
Iowa City, Iowa 

PE 
JW

U. of Iowa 67-55 

JTI 

I. 

U NDED ie 

GPO PRICE	 $  

CFSTI PRICE(S) $ 

Ha -opy (HG)	 _;' o 

Microfiche (MF) 

if 853 July 85

N 81196 
(ACCESSION NUMBER)	 (THRU) t1 

(PAGES)	 (CODE) 

(NASA CR OR TMX OR AD NUMBER) (CATE ORY) 
z 

Department of Physics and Astronomy 

THE UNIVERSITY OF IOWA

https://ntrs.nasa.gov/search.jsp?R=19680002496 2020-03-12T11:48:42+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85246367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


U. of Iowa 67-55 

Alpha Particle Elastic Scattering* 


by 

G. Payne 

Department of Physics and Astronomy

The University of Iowa 

Iowa City, Iowa 

*
This research was supported in part by the Atomic 
Energy Commission under contract ATC(11-1)-1190 and 
by the National Aeronautics and Space Administration 
under contract NsG-233-62.



ABSTRACT 

The elastic scattering of alpha particles by alpha 

particles is calculated from threshold to 100 MeV laboratory 

energy using both the Schroedinger equation and the N/B equa-

tions. The N/B equations do not yield very accurate results. 

The Schroedinger equation solution extends an earlier calculation 

of Preist to higher energies, higher partial waves and uses 

more recent values of meson nucleon coupling constants. With 

slight changes in their values we obtain good agreement with 

experimental phase shifts to 100 MeV for £ = 0, 2, -i..
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I. INTRODUCTION 

The elastic scattering of alpha particles by alpha 

particles has been measured experimentally up to one hundred 

and twenty MeV lab energy.' Several theoretical calculations 

have been made. 2 , 3 Okai and Park, using a Guassian type 

potential for the two nucleon interaction, with five of six 

parameters determined by low energy data, solve the integro-

differential equation which results when exchange forces are 

allowed for. Preist neglects exchange and uses the one boson 

exchange potential for the a and the w mesons, the coupling 

constants being taken from early phase shift fits of nucleon 

nucleon data. 8 A more recent fit 4 in which the 1=0 mesons 

are the a, the w and the tp mesons, gives very different values 

for the coupling constants, in particular the extreme repul-

sion of the w particle is considerably reduced. Using the 

more recent values, we calculate phase shifts for £ = 0, 2, i-i-

partial waves for lab energies between 0 and 100 MeV. 

Writing the potential as a Fourier transform, 

+ 
V(r)	 -1 1	 ikr =	 kdk e	 v(k)	 (1)
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the central part of the two nucleon potential due to scaler or 

vector meson exchange is 
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V	 V 

This one boson exchange potential is a non-relativistic 

reduction of the field theoretic potential. It is stated to be 

accurate to order (meson mass/nucleon mass) squared. In the 

case of the w and the cp mesons this is certainly meaningless and 

we report only Values of c 2, c2 . To obtain the potential between 

two alpha particles we multiply (2) by the square of the form 

factor f2 of the alpha particle. We use the form factor of 

Pr ei st3

f(k2) =

	

	
(3) 

w2+k2)

II. 



for the mesons and 

f(k2	
w ) = 2	 2	 2)	 (1)
+ k  

for the photon. The factors come from 4 nucleons and 2 protons in 

each alpha particle. In units in which the pion mass is one, 

w2 has the value 77.07. 

The ambiguity in the non-relativistic reduction of the 

potential might be avoided by solving the N/D equations and 

using the full relativistic form. We will conclude, however, 

that the N/D equations are not sufficiently accurate. 

Both the Schroedinger equation 

d2u ( r)  
+ [q2 -	 ( r ) - L(+1) u(r) = 0	 () 2 

r 

and the N/D e4uations4

r 
N e(s) = B

A (S)-	
p(s')ds' ___ 

-	 I '+	 BL(s) - BL ( s' )] NL(s')ds'(6) 
0	 t.	 0 

(s+s	 CO p(s')NL(s')ds'	
(ri.) 

