)

Threshold Carrier Power

Perlormnncc Margin

VA LUE TOL lC I/ANC E

86 dbm

:G. 50
-G. 5 dB

60.0

-278.7 dB

-. 05 d B

5. GO d B

-1.5G dB

-3.00 dB

-21S. 75

-132.75

dbm

-16fl. 45

dbm/cl ,s

-3. GO dB

- 135.75

dbm

13.8

0. G0

-152.65

- 16.9G

2. OG

-1. GG

tO. 8 dB

Included in 4

:-0. G0 dB

-2.00 dB

_G. 01 dB

-G. 17 dB

Unknown

-2i. G0 dB

-1.00 dB

+2.31 dB

-4.97 dB

:2.3t

-4.97 dB

U nli no _, n

Unknown

SOUIIC E

JPL

FPD-2E3

Assumed

JPL

EPD-283

Assumed

Calculated

Assulncd

Assumed

Assumed

Assumed

Calculated

Calculated

C dculntcd

Assumc(I

Assumcd

"2.31 dB
Calculated

EPD-2S3

-4. !17 dB

-2.21

-4.97

A_sumcd

Calculated

C:lleul nted

,_,ssnl|lCd

...... 4 ....
- 15G. (;5

Calculated
dbnl

4-2.31
* 14.90 Calculated

-4.97
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TABLE IV-8. TELECOMMUNICATION DESIGN CONTROL

(COMMAND) (Continued)

PROJECT: JOVE

CttANNEL: DSIF/SC - COMMAND

MODE: 400 kw/210 ft Antenna/5 dB Antenna

NO.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

PARAMETER VALUE

CARRIER PERFORMANCE

Threshold SNR in 2BLo (2BLo = 24 Ha)

Threshold Carried Power

Performance Margin

DATA CIIANNEL

Modulation Loss

Received Data Subcarrier Power

Bit Rate (B.R. = 1 BPS)

Required ST/N/B Ph e = 1 x 10 -6

6.00

-J46.65

dbm

_10.90

TOLERANCE SOURCE

+2.31

-4.97

_2.31

-4.97

Assumed

Calculated

Calculated

-4.50 - Assumed

+2.31
-137.25 Calculated

-4.97

0 dB Calculated

:2.31

-4.97

9.5 dB Fig. IV-3

C aleulatedThreshold Subcarrier Power -156. 95

+2.31
Performance Margin 19.70 dB -4.97 Calculated

SYNC CHANNEL

-4.50

-137.25

0dB

24 dB

-]42.45

5.20

Modulation Loss

Receiver SYNC Subcarrier Power

SYNC APC Noise BW (2BLo = i H_)

+2.3t

-4.97

!-2.31

-4.97

÷2.31

-4.97

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

Assumed

Calculated

Calculated

Calculated

Calculated

Ca [eu]ated
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FIGURE IV-10. BIT RATE VS. DISTANCE
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d. Store digitally encoded video data if required.

e. Phase shift key a subcarrier with a binary signal.

f. Generate a cyclic binary pseudorandom sequence for use in

synchronizing the encoding and decoding of the telemetry data.

g. Phase shift key a second subcarrier with the sync code.

h. Combine the two subcarries into a composite telemetry signal.

A block diagram of the entire telemetry subsystem, including

external commands and synchronization, is shown in Figure IV-11.

Multiple Transmission Modes

Justification. The intent of multiple modes of transmission is to assure

maximum return of information. Four of the primary factors which influence

the return of information thereby necessitating definition of distinct trans-

mission modes are:

1. Data priority: During different phases of the mission certain sources

of information are of greater importance than others. This necessitates design

of multiple data formats and transmission rates during different phases of the

mission.

2. Allowable bit rates: Some factors which influence bit rates are:

• Distance between the spacecraft and Earth,

• Instability during power maneuvers and periods of acquisition

require use of omni directional antennas which result in lower

available bit rates,

• Periods of occultation, and

• Possible antenna failure.

3. Dynamic range and rates of change of raw data: It is desirable to

separate the engineering and science data as completely as possible. The

reason for this is that engineering measurements lend themselves readily to
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fixed sampling rates. Onthe other hand, scientific experiments, by their
very nature, may yield data orders of magnitude different from that anticipated.
For this reason employment of multiple data formats and varied transmission
rates are mandatory.

4. Data storage requirements: Particular mission phasesrequire
data storage. This requires generation of several commandand synchroni-
zation pulses to assure that record and playback information can be accurately
detected at the DSIFground station.

Transmission Mode. The overall mission to orbit a spacecraft about

Jupiter has been broken up into seven (7) transmission modes. Three modes
have been defined between launch and orbit insertion. The other modes which

have been defined are two orbital modes, one occultation mode and one back-

up mode in case the high gain antenna configuration should fail. The seven
transmission modes are:

1. Acquisition mode

2. Normal cruise mode

3. Maneuvers mode

4. Periapsis mode

5. Apoapsis mode

6. Occultation mode

7. Backup mode

Data Handling

Data Sources

Engineering Housekeeping Data. It is anticipated that there will nominally

be some three hundred engineering channels to monitor during the mission. Typical
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engineering measurements to be handled by the engineering data encoder are

temperatures of anten_n_as, electronic p_ckages, b_tteries_ RTG, and cold gas

storage bottles; also sun sensor outputs, mode switch positions, cold gas

storage pressure, power system voltages and currents, and TWT voltage.

The amount of engineering data collected and transmitted during each phase

of the mission is given in Table IV-9. The number oi engineering data channels

selected were arrived at by comparison with the Mariner IV mission. The

engineering data provided for in JOVE exceeds the Mariner IV mission by a

factor of 3. This amount of data is required primarily because of the increased

complexity of the JOVE spacecraft. The particular bit rate selected was the

most easily mechanized figure which came closest to the desirable bit rate.

Non Scan Science Data. The following instruments were selected

by the Experiments Group to provide scientific information during the total
mission:

• Cosmic ray telescope,

• Cosmic ray detector,

• Microwave radiometer,

• Curved surface plasma analyzer,

• Faraday cup analyzer,

• Trapped radiation detector,

• Three axis fluxgate magnetometer, and

• Micrometeoroid detectors.

Planet Scan Data: The following instruments will be carried on

the spacecraft in order to make visible and infrared measurements while

orbiting the planet:

• Visible and ultra-violet photometer,

• Infrared radiometer,

• High resolution television system,
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• Wide angle TV system,

• Infrared spectrometer, and

• Visible and ultra-violet spectrometer.

Science Data System (SDS)

Function. The science data system contains two independent subsystems.

A realtime science data system (RT-SDS) automatically controls and synchro-
nizes the data gathering sequence of the cruise or nonscan data from launch to end
of mission. The RT-SDS also processes and formats all the diversified science

data into a single stream of binary data for the telemetry system. The non-real-

time or NRT-SDS controls the encounter sequence and puts all planet scan data

into formats for recording and subsequent transmission back to Earth. The

NRT-SDS is not energized until approximately 800 days after launch.

RT-SDS - Data Format (Fig_ares IV-12 and IV-13). Two RT science
data formats have been defined. There are.

a. Cruise format - nonscan science data is collected in 36 word blocks

with 10 bits per word, approximately every 7 seconds, using engineering data
encoder bit sync:, and

b. Orbital format - in the realtime periapsis transmission mode non-

scan data will be collected and put into formats of two blocks with 36 words of

10 bits each, spaced at 40-word intervals. The intervening 40 words are

engineering identification data. During apoapsis transmission mode, when

the NRT-SDS is in operation, realtime data is temporarily stored in 108

minor word frames on magnetic core memories while blocks of planet scan

data are played back from the tape recorders and transmitted back to Earth.

NRT-SDS - Data Format. Planet scan data sampled at nominally 50 000

bits per second during the periapsis transmission mode is stored on magnetic

tape recorders at the same rate. The data will be recorded in frames of 106

bits upon command from the SDS. A total of 2.1 x 107 bits/orbit of planet scan

data is anticipated. Three tape recorders are provided which in series provide

a maximum storage capacity of 6 x 108 bits or 600 frames.
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Engineering Data Encoder (EDE)

Function. The function of the Engineering Data Encoder is to sample,

encode and commutate all engineering data. Each data sample will be quantized

into a seven bit binary word. Data words will be encoded into one of three fixed

data formats by the transfer register depending on which transmission mode is

in use. Ultimately all engineering and science data will be time shared in order

to phase shift key a single subcarrier oscillator. Generation of necessary word

and bit synchronization pulses are discussed in detail in a subsequent section.

Engineering Data Format. Data priority considerations, in addition

to a desire to maintain a minimum level of complexity, led to the choice of

four data formats (Fig. IV-12). Selection of, and rate of sampling, of each

of the formats depends on selection of a given transmission mode. Each of the

formats will contain frame synchronization as well as mode and format identi-

fication pulses. The four formats selected were:

a. Cruise format: Nominally 250 cruise channels are formatted into

36 word blocks and transmitted serially through high gain antenna in real time

at 800 bits per second.

b. Acquisition and Maneuver format: Nominally 100 maneuver channels

are formatted into 72-word blocks to be simultaneously stored and transmitted

through either the med. gain antenna or omni antenna at the preselected bit
rate for each transmission mode.

c. Orbit formats: There are separate formats depending upon orbit

location, i.e., periapsis and apoapsis. Nominally 300 orbital channels are

put into formats with 36-word blocks and either transmitted in real time during

the periapsis transmission mode or temporarily stored in blocks of 108-word

minor frames to be later transmitted along with playback of planet scan data

through the high gain antenna at 800 bits per second.

Synchronization

Requirements. Two types of synchronization are required. They are:

a. Word and bit sync pulses which includes stepping of the commutators,

analog to digital converters, readout of data from the science data systems, read-

out of the event registers and timers, and playback of stored video or maneuver
data.
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b. Precise indication of the phase of the unmodulated data carrier.

station.

Mechanization

After much consideration a design evolved with which all synchronization

is accomplished with one system (Fig. IV-14). The basic timing for the sub-

system is derived from a clock frequency (14. 4 kHz) on the spacecraft which
is divided down to provide two subcarrier frequencies, one for data and one

for synchronization. Synchronization pulses are generated with the use of a

redundant pair of pseudorandom (PN) generators which generate maximal

length cyclic codes. The advantages of pseudorandom codes are twofold.

a. PN codes have two level bi-polar auto correlation functions, and

bl PN codes are easily mechanized using shift register generators and

module two adders in the feedback loop.

Word sync pulses occur once per cycle of the code while the data sync bit

pulses occur once every 9 PN code bits. The result is 7 data bit sync pulses

for every cycle of the PN code. Thus, by selecting the appropriate frequency

divider to drive the PN code generators, data bit sync timing pulses at a rate

of 50, 100 or 800 bits per second are generated. A particular data rate is

selected by command from the programmer depending on which transmission

mode is in use. One engineering data word pulse is generated each cycle of

the PN code and an external decode counter is used to supply one science data

word pulse for every 10 data bit sync pulses.

Based on Mariner IV a data word error of 10 -2 was selected. For an

uneoded coherent PSK communication system the corresponding required bit

error probability is

Pe b = I - (1- peW) 1/n

which can be expanded in series form and approximated by

pe b _ peW/n

Thus for science data where n = 10
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Peb (science) =
10-2

!O

and for engineering data n = 7

= 10-3

h ia-2
Pe w (eng.) = .v = 1.43 x I0 -_

7

These required bit error probabilities dictate a certain communication effi-

ciency or received signal to noise ratio (Fig. IV-15) which, coupled with

transmission losses, circuit losses, antenna gains and noise sources dictate

the allowable data transmission rates (bps).

In order to convey the bits and word sync timing to the ground stations

for use in synchronous demodulation of the telemetry subcarrier, the code also

phase shift keys the synchronization subcarrier. The output of the telemetry

system to the spacecraft transponder RF phase modulator is thus a composite

signal composed of modulated telemetry and synchronization subcarriers. These

subcarriers are linearly mixed to form the composite telemetry signal. This

composite signal contains all the information necessary for demodulation and

decommutation of the telemetry data by the ground telemetry sub-system. At

the ground station a local model of the PN code is phase locked to the received

code. Word gates identical to those in the spacecraft then produce accurate

word and bit sync pulse trains (Fig. IV-t6).

Telemetry DataTransmission

Modulation. A study of various modulation methods was conducted with

two main considerations in mind: communication efficiency, and compatibility

with the DSN ground station.

It has been quite conclusively proved that the biorthogonal channel with

a conveyance of information in the state of one of two mutually opposed phase

states, that is 0 ° and 180 ° or + 90" of a carrier frequency is the simplest and

perhaps best mechanization of such an orthogonal system. This modulation

technique is often called phase-shift keying, or PSK modulation.

The design of such a system is characterized by a specification of bit

error probability, i.e., the likelihood that a decision device will make an error

because of the additive noise and is usually presented as a function of received

signal to noise ratio. It is convenient that systems of this type can readily be
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analyzed and that their performance is only a function of the received signal

energy per bit over which the channel designer has control, and the system

noise power spectral density N/B which (hopefully) is known. Except for

second order effects, the performance is independent of band width considerations.

Figure IV-15 shows the comparative bit error performance of three types of

binary system. Note that matched filter detection has been assumed in all cases.

A coherent PSK system is apparently 3 dB better than its nearest competitor,

coherent FSK.

The modulation scheme selected, therefore, was to encode and multi-

plex the raw data into a stream of binary bits which phase shift keys or biphase
modulates a subcarrier oscillator, which in turn phase modulates the RF carrier.

Such a system is normally abbreviated as a PCM/PSK/PM modulation

system. The use of subcarrier techniques is necessary to keep the telemetry

system compatible with the DSIF receiving systems and the command system

compatible with the spacecraft transponder receiver.

Demodulation. Coherent demodulation was selected consistent with the

DSIF capability. Coherent demodulation of a biphase modulated carrier requires

knowledge of the exact phase of the unmodulated carrier at the receiving station.

This is accomplished by locking on to a PN sequence transmitted on a synchroni-

zation subcarrier by the spacecraft. The ground station generates an exact

replica of the incoming PN code, and with phase-locked loop techniques, locks

on to the incoming synchronization signal (Fig. IV-16). The synchronization

system provides a phase coherent clock frequency at 7200 Hz in the form of a

local oscillator in the loop. This signal when frequency multiplied by 2 provides

a simply derived coherent reference for the demodulation of this data sub-

carrier located precisely at 14 400 Hz. Phase coherent demodulation is an

inherently non-linear process, and only about 50 percent of the total transmitted

power can be put into the usable carrier side bands. This 3 dB penalty is,
however, more than offset by the advantages of phase-locked detection of the RF

carrier.

Detection. Following the demodulation process, the noise corrupted

binary wave form must be detected and it has been shown that the optimum

detector for systems corrupted by additive gaussian noise is the matched filter

(Fig. IV-17). This detector will always maximize the output signal to noise

ratio, and is characterized by an impulse response which is the inverse time

function of the wave form to be detected. Necessary synchronization for the

matched filter detector is available as explained above.
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Error Control Coding. If the information in such a system is conveyed

in a single state, that is ! or 0, the system is often referred to as an uncoded

binary system, and the detection technique required on the ground is called

bit by bit detection. By using a combination of two phase states, literally a

coded phase word to represent a single information state, thc modulation

efficiency of such a system can be increased. The coded systems are also

referred to as redundant, since more than one phase state is used to repre-

sent a single information state, and the corresponding detection technique in the

ground system is often called word detection. Specific attention was given to

the use of bi-orthogonal codes. Analysis of code performance was based on

maximizing the ratio STd for a given probability of error. Figure IV-15

N/B
shows the merits of bi-orthogonal codes compared with the uncoded binary word.

Results of the study indicate that, if error control codes were to be used, the

choice based on efficiency would be the bi-orthagonal code, with an improve-

ment of 1.76 dB at the required 1.43 x 10 -3 bit error rate. This marginal

gain in efficiency, higher development and production cost, increased system

complexity (encoder and decoder) and lower MTBF rates suggest use of the

uncoded word for telemetry link. The resulting bit probability error for the

uncoded word is given by

peb= ½ Ii- erf _T-d_
N/BJ

Transmission Rates

1. Available Data Rates - The principal parameters of the spacecraft

system which affect the transmission capability (Fig. IV-11) are antenna gains,

transmitter power, and bulk storage capacity.

• High gain antenna: The upper bound for our telecommunications

system is set by the selection of a 20- foot parabolic antenna and a 100iwatt

power amplifier. These parameters in conjunction with transmission and

system losses yield a nominal data rate of 3740 bits per second.

• Medium Gain Antenna: Communication with the medium gain antenna

during maneuvers beyond 0. 25 AU as well as in the backup transmission mode,

yields a nominal data rate of about 118 bps.

• Omni-directional antenna array: During early maneuvers (less than

0. 25 AU) and periods of acquisition, communication is limited to use of omni-

directional antennas with a resultant available bit rate of about 400 bps.
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2. Mechanization - In the interest of minimizing system complexity,

a set of multiple fixed transmission rates was selected. The data rate selected

was on a worst case basis for a given transmission mode {Fig. IV-ll).

Bandwidth Considerations. The power spectrum of the PN modulated

subcarrier is derived as follows: The output of the sync modulator is a modulo

2 addition of the PN code and the square wave clock (PN @ fc). By treating

the PN code as a random process with two equally probable states the weighted

Fourier transform in each of the switching intervals, in this case 1/f is:
C

2 I IG(f) = n_=l Pi Hi(f) 2

The probability density function Pi is given by

Pi /

t t 'i
-1

and

Therefore

m (f) = fc fife
v0

-jwt el/fc

(+1) e dt+fc "½1fc (-1) e-jWtdt
o

G(f)= I I - fc (_f/2fc) 2 •

It can be seen (Fig. IV-18) that the power spectrum of the PN modulated

subearrier contains broad nulls at 2 and 4 times the clock frequency of 7.2 KHz.

While the oceurence of spectral nulls is inherent in the process of biphase modu-

lation, the fact that they occur where they do is a result of choosing the sync

subcarrier to be a square wave. It can be shown that a sinusoidal sync sub-

carrier would produce narrow nodes at 1.5 and 3 times the clock frequency.
The unmodulated data subcarrier is conveniently located in the broad null at 14.4

KHz as shown. It was decided to make the data subcarrier a sinusoid since

a square wave would create an overall spectrum too wide to be accommodated by

the predetection filters of the TRAC (E) receiving system at the DSIF ground
station.

Summary.. The telemetry system employs two subcarriers related

in frequency by a ratio of 2 to 1. The upper or data subcarrier frequency is

4-63



II

,.,,..
v

0

u
,f-

o

o

X u

I I I I I

±

C'4

T

Z

<

_J_

©

I

>

4-64



biphase modulated in accordance with the state of the umaL'y uaLa ,_,,u_..a_,uu.

and the lower synchronization subcarrier is biphased modulated by a cyclic

pseudorandom code. At the receiving end, the sync subcarrier is essentially
reconstructed and in the process, generates bit sync information. This clock

frequency then locks a phase coherent loop, the local oscillator of which is

multiplied by 2 to provide a coherent reference for the demodulation of the data

subcarrier. A matched filter then detects the demodulated binary waveform to

complete the mechanization of the coherent PSK system. The scheme selected

thus simultaneously provides necessary word and bit synchronization and gen-

eration of a coherent reference for synchronous detection.

COMMAND SUBSYSTEM

.... I nt_^.,....,.... luuut, tion

Command guidance in the space vehicle involves three events. These

are:

a. Sensing the parameters involved,

b. ComputaUon of the appropriate correction,

c. CommunicaUon of the command signal.

Command guidance involves external tracking which is done by radio and

may be accomplished by inertial mechanisms, radio, or combination of these two.

Radio systems provide continuous measurements of position, and velocity and

do not suffer from the drift errors of gyroscopes although they may require a

rather long averaging period.

In the Jet Propulsion Laboratory DSIF, a stable carrier signal 2115±5

MHz is transmitted to the spacecraft. There it is received by a phase-lock-

loop, filtered, frequency multiplied by the exact ratio of 240/221 and retrans-

mitted to the ground. At the ground station, the return carrier is received by
the reference phase-lock-loop, filtered and then compared with the transmittal

signal, approximately multiplied, to determine the Doppler shift. The command

at the ground station is fed into the command modulator, whose function is to

synchronize both the command word bits properly and to modulate the command

subcarrier with both command and synchronizing information. The RF carrier

is phase modulated by the output of the command modulator and the resultant

signal is transmitted by the 210-foot antenna to the spacecraft.
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The command subsystemon the spacecraft is shownin the block diagram
of Figure IV-19.

The commanddetector function is threefold:

a. Lock to the received synchronizing signals,

b. Demodulatethe command subcarrier to recover the command
word bits, and

c. Supply the commanddecoder with synchronizing and timing signals.

The decoder performs essentially the following two functions:

a. Identifying through its address which commandhas beenreceived
and supplying synchronizing signals to proper spacecraft systems, and

b° Providing input to the computer sequencer programmer according
to the command information which includes simple switching for selection of
scientific and telemetry modes, as well as complicated re-programming of
spacecraft computer.

PSK for Command Detection

ao

b.

discharge.

The following two signals are required for PSK detection:

A coherent reference for phase detection, and

Bit synchronization for timing of matched-filter sampling and

The ground station modulates the PN code by commands to give the re-

sultant modulator output

D @ PN @ 2 fs

where D is the command bit, 2 fs represents the code clock having the form

of a square wave and @ denotes half-addition. Assuming the duration of each

command bit is equal to one cycle of the PN code, it follows that
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and that

D _ PN O 2fs =+ PNO2 fs ifa"i"is sent,

D • PN • 2 fs= - PN O 2 fs if a"0" is sent.

Figure IV-20 shows that the received D • PN O 2 fs is multiplied by the

locally generated PN Ofs and PN codes to produce D • fs 9_ and D • 2 fs

respectively. After passing through band pass filters, D • 2 fs and D O fs9_

are multiplied together to eliminate the command-data component D resulting

in an fs signal to the Phase-lock-loop (PLL). Then fs is multiplied by the local

fsg_, the output forms the error signal for PLL which is closed through the

loop filter and the voltage-controlled oscillator (VCO). The VCO then supplies

the necessary 2 fs and fs signals for the receiver operation.

Should there be a difference between the modulator f2s and the detector

f2s when the loop is opened, the transmitted and local PN codes drift with

respect to each other and the output of the PLL multiplier is their correlation

function. Code lock and phase lock are obtained by closing the loop and adjusting

by means of a 2 fs difference to obtain the well known S curve which is the

desired loop error function.

Command Bit Detection

The bit synchronizing signals are provided by the detection of any one

of the (2n - i) states of the PN generators. The signal D • fsL (Fig.. IV-20),

after passing through a band pass limiter, is coherently demodulated by multi-

plying with the VCO generated signal fs 190°. The output of the demodulator

is passed through a matched filter, where the signal is integrated and the noise

components averaged over a bit period, so that the probability of making the

correct decision as to which bit was transmitted is maximized. The decision

required at the matched-filter is whether the sample is less then or greater

than zero. Figure IV-21 shows the scheme of coherent demodulation and

matched-filter detection.

Quadratu re Detector

The quadrature detector indicates when the PLL is locked and serves to

inform the command decoder when to accept command information. The scheme

is similar to Figure IV-21 except that the input is fs. Figure IV-22 is a block

diagram of the scheme.
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Program Sequencer

Programmers control all timing and logic operations. The data pro-

grammer also adds synchronization to data frames. A spacecraft clock is used

to provide the various frequencies and pulse rates for generating various codes

and timing signals.

Inputs to the sequencer include program modification from the command

detector. Outputs furnished by the sequencer in response to these inputs

include (a) command reception verification, (b) position program sequences

to the medium gain antenna, (c) event initiation commands to altitude, mid-

course, and encounter maneuvers, as well as scientific experiments, and (d)

timing references to the data encoder and power subsystem.

In the sequencing of JOVE maneuvers, an address matrix and encoder

logic direct command data to the proper registers or flip-flops. When the

correct data have been stored, the maneuver sequence starts by turning on the

gyro power in the attitude control subsystem. After certain interval, a roll

turn sequence is initiated. The roll stops until the roll register overflows.

The Retro-Thrust register is pulsed in sequence in a similar manner. After

a velocity correction, and the cruise mode has been reestablished, the inertial

sensors are turned off.
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CHAPTERV. SPACECRAFTMECHANICAL DESIGN

DEFINITION OF SYMBOLS

Thermal Energy

Radiation, solar reflected

Solar radiation, direct from planet

Thermal energy released on-board as function

of time

Stefan-Boltzmann Constant (0. 1714 × 10 -8)

Average coefficient of convection

Configuration factor

Configuration factor, Craft-Sun

Configuration factor, Craft-Planet

Thermal conductivity

E mis sivity

Emissivity of craft

Time, seconds and hours

Temperature

Absorptivity

Absorptivity of surface for direct solar radiation

Absorptivity of surface for reflected solar energy

Btu

Btu/hr

Btu/hr

Btu/hr

Btu/hr-ft2- ° R 4

Btu/hr-ft 2-° R

O

Btu/hr -° F ft 2- R

°K, °Ror°F
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DEFINITION OF SYMBOLS (CONTINUED)

P

qob

r

S

Absorptivity of surface for direct planet radiation

Heat energy generated on-board the craft as a function

of time, q (_)

Fraction of solar energy reflected

Solar constant Btu/ft2-hr
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CONCEPT DEVELOPMENT

Introduction and Configuration Selection

The principal constraints to the mechanical and structural design of the
JOVE spacecraft were the required interfacing with the Saturn V Launch Vehicle

at the Instrument Unit, the envelope defined by the "standard" conical nose

shroud and the desirability of designing a basic vehicle that could possibly with
minor modification be suitable for the Voyager mission.

