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SUMMARY 

A combined analytical and experimental study is made of the modal 

density of a thin cylindrical shell.. Previous analytical work is dis- 

cussed and an integral form solution is presented and evaluated numeri- 

cally. Having cognizance of the experimental results, it is concluded 

that the integral form solution gives an accurate method for computing 

the cumulative number of resonant modes and the modal density of a thin 

cylindrical shell. 
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INTRODUCTION 

The concept of modal density arises from the fact that any 

continuous structure possesses an infinite number of natural modes of 

vibration. For this reason it is sometimes helpful when dealing with 

structures to introduce the concept of modal density. The modal density 

of a structure is essentially the density of the modes of vibration 

with respect to frequency. It is an indication of the spacing of the 

natural modes in the frequency domain. 

When dealing with structures excited in a very complex or random 

fashion it is often useful to resort to statistical methods to determine 

information concerning the response of the structure to such loading. 

In order to apply this type of analysis it is found that the modal 

density of the structure in question must be-known. Hence, in order to 

apply a statistical type of analysis to a structural response problem, 

it is necessary to know the modal density of the basic structural 

elements such as beams, plates, and shells. Since the cylindrical 

shell is a fairly common and basic structural component, especially in 

the spacecraft industry, it is logical that this should be a structural 

shape of some interest. 

In the literature it is generally conceded that for vibrational 

modes with frequencies well above the so called ring frequency (that 

frequency at which the wave length in the material is equal to the 

circumference of the cylindrical structure) that the modal density of 

the cylindrical shell is equal to one-half the modal density of a flat 

plate with the same surface area. However below the ring frequency 



there is some disagreement in the literature as to what the proper 

expression for the modal density should be. It is therefore the purpose 

of this paper to obtain an expression for the modal density in this 

frequency range, and to present experimental results to verify the con- 

clusions which have been reached. 

The problem of the modal density of thin cylindrical shells ,is 

preceded by a discussion of the concept of modal density. One method 

which may be used in determining this property is also discussed in 

detail with several examples to illustrate the technique. Finally some 

mention is made concerning the application of the property of modal 

density with respect to the statistical energy method of analyzing 

complex vibrational problems and in relation to room acoustics. 

The cylindrical shell problem is dealt with by presenting in 

detail three derivations for the number of resonant modes and the modal 

density. The first two derivations have already appeared in the liter- 

ature. They are evaluated with respect to their assumptions and their 

differences are noted. The third derivation, which is essentially a 

modification of one of the first two, is then presented. The final 

derivation yields integral expressions for both the number of resonant 

modes and the modal density. These integral expressions have been 

evaluated numerically and are tabulated and plotted in dimensionless 

form. 

Finally the experimental program which was conducted is discussed 

in detail. The results of this program have also been tabulated and 

plotted in dimensionless form and compared with the three analytical 

approaches presented. 
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The results of the investigation are then discussed in detail 

and conclusions are drawn as to the correct expression for the modal 

density of a thin cylindrical shell. Some remarks have also been made 

concerning the extent to which the concept of modal density is a useful 

and valid one, especially in the low frequency ranges. 
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REVIEW OF LITERATURE 

The problem of determining the modal density of any given struc- 

. ture is equivalent to ascertaining the distribution of eigenvalues of 

large order corresponding to high mode numbers. A general discussion 

of the asymptotic distribution of eigenvalues for various classes of 

differential equations is given by Courant and Hilbert (1953). Expres- 

sions for the number of eigenvalues up to a given bound are given for 

differential equations with one, two, and three independent space 

variables. Although the treatment of the subject by Courant and Hilbert 

is approached from a basic mathematical point of view, the results have 

direct physical interpretation, It is pointed out that boundary condi- 

tions have no effect on the asymptotic distribution of the eigenvalues. 

Bolotin (1962) has also given considerable attention to the 

asymptotic method in his studies of eigenvalue determination. In 

(1962) Bolotin presented a discussion of the asymptotic behavior of the 

eigenvalues for a generalized rectangular region of arbitrary dimension. 

He applied this technique to the problem of vibration of plates and 

shells, where the number of eigenvalues correspond to the number of 

natural frequencies of vibration. Correction factors were also intro- 

duced to extend the work of Courant and Hilbert (1953) to low mode 

numbers where boundary conditions must sometimes be considered. 

