View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

\
REPORT NO. GDC-DBE-67-013

BASE FLOW FIELD INVESTIGATION
ON THE S-ll STAGE

By
L. D’Attorre and H. U. Thommen

March 1967

Submitted to
National Aeronautics and Space Administration
GEORGE C. MARSHALL SPACE FLIGHT CENTER
: Huntsville, Alabama

Prepared under
Contract NAS8-21039

Prepared by
Space Sciences Laboratory
CONVAIR DIVISION OF GENERAL DYNAMICS
San Diego, California



https://core.ac.uk/display/85246482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The calculation of the three dimensional interaction region of multi
Jet configurations by a finite difference method; the general description
of the problem and the correspondent computer program have been given by
the same authors in report GDC-DBE-66-01k4, May 1966.

In the present report, the computer program is re-examined in an
attempt to reduce the number of parameters to be judged by the users. In
conjunction a new finite difference method is introduced, which automatically

provides an amount of dissipation appropriate to the requirements of the

In order to test the effectiveness of the additional dissipation
mechanism a number of experiments were performed. As a consequence of
those studies a simplified program is obtained and when applied to the
calculation of five Jjet interactions, yields result which are at least of

equal quality of those previously reported.
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1. Introduction

Under contract NAS8-20101, a computer program was developed for the
calculation of the inviscid interaction regions of multiple rocket engines
(Ref. 1). The calculations were based on the finite difference)method re-
ported in Ref. 2.

Unfortunately, the results of these calculations suffered from the
very adverse conditions to which they had to be applied. First, the inter-
action shocks are in general very little inclined to the plane of symmetry.
Secondly, and more critical for the application of the finite difference
method, the allowable step size Ax in marching direction was very small.
This was caused by the relatively large velocity components normal to the
marching direction. The effect of the small step size is that very strong
oscillations are observed in the tail end of shock waves which are poorly
damped. Such results are very difficult to interpret.

In Ref. 1, a variety of methods were investigated by which these os-
cillations could be damped.

The problem has now been reinvestigated and the results are presented

in this report.

For éonvenient reference, the basic differential equations are re-
peated in Section 2. A new difference scheme is described in Section 3,
and an additional damping mechanism is introduced.

The effectiveness of the damping procedure is investigated in Sections
4 and 5. Although the principal mechanism is the same, for practical ap-

plication there are two different approaches possible. A number of simple

experiments were performed using a single value of the damping parameter



in each plane. The results are presented in Section 4. It was found
that this damping parameter was strongly dependent on the gas dynamic
properties. Although a relatively simple correlation was obtained be-
tween the most favorable damping factor and the pressure ratio across
the shock,application of this correlation law to the much more compli-
cated case of multiple Jet interaction seems very difficult. Therefore,
a second damping procedure is introduced in Section 5. This method has
the advantage that it is only indirectly related to the gas dynamic condi-
tions. It makes use of the local properties, i.e., the damping parameter
is chosen according to the local conditions. It reguires choice oOf one
single parameter, e, and the tests carried out so far indicate that the
value of this parameter can be chosen a priori as about 0.5 to 0.75.

This method of damping was incorporated into the program described

in Ref. 1, and all the previously used methods have been deleted. This

‘simplified program has been found to yield results which are at least of

equal quality to those reported in Ref. 1. On the other hand, this pro-
gram does not require any Jjudgment by the operator above the choice of the
single parameter ¢. The results of a test calculation for the five-jet
interaction is presented in Section 6. The results show a behavior quite
similar to that obtained by the method of characteristics in Ref. 3, al-

though in this paper a much simpler problem was investigated.



2. The!Differential Equation

We consider a cartesian coordinate system, x, y, z and denote the
velocity components by u, v, w. The latter are made dimensionless by
the critical speed of sound. The other reference property is the critical
density. Denoting properties with dimensions with a prime we have the

following relations:

= u_'__ = v_. = W_
u ¥ v ¥ v %
a a a
’ ’ ’ (2.1)
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The flow is assumed to be isoenergetic. Then the constant total enthalpy
is given by:
hl
=t =Y P4+l 2_g¥
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where ¢~ = u2 + v2 + w and
e
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Then we write the differential equation in the following conservation form:
= o+ .
W ST TG (2.3)

Here, W is a column vector with four elements, the transpose of which is

T _
W= {Wl’ Wos w3’ Wh}
— 2
= {pu, pu_ + p, puv, pu%}

Similarly, the transpose of the vectors F and G are given by:
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T _ 2
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Considering the elements of W to be the dependent variables we find that the
elements of F and G can be expressed in terms of the elements of W. It is

necessary to evaluate for example p from a guadratic equation,

At [B /5 - AC] (2.6)

o =
. x 2 2
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¢ = (y*1)(y-1)"" W]
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It is easily verified that B2 = AC at sonic conditions. Then, the upper or

lower sign in Eq. (2.6) correspond to supersonic and subsonic flows respec-

tively.