.... The spacecraft that evolved, Figure V-l, is suitable "with modifications"

./Jf0r the Voyager mission. (The first alternate configuration is shown in Figure

V-2). There are many constraints on JOVE, however, that are not necessary
nor required on Voyager, such as:

a. The approximately 900-day mission life requiring new concepts of
reliability or redundancy,

b. Passage through the Asteroid Belt requiring additional micromete-
oroid protection,

c. Communication distances of approximately 500 000 000 statute miles
requiring larger and heavier antennas.

d. Complete dependence upon RTGVs for power during the unusually

long mission requiring that special consideration be given to radiation shielding
and displacement of components.

Configuration 4 of Figure V-3 illustrates the fit of the JOVE spacecraft

within the "standard" coincal nose shroud and the 55-inch long structural shroud.

The result is a lower silhouette (only 36.7 feet above the Saturn V) than either

the Apollo (82 feet) or the Voyager (73 feet).

Throughout the design studies simplicity of structure as a factor affect-

ing reliability and lightweight was considered to be important parameter.

Simplicity included keeping the number of extendable and/or articulated compo-

nents to a minimum since the approximately 900-day total mission life will de-

mand a high degree of reliability of all operating mechanisms.

The use of the LEM bus vehicle was discarded early in the study because

it is designed to withstand the lunar landing loads and thus is designed to higher
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load factors that are necessary for a Jupiter orbiter mission. A thin sheet

shell structure has been selected rather than the tubular type structure that is

used in the LEM lander and several of the Voyager configurations. The struc-

ture itself is adaptable to the proposed Voyager configurations with minor modi-

fications. Figure V-2 and Configuration i of Figure V-3 illustrate an alternate

design concept that uses a truss mounting to the same attachment points and

lower shroud support proposed for Voyager. This commonality would result in

a net weight penalty since the structural shroud is 102 inches longer on Config-

uration i than on Configuration 4.

The spacecraft is designed to accommodate payloads and fuel loads

corresponding to a launch year with average capabilities during the period

1975-1980. Off loading of payload or longer trip time would result during the

worse year of 1978 and slightly additional payload, shorter trip times, or more

optimum orbits are then possible in the most favorable year of 1975 for example.

Layout Development and Interfacing

Two basic configurations were studied: One with the retro-engine

(LEMDE) exhaust pointing upward at launch and the other with the engine point-

ing downward. These configurations are shown in Figures V-l, V-2 and V-3.

Basically, the two concepts differ only in the design of the fixed 20-foot, high-

gain antenna support and the booster interfacing structure. Other minor dif-

ferences exist in packaging and location of experiments and subsystems.

The configuration with obvious advantages is the upward pointing engine

primarily because of convenience and possible weight savings realized through

the use of an integrated spacecraft-booster interfacing and antenna support

structure, and the lower silhouette mentioned above. Upon selection of the pre-

ferred configuration ( Fig. V-l), development of details of the less desirable

configuration was stopped. The preliminary design calls for jettisoning of the

nose cone as soon as possible during S-II burn.

Several factors were important to the packaging and layout of the space-

craft. Optimum location of scientific experiments took precedence over all

other considerations, and their protection against hostile environments including

thermal and nuclear radiation entered into the optimization.

Electronic components and radiation sensitive experiments were located

as far as practicable from the RTG power units. Moreover, whenever possible
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propellant tanks andother insensitive massive elements were positioned between
the RTG units and radiative sensitive elements.

In the interest of heat ener_-_management,theRTG's were strategically
located in fixed positions rather than being deployedon booms. Preliminary
investigations indicated that there may be periods in the mission during which
heat from the RTGts will be required to maintain desired temperature levels in
the basic spacecraft. At other times heat rejection over and abovethe RTG
waste will be required. A passive thermal control system was adopted. De-
tailed energy balances, however, may prove the necessity for cold plates in
electronic compartments with the accompanyingpumps and plumbing. Super
insulation is provided over most of the spacecraft with louvers being located in
critical areas for heat rejection.

Figure V-1 points up someof the more significant aspectsof the space-
craft. Two of the more prominent members associatedwith the telecommunica-
tions and control systems are the 20-foot diameter, fixed, high-gain antenna,
and the 3.0 foot diameter, gimballed, medium-gain antenna.

The designers adoptedthe philosophy that waenever feasible hardware
from other space systems would be incorporated into the Jupiter mission vehicle
to improve its reliability without going into long time developmentprograms.
Consequently, they have drawn freely from the Apollo system and subsystems
concepts as well as from earlier generation systems that have successfully
flown.

The fixed antennaand articulated "fine" sun sensors represent a depar-
ture from present practice where the sun sensors are attached rigidly to the
main body of the spacecraft and antennais articulated. Four methods were ex-
amined and are illustrated in Figure V-4. Method3 was selected as optimum
and is the one detailed in Figure V-1. Two sunsensors are provided for re-
dundancy.

A weight summary for the recommendeddesign is included in Table V-I.
The resulting total injected weight works out to 19 846 pounds. The following
pagescontain outlines of the reasoning behind the locations selected for the
instruments and experiments packagesand discussions in some detail of the
structural details and analysis. There are reviews of the materials and pro-
pellants used and indications of the affects of the environment on them. Finally,
there is a presentation of the thermal control problem and an analysis of some
of the more important considerations.
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METHOD 1 - ARTICULATED ANTENNA AND ARTICULATED SUN SENSORS.
METHOD 2 - ARTICULATED ANTENNA AND FIXED SUN SENSOR.
METHOD 3 - FIXED ANTENNA AND ARTICULATED SUN SENSOR. (JOVE)
METHOD 4 - FIXED ANTENNA AND "MANY" FIXED SENSORS SET AT VARIOUS

ANGLES TO ACCOMMODATE ANGLE BETWEEN ANTENNA AND SUN
SENSOR LINE.

FIGURE V-4. ANTENNA AND SUN SENSOR COUPLING
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TABLE V-1. DETAILED WEIGHT STATEMENT - PLANETARY VEHICLE,

PLANETARY VEHICLE PROPULSION, PLANETARY VEHICLE ADAPTER

(WEIGHT IN POUNDS,)

PLANETARY VEHICLE

Structural and Mechanical

Basic Structure

Fittings

Equipment Modules

Mounting Panels for Equipment
Modules

Micrometeoroid Protection

Miscellaneous Attachments

855

57

100

20

345

6

i383

Pyrotechnic s

Explosives, Mechanisms, and Controls 24

24

Temperature Control

Heaters

Thermostats

Insulation and Coatings
Louvers

Cold Plates

Miscellaneous Attachments

5

5

125

25

80

20

260

Radio

S-Band Transponders

Power Amplifiers

High Gain Antenna
Medium Gain Antenna

Low Gain Antenna

Antenna Switches

Diplexer

Hybrid RF Coupler

Directional Coupler

40

17

150

40

20

1

2

1

i

Data Storage

Playback Sequencer Controls

Central Logic Module

Redundant Power Supply

Tape Transport Modules

1

2

4

45

52
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TABLE V-1. DETAILED WEIGHT STATEMENT - PLANETARY VEHICLE,

PLANETARY VEHICLE PROPULSION, PLANETARY VEHICLE ADAPTER

(WEIGHT IN POUNDS) (CONTINUED)

Telemetry

E ncoders, Control Electronics and

Power Supply

16

16

Command

Command Detector

Command Decoder

Transformer Rectifier

15

Computing and Sequencing

Digital Computer 35

35

Cabling

Electrical Wiring and Harnesses 200

2O0

Power

Radioisotope Thermoelectric

Generators

Power Conditioning Equipment

580

65

645

Guidance and Control

Attitude Control

Star sensors

Sun sensors

Earth detector and other sensors

Gimbals

(31)

12

4

3

12

430

Autopilot

Gyro-package

Electronic signal processors

Electrical wiring, frame,

and hardware

(59)

40

6

13

Cold Gas Jets

Tanks

Propellant

Hardware

(340)

2O5

i05

3O
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TABLE V-I. DETAILED WEIGHT STATEMENT - PLANETARY VEHICLE,

PLANETARY VEHICLE PROPULSION, PLANETARY VEHICLE ADAPTER

(WEIGHT IN POUNDS) (CONTINUED)

Science Instraments

Visible and Ultraviolet Photometer

Infrared Radiometer

Television Systems

Infrared Spectrometer

Visible and Ultraviolet Spectrometer
Micrometeoroid Detector

Rubidium Magnetometer

Trapped Radiation Detector

Curved Surface Plasma Analyzer

Faraday Cup Plasma Analyser
Microwave Radiometer

Cosmic Ray Telescope

Cosmic Ray Detector
Solar Flare Detector

6

5

30

16

20

8

2

9

5

3

22

3

11

10

/50

PLANETARY VEHICLE PROPULSION t5 194

Dryweights (2086)

Tanks

Lunar Excursion Module Descent

Engine

Trajectory Correction/Orbit

Trim Propulsion Subsystem

Tank and Engine Supports

Valves, Lines and Other Fittings

1190

406

43

197

250

Inert Fluids

Trapped Fluids
Helium

(508)

474

34

Consummable Propellants

Hydrazine

Unsymmetrical Dimethyl Hydrazine

Nitrogen Tetroxide

(12 600)

3270

1870

7460
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TABLE V-1. DETAILED WEIGHT STATEMENT - PLANETARY VEHICLE,
PLANETARY VEHICLE PROPULSION, PLANETARY VEHICLE ADAPTER

(WEIGHT IN POUNDS)

PLANETARY VEHICLE ADAPTER

Structure, Hardware andCabling

TOTAL PLANETARY VEHICLE WEIGHT

( CONTINUED)

520

19 846

Booster Interfacing

The spacecraft is attached to the instrument unit atop the Saturn V boost

vehicle by means of a structural shroud or adapter. This shroud is 56 inches

long, supports the nose cone as well as the spacecraft, and is jettisoned with

the I.U. and the S-IVB stage after the spacecraft has been inserted into helio-

centric transfer trajectory. The choice of twelve attachment or hard points was

based on the number of equipment boxes. Eight attachment points were favored

until it became apparent that ten equipment boxes were required, whereupon a

12-point attach system was adopted, leaving 2 equipment bays empty, but
equipped with thermal louvers.

The spacecraft is designed to launch engine foremost through a conical

boost support structure that performs the triple tasks of main boost support,

antenna support, and equipment box support.

Four launch configurations were considered (Fig. V-3). The chosen

configuration, number 4, has the following salient advantages:

a. The RTG radiators face dark space within 4 minutes after initial

boost since the conical nose shroud serves only as an aerodynamic shield.

Configurations 1 and 3 of Figure V-3 present severe thermal control problems

during Earth parking orbit since the shroud is structural and must remain in

place until after third stage firing has placed the spacecraft in its heliocentric

trajectory.

b. The conical boost support structure is multipurpose as noted above

and, being internal, does not interfere with the field of view of any instruments.

c. The length of structural shroud is only 56 inches.

d. The spacecraft projects into the conical nose shroud, thus reducing

the overall height and weight.

5-16



Since the configuration selected requires a structural support shroud,
it may not be the lightest of the four studied. However, 88percent of the weight
of the spacecraft is dictated by the micrometeoroid protection requirements.
Thus, the difference in structural weights betweenall configurations ( Fig. V-3)
is negligible.

SYSTEMS DEFINITIONAND WEIGHTS

A brief definitive description of the JOVE planetary vehicle subsystems

will be given in this section. Figure V-1 illustrates the basic geometry of the
JOVE planetary vehicle. Inside the structure and around the outside of the

planetary vehicle is housed all instrumentation which will gather from inter-

planetary space during the heliocentric phase, and from the planetary environ-

ment of Jupiter after arrival, the engineering and scientific data for transmis-
sion '-_ _'-o_u_ to Earth.

A clean demarcation of the weights between the various subsystems can-

not be made because of the overlapping functions sometimes performed. Table

V-t is a detailed weight statement which gives an estimated weight breakdown of

the subsystems into component parts wherever applicable. Table V-2 is a

simplified weight summary. The total estimated weight of the planetary vehicle,

including the planetary vehicle adapter, is 19 846 pounds. Table V-3 is a

summary of the actual weights for the Mariner planetary vehicles launched to

date and estimated weights of other unmanned planetary missions under con-
sideration.

The major planetary vehicle subsystems are described by listing the

components contained within it and, in some instances, by additional functional
informatio n:

1. Structural and Mechanical - consists of the basic structure; fittings

such as latches, hinges and miscellaneous supports; equipment modules; mount-

ing panels for equipment modules; micrometeoroid protection and miscellaneous

attachments. Total weight 1383 pounds.

2. Pyrotechnics - consists of the explosives, mechanisms, and controls

used to initiate the release and deployment of nonrecurring incidents. The

function of releasing the planetary vehicle from the launch vehicle is performed

by this subsystem. Midcourse correction control and orbit insertion firing of the

propulsion system is a part of this subsystem's function. Total weight 24 pounds.
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TABLE V-2. WEIGHT SUMMARY FOR THE JOVE VEHICLE

PLANETARY VEHICLE

Structural and Mechanical 1383

Pyrotechnics 24

Temperature Control 260

Radio 272

Data Storage 52

Telemetry 16

Comm and 15

Computing and Sequencing 35

Cabling 200

Power 645

Guidance and Control 430

Science Instruments t50

Contingency 650

PLANETARY VEHICLE PROPULSION 15 194

PLANE TARY VE HIC LE ADAPTER 520

TOTAL PLANETARY VEHICLE WEIGHT - pounds 19 846

3. Temperature Control - consists of the heaters, thermostats,

insulation and coatings, louvers, cold plates, and miscellaneous attachments to

the planetary vehicle and/or to instruments aboard the planetary vehicle. Total

weight 260 pounds.

4. Radio - consists of the S-band transponders and the power amplifiers.

Includes the high-gain, medium-gain, and low-gain antennas with switches and

any structural support arms they may have. Also, the diplex, the hybrid RF

coupler package, and the directional coupler package. Total weight 272 pounds.

5. Data Storage - consists of the playback sequencer controls; control

logic module which controls record and playback; redundant power supply; and

the tape transport modules. Total weight 52 pounds.
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6. Telemetr_ - consists of real-time data encoder, stored data encoder,

control electronics, and power supplies. Total weight 16 pounds.

7. Command - consists of command detector, command decoder, and

transformer-rectifier. Total weight 15 pounds.

8. Computing and Sequencing - consists of a cycled digital computer

which includes timer, data register, switching network, logic network, and

maneuver matrix. Total weight 35 pounds.

9. Cabling - consists of the necessary electrical wiring and/or harnesses

for electrically interconnecting the planetary vehicle subassemblies. Total

weight 200 pounds.

10. Power - consists of the Radioisotope Thermoelectric Generating

(RTG) units and the necessary power conditioning equipment. Also, contains

the controls for activation and/or deactivation of the numerous loads. Total

weight 645 pounds.

11. Guidance and Control - consists of the attitude control assembly with
the Earth detector, star sensors, and gimballed sun sensors. Consists of the

autopilot assembly with gyroscopes, accelerometer, electronic signal processors,

electrical wiring, frame and miscellaneous hardware. Consists of the cold gas

jet assembly with tanks, propellant,and miscellaneous hardware. Total weight

430 pounds.

12. Science Instruments - consists of visible and ultraviolet photometer,

infrared radiometer, television systems, infrared spectrometer, visible and

ultraviolet spectrometer, micrometeoroid detector, rubidium magnetometer,

trapped radiation detector, curved surface plasma analyzer, microwave radio-

meter, cosmic ray telescope, cosmic ray detector, and solar flare detector.

Total weight 150 pounds.

13. Contingency - consists of subsystem weights not allocated elsewhere.

Total weight 650 pounds.

The planetary vehicle propulsion subsystems are defined as follows:

1. Dryweights - consists of the propellant tanks, Lunar Excursion

Module Descent Engines (LEMDE), Trajectory Correction/Orbit Trim Pro-

pulsion Subsystem (TC/OT), tank and engine supports, valves, lines, and miscel-

laneous fittings. Total weight 2086 pounds.
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2. Inert Fluids - consists of the trapped fluids and helium. Total weight

508 po,_,__n_ds.

3. Consummable Propellants - consists of hydrazine and unsymmetrical

dimethyl hydrazine (UDMH) and nitrogen tetroxide. Total weight t2 600 pounds.

The planetary vehicle adapter consists of the structure between the

planetary vehicle and the launch vehicle interface. Inside the planetary vehicle

adapter is located the associated hardware and cabling necessary for the inflight

separation of the planetary vehicle and the launch vehicle. Total weight 520

pounds.

SPECIAL DESIGN CONSIDERATIONS

Location of Experiments

The scientific instruments can be divided into two groups according to

their operating regime and are so listed below:

Group One - used for measurements during the interplanetary flight
phase as well as the orbital phase:

a. Rubidium Magnetometer

b. Fluxgate Magnetometer

c. Trapped Radiation Detector

d. Curved Surface Plasma Analyzer

e. Faraday Cup Plasma Analyzer

f. Cosmic Ray Telescope

g. Cosmic Ray Charge and Mass Detector

h. Solar Flare Detector

i. Micrometeoroid Detector

Group Two - used for measurements only during the orbital phase about

Jupiter:

a. Visible and Ultra Violet Photometer

b. Infrared Radiometer

5-21



c. Microwave Radiometer

d. Television No. 1

e. Television No. 2

f. Infrared Spectrometer

g. Visible and Ultra Violet Spectrometer

In the design of the spacevehicle, it was necessary to consider the
proper locations for all of these instruments. Additionally, certain of the
instruments must be articulated. Each instrument is discussed individually
below, listing the specific requirements which must be satisfied in the design.

Rubidium Magnetometer. The important portion of this magnetometer is

the sensor, a device 3 inches in diamter and 12 inches long. It should operate

in a low magnetic field as far from the body of the spacecraft as practicable

and is therefore mounted at the end of a 9-foot boom. Before deployment, the

boom and magnetometer are folded close to the body of the spacecraft and may

be extended as desired to the limit of the boom or approximately 18 feet from

the center line of the spacecraft. Location around the periphery of the space-
craft is immaterial.

Fluxgate Magnetometer. The sensor of this instrument is a cylinder 3

inches in diameter and 6 inches long. It is located in exactly the same fashion

as the Rubidium Magnetometer but on the opposite side of the spaceship, for

purpose of symmetry. When completely deployed, the long axis of the sensor

should be parallel to the spacecraft axis. This requirement follows from the

nature of the magnetometer.

Trapped Radiation Detector. No particular location requirements are

indicated for this instrument beyond the fact that its sensors should have a clear

and unobstructed view of space. There are two such instruments located at

convenient and symmetrical positions on the body of the spacecraft.

Curved Surface Plasma Analyzer. This instrument must have a clear

and unobstructed view of the sun at all times. Since the 20-foot antenna is, in

general, oriented towards Earth, the analyzer is mounted on a Solar Scan Plat-

form which swings outward from the antenna rim and is oriented in a direction

parallel to the antenna axis. The Solar Scan Platform is also articulated to

insure that the analyzer sensor sees the sun at all times. Radial location of the

analyzer is immaterial and consequently only a matter of convenience.

Faraday Cup Plasma Analyzer. Statements made for the Curved Sur-

face Plasma Analyzer are equally valid for the Faraday Cup Analyzer. For

convenience and compactness, it is also mounted on the Solar Scan Platform.
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Cosmic Ray Telescope. The most important requirement for this

instrument is that it must, at all times, point away from the sun. Since the

two instruments described in the preceding t-_vo sections must, at aii times, be

oriented toward the sun, the Cosmic Ray Telescope is logically mounted on the

same Solar Scan Platform as the other two instruments but oriented in the op-

posite direction, thus insuring that it never sees the sun.

Cosmic Ray Chargeand Mass Detector. This sensor must also, at all

times, be oriented away from the sun. Consequently this instrument is also

mounted on the articulared Solar Scan Platform and it looks in the same direction

as the Cosmic Ray Telescope - away from the sun.

Solar Flare Detector. It is not essential that this sensor be mounted on

the deployable and articulated Solar Scan Platform. It has been placed there,

however, adjacent to the Faraday Cup Analyzer and, like the Analyzer, is

always oriented toward the sun.

Micrometeoroid Detector. This instrument consists essentially of a very

thin aluminum plate, about 8 inches by 8 inches, mounted in a base containing

instrumentation which must be shielded from the sun. Furthermore, a view

through 360 degrees in planes perpendicular to the spacecraft axis should be

possible. On the basis of these requirements, three such plate detectors are

attached to the conical surface of the spacecraft and directly behind the 20-foot

antenna which then serves as an umbrella against the sun. Spacing of the de-

tectors is at 120-degree intervals.

The seven instruments in the Orbital Measurement Group are mounted

on a deployable and articulated platform controlled and oriented in such a way

as to cause the instruments to always scan the planet Jupiter. This platform is

referred to as the Planet Scan Platform. It is essential that no sunlight, direct

or reflected, enter the sensors.

Navigation, Guidance, and Control Sensors

The instruments involved in these categories are discussed below:

Coarse Sun Sensor. During sun acquisition, the coarse sun sensors must

have a 360-degree field of view in order to acquire the sun, regardless of the

initial orientation of the spacecraft. Consequently they are mounted on the rim
of the 20-foot antenna in such a fashion as to look either forward or backward.

Four such sensors have been recommended: two looking forward and two looking

backward. Each of the two pairs is symmetrically placed for balance.
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Fine Sun Sensor. As the name implies, this sensor must be arranged

to sight accurately on the sun. Its view must be completely unobstructed and it

must be articulated in order to maintain a sun fix. The mechanism required for

this single instrument platform is lightweight and relatively small and is located

on a fixed boom which extends through the mesh of the 20-foot antenna. The

articulated platform carrying the sensor is located at the outer end of the boom.

Canopus Sensor. In JOVE the sun and the star Canopus which has a de-

clination of approximately minus 76 ° from the plane of the eccliptic provides a

satisfactory reference set for attitude determination. The Canopus Sensor is

therefore located on the side of the spacecraft looking outwards at right angles

to the spacecraft longitudinal axis. Since the fine sun sensor is articulated, it

will then be possible to maintain accurate attitude control of the vehicle using

the sun and Canopus as references.

Earth Sensor. This sensor is used primarily during the early part of the

mission in order to verify Canopus acquisition. It is, of course, logical that it

should always look toward Earth and consequently it is located on the rim of
the 20-foot antenna.

Gyro Package. This instrument, a completely gimballed device, is to

be found in the central portion of the body of the vehicle, protected as completely

as possible by fuel tanks and other structural elements. Available drawings of

the spacecraft are not sufficiently detailed to show this package.

Launch and Omni-Directional Antennae. The titles of these antennae are

somewhat self-explanatory. The launch antennae must provide for communica-

tion with the spacecraft while the vehicle is still enclosed within the shroud.

Thus, a dual system is used - one component being located in the surface of the

body of the vehicle and the mating component extending through the shroud.

These mating components are located opposite one another. Omni-directional

antennae are located in various convenient positions on the spacecraft so that

communication with the craft will be possible regardless of the orientation of the
vehicle.

Articulated Members

The components of the space vehicle which are to be articulated are:

a. LMDE

b. Two 150-pound Thrust Mid-course Maneuver Jets
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c. 36-inch Antenna

d. Planetary Scanninginstrument Package

e. Solar ScanPlatform

f. Fine SunSensor

g. Two Magnetometer Booms

The LMDE and the Mid-Course ManeuverJets are gimbaled, i.e., each
may be moved through a total angleof 6 degrees in any desired direction in order to
achieve required corrections.

The 36-inch antenna, the Planetary Scanning Instrument Package, the Solar Scan

Platform and the Magnetometer booms are all folded adjacent to the body of the space-

craft until after it has been detached from the third stage of the Saturn V rocket. Once

the spacecraft is free of the boosters these units can be deployed to their operating posi-
tions.

The 36-inch antenna must be able to look in any direction. Consequently, once

deployed, its boom may rotate through 360°; also, the antenna itself can rotate through

360" relative to and in a plane at right angles to the boom. A portion of the required

motion could be accomplished by the deployment action alone but the motion achieved here

is inadequate. Deployment is accomplished by spring action which is automatically initi-

ated, the boom being permanently locked in its deployed position. Rotations of the antenna

boom and of the antenna head relative to the boom are provided by means of individual

servomotors which are powered from the RTG units. The individual activation of the two

main portions of the antenna insure that definite and precise control can be attained.

The general arrangement of both the Planetary Scanning Instrument Package and
the Solar Scan Platform is similar to that described for the 36-inch antenna in that a 360 °

rotatable instrument platform is involved and, as before, these motions are produced by

action of individually controlled servomotors. Because of the sensitivity of these instru-

ments and to their somewhat greater weight, the platforms are deployed by means of

hydraulic (or pneumatic) actuators. Once fully deployed, the booms are locked in place

and their capability to be rotated provides the proper orientation.

The boom carrying the Fine Sun Sensor is fixed. The mechanism at the end of the

boom provides for full articulation of the sensor itself.

The Magnetometer Booms require initial deployment only and this is accomplished

by spring action after which the booms are permanently locked in place.
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Nose Cone and Shroud Details

The configuration of the spacecraft and its orientation with the LEM

forward during launch resulted in a substantial saving in shroud weight. It was also

possible to house the entire vehicle within the standard nose cone. Thus, to clear the

way for the separation of the vehicle from the adapter above the third stage of the rocket,

only the nose cone need be jettisoned. The nose cone is 21 feet 8 inches in diameter and

28 feet in length. It was deemed preferable to split the nose cone into three sections, at

120 ° , rather than into two halves. Standard locking and jettisoning hardware can be used

but modifications in the support structure of the jettisoning elements will be required be-
cause of the decision to use a three rather than a two-section nose cone.

