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NOTATION

Points in the { plane corresponding to the
end of foil, and the end points of upper
and lower cavity respectively

Defined in Equation [ 20]

Chord length of foil

Lift coefficient defined by Equation [ 4]
Drag coefficient defined by Equation [ 27]

Distance between leading edges of adjacent
two foils in the cascade

Function defined in Equation [ 12-0]

Strength of a singularity at the leading edge
Curvature at the leading edge

Cavity length

Defined in Equation [19]

Pressure at x = - and on the cavity
respectively

Perturbation pressure
Total speed at x = @

X,y components of perturbation velocity
respectively

Speed at x = - =
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Complex veloclty potential

Coordinate in the physical plane

Stagger angle defined in Figure 1
Cavitation number defined in Equation [1]
Density of water

Coordinates in the transformed plane
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INTRODUCTION

For the design of many types of high speed axial flow
machlines such as pumps and compressors operating under stalled
or heavily cavitating conditions, perhaps the most well defined
and simple model corresponds to the flow through supercavitating
cascades. Betz and Petersohn (1931) solved the exact two di-
mensional problem for the flow through flat plate cascades with
infinite cavities using the free streamline theory of Kirchhoff
and Helmholtz. Then Cohen and Sutherland (1958) solved the lin-
earized version of the supercavitating flat plate cascade prob-
lem with finite cavities using the theory developed by Tulin
(1953). Later Acosta (1960) applied the same linearized free
streamline theory to the choked flow past a cascade of circular
arc hydrofoils. Stripling and Acosta (1962) made an exact non-
linear calculation for partial cavitation in a cascade of flat
plates of semi-infinite chord. Wade (1963) solved the linear-
ized problem for partial cavitation in cascades of flat plate

hydrofoils.

For an isolated single supercavitating hydrofoil, 1t has
been well understood that the camber of the foll very much influ-
ences the characteristics of the hydrofoil such as its 1ift coef-
ficient ard lift-drag ratio, since Tulin and Burkart (1955)
developed the linearized two dimensional theory of optimum hydro-
foils by a transformation into the aerofoil plane. Auslaender
(1962) calculated the shapes of such foils together with thelr

cavity shapes and found that the cavity had negative thicknesses
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unless an extra leading edge singularity was superposed. Auslaender
also considered a foll shape with a constant pressure distribu-
tion; in this case the cavity thickness is not negative; and

this shape is quite similar to a Tulin two-term optimum camber

with a slight angle of attack. (Tulin and Burkart, 1955), Thus,
the constant pressure camber seems to be quite attractive in the
design of hydrofoils as well as of aerofolls. (See Abbott and
Doenhoff, 1959).

In addition, nonlinear theory for the supercavitating con-
stant pressure cambered folls is not too difficult to solve, as
in the case of flat plate foils. In general, the free nonlinear
streamline theory for the given curved boundary 1s quite compli-
cated to solve with an integral equation to solve (Sedov 1965,
Jacobsen 1964). The second order theory for the constant pres-
sure camber is also quite simple if we use the same scheme
adopted by Tulin (1963), since the second order problem has ex-

actly the same form as the first order problem.

The present report 1s concerned with a linearized theory on
the flow through a supercavitating cascade with a constant pres-
sure camber. For the cavity, Tulin's double spiral model (1963)
is used; this model was proved to do very well in predicting
physical quantities (Yim, 1964). Each flow through a foil in a
cascade 1s transformed into a half plane by the same conformal
mapping used by Acosta (1960). A simple boundary value problem
is solved in the transformed plane with the bourdary condltions

given on a straight line and at the point which corresponds to
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negative infinity in the physical plane. The numerical computa-
tions were performed on an IBM 1130 at HYDRONAUTICS, Incorporated.
The relations between drag coefficients, cavitation numbers and
1lift coefficients are plotted for many solidities and stagger

angles. The foll shapes and the cavity shapes are also plotted.
FORMULATION OF THE BOUNDARY VALUE PROBLEM

We consider a cascade with the stagger angle v and solidity
c¢/d where ¢ 1s the chord length of a foil and d is the distance
between the leading edges of adjacent folls as shown in Flg-
ure la. The flow at infinity far in front is uniform with the
velocity U. The flow through each foll can be considered to be
periodically repeated. We consider a complex coordinate
Z = X + yi1 with the origin at the leading edge of a foil and
the x axis parallel to U, as shown in Figure la. When the angle
of attack and the thickness of the foil are small, then the per-
turbation due to the cascade can be considered to be small. Thus
the linearization of the perturbation velocity can be allowed
for the first approximation, and the boundary conditiorn can be

applied at the x axis.