3. The Difference Scheme

In order to describe the difference approximation to Eq. (2.3) we
introduce the following notation: The difference approximation to
W(x + £Ax, y + mAdy, z + nAz) is denoted by Wi,n' Since W is strictly
defined only on the grid points, £, m and n are considered to be integers.
However, values of W cén be defined at points intermediate by interpolation

formulae. We will indicate this by writing the difference approximation to

the pth-order derivative (p=2o) as follows:
3_p_W.| = (B_PW_BX C(3.1)
3yF | NoyE/
v A sk sV Y M sV

where A, p, v give the location where the derivative is taken corresponding
to £, my, n. However, the greek symbolg are not necessarily integers.
On occasion we will extend the notation in Eq. (3.1) by indicating half

the interval, q, over which the difference approximation is taken. In this

' )
= :% /> (3.}1a)
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case we write

2w
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Now we define these approximations as follows:
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Derivatives with respect to z are approximated similarly by operating on the
second subscript. Finally, the function F(Wﬁ V) are denoted by Fﬁ 5 and
2 3

similar for G.

Now the difference approximation to Eq. (2.3) is based on the Taylor

expansion of W in x-direction, i.e.

2
W(cx,y,2) = Wx,y,2) + ax W (x,5,2) + B W (x,y,2) + 0(ax®)  (3.3)

With the notation introduced above, Eq. (3.3) is approximated by:

whoo=we 4 ax (u)? +Ax2<w ° (3.14)
Ax (W, 0,0 2 xx?o,o 3.

0,0 0,0

The terms on the right hand side are calculated in two steps as follows:

i) TFirst step: Calculate temporary values

_ +) il
4 2
(W>:I:-g~,o an <W>O,i%

to first order accuracy.
These temporary values are based on Taylor expansions of W about the points
(x,y + gz, z) and (x,y,z + ——) respectlvely The difference approximations to

these Taylor series are:

@2 = UENIES XU PN (3.5)

WV

The x-derivative in Eq. (3.5) is replaced by introducing the differential

equation:
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In particular we obtain:
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and similarly for the other terms. Based on these temporary values we calcu-

late the following eight properties

1
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ii) Second step: Evaluate (Wxx)g ° using the temporary values at
kS
3 o}
= 12
A =+ and (wx>o,(3
Making use again of the differential equation, the second order term in the

Taylor series, Eq. (3.4), is calculated from:
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Hence, for example:
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Again using the differential equation, the remaining term in the Taylor

expansion is obtained:



<wﬁ>g;o - <Fy/l)co),o * <Gi/l>g,o (3.7)

Introducing Eqs. (3.6) and (3.7) into Eq. (3.4) yields the final value Wg,o’
It is easily verified, that the diffefence scheme described above is

accurate to order A2, where A stands for Ax, Ay or Az which are all considered
to be of the same order of magnitude. For the sake of simplicity we assume
Ay = Az and introduce the relative step size )\ :by |

A = ax/Ay (3.8)
we then observe, that the first and second order terms in the Taylor series,
Eq. (3.4), are proportional to A and Ae respectively.

The stability of this pew difference scheme is the same as for the two-

step Ilax-Wendroff scheme used in Ref. 1. It is, therefore, given by:

A<Ccot ([0]+p) (3.9)

where 02 = 3/8, 6 is the angle between the veloqity veétor and the x-axis

and y is the Mach angle. Now the allowable step size )\ varies according to
Eq. (3.9) in the flowfield. We denote by A the relative step size actually
used to advance the solution one step. In order not to violate the stability

condition anywhere in the flowfield, A is determined by:

A= mn {y,_ (7,20} (3.10)
Here, Xzoc is the local value of A, determined by using the equality sign in
Eq. (3.9), i.e.

Xgoo “Ccot (18 ]+u) (3.9)

o
Thus, as given in Eq. (3.10), A is the smallest value of all the Azoc in the

X T constant plane.



Now in highly nonuniform flowfields, such as are encountered in the
present application, the value of A can become very small. For high Mach
numbers (i.e. small u) it is usually the flow angle 6 which determines the
allowable step size A.