Bolotin (1960) presented a detailed discussion of the effect of edge 

conditions on the vibrational modes of elastic shells. At this point, 

he clarified the type of edge conditions one would expect to encounter, 

as well as the types of shells and mode numbers where the effects of 

the boundary conditions would be important. 
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In (1963) Bolotin presented a general treatment of the eigenvalue 

density problem for a general thin elastic shell of revolution. Bolotin 

again used the asymptotic method discussed by Courant and Hilbert 

(1953) in his work and obtained expressions for the number of natural 

frequencies and the modal density of a general elastic shell of revolu- 

tion as elliptic integrals. The results of this work were also extended 

to the specific cases of the spherical shell and the circular cylindri- 

cal shell. Bolotin (1965) presents a discussion which is essentially 

an extension of his previous work in which he discusses the concentra- 

tion points of natural odes, as well as the effects of shear and rotary 

inertia. These factors had previously not been considered in his 

derivation of the modal: density expression for a thin elastic shell. 

Without apparent knowledge of Bolotin's work, Heck1 (1962) developed 

an expression for the natural frequencies of a cylindrical shell using 

impedance methods. He then represented the number of natural modes by 

a finite sum over all possible modes of vibration possible up to some 

upper frequency. He then replaced the summation by an integral and 

obtained an approximate expression for the modal density of a thin 

cylindrical shell. Heck1 also presented some experimental findings in 

his report. 

It may be noted that the results of Heck1 (1962) are more fre- 

quently discussed in the literature when the modal density of a 

cylindrical shell is presented. The reason for this is probably due 

to the simplicity of Heckl's results and to the fact that they are in 

closed form. In addition, Heckl's results have been more readily avail- 

able, since the work of Bolotin (1963) has only recently been translated 

from the Russian. 
5 



Another recent and fairly significant work in this field is that of 

Smith and Lyon (1965). This work treats the entire field structural 

vibration and specifically with regard to excitation via a sould field. 

The concept of modal density is introduced and its application with 

regard to structural vibration is discussed in detail. 

The difference between the results presented by Bolotin (1963) 

and those presented by Heck1 (1962) is the major reason for this paper. 

Both theories are seen to agree for frequencies above the ring fre- 

quency; however, below the ring frequency there is sufficient differ- 

ence in the results presented to warrant further investigation of the 

matter. 

6 



THE CONCEPT OF MODAL DENSITY 

General Discussion 

It is well known that any structure such as a beam, plate, or 

shell has an infinite number of resonant frequencies at which it may 

vibrate, with each frequency corresponding to each of the principal 

modes. In dealing with dynamic response problems wherein the input 

forcing quantity has a broad spectral content, many modes will partici- 

pate in the overall motion of the vibrating system. In such cases, it 

is sometimes useful to introduce the concept of modal density. For a 

given structure, the modal density is defined as the asymptotic expres- 

sion for the density of the frequency distribution obtainable from the 

frequency equation of the structure. Thus, it is the continuous func- 

tion obtained by successively dividing the number of resonant frequen- 

cies contained in a frequency interval Aw by the interval width, AU. 

If AN(w) is the total number of resonances in the frequency band AU, 

then the modal density at the center band frequency wc in the interval 

Ao may be written as, 

AN(w) n&,3 = 7 . 

It may be noted that the inverse of the modal density gives an indica- 

tion of the spacing of the resonant frequencies in the frequency domain. 

Hence, a high modal density would indicate many resonant frequencies 

in a short frequency band, as well as the fact that the distance between 

the resonances is small in the frequency domain. 
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The determination of the modal density is essentially a mathemati- 

cal problem. It involves the determination of the frequency equation 

for the structure under consideration from the appropriate equations of 

motion and then the summation of the resonant .frequencies over all pos- 

sible modes of vibration. This yields an expression for the number of 

resonant modes in terms of frequency. Differentiation of this expres- 

sion with respect to frequency will then yield the expression for the 

modal density also in terms of frequency. Hence the problem is really 

the determination of the expression for the number of resonant fre- 

quencies up to an arbitrary frequency once the frequency equation for 

the structure in question has been determined. Up to and beyond this 

point the analysis, although complex, is fairly conventional and 

straightforward. 