Locking hardware consists essentially of a bolt connecting two flanges, facing

each other and attached, respectively, to the edges of adjacent sections of the nose cone.

Explosive-type bolts are used and immediately before jettison a time charge is detonated

fracturing the bolts. A series of such connections are located along the lengths of the
three 120 ° splits in the nose cone.

Jettisoning of the three sections of the nose cone will be initiated by the action of

spring-loaded catapults. These devices are located in the forward portion of the nose

cone and are cocked against the petal segments. Within a few seconds after the locking

devices have been released, explosive charges in the cocking mechanism of the catapults

are detonated and the three sections of the nose cone are forcibly separated from one

another and swing outward into space, each petal segment rotating about a pivot near its

base. The design of the pivots is such that, after the nose cone sections have rotated

through a specified angle relative to the axis of the vehicle, they automatically disengage

from the pivots and spiral away from the spacecraft.

STRUCTURAL DES IGN

Primary Structure

The structure is designed for limit boost loads of six Earth gravities along the

longitudinal axis of the boost vehicle, one gravity laterally, and an arbitrary torque around

the longitudinal axis of the boost vehicle of 12 000 000 in. -lb. Complete analysis would

consider maneuver and ground loads plus vibration analyses, but time did not permit this.
A factor of safety on ultimate strength of 1.25 was applied.

Boost loads are carried from the boost vehicle to the bus by twelve 3 in. by 2-1/2 in.
I-sections (Fig. V-5) of 7075-T6 aluminum. These sections have strong axis moments

of inertia of 1.99 in. 4 and areas of 1.75 sq. in. The design torque of 12 000 000 in. -lb is
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carried by a 0.03 in. altuninum skin around the twelve I-sections. In the area of equip-
ment boxes,the torque is carried by them, as they are intended to fit continuously and

attach diectly to the I-sections.

The spacecraft bus (Fig. V-6) is a cylindrical sandwich shell of 0.06 in. aluminum

faces separated by 2 in. of lightweight foam. The shell design is controlled by micro-

meteoroid protection requirements rather than strength requirements. Even so, it is

expected that in the asteroid belt, two micrometeoroids will penetrate the shell (but not

the equipment inside).

At either end of the cylindrical bus is a bus ring. These rings are 3 in. by2 1/2 in.
I-sections of 7075-T6 aluminum, having strong axis moments of inertia of 2.07 in. 4 and

areas of 2.00 sq. in. They weigh 86.5 lb , each. The engine end ring is taken as the

same section as the antenna end ring, but could be a lighter section. Tanks and engines

are supported directly by the rings. The antenna end ring carries loads from the twelve

boost support members and half the tankage. The engine end ring supports the remaining

half of the tankage and the engines.

Another sandwich shell, attached to the engine and end bus ring, carries the RTG's

and acts as a micrometeoroid barrier. This shell has 0.03 inch faces separated by one

inch of lightweight foam.

Calculations showing loads, moments of inertia, weights, etc., for all major pieces

of structure are in Appendix F, Volume II.

Tanks

All tanks are designed for 6A1-4V titanium. Table V-4 summarizes the tank de-

sign. Detail calculations which verify the data shown in Table V-4 are also shown in

Appendix F, Volume II. The calculations show relations involving tank pressures, volumes,

thicknesses, weights, etc.

TABLE V-4. FUEL TANK DATA

FLUID

50/50 UDMH/N2H 4

N204

N2H 4

He 2

N2

Number

of Tanks

2

2

2

2

2

Wall

Thickness (in.)

0.1

0.1

0.05

0.66

0.35

Diameter

(in.)

48

48

24

24

t2

Length

(in.)

54

60

51

56

12

Capacity
(ft) 3

39.6

45.9

11.26

12.55

3.6
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MATERIALS EVALUATION

Radiation Environment

During the mission, the spacecraft will be subjected to several radiation fields.

First it must pass _rough Earth's trapped radiation belts. During the entire time of

flight, it will be irradiated by the protons of the solar plasma and bursts of energetic

particles from any solar flares which might occur. Finally, at Jupiter, it will be travel-

ing within the Jovian trapped radiation belts for a portion of each orbit, and for the entire

mission it will be irradiated by neutrons from its own RTG's.

In this analysis, the effects of Earth's radiation belts have been ignored as the

spacecraft will penetrate them in too short a time to accumulate a significant dose.

Further, the solar plasma is made up principally of low energy protons which will be

stopped by the outer structure of the spacecraft, and hence their damage will be limited
to surface effects. The contribution to the radiation from solar flares has also been

neglected since the number and intensity of solar flares is not known.

A large amount of information on radiation effects to various components and

materials exists; however, the type of radiation used (neutron, proton, gamma, electron),

the energy of the radiation, and the dosages differ, as do the units used in reporting them.

Although exact conversion factors for converting the dose of one radiation into the equiva-

lent dose of another do not, and probably will not, exist. A table of approximate conver-

sions taken from RSIC-151 [Ref. V-I] has been used to convert the irradiation data to

total absorbed dose units of ergs/gram.

Table V-5 lists some of the more radiation sensitive components. From an ex-

amination of this table, it may be seen that with some selection of components, a total ab-

sorbed dose of l0 s ergs/gm is athreshold below which there is no degradation of performance.

Further, in many cases, irradiation results in a gradual degradation of perform-

ance, not catastrophic failure. Hence, the permissible total dose is that for which the

system performance degrades below an acceptable value.

Radiation from the 8RTG's to be employed would, over the 103 day mission life-

time used as the baseline, total from 5 × 103 ergs/gm to i × 104 ergs/gm, depending upon

the shielding effects of the spacecraft structure. This is 10 percent or less of the thres-
hold dose, and hence is not a constraint on the mission.

The solar proton flux is estimated to be approximately 108 protons/cm2/sec.

(Appendix B, Volume II). This will yield 8.6 by 1015 protons/cm 2 over the 103 day mis-

sion. Since these are low energy particles with an average energy of 1 keV, the energy

of these particles will be absorbed by the surface of the spacecraft and provide no hazard
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to interior components. Studies show, however, that many thermal control paints show

an increase in absorbance at total fluxes of 1013 to 1015 protons/cm 2 [Ref. V-8] and this

must be considered in selecting these coatings.

TABLE V-5.

Component

Pie zoelectric crystals

Organic insulators and seals

Inorganic insulators

Semiconductors

Diodes

Tunnel diodes

SCR

Transistors

UJT

FET

Infrared detectors

Pb S

Pb Se

RADIATION DAMAGE TO COMPONENTS

Damage Threshold*

(ergs/gm)

Inoperable

(ergs/gm)

106 1011

3x 10 a-_3x 107

3× 107--_3x 1011

105

2x 102

3× 102-_3x 104

3 x 107 --*3 x 101°

3 x 109 --_3x 1014

Pb Te high output units failed at

In Sb high output units failed at

Optical glas (discoloration)

*References V-l, V-2, V-3, V-4, V-5, V-6, V-7 and V-9.

107

107

108

109

106 .--,.101o

3x 108

109 --_101o

3 x 106

3x 105--_3X 107

,_ 10 5

107 --_i0 8
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Table V-6 gives the estimated number of orbits to reach three total absorbed
radiation doses: I = 1 x 105 ergs/gram (threshold, no degradation of performance) ;

II = 5 x 105 ergs/gm (some performance degradation); and III= i x 106 ergs/gm (some

possible component or system failures), caused by the Jovian trapped radiation belts.

The data is presented for Jovian orbit periapsis of 5, 6, and 7 Rj and for two models of

the Jovian radiation belts. {Radiation model A corresponds to the model of Figure A-4

in Appendix A, Volume II, and model B to Figure A-5. ) It may be seen from this graph

that the Jovian trapped radiation strongly constrained the orbit choice.

TABLE V-6. NUMBER OF ESTIMATED ORBITS TO INDICATED

TOTAL ABSORBED DOSE

Orbit

Periapsis

( Units of

Jovian Radius)

5

6

7

Dose I

Radiation Model

A B

1/3 2/3

1 i 1/3

2 1/2 7

Dose II

Radiation Model

A B

Dose HI

Radiation Model

A B

3

8 1/3

21

1 2 1/3

3 1/3 4 2/3

8 2/3 23

6.1

11

61

Total Absorbed Dose

I = 1 x 105 ergs/gm (threshold, no degradation of performance expected)

II = 5 × 105 ergs/gm (some degradation)

III= 1 x 106 ergs/gm {some possible component or system failures)

Space Environmental Effects

The launching of a Voyager type spacecraft for an extensive mission opens a broad

new spectrum for the study of effects on materials. A mission of this type which involves

approximately 103 days in deep space, places extreme requirements on materials. These

have not been experienced on previous space flights and thus the definite effects of tem-

perature, radiation, and high vacuum encountered during this mission may be considered

to be beyond the present day knowledge of some of the involved materials. Radiation and

vacuum effects are of prime concern.
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Radiation Damage

Radiation effects from the space radiation environment and RTG's will threaten

damage to both the metallic and nonmetallic components in the duration of the proposed
103 day mission.

By far, metals have demonstrated the greater resistance to nuclear type damage

as compared to organic and semi-conductor materials. For this reason, no particular

concern is given to the possible damage to the main metallic structural components of the

vehicle. There is, however, some concern in the metallic applications involving delicate,

sensitive instruments where high accuracy is of major consideration including instruments

of telemetry or control nature. Radiation environment could conceivably affect the phys-
ical properties from a dimensional-stability viewpoint.

Studies of radiation effects on metals including aluminum, copper, gold, iron,
nickel, molvbden,m, silver, titani,,_m, .ha _.. are v_,,_u in• . - ......... ,-, ixUIUiUliCU v-iO.

The non-metallic materials conversely show significant effects from space radi-

ation. The radiation damage to these materials is usually more dependent on the total
dose rather than the type of radiation and the dose rate. The non-metallic materials used

for potting, insulation, sealants, elastomers, lubricants, coatings, and various electronic

components show varying degrees of resistance to radiation damage. In general, the
radiation effects of these materials must be considered as serious and extreme caution

must be exercised in the location and extent of their usage throughout the space vehicle.

Table V-7, taken from Reference V-l, illustrates property changes effects on

some classifications of materials. References V-1 and V-10, and the bibliographies,

contain more extensive information concerning radiation effects on materials.

Because of the proximity of the RTG's to the propellant tanks on JOVE it is desir-

able to know the long term effects of radiation on retropropulsion and midcourse correc-

tion fuels. These fuels were located close to the RTG's to help act as a shield for other

components on JOVE which might be severely affected by nuclear radiation from the
Pu 238 and the 018. This is a proper procedure provided the nuclear radiation does not then

damage the fuel. Little research has been carried out on the problem. That which has

been done indicates that a threshold of greater than 1015 effective neutrons/cm 2 or 107

roentgens of %/ radiation [Ref. V-11, V-12] is required to do primary damage to hydra-

zine (N2H4) , N204 or 50-50 UDM Hydrazine. On the basis of this information the RTG

nuclear radiation would not damage the fuel.
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TABLE V-7. RADIATION LEVELS THAT PRODUCEAPPRECIABLE
PROPERTY CHANGES[REF. V-l]

MATERIAL

CERAMICS

Glass

Fused Silica

Crystalline Ceramics

E LASTOMERS

METALS

OILS AND GREASES

PLASTICS

Tetrafluoroethylene

Other Plastics

SEMICONDUCTOR MATERIALS

IO NI ZA TION

ergs/gm

105 _ 10lo

107 _ 1011

105 _ 1011

108 _ 101o

109 _ 1012

10 6 - 107

10 6 _ i0 II

High Vacuum Effects

In deep space, the vacuum level is expected to be in the order of 10 -12 - 10 -14 mm

of Hg. Vacuums of this level can cause varying degrees of outgassing and sublimation,

depending on temperature of the environment. For most metals, these effects are slight;

however, severe damage is probable to many of the non-metallic materials. These

effects to elastomers, plastics, coatings, structural adhesives, electrical insulation,

laminates, potting compounds, and sealing materials are outlined in RSIC-150 [Ref. V-10].

Materials Selection

It is anticipated that the Saturn V launch vehicle and related sections will be used

and thus any presently existing materials deficiencies will have been corrected by the

JOVE launch date. With this reasoning, no particular considerations are given this area.
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It is anticipated that the JOVE spacecraft configuration will involve primary support

members of aluminum or magnesiu_no The possibility of ex_nsive ,,se of titanium,, or

beryllium alloys should not be ruled out because of their increasing use in space applica-

tions and increasing research developments with these materials. Shielding in the various

locations will include aluminum or newer super types of non-metallics presently in use or

in stages of development. Stored hydrazine fuel will be contained in metallic-rubber lined
containers.

In a space vehicle of this type, it is obvious that non-metallics will be used

extensively for sealants, lubrications, shielding, and components of structural, elec-

tronic, and various other assemblies. As forementioned, the vacuum environment in the

order of 10 -12 to 10-14mm Hg and radiation fields can cause serious damage to many of

these materials. Outgassing and sublimation may well prove to limit the use and selec-

tions of many of the presently used non-metallics. It is with hope and anticipation that

progress in research and development of new materials will develop at a pace to make

possible the construction and launching of vehicles for missions of this magnitude during
the next decade.

THERMALCONTROL

Overall Requirements

The phases of the Jupiter orbiter mission are pre-launch, launch and ascent,

Earth parking orbit, transfer trajectory, and Jupiter orbit. Each phase presents thermal

control problems that are more complex than a near-Earth satellite. First, during the

pre-launch and launch and ascent phases, the RTG power producing units present unusual

cooling problems. Secondly, because of the great distance travelled from the Earth, the

overall energy balance varies considerably along the transfer trajectory and during the
Jupiter orbit.

Jupiter, being at a nominal distance of five astronomical units (AU) from the sun,

appreciates a solar constant of approximately four percent of Earth's. The solar constant

varies as the inverse square of the distance between the sun and the subject planet, and by
definition the semi-major axis of Earth's orbit about the sun is one AU which is:

1. 49599 • 0. 0004 x 108 km, or approx. 93 000 000 miles.

The numerical value of the solar constant at Earth is 1400 watts per square meter_and at
Jupiter it is down to 52 watts per square meter (Table 13-5, Appendix B, Volume II).

/]

In spite of the widely varying thermal environment, there existed rather rigid

requirements for maintaining temperatures throughout the spacecraft within specified

bounds. Storable liquid fuels and oxidizers will be maintained between 20 and 70 ° F.,
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while electronic compartments for best reliability of components will be maintained at a

temperature near 65 ° F. In the gross analysis, an average temperature of 60 ° F. for the

entire spacecraft was assumed.

To accomplish the control desired, a thermal control subsystem was devised. In

the broadest sense, it encompasses the entire spacecraft system. In the sense used

herein, it consists only of the members devised or designed specifically for thermal

control purposes such as louvers, radiation shields and insulation, conduction members,

surface coatings, and electrical resistance elements and associated relays and thermo-
stats. Not included as a part of the spacecraft thermal control subsystem are other sub-

systems required for pre-launch and launch phases of the mission. They are ground

handling devices that normally serve more than one mission.

The overall configuration was, in great measure, dictated by thermal and nuclear

effects. Other design factors influenced by temperature control requirements included

packaging, placement of components and subsystems, surface finishes, and methods of
attachment.

General Approach

Thermal control became an integral part of the spacecraft configuration. The

chosen configuration was amenable to thermal control through judicious placement of sub-

systems and the use of insulation louvers, and a minimum of electrical energy. The

schematic of the system, Figure V-7 indicates the more significant heat flow directions

but not their magnitudes.

As shown, the craft is flying in the sun pointing attitude desired for the first 270

days of a nominal 800-day trip time. At the end of the 270-day period, the craft will be

approximately three AU (Fig. II-35) from the sun, and use of the high-gain antenna is

required. Flying with a sun pointing antenna does not preclude in-transit maneuvers and

possible reorienting of the spacecraft to bring the actual thermal profile in line with the

nominal. A sun pointing antenna has the advantage that the electronic packages and the

RTG's are pointing toward black space and for the most part are shaded by the antenna

backed structural skirt. The antenna and spacecraft will be Earth pointing during the

remaining 530 days of the trip.

It is seen that the insulation pattern divides the spacecraft into two compartments.

The lower compartment houses the electronic equipment, propellant tanks, their associ-

ated pressurant tanks, cold gas tankage, and miscellaneous plumbing, etc. The upper

compartment is a dead space which houses the retro-engine and its supports. It provides

the supporting surface for the RTG's, mid-course, and orbit trim engines. Inasmuch

as the back or support side of the RTG's may be designed for any reasonable desired

temperature, it is assumed that it is 300°K and that heat flows through that side in an
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amount necessary (only a few watts) to maintain an average temperature of 295"K (70" F)

in the dead space. The dead space average temperature will drop slightly after the en-

gine insulating cap is jettisoned just before the retro orbit insertion maneuver at Jupiter.

However, 20 watts of electrical resistance heat is provided at the engine and thermo-

statically controlled to prevent temperature failing below the acceptable value of 20* F at

the time of start of propellant flow. After final orbit trims are performed and all pro-

pellants are expended, no further need exists for controlling engine temperatures.

At the lower end of the electronics - propellant compartment in ten standard

modules are located the heat producing electrical subsystems. The heat produced by the

electrical subsystem is rejected to space through louvers. Two additional standard

louvers are provided for general heat rejection purposes. To facilitate thermal coupling

between members the interior surfaces are painted with Cat-a-lac black paint or its

equivalent. Thus, the general approach is one of playing two warm ends of the spacecraft

against an inert thermal fly-wheel in the middle. The middle has an initial approximate

thermal capacity of 5000 BTU per * F rise in temperature.

Parametric Studies

Since neither time nor detail of system design was available for complete thermal

control subsystem analyses, parametric studies and gross radiation data resulted in a

readily usable form. From Table V-8, typical values of properties of coatings may be

selected for use with Figures V-8, V-9, and V-10. Except for the Cat-a-lac black paint

properties, the data of Table V-8 came from Reference V-14. Also, Figures V-8, V-9,

and V-10 are similar to those of Reference V-14.

TABLE V-8. PROPERTIES OF COATINGS

Evaporated Gold

Evaporated Aluminum
White Paint

Black Paint (Cat-a-lac)

Evaporated Si02 on

Evaporated Aluminum

Polished Aluminum

Absorptivity

C_

0.19

0.08

0. 15- 0.30

0. 90 + 0.05

0. 12- 0. 18

0. 15- 0.25

Emissivity

E

0.02

0. 025

0.85

0. 90 + 0. 03

0.10-0.60

0. 03- 0.05

9.5

3.2

0. 177 - 0. 353

1.0

1.2-3.0

5.0
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Some Mission Phase Oriented Thermal Considerations

Each of the mission phases has thermal considerations and in some cases control

features that differs from the others. Brief comments and/or analyses for the phases

are presented herein, although detailed calculations are omitted in most cases.

Pre-launch Phase. Cooling of the RTG's was considered to be a ground handling

problem and only feasibility studies were" attempted. Final technique selection and the

design will be the responsibility of those responsible for the RTG developmentl instal-

lation, and checkout.

The cooling devices may be portable transport casks, with built-in refrigeration,

suitable for use through checkout and up until a few minutes before launch.

It is more probable that the cooling will be accomplished by forced convection

with refrigerated air being the coolant. It is assumed that the electrical energy may be

easily dissipated into the structure and cooling air,and that only the waste RTG heat need

be considered here. Therefore, for a 640-wattelectrical system with an efficiency of

4. 5 percent, 48 500 Btu per hour of waste heat must be removed. From

_I = lhCp AT

the mass of cooling air required is 168 pounds per minute for a 20°F, rise in temperature.

For the nominal RTG's surface area of 160 ft 2, and a surface conductance t_ , of 6. 0
c

Btu/° F,- Ft 2 - hr, from

q = H AAT
C

Therefore

48 500
AT--- - 50.7 °F.

6 (t60)

Considering the mean temperature of the coolant to be near 50 ° F. results in an RTG

average temperature of about 100 ° F.

The majority of the mass of the spacecraft will be maintained near 50 * F tem-

peratures during checkout to serve as a heat sink during the launch phase.

Launch. No attempt was made at controlling the temperature during launch and

the first few minutes of flight beyond cooling of the entire mass before launch. It is

important that the nose cone and any shroud that shield the RTG's and electronics com-

partments from space be jettisoned early in the mission, preferably during the first few

minutes. The following analysis arbitrarily used 30 minutes for the shielding time from
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time of coolant flow stoppage. Each RTG has a mass of 80 pounds and an assumed

average specific heat of 0.2 Btu/Lb ° F. From
111

mC AT = q AT
P

.......... v ......... o_, ,,_, u_ _ov F, d for the assumed 30-minute period

(AT). The resulting final RTG temperature of 290" F. is well below the design tempera-

ture and is acceptable. Heat produced by the electrical load will be absorbed by the
spacecraft mass. Electrical power consumption will be held to a minimum.

Planet Orbits and Transfer Trajectory. Ideally, the spacecraft temperature will

remain constant at 60" F throughout these phases of the mission except for the transient

conditions encountered during maneuver set-ups. Ideal conditions cannot be achieved.

The approach selected for solution of the problems involved, however, required the use

of several proven techniques. They were:

I. ,_v,,_,ol of heat rejection to space through variable area louvers.

2. Control of heat transfer from one major compartment to the other through
variable area louvers.

3. Control of energy distribution within compartments through conduction mem-

bers and surface coatings of high emissivities and absorptivities, and

4. Control of heat leaks through careful design of attachments, and holding the

loss through the surface to a negligible quantity by insulating with "super-insulation. "

To determine skin temperatures and compute gross energy balances, the control-

ling terms of the following expression [Ref. V-16] were used

dT ( 1 - rp)
me -a A F S+a A F Sr +a A F S+q(T)-e _A T 4

p dr s c c-s sr c c-p p p c c-p 4 c c e

where the direct solar energy absorbed qs = a A F S (a)' S e c-s

the solar energy reflected from a planet that is absorbed

qsr = a A F Sr (b)sr c c-p p

the energy radiated from the palnet that is absorbed,

( 1 - rp) (c)

qp=a A F Spc c-p 4
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the energy radiated away from the craft,

qc • _A T 4 (d)C C C

and the heat generated on board, qob = q (T) (e)

Also, to derive Figures V-8 and V-9,the stored energy term mc dT/d_ was set
P

equal to zero and terms (a) and (d) considered dominant since the plate was assumed to

be normal to the sun. Further, the solar energy absorbed was considered equal to the
energy emitted by the fiat plate (i. e. , insulated plate).

Terms (b) and (c) were omitted throughout the analyses, since they exert

appreciable influence only during periods during which the spacecraft is close to the

planet. For JOVE, they do not strongly influence the thermal balance.

The RTG produced energy that remains on board, both electrical and thermal,

and periodic release of chemical energy during engine burns are considered to be in
q (_-).

Su rface Featu res

Surface coatings. All exterior surfaces, except for the RTG's, will be painted

with black paint (Cat-a-lac or equal) with emissivity and absorptivity values of approxi-

mately 0.90. From Figure V-8 it is seen that initial equilibrium temperatures of those
surfaces facing the sun will be 400°K at 1 AU and 175*K at 5 AU. The RTG surface

will be painted with white paint whose emissivity is 0.85 - 0.90 and absorptivity is about
0.20.

Black was chosen to:

1. Give surfaces with predictible characteristics, and

2. Prevent accumulation of solar energy at the focal point of the antennas, thus
producing a solar furnace.

A white surface with the characteristics cited above was selected to cover the

RTG's to facilitate their cooling.

All interior surfaces are painted black for thermal coupling effect and the resulting
near constancy of temperature throughout the spacecraft.
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Insulation. Crinkled aluminized mylar was selected for insulating all exterior

surfaces and the surface separati,ig the t-,-o major compar_.ents. Thcir thicknesses

are 0.6 inch and 0.3 inch, respectively. The weight per 100 square feet of area for

the 0.6 inch is estimated at 12.4 pounds, and it is comprised of 30 layers. Fifteen

layers at 6.2 pounds per 100 square feet makes up the 0.3 inch layer between compart-

ments. Very little heat is expected to flow thro ugh the compartment divider and it will

flow, for the most part, through the variable area louvers. Total insulation weight is

estimated at 125 pounds. All cold gas lines and instrument containers carried externally

to the spacecraft are also wrapped with insulation af the same quality as crinkled alumi-
nized mylar.

Thermal conductivity of the super-insulation is expected to vary from very high

values before leaving Earth's surface down to 2.0 × 10 -5 Btu/ft -° R-hr with

10 -4 Btu/ft -°R-hr representing a practical value experienced shortly after leaving

Earth's heavier atmosphere. It will decrease steadily thereafter until the lower value
is reached [Ref. V-161.

Heat loss through properly installed super-insulation for the entire spacecraft

surface while in the colder regimes is estimated to be between 40 and 90 watts. Leaks

through interfacing structure and other pass-throughs is expected to equal that lost

through the insulation. Obviously, care must be exercised in final design of attachments

and in locating and installing insulation.

Louvers. Variable area louvers with highly polished surfaces both inside and

outside were selected for cooling the electrical equipment modules. Knowledge of thermal

load distribution is not complete; however, the total is a nominal 640 watts. If this load

is equally distributed between 10 modules, the load per module is 64 watts.