Tf	 o (s'_s) (S/+s ) 

0
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p(s)_,'-;- 

s+-l-.M
q	 TT 

jl	
2n11 

2rr1 
e	 -1

(8) 

have been solved numerically. Here with M the mass of the alpha 

particle	 is the electrostatic constant 	
=	

= .032/ q); 

s = q2, the momentum squared; p(s) the phase space factor modified 

by coulomb effects 

and Bk(s) the Born ter7i6 

	

22 M (,)2 
S	 1 1 2iqr [F(L+l+i, 2L+2,_2iqr)]2
CO 

BL(s) 

= - ((2L+1))2

	

x	 V(r)r	 di'
	

(9) 

where I F is the confluent hypergeometric function5 

	

F,(+1+i11, 2L+2, -2iqr)	
F(21+2) 

= F(L+1+ifl) F(L+l-il]) 

5 1 -2iqrt e	 (i-t)	 dt	 (10)
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To evaluate the Born term 4 integrals must be performed (over r, 

k, t, t'). The r integration and one of the t integrations can be 

done analytically. Making a change of variables yields 

+ 

BL(s) = C	 k	 2 

	

k+p1 2 (22)8 J
	 (ii) 

- 

2	 ifl 

	

+1 r( t_i )	 '	 k ii	 (t2_l)L 
J	 - l)	 l L( t+l )	 2 

t+l-	
)j	 k L+l (12) 2q

(t+l---) 
2q 

=Mg 2 22L (1) L+l	 (Lt)2	 1	
(13) 2 (2q)

2.Q.+2 
F(L+l+iT)  

We notice that for i=O (no coulomb effects) and w = 

J = 2(_l) L+l QL (l - 
k2 

2q 

2 

BL(s) 
= - 2q22 

QL( l +
2q

7 

(lii.) 

('5)



II. NUMERICAL PROCEDURE 

1. Schroedinger Equation 

The potential, equation 1, has been evaluated numerically. 

Because of the rapid decrease of the integrand due to the form 

factor, it is sufficient to do the integral from k = 0 to k = w. 

A twelve point per cycle of the trignometric function in the inte-

grand Sinipson t s rule is used. The wave function given by the 

Schroedinger equation is numerically integrated out to r = 7-1 

(, pion mass) and matched to 

u(r) = N(cosôL F(r) + sin 
6L 

G(r))	 (16) 

the Coulomb wave functions being generated by the procedure described 

in reference '. A three point formula based directly on a second 

order differential equation is used. A step size .O2 from r=O to 

1 and a step size .06 from r=l.O to 7.0 is used. About one minute 

is required on a IBM 704 computer, most of the time being con-

sumed in evaluating the potential.
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2. Born term BL(s) 

The k integration,, equation 11, is trivial but in the t 

integrand, equation 12, there are singularities at the end-

points t = ± 1. The 2ilowing procedure is used to evaluate the 

t integral numerically. 

For I k 2
	 2 
/ 2q j < 5 we make a polynomial fit 

[ (t+i- J)]	 n-i = a1 + a2 t+. . .+a t 	 (17) 
2q 

and 'do the residual integral 
'k 

analytically 

=±1 []u11 tk_J(t2_1)L dt
(18) k 2	 .l t+]	

(t+l- k
2 £+l 

- 
2q 

-	 The Ikcan be expressed as a finite series of terms which 

can be generated by recursion relations. These recursion relations 

become unstable when lk 2 / 2q 2 I is greater than 5. Legendre poly-

nomials which are orthogonal on the integual t = -1 to +1 are used 

to make the fit, equation 17, and the a  can be generated by 

recursion relations. Then
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(19) 

For Ik2/2q2 > 5 we make a polynomial fit 

[t+l- A	 t+...+a _ L_1 =	
n t 

a1+ a2	 n-i
(20) 

2q 

and do the residual integrals 'k 
analytically 

=	
'	

tkt2_12 dt	 (21) 
k 2L J t+1 

The I can be expressed as a finite series of terms which 

can be generated by recursion relations. To make the fit, equation 

20, we use a Taylor series about t = 0. Then 

- (	
2i e	

E a '	
(22) 

	

2q -	 2'	
k k

 

Finally, for s = q2 = 0 a value can be obtained by using 

the limit as q - 0 of the confluent hypergeometric function 

(2qilr)k 
P 1 (L+l+ill, 2L+2,-2. 	

q0	
k=o

kr) —4 (2L+1)! E (2L+k+1) k!	 (23) 

to obtain
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( 

B(0) = C $ kdk 2 2	 2 2	 J	
(2)-i-) 

-	 k+	 W+k 

1	
CO	

k	 1 (3	 (L+2+2K\ 

= (_ik)22 k=O	

\ 

	

-ik 1	 (2L+l+k)!	 K	
)	

(25) 

= _Mg2 (,) 2 22L (.:)	 (26) 
TT 

The inner integral, equation 12, need be done only once. 

It has the same value for each of the three mesons and the photon. 

It does not need to be evaluated at each point desired in solving 

equation 7 as it varies smoothly and can be fit, to better than 

one percent, to a set of pole terms of first and second orders 

5	 a.	 5	 a'. 

BL(s)=E + E	
1 

i=l	 i	 i	
2 

±=l 	(s+b ) 

In the calculations below, B is evaluated at 11 points between 0 

and 100 MeV laboratory energy and equation 27 is used to interpolate 

40 points. 