Method for Determining the Modal Density 

In order to obtain the number of natural frequencies or the number 

of eigenvalues less than some arbitrary frequency, the frequency equa- 

tion for the structure in question is first expressed in terms of the 

wave numbers. The wave numbers are essentially the eigenvalues which 

arise from the solution of the differential equations of motion to ob- 

tain the frequency equation. Bolotin (1963) expresses the frequency 

equation for a generalized rectangular region in terms of the wave 

numbers k 1 and k2, Figure 1. The quantities k 1 and k were determined 
2 

by the solution for the eigenfunctions and are given by, 

klal = m7r + O(1) k2a2 = nn + O(1) m,n = 1,2,3,... 

(2) 
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where a and a 
1 2 are the principal dimensions of the surface. These 

equations are analogous to the expressions obtained by Courant and 

Hilbert (1953) for the case of the flat plate and thin membrane with the 

exception of the order one expression which is added to each of the ex- 

pressions. This term is a correction factor to reflect the effect of 

the boundary conditions on the wave number expressions. Once the wave 

numbers have been defined, the concept of a k-space is introduced. A 

rectangular domain is set up with the coordinates kl and k2 and divided 

into increments of size Akl by Ak2, Figure 2. From the expressions 

above it may be seen that for the generalized rectangular region the 

increments would be of size f by L . 
al a2 

Hence, two families of 

curves corresponding to the equations for k 1 and k2 have been constructed 

and the intersections of the curves represent values of kl and k2 which 

will satisfy the frequency equation. 

Now according to Courant and Hilbert (1953) the number of eigen- 

values or natural frequencies may be found by taking the surface 

integral over the k-space and dividing by the dimensions of one element 

of the k-space., 

N(w) = 1 
AklAk2 IL 

dkldk2 . (3) 

The limits on the surface integral are such that the solution to the 

frequency equation exists. This is indicated by the curve shown on 

the k-space in Figure 2. The curve represents the maximum permissible 

wave numbers for the arbitrary frequency at which the number of reso- 

nances is desired. Hence the number of natural frequencies is pro- 

portional to the surface integral over the k-space divided by the size 

9 



FIGURE 1. GENERALIZED RECTANGULAR REGION 

FIGURE 2. k-SPACE FOR A GENERALIZED 
REGTANGULAR REGION 
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of an element in the k-space. Looked at another way, since the area of 

the k-space is equal to the surface integral over the k-space and the 

area is also equal to the number of intersections times the area of 

one element, the double integral divided by the area of one element is 

obviously equal to the number of intersections. Each intersection repre- 

sents a solution to the frequency equation and therefore the number of 

intersections is the number of natural frequencies, 

Naturally this idea is not valid for low mode numbers if the 

elements of the k-space are not all the same size, but th,is still does 

not pose any difficulty at fairly high mode numbers. For the lower 

mode numbers, however, the mode shapes are affected to a larger extent 

by the edge conditions of the structure in question. Therefore, the 

concept of the k-space is not really valid for wave numbers where the 

edge conditions are dominant in the determination of the mode shapes. 

Bolotin (1960) has examined this problem in some detail and found that 

for a plate or a spherical shell that the edge effects never dominate 

and that for a cylindrical shell the edge effects only dominate for 

fairly small wave numbers. Hence, although it is usually not important, 

it should be kept in mind that the above method for determining the 

eigenvalues is not always valid and may lead to problems at low wave 

numbers. 

The problem has now been reduced to one of simply putting in the 

appropriate values for the wave numbers and evaluating the double 

integral over the k-space where the frequency equation is satisfied. 

As was stated above, once the expression for the number of eigenvalues 

or natural frequencies has been obtained it is a fairly simple matter 
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to differentiate the expression with respect to frequency to obtain the 

expression for the modal density. It may be noted that the above ex- 

pression is given for wave propagation in two dimensional space. For 

the one or three dimensional cases the integral is either a single or 

a triple integral and the element size is adjusted accordingly. 

Example Modal Density Calculations 

Simply Supported Beam 

In order to clarify the procedure to some extent it may be of some 

value to look at some simple cases. First of all the case of the 

simply supported beam will be examined, Figure 3a. The frequency equa- 

tion for this case may be written as simply, Smith and Lyon (1965), 

22 
o = - KCL 

Q2 
m = 1,2,... , (4) 

where CL is the longitudinal velocity of wave propagation in the beam 

material along the beam, L is the length of the beam, and K is the radf- 

us of gyration taken in a plane perpendicular to the plane in which 

bending occurs. The wave number kl may now be defined as, 

kl=+ . (5) 

Hence the change in wave nuder from one mode to the next is given by 

the following expression: 

Akl = ;. (6) 

Since the waves in the beam are propagated only in a single direction 

(along the length of the beam) the k-space is one dimensional, Figure 3b, 

I.2 



and the equation for the number of resonant frequencies becomes 

N(w) = 1 / 
kl 

Akl 0 
dkl 

which leads to 

N(w) = ;kl . 