When we neglect viscosity, we can consider the perturbatlon
complex velocity w(z) = u - iv which is analytic except at singu-
larities. We consider a cavity starting from the leading edge
of the foil and ending behind the foil. The pressure inside the
cavity is the vapor pressure and the speed at the free stream-

line is constant. If we use the cavitation number
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G = = C (1]
B 12
5 U
where P __ 1s the pressure at x = -, and PC is the pressure in

the cavity, the Bernoulll equation gives us within the linear

approximation

[ 2]

e
oja

on the cavity, and everywhere in the flow

2 _ - [3]

1 2 ;L_ 2
2PY oPY

where p is the perturbation pressure. Now, 1f we assume that the
pressure on the foil is constant, then u/U is also a constant,
say h, then tre 1lift coefficient of the supercavitating foil will
be

L . c
CL——- = =g - 2\ 4]

1 1
EpUec -EpUg

where L is the 1lift force, This will be useful later for the

representation of our solution in terms of CL rather than A.
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Tulin's double spiral model assumes the pressure behind the
cavity is constant equal to the pressure at x = @ all the way on
the wake boundary. The pressure at x = © and the length of cav-
ity can be obtalned by the condition at x = - ® and the wake
closure condition. Thus, in effect, u is glven everywhere on
y = 20, x > O with the condition at ». Namely, if we use u,v,p

as nondimensional quantities for u/U, v/U, p/(%pU?) respectively,

u=0/2 on y=+40 0< x<4 )

u=¢/2 on y = =0 1< x< ¢

u = A on y = -0 O0< x<1 B [5]
u = Uz on y = =0 L < x< =

u =20 at X = = -

as is shown in Figure 1lb. The distance 4 represents cavity
length. The wake closure condition can be written in the linear

approximation as

0
f v(x,-0) dx +[ v(x,+0) dx = O (6]

It will be shown that this condition is actually equal to the con-
dition of continuity between the upstream and the downstream of

the cascade. 1In order that the analytic function w(z) has a
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unigue solution with the above toundary conditions, 1t is also
required that the conditiong at all the juncture points should
be specified (see e.g. Muskhelishvili 1953 ) such as the kind of
singularities or zeros at the points O,—ao,al,-ag, as shown in

Figure 16.
CONFORMAT. MAPPING

We consider the mapping

T LT
i (E-0 <[5 -
z =e ! log{l -¢ e +e T 10g {1 -C e [7]
T
1(2 -
where ¢ =& + in = e corresponds to
il
i 15 - )
2z = = e 7Y 4 (2mr + B) e (2

and is considered to be the brarch point; and the cut by a

e s . N i (r/2 - -
straight line from this point to § == el( / v)

makes z single
valued in the upper half of the ¢ plane. [{| = ® is mapped to
x = @, By one crossing of this cut line, z will be increased by

oy 2(T/2 - V); Jr(m/2 =)

thus ¢ = O correspords to z = 2m¥ with
m= 0, £1, 2, ..... . which are the leading edges of all the folls
with d = 27, Therefore any flow passing a foil of the cascade

can be mapped by the flow in the upper half of the ¢ plane. It
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suffices to consider the flow passing a single member of foils,

say the case of m = 0. Then, when ¢ is real, z is also real.

By a little algebra we can easlly see

x = cos v log {1 - 2§ sin vy + E%}

2 sin v arg (1 - & sin v - 18 cos v) (8]

where -m < arg < m. By a differentiation with respect to § we
obtain

dx _ £ cos vy

= (9]
ds 1 - 28 sin v + &3

Since the scale of length is already set by d = 27, the
corresponding point -a for the chord length ¢ cannot be set
arbitrarily but depends on the solidity c¢/d. The cavity length
2 depends mainly on the cavitation number ¢ in our problem. How-
ever we may give 4 instead of ¢ and find o which corresponds to
L. Thus if we give a point € = —ao and § = a; 1n the trans-
formed plane for the chord length and the cavity length, respec-
tively, this will decide x = ¢, and x = 4 from [8) giving the
solidity and the cavity length. The corresponding point £ = -as

for y = -0, x = 4 can be obtained by solving for as 1in
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t = cos v log (1 + 2as sin v + as° )

1 aaz COS Y [10]
1l + az sin v

- 2 sin v tan

numerically by Newton-Raphson's method or others.