A reasonable sight factor of 0.75 and emissivity of 0.9 for the cold plates gives a

cooling capacity of 27 watts per square foot and 108 watts for a nominal 4-square foot
unit.

Since there are 10 electrical compartments and two standard louvered units for

general thermal control (a total of 12 units), the total heat rejection capability is near

1296 watts. This is a comfortable total and the maximum load for any unit is estimated

not to exceed 98 watts, an acceptable value.

Based upon a louver surface emissivity of 0. 07 (polished aluminum) the minimum

heat dissipation through closed louvers is computed to be 126 watts.

With two standard four square foot louvers placed in the compartment divider, a

heat inflow to the lower compartment of up to 65 watts of RTG waste is realized. This

could be very useful after the retro-engine insulating cap is jettisoned upon arrival at

Jupiter.
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Summary

It appears that the following may be descriptive of possible energy transfers:

Device

Louvers Closed

Low Minimum High Minimum

(Watts) . (Watts)

Louvers Open

Maximum Anticipated

(Watts)

Louvers 126 126 1296

Skin losses 40 90 90

Attach losses 40 90 90

206 306 1476

A constant 640 electrical watts is available for continuous consumption and

dissipation, with another 65 watts of waste heat on tap for a total of 705 watts. Approxi-

mately 50 of the electrical watts are available for localized heating purposes, 20 of which

may be used near the retro-engine and its feed lines. A few of the thermal control watts

are also devoted to heating and cooling of scientific packages.

Overall the thermal control for JOVE appears adequate. A more detailed analysis

will be performed along with final design. Thermal analyzer computer programs would

be employed to obtain subsystem optimization. Reference is made to Table V-1 for a

breakdown of the 260-pound weight of the thermal subsystem.
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CHAPTERVl

SPACECRAFTPROPULSION SYSTEMS
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CHAPTER VI. SPACECRAFT PROPULSION SYSTEMS

DEFINITION OF SYMBOLS

Gas constant

Torque

Micrometeoroid mass

Micrometeoroid velocity relative'to spacecraft

Distance from C.G. to point of micrometeoroid impact

Moment of inertia

Excursion angle following collision

Dimensionless pulse width

Thrust level

Center-to-center distance AC/S jets

Deadband angle

Angular rate

Unit impulse

Pulse width (also called thrust duration)

Pulse spacing

Total impulse

Mission length

High-pressure N 2 storage weight

Redundant storage factor
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DEFINITION OF SYMBOLS (CONTINUEDI

I
sp

P

P

T

VN2

R

J

AV

r

W

mf

m
o

V

P

V*

k

t

W
P

Specific impulse

Specific impulse degradation factor

Pressure

Temperature

High-pressure N 2 storage volume

Oxydizer/fuel ratio

Impulse per axis

Velocity increment

Mass ratio, tank radius (depending on use)

Weight

Gross capture weight

Net injection weight

Volume

Density

Dimensionless storage factor

Ratio of specific heats

Thic kne s s

Propellant requirement
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INTRODUCTION

The on-board propulsion requirements for JOVE consist of the primary require-

ments for orbit insertion, trajectory correction and orbit trim (TC,/OT) and the secop_-

ary requirements for Attitude Control and Stabilization (AC/S). These are treated sepa-

rately in the various sections of this chapter, starting with a discussion of the primary
requirements and their treatment.

PRIMARY ON-BOARD PROPULSION REQUIREMENTS

Introduction

The primary propulsion subsystems must provide the flexibility and capability for

trajectory correction, orbit insertion and orbit trim as prescribed by the mission profile.

The synthesis and analysis of the subsystems are based on the following operations:

a. An initial trajectory correction shortly after injection.

b. One or more subsequent corrections before insertion.

c. Orbital insertion maneuver.

d. Orbit trim maneuver to adjust the planetary orbit.

e. Orbital transfer maneuver.

f. Orbit trim maneuver.

The energy requirements can be classified broadly as those for orbit insertion

and those for correction and orbit trim. The requirement for trajectory correction is

estimated to be 150 meters per second; for orbit trim purposes the requirement is

estimated as 100 meters per second. This represents a total requirement of 250 meters

per second for trajectory and orbit adjustment, and the requirement for orbit insertion

has been estimated as an additional 2000 meters maximum per second for a 1978 launch

opportunity. The 1978 launch opportunity corresponds to the maximum requirement for

the 1975-1980 time period, and for other missions propellant off-loading is feasible.

The required midcourse maneuver accuracy is a minimum velocity increment of

1 meter per second with a maximum allowable error of 0.1 meter per second. It is

desirable to execute a maneuver as small as 0. 1 meter per second, with a 3a error of

0. 01 meter per second.
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Certain general constraints on the spacecraft and the propulsion subsystem con-

figuration are recognized as necessary. For instance, a modular concept with simple

electrical and mechanical interfaces offers distinct advantages. The vohtme, shape,

height, and weight are restricted by both practical and necessary considerations. A

reasonable thermal environment must be attained for which the exact limits depend upon

final selection of the subsystem. Finally, the subsystem must withstand the loads and

vibrations associated with launching; operation of the subsystem must not impose undue

loads and vibrations on the spacecraft.

Propellant Selection

The velocity requirement for orbit insertion is such that only a small percentage

of the total propulsion weight is allocated to mideourse correction and orbit trim. From

before, the mission requirement is estimated to be 2250 meters per second for all pur-

poses.

In Figure VI-1 the performance potential of several propellants is indicated where

lines of constant mass ratio have been plotted for velocity vs. specific impulse. The

lowest values for mass ratio for a given velocity requirement correspond to nuclear pro-

pulsion, cryogenic propellant, and fluorine systems, respectively. Generally the state

of development, ease of handling, overall experience level and long term storability

aspects enhance the selection of either a solid propellant or a hydrazine blend bipropeUant

either of which provides the orbit insertion velocity requirement with a mass ratio of

approximately 1.6.

The use of a solid propellant configuration for retropropulsion necessitates the

consideration of a separate subsystem for trajectory correction and orbit maneuvers.

Such a separate system can be used also in conjunction with a bipropellant configuration

for retropropulsion. An alternative is the use of a single subsystem with multiple start

capability for the combined mission requirements. With the separate subsystem for tra-

jectory correction, etc., the relatively small velocity requirement can be achieved with

a monopropellant system. A system of this type employing monopropellant hydrazine

requires additional fuel to that required by a bipropellant system, but propellant acquisi-

tion and complexity are not as significant.

Subsystem Synthesis

For a dual subsystem configuration employing a monopropellant system for correc-

tion and trim maneuvers, there are several methods of obtaining thrust vector control

during retropropulsion, including gimbal operation with the bipropellant system or throt-

fling the midcourse chambers with either the bipropellant or solid fuel system. Also, with
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the solid fuel configuration methods involving secondary fluid injection, a movable nozzle
or a separate solid propellant gas generator can be considered. Secondaryfluid injection
has beensuccessful in Minuteman and Polaris, but it requires additional propellant tanks
and associatedhardware. The solid propellant gas generator has beenused in the roll
control system developedfor the Minuteman Wing VI third stage, but it, too, corresponds
to the introduction of a third subsystem. The concept of a movable nozzle introduces
additional complexity that is not offset, perhaps, by increased reliability or flexibility.
For the solid propellant retropropulsion, it seems that throttling the midcourse thrust
chambers is the least complex and most reliable method for thrust vector control. For
bipropellant retropropulsion, either gimballing or throttling of the midcourse thrust
chambers is conceivable.

In a combined system for provision of the overall mission requirements considera-
tion can begiven to either a single bipropellant thrust chamber or multiple thrust cham-
bers. Thrust vector control can be achieved by gimballing, fluid injection, or, in the
case of multiple thrust chambers, by throttling. The increase in system complexity
and decrease in reliability accompanyingmultiple starts, however, is generally undesir-
able in connectionwith multiple thrust chamber configurations, so the single thrust
chamber is considered as preferable. This configuration with stepped-thrust capability
for flexibility and gimbal mounting for simplicity providea a desirable subsystem concept
for the overall mission requirements.

In summary, three subsystemscan be synthesized, each of which appears to be
feasible for the propulsion requirements:

a. Solid propellant retropropulsion with monopropellant TC/OT chamber throt-
tling for thrust vector control.

b. Bipropellant retropropulsion with monopropellant TC/OT provision, with
gimbal mounting for thrust vector control.

c. Single bipropellant thrust chamber with steppedthrust capability and gimbal
mounting for combined retropropulsion and TC/OT provision.

Subsystem Sizing

A design chart is shown in Figure VI-2 which relates velocity requirement (AV),

mass ratio (r), specific impulse (Isp) of the propellant, thrust (F_, propellant require-

ment (Wp}, gross capture weight (mf), and net injection weight (mo } for any particular

mission.
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For sizing of the retropropulsion system a net injection weight of 45 000lb is
selected as corresponding to near maximum capability of the Saturn V booster for an
interplanetary mission. A gross capture weight or gross delivered payload of 15 000 lb
is selected as a desirable maximum for propulsion sizing. With these constraints a
maximum mass ratio of 3.0 and a maximum fuel requirement of 30 000 lb are derived
from the chart.

A value of 1000 sec is selected as maximum thrust duration, corresponding to an

approximate upper limit for ablative thrust chamber operation. This value, along with

a typical value of 300 sec for specific impulse of the propellant, fixes a pivot point on the

unmarked diagonal. This point along with the propellant requirement from above ( 30 000

lb) yields the solution for a minimum thrust requirement of 9000 lb.

For the same value of specific impulse and the maximum value 3.0 for a mass

ratio, as found previously, the solution for maximum velocity contribution is found to

be 3220 meters/second which represents a comfortable level for numerous interplanetary
missions.

Subsystem Solution

Typical Solid Propellant Retropropulsion Subsystem. In an earlier design study

[Ref. VI-I] performance parameters and subsystem characteristics were reported for

an Aerojet modified second-stage Minuteman Wing VI propulsion system. From the plots

contained within that study the following data are extrapolated:

Expansion Ratio

Total Impulse

Propellant Weight

Total Motor Weight

Effective Specific Impulse

Effective Mass Fraction

Average Vacuum Thrust

Throat Area

Nozzle Exit Diameter

Overall Motor Length

70:1

3 000 000 lb-sec

99OO lb

11 320 lb

_.94 sec

0. 899

33 000 lb

44.5 in. 2

63 in.

155 in.

General Electric has reported also, for a monopropellant TC/OT subsystem, the

percent error in velocity increment versus total thrust as supplied by the Propulsion

Department of TRW/STL. For a minimum AV trajectory correction of 0. 1 meter/sec a
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maximum error of 7 percent occurs with a total thrust of 115lb. For a AV correction

of 1 meter/sec a maximum error of 7 percent is met easily for trajectory correction or

orbit trim at tl-ds thrust level. The percent error for an orbit trim correction of 0. i
meter/sec at 115 lb thrust is approximately 15 percent.

To compute the amount of monoprope!!_nt required for thrust vector control

accompanying a maneuver of 3 000 000 lb-sec it is necessary to make certain assumptions

concerning the C.G. uncertainty during the maneuver. This is asstuned to be 0.2 inch

at the start of the maneuver and 0.4 inch at the end of the maneuver. The results of a

typical calculation are tabulated below for the assumption shown:

Maximum Disturbing Torque

Thrust Chamber Radius

Duty Cycle

Duration

Specific Impulse (Hydraxine)

Propellant Requirement

Thrust (Minimum Per Chamber)

Thrust (Maximum Per Chamber)

10 000 in.-lb

52 in.

loo%

90 sec

230 sec

75.4 lb

25.0 lb

210.0 lb

For the solid propellant subsystem the weight requirement for orbit insertion
(3 000 000 lb-sec) may then be estimated as:

Engine Weight

Thrust Vector Control

Total

11 32O lb

100 lb

11 42O lb

For weight comparison purposes it is considered that the TC/OT monopropellant

subsystem will be on-board with either the bipropellant or the solid propellant subsystem,

so its weight will not be included in orbit insertion estimates, although with the solid pro-

pellant the TC/OT subsystem may be slightly heavier. The above values do not include

necessary structural weight which is estimated at 300 lb.

Liquid Bipropellant Retropropulsi0n Subsystem. For applications of 9000 pounds

thrust requirement (preceding section) in the 1975-1980 period the Lunar Excursion

Module Descent Engine (LEMDE) will be a functional system that can be modified for

particular needs. Studies have been made to determine its applicability as a propulsion

subsystem for interplanetary spacecraft.
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For weight comparison purposes, the results of a study by General Electric is

shown here for a modified 4-tank LEMDE system:

Thrust Chamber (Complete)

Propellant Feed System

Propellant Tank

Pltunbing

Trapped Propellant

Pressurization System

Pressurant Tanks

Plumbing

Helium

Miscellaneous Hardware

Structural Weight

Total Propulsion Inert Weight

399 lb

376 lb

57 lb

474 lb

38O lb

36 lb

35 lb

21 lb

206 lb

1984 lb

Additionally, for a total retropropulsion impulse of 3 000 000 lb-sec with the

modified LEMDE system the propellant usage is estimated as 10 000 lb. For a com-

parison with the solid propellant subsystem the following weight breakdown is obtained:

Inert System Weight

Propellant Requirement

Total

1984 lb

10 000 lb

11 984 lb

Since this subsystem incorporates gimballing the thrust vector control (TVC) it

is not necessary to include a monopropellant requirement as for the solid propellant

engine.

Single Bipropellant Thrust Chamber for Combined Propuslion Requirements. The

modified LEMDE subsystem discussed above has the capability of two-thrust level opera-

tion, i.e., 10 500 lb and 1050 lb. For retropropulsion with this subsystem the weight

estimates in the preceding section are the same, so only the desirability of the 1050 lb

thrust level for TC/OT utilization need be considered here.

For a spacecraft weight of 20 000 lb and a desirable AV trajectory correction of
1 meter/sec with a maximum allowable error of 0.1 meter/sec it is necessary to provide

an impulse of approximately 2000 lb-sec minimum with a maximum allowable deviation of

200 lb-sec. For a trajectory correction of 0.1 meter/sec with a maximum allowable
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deviation of 0.01 meter/sec the impulse requirement is 200lb-sec minimum with a maxi-
mum allowable deviation of 20 !b-sec. The modified LEMDE system can probably achieve
the 1meter/second maneuver keeping well within the allowable deviation, but information
is not complete concerning minimum impulse bit, etc., for complete evaluation.

Discussion and Selection. Obviously, each subsystem described above offers

certain advantages as a condidate for selection. Other subsystems exist which could be
evaluated also for the JOVE vehicle.

The modified LEMDE subsystem with separate TC/OT provision has been shown

to be favorably comparable with the modified Minuteman solid propellant subsystem from

the standpoint of weight. It has a distinct advantage since midcourse chamber throttling

is not required for TVC since the modified Minuteman could require a significant increase

in the size of the TC/OT subsystem for TVC purposes. The modified LEMDE provides

the minimum thrust level prescribed for JOVE ( 9000 lb) without the very high initial

thrust accompanying the operation of a solid propellant engine.

The combined system consisting of the modified LEMDE would afford a weight

reduction in TC/OT provision, assumed to be small. This subsystem provides no re-

dundancy for trajectory correction and orbit trim maneuvers. Propellant acquisition

could be a serious problem with this configuration.

With the modified LEMDE and a separate TC/OT subsystem, use of the main

thrust chamber represents a desirable back-up mode for TC/OT. This configuration

allows the main retropropulsion thrust chamber to be sealed off until it is prepared for

the orbit insertion maneuver. Operation of the TC/OT subsystem can be used to settle

the propellant before retropropulsion and thereby reduce the acquisition problem.

For the reasons above, along with the fact that the LEMDE has been designed to

be man-rated, implying a very high reliability goal, the initial concept of JOVE will in-

corporate a modified LEMDE subsystem with a separate subsystem for TC/OT.

RETROPROPULSIONSUBSYSTEM CALCULATIONS

Propellant Requirements

For the subsystem selected in the previous section the propellant consumption

depends upon the required velocity increment for the mission and the net injection weight

of the spacecraft. Propellant storage design is based on the attractive capability of the

modified LEMDE, with tank sizing to permit a mass ratio of 2.5 maximum corresponding

to a velocity increment of 2690 meters/sec. For a net injection weight of 18 500 lb this
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corresponds to a propellant consumption of 11 000 lb for a typical specific impulse of

300 sec as seen in Figure VI-3.

The weight of hydrazine blend fuel required is obtained from the mixture ratio as

Wp

WH - I+R

and the weight of oxidizer required is

RWp
W

o I+R

Bipropellant Storage Calculations

The hydrazine and oxidizer volumes are given by

Wp

VH - pH ( t +R)

RWp
V -

o po(l+R)

The fuel and oxidizer tank requirements must include, additionally, screens to

minimize sloshing, an ullage allowance, and an allowance for trapped fluids. If the

additional volume is expressed as a fraction of the expelled fluid volume, then the required
tank volumes are

( 1 + VH* )

•VHT - pH(I+R ) Wp

(l+V *)R
0

VOT =p (i+R) Wp
O

The basic JOVE spacecraft provides 91.8 ft 3 for oxidizer storage and 79.2 ft 3 for hydrazine

storage. Considering 50-50 hydrazine-UDMH and nitrogen tetroxide, a typical set of

retropropulsion parameters are specified as
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W = 11 100 lb
P

R =2.0

Po = 85.5 lb/ft 3

PH = 49.8 lb/ft 3

The volumes and weights of expelled hydrazine and oxidizer are

11 i00

VH= (49.8) (3.0)
= 74. 2 ft 3

V - (11 100) (2) = 86.5ft 3
o (85.5) (3.0)

11 100

WH - 3 - 3700 lb

W - (11 100) (2) =74001b
o 3

From these values the tank factors V* are calculated as

V_ = 0. 0675

V ;:-"= 0.0615
o

Although typical values are not known for these factors, they probably should exceed

0.10 for consideration of ullage as well as trapped propellant. This is not explored

since there is growth potential present in the basic design, and the possibility exists
also for reduction in tank size and weight for lesser mission requirements than those

specified in the sizing study.

Pressurant Requirements

The operating pressure of the LEMDE thrust chamber is 220 psia. Common

storage is used for both LEMDE and TC/OT pressurant. The selected pressurant is
helium, stored at 3500 psia. For the LEMDE subsystem the weight of pressurant gas

required, assuming adiabatic expansion, is
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v"PG

(VHT+VoT)P2

R T 1

I \

(1  P2)
Pl

and the required tank volume is

P1
R T 1 k

VpG = WpG P1 - P2

1-- --

P1

(VHT + VOT)

For the following typical values,

P2 : 220 psia

Pl = 3500 psia

ft-lb
R = 386

lb °R

k = 1.66

VHT + VOT = 171 ft 3 (calculated previously)

The weight and required volume are calculated for the pressurant

220(171) (144) (l. 66)
WpG = 3S6 (530) ( 0. 9372) = 46.9 lb

1.66 (0. 062S) = (171) = 19.05 ft 3VpG = 0. 9372

The size and weight of two pressurant tanks, two feet in diameter, cylindrical, with
hemispherical ends, based on the above volume is calculated from

2Pst 2 3
WpGT- r [VpGT +_r ]

6-15



Forp = 0.161b/ft _, t= 0.66in.,
S

2(0.16) (1728) (0.66) [19.05+2(3"14)] = 6431b
WpGT - 12 (1) 3

Considering common pressurant storage a small amount of this weight should be

contributed to the TC/OT subsystem, but the difference is negligible.

Subsystem Weight

In the preliminary design study mentioned previously, General Electric esti-

mated the inert weight breakdown for a LEMDE configuration similar to the one

selected as the preferred configuration for JOVE. These estimates, where applicable

(thrust chamber, plumbing, etc. ), are used to obtain an estimate for the basic retro-

propulsion subsystem discussed in the preceding sections.

ESTIMATED INERT WEIGHT BREAKDOWN-JOVE RETROPROPUI_SION

399 lbThrust Chamber (GE)

Propellant Feed System

Propellant Tanks 580 lb

Plumbing (GE) 57 lb

Trapped Propellant (GE) 474 lb

Pressurization System

Pressurant Tanks (with fittings) 700 lb

Plumbing (GE) 36 Ib

Helium 47 lb

Miscellaneous Hardware 25 ib

Structure (GE) 206 lb

TOTAL PROPULSION INERT WEIGHT 2524 lb
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TRAJECTORYCORRECTION/ORBIT TRIM (TC/OT) PROPULSION
SUBSYSTEM DESIGN

!n frnrl,orfinn

The TC/OT propulsion subsystem synthesis, selection and design is based on the

general requirements discussed previously, as well as on considerations introduced by

the selection of the modified LEMDE subsystem for orbit insertion. Without the addi-

tional requirement of TVC the subsystem is required to provide only the trajectory

correction and orbit trim functions, except for possible utilization for propellant

acquisition purposes.

Subsystem Synthesis

Either a monopropellant or a bipropellant system is considered to be the best

choice for the TC/OT subsystem. Since positive propellant acquisition is essential

for this subsystem, the use of bladders must be considered. The Mariner vehicles have

used butyl rubber bladders in the case of monopropellants for several months duration,

while bipropellant applications of bladders have been of limited duration. The indica-

tion is that a monopropellant subsystem lends itself better to the JOVE design, although

a bipropellant subsystem would provide a weight savings. The most practical arrange-

ment is to pair the monopropellant thrusters for symmetrical orientation about one or

another of the major control axes. Two symmetrical pairs (4) provide an attractive

back-up mode of operation for engine-out capability.

Subsystem Sizing and Selection

The sizing of the TC/OT subsystem involves a trade-off of thrust level, thrust

duration, and AV capability, subject to practical hardware constraints.

It is desirable to avoid extremely long durations of thrust because of time

dependent errors in guidance accuracy and propulsion operation. It is necessary to

limit the thrust level since there exists a minimum possible thrust duration which

controls the minimum impulse and therefore the minimum AV provision.

The thrust duration for the TC/OT subsystem for a given maneuver is given by

m AV
O

At-
geFT
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This equationcanbe solved for maximum or minimum thrust level corresponding to
minimum or maximum At, respectively.

(FT) min.

(mo)max. ( AV)max.

gc (At) max.

(m) (zxv)
o rain. min.

(FT)max" = gc (/Xt)min.

For subsystem sizing the following ranges were assumed for spacecarft weight, velocity

increment, and thrust duration.

5000 <m <40 0001b
o

0.1< AV< 150 meters/sec

0. 025<At< 1000 sec

Subsystem thrust range corresponding to these values is found to be

602< F T< 2040 lb

Practical consideration of existing hardware and subsystem weight lead to the choice

of the lower thrust level of 602 lb. This is equivalent to four (4) 150 lb thrusters in

a symmetrical arrangement as described previously.

Subsystem Design and Analysis

In the design and analysis of the TC<OT subsystem the mission and system para-

meters, thrust, spacecraft weight, velocity requirement, thrust duration, propellant

requirement,and specific impulse of the propellant, are related through the relations:

m AV
O

F T - gcA t

and

m AV
O

Wp- gclsp
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The total subsystem weight is considered to be the sttm of the weights of pro-
pellant loaded, propellant tanks, pressurant, pressurant tanks, bladder configuration
andcombined fixed hardware as given by

_xl = W +W +W W +W +W

"'system 'H 'HT " PG " PGT B " COM

Hydraxine and -Hydrazine Storage Weights. The total required weight of hydra -

zine will include the weights of the expected consumption, specific impulse degrada-

tion contingency, AV reserve contingency and an explusion efficiency contingency.

The total weight is expressed as

/l+ot H +_
WH = • AV Wp

The hydrazinc storage volume must accommodat_ Lhe bladder and the required hydra-

zine and must include an ullage factor. The total required volume is

t VB Vull______V H
VHT = +_HH + VH]

where V H is obtained from the hydrazine weight as

So, expressing W H and VHT in terms of the net injection weight and AV requirement

W H

m AV
0

Isp gc

) m AV
O

PH Isp gc

For the basic JOVE design a storage configuration for the monopropellant was selected

as two cylindrical tanks, two feet in diameter with hemispherical ends. The weight

of this configuration is
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2Pst 2 rra]
WriT - r [VHT +

or, in terms of the basic parameters

2Pst Ill VB+ Vull _ /.1 + _H + 5A'--_V)AVWriT- r + V" _HH /

Pressurant and Pressurant Storage Weights.

required, assuming adiabatic expansion, is

P2VHT / k /
- -Pa

WpG R T 1- Pl

to + 2r
PH Isp ge

The weight of the pressurant gas

The corresponding storage volume required is

- P2/PI kVHT.
VpG P2

i-

Pl

For common storage of LEMDE and TC/OT pressurant, the additional tank weight for

TC/OT is considered to be

2Pst*

WpGT- r" VpG

Hence, in terms of system and mission requirements

6AV )• = ___ +%+ v_/WpG

m AV
0

PH Isp gc

+ 6AV__.)o (>)(, v< mo V
P,
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as

Bladder and Hardware Weights. The weight of the bladder material is expressed

W B

V B 1 + ozH AV mo AV

:PB ,_u E P_Io_ gc

The weight of the combined hardware consists of structure, engine and plumbing weights.

Inert Subsystem Weight. The inert subsystem weight includes the weights of

the tanks for hydrazine and pressurant along with the bladder and hardware weights.
This is expressed as

/ 6av\
/1 + o_ +--*

Winert=_ - H AV)

4

+ 31r Pstr 2 + WCO M

m°AV l { VB Vull_0o. +v-;+v.]
Pl + PB V
- _'2

1-_--
r_ /

The following values for JOVE are selected for the parameters involved in the inert

subsystem weight:

VB_

a H= 0.01 VH 0.02

6AV Vull
- 0.05 - 0.01

AV V H

( : 0.95 P2
- 0. 0625

k = t. 67 Pl

m = 18 5OO lb
O

AV : 250 meters/see

I -- 235 sec
sp

t = 0.05 in.

t" : 0.66in.