But kl, from equations (4) and (5), becomes 

(7) 

(8) 

Therefore the expression for the number of resonant frequencies is 

. (10) 

Differentiating the expression with respect to frequency yields, 

a 
n(w) = - 

1 

2a AZ? l 

L 

(11) 

Equation (11) is the expression for the modal density of a simply sup- 

ported beam. If the thickness of the beam is h, the radius of gyration 

is given by h/m. 

Simply Supported Rectanpular Plate 

A slightly better example is given by the case of a rectangular 

plate, with simply supported edges, Figure 4a. The frequency equation 

for the plate may be expressed in the following form, Smith and Lyon 

(19651, 

13 



m27r2 w = (- + c) KCL 
a; a; 

m,n = 1,2,3,... (12) 

where El and a2 are the length and width of the plate and K and CL are 

the same as in the case of the beam. Again the wave numbers are first 

defined as, 

k1 =? k2 = 
c l 

(13) 

The changes in the two wave numbers are then given by the expressions 

Akl = + 
1 

Ak2 = +- . 
2 

In this case two space variables are involved and therefore a two 

dimensional k-space is required, Figure 4b. The equation for the 

number of natural frequencies is written as in equation (31, 

N(w) f 1 I mp2 l 

AklAk2 s 

It is convenient in the case of the plate to integrate over the surface 

of the k-space using cylindrical coordinates. Therefore kf + kz = r2 

and equation (3) becomes, 

N(w) = f$ Jr joI2 rdedr . 
‘II 0 0 

(15) 

Integrating once with respect to r gives, 

V2 r/2 
N(w) = - 

2r2 0 
I r2d0, (16) 

Then integrating with respect to 8 and substituting for r2, the follow- 

ing expression for the number of resonant frequencies is obtained. 

14 



al!2 0 
N(w)=~~Kc ' (17) 

L 

Finally equation (17) is differentiated with respect to frequency,w, 

to obtain the expression for the modal density of a rectangular plate. 

(18) 

If the plate thickness is h, the radius of gyration is h/E and the 

expression becomes the same as that given by Heck1 (1962). 

n(w) = -g- hC . (19) 
L 

It is interesting to note that the modal density of a flat plate is a 

constant for a given plate and thus is independent of frequency. 

Clamped Circular Plate 

As a final example the case of a flat circular plate will be 

examined, Figure 5a. For high frequencies, the frequency equation for 

a plate with either clamped or free edge conditions is given by, 

Rayleigh (1945), 

2 ll W”- 
4a2 

KCL(n + 2m)2 

where a is the plate radius, K the radius 

ity of wave propagation along the plate. 

tion as 

2 
w = (E + L> KCL , 

m,n = 1,2,3,... (20) 

of gyration, and C the veloc- 
L 

Rewriting the frequency equa- 

(21) 

the wave numbers may be defined in the following manner: 

15 



kl -E, k2=$. (22) 

Hence, the change in the wave numbers from one mode of vibration to 

the next is given by 

Akl=+, Ak2=% . (23) 

The wave propagation in the circular plate is again two dimensional, as 

in the case of the rectangular plate, so that the k-space is also two 

dimensional, Figure 5b. The number of eigenvalues is again given by 

equation (3). Substituting the values for the change in wave numbers 

and converting to cylindrical coordinates yields, 

N(w) = ?- nE e se2 r2de . 
1 

(24) 

Noting that the frequency equation may be written in the form 

(kl + k212 = $- , 
L 

(25) 

and converting the equation to cylindrical coordinates and solving for 

r2 yields, 

r2 = + 1 

L (sine + ~088)~ 
0 (26) 

Hence, r2 may be eliminated from the above integral expressions for the 

number of eigenvalues. The limits on the integral are from 0 to r/2 

since the argument of the integral exists for all values of 8 in the 

first quadrant. Therefore, 

(27) 

16 



(a) (b) 

FIGURE 3. SIMPLY SUPPORTED BEAM 8 k-SPACE 

S.S. 

