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Abstract 

The calculation of the three dimensional interaction region of multi 

j e t  configurations by a f i n i t e  difference method; the general description 

of the problem and the correspondent computer program have been given by 

the  same authors i n  report GDc-DBE:-66-014, May 1966. 

In the  present report, the computer program i s  re-examined i n  an 

attempt t o  reduce the number of parameters t o  be judged by the users. 

conjunction a new f i n i t e  difference method i s  introduced, which automatically 

provides an amount of dissipation appropriate t o  the requirements of the 

I n  

1 nnn 1 Pl C\T.T n n m A  i f i  ATIC 
A V C U I  * * U W  CUYUI " & " Y Y .  

In order t o  tes t  the effectiveness of the additional dissipation 

mechanism a number of experiments were performed. A s  a consequence of 

those studies a simplified program i s  obtained and when applied t o  the 

calculation of f ive  j e t  interactions, yields  resu l t  which are a t  least of 

equal quali ty of those previously reported. 
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1. Introduction 

Under contract NAS~-20101, a computer program was developed f o r  t he  

calculation of the inviscid interaction regions of multiple rocket engines 

(Ref .  1). 

ported i n  Ref. 2. 

The calculations were based on the f i n i t e  difference method re- 

Unfortunately, the resul ts  of these calculations suffered from the 

very adverse conditions t o  which they had t o  be applied. F i r s t ,  the in te r -  

act ion shocks a re  i n  general very l i t t l e  inclined t o  the plane of symmetry. 

Secondly, and more c r i t i c a l  f o r  the application of the f i n i t e  difference 

method, the allowable s tep  s ize  Ax i n  marching direction was very small. 

This was caused by the re la t ive ly  large velocity components normal t o  the 

marching direction. The e f fec t  of the small s tep s ize  is  tha t  very strong 

osci l la t ions are observed i n  the t a i l  end of shock waves which are  poorly 

damped. Such resu l t s  are very d i f f i c u l t  t o  interpret .  

I n  Ref. 1, a var ie ty  of methods were investigated by which these os- 

c i l l a t ions  could be damped. 

The problem has now been reinvestigated and the resul ts  a re  presented 

i n  t h i s  report .  

For convenient reference, the basic  d i f f e ren t i a l  equations are  re- 

peated i n  Section 2. 

and an additional damping mechanism i s  introduced. 

A new difference scheme is  described i n  Section 3, 

The effectiveness of the damping procedure i s  investigated i n  Sections 

4 and 5. 

p l ica t ion  there are two different  approaches possible. A number of simple 

experiments were performed using a single value of the damping parameter 

Although the pr incipal  mechanism is the same, f o r  prac t ica l  ap- 
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i n  each plane. It was found 

tha t  t h i s  damping parameter was strongly dependent on the gas dynamic 

properties 

tween the most favorable damping factor and the pressure r a t i o  across 

the shock,application of t h i s  correlation law t o  the much more compli- 

cated case of multiple j e t  interaction seems very d i f f i c u l t .  

a second damping procedure is  introduced i n  Section 5.  

the advantage tha t  it i s  only indirect ly  related t o  the gas dynamic condi- 

t ions .  

i s  chosen according t o  the  ioca i  conciitions. It requires choice ol" w e  

single  parameter, c,  and the t e s t s  carried out so f a r  indicate tha t  the 

value of t h i s  parameter can be chosen a p r io r i  as about 0.5 t o  0.75. 

The resu l t s  a r e  presented i n  Section 4. 

Although a re la t ive ly  simple correlation was obtained be- 

Therefore, 

This method has 

It makes use of the loca l  properties, i .e ., the damping parameter 

This method of damping was incorporated in to  the program described 

i n  Ref. 1, and a l l  the previously used methods have been deleted. This 

simplified program has been found t o  yield resul ts  which are  a t  l ea s t  of 

equal quali ty t o  those reported i n  Ref. 1. On the other hand, t h i s  pro- 

gram does not require any judgment by the operator above the choice of the 

s ing le  parameter e .  

interact ion is  presented i n  Section 6. 

similar t o  t h a t  obtained by the method of character is t ics  i n  Ref. 3, al-  

though i n  t h i s  paper a much simpler problem was investigated. 