If A is small, then the second order term in the Taylor expansion,
Eq. (3.4) becomes very small indeed, being of order A?. Since it is this
second order term which is responsible for the damping of the oscillations
observed behind shock waves, a small value of A can be expected to yield
very pronounced oscillations. This has been observed in Ref. 1.

We now consider a mndified difference scheme which differs from the
above by the introduction of a damping parameter, D, which multiplies the

second order term. Introducing further the relative step size A we have:

1 _ .0 - o 1.2 2 o
Wo,o Wo,o A [Ay <Wx>o,;] * 2 DA [Ay (Wxx>o,;] (3.10)

We have used the assumptionﬁAy = Az. The terms in square brackets are
calculated as given above. If D =1+ O(A), then the accuracy is the same
as above i.e. of O(Ag). If D is larger, the accuracy is reduced to first
order,

The influence of the factor D on the stability has been studied in
Ref. 2. It was found that the difference scheme, Eq. (3.10), is stable if

A<D ¢’ cot (le]+w)
(3.11)

a

<D foc
In this case, 0'2 = %, which is slightly larger than the value given in
Eq. (3.9). Equation (3.11) shows, that for D > 1 the allowable step size is

reduced.




We now discuss two differentimethods of damping. The first, called
uniform damping, uses the same damping factor at each point of the plane
X = constant, but not necessarily the same in each plane. The second method,
called local damping, will use a different D at each point in thé plane
X = constant.

Of the two methods, the first has been subjected to a considerable number
of tests, using a simple two-dimensional problem, while the results of the
second method are rather sketchy. Nevertheless, for reasons to be explained
below, it is the second method which has been incorporated in the program

for the five Jjet interaction Tflowlield calculation.

10




L., Uniform Damping

The simplified test problem considered in this and the next section
'is that of the flow through an oblique shock wave (Fig. 1). All proper-
ties sahead of and behind the shock are denoted by the subscripts 1 and 2
respeétively, (Fig. 1A). The flow ahead of the shock is assumed to be
inclined towards the x-axis by an angle §. It is deflected by the shock
through this angle parallel to the x-axis.

Figure 1B shows an idealized smeared out shock. Since the marching
step Ax will depend on the difference scheme used, we use the lateral
step size Ay as a reference length. We expect that we cannot do better
with the finite difference scheme than to smear the shock over a thickness
Ay normal to the shock front. Hence, we will compare our numerical solution
to this idealized shock thickness, s = x2 - xl = Ay/sin (o - 6).

In Fig. 1C we show the expected distributions of any quantity, ¢,

along a line y = constant. The theoretical distribution in the discon-

tinuous function

= 1 1 ' (k.1)

The idealized smeared out shock is characterized by the distribution

¢l | X < xl
X - X
¢, = ¢l t— (¢2 - ¢l) X £ X< X, (4.2)
¢2 Xz x,

11




The numerieal solubtion is denoted by ¢. As is indicated in Fig. 1C,
we will in general expect ¢ to oscillate around ¢th° A measﬁre for
the quality of the numerical solution is the shaded area in Fig. 1C,

the square of which is given by
X 2
x) = [ (¢ - ¢,,)° &x (4.3)
o]

the integration being taken along & line y = constant.

We now return to our ¥ g which we call
uniform demping. In generel, the right running characteristic ahead
of the shock will be steeper than either characteristics behind the

shock, i.e., usually

>
Wy ¥ 0>,

Since § = |6|, this means that the locally allowed xioc in front of
the shock is smasller than that based on the condition behind the shock.

Denoting the former by ki we then have the condition that:

Assume now, that we perform a calculation with the maximum allowed

step size, i.e. AX = AAy. Then, in the region ahead of the shock,

12



we must assign the value D = 1 to the damping constant in order that
the stability condition is satisfied in this region (see Eq. (3.11)).
Alternatively, if we want to use a damping factor D > 1, constant in

the flow field, then we have to reduce the step size A to A’ say, where
A=A n<1 (bk)

In order not to violate the stability condition in the region ahead
of the shock we must have from Eq. (3.11)

D12 (%.5)

The procedure then was as follows: We selected a number of cases of
Mach number and deflection angles. For each of these cases a number

of examples were calculated with various damping factors. The step

size A’ was calculated from the stability condition. For each example,
the error integrals I (Eq. (4.3)) were evaluated for the properties
®=p, p, u, and q = (u2 + vg)%. From these error integrals, the optimum
damping factor was selected as that which yields the smallest errors.