El 
T S.S. S.S. II 
A- t- 12 ,y 

(a) (b) 

FIGURE 4. SIMPLY SUPPORTED RECTANGULAR 
PLATE S k-SPACE 

(b) 

FIGURE 5. CLAMPED CIRCULAR PLATE a k-SPACE 

17 



which may be written in the form 

I" da 1 + sina l 

Integration yields 

2 
N(w)=% &- . 

B L 

(28). 

Differentiating the above expression with respect to frequency produces 

the expression for the modal density. 

2 
n(w)=& . 

r2KC 
(30) 

L 

The radius gyration is again h/fiwhere h is the plate thickness. The 

final expression is 

n(w) = ra2JE 
r3hC 

0 (31) 

L 

Again it may be noted, as in the case of the rectangular plate, that 

the modal density is a function independent of the frequency. Therefore 

for two plates of equal area, thickness, and of the same material, one 

circular and the other rectangular, the ratio of the modal densities is 

found to be 

n(w), 
-= 
n(w), 

JiT (ra2) , 1 2 aafi 4 

rr3hCL 2hsrCL =2. 
IT 

(32) 

Hence, it is evident that for a plate the modal density is inde- 

pendent of the frequency of vibration, but is not independent of the 

18 



shape or geometry of the piate. Equation (32) implies that at a given 

frequency (high frequency duetoan assumptioninthe circular plate deriva- 

tion) that the modal density of the rectangular plate will be approxi- 

mately two and one-half times that of the circular plate. 

Application of Modal Density 

Now that the concept of modal density has been defined and some 

examples given showing how it may be evaluated for simple structures, 

a brief discussion of the application of the concept will be under- 

taken as it relates to statistical energy methods and room acoustics. 

The statistical energy method is of great value when the input 

force or excitation to a structure is fairly complex in nature, and 

especially when the input is random. Fairly broad band random inputs 

to structures are fairly common in the fields of acoustics and turbulent 

flow. These types of loading or excitation are extremely difficult and 

sometimes impossible to handle in a reasonable fashion with classical 

methods. Hence, it is necessary to resort to a statistical approach. 

Basically this approach examines the statistical properties of the in- 

put function and predicts the statistical properties of the response 

function of the structure. In this way sufficient information may be 

obtained for design purposes. In this type of analysis the property 

of modal density of the structure is one of the parameters of impor- 

tance. Given sufficient information about the input function and the 

modal density it is possible to determine the number of resonant fre- 

quencies excited by the input and to what extent. This then gives some 

insight into the response of the structure to the given excitation 

19 



and some insight into the amount of energy which will be absorbed or 

transmitted by the structure. A detailed description of this procedure 

is given by Smith and Lyon (1965). 

The concept of modal density also proves to be valuable in the 

field of room acoustics. In the case of room acoustics it is usually 

the frequency separation or the inverse of the modal density which is 

of interest. In this case the density of the eigenvalues in a three 

dimensional space is required. Hence, if the technique described 

earlier for finding the number of eigenvalues is used, a triple integral 

would be involved. It may be shown that the final expression for the 

modal spacing for a room, Morse and Bolt (1944), is given by, 

<SW> = 2nc3 / w2v- 0 ' (33) 

where c is velocity of wave propagation in the air, V is the volume of 

the room, and w is the frequency of interest. It may be noted that in 

room acoustics the irregular transmission of low frequencies is due to 

the small number of modes which may be excited at the lower frequencies. 

Hence the acoustical properties of rooms or air spaces are definitely 

related to the concept of the modal density of the room. 

Other uses of the concept of modal density could be given; how- 

ever, the above examples are sufficient to point out the usefulness of 

this concept with regard to engineering applications. 
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THEORETICAL DEVELOPMENT FOR SHELLS OF REVOLUTION 

Introduction 

In this section three different derivations of the modal density 

expression for the thin cylindrical shell will be presented in detail. 

The first presentation is that of Bolotin (1963) in which the general 

shell of revolution is discussed and then -adapted to the case of the 

thin cylindrical shell. The second presentation is that of Heck1 (1962) 

in which the expressions are found for the cylindrical shell alone, 

The final presentation is essentially a modification of Bolotin's 

work for the specific case of the cylindrical shell. 