The resul ts  of a t e s t  calculation f o r  the f ive- je t  

The resul ts  show a behavior quite 
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2. The Different ia l  Equation 

We consider a Cartesian coordinate system, x, y, z and denote the 

velocity components by u, v, w. The Latter a re  made dimensionless by 

the  c r i t i c a l  speed of sound. The o t h e r  reference property i s  the c r i t i c a l  

density. Denoting properties with dimensions with a prime we have the 

following relations:  

I I I 
V - w  v = -  w - -  

I* I*  I* 

- u  u - -  
a a a 

I PI PI = P  - 
YP'* 

p = ,* p = * ,*g 
P P a  

The flow i s  assumed t o  be isoenergetic. Then the constant t o t a l  enthalpy 

i s  given by: 
LI 

where q2 = u2 + v2 + w2 and 

2 &  
E * = - + & =  1 

Y -1 

Then we write the d i f f e ren t i a l  equation i n  the following conservation form: 

Wx = Fy + G, ( 2 . 3 )  

Here, W i s  a column vector w i t h  four  elements, the transpose of which i s  

WT = (w1, w2, w3, Wk} 

2 
= {PU, PU + P, PUV, PUW} 

Similarly, the transpose of the vectors F and G are  given by: 
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i .  
I 

CoFsidering the elements of W t o  be the dependent variables we f ind t h a t  the 

elements of F and G can be expressed i n  terms of the elements of W. 

necessary t o  evaluate for  example p from a quadratic equation, 

It is  

where : A = 2H* - (W3/WJ2 - (W4/W,)2 

-1 2 c = (y+ l>(v -1>  w1 

It is  easi ly  ver i f ied t h a t  B2 = AC a t  sonic conditions. Then, the upper or 

lower sign i n  Eq. (2.6) correspond t o  supersonic and subsonic flows respec- 

t ive ly .  
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3. The Difference Scheme 

In order t o  describe the difference approximation t o  Eq. (2.3) we 

introduce the following notation: 

W(x 3- aAx, y + mAy, z + IIAZ) is denoted by u",,,. Since W is s t r i c t l y  

defined only on the grid points, A ,  m and n a re  considered t o  be integers. 

However, values of W can be defined a t  points intermediate by interpolation 

The  difference approximation t o  

formulae. We w i l l  indicate this by writing the difference approximation t o  

, the  pth-order derivative ( P o )  as follows: 

where A, p, v give the  location 

t o  A ,  m, n. However, the greek 

On occasion we w i l l  extend 

the  interval ,  q, over which the  

case we write 

where the derivative is  taken corresponding 

symbolp are  not necessarily integers. 

t h e  notation i n  Eq. (3.1) by indicating h a l f  

difference approximation i s  taken. In t h i s  

Now w e  define these approximations as follows: 
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I .  

I Derivatives with respect t o  z are  approximated similarly by operating on the 

second subscript. Finally, the function F(& ) are denoted by Fh and 
cb ,v cb rV 

s i m i l a r  fo r  G. 

Now the difference approximation t o  Eq. (2.3) is  based on the Taylor 

expansion of W in x-direction, i . e .  

With the notation introduced above, Eq. (3.3) i s  approximated by: 

w 1  = wo + Ax (WX):,, -t Ax2 2 < W ~ ~ , o  
0,o 0 9 0  

(3.4) 

The terms on the r igh t  hand side are calculated i n  two steps as  follows: 

i) F i r s t  step: Calculate temporary values 

t o  first order accuracy. 