PH = 50 lb/ft 3

Ps = 0.16 lb/in 3

PB = 70 lb/ft 3

WCO M = 0.1 Winer t

r = 24 in.

r" : 12 in.
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Then

(1.15) (18500) (250) (3.281) I2(0.16)Winert = (0.95) (0.90) (50) (32.2) (235)

0.05 + 1.67(0. 0625) (0.66) +70(0.02)}× 2-7 ( 0. 09375)

4
-_(3.14) (0. 16) (0.05) (24) 2

+
0.9

(1728) (1.12)

= 54.2(5.08 +1.4) +21.4=372.41b

ATTITUDE CONTROLPROPULSION SUBSYSTEM CALCULATIONS

Thrust Level Requirements

The thrust level requirement for the attitude control system is determined by

pertinent constraints on expected response. For JOVE the selected constraint is

the maximum excursion angle through which the spacecraft is permitted to travel

following a micrometeoroid impact.

The maximum disturbance torque, corresponding to a micrometeoroid collision,

is

M2_ 2b2
T

max. 2I Of

The torque developed by the attitude control system is

At
T- t FTI

After substituting for maximum torque, the minimum thrust level may be obtained as

FT - 2I 0F_

For sizing, typical values for JOVE are selected for the parameters as

M = 6. 85 x 10 -6 slugs (0. 1 gm)
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= 6. 562 x 104 ft/sec

b = 25 ft

= 20 ft

I = 3 000 slugs-ft 2

Of = 0. 0349 tad

Then, the minimum thrust level is calculated as

FT (6"85)2 x 10-12 x (6"562)2 x 108x (6.25) x 102x 3= 2(3000) (3.49) x 10-2 x 20

Impulse Requirements

The minimum total impulse requirement corresponds to use of the minimum

possible pulse width in the limit cycle operation.

For limit cycling the angular rate is computed as

_ AI_ _ FTAt_
2I 2I

The pulse spacing is

40EI

t 1 - FTAt I

The impulse per axis is

(AI)2_ p FT2(At)2f p

2I 0 E 2I 0 E

and the total impulse requirement for three axes is

3 (AI)2_P : 3 FT2(At)2fP

IT : 2 IOE 2 IOE

6-23



Typical values for JOVE of the parameters associated with normal limit cycle operation
are selected as

FT= 0.09051b

At = 0. 025 sec

0 E = 0. 00349 tad

P=7.8x 10 _ sec

The following values are claculated for angular rate, pulse spacing and total impulse

0.0905(0. 025) (20)
= 2(3000) "= 7.55x 10 -_ rad/sec

4(0.00349) (3 000)
tl = O.0905(0. 025) (20) = 9.27 × 102 sec

3 (9.05)2× (2.5)2×20×7.8

IT- 2 (3000) (0.0349)
= 1142 lb-sec

Propellant Requirements

The amount of high pressure N 2 that is discharged in limit cycle operation is

IT/Isp. The value of specific impulse depends upon the degree of expansion and is

limited by the saturation temperature of the pressurant. Allowing for specific impulse

degratation, total impulse requirements, and residual gas the weight of high pressure

N2 is

The required storage volume is

RT

VN2- p. WN 2 "
1
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The required storage volume is

RT

VN2- p. WN 2
1

Typical values for JOVE are selected for the redundant storage, specific impulse,

degradation, temperatures, and pressures as

tip=2.0

I = 56 sec
sp

_p= 0.10

Pf = 150 psia

P. = 3000 psia
1

T i= Tf= 530°R

The storage requirements are calculated from these as

=2 (1142) (1.10)
WN 2 (56) (0.95) -- 47.21b

(55.15) (530) (47.2) = 3.18ft 3
VN 2- (144) (3000)

Discussion

The calculations in the preceding sections do not consider the impulse require-

ments corresponding to acquisition modes, disturbance torques, etc., but are typical

for normal limit cycle operation. The basic design incorporates additional AC/S

storage capacity (7.2 ft 3) which should provide amply for all requirements.

SUMMARY

The retropropulsion subsystem is designed to provide a total impulse of up to
3.25 × 106 lb-sec with 50-50 N2H4/UDMH and N204 as fuel and oxidizer. The inert

weight of the subsystem is estimated as 2524 lb for this impulse requirement. The

design incorporates a growth potential of approximately 15-20 percent.
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The TC/OT subsystem is designed to provide a total impulse of up to 4. 2 x l0 s

lb-sec with hydrazine as monopropellant. The inert weight of the subsystem is esti-

mated as 372 lb for this impulse requirement. There is a possibility for growth
potential.

The AC/S subsystem is designed to provide a total limit cycle impulse of

1142 lb-sec with high pressure N 2. The existing design permits considerably greater

storage.
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INTRODUCTION

The functions of interest in this section are: (i) estimation of the position

and velocity of the spacecraft, (2) prediction of terminal errors and steering,

and (3) attitude determination and control. The implementation of these functions

can be divided up in many ways between "on board" systems and Earth-based track-

ing and data processing facilities. Practical considerations based on the present

state-of-the-art result in the decision that the attitude sensing and vehicle maneuv-

ering associated with guidance corrections or steering operations can be performed

by on board components while the position and velocity of the spacecraft and the

nature of the required vehicle maneuvers are determined by Earth-based facilities.

Using these constraints, a basic control concept has been worked out for

the JOVE mission which makes use of previously developed concepts from the

Mariner and Voyager projects. It is characterized by several pertinent features.

Optical sensors on board the spacecraft are used to provide attitude reference.

The Deep Space Instrumentation Facility (DSIF) is used to track the spacecraft

and guidance corrections are determined by an Earth-based computer making use

of the tracking information. A central computer and sequencer (CC&S) on the

spacecraft provides master timing for all spacecraft systems and translates gui-

dance commands into control signals for the attitude control actuators, the mid-

course propulsion system, and the primary propulsion system. Possible variations

in the design of the guidance and control system are discussed briefly.

Specific functions to be performed by the guidance and control system are:

i. Acquisition of external references.

2. Pointing of the spacecraft such that the fixed high-gain

antenna points toward Earth.

3. Midcourse corrections.

4. Orbital injection control.

5. Orbit trim maneuvers.

6. Orientation of scientific scan platform.
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The guidanceand attitude control functions cannot be performed indepen-
dently. Attitude control, however, is mainly concernedwith controlling the
spacecraft with respect to the three-degrees-of-freedom that determine the motion
of the body around its center of mass. The guidancesystem controls the space-
_-_, ,,,;_h ...... _ _ fh_ r_fh_v thv_ de o_,re,_,q-nf-freedn m which locate the center

of the mass. The main difference between the two is that the attitude sensors are

airborne while the location and velocity of the spacecraft are determined from

Earth-based equipment.

GUIDANCE SYSTEM

Introduction

The term "guidance system" as used here includes two functions: a. the

determination of the vehicle's position and velocity, and b. the computation of

maneuvers required to achieve the desired end conditions. The implementation

of these maneuvers is also discussed here. Alternate means of carrying out

the guidance function using on-board sensors and computers are discussed in

Appendix G, Volume II.

Determination of Vehicle's Velocity and
Position (Navigation)

The tracking and orbit determination of the spacecraft can be accomplished

with the Earth-based DSIF system and an Earth-based computer, with on-board

sensors and an Earth-based computer, or with a complete on-board system. The

use of an on-board computer for trajectory determination and corrections does not

appear feasible at the present time caused by a reliability problem over the long

time period involved and because weight and power considerations for on-board

computer make it impossible to provide a capability equal to that of an Earth-based

computer. Consideration was given to an on-board guidance system in the vicinity

of Jupiter because of the errors associated with tracking by the DSIF increase as

the spacecraft moves away from Earth. It was decided, however, on the basis of

previous studies [ l_ef. VII-l, VII-2] that the use of the DSIF for tracking purposes

would result in a terminal error of less than 4000 to 5000 km. Since this error is

satisfactory for a mission such as JOVE, it was decided that the position and velocity

of the spacecraft should be determined by tracking with the DSIF. This information
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is fed into the computer which is programmed to determine the best estimate
of the actual trajectory andcompare this with the nominal trajectory. On the
basis of this comparison, the AV required to correct the trajectory is computed.

This is the same approach that has been used on the Mariner missions.

For more complicated missions which require greater accuracy than can

be provided by DSIF, some form of on-board guidance will be required. A

possibility for increasing the contribution of JOVE to the space effort would be

to take advantage of the mission to test sensors or other instruments proposed

for use on an on-board guidance system. For example, it has been suggested

that the spacecraft position might be determined by multiple star tracking, or

pattern recognition of groups of stars. Such a device might be placed on JOVE

to determine its capabilities.

Implementation of the Guidance Function

Based on the AV requirements determined by the computer, commands

are relayed to the spacecraft and stored in the Central Computer and Sequencer

(CC&S). At the designated time, these commands are sent to the attitude control

system, which switches automatically to the maneuver mode discussed in the

previous section, and the spacecraft is realigned so that the thrust vector points

in the direction of the required AV. With the spacecraft oriented in this manner,

the appropriate engine (TC/OT engines for mid-course and orbit trim maneuvers

and the LEMDE for orbit insertion) is fired and continues to burn until the out-

put of an integrator connected to an accelerometer indicates that the desired

magnitude of AV has been achieved. At this time the engine is automatically

shut off and the spacecraft returns to its normal cruise mode.

ATTITUDE CONTROLSYSTEM

Introduction

The term "attitude control system" refers to the group of actuation devices

and associated electronics which are employed to generate torques about the

spacecraft axes for controlling the orientation to some desired condition. In

this section, design criteria associated with the problem of achieving the desired

attutide control of the spacecraft are considered. The resulting attutide control
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system is quite similar to those proposed for Voyager, which in turn will use
_-h,-, _,_ hno_, _, _nfx'al c.anr.ar_f_ _11_.t'_:z_111|xr £i_xxT_ ^_ _4",_-_. Tha _._r._._l

improvements required for a Jupiter mission appear to be in the area of relia-
bility for the much longer time periods involved. It is anticipated that state-of-

the-art advances in control system components will provide the required degree

of reliability.

Attitude Control Concepts

Attitude control concepts can generally be classified as passive, semi-

passive, or active. Passive control systems make use of either spin-stabili-

zation techniques or environmental fields such as gravity, solar radiation pres-

sure, or magnetic fields. Active control systems use either external control

moments or momentum storage devices, or both. Semipassive control systems

make use of both passive and active control techniques. Such a system combines

the utilization of the torques available from an environmental field (or spin-

stabilization) with the improved performance in terms of response time and

maneuver capability of an active system. An example of this type system is

on Mariner IV [ Ref. VII-3] where a semipassive technique made use of solar

radiation pressure in conjunction with an active attitude control system using

cold gas jets.

Spin-stabilization is the only passive method that has been extensively

implemented as a primary means of spacecraft control. The utilization of

environmental fields as a primary means of spacecraft control is severely

limited because of the resulting extremely low speed of response and limited

acceleration capability. Furthermore, for a deep space mission such as JOVE,

solar pressure is the only environmental effect of any appreciable significance

except in the vicinity of Jupiter, and it decreases rapidly as the spacecraft

travels away from the sun. The nature of the spacecraft's orbit about Jupiter

precludes any worthwhile utilization of the gravity or magnetic fields of Jupiter

for passive control purposes.

In light of the remarks above, the basic choice among attitude control

concepts is between spin-stabilization and three-axis stabilization with an active

attitude control system. Spin-stabilization is attractive in those cases where

the scientific mission islimited and low-accuracy inertial orientation of only one

spacecraft axis is sufficient to meet the system requirements. On a deep space

mission with the capability proposed for JOVE, three-axis stabilization provides

more precise midcourse and orbit control, simpler implementation in pointing

the high-gain, narrow beamwidth antenna towards Earth, improved TV resolution,

and more flexibility. For these reasons, a three-axis stabilized spacecraft is
chosen.
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A system of active attutide control using cold gas jets is the best known
technique, andit has beenused extensively in a wide variety of spacecraft.
Reactionwheels are momentum storage devices which might, for example,
be used to provide a continuous control capability with a gas jet system being
usedto supply the relatively large torques required during spacecraft maneuvers
andto backupthe reaction wheels in case of large disturbances such as meteoroid
impact or gimballing of the planet scan platform. The advantagesof such a sys-
tem arise from the decreased amount of cold gas required and the increased
reliability of the cold gas jet system causedby fewer operations required of
the valves. Reaction wheels, however, are not suitable on a mission such as
JOVEbecauseof the long operating time involved. For this reason a cold gas
jet system was chosenas the means of implementing the attitude control of the
spacecraft.

Other systems which were considered to provide thrust for the attitude
control system included monopropellant andbipropellant systems. Both these
systems require a high degree of temperature control which is not required for
cold gas systems. In addition, both systems must be operated at a higher mini-
mum thrust level than cold gas if safe, reliable, andstable operation is to be
achieved.

Electric propulsion systems have also been suggestedto provide thrust
for attitude control. The high electrical power requirements, however, and
the lack of hardware development preclude the serious consideration of such
systems for JOVE.

In the interests of a simple and conservative design, a cold gas jet system
was chosen. A design option would be to use heat from the RTG's to heat the
gas and thereby increase the specific impulse.

Celestial References

The stabilization of the three-axis stabilized spacecraft will require suitably

selected celestial bodies so that inertial directions are continuously known with

respect to the vehicle. A Sun-Canopus reference system has been selected. The

sun's brightness makes recognition easy and allows simple sensors to be used.

Canopus is the brightest star in its area and has no undesirable near neighbors.

Canopus is located approximately at right angles to the spacecraft trajectory so

that the sun and Canopus provide orthogonal references.
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(3np.ratina Modes

The ACS must operate in three distinct modes in controlling the angular

orientation of the spacecraft. These three modes are the acquisition mode,
the cruise mode, and the maneuver mode. Based on information received from

the three control loops, the sun gate sensors, the Command Decoder, and the

Central Computer and Sequencer, the logic control unit switches the ACS to the

proper operating mode.

Acquisition Mode. In this mode, the ACS rotates the space-

craft from any arbitrary attitude in order to accomplish acquisition

of the sun and Canopus references. This is accomplished in the

following sequence:

1. Gyros are on and operating in their rate mode.

2; Roll star sensors are initially locked out, with signals from the roll

gyro used to limit roll rotation rates.

3. 360 ° acquisition sun sensors are used in pitch and yaw gyros.

4. When the sun is within the field of view of the cruise sun sensors,

the acquisition sun sensors are switched out.

5. After acquisition of the sun, the spacecraft rolls about the roll axis

in search of Canopus, with rate signals provided by the roll gyro.

6. With the sun and Canopus acquired, the gyros are switched off and
the ACS switched to the cruise mode.

A simplified block diagram of the pitch and yaw acquisition and cruise

modes with the switching required to switch between the two is shown in Figure

VII-1. The coarse sun gate is used to implement switching from the acquisition

sun sensors to the cruise sun sensor. The logic control unit switches the gyros
out and the derived rate feedback network in when O and _ nulls indicate that

Canopus has been acquired, r r
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11,1_-_,_,1_1_ rates .._-ohigh as u'__g_a,_/_,'_,_ncl__ ....... about each e×is are

assumed for initial acquisition. Following a midcourse maneuver, the initial

rates are approximately zero. Searching rates of 0.2 deg/sec in pitch and yaw
and 0.1 deg/sec in roll are used. Sun acquisition time is the time spent in

thrusting to the search rate (¢n) plus the time spent in coasting at this rate

and decelerating to zero rate. The longest possible thrusting time for initial

acquisition is the time required to decelerate from 3 deg/sec to 0 and then to

_n and back to 0. The acceleration is given by

T

I

Substituting the values T = 0.603 ft-lb and I = 3000 slug-ft 2 gives a maximum

thrusting time of t - 261 + 174 !_nl seconds (_bn must be expressed in

• is chosen so that coasting will always be --<180 degrees.deg/sec) The sign of _n

I_ I The maximum initial sunThis gives a maximum coasting time of 180/ n "

acquisition time is then

tmax. = 261 + 174 I_nl + 180/l_n[

= 0. 2 deg/sec this time is approximately 19. 9 minutes. For sub-For _ n

sequent reacquisitions this time will be decreased by about 4.35 minutes since
the initial rates will be zero.

The initial roll rates are reduced to zero during sun acquisition. The

spacecraft may be required to roll almost a full 360" in order to locate Canopus.

The maximum time involved (based on I = 3000 slug-ft)2 is
r

t = sTl I + 360/1_rl , [where _rmax. r is expressed in

deg/sec]

Since _r = 0.1 deg/sec, this maximum time is approximately 60 minutes.

Cruise Mode• Following acquisition of the sun and Canopus, the space-

craft operates in the cruise mode. The cruise mode pertains to normal operations

of the spacecraft in orbit about Jupiter as well as during the interplanetary cruise,

and is the mode in which the ACS will operate throughout most of the mission.

This mode is characterized by the following:
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1. The gyros are off.

2. The cruise sun sensor controls the pitch andyaw axes and the
Canopussensor controls the roll axis.

3. The ACS operates in a limit cycle modewith a deadbandof • 2
degrees for the first 270 days and • 0.2 degree for the remainder of
the mission.

4. Dampingis provided by derived rate feedback around an on-off
electronic switching amplifier which has a threshold equal to the deadband.

5. The nominal limit cycle rate is 0. 0048 deg/sec.

6. The disturbance free fuel consumption is approximately 55pounds
(see Chapter VI).

7. Any non-catastrophic disturbance that results in the loss of either
the sun or Canopuswill cause the system to switch automatically to the
acquisition mode.

Two possible orientations of the spacecraft during the cruise mode were
considered. In one case the spacecraft roll axis would be pointed toward the sun
and in the other case toward Earth. Someof the factors considered in the final
decision are indicated in Table VII-1.

The primary consideration involved in the decision of how the spacecraft
shouldbe oriented was whether to gimbal the large, high-gain antennaor the
sun sensor. Onprevious missions the sun sensor hasbeen fixed due to the high
degreeof accuracy required for a primary reference. Becauseof the advantages
in fixing the high-gain antenna, however, and on the assumption that it will be
possible to gimbal the sun sensor with the required accuracy, it was decided to
orient the spacecraft in the following manner.

During the first 270 dsys of the mission, the medium-gain antennawill be
used andthe limit cycle deadbandlimited to i 0. 2 degree in order to satisfy
pointing requirements of the high-gain antenna. By orienting the spacecraft
toward the sun for the first 270days, the angle through which the mm sensor
must begimballed in the yaw axis is limited to + 15 degrees (Fig. VII-2). If

the sun sensor is also gimballed by about + 5 degrees in the pitch axis, it will

not be necessary to gimbal the Canopus sensor in the roll axis [ Ref. VII-l].
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TABI,E VII-1. FACTORS CONSIDERED IN DETERMINING
DESIRED ORIENTATION OF THE SPACECRAFT

SUN- POINTING

High-gain antenna must be

gimballed

Sun sensor can be fixed

Flexible waveguide is required
between the antenna and

transponder

Solar scan platform can be
fixed

,_A T'IrDIT I"_F'_T_TrI_T'_TF'I

High-gain antenna can be

fixed

Sun sensor must be gimballed

Rigid waveguide can be used
between the antenna and

transponder

Solar scan ptaLzozm must be

gimballed

Consideration was also given to pointing the spacecraft toward the sun

with a fixed antenna using electronic gimballing. This concept was not adopted

because of the complexity and lack of experience with such antennas for deep

space communication. The concept is discussed in Volume II, Appendix E.

Maneuver Mode. In this mode the gyros are used to provide an inertial

reference for controlling the spacecraft's attutide. This operating mode is
used for:

1. Attitude reorientation for the midcourse velocity correction and
orbit insertion.

2. Maintaining the desired attitude during thrusting.

3. Maintaining the spacecraft's attitude during sun or Canopus
occultation.

For a midcourse velocity correction or orbit insertion maneuver, the

attitude control functions are performed in the following manner:

1. The desired spacecraft attutide is determined by ground computation,

transmitted to the spacecraft, and stored in the Central Computer and

Sequencer prior to initiating the maneuver.
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2. The gyros are turned on before initiating the maneuver.

3. Based on information stored in the Central Computer and Sequencer,
gyro torquing current generators producea precision current to command
the desired ..... "^-*_*_^_ -_",_

4. The gyros operating in position mode provide the inertial reference

for maintaining the spacecraft in the desired attitude until thrusting is

completed.

5. During thrusting, the orientation of the spacecraft is controlled by
gimballing the engine providing the thrust.

6. When the required AV is achieved, the engine is cut-off.

7. Upon .......compmuon of _l,e desired maneuver, the ACS is switched to the

acquisition mode for reacquisition of the sun and Canopus.

In case of occultation of the sun or Canopus, the gyros are turned on before

the beginning of the occultation period. Command sequences are stored in the

Central Computer and Sequencer for this period. During sun occultation the

logic control unit automatically switches the pitch and yaw loops to inertial

position control when the output of the sun sensors indicate the start of occul-

tation. When the logic control unit determines that the sun is present, it

switches the pitch and yaw loops back into the cruise mode configuration. For

a Canopus occultation, the toll axis is switched to inertial reference for a period

of time which includes the occultation period.

The operation of the ACS can be summarized with the aid of Figure VII-3.

In the acquisition mode, the gyros provide rate signals which control the cold

gas jet system as the spacecraft is oriented in the proper attitude with respect

to the sun and Canopus. In the cruise mode, the gyros are turned off and the

sun and Canopus sensors provide signals which provide control for the cold gas

jets. In case of sun or Canopus occultation, the affected sensor is replaced

by gyros operating in position mode. In the maneuver mode, the gyros operate

in the rate mode while the spacecraft is being oriented to point the thrust vector

in the desired correction. During the remainder of the maneuver, the gyros

operate in position mode to provide an inertial reference for the ACS. During

thrusting, the attitude is maintained by gimballing the engine.
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Cold Gas Jet System

The cold gas jet system contains two separate, identical gas systems simi-

lar to that used on Mariner IV. A typical arrangement of attitude control nozzles

consists of four nozzles on each of the three axes (Fig. VII-4). Torques gen-

erated by the gas jet system are nominally applied to the vehicle as pure couples.

With twelve nozzles, there are a total of six possible couples, one plus and one

minus about each of the three control axes. A couple is generated by actuating

a pair of gas jet thrusters. One of these thrusters will be a part of one of the

gas systems while the second thruster will be a part of the other gas system.

In case of failure of either jet of a couple to operate, the remaining jet will

provide torque, although at half the design value. In order to further increase

the reliability of each gas jet system, two solenoid valves are used in series

with each nozzle to minimize the effect of excessive seat leakage or the failure

of one of the solenoid valves to close. Each gas system will be charged with

two times the mass required to overcome the effects of catastrophic leakage in
one system.

Other systems considered to provide thrust for the attitude control system

included monopropellant and bipropellant systems. Both these systems have the

disadvantage of requiring a high degree of temperature control that is not neces-

sary for cold gas. This is particularly important when the length of pipe required

to connect the thrusters to the fuel tanks is considered. In addition, the minimum

thrust level of both systems must be restricted to higher values than for cold gas

if safe, reliable, and stable operation is to be achieved.

Electronic propulsion has also been suggested as a possible means of

supplying torque for the ACS. However, the high electrical power requirements

and lack of hardware development preclude the serious consideration of such

systems for JOVE.

In view of the above discussion, a cold gas jet system was chosen in the

interest of a simple and conservative design. Considerable experience with such

systems on previous missions is a significant advantage. A design option would

be to use the heat from the RTGWs to heat the cold gas and thereby increase its
specific impulse.
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Sensors

In this section, the sensors that will be carried on JOVE for guidance and

control purposes are listed and their purpose explained briefly.

a. Acquisition sun sensor - This sensor must have a 360 ° field of view

in both the pitch and yaw axes. It is used in the acquisition mode to provide

signals to the ACS until the fine sun sensor is acquired. For redundancy and

to provide the required field of view, four of these are placed around the rim

of the high-gain antenna.

b. Cruise Sun sensor - The cruise sun sensor is locked on the sun during

the time the spacecraft is operating in the cruise mode. On JOVE this sensor

must be gimballed up to + 15 degrees in the yaw axis and J= 5 degrees in the

pitch axis. One method which has been proposed for orienting a spacecraft

precisely at some offset angle with respect to the s,,.m m-M4es use of a rotatable

optical slab which is placed in the field of view of the detector elements. The

optical slab is rotated to a prescribed angle relative to the optical axis to dis-

place the light bundle at the detectors. In order to null the output, the space-

craft is oriented at an offset angle. An accuracy of better than 2 seconds of arc

is reported for this sensor [ Ref. VII-5]. Two cruise sun sensors are supplied

for redundancy.

c. Canopus sensor - The Canopus sensor is locked on Canopus during

the time the spacecraft operates in the cruise mode. Two sensors will be pro-

vided for redundancy.

d. Earth sensor - An earth sensor will be used during the early part of

the mission to verify Canopus acquisition.

e. Gyros - Two complete gyro packages will be included for redundancy.

Each package will contain three single axis gyros, an accelerometer, and the

associated electronics.

ARTICULATION

The systems which must be articulated include: the medium-gain antenna,

the solar scan platform, the planet scan platform, and the cruise sun sensor.