First Presentation 

In his general derivation for thin shells of revolution, Bolotin 

(1963) examined the case of shells with two principal radii of curva- 

ture, neglecteding the effects of tangential and inertial forces. The 

presentation is also restricted to shells which are simply supported at 

their edges. However, it is mentioned that the effects of boundary con- 

ditions on the vibrational modes are limited, and that only the first 

few modes of vibration are affected significantly. Hence the edge 

conditions are of little significance in the modal density expression 

development. In his work, Bolotin used the method described by Courant 

and Hilbert (1953) which has already been discussed to determine the 

number of resonant modes. Therefore the number of resonant modes in 

the shell is given by equation (3) 

N(w)= ' /jdkldk2 
AklAk2 8 
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where k 1 and k 2 are the wave numbers. In this case Akl and Ak2 are given 

by n/al and v/a2 respectively where al and a2 are the principal dimen- 

sions of the shell surface. The surface integral is then put into 

cylindrical coordinates to obtain the following expression: 

N b) = y 1 $ rdrd0 = q se2 r2d0 . 
8 271 e1 

(34) 

The value of r which appears in equation (34) may be found from the 

frequency equation for the general shell of revolution. The frequency 

equation was obtained by solving the following differential equations 

for the shell, 

- phw2 = 0 

(35) 

2 i a2w -$-AA~++~+-- = 
2 ax; Ri ax; 

0 

where xl and x 2 are the general curvilinear coordinates;R 1 
and R 2 

are the principal radii of curvature, D is the plate st,iffness 

3 
(D = .-AL+--, ii ) p is the density , h the thickness of the shell, 

12 Cl-IJ) 

E the modulus of elasticity, w the normal deflection, I# the stress 

function for the middle surface, and w the frequency of vibration. 

The solution of these equations results in the following frequency 

equation, 

2 = 5, [(k; + kg) + Eh 
(k;X. + kf) R1 W 

DR; (k; + kg) 
1; ““ii;. (36) 
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This expression is converted to cylindrical coordinates as before and 

solved for r2 - k; + k;. Hence the following expression is obtained. 

2 r - [w2- 
2 112 

SJi (X cos2e + sin2B) ] (B$-) 
l/2 

. (37) 

The expression for the number of resonant modes from equation (3) 

becomes 

N(w) = ala2 (j&) l/2 l/2 

2r2 
/ 

e,(o) 2 2 

e,(w) 
[w 42,(X cos28+sin20)2] de 

(38) 

where DE is equal to % (:) 
112 

. Equation (38) is an integral expres- 

sion for the number of resonant frequencies up to a bounding frequency 

for a thin shell of revolution. The limits on the integral are speci- 

fied as taken over the portion of the first quadrant where the argument 

of the integral remains real. In other words negative square roots 

are not a,llowed. 

Differentiation of expression (38) with respect to frequency 

immediately yields the expression for the modal density. It may be 

noted that when differentiation is taken under the integral using 

Leibnitz's rule, the extra terms which normally appear are always zero 

due to the way in which the limits on the integral are specified. The 

result is 

ala2 112 
n(w) = - +-) w 

2r2 D 
I 

e2 (4 de 

e1 (4 
2 2 l/2 l [w2-SZ~(X c0s2e+sin e) ] 

(39) 

Finally Bolotin writes equations (38) and (39) in the following form. 
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*R N(w) a 4r ala2.ph+1’2 w H t+-,xj 1 
; y- 7 

W 

n(w) = - “:: (eq2 H 
D 1v 3) 

(1 (40) 

where 

H($ ,x) = f le2 [l - 4 (Xc0s2e+sin2e)2] 
112 

de 
e1 V 

(41) 

H& ,x) = $ e je2 de 

1 
[1 

- L cc 
2 2 l/2 l 

V2 
c0s2e+sin e) ] 

The expressions for both the number of resonant frequencies and the 

modal density of a thin shell of revolution are now expressed as inte- 

grals. Bolotin goes on to show that the expression H may be expressed 
1 

as an eliptic integral for various ranges of l/v . 

The general expressions (40) and (41) may now be applied to the 

specific case of the cylindrical shell. For the cylinder,x is equal 

to zero, and a 
1 and a2 are the dimensions of the shell surface. Thus, 

the quantities a 1 and a 2 are equivalent to the length of the cylinder, 

E , and one-half the circumference of the cylinder, va. The reason that 

only half the circumference of the cylinder is used is to take into 

account that the cylinder is a closed surface and that the vibrational 

modes are limited to one-half by this fact. The following expressions 

result imnediately from (40) and (41). 