These temporary values are  based on Taylor expansions of W about the points 

(x,y f $, z )  and (x,y,z f $) respectively. The difference approxi&tions 

these Taylor ser ies  are:  

to 

The x-derivative i n  Eq. (3.5) i s  replaced by introducing the d i f f e ren t i a l  

equation : 
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In part icular  w e  obtain: 

+ 

- Go 1 

and similarly fo r  the other terms. 

late the following eight properties 

Based on these temporary values we calcu- 

ii) Second step: Evaluate (W )O using the temporary values a t  xx 0,o 

A = A+ and ( ~ 2  O 
0,; 

Making use again of the d i f fe ren t ia l  equation, the second order term i n  the 

Taylor ser ies ,  Eq. (3.4), is calculated from: 

Again using the d i f f e ren t i a l  equation, the remaining term i n  the Taylor 

expansion i s  obtained: 
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It i s  easi ly  verified, that the difference scheme described above i s  

accurate t o  order A , where A stands for  Ax, Ay or Az which are a l l  considered 

Introducing Eqs.  (3.6) and (3.7) into Eq. (3.4) yields the f inal  value W0,,. 

2 

t o  be of the same order of magnitude. For the sake of simplicity we assume 

Ay = Az and introduce the re la t ive  s tep s ize  X: by 

x = AX/AY (3.8) 

we then observe, that the f i r s t  and second order terms i n  the Taylor ser ies ,  

2 Eq. (3.4), are proportional t o  X and X respectively. 

The s t a b i l i t y  of this new difference scheme i s  the same as for  the two- 

s tep Lax-Wendroff scheme used i n  Ref. 1. It is, therefore, given by: 

where C2 = 3/8, 8 is  the angle between the velocity vector and the x-axis 

and p i s  the Mach angle. Now the allowable s tep s ize  varies according t o  

Eq. (3.9) i n  the flowfield. We denote by A the re lat ive s tep  s ize  actually 

used t o  advance the  solution one step. 

condition anywhere i n  the flawfield, A i s  determined by: 

In order not t o  violate the s t a b i l i t y  

Here, 

Eq. (3.9), i .e. 

i s  the loca l  value of A, determined by using the equality sign i n  a oc 

Xaoc = c cot  ( l e  J + p )  (3 .94 

Thus, as  given i n  Eq. ( 3 . l O ) ,  A i s  the smallest value of a l l  the X 

x = constant plane. 

i n  the a oc 
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Now i n  highly nonuniform flawfields, such as a re  encountered i n  the 

present application, the value of A can become very small. 

numbers ( i .e .  small p )  it i s  usually the flow angle 8 which determines the 

allowable s tep s ize  A. 

For high Mach 

If A is  small, then the second order term i n  the Taylor expansion, 

2 Eq. (3.4) becomes very small indeed, being of order A . 
second order term which is  responsible for  the damping of the osci l la t ions 

observed behind shock waves, a small value of A can be expected t o  yield 

very pronounced osci l la t ions.  This has been observed i n  Ref. 1. 

Since it is this 

We 11ev c n n s l d ~ r  8. mndified difference scheme which d i f fe rs  from the 

above by the introduction of a dam$ing parameter, D, which multiplies the 

second order term. Introducing further the re la t ive  s tep s ize  X we have: 

We have used the assumption'hy = Az. 

calculated as  given above. 

as above i .e .  of O(A2) .  

The terms i n  square brackets are 

If D = 1 + O(A), then the accuracy i s  the same 

If D is  larger, the accuracy i s  reduced t o  first 

order. 

The influence of the factor D on the s t a b i l i t y  has been studied i n  

Ref. 2. It w a s  found that the difference scheme, Eq. (3.lO), i s  s table  i f  

I n  this case, C '* = 3, which i s  s l ight ly  larger than the value given i n  

Eq. (3.9). Equation (3.11) shows, t h a t  for  D > 1 the allowable s tep s ize  i s  

reduced. 
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We now discuss tw; different methods of damping. The first, called 

uniform damping, uses the  same damping factor a t  each point of t k  plane 

x = constant, but not necessarily the same i n  each plane. 

called loca l  damping, w i l l  use a different D a t  each point i n  the plane 

x = constant. 