The only item that will require development is the gimballing of the sun sensor.
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SUMMARY

The guidance and control system proposed for JOVE is similar to those

which have been proposed for Voyager and which have been successfully flown

on Mariner. The principal features of the system are shown below:

i. Three-axis stabilized spacecraft.

2. Sun-Canopus reference frame.

3. Gyros provide inertial reference during acquisition, maneuvers,

and Sun or Canopus occultation.

4. Spacecraft is tracked by the radio system.

5. Fixed high-gain antenna.

6. Cold gas jets to provide thrust for attitude control.

7. Trajectory Control/Orbit Trim engines and LEMDE gimballed to

provide attitude control during thrusting.

8. Science scan platform, sun sensor, medium-gain antenna, and the

solar scan platform must be articulated.

A comparison of these features with the proposed Voyager guidance and

control system indicates that the principal differences are in the much longer
mission time of JOVE and in the fact that the high-gain antenna is fixed and the

sun sensor gimballed.
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CHAPTER Vlll. POWER SUPPLY SYSTEM

DEFINITION OF SYMBOLS

W
e

Wth ' W

TWT

AU

R

SNAP

OL

_,_-

_f

O"
a

n

n_f

T
m

AT

T

V 2

Watts, electrical

Watts, thermal

Traveling Wave Tube

Astronomical Unit

Distance from the sun in AU

Systems for Nuclear Auxiliary Power

Alpha particle, thermal diffusivity, Seebeck coefficient

Beta particle

Gamma radiation

Fission cross section

Absorption cross section

Neutron

A fission reaction

(TI + Ty.)
Average temperature 2

A temperature difference

Temperature

Laplacian operator
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in

q

kf

kfc

k

t

r

b

1

Z

P

0
m

V
OC

An, A p

A

T h

T
C

qr

E

RTG

DEFINITION OF SYMBOLS (Continued)

Volumetric heat generation (Btu/hr ft 3)

Thermal conductivity of fuel

Thermal conductivity of fuel capsule

Thermal conductivity

Time

Radial parameter (length)

Barns

Length

Figure of merit

Electrical resistivity

Temperature weighted figure of merit

Open circuit voltage

Cross sectional area for thermoelement

Surface area

Hot junction temperature

Cold junction temperature

Radiation heat transfer

Stefan Boltzmann Constant

Emissivity

Radioisotopic thermoelectric generator
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DEFINITION OF SYMBOLS (Concluded)

nvt

AEC

VAB

"_T,_,,,_-_ _-- flUX_.,i._ I.tL,$. U£1

Flux time

Atomic Energy Commission

Vertical Assembly Building

SUBSCRIPTS

n n type semiconductor

p p type semiconductor
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INTRODUCTION

The JOVE mission, like all other space ventures, would not be possible

without an electric power source. Power is required for telecommunication

with Earth, for recording of data from scientific and engineering instrumentation,

for thermal control of the spacecraft and for a myriad of other functions.

JOVE has a 640 W power supply system consisting of eight 80 W radio-
e e

isotopic thermoelectric generator (RTG) units. Each RTG is fueled by PU 238

in the form of PuO 2 and has a two staged thermoelectric generator section con-

sisting of both SiGe and PbTe thermoelements. Each unit has ten beryllium fins

with approximately 20 feet of radiator surface area. In addition, there is an

ablative shield for intact reentry for each of the eight RTG's in case of a mis-

sion abort condition. The total RTG power supply weighs 645 pounds and the
estimated cost is $12 800 000.

In the following sections of this chapter, the details and facts concerning

the decisions on the JOVE power supply system will be examined and some of

the ramifications resulting from those decisions will be considered.

MISSION POWERREQUIREMENTSAND POWERALLOTMENT

The spacecraft will be provided with a 640 W power supply. The maxi-
e

mum power required during any phase of the JOVE mission is approximately 600

electrical watts. Thus, with a rated power of 640 W the JOVE craft will have
e

40 W for a margin of safety in case a malfunction would occur in any part of
e

the power supply system.

The 600 W power estimate was made by dividing the JOVE mission
e

into phases. There are five different power phases for project JOVE distinct

because of the characteristic environmental or mission conditions imposing

various power requirements on the spacecraft during these flight phases. These

five phases are designated the pre-launch (ground} phase, the launch phase,

the heliocentric coast phase, the propulsion maneuver phase and the Jovian

orbit phase. Each of these phases is broken down further into the four separate

categories of communications, experiments, guidance and attitude control, and

thermal control (Table VIII-l). An elaboration on the power allotments, as
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shownin Table VIII-i, by listing major power requiring componentsof the com-
munications system helps to verify someof the estimates listed. Power require-
ments for the instruments in the experiment packageare listed in detail in
,_.,_,_ _ and w_L_not be L'epeated. The other system requirements are nor-
mally small and thus will remain unspecified.

The pre-launch phaseis principally a check-out phase. Sincethe RTG's
are operating constantly after the active fuel capsules are put in place (page8-22)
this power can be used. The power required would be due to the check-out and
operation of three transponders (48 We), the two 50 We Traveling Wave Tubes

(TWT) amplifiers andpower supply (296 We), the commandmodule (20 W ),e

and the computer and sequencer (20 We). The operation of other units would be
checkedas some of these were shut off.

The launch phaseoperation would require that power be supplied for the
three magnetic tape recorders (10 We) since there will be recording only. The

other communication equipment, as specified abovewith the exception of the 50 W
TWT's, would also be operating, e

Two different size Traveling WaveTubeswill be used during the helio-
centric coast phase of the JOVE mission. A 20W TWT (57W ) will be usedwithe
the medium-gain antennaout to a distance of approximately 2 Aeufrom the sun.
Since the medium-gain antennais 2-axis gimballed, 25 W are required for itse
operation. At 2 AU from the sun, in order to insure a sufficient communications
bit rate, the spacecraft will be oriented so that the fixed high-gain antennawill
point to the earth and the two 50We TWT's (296We) will take over. The three

transponders (48 We}, the commandmodule (20 We), the computer and sequencer

(20 We), andthe telemetry and recording system (20 We} make up the rest of the
communications packagefor this phaseof the JOVE mission.

COMPARI SON OF POWERSUPPLI ES

The attributes of potential spacecraft electrical power supplies such as

batteries, fuel cells, solar cells, and radioisotopic thermoelectric generators

were compared in a study for the JOVE mission. Spacecraft have already been

powered electrically by each of these units. The selection of a particular power

system was made on the basis of payload requirements, costs, and reliability

over a 900-1000 day mission.
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TABLE VIII-l. POWER ALLOTMENT

Io

II°

No

IV.

Y.

MISSION PHASE

PRE-LAUNCH

Communications

Experiments

Guidance and Control

Thermal Control

LAUNCH

Communications

Experiments

Guidance and Control

Thermal Control

HELIOC ENTRIC COAST

A. For JOVE out to a distance of

approximately 2 AU from the sun

Communications

Experiments

Guidance and Control

Thermal Control

B. For JOVE at a distance greater

than approximately 2 AU from the

sun

Communications

Experiments

Guidance and Control

Thermal Control

PROPULSION MANEUVER

Communications

Experiments

Guidance and Control (Peak)

Thermal Control

JOVIAN ORBIT

Communications

Experiments

Guidance and Control (Peak)

Thermal Control

T OTA L

TOTAL

TOTA L

TOTAL

T OTA L

TOTAL

POWER

REQUIREMENT

(W e )

(System

Checkout)

385 (Periodic ally)

98

0

32.6

0

130.6

190

21.6

11.0

50.0

272.6

404

21.6

II.0

50.0

486.6

404

21.6

123

50

598.6

404

84.6

45.2

50

583.8
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Nuclear reactor-based power systems were ruled out for consideration

because of the low mission power requirements involved. They would be un-

realistic because the weight of the reactor itself makes comparison practical only

for systems above lOkWo The reactor h_s a minimum critical size and weight
I¢)_r'L It. t __o,, _ t r_et. VIII-l]) required to maintain a controlled nuclear reaction. Then,

more weight must be added for shielding because of the great magnitude of reactor

radiation effects before output power is even considered.

As one part of the evaluation, a parametric analysis (Table VIH-2) was

carried out for the respective weights of power systems over a mission trip

duration up to 1000 days. This table was prepared simply by extrapolation of

data given in Reference VIII-2. It will provide one parameter, weight, as a

criterion for choice of one power system over another. Large weight penalties

are sufficient grounds for rejection of a particular system. The weights of

the fuel cells, batteries, and solar cells are functions of the mission power

requirement (specified) and the mission length whereas the weight of the iso-

topic power supply (for a long half-life power supply) is just dependent on a

specification of the power requirements. The solar cell power system weight

will be further dependent on the distance one travels from its energy source,
the sun.

The fuel cell considered was a hydrogen-oxygen type with a specific

reactant consumption rate of 0.9 lb/kW-hr (0.4 kg/kW-h_). Fuel cells

have proved extremely useful for short time missions especially those that

are manned since the production of water is a direct by-product of their oper-

ation. Since a 1000 watt fuel cell with its associated controls, valves, etc.,
e

weighs approximately 40 lb (18.1 kg), this weight is neglected compared to the

tank and fuel requirements on a "long" mission such as the envisioned JOVE

mission. For this reason, only the effect of mission length and power level

on the tank and fuel requirements for a fuel cell is considered in the para-

metric analysis,

The Nickel-Cadmium batteries considered in the Table VIII-2 have a

specific weight of 22 lb/kW-hr (10 kg/kW-hr) [Ref. VIII-2] and are thus found

to be an unfavorable source of primary power on long term missions. During

peak load periods, however, they are frequently considered as an auxiliary source

of power and could be used for project JOVE on that basis.

Solar cells have been used very successfully for many satellite space

missions. The apparent difficulty with using them for a Jupiter mission is

that Jupiter is located approximately 5 AU from the solar cells' energy source,
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tile sun. This does have an advantage for the cell in that the temper'tture gradient

that it sees is not as severe as it would be in an Earth orbit, but the distance

places a strong geometry attenuation on the cell's energy utilization. Intensity

of solar radiation at 1 AU is 134 w'_.ttsth/;t2 whet'eas in the vicinity of Jupiter

the solar radiation is cut to 5.8 wattsth/ft2 [ Ref. VIII-1]. This is a result of

the intensity being cut down by a factor of almost I/e (where It is the distance

from the sun in AU). This fact must be considered when evqluating solar cells

as a power system.

For the parametric study (Table VIII-2) an average value of 2.6 AU

from the sun was used as a basis for calculating solar cell weights. This is

satisfcatory for a comparison, but actually a major portion cf the JOVE mis-

sion is spent at distances farther from the sun than this, and 5 AU is where the

power requirements will be greatest.

The fuel used to specify the RTG as a basis for comparison in the para-

metric evaluation of the power system was Pu 238. This is the only fuel that has

been used in space missions at the present time and is attractive, for example,

because of its long half-life. (Other advantages and disadvantages to fuels

will be discussed later in the report. ) As a result of this long half-life, 97

percent of the power available at launch is still available at the end of the mis-

sion if all the components are operating properly. This is the reason it was

previously stated that the weight of the RTG's on-board the spacecraft is simply

specified by the power level required for the mission and it is not basically a

function of mission length. This fact is obvious in Table VIII-2.

With this background the weight comparison of power supplies (Table

VIII-2) can be seen to indicate that with power requirements of 600 W and ae

900-1000 day mission time (including time for orbiting Jupiter) the isotopic

power supply is the best choice.

On such a basis, the fuel cell and the Nickel-Cadmium batteries can be

ruled out as primary sources of power because of the excessive weight of these

systems. As was mentioned previously, a battery is frequently an auxiliary

power source which can be charged during periods when little power is required.

Because of the long duration of the JOVE mission, however, the unreliability

of a battery operating for this time period under space environmental conditions
rules out the use of it even in this manner. It should be pointed out that Shair,

et al., would not agree with this statement on reliability [ Ref. VIII-3].
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The solar cell power supply is heavier than the isotopic supply on the
basis of the comparison made in Table Vr[I-2. Somecomments are necessary,
however, before such a reliable power source is ruled out for the JOVE mission.
It is estimated that a solar radiator area of 5 W /ft 2 [Refs.VIII-2 and VIII-4]

e

(53.8 W /m 2 ) is required for a sun-oriented solar cell system in a near-Earth
e

orbit (1 AU). This amounts to a specific weight of approximately 1 - lb (0.45

kg) per watt . Such a value varies as an inverse function of R 2 (AU) as one
e

moves away from 1 AU.

The Mariner solar cell system produced about 680 W with 9.6 W /lb
e e

(55°C) at 1 AU [Ref. VIII-5]. This system, as well as _nost other solar cell

powered space missions, was sun-oriented. Based on approximately 300 ft 2

of sun-oriented solar panels required for the Voyager spacecraft, approximately
3000 ft 2 would be needed for the power requirements of JOVE. If it is desired

that the solar cells be sun-oriented, either they must be gimballed or the craft

should be oriented properly to the sun at all times. With a large number of

deployed cells, gimballing would be extremely difficult if not impossible. If

a sun-oriented craft is chosen, the possibility of fixed Earth oriented antenna

is precluded and the antenna would have to be articulated. That is not only dif-

ficult, if a large antenna is used, but also costly in terms of power and reliability

of the JOVE mission. If the solar cells are unoriented, however, an Earth

oriented antenna could be used but the solar panel area would become larger by

a factor of perhaps five or six. This would then become a prohibitive alternative

because of the size of these panels.

Another important criterion in considering the solar cell is the devastat-

ing effect of radiation on the cell during the entire JOVE mission including the

time that the craft spends in the Jovian trapped radiation belt. Radiation,

especially high energy electrons and protons can damage a large number of

cells during the JOVE trip. This factor affects the reliability of the solar cell

system and, of course, degrades its power producing potential. Power degrada-

tion would become a maximum during the Jupiter orbiting phase of the mission

when power requirements are greatest.

Radioisotopic thermoelectric generators (RTG's) are compact and reliable.

They are a source of constant operating power and need not be articulated in any

manner on the spacecraft though they are fixed on the craft so that they will

primarily face black space. This is so that the fins may reject heat to as low

a temperature or heat sink as possible.
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The main disadvantageof RTG's is that they emit nuclear radiation con-
_,..,1.. Th,,_ onmpnnents that are affected by such radiation must be kept as

far from the RTG locations as possible.

After considering all factors, RTG's were chosen to supply the 640 W
e

of power for project JOVE. Eight 80 W RTG units will make up the powere

system. This size unit was chosen for several reasons. An 80 W unit maye

be passively cooled rather than actively cooled. (An active coolant is required

in a large RTG unit. ) That means that fins may be used to dissipate the heat

from the system rather than a fluid which is pumped through the system to

actively cool it. (An alternative power supply using an active cooling system
is considered in Appendix D, Volume II. )

A second reason for choosing an 80 W unit rather than a larger unit is
c

related to the unit's specific power• There is no great increase in specific

power for a unit of size greater than 100 W [ Ref. VIII-6]. Thus, an 80 We e

unit has realized about as high a gain in specific power as can be potentially

achieved.

Redundancy in components over a three year mission is very important.

There is redundancy within the 80 W RTG aboard JOVE with series-parallel
e

circuits for thermoelectric elements and the like {page 8-22 ). Eight 80 We

units, however, provide redundancy also since a failure of one or two units does

not ruin an entire mission. With one RTG unit lost, project JOVE could still

be carried out with little change and even the loss of two units would cause very

little sacrifice of mission objectives. With larger RTG units, such a statement

would not be possible.

The conclusion then is that JOVE will have eight 80 W
e

its power supply system.

RTG units as

SNAP SYSTEMS AVAILABLE

The first notable RTG's used in the space program were SNAP3B7 and

SNAP3B8 which were installed in Transit 4 navigation satellites. The first was

on Transit 4A and the following on Transit 4B, both producing 2.7 W with 5.2e
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percent efficiency andboth were launchedin 1961. SNAP3B7continues to pro-
duce power to transmit signals to Earth but a capacitor shorted the power con-
ditioning equipment on SNAP3B8about seven months after launch and the RTG
no longer operated. It is interesting to note that one month later, Transit 4B's
power supplies failed shortly after a high altitude nuclear test.

An item of current interest is the SNAP-19 generator which will be
launchedthis fall as part of the Nimbus B weather satellite. Two SNAP-19
generators are being flown together, producing about 50 W andweighing approx-e
imately 50 lb. Their purpose on this mission is primarily as part of a test
sequenceto allay fears and build up confidence in their performance.

Another NASAradioisotopic powered mission is the SNAP-27 generator
under developmentby the AEC for the Apollo Lunar Surface Experiment Pack-
age. The generator is specifically intended to provide power for scientific
experiments left on the moon by the Apollo astronauts. It is thus in contrast
to the Nimbus B generator which was retrofitted to a solar power design. For
this reason, it is more efficient andweighs less than does SNAP-19. It
weighs 46 lb and produces 56 W for a one year period on the surface of thee
moon after two years of storage on Earth. Its fuel is Pu238as was SNAP-19
and other space-tested SNAPsystems. A short summary of interesting SNAP
units is shownin Table VIII-3.

RTG FUEL CONSIDERATIONS

There are a number of fuels which could be and have been chosen for use

in radioisotope thermoelectric generators (Table VIII-4). There are advantages

and disadvantages to each fuel considered. If an abundant, relatively inexpensive

fuel were desired, a fl emitter, such as Strontium 90, could be offered. Most

p emitters, however, Sr 90 included, require a great deal of shielding and they

also normally have a low power density. The latter is because fi emissions

from a radioisotope occur over a spectrum of energy and not at one particular

energy as do _ emissions. Beta emissions are more difficult to shield because

they lead to bremsstrahlung as well as to subsequent _ radiation, both of which

are highly penetrating form s of electromagnetic radiation.

A more expensive, much less abundant form of fuel is an _ emitter which

has a relatively high specific power (w/g) or power density (w/cc). Since

specific power is inversely related to the half-life of the isotope, one might im-

mediately assume that a short half-life is the optimum. This, however, is not
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the case since one desires a long half-life as well as a high specific power.

The high specific power indicates that the isotope will supply a great amount

of heat for a small amount (mass) of fuel present. The long half-life is

desirable so that the power does not drop considerably during the lifetime of

the mission (Fi_are V!H-!). Thus, the problems re1_ted to power flattening

can be avoided.

PU 238 is an o_ emitter which has a relatively long half-life (89 years)

and yet a high specific power (Table VIII-3). The principal _ particles it

emits are 5.50 MeV and 5.46 MeV in energy, while the accompanying gamma

radiation is primarily 0. 444 MeV and thus does not present a great hazard.

As a result of its long _ emission half-life, it does not require power fiat-

tening during a five-year mission, nor does it greatly degrade in power pro-

duction during that period (less than 4 percent). It is available, though in

limited quantities. For these reasons and because of the experience gained

using it in previous RTG power supplie_, it has been designated as the pre-
ferred fuel for use in JOVE RTG's.

Since Pu 238 as a metal has a relatively low melting point of 913" K,

another fuel form must be used. The density and melting points of several

potential fuel forms are listed in the brief table below.

_'J'÷-" )

J

Fuel Form

TABLE VIII-5. Pu 238 FUEL FORMS

Density (g/cm 3) Melting Point (° K)

Pu metal (pure) 16.5 913

Pu2C 3 12.7 2173
PuC 13.6 1923

PuO 2 11.46 2950

Pu203 2523

PuO 2 is used in both SNAP-19 and SNAP-27 generators for space and is the fuel

form designated for the JOVE spacecraft. Its melting point is sufficiently high

so that there is no danger of the fuel meltdown even during an abortive reentry.

The only disadvantage encountered by using it is that O 18 has a (_, n) cross

section which leads to an increase in the nuclear radiation emitted from the RTG

(See page 8-36).
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PU 238 is expensive and also rather difficultto obtain in any large quan-

tities. Itis normally produced from Np 237 by bombardment in a reactor. In

other words, itis not a common fission product. It can be produced by the

following reactions:

U 238 (n, 2n) I U237_' 3' _ Np 237 (n, T) NP 238 _, T pu238

U 235 (n, _) U 236 (n, j)_ 6.7 day 2.i day

As one can see from these reactions, the key to the production of PU 238 iS

Np 237, a relatively stable isotope with a half-life of 2.14x106 years. The first re-

action to form Np 237 is an (n,T) reaction ((_a)Np 237= 170b) in U 235 leading to U 236
and then to V 237 though U 236 has an absorption cross section of only 6 barns. As

a result of this low cross section, the fuel is normally recycled several times and

upgraded (keeping the percentage of U 236 high) to improve the U 237 yield. When

U 237 emits a beta particle, Np 237 is formed and can be chemically separated. The

second reaction to produce PU 238 iS the (n, 2n) reaction in U 238 to product U 237 which

then continues on the same path as was seen earlier to form Pu 238. The Np 237

placed in a reactor to undergo the neutron capture reaction forms a reasonably

pure (85 percent) PU 238, the contamination being due to the new Pu 238 absorbing

a neutron and forming some Pu 239 during the irradiation of the remaining Np 237.

If the Np 237 is not separated from the U 238 in the slightly enriched uranium fuel,

the U 238 will form so much Pu 239 that the specific heat of the Pu 238 - pu23Smixture

will be tremendously reduced (about 99 percent) from that of the reasonable pure
pu 238.

It should also be noted that for each reactor cycle only approximately

10 to 20 percent of the Np 237 can be converted tp PU 238. Increasing the neutron

flux or irradiation time does not increase the yield either because the Np 238

and Pu 238 already formed have very high fission and neutron absorption cross

= Pu 238 597b and aresections respectively, (af) Np 238 1600b and (aa) =

easily burned out.

There is another way in which Pu 238 can be formed that requires only

that Am 241 capture a neutron to form Cm 242 which alpha decays to Pu 238. Am 241

is obtained from the decay of Pu 241, either inside or outside a reactor. If the

Pu 241, however, is separated and allowed to decay outside the reactor, it will

form pure Am ul, whereas inside the reactor during irradiation it will form a

mixture of Am 241 and Am 243 and this mixture will contain less Am 241 because

of neutron capture by Am TM. The rate at which Pu 238 is formed from Am 24! is

limited by the 13 year half-life of PU 241 and by the small amount (0.46 percent)
of Pu 241 present in plutonium. These two facts severely inhibit this means of

production of PU 238.
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Note that Figure VIII-2 provides a detailed decay scheme for the reactions

just considered in the production of Pu 238.

Because of the large increase in the last three years in the number of

civilian thermal nuclear reactors which are now contracted to be built, the

potential for recovery of isotopes has increased considerably. Sehulman

[ Ref. VIII-8] indicates that if proper steps are taken, approximately I thermal

kilowatt of Pu 238 can be obtained for every i000 megawatts of installed power in

the industry. Note the flow scheme (Fig. VIII-3) which must, however, be
followed in its production. For this reason, only minor amounts of Pu 238 can

become available until the late 70's when it is estimated that I00 thermal kilo-

watts could be produced annually by civilian means.

Since it takes 7 years to complete a Pu 238 production cycle, the AEC may

have to ensure that a sufficient amount of Pu 238 is available. There may be

competing demands on reactors for purposes other than optimum Np 237 yields.

Schulman [ Ref. VIII-8] has estimated amounts of Np 237 that might be produced

in various types of civilian power reactors (Table VIII-6). The yield of Np 237

increases rapidly with burnup so that the economy of the fuel cycle itself will

greatly influence results.

TABLE VIII-6. PRODUCTION OF Np 237 IN SPECIFIC REACTORS

[ Ref. VIII-8]

Thermal Initial En-

Reactor Type Power MWth richment %

Yankee pressurized-water 485 3.40

Dresden I boiling water 626 1.50

Douglas heavy water cooled 693 0.71
Point

Hinkley gas cooled 954 0.71
Point

Oak Ridge advanced 1908 3.00

Nat'l Lab

GCR-3

Saline advanced 8300 0.71

Water

Reactor

Np 237 Productiol_

kg/yr

1.4

2.3

1.8

2.5

4.7

24.0
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Schulm_:_ also estimated that the AEC could produce between 200 and 400

thermal kilowatts of Pu 238 between now and 1980. The mid-1970's would be the

only years waen there would be a key problem resulting from the lack of suf-

fir_i_nt r'ivili_n t'_fnr_ fhrt wn111cl hr_ nppr_flnn_l rnnn _nn,,crh fn _t'_rh,r_ D,, 238

for timt period.

NUCLEAR SAFETYWITH AN RTGPOWERSUPPLY

The entire nuclear safety problem with an RTG power supply is centered

around being certain that no radiation escapes from the fuel capsule of an RTG

either during the JOVE mission or before launch from the pad at Cape Kennedy.

The only way that nuclear safety criteria will be met for each of these cases is

if the fuel is encapsulated properly in a fuel capsule. First, consider what

would happen in an abort condition if the RTG were aborted from the JOVE space-

craft in case of a launch accident. There are two approaches which may be

followed in such a consideration. The first approach requires complete burn-up

of the encapsulating RTG material while reentering Earth's atmosphere with

a wide dispersion of an inert refractory fuel form. In this case, the fuel form

will be an oxide, specifically PuO 2. This fuel has a high melting point. For

this reason it is normally not burned into very fine particles. PuO 2 is also

fabricated in large sizes (approximately 150 microns). Thus PuO 2 will prob-

ably neither melt, nor will it break up into very fine atmospheric dust after

release from its fuel capsule during aerodynamic burn-up and, therefore, in-

halation of fall-out radiation at sea level will not be a problem. However, this

is only the first approach to the problem.