Now our problem 1s to solve for w(z(¢)) = u(d,n) - iv(§,n)
which is an analytic function of { except at singularities, with

the boundary conditions on N = 0 as follows

u = % on 0< & < a, and w
-aa < g < -ao
> L11]
u = A on -a_ < 8§ <0
o
u = Ug on -» < & < .3z and
al<§<w y

We consider a singularity at { = O behaving like k/(wi{) which is
tantamount to having a single vortex in the transformed plane at
¢ = O with the strength kU/m. This has often been considered

for additional cavity thickness (see Johnson and Starley 1962 or
Auslaender 1962) or a point drag cavity model (e.g. Yim 1962),
Otherwise we do not consider any extra singularity because at
Juncture points for the end of the cavity the desirable singu-

larity 1s logarithmlc, and at the trailing edge if there was no
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zero, the logarithmic singularity there may be at most tolerable
as in the case of an aerofoil camber of constant pressure (Abbott

and Doenhoff, 1959),
SOLUTION

To obtalin the solution, 1t 1s rather convenient to solve for

F(C) = Fr(g,n) + iFi(é,n) = w(C) - ug + ivg [12-0]

where -v3 is the imaginary part of the complex velocity at x =

(or |&| = «). Then our boundary condition will change for F():
Fr = g-— Us on 0< & < &g and
—aa<€-ao
(12]
=\ - < g <
Fr A Uz on a_ g 0
Fr = 0 on -» < § < -gaz and

g, < § <=

The solution for this is given by

oo

F (t)
F(g)=-§i—ff—_—g— [13)

=0
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By substitution of [12] and performing integration we obtain

(2, + C)(C - &)

1 o]
F(C) = = ("“Ue log
i Ti 2 (8.3 +C)€
+ (A - uw) log B S §~ 1]
a + ¢
o)
Since

T
1|3 -

[15]

O
}-S
W
ay
N -
]
!
8

| SERE]
F(C) = -uz + 1vs at ¢ = e L 16]

Now we consider the wake closure condition [ 6] in the physical
plane and notice w(z) is periodic having exactly the same value
at the corresponding points with respect to each foil of the cas-

! cade. We also notice w(z) in the flow has no singularity except
at the boundary. Thus Equation L 6] can be rewritten referring

to Figure la
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Im ‘/ﬂw(z) dz = Im J( w(z) dz = 0
B A A _OhsB, B_AsOD_D_'0'As 'B_'B_
Since w(z) = 0 at z = = in addition,
Im d/—w(z) dz = Im J[-(ug - ivz)d (y tan v + iy) = O
B@ 'Bm Boo !Bco

This should be true for any length of 4 or B 'B . Hence

Uz = Vv, tan vy {17]

This relation can also be obtained by the continuity relation of

flow. Namely

U cos v =0qz cos (ag + )

(U + ug) cos v - vz sin v

I

where gz 1s the total speed at z = @ and

g cos ap = U + ug s Qdz sin o = vg
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Hence
ug = vg tan v
Now if we substitute the boundary condition at z = -* ex-
pressed by [16] into our solution [14], and separate the

imaginary and the real part, we will obtain two simultaneous

equations for o and uz, with a little algebra as follows,

3

o
§Q1 + Uz @
. C .
= -\ log Bl - k sin v o
(18]
o
§P1 + Uz Pg
. C
= -\ arg D + k cos v
o
where
_ A B
Ql_log Bl
A C
Qe = - log ‘El - log Bw + T cot v
A L19]
Py —anB
- A _ 1%
P, = - arg 3 arg § + T

0 < arg < 2w -
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with

A= a siny - cos 2y - a a1 - a sin v A

+ i(aO cos vy + sin 2y - a; cos v)

o
1l

az sin vy - cos 2y + i(aa cos v + sin 2v) g [20]

C =s8in v + 1 cos v

D = ao + sin v + 1 cos v

J
Thus using [4] we obtain from [ 18]
__=_._Bl____£_&__ [21]
CL 1l + R L1+ R
C£-=(%_—i———)R2 +C£R4 [22]
L 2(1 + Ry ) L
where
Dy = QP - &P h
Ry =(P3 log '5 - Qg argﬁ)/l}L
C C
Rs = (Ql arg 7 - P. log 'BI)/Dl > [ 23]
Rs = (P2 sin v + Q cos v)/D,
Re = (Q cos v + P, sin v)/D,
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SHAPE AND DRAG COEFFICIENT

From the linearized streamline equation

we can obtaln the shapes of foils and cavity Jjust by integrating

dy v

dx

= ~ V

1 +u

[2u]
X
y = f(x) =J[~V(X,O) dx
O
x(8)
dx
=J['V(x(§),0) ag-dg
o
or
x(8)
y _ f(x) _2cos ¥y I _ %) g 5=
cCp e Cp TC (Q:L CL) (
O
L L o"
€ at

)
5

1 - 28 sin v + B2
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The drag coefficient is
o
2P e
o}
~-a
c © 2
L dx 2
=% fV(X(g),O) gdg + o [27]
o

The last term in [27] is a pure cavity drag which 1s obtained by

application of Blasius' theorem
a(X - 1Y) = 3ipwW® dz [ 28]

where the left hand side represents the force at dz.