The accuracy of the above procedure for evaluating the Born 

term can be checked by using the Schroedinger equation. If the 

coupling constants are multiplied by a small constant, say .001,

(27)



both the Schroedinger equation and the N/D equations should yield 

essentially the same result, the first Born approximation. It 

is found when this is done, that the resulting phase shifts agree 

to better than one per cent. 

As an aid to the numerical accuracy of the above procedure, 

the k integration equation 9 is done off the real axis. This 

places a lower limit on the magnthude of the quantity in parenthesis 

in equations 17 and 20 facilitating their fit to a polynomial. 

Further, it simplifies the part of the coulombic potential due to 

the non-point nature of the alpha particle. With the k inte-

gration due off the axis (that is, a pole at k=0 removed), this 

is just given by equation 11 with p=O. This coulonibic residue is 

unimportant and could be ignored altogether. 

3. The N/D Equations 

The integral equation, equation 6, for the N function is 

non-singular. The integral is treated by Sinxpson?s rule: 40 

points are chosen between 0 and 100 MeV laboratory energy, 10 

between 100 and 200 MeV, and 10 above 200 MeV; 60 points in all. 

The resulting 60 by 60 matrix equations are solved by Guass Jordan 

reduction. The D function is then obtained by a quadrature, the

12 



singular point of the principle value integral being passed over 

by making an analytic approximation at that point. The phase 

shift is determined by 

1	 e'L sin8	
NL(s) 

2 +1 
Cq	 = D) L(s 

£	 2 
where C = ii (1 +	 )	

2,-r'1 

j=l	 j	 e2'_1 

The calculation takes approximately one minute on a IBM 7O4I-

computer, most of the time being consumed is generating the Born 

term.

As mentioned, the accuracy of the two programs, the Schroedinger 

solution and the N/D solution can be checked against one another 

by multiplying the coupling constants by a small number. When this 

is done the phase shifts agree to within a per cent. 

Comparing the two methods, the Schroedinger equation is 

slightly quicker and presumably more accurate; the N/D equation 

yields phase shifts at a much larger number of points.
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III. RESULTS 

Preist used the early values 8 g2 = 5.61, g2 = 16 . 7 . To 

obtain a fit he had to reduce the attractive g2 to 2.95. We 

show his results in Figure 1 for the £ = 0,2 waves. The 2 = 

phase shift only rises to 600 at higher energies for these 

values while the experimental value is 140°. Using a simple 

gradient search program, we tried to improve the fit below 

40 MeV for 2 = 0,2. The attractive g 2 climbed back to 5.45 
Cr 

and the repulsive g2 nearly tripled to 45.4. The large changes 

in the coupling constants needed to fit y-c data indicates they 

are not good values. 

In Figure 2 we show the results using the more recent 

coupling constants of Scotti and Wong. We take as the masses 

of the mesons m
)
 = 780 MeV, ma = )

437 MeV, m
w
 = 780 MeV. Scotti 

Ii  

and Wang give the values 

g2 = 3.05	 g2 = 2 . 77	 9 = 2.26 

for their fit to nucleon nucleon data. To obtain the fit shown 

in Figure 2, we use the values

lii. 
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c

c2 =2.66	 c2=3.07	 c2=2.95 
a	 w 

The small change in the coupling constants particularly 

when the ambiguity in the non-relativistic reduction is recalled, 

is further confirmation of their values. Also shown in Figure 2 

is the N/D result. The potential, it would seem, is too strong 

for the approximation of replacing the left hand cut by its 

nearest singularity to be very accurate. 

We have neglected exchange effects in this calculation. 

Expecting exchange effects to be more important at lower energies 

than at higher, we mention that we have difficulty in fitting 

the d wave below 10 MeV (we obtain 62 = 11° at 5 MeV against an 

experimental 62 = 3750) and the L=-i- wave below 30 MeV (we have 

= 50 at 20 MeV with an experimental 8 )4 27 . 7 0 ) . In Figure 3 

we show an attempt to improve the fit for £=O and 2 at lower 

energies. There is no improvement.
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FIGURE CAPTIONS 

Figure i s and d phase shifts below 40 MeV. The solid lines 

are Preist results, the dashed lines the result of 

a gradient search. The crosses indicating the trend 

of experimental data are the values fitted. 

Figure 2 £ = 0, 2, 4 phase shifts below 100 MeV. The solid 

lines are the Schroedinger equation result, the 

dashed, the N/D equations results. The crosses 

indicate the trend of experimental data and are the 

values fitted. 
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Figure 3 s and d waves below 40 MeV.
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