The second approach, and the one which seems to be more prevalent and

more stressed by the AEC at the present time, is that of considering the com-

plete containment of the radioisotope under all mission abort conditions. This

implies that the fuel capsule, in fact that the entire RTG, is aborted from the

spacecraft with an ablative shield so that it can reenter Earth's atmosphere

completely intact. The ablative shield acts as a nose cone and a heat shield

and thus allows reentry without any subsequent damage incurred to the RTG

Of course, on impact, the fuel capsule itself must remain intact and this is

very difficult to achieve without a very thick fuel capsule wall. One can assume

that the fuel capsule might even achieve velocities up to 300 or 400 feet per

second during this reentry phase. To withstand the pressure on impact at such

a velocity, the fuel capsule, primarily Haynes 25, must be approximately 0.8
inch in wall tl_ickness.
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It is significant to note that the AEC in their most recent memoranda,
havespecified the use of an inert fuel form and complete interact reentry of the
encapsulating system. Thus, someof the safety ultimatums of both approaches
are seenin these memoranda.

The problem of nuclear safety on the launch pad is an entirely different
one. Here there is a condition of high nuclear radiation which can present a
hazard. (This is considered later in this report). But there is also a greater
problem involved in caseof a launch pad conflagration. This would mean that
once again the RTG andits fuel capsulewould have to stay completely intact
with the temperatures involved in such a holocaust. It is fortunate in our
spacecraft preferred design that the reentry ablative shield is at the bottom of
the RTG andthat this shield would be facing any sort of conflagration that would
occur. Thus, the fuel capsule would probably contain all of the radioactive

material intact in the case of such an accident. Only a more detailed study could

more exactly determine what would happen in such an event.

DESCRIPTION OF THE RIG UNIT

General Description

The preliminary design of an RTG power system must consider at least

the general characteristics of the major components of the system. These major

components can be defined as four distinct parts of an RTG power system:

a. The isotopic heat source including the capsule that contains it.

b. The thermoelectric conversion section where the heat is converted

to electricity.

c. The heat dissipation system where the heat is rejected to the
environment.

d. The ablative shield reentry portion.

In a general description of the RTG, the isotopic heat source will be the

first portion considered. It was mentioned previously that plutonium is the only

type of RTG fuel that has ever been used in a satellite. This is primarily be-
cause of the advantageous characteristics of PU 238. The PU 238 long half-life,
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emission characteristics are offset only by its high cost and its limited availa-

bility. One other disadvantage to using Pu e:_, at least in its metallic form, is

tltat is has a very low melting point. This wits tt_e primacy reason for selecting

PuO e. PuO 2 laas a melting point vo W clost to 3000 ° K. This is some 2300 ° higher

titan the melting point of plutonium metal. Using PuOe, iaowever, leads to the
problem of contending with the alpha-neutron nuclear reaction in O l_, as was

previously mentioned. One other important factor that must be considered is

the fact that Pu 238 emits alpha particles, which being helium nuclei, cause a

terrific gaseous pressure to be built up in the fuel capsule holding the plutonium

fuel during a three year mission. Calculations indicate that the helium pressure

might go as high as 107 atmospheres, or higher, if the fuel capsule has no way

of letting the gaseous helium out througta the capsule wall. A one-way porous

material would be a solution to this problem and it is at present being developed

but is not yet on tlao market. Also, since plutonium is a very corrosive material.

it cannot be used directly with Ilaynes 25 which is normally considered for fuel

capsule material and either tantalum or platinum-rhodium matrix must be con-

sidered to encapsulate the fuel body. Then between ttae fuel body and the fuel

capsule would be put a liquid metal for thermal contact purposes. Out from this

would come the cylindrical fuel capsule itself and then one moves into the thermo-

electric conversion section of the device. In this section is contained the thermo-

electric elements which will convert the thermal heat of the fuel to electricity

which will be used as power on JOVE.

Two types of thermoelectric materials are being considered as candidates

for the RTG thermoelectric conversion section. They are lead-telluride (PbTe)

and silicon-germanium (SiGe). PbTe thermoelements have been commonly used

in RTG's and thus there is a great deal of operating experience with these. Although

lead-telluride thermoelements would have been superior conversion properties at

the same AT as compared to silicon-germanium, they cannot operate at as high a

temperature as the silicon germanium elements can. Thus, the Carnot efficiency

attainable from the lead-telluride system is lower than the SiGe system. The pro-

duct of the Carnot efficiency and the thermoelectric conversion efficiency is equal

to the thermal efficiency of the RTG. Thus, the Carnot efficiency plays an impor-

rant role in the overall efficiency of the system. The lead-telluride thermoelements,

because they operate at a lower temperature, require more radiator fin surface for

heat rejection and thus cause one to increase the overall weight of the RTG.

Another important consideration to make is related to the magnetic field

generated by the RTG. This is the result of two speeifie eonditions, one being

the current flow from the RTG, the other being the use of ferromagnetic materials.

Lead-telluride systems use iron in the hot and cold shoes to which the thermo-

eleetrie elements are attached. Though the JOVE spaeeeraft has magnetometers
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out onbooms rather than as an integral part of the spacecraft surface, they will
still be affected by any magnetic field on the craft. Thus, any reduction in the
magnetic field, accomplishedby minimizing the ferromagnetic material used,
or carefully designing a circuit, will help reduce this condition. Silicon-ger-

manium systems are, on the whole, magnetically clean compared to lead-

telluride system, since no ferromagnetic materials are used in their construction.

Thus, SiGe thermoelectric elements, have another advantage. A third consideration

that must be made is that lead-telluride thermoelectric elements must be herme-

tically sealed in a compartment with an inert atmosphere;otherwise the elements

would degrade rapidly. The SNAP 27 system used argon gas for this purpose.

Any leakage of this gas would rapidly degrade the performance of the system.

Fortunately silicon-germanium thermoelements operate well in either air or

vacuum. It should be mentioned, however, that PbTe thermoelectric elements

that can operate in a vaccum are being developed at the present time, though

they seem suitable only at very low temperatures. Proper development should

lead to their use at high temperatures very shortly.

The major disadvantage to the use of SiGe thermoelements has been the

requirement that they be used at very high temperatures where they have the

highest figure of merit. This leads to the development of a fuel capsule which

can operate in the temperature range close to 1300" K. Since a solution to the

problem of high temperature creep because of high helium pressure in the fuel

capsule has not been solved, deformation of the fuel capsule over a three year

period may cause rupture of the capsule and thus failure of the RTG power supply.

The one way porous material mentioned earlier in this report could be a solution

to this problem. Also, development of refractory materials with better charac-

teristics at higher temperatures may help in the solution of the problem.

In the design for the JOVE RTG units both SiGe and PbTe thermoelements

are used in a multi-staging type of thermoelectric generator. This type of

generator uses the optimum operating conditions of both type of thermoelements

in their best temperature range and thus produces a more efficient type of RTG.

Although only preliminary calculations have been carried out, it seems

quite feasible that a system using this type of design can be developed. The

preliminary design calculations will be considered in this report later in this

same section.

To complete this thermoelectric-generator portion of the RTG it should
be mentioned that the load is attached to each of the thermoelements and each of

the thermoelements is separated by a mica strip which is an electrical insulator.

The hot fuel capsule is also separated from the thermoelements and from the
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hot shoe plate by an electrical insulator. Spring type load connectors are

used to take the load to the primary conditioning unit. From the cold junction

at the outside portion of the RTG there is a connection to the shell and radiator

section of the RTG. This section is called the heat dissipation system for the
RTG ......... l- ...............iillU WIll iloW k/_ ISUll_lU_£'ULl.

The heat dissipation system consists primarily of the fins by which the

heat is rejected from the RTG. This essentially completes the cycle of power

production and the power supply, since heat was produced in the fuel section and

now is dissipated to the environment through the fins. The environment, of

course, will be different depending on where your spacecraft is located. Hope-

fully, most of the time, the fins of the RTG will see black space and thus be

able to dissipate the heat most effectively by radiation. This is the way the

spacecraft configuration has been designed, with the fins pointing to space as

much as possible. The fins will be of beryllium with an emissivity of 0.9.

They will be of trapezoidal shape, approximately 10 inches in width and 14

inches in length. They will be required to dissipate 6070 BTU's per hour or

1780 thermal watts for each RTG. This is the amount of heat that is produced

by the fuel in the RTG power supply. The fourth section of the RTG's is not

really considered an integral part of the power supply, but it is important in

the considerations of nuclear safety. It is the ablative shield in reentry section.

It is over the edge of this particular shield that the power connector on its cord

goes and thus attaches to the spacecraft to supply power. The ablative shield

is connected to the spacecraft at eight locations. These locations are equipped

with a squib device and a spring with which to reject the total ablative shield and

RTG in case of an abort. The general configuration of these RTG's is shown in

Figures VIII-4, VIII-5, and VIII-6.

Sample Preliminary Calculations

The first calculations to be considered are those concerned with the

heat transfer from the fuel through the fuel capsule to the thermal electric

converters. To do this, the first equation will be written for the fuel body it-

self. Note Figure VIII-6.

in 1 5T
V2W + q /kf = -_ 5t (1)

or
in

V2T + q /kf = 0 for steady state (2)
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The boundary,conditions that are set at this fuel surface, which has a boundary
of a fuel void on one side and the fuel capsuleon the other are a bit difficult
to describe. The first one is that there is noheat flow across the maximum fuel

temperature boundary (5_T = 0 at T = T.__). This maximum temperature can
0 .I. .t 1.' "

be assumed to be directly at the void surface. Normally there would be heat

flow in this direction, but since there is no place for the heat to go, this must be

the maximum temperature, and all heat flow must go out from this point. Of

course, we have assumed that there is only radial flow of heat for this problem,

and that we have a steady state condition. The second boundary condition is

simply stated that T = T 2 at r = R2 (Fig. VIII-7). Solving equation (1) with its
boundary conditions gives

in in R 2

TI_T2 = q [R22_r 2] + q 1 [lnr/R2] " (3)
4 kf 2kf

Now the temperature distribution in the fuel capsule is considered. There are

also two boundary conditions in this problem. The first is that T = T 2 at

r = R 2. This assumes, for these preliminary calculations, that there is no fuel

body container of tantalum, that there is no liquid metal contact, and that the

temperature is the same at the fuel wall as it is in the fuel capsule. This is a

good assumption. The second boundary condition is that all the heat that flows

through the fuel wall must flow into the fuel capsule. Since this amount of heat

is known, this can be equated to Fourier's law of conduction.

6070 BTU/hr = - kfc (27r) R21 5,--r r = R2 (4)

Solving V 2 T = 0 for the fuel capsule and using the specified boundary conditions
give S

T 2 - T 1 = (31. t ° F) In r/R 2 (5)

Assume

kfc = 30 Btu/hr-ft -° F.

R 1 = 0.85inch

kf = 2 Btu/hr-ft -° E

R 3 = 2 inches

R2 = 1° 20 inches 1 = 12.4 inches
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A preliminary calculation using a hot junction temperature of 1300 ° K yields a

fuel body maximum temperature of only 1759 ° F. Since the melting point of

plutonium dioxide is given as 2240"K (3572 ° F) by Corliss and Harvey [Ref.

VIH-6}, and 2960°K (4872"F) by Levedahl [Ref. VIII-4], the 1759°F is cer-

tainly a safe figure and the fuel would be in no danger of melting. Of course,

if the fuel capsule thermal conductivity were only 3 Btu/hr-ft -° F, down by a
factor of 10 from the 30 Btu/hr-ft -° F assumed, there would be a difference of

159 ° instead of 15.9 ° . This is not significant enough to cause fuel capsule

meltdown. The thermal conductivity of PuO 2 may also be lower than was esti-

mated. It would have to be a significantly lower figure, however, to make any

considerable difference in the value just calculated. The worst condition, of

course, would be if there were a launch pad conflagration which would cause the

hot junction temperature to become very high.

No temperature drop was assumed across the hot shoe because of the

shoe material's high thermal conductivity. Putting a mica strip of aluminum

oxide, Boron-nitride, or some other coating in ,-before the hot shoe- as an

electrical insulator would cut down on the hot shoe temperature because radiation

would be the only mechanism of heat transfer. Temporell-1500 or some other

thermal insulating material that can tolerate a high maximum surface temperature
and still have a very low thermal conductiviey is used as a thermal insulator

between thermoelements. Min-K2000 can tolerate 1365"K but its thermal con-

ductivity in air is 1.9 watts/cm 2 - °K and in vacuum 1.6 watts/cm 2 _ OK.

Thermal conductivities lower than this would be very desirable. Mica strips
would be placed along the sides of the SiGe and PbTe elements between the in-

sulation and the element.

The hot junction temperature has been assumed as 1300 ° K (hotter than

any present concept allows) for the SiGe thermoelements going to a cold junction
temperature at 700"K. Placing a lead-telluride thermoelement in series with

the SiGe couple will then help to take advantage of the better PbTe efficiency

at lower temperatures (assume a cold temperature of 400 ° K). A mica sheet

for electrical insulation will be placed between the SiGe element and the PbTe

element. Spring loading contacts take the power from the two different couples.

An bptimum length to area ratio for the elements is a paramount parameter to

consider as is the temperature drop across the element. Since this type of

thermoelement pattern cannot be found on present RTG concepts, development

must take place to prove it out in actual operation. Other thermoelements may

also be considered, but this concept does seem feasible. Preliminary calculation

will only indicate some of the parameters and their relationship to the temperal:ure

drops for each thermoelectric element system separately. More precise cal-

cluations would be undertaken in a subsequent, more detailed study.
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Of course, much more is known about PbTe thermoelements than about
SiGeelements and the JOVE mission may have to rely on the use of these con-
verter elements only. Development should soon be to the level, however, where
higher temperatures can be withstood by an operating RTG.

Lead-telluride is an intermetallic compoundthat oxidizes easily at
elevated temperatures. In its pure form it contains 38.113 w/o tellurium
and melts at 1195°K. Its density is 8 g/cm a. Both Pb andTe are soluable in
PbTe to several hundredths of a percent with excess lead resulting in ann-type
material andexcess Te producing p-type properties. Manydopants have been
analyzedwith PbTe in order to improve the figure of merit andone of these has
beenchosenfor preliminary calculations on the JOVE RTG's. Note the pro-
perties of the n and p type PbTe and SiGethermoelements listed in Table VIII-7.
The values are taken at an average temperature (Tm) of 550"k = (700+400)°K
re spectively. 2

The preliminary calculations are carried out on the two thermoelectric

materials separately. The procedure for making these preliminary calculations

can be found in books by Anquist [ Ref. VIII-10] or Chang [ Ref. VIII-ll]. The

figure of merit for the lead-telluride and the silicon-germanium thermoelements
is known for both n and p type materials at the average temperature considered,

along with the other properties of electrical resistivity, Seebeck coefficient,

thermal conductivity, and the figure of merit times its average temperature.

Calculations will thus proceed by finding an optimal figure of merit with respect

to geometry adjustments for the combination of n and p elements.

The optimal figure of merit is

T + 2
m (°_n O_p)

m n -t-

= I.i (6)2

The optimum resistance ratio can be found. This is just the ratio of the
external resistance to the internal resistance. This will be an optimum only

when the temperature weighted figure of merit is a maximum and thus, the thermal

conductivity-electrical resistivity term in the denominator of equation (6) must

be a minimum. Knowing the optimum resistance ratio, the voltage per couple can

be calculated. This is the voltage, not open circuit, but with the resistance as

given by the optimum ratio for external resistance to internal resistance. Thus,

knowing that there is a constant load (which will be mentioned later) one can

calculate the number of couples in series required to give 28 volts DC power.

A series-parallel setup, however, will be used for redundancy in the JOVE
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TABLE VIII-7. PROPERTIESOF THERMOELECTRIC ELEMENTS

PbTe thermoelements [Ref. VIII-9]

n type with 0. 055%PbI2 (mol %)

Z = 1.4x10 -3 ('K)-I

p = 1. lxi0 -3 ohm-cm

= 220x10 -6 volts/'k

k = 2.0xl0 -2 watts/cm'K

0 = ZT = 0. 77
m m

p type with 1.0 Na (a/o)

Z = 1.3x10 -3 (°K)-I

p = 1.8x10 -3 ohm-cm

= +230x10 -6 volts/*K

k = 1.6x10 -2 watts/cm "K

0 = ZT = 0.72
m m

SiGe thermoelements [ Ref. VIII-9]

n type

Z = 0.85x10 -3 ('K)-i

p = 2. 0xl0 -3 ohm-cm

= 250x10 -6 volts/.K

k = 4.2xi0 -2 watts/cm'k

0 = ZT = 0.85
m m

p type

Z = 0.7x10 -3 ('K) -1

p = 2.5x1073 ohm-cm

a = 250x10 -6 volts/*K

k = 4.2x10 -2 watts/cm °K

0 = ZT = 0.7
m In
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system, thougha plain series circuit would give 28 volts DC with the least number
of thermocouples. The opencircuit voltage is simply the Seebeckcoefficient for
both legs combined times the temperature difference across the legs.

volts
Voc = (_n+_p) AT = (450xi0 -6 OK ) (300°K) = 0.135volts. (7)

The ratio of areas to lengths which minimizes the resistance-conductivity pro-

duct for the thermocouples is found to be

(Pnkp/ppk) ½ = (1. lxl0 -3 ohm-cm)r
(1.8x10 -3 ohm-cm)

watts

(1"6x10-2 cm-°K) = 0.699 (8)
(2.0x10 -2 watts )

cm-°K

It was assumed that both n and p legs of this PbTe thermoelectric couple are J

cm in length and that the ratio of the area to length for the n type element is 1

cm. (Actually, a parametric study should be carried out to optimize this ratio

in a second phase thermoelectric generator design. ) Boman [ Ref. VIII-12] also

has carried out a study on the effect of the length of a thermoelectric element

on the RTG design.

A
n

1
n

= I cm, and since r = 0.7

I

A = p = I cm = 1.43 cm 2

P r(in/A n) 0.7(1)cm -I

Thus, the thermal conductance for the thermocouple is

A n Apk = k + k = 4.29x 10 -2
n I p I

n p

watts

°K (9)

The internal resistance may be calculated and is shown to be r + 3.7 x 10 -3

ohms. Thus, the optimum efficiency external system resistance for maximum

power occurs; then the load resistance is equal to the internal resistance. The

current can thus be found. The power delivered per couple is i.23 W . For
e

maximum power, the lead-telluride portion of the generator would have a thermal

efficiencyof 9.21 percent.
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AT/T h
= 9.21% ....

• _±u)
4/,0 Th+ 2- ½

The same type of calculation can be carried out for the silicon-germanium
elements.

Implicit in the JOVE/RTG system is the power conditioning equipment

that must accompany this power source. One of the design constraints is that

the RTG power source must operate continuously into its rated load if Peltier

cooling of its hot junction is to be properly maintained. It is desirable to keep

the hot shoe temperature close to the rated temperature to enable the largest

temperature difference between hot and cold shoes to be reached. By having

open circuit operation which would result if a constant external load is not pres-

ent. Peltier cooling is removed and the hot shoe temperature will increase to

perhaps above the safe rated temperature. Thus, the fuel capsule and fuel tem-

peratures will correspondingly increase and perhaps compromise the integrity

of the RTG fuel capsule. Hot shoe temperature, output power and output voltage

each should be plotted as a function of output current in a more complete study to

assure that this condition will not occur. To be certain that such a condition

does not arise, however, a shunt regulator which maintains a constant load on

the source in the presence of active load variations will be used in the power con-

ditioning section of the power system. Other power conditioning for loads grouped

by their specific power profiles will then follow this unit and supply specific re-

quirements.

For the radiator section of the RTG, preliminary calculations were made

simply using beryllium fins, _ = 0.9 [ Ref. VIII-12] and assuming radiation

to black space.

qr = (tEA [Tfin 4 - 0] = 1780 watts (11)

Thus, it was found that 10 fins as shown in Figure VIII-5 will provide sufficient

radiating area.

No calculations were done on the ablative heat shield but the RTG system

as seen in Reference VIII-13 was adopted along with its squib device and spring
loading.
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RADIATION LEVELS CAUSED BY THE RT6 UNITS

In order to account for the nuclear radiation emitted from each 80 W e

RTG unit, the mass of PU 238, in the form of PuO 2 iS calculated for each unit.

At 4.5 percent efficiency, 1780Wth are required for each RTG. Since the specific

power for PuO 2 is 0.39 Wth/g of PuO 2, 4570 grams of PuO 2 are required per RTG.

Since Stoddard and Albenesius [ Ref. VIII-14] give the activity per gram caused by

PuO2, the activity for each 80 W RTG unit can easily be calculated (Table VHI-8).e

It should be noted that the PuO 2 is not entirely PU 238 and a table listing its com-

position is thus included (Table VIII-9). This is provided so that a comparison

of isotopic compositions for the actual RTG fuel can be made later in order to

revise theoretical RTG radiation estimates.

With a fuel capsule wall thickness of 0.8 inch, the gamma radiation

will be cut down to a level such that only neutron radiation must be considered

to be a hazard to the JOVE mission.

The neutron radiation level at 1 meter from the RTG, considering the

fuel as a point source, neglecting self-shielding and other shielding effects is

9.5x107 neutrons = (7.6 x 102 neutrons
0 = sec (4_) (100) 2 cm 2 cm2_sec )

neutrons
= 760 cm2_se c

Thus, over the JOVE 900-day mission,

neutr°ns 1_vt = 0t = 760 cm2 secj [900days]
24 hrs] [ 3600 sec ]

d_y J hr

= 5.9 x 101° neutrons
cm 2

This figure can be converted to an absorbed dose using an assumed conversion
of 1 n/cm 2 _ 3.0xl0 -7 ergs/gram.
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TABLE VHI-8. ACTIVITY OF AN 80 W RTG
e

(a) Alpha activity: 2.33xi0 Is (llstmtegrations/sec

(b) Gamma activity

Energy Abundance (protons/sec)

MeV t = 1 day t = 1 year t = 2.5 years t = 5.0 years

0.04-0.5 9.6x10 I1 9.6x10 il 9.6x10 li 9. lxl011

0.5-1.0 1.5x109 I. 6x109 1.8x10 _ 2.2x109

1.0-2. 0 2.2x107 2.3x107 3. lxl07 4.5x107

2.0-3.0 6.9x106 4.3x107 2. lxl08 5.5xl08

3.0-5.0 6.4x105 6.4x105 6.4x105 5.9x105

5.0-7.0 1. lxlO 5 1. lxlO 5 1. lxlO 5 1. lxlO 5

t = time since separation of decay products

(c) Neutron activity

Energy Abundance

Me V neutrons/sec

0.0-0.5 1.6x10 _

0, 5-1, 0 3.2x106

1, 0-2.0 2.5x107

2.0-3.0 4, 4xt07

3.0-4, 0 2.0xl07

4.0-5, 0 2. lxl0 G

5.0-6.0 3, 3x105

6.0-7.0 1. ix105

7.0-8.0 7.8x101

8.0-10.0 2.9x101

10. 0-13.0 I. 4x10 I

Total = 9.5x107 n_utrons/sec
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TABLE vm-9. ISOTOPICCOMPOSITIONOF Pu IN
PuO2 [Ref. VIII-14]

pu236 = 0.00012%

Pu238 = 81%

Pu239 = 15%

Pu240 = 2.9%

Puul = 0.8%

Pu 242 = 0.1%

nvt = (5.9x10 l°) (3.0xl0 -7)

Np 237 = 0.5%

Th = 0.01%

v = 0.3%

ergs = 1.8xl04
gram

ergs/gram.

The value is well below the threshold of damage from radiation effects for

items located 1 meter from an RTG unit. Most of the electronics and scientific

instruments are 7-10 feet from the RTG's and thus will not be adversely affected

by RTG radiation.

GROUNDOPERATIONS FORTHE RTG POWERSUPPLY

One of the most important phases to consider of the entire JOVE mis-

sion encompasses all the ground operations before launch. The scheduling

alone of such operations would require a detailed study. Certain cursory

observations, however, related to ground operations affecting the RTG's will

be made.

To set up a basis for the analysis there are certain ground rules that must

be followed concerning the RTG's as received from the AEC (or from a con-

tractor). First of all, let the RTG be characterized by two basic parts: The

generator assembly(which will include the generator, shell, and fin sections

along with the re-entry vehicle, separation device, and mounting brackets),

and the fuel capsule. These two components will be shipped to the launch area

separately but in a fully tested condition. There will be one set of eight generator

assemblies and fuel capsules for the spacecraft. Also it is well known that a

fuel capsule can be simulated within two percent of its actual performance by an

electrical Simulator.

8-38



For flight accept_noo, f hp fHel r_p.q,lo _ncttb_ _n_r_tnr ._mhhT x_ill

proceed through totally different checkout phases. The fuel capsule itself will

remain stored after inspection except for various tests where an active fuel

capsule is required. Thus, the fuel capsule simulator will be primarily used

for testing since such a procedure minimizes the nuclear radiation exposure of
any inspection worker.

After arriving at the test area, the generator assembly will be given

incoming acceptance tests and will immediately be coupled with its active fuel

capsule for performance tests. Following this step, the fuel capsules will be
stored while the same performance test is carried out with the electric fuel

capsule simulator for a comparison. After acceptance of these results, the

generator assembly will proceed to the spacecraft assembly area where it will

be installed in JOVE along with safety devices, radiation monitoring devices,

and proper cooling facilities. With the fuel capsule simulator in place, per-

formance tests can once again be carried out. Having replaced the fuel simu-

lators by the active capsules, both radiation and magnetic mapping of the space-

craft will take place. With the completion of these tests the fuel capsules will

be sent to Cape Kennedy. Meanwhile, the spacecraft must be checked for resi-

dual radiation and then sent on to the Cape along with the fuel simulator. Upon

arrival at the Cape the active fuel capsules will be inspected and stored until

it is time to place them on JOVE for launch. When the spacecraft arrives, it

too will be inspected and the fuel capsule simulator will be installed for systems

testing, compatibility testing, and dummy runs. Of course, active cooling of

the power system will be necessary here also. With final systems flight accep-

tance tests completed, radiation safeguards will be set up and the active fuel

capsules will be installed in place of the fuel simulators. Magnetic and radiation

mapping will be carried out on the integrated spacecraft system. The space-

craft performance will be tested next with the actual RTG units in place as a

final check before the shroud cooling system can be initiated and just before the

spacecraft can be housed inside its shroud. The total vehicle assembly with

shroud in place will now be transported to the launch pad on an eight hour trip.