When we integrate around a small circle around the origin

%ipfwz(z) dz ip{w”‘(g)g—gdg

V[

i

P
&
% Mo
N

Q

[}

P %;- [ 29]

If we compare [17], [25] and [26] we can immediately see that
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°p £(c) el
=-cc * P [30]
2
CL L chL

The integral [26] 1s integrated numerically with due care about
the intervals 1n the ( plane since the correspondence between g
and X behaves quite differently when |€| < 10 from the case of

|&| > 10 as shown in Figure 2.
CASE OF INFINITE CAVITY LENGTH

Tn this case, our solution corresponding to (14) in 0= z = ¢

is
- (a#)
F(Q)=%— (%—ug) {log ———%———vtany}

+(X-ua)log;—g—;--(;—+zi [31]

since from L8]

1im EL) = e " tan v [32a]

and in Equation [ 20]

A= (-a  -siny -1 cos vye " tan v

[32b]

o
I

sin v + 1 cos v
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Otherwise, nothing changes in all the equations for the case of

finite cavities. However, it may be worth noting here that this
result may be a little different from that obtained by the con-

dition at x = ®, u = ¢/2 since here u = uz < 0 at x = @ although
u = 0/2 > 0 at the cavity whose length is infinitely long, yet

closes at infinity.
CASE OF ZERO SOLIDITY

This is the case of an isolated supercavitating foil with
constant pressure camber and with the double spiral cavity model.

For this, the conformal mapping corresponding to [7] is

z = (2 £33]

This may be obtained from the limit (d - «) of

d
z ==—1¢€

iy g i(g'_ V)
log {1l - ——— ¢
2T :
"\ /d cos vy
2t

T

. -il5 - v)
e Y 1og {é S S, (2 }
W'ﬁg_cos Y
aor

which 1s essentially equivalent to [7], by a Taylor's series ex-

+ (34]

pansion of log. In this case, uz = 0. Hence, from [ 14]
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(a_ +C)(C-a1)
1 /o o) ¢ k
w(() = — > log O + ) log TS + 3 (35

O

For the application of the wake closure condition [6] in

this case, we expand [35] for large ¢

T (36]

To have

(y = 20, x > 0)

we should have

lz]| - = (371

since there is no singularity in the flow. Thus the coefficient

of %—in [36] must be zero. Namely

a (%-- X) -oa; +k =0 (38]
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From [ 4], [33] and [38] we obtain

2 c.? kC
t_a 1(L —kZ— ) [39)

T 7 + —=
Ve

which gives the cavity length.

The foll shape and the drag coefficient are obtained by

using
= = 28 L 40]

in [25] and [27] instead of [9]. 1In this case, the integration

can be performed in a closed form and we have

T 7|2
cCL cCL yig C

y=f(x)_2 o{xl—éllog\/—;l—\/z
T e

1 - 1
- ‘\/&lxl} + 5{&—2— log (\Vx + 1)

- x; log x + '2X1}+ KV [41]
C \/c
where

x, = x/¢ and Li =4/c > 1 [ 42]
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C ~/

L =% gg {&12'1log——————1+ 2! +\/1_1}+%+ K +k2 [43]
3

‘n L 1 -V, c Ve ‘p¢

L

CURVATURE AT LEADING EDGES

The strength of the singularity at the leading edge k is re-
lated to the curvature of the leading edge of the foil. When we
consider cavity shapes near the leading edge in Equation L 26],the
curvature k; at the leading edge will be represented approximately

by the value at (y = +0, x = +0) of

ky = day/dxz Lau]

{1+ Mm@xfﬁ

From [ 24)
N
dy v €(x))
dx 1 + o/2
? [45]
Cy 1 dav(8) &
4s® 1 + o/2 3§ dx

</
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From (71, [9] and [34] we may write

dx _ . s [46]