The second method, 

Of the  two methods, the first has been subjected t o  a considerable number 

of t e s t s ,  using a simple two-dimensional problem, w h i l e  the resu l t s  of the 

second method are  ra ther  sketchy. 

below, it i s  the second method which has been incorporated i n  the  program 

f o r  t-ne f ive  j e t  interact ion K i s w i ' i e i G  c a i c U L t i ~ a .  

Nevertheless, fo r  reasons t o  be explained 
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4. Uniform m i n g  

The simplified t e s t  problem considered i n  t h i s  and the next section 

is  that of the flow through an oblique shock wave (Fig. 1). A l l  proper- 

t i e s  ahead of and behind the shock are  denoted by the subscripts 1 and 2 

respectively, (Fig. lA). 

inclined towards the x-axis by a.n angle 6. It is  deflected by the shock 

through t h i s  angle para l le l  t o  the x-axis. 

The flow ahead of the shock is  assumed t o  be 

Figure 1B shows an idealized smeared out shock. Since the marching 

s tep Ax w i l l  depend on the difference scheme used, we use the lateral 

s tep s ize  Ay as a reference length. 

w i t h  the  f i n i t e  difference scheme than t o  smear the shock over a thickness 

Ay normal t o  the shock front.  Hence, we w i l l  compare OUT numerical solution 

t o  this  idealized shock thickness, s = x 

In Fig. 1C we show the expected dis t r ibut ions of any quantity, @, 

We expect that we cannot do be t t e r  

- x = Ay/sin ( 0  - 6 ) .  
2 1  

along a l i n e  y = constant. The theoret ical  dis t r ibut ion i n  the discon- 

tinuous function 

1 
x > x  

The idealiezed smeared out shock i s  characterized by 

x s x  1 

the dis t r ibut ion 

2 x S X S X  
1 x - x  

. @ i =  g l +  (82 - @l) 1 1 @l (4.2) 
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The numerical solution i s  denoted by 8 .  As is  indicated i n  Fig. lC, 

A measure f o r  th '  we w i l l  i n  general expect @ t o  osc i l la te  around @ 

the qual i ty  of the numerical solution is  the shaded area i n  Fig. lC, 

the square of which is given by 

the integration being taken along a l i n e  y = constant. 

'tde Ec-w- t- 0'~- firr;$ =ej...~G ef h p i n g  -Nhickl -w-e c a l l  

uniform damping. In general, the right running character is t ic  ahead 

of the  shock w i l l  be steeper tha,n ei ther  character is t ics  behind the 

shock, i.e., usually 

Since 6 = 101, t h i s  means that the loca l ly  allowed hioc i n  f ront  of 

the shock is  smaller than that based on the condition behind the shock. 

Denoting the former by h' we then have the condition that: 1 

I A = hl 

Assume now, that we perform a calculation w i t h  the maximum allowed 

s tep  size,  i .e .  Ax = AAy. Then, i n  the region ahead of the shock, 



we must assign the value D = 1 t o  the damping constant i n  order that 

the s t a b i l i t y  condition i s  sat isf ied i n  t h i s  region (see Eq. (3.11)). 

Alternatively, i f  we want t o  use a damping fac tor  D > 1, constant i n  

the flow f ie ld ,  then we have to  reduce the s tep s ize  A t o  A '  say, where 

A' = VA r l * l  (4.4). 

In order not t o  violate  the s t ab i l i t y  condition i n  the region ahead 

of the shock we must have from Eq. (3.11) 

D 5 (4.5) 

The procedure then w a s  as follows: 

Mach number and deflection angles. 

of examples were calculated w i t h  various damping factors.  The step 

s i ze  A '  w a s  calculated from the s t ab i l i t y  condition. 

the e r ro r  integrals  I (Eq. (4.3)) were evaluated f o r  the properties 

@ = p, p, u, and q = (u + v ) . From these e r ror  integrals,  the optimum 

damping fac tor  was selected as that which yields the smallest errors.  