The results of & number of cases are shown in Figs. 2 to 9. In
each figure the pressure distribution along the surface, y = 0, and along
¥y = 240y are given for a calculation with D= 1 and a D close to the
optimum value. Also indicated is the linear distribution for the ideally

smeared shock defined in Eq. (4.2).




In Figs 2 to U4 the Mach number is M = 3 and the deflection angle
. o] o)
increases from 20 to 35 . Correspondingly, the shock strength increases;
a nmeasure for the shock strength is the theoretical pressure ratio across

it: € = pz/pl. Alternatively we use

which varies between zero for zero deflection and one for infinite
shock strength. For the examples in Fig. 2 to 4 the shock strength
£=3.23(5"=0
shock, Fig. 2, the oscillations with D = 1 are not very pronounced but
for the strongest shock, Fig. 4, they are very considerable. It should
in this connection be remembered, that the case D = 1 was calculated with
the largest step size allowed. The oscillations would be further increased
if the allowable step size were reduced for example, because of a cross
flow component such as is the case in the three dimensional interaction
regions. The figures demonstrate the considerable improvement which can
be obtained éspecially for the stronger shocks with this damping method.
It is also seen, that the shock thickness is not much worse than for the
ideally smeared shock.

Similar results are shown in Figs. 5 to 7 for Ml = 5.0 and deflection

angles § = 200, 30O and 400. For these cases, the pressure ratio varies

between £ = 5.82 (E’ = 0.83) and 16.20 (0.9%). Finally, Fig. 8 shows a

14



case with M = 7.0, 6 = 30° and € = 18.4 (E = 0.946).

The last two figures show a pronounced pressure undershoot shead
of the shock. For higher Mach numbers this undershoot becomes negative
and the numerical procedure breaks down. It is gratifying to see that
this undershoot is less critical for D > 1 than for D = 1. Thus, the
introduetion of the damping factor delays this breakdown, i.e., it allows
calculations with somewhat larger Mach numbers.

Figure 12 shows a summary of these results, i.e., the T for the optimum
damping as a function of £’. It is seen, that the results can be fairly

well correlated by

T=.1-¢° (1.6)

The point which deviates most from this formula is the case which

gives the best result, namely that shown in Fig. 4. These pressure
distributions show no noticeable overshoot at all. Consequently, the
values of T} according to Eg. (4.6) are probably somewhat too large, i.e.,
the damping factor can be chosen somewhat larger than on the basis of

Eq. (4.6). This equation yields

p= —1—=_% (4. 7)

15




We notice, that for very strong shocks, § >> 1, the damping factor

must also become very large:

o
ihe
o2 ] o
un

The method described above is quite effective, but it has the
disadvantage that the damping factor is strongly dependent on the
physicgl conditions, in our example on the pressure ratio across the
shock. It has the further disadvantage, that the step size has to be
reduced in order to apply damping. This means, of course, that the
calculation becomes more expensive.

Consequently, we have tested another damping method which will

now be discussed.

16




5. Local damping.

Consider again the problem of an oblique shock as shown in Fig. 1.
Assume that the calculation has proceeded to a line x = constant, such that
there are some points near y = 0 (y < Yy say) with properties qear the
condition behind the shock and some, at larger y (y > yl) with essentially
data ahead of the shock. Thus, the allowable relative step size for D = 1
is |

)\l for y > ¥y

o

Ay for y < yy-

A

However, for this value of the step size, the stability criterion allows
in the region y < ¥y behind the shock use of a damping factor D larger

than one. It can be chosen of the order (Xa/Xl)e. Therefore, for more
general cases, we proceed as follows: At each station x = constant, the

locally allowable step size A is calculated and the minimum is determined:

foc
A = min {xzoc (Y:Z)} (5.1)

The solution is then advanced according to this step size, but at each

point a damping factor of

D(y,z) =¢ (n, /AY (5.2)

Loc

is used where y = 2.

17




This procedure was tested on an example, somewhat more critical than
those reported in the last section. Again, an oblique shock problem was
used but the minimum allowable step size A = Xl was artificially reduced
in x-direction according to an exponential law. The results are shown in
Figs. 10 and 11.

Figure 10 shows the influence of this artificial decrease in step
size if no additional damping is used, i.e., for D = 1. A was reduced by
about a factor of 1/3 over the range shown in the figure, i.e., at x = 0
the step size was about three times larger than at the right-hand side of
the graph. It is remembered that in the Jet interaction regions the allow-
able‘step size is much more drastically reduced because of the cross flow
components. However, Fig. 10 shows that even this mild reduction in step
size has a étrong adverse effect on the results, in the sense that the
oscillations are nof only more pronounced but in addition are very poorly
damped, if at all. ‘It is quite likely that a more rapid reduction on A
will result in oscillations with increasing amplitude. It is interesting
to note that the frequency of the oscillations is not materially affected
by the decrease in step size.