. 2
1 2€ sin vy + org

—‘/_dCOS'y d cos v
2T

From [ 141, [44], [45] and [46) we obtain by taking the limit of
£ -0

m

2

ki (8§ = 0) = 1+

nja

1)

or the radius of curvature at the origin can be represented by

P1 1 K2

2

(e}
1 + 5

DISCUSSION OF NUMERICAL RESULTS

The relation between the drag coefficient CD, the cavita-

tion number o, and the 1ift coefficient CL are shown in Fig-

ures 3-8 for different stagger angles v and different solidities
c/d, by curves of CD/CL? versus o/CL for k = 0. Thus if we have
p’ 9’ and CL will decide the
rest of them. As is clear in Equation [30], CD/CL? is the same

v and c¢/d, then any two values of C

as y/(CLc) at x/c = 1 for k = 0. Therefore this may be inter-

preted as equal to—a/CL where a is the angle of attack within our
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approximation. The limiting cases are also shown in Figures 3-8
for the infinite cavity length in the cascades and for the case
of zero solidity which is the case of an isolated cavitated foil
solved by Auslaender (1962) for zero cavitation number. It has
already been known (Auslaender 1962) that the constant pressure
camber isolated foil has four times as large 1lift coefficient as
that due to a flat plate foll for the same angle of attack. How-
ever, when the solidity increases, the 1lift coefficient of the
constant pressure camber decreases for the same angle of attack

as shown in Figure 21 . This will be discussed more later.

The length of cavity has a sensitive relation with the drag-
1lift ratio. The shorter is the former, the less i1s the latter.
However since 1t is known from experiments (Wade and Acosta 1967)
that the cavity 1s unstable in either the case of an isolated
foil or of cascades when the cavity length chord ratio is
near 1 (< 1.25) the designer may well avoid this area. In Fig-
ures 9-12 the lengths of cavities are also shown. Tt appears
that, for each cavity chord ratio, there is an optimum stagger

angle where CD/CLf is minimum.

The shapes of cambers are shown 1n Figures 16-21 in terms
of y/(Clc) versus x/c. Naturally a flat plate parallel to the
stream is the limiting shape of CL = 0 for any solidity or
stagger angles. For the case of k = O (or when the radius of
curvature at the leadirg edge 1s zero) camber shapes correspond
to shock free entry, i.e. the flow is tangent to the foil at the

leading edge. It seems that the camber is not too sensitive to
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either the length of the cavity or the cavitation number, for
the pressure to be uniform on the foil. Mainly the change of
angle of attack seems to be able to adjust the uniformity of
pressure. However, the camber is decreasing when the solidity
becomes larger for the same angle of attack. This seems to be-
the reason why the 1ift coefficient of the constant pressure .
camber becomes as small as in the case of flat plates for large

solidities, as shown in Figure 21,

According to our formulation of ﬁhe problem, the stagger
angle is not the same as the conventional one which is smaller
by the angle of attack o which is not known a priori than our
nominal stagger angle y. The actual stagger angle can be in-
terpolated easily in Figures 9-12. The conventional inlet angle
of the flow is equal to y. The flow exit angle B3 can be calcu-

lated from the values of uz which is given in Figures 13-14 by

-1 uz cot vy

Bz = v - tan T+

The influence of the curvature at the leading edge on the
drag coefficient is shown in Figure 15 from equation in the case

of an isolated foil of constant pressure camber.

Examples for foil shapes are given 1in Figures 16-19. Exam-
ples for cavity and foil shapes with zero leading edge radil are

shown in Figure 20.
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The numerical results of finite cavity problems, especially
of such as cavity lengths, heavily depend upon the model assumed
at the outset. The validity of the model may be judged not only
by 1ts physical reasoning but also by the comparison between the
experimental and the numerical results. Unfortunately, in the
case of cascade problems, very few experimental results are
available, In the case of isolated folls, the pressure at the
wake 1is known to quickly approach the pressure far downstream
(Song 1963), and the calculatlon of cavity length beneath the
free surface by Yim (1964) with Tulin's double spiral model
matches very well with the experiments by Dawson and Bates (1962).
Whether this is true in the case of cascades is yet to be found

through experiments.

Although there is no numerical result for nonlinear theory
avallable for a cascade of curved foils, yet the comparison be-
tween the linear and the nonlinear theory for flat plate cascades
shows (in Figure 16) that, for large stagger angles, allowable
solidities or angles of attack should be sufficiently small in
order for the linear theory to be reasonably accurate in gquantity.
However in the case of cavitating high speed pumps, the stagger
angles are naturally required to be large. Thus more coordina-

tion with experiments 1is required here,

Since the norilinear theory for the supercavitating cascade
with constant pressure cambered foil is not too difficult to
solve, the higher order problem is being treated, and will be

presented later.
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