We selected a number of cases of 

For each of these cases a number 

For each example, 

2 2 9  

The r e su l t s  of a number of cases are shown i n  Figs. 2 t o  9. In 

each figure the pressure distribution along the surface, y = 0, and along 

y = 2Ay are  given f o r  a calculation with D = 1 and a D close t o  the 

optimum value. Also indicated i s  the l i nea r  dis t r ibut ion f o r  the ideal ly  

smeared shock defined i n  Eq. (4.2). 



In Figs 2 t o  4 the Mach number is  M = 3 and the deflection angle 
1 

0 0 
increases from 20 t o  35 . Correspondingly, the shock strength increases; 

a measure fo r  the shock strength i s  the theore t ica l  pressure r a t i o  across 

it: 5 = p2/p1. Alternatively we use 

which varies between zero fo r  zero deflection and one f o r  i n f in i t e  

shock strength. For the examples i n  Fig. .2 t o  4 the shock strength 

~ ~ o n i  " U I I " Y  a n  hn+r.rann """""rLI F, = 3.23 (5 = 0.69) m d  6-26 (n.84). FCIr the ?.?eskePt 

shock, Fig. 2, the  osci l la t ions with D = 1 are not very pronounced but 

f o r  the strongest shock, Fig. 4, they are  very considerable. It should 

i n  t h i s  connection be remembered, that the case D = 1 w a s  calculated w i t h  

the largest  step s ize  allowed. The osc i l la t ions  would be fur ther  increased 

if the allowable step s ize  were reduced f o r  example, because of a cross 

flow component such a s  i s  the case i n  the three dimensional interaction 

regions. The figures demonstrate the considerable improvement which can 

be obtained especially for the  stronger shocks w i t h  th is  damping method. 

It is  also seen, that the shock thickness i s  not much worse than for  the 

idea l ly  smeared shock. 

Similar r e su l t s  are  shown i n  Figs. 5 t o  7 for M = 5.0 and deflection 1 
angles 6 = 20°, 30' and 40'. For these cases, the pressure r a t i o  varies 

between 5 = 5.82 ( 5 '  = 0.83) and 16.20 (0.94). Finally, Fig. 8 shows a 
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0 
case with M = 7.0, 6 = 30 and 5 = 18.4 ( 5 '  = 0.946). 

The last two figures show a pronounced pressure undershoot ahead 

of the shock. 

and the numerical procedure breaks down. It is  grat i fying t o  see that 

t h i s  undershoot is l e s s  c r i t i c a l  f o r  D > 1 than f o r  D = 1. 

introduction of the damping fac tor  delays t h i s  breakdown, i.e., it allows 

calculations with somewhat larger  Mach numbers. 

Figure I2 shows a summary of these resul ts ,  i .e . ,  the 1 f o r  the optimum 

For higher Mach numbers t h i s  undershoot becomes negative 

Thus, the 

damping as a function of 5 ' .  
Well correlated b y  

It i s  seen, t ha t  the r e su l t s  can be f a i r l y  

The point which deviates most from t h i s  formula is  the case which 

gives the best resul t ,  namely that shown i n  Fig. 4. 

dis t r ibut ions show no noticeable overshoot at  a l l .  Consequently, the 

values of 1 according t o  Eq. (4.6) are probably somewhat too large, i .e., 

the  damping factor  can be chosen somewhat larger  than on the basis of 

Eq. (4.6). This equation yields 

These pressure 



W e  notice, that f o r  very strong shocks, 5 >> 1, the damping fac tor  

must a l so  become very large: 

The method described above i s  quite effective,  but it has the 

disadvantage that the damping factor i s  strongly dependent on the 

physical conditions, in our example on the pressure r a t i o  across the 

shock. It has the fur ther  disadvantage, that the s tep s ize  has t o  be 

reduced i n  order t o  apply damping. This means, of course, that the 

calculation becomes more expensive. 

Consequently, we have tes ted another damping method which w i l l  

now be discussed. 
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' .  
5 .  Local damping. 

Consider again the problem of an oblique shock as shown i n  Fig. 1. 