On the pad, pre-launch checkout and monitoring will begin. Presently it is

estimated that such tests will be of 6- to 8-week duration but eventually reduced

to 2 weeks by the late 1970's. Shroud cooling will be continuous during this

period and will terminate only upon umbilical separation just before launch.

From that time on, active cooling of the RTG's can be stopped and radiation

heat transfer becomes the primary mechanism of cooling. New thermal prob-

lems will arise during this flight phase and they will be considered later in

the report ( see page 8-41).

A general description of the procedure involved with handling the RTG's

and integrating them with the spacecraft has been given to provide a feeling for

some of the problems inherent in such a system. Two of the more specific ones
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become relatively obvious from such an analysis, i.e., the nuclear radiation

problem and the active cooling difficultywhich arises. Both of these problems

will be briefly discussed in order to indicate that there is an awareness of them.

An indicationof the precautions that will be taken to minimize the potential

hazard because of the presence of the RTG's will also be given.

For ground measurements of nuclear radiation when the active fuel

capsule is present, neutrons and gamma rays must both be detected. Since

both thermal and fast neutrons must be detected, fission chambers as well as

a Hurst fast dosimeter and a semi-conductor detector must be present. For

gamma radiation, a scintillation detector, a Geiger-M{_ller counter and a semi-

conductor detector would probably be sufficient.

The maximum accumulated absorbed dose permitted for any worker is

3 rems/quarter (3 months) or . 230 rems/week. Such a dose should not be

absorbed by an individual in a short period of time, even though it would not

be exceeded, nor should key personnel ever exceed this limit. By using an

estimate of the radiation from the RTG's (see page 8-36), along with this

limiting dose, one can calculate the number of trained personnel required

to perform operations on the actively fueled spacecraft. Neglecting the gamma

radiation (a small value compared to the total dosage) a man would be exposed

to a flux of 760 neutrons/cm2-sec at a distance of one meter from any one RTG.

This value is relatively high, and a worker could be available for, at best,

a few hours.

It is unique to an RTG power source that once it is energized with active

fuel capsules, no other external power supply is required. This has advantages,

such as readily available power, but it also has its disadvantages. One of those

disadvantages is that cooling provisions must be made during ground handling

operations to dissipate the heat produced by the RTG's

The total power of the RTG's is 640 W or approximately 48 500 Btu/hr
e

at 4.5 percent efficiency. Thus, 48 500 Btu/hr must be dissipated in some

fashion. One technique would be to develop a cooler which could be easily re-

moved (Refer to Chapter V, page 5-35 ). This would allow for degassing

of superinsulation at the same time. Another possibility, if the degassing prob-

lem were solved, would be to use convective heat transfer. With a 20 ° E AT,

a mass flow of air (or nitrogen) of approximately 200 lb/min would be required

to dissipate the total RTG heat. This may seem like a stringent condition,

especially for the launch pad; however, the projected air conditioning of stage

compartments of the Apollo/Saturn space vehicle are listed below [ Ref. VIII-13].
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STAGE FLOW RATE (lb/min)

S-IC 185

S-H 500

S-IVB 300

I.U. 150/200

CSM 140

TOTAL for SPACE VEHICLE 1400

Launch Pad 39A has a design of approximately 2000 lb/min of air cooled to
33-35° F at the Mobile Launcher base.

It is further stated that for the Voyager/Saturn space vehicle, the

environmental conditioning capacity potentially available for the spacecraft

is in the order of 700-800 lb/min. This is sufficient for the JOVE mission.

Facilities for air conditioning inside the Vertical Assembly Building

(VAB) are more adequate then they are on the launch pad. Air or nitrogen

cooling conditions (200 lb/min) must also be assured for the trip on the trans-

porter from the VAB to the launch pad.

RTGTEMPERATURESDURING FLIGHT PHASES

Twenty square feet of radiator fin surface area is found to be sufficient

to reject to space the heat produced by the RTG fuel. It must be certain, how-

ever, that these fins can "see" space as the environment to which they dissipate

heat. There are two periods during the JOVE mission when the RTG's will not

"see" space but rather some other environment. One of these periods is during

the launch of JOVE, until the time when the nose cone is jettisoned from the

spacecraft. The inside of the nose cone is all that the RTG's will see during

this period. The second occurrence is when the retropropulsion system is

operative and the RTG's "look" partially at space and in part at the 'plume from

the LEMDE engine. The temperatures of the RTG's during each of these periods

have been theoretically considered (see page 8-21 ) and found not to be excessive.
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COSTESTIMATES FORTHE POWERSUPPLY SYSTEM

By far the major portion of the RTG power supply system cost is caused

by the cost of the fuel itself. Schulman [ Ref. VIII-8] estimates that the radio-

isotope, Pu 238, will cost $500/wattth in the near future. Deonigi [Ref. VIII-7]

lists values of $ 894/wattth and $500/g which he found from two different sources.

An earlier (1961) source referred to by Rohrmann [Ref. VIII-15] lists the esti-

mated cost of Pu 238 to be $1600/wattth and the cost per gram as $880/g. A

representative of Martin-Marietta, in a private communication, said $1000/wattth

would be a highly conservative estimate. Another Jupiter study [Ref. VII-l]

listed the RTG fuel cost at $1500/wattth in 1965 dollars. A study for the Voyager

program [ Ref. VIII-16] indicated that the isotope cost for the RTG's amounted

to $22 500 per electrical watt. Assuming, in this case, 4.25 percent efficiency,

this would mean $965/wattth. Thus, a whole spectrum of values is available

from which one can choose an estimate. The graph shown in (Fig. VIII-8) is

an attempt to estimate a value which can be used this year. Choosing what

appears to be a very conservative value of $ 900/wattth for the RTG fuel cost

and assuming an efficiency of 4.5 percent for the system, an estimate of 1.6

million dollars is established for each 80 W RTG. Thus, for a 640 W total
e e

power supply system on the JOVE mission, the cost will amount to approximately

$12 8OO 000.

8-42



RTG FUEL

COST ($/wattth)

1500 -

i000 -

500

0

1960

X

I I I I I I I ! I I _'
1965 1970

YEAR OF REFERENCE FROM WHICH VALUE WAS TAKEN

FIGURE VIII-8. RTG FUEL COST

8-43



REFERENCES

I.

e

.

.

5.

.

.

8.

e

12.

A Study of Jupiter Flyby Missions (Final Technical Report}. Report

No. FZM-4627. General Dynamics, Fort Worth Division, May 17, 1966.

Application of the Saturn/Apollo Hardware to Unmanned Scientific Explo-

ration of the Solar System. Report No. TM-292/3-6-003, Northrop

Space Laboratories, Huntsville, Alabama, April 1966.

Shair, R. C.; Lerner, S. R.;Joyner, P. A. and Evans, G. E.: A

Review of Batteries and Fuel Cells for Space Power Systems. Journal

of Spacecraft and Rockets. vol. 4, no. 7, pp. 833-838, July 1967.

Levedahl, W. J. : Private Communication. Unpublished 1967.

Rappaport, P. : Photovoltaic Power. Journal of Spacecraft and Rockets,

vol. 4, no. 7, pp. 838-841, July 1967.

Corliss, William R. and Harvey, Douglas G. : Radioisotope Power

Generation. Prentice-Hall, Inc., 1964.

Deonigi, D. E. and Eschbach, E. A. : Production and Indifference

Pricing of Transuranium Isotopes. Proceedings of the ANS National

Topical Meeting, Augusta, Georgia, March 1966.

Schulman, Fred: Isotopes and Isotope Thermoelectric Generators.

Advanced Technology Conference. NASA SP-131, August 1966,

pp. 73-93.

Sutton, G. W. : Direct Energy Conversion. Interuniversity Electronics

Series, McGraw-Hill Book Company, 1966.

Anquist, S. • Direct Energy Conversion. Allyn and Bacon, Inc., 1965.

Chang, Sheldon S. : Energy Conversion. Prentice Hall, Englewood

Cliffs, New Jersey, 1963.

Boman, L. H. : Application of a Radioisotope Heat Source Interior to a

Tubular Thermoelectric Generator. Proceedings of the ANS National

Topical Meeting, Augusta, Georgia, March !966.

8-44



REFERFt Ic  (Conc!,
L..| • vL.,,.i W,.A,I_I,_#_!

13.

14.

15.

16.

Voyager RTG Spacecraft Design Definition RTG Study - Voyager Task C.

Report No. VOY-C1-TR16. General Electric Missile and Space Division,

Philadelphia, Pennsylvania, March 1, 1967.

Stoddard, D. H. and Albenesius, E. L. : Radiation Properties of Pu 238

Produced for Isotopic Power Generators, DP-984, E. I. Dupont De

Nemours and Co., July 1965.

Rohrmann, C. A.: Radioisotopic Heat Sources, HW-76323. Hartford

Atomic Products Operation, Richland, Washington, February 1963.

Voyager Spacecraft System Preliminary Design, Alternate Designs

Considered, System Alternates, Volume B (Book 1 of 3). Report No.

DIN: 65SD4388. General Electric, Spacecraft Department, July 30, 1965.

8-45



BIBLIOGRAPHY

Advanced Planetary Probe Study, Final Technical Report, vol. 2. Report

No. 4547-6005-ROOOO. Spin-Stabilized Spacecraft for the Basic Mission,

TRW Systems, July 27, 1966.

Application of the Saturn V Launch Vehicle to Unmanned Scientific Exploration

of the Solar System. Report No. TR-292/3-6-075, Jupiter Orbiter/Solar

Probe Mission Study Advanced Mission Investigations, Northrop Space

Laboratories, Huntsville, Alabama, September 1966.

Deverall, J. E. and Kemme, J. E. : Satellite Heat Pipe, LA-3278-MS. Los

Alamos Scientific Laboratory of the University of California, April 20, 1965.

Frank, S. ;Smith, J. T. and Taylor, K. M. : Heat Pipe Design Manual,

MND-3288. Martin Nuclear, February 1967.

Hofman, F. E. and Johnson, G. W. S. and Simonsen, L. H. : Development of

Cost Estimating Techniques and Relationships for Unmanned Space Exploration

Missions PRC R-870. Planned Research Corporation, Los Angeles, California,

October 28, 1966.

Kick Stage Electrical Power Selection. Report No. TN-AE-66-147, Space

Division, Chrysler Corporation, New Orleans, Louisiana, July 1, 1966.

Marcus, B. D. : On the Operation of Heat Pipes, 9895-6001-TU-000. Physical

Electronics Laboratory, TRW Space Technology Laboratories, May 1965.

Voyager Spacecraft System, Preliminar_ Design, Flight Spacecraft Preferred

Design, Telecommunications, Volume A (Book 2 of 4). Report No. DIN:

65SD4388, General Electric, Spacecraft Department, July 30, 1965.

Wood, W. D. and Dean, H. W. : Thermal Properties of High-Temperature

Materials. RSIC-202, U. S. Army Missile Command, Redstone Arsenal,

Alabama, June 1964.

8-46



CHAPTER IX

COST AND RELIABILITY



CHAPTER IX. COSTAND RELIABILITY

DEFINITION OF SYMBOLS

CER

AGE

JPL

TTC

PRC

P/V TPC

P
X

P
Y

Pi

p (K)
X

p (K)
Y

R

Cost Estimating Relationships

Aerospace Ground Equipment

Jet Propulsion Laboratory

Tracking, Telemetry, and Command

Planning Research Corporation

Planetary Vehicle Total Program Cost

Probability of success using method x

Probability of success using method y

Probability of failure of individual subsystem i

P for K channel redundancy
x

P for K channel redundancy
Y

P /P
y x
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SPACECRAFT PROGRAM AND COST ESTIMATING

RELATIONSHIPS

The true cost of a spacecraft system and a support system must be

broken down into a number of categories that consider every possible item of

the total expense. Basically one considers the spacecraft system to consist

of the planetary vehicle and the launch vehicle. The support system consists

of all the necessary facilities and all of the manpower involved in the proper

functioning of these facilities. When plans have been made to integrate these

systems and tentative launch dates are set, one has a space program.

The necessary support system facilities are those in which any function

pertaining to conception, design, management, fabrication, transportation,

testing, assembling, launch, and other operations will be performed. These
facilities will need to be inherited or constructed. The manpower will either be

inherited by transfer from some other branch within an organization or will
need to be recruited. All of this will need to be costed before funding can be

obtained for any space program.

Presented here is a breakdown on the estimated cost of the JOVE plane-

tary vehicle which was obtained through the use of graphs prepared for a report

published in October 1966 by the Planning Research Corporation (PRC), under

contract to the Jet Propulsion Laboratory (JPL). A detailed breakdown on the

estimated cost of an entire space program may be obtained from the PCR graphs

and tables in the same report. Since the JOVE report is a conceptual systems

engineering design of a planetary reconnaissance vehicle, however, it is pre-

sumptuous to include a detailed breakdown estimate for an entire space program

at this time. Nevertheless, it would not be too far wrong to double the cost of

the JOVE Planetary Vehicle to obtain the price of a complete JOVE Space Pro-

gram. Since the cost will escalate with respect to time a three percent per

annum increase in cost must be added to estimates made in this chapter, with

escalations to begin after the year 1965 when the Cost Estimating Relationships

(CER's) were prepared.
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JOVE Planetary Vehicle

The JOVE planetary vehicle as conceived will need to be made into a

functional design. A complete set of working drawings consisting of all the

detail drawings, assembly drawings, and parts lists will be necessary. Mock-

ups for fitting of subsystems, wind-tunnel models, and "boiler plate" models

for other testing will need to be fabricated. JOVE planetary vehicles and spare

parts will need to be manufactured. The cost for all of this will be chargeable

to the total JOVE Space Program.

Saturn V Launch Vehicle

Saturn V, now considered to be the standard-heavyweight interplanetary

launch vehicle for at least the 1970 decade, will be developed and operational

in 1978 when the first attractive opportunity will occur for launching JOVE.

At that time, Saturn V will possibly be uprated to develop more than the pre-

sently designed seven and one half million pounds of thrust on liftoff. Improve-

ments in the performance and the efficiency of the F1 engines, the development

of more powerful and more efficient propellants, and additional strap-on boosters

probably will, either singly or in combination, contribute appreciable to liftoff

capabilities. It is within the realm of possibilities that the Saturn final stage

will be a nuclear powered system when JOVE is launched during the more

favorable payload year, 1980. The cost of a Saturn V as of the given launch

year will be chargeable to the JOVE Space Program.

Support System

The support system for the advanced planetary exploration programs

already planned will be in operation by 1978. The system may need additional

sophistication tailored to suit the JOVE program, but it is also possible that

the state of the art may be advanced enough by then to fit the requirements

of JOVE. Certainly it will be by 1980. The cost then of the support system

chargeable to the JOVE program will be the operating manpower and the use of

all the necessary transportation, assembling, launching, and tracking facilities.

It may be concluded from the above that growth improvements in the launch

vehicle and the support system, properly chargeable to some of the other
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advancedplanetary programs, may reduce the previous estimation factor for
these two items in the JOVE SpaceProgram. Perhaps, only an increase of
fifty percent will needto be addedto the cost of the JOVE planetary vehicles
to get a realistic cost for estimating the JOVE SpaceProgram.

ALLOCATION OF SUBSYSTEM WEIGHTS TO COST
CATEGORIES

In order to allocate the weights of subsystems as developed in Table

V-2 to the appropriate cost categories for using the PRC graphs and tables,

Table IX-1 has been prepared for "Planetary Vehicle" and Table IX-2 for

"Propulsion Module." In most instances the method of distribution is obvious;

however, some clarification will make the cost categories even more under-

standable.

1. Cabling - The cabling was distributed almost equally to all cost

categories except the electrical power which is the terminal point for this

cost item.

2. Contingency - The weight allowed for contingencies was allocated

in proportion to the subtotal weight for all cost categories.

3. Navigation and Guidance - Computing and sequencing is most

applicable to this cost category because this subsystem contains the command

processing and storing devices, the planetary vehicle time reference sensors,

and the sequence command devices.

4. Communications, T T and C - Because they are of a similar

electronic nature, radio, telemetry, and command were grouped under this

cost category.

5. Stabilization and Control - Guidance and control is most applicable

to this cost category because it contains the attitude control system, the auto-

pilot, and the cold gas jet system.

6. Structure - Pyrotechnic mechanisms and controls, temperature

control, and the planetary vehicle adapter are more closely related to structure

than to any of the other cost categories.
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The following tables which show the cost breakdown of the various

planetary vehicle subsystems and other related expense items are after those

shown in the previously mentioned Planning Research Corporation's report.

The graphs from which the cost estimating relationships were obtained were

developed for the PRC cost model from "The Space Planner's Guide," USAF

Report, July 1, 1965. This informative source was updated with information

from aerospace contractors, NASA reports, and NASA officials.

Table IX-3 shows the total hardware cost of four planetary vehicles to

be $125 970 000. Table IX-4 shows the total hardware cost of four planetary

vehicle propulsion modules to be $63 270 000. Table IX-5 shows the cost for

integrating the planetary vehicle module and the planetary vehicle propulsion

module. It further shows that the integration of the eight planetary vehicle

modules into the four planetary vehicle systems amounts to a total planetary

vehicle program cost of $422 340 000. This does not include the cost of the

Saturn V launch vehicle or the support system. The dollar value is for 1965,

without using the escalation factor, because there are too many variables which

might invalidate straight line escalating of the dollar.

DISCUSSION

A detailed explanation of how to use the tables and graphs would be

lengthy and would not enhance the value of this study. It is believed that the

reader who is interested in estimated cost determinations will find the method

self-explanatory after studying the table notations with reference to the Cost

Estimating Relationships (CER's).

No attempt will be made to defend the selection of the PRC cost model
for this estimate. There are other valid methods which could have been used

with equal success. It is not implied here that this is the best cost model to

be used in estimating the cost of future unmanned interplanetary reconnaissance
missions.

Time will tell whether one cost estimating model is superior to another

method. One thing that can be said with certainty -- when the national space

program has grown from the infancy of space exploration to full aerospace

technological stature the necessary experience required to predict with accuracy

the price of interplanetary travel will have been accumulated.
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Introduction

There are three basic techniques available for maximizing the reliability

of any mission. They are manufacturing, testing, and redundancy. Most com-

ponents should be required toundergo many hundreds of hours of pre-launch

testing to test them well beyond the region of infant mortality. It is obvious

that not all parts should be tested this way because it consumes part of their known,

limited lifetime. There is a compromise to be made here in testing for infant

mortality versus long range effects since the test is absolutely essential. Tests
must be performed on most parts to assure that their mean lifetime and its vari-

ance are such that they can operate with high reliability for at least 1000 days.

Techniques of construction in the large (e. g., spacecraft) and the small (e. g.,

transistors) must be carefully developed to improve reliability.

JOVE is designed with state-of-the-art materials and components which

have not all been tested for the length of time required for this mission nor have

they been tested in the space environment around Jupiter (vacuum, radiation).

Development of testing programs will remedy this before actual flight and develop-

ment of new products such as radiation insensitive transistors will greatly in-

crease mission reliability.

A typical JPL screening process for transistors is:

a. Visual 20 power inspection for cracked glass to metal seals,

tarnished leads, corroded leads, broken leads, etc.

b. Operating parameters at 25 ° C.

c. Storage capability 168 hours at 200°C.

d. Repetition of b.

e. Operate 168 hours at 100" C with 280 mW power dissipated.

f. Repetition of b.
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This is an expensive but necessary procedure which really saves money in the
long run becauseof the greatly increased reliability of these components.

JOVE will have provisions for a last minure operational check on all
subsystemswhile on the launching pad.

Redundancy

After manufacturing and testing, the best tool for reliability is redun-

dancy. There are two basic types of redundancy, active and passive. Active

redundancy consists of having two units operating at the same time. In passive

redundancy only one unit operates while the other one waits to be substituted in
the case of failure of the first. There are many units on the mission whose

failure would render the mission completely useless. Some of these, such as

the antenna, do not allow for redundancy because of their size and weight,

whereas items like the transmitter, data processing system, and data storage

system allow for multiple redundancy. Power requirements suggest the use of

passive redundancy, although active redundancy is preferred for the data

storage system. Throughout this discussion it is tacitly assumed that the

mechanism for changing from one unit to another has a higher order reliability

than the unit itself so that perfect reliability is assumed for these switching

operations.

The greatest cause of failure for electronic parts on this mission will

be from the radiation environment; all other causes will be negligible compared

to this. Multiple redundancy of these electronic parts, particularly the trans-

mitter and data processing system, is strongly recommended. The following

work investigates and compares two methods of substitution for passive redun-

dancy. The first method will be to replace the entire unit when it fails. The
second method is to divide the unit into several subsystems replacing only the

particular subsystem that fails. This latter method obviously gives a higher

reliability but one needs to investigate whether the improvement is worth the

added complexity.

System Replacement. First look at a general system broken into sub-

systems with K distinct entire units for redundancy. Method x consists of

replacing the entire system. Method y consists of replacing only a particular

subsystem.
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System i. %[SUj--------o

System 2. _

System K

For method y [ p (K) = _rnY i=l

For method x the value of P

equation x

p (K)_ n- zr (1- Pi) +
x i=l

(1 - Pi K)

(K)
must be found by solving an iterative

- i=_l (1 - Pi Px (K-l) .

Qx(K ) nLet = p (K) _ 1 Let A : 7r (1 - Pi)
x i=l

Then Qx (K) + 1 = A + [1 -A] [Qx (K-l) + 1]

Then Qx(K) = [1 -A] Qx(K-1) -- 11- A]2 Qx (K-2) etc.

Therefore Qx (K) = [1 - A]K-1 Qxl

But Qx(1) = p (1)
X

- I=A-1.

Therefore Q (K) _ [1 -A]
x

K

! En 11And Px (K) = 1- I-i_ 1 (1- Pi K

P (K) n piK) [ n _KRk= --Y- = 7r (1- / 1- 1- 7r (1- Pi .
p (K) i=l i=l

X

Theorem: Rk -> 1 meaning that method y is better than method x.
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The proof of this is obvious using an argument based on sets. If B is

the set of all the ways the system can fall by method x and C is the set of all

ways the system can fail by method y then C is a subset of B and P (B) -< P(A).

Subsystem Replacement. Now consider redundancy with K=2 (in most

instances) ; therefore, the following theorem is proven for this case.

n

(1 + Pi)
i=l,

i

For K=2 R2 = n

2-i= i (i-

Consider F =
n n

_r (l+,Pi) + _r (1-Pi)-2
i=1 i=1

Minimize F with respect to the Pi values

n n

_" (1 + Pi) _- (1 + Pi)
2F i=1 i=1

2Pi ( 1 + Pi) (1 - Pi)

n (1+ Pi) 1+ Pi i+ Pm
Solving: Ir = =

i=l (1 - Pi) 1 - I>i 1 - P
m

For alll-<j,m-<n.

Therefore P. = Pi for alll-<i, j-<n
J

(i+ ei)=(:1 - pi) 1 .

Since all factors are equal they must all equal 1.

Therefore Pi = 0 for all 1 -< i -< n

This is the only extremum; hence it gives the unique minimum for F. F -> 0

Therefore
n n

(1+1>i)>--2 -
i=l 1=1

(i- Pi) andR 2_- 1.
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r__= 2n-1.Limit _-z
Pi-- 1

Preferred Method. It appears that as long as Pi is very low there is

not enough difference in the two systems to justify use of system y but when Pi

is larger, the latter method becomes many times superior. This point will be

illustrated with a particular case, n=4.

Symmetry considerations indicate that maximum reliability is obtained

in the n subsystems ff they have equal probabilities of failure. It is therefore

recommended that the entire system be broken down into the desired number

of subsystems, n, such that the probabilities of failure of each subsystem are

roughly equal. In electronic systems this can be done to a first approximation

by having an equal number of transistors and diodes in each subsystem. Now

assume that

Pl = P2 = P3...... Pn P

px(2) = (1 _p)412_ (l_p)4]

py(2) = (l-p)4 (1+p)4

_ (1 + p)4
R2 - 2- (1-p)4

P

px(2)

p/2)

R2

1.0 I 0.5

o 0. 122

0 1 0.319

8 i 2.61

i

0.4

0.233

0.491

2, 10

0.3

0. 422

0.686

1.63

0.2

0. 652

0. 849

I. 30

0.I

O.879

O.960

1.08

0.05

0.970

0.986

1.02

These results are graphed on Figure IX-21 and IX-22.

0.01

0.998

0.998

1.00

0

1

1

1

,

Conclusions and Results. From the graphs it is obvious that method y

is substantially superior to method x even if the probability of an individual sub-

system's failing is as low as 0. 2. In the radiation environment encountered,

the transistor degradation or failure rate would be high enough to warrant use of

method y with a ten or twenty percent increase in overall system reliability. It

is therefore recommended that in the critical electronic systems such as the trans-

mitter and data processing system method y should be used as the optimal method

for passive redundancy.
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