In Fig. 11 the results with the local damping factor according to
Eq. (5.2) are shown. Two experiments were conducted with € = 1 and 1/2, v = 2.

Consider first the pressure distribution along the well. It is seen
that the introduction of the damping factor increaseé the initial pressure
rise through the shock. If € is too large, i.e., one in this case, this
results in an overshoot and subsequent strongly damped oscillation. Re-
duction of € to half the value practically eliminates the overshoot.

However, a small residual oscillation of longer wave lengths is observed

far downstream.

18



Off the surface, the curve with ¢ = 1 shows slightly better results
than € = 1/2 fromthe point view of oscillation of the solution. However,
the steepness of the pressure gradient is somewhat reduced for the larger €.

In comparing Fig. 11 with the results obtained with uniform'damping,
Fig. 6, it is noticed that the latter is of somewhat better quality. This,
of course, is partially caused by the artificial decrease of the step size
in Fig. 11.

It is interesting to note that with this damping method the shock wave

at the surface is smeared out less than the ideally smeared out shock.

19



6. Application to the Jet-Interaction Program.

The damping method of the last section has been incorporated into the
five-jet interaction program described fully in Ref. 1. The results of a
sample calculation are presented in Figs. 12 to 13.

In Ref. 1, the step size AxX was artificially increased by ignoring
the right running characteristics ahead of the shock. Referring to Fig. 1,
this means that the relative step size ahead of the shock was calculated
on the basis of the left running characteristic only, i.e.,

"

'4
Xzoc =C cot(a-ul).

This had the effect that the smallest allowable step size, A, was ob-

tained in the region behind the shock, i.e., A = xz. Although this is, of
course, theoretically not permissible, no instabilities were observed with
this method. The reason for this is presumably that the signals travelling
along the ignored characteristics were swallowed by the shock long before
they could be amplified sufficiently to lead to instabilities. On the other
hand, it is not certain whether results obtained in this fashion cannot be
falsified severely by this trick, since the problem is mathematically not
well posed any more.

This artificial device has now been abandoned. The step sizes with which
the present results have been calculated are, therefore, considerably smaller
than those used in Ref. 1. Nevertheless, the pressure distributions in Fig.
12 are of the same quality as the best obtained in Ref. 1.

The results were obtained with ¢ = 3/4, which seems to be a reasonable

value for most cases. Figure 12 shows that the pressure rise is again steeper

20




than for the ideally smeared shock in the interaction plane. For the test
examples, the locally used damping factors were printed out and it was
found that they were as large as 25. This means that behind the shock,

the step size was nearly six times smaller than was locally allowed. This
was mostly caused by the large cross flow components in the region ahead of
the shock, i.e., in the axisymmetric portion of the Jjets.

In Fig. 13, a relief 'is shown for the pressure distribution in the
interaction plane y = 0. This figure can be compared with that given in
Ref. 3. There the interaction of two cylindrical jets has been calculated
by the method of characteristics. The results of Ref. 3 extend only over
about 1/3 of the Jjet radius in x-direction; lhose in the present casc ex-
tend over about 1.5 exit radii. The figure indicates that in our case too
the pressure "jump" across the shock increases along the interaction line,
although much slower. This is caused by the fact that the deflection angle
increases less rapidly in our case because the jet boundary becomes less
inclined to the jet axis in downstream direction. The location of the ob-
served pressure maxima is proJjected onto the X,zplane. It is located at
less than 5 mesh sizes Az from the theoretical shock location.

It seems to us that the results presented in Figs. 12 and 13 represent
useful data for estimating the thermodynamic state of the gas in the inter-
action region of multiple Jets. If desired, the data could be replaced by
estimates, such as shown in Fig. llmaking use of the known shock location in
the interaction plane. Cross plots of thermodynamic data in a plane X' =
constant (see Ref. 1) show the shoék location with good accuracy and very

sharply defined.
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FIG. | B : SMEARED OUT SHOCK
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FIG. | - THE OBLIQUE SHOCK WAVE PROBLEM
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FIG. 9 : CORRELATION OF 7) FOR OPTIMUM DAMPING WITH
THE SHOCK STRENGTH ¢’
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FIG. 12 : PRESSURE DISTRIBUTIONS IN THE PLANE
AT INTERACTION
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