Assume tha t  the calculation has proceeded t o  a l i ne  x = constant, such tha t  

there are  some points near y = 0 (y < yl, say) with properties near the 

condition behind the shock and some, a t  larger  y (y > yl) with essent ia l ly  

data ahead of the shock. Thus, the allowable relat ive s tep s ize  for  D = 1 

is  

1 A1 f o r  y > y 

1' X2 f o r  y < y 

However, f o r  t h i s  value of the s tep s ize ,  the s t a b i l i t y  c r i te r ion  allows 

i n  the region y < y behind the shock use of a damping fac tor  D larger  1 
than one. It can be chosen of the order (A2/hl) 2 . Therefore, for  more 

general cases, we proceed as follows: 

loca l ly  allowable s t ep  s ize  hQoc i s  calculated and the minimum i s  determined: 

A t  each s ta t ion  x = constant, the 

The solution is  then advanced according t o  t h i s  s tep  size,  but a t  each 

point a damping fac tor  of 

i s  used where v S 2. 



This procedure was tes ted on an example, somewhat more c r i t i c a l  than 

those reported i n  the l a s t  section. Again, an oblique shock problem was 

used but the minimum allowable s tep s i ze  A = A1 was a r t i f i c i a l l y  reduced 

i n  x-direction according t o  an exponential l a w .  

Figs. 10 and 11. 

The resul ts  a re  shown i n  

Figure 10 shows the influence of t h i s  a r t i f i c i a l  decrease i n  s tep  

s i ze  i f  no additional damping is used, i.e.,  f o r  D = 1. 

about a fac tor  of 1/3 over the range shown i n  the figure,  i.e., a t  x = 0 

A was reduced by 

the s t ep  s ize  was about three times la rger  than a t  the right-hand side of 

the graph. It i s  remembered tha t  in  the j e t  interact ion regions the allow- 

able s tep  s ize  is  much more dras t ica l ly  reduced because of the cross flow 

components. However, Fig. 10 shows tha t  even t h i s  mild reduction i n  s tep  

s i ze  has a strong adverse effect  on the  resul ts ,  i n  the sense tha t  the 

osc i l la t ions  are  not only more pronounced but i n  addition are very poorly 

damped, i f  a t  a l l .  'It i s  quite l ike ly  t h a t  a more rapid reduction on A 

w i l l  r e su l t  i n  osci l la t ions with increasing amplitude. It is  interest ing 

t o  note tha t  the frequency of the osci l la t ions is  not materially affected 

by the decrease i n  s tep  s ize .  

In  Fig. 11 the resu l t s  with the loca l  damping factor  according t o  

EQ. (5.2) are shown. Two experiments were conducted with E = 1 and 1/2, v = 2 .  

Consider f i r s t  the pressure dis t r ibut ion along the wall. It i s  seen 

t h a t  the introduction of the damping fac tor  increases the i n i t i a l  pressure 

r i s e  through the shock. If  8 i s  tpo large, i.e.,  one i n  t h i s  case, t h i s  

r e su l t s  i n  an overshoot and subsequent strongly damped osci l la t ion.  Re- 

duction of 6 t o  half the value pract ical ly  eliminates .the overshoot. 

However, a small residual osci l la t ion of longer wave lengths is  observed 

far  downstream. 
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Off the surface, the  curve w i t h  c = 1 shows s l igh t ly  be t te r  results 

than c = 1/2 from the point view of osci l la t ion of the solution. 

the steepness of the pressure gradient is  somewhat reduced f o r  the larger  e .  

However, 

I n  comparing Fig. 11 with the results obtained with uniform damping, 

Fig. 6, it i s  noticed tha t  the l a t t e r  i s  of somewhat be t t e r  quali ty.  

of course, i s  pa r t i a l ly  caused by the a r t i f i c i a l  decrease of the s tep s ize  

i n  Fig. 11. 

This, 

It is  interest ing t o  note that  with t h i s  damping method the shock wave 

a t  the surface i s  smeared out less  than the ideal ly  smeared out shock. 



6 .  Application t o  the Jet-Interaction Program. 

The damping method of the last section has been incorporated i n t o  the 

f ive- je t  interaction program described f u l l y  i n  Ref. 1. 

sample calculation a re  presented i n  Figs. 12 t o  13. 

The resu l t s  of a 

In  Ref. 1, the s tep  s ize  Ax was a r t i f i c i a l l y  increased by ignoring 

the r ight  running character is t ics  ahead of the shock. 

t h i s  means tha t  the re la t ive  s tep  size ahead of the shock was calculated 

on the basis of the l e f t  running characterist ic only, i .e. ,  

Referring t o  Fig. 1, 

This had the effert, th8.t. t h e  smdlest. allowable step s i z e ,  A; was ob- 

tained i n  the region behind the shock, i .e . ,  A = h2. Although t h i s  i s ,  of 

course, theoret ical ly  not permissible, no i n s t a b i l i t i e s  were observed w i t h  

t h i s  method. 

along the ignored character is t ics  were swallowed by the shock long before 

they could be amplified suff ic ient ly  t o  lead t o  in s t ab i l i t i e s .  

hand, it is  not cer ta in  whether results obtained i n  t h i s  fashion cannot be 

f a l s i f i e d  severely by t h i s  t r i c k ,  since the problem i s  mathematically not 

wel l  posed any more. 

The reason f o r  t h i s  i s  presumably tha t  the signals t rave l l ing  

On the other 

This a r t i f i c i a l  device has now been abandoned. The s tep  s izes  with which 

the present resul ts  have been calculated are, therefore, considerably smaller 

than those used i n  Ref. 1. 

12 a r e  of the same qual i ty  as the best obtained i n  Ref. 1. 

Nevertheless, the pressure distributions i n  Fig. 

The resu l t s  were obtained w i t h  C = 3/4, which seems t o  be a reasonable 

value fo r  most cases. Figure 12 shows that the pressure r i s e  i s  again steeper 

20 



than for  the ideal ly  smeared shock in  the interact ion plane. 

examples, the local ly  used damping factors were printed out and it was 

found that  they were as Large as 25. 

the s tep  s ize  was nearly s i x  times smaller than was local ly  allowed. 

was mostly caused by the large cross flow components i n  the region ahead of 

the shock, i.e.,  i n  the axisymmetric portion of the jets. 

For the t e s t  

This means that behind the shock, 

This 

In  Fig. 13,  a r e l i e f  'is shown f o r  the pressure dis t r ibut ion i n  the 

This figure can be compared with tha t  given i n  interact ion plane y = 0. 

Ref. 3. There the interact ion of two cyl indrical  j e t s  has been calculated 

by the method of character is t ics .  The resul ts  of Ref. 3 extend only over 

about i/3 of the j e t  radius i n  a-irireciionj iiiose iii tlie present czse ex- 

tend over about 1.5 e x i t  r ad i i .  The figure indicates t h a t  i n  our case too 

the pressure "jump" across the shock increases along the interaction l ine ,  

although much slower. 

increases l e s s  rapidly i n  our case because the j e t  boundary becomes less  

inclined t o  the j e t  axis i n  downstream direction. The location of the ob- 

served pressure maxima is  projected onto the x,zplane. It is located a t  

l e s s  than 5 mesh s izes  AZ from the theoret ical  shock location. 

It seems t o  us tha t  the results presented i n  Figs. 12 and 13 represent 

usefu l  data for  estimating the thermodynamic s t a t e  of the gas i n  the in te r -  

act ion region of multiple j e t s .  If desired, the data could be replaced by 

estimates, such as shown i n  Fig.llmaking use of the known shock location i n  

the interact ion plane. Cross plots of thermodynamic data i n  a plane x = 

constant (see Ref. 1) show the shock location with good accuracy and very 

sharply defined . 

This i s  caused by the f ac t  tha t  the deflection angle 

2 1  
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F I G .  I A : OBLIQUE S H O C K ,  T H E O R E T I C A L  
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FIG. I B : SMEARED OUT SHOCK 
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FIG. I : T H E  OBLIQUE SHOCK WAVE PROBLEM 
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