N(w) = a -+- 
(ph) u2 

D w H (5 , 0) 

(42) 
l/2 

n (4 = + ($) Hl(+ , 0) o 
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The expression Hl may be used as in equation (41) or it may be used in 

the following elliptic integral form: 

for v > 1: 

and for v < 1: ' 
(43) 

where Ksrepresents the complete elliptic integral of the first kind. 

Equation (43) is Bolotin's result for a cylinder of radius a and length 

a. 

Second Presentation 

The analysis presented in this section is due to Heck1 (1962). 

The results obtained from this analysis are the ones most commonly 

quoted in the literature at the present when the modal density of a 

cylindrical shell is mentioned. 

Heckl's derivation is 

cylindrical shell. In his 

shell equations. 

for the case of a thin infinitely long 

analysis Heck1 started with the following 

av + novt + ukava = iv2po/wph 

nov + [nt + v2 + i (l-u)k2a2]vt + $ (l+u)nokav = 0 a (44) 

ukav + 3 (l+~)a 0 kavt + [k2a2 + + (l-u)n2-v2Jva = 0 0 

where v, v t' and va are the radial, tangential, and axial components 

of velocity amplitude, n is the half number o of modes in the circum- 

ferential direction, k is the wave number in the axial direction, 
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p is Poisson's ratio, h is the shell thickness, w is the exciting fre- 

quency, p, is the amplitude of excitation, a is the cylinder radius, and 

v is the dimensionless frequency of vibration given by 

v = wa/CL , 

where CL is the velocity of wave propagation in the shell material. 

It may also be noted that a used by Heck1 in this work is given by the 

following expression. 

a = l-v2 + I(n2k2a2) 
2 

- 3 [ni(4-u)-2-e](l-u)-']h2/12a2 . 

(46) 

Equation (44) was subsequently solved for the impedance of the 

cylindrical shell and then the frequency equation of the cylinder was 

determined by letting the impedance go to zero. This resulted in the 

following frequency equation. 

V2 = (1-u2)(~a/ll)4x[(mralll)2+n~l 
-2 

+ {[(mrra/a)2+n2]2 
0 (47) 

h2 - $ [n2,(4-u)-2-u](l-u)-l] - . 
12a2 

Finally by neglecting several of the terms in the frequency equation 

Heck1 arrived at the following approximate frequency expression. 

,,2 [u 2 : 2 (no + 2 0 1 -' + B(n2 + u2)12; Q = 6 = h/26a . 
0 

y 

(48) 

It may be shown that the terms which Heck1 neglected have little 

effect on the frequency expression for frequencies above the ring 

frequency (v = 1). However, below the ring frequency the effect may 
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be as much as forty percent of the actual value. Plots of the exact 

expression and the approximate expression have been made for various 

values of m and n, and the differences may be noted in Figure 6. Hence 

it is expected that the values obtained for both the number of resonant 

frequencies and the modal density of the cylinder will be somewhat on 

the conservative side since the frequency equation used by Heck1 pre- 

dicts frequencies somewhat higher than is actually the case. 

Finally solving for u and then summing over all possible values 

of n, Heck1 was able to obtain the following expressions for the number 

of resonant frequencies and the modal density. 

a. (v/B) 1'2 
N(w) = - 

no=(v/B)1'2 
va l 

n,=O,l 
(J ; n(w) = -& o lj 5 dv 

, 
(49) 

where the lower limit is 1 for v < 1, and 0 for v > 1. Further simpli- 

fication leads to the following approximate expressions. 

v > 1 

N(w) = Ev/4a$ = J? Raw/2CLh 

n(w) = R/4aS = 6 11/2h 

(50) 
v<l 

N(w) = {f) (2v-l)[$ r+arc sin (2v-l)+(v-v 2 l/2 ) I &/4a@ = 3av312 
8raB 

n(w) = [$ T + arc sin (2v-1)] 11/4vaS . 

These are the final expressions obtained by Heck1 for the number of 

resonant modes and the modal density of a thin cylindrical shell. 

27 



10.0 

5.0 

It2 

I/=1 1.0 

03 

0.1 

0.05 

0.02 

;y-- - - 

:\V/ ,-.UlFt?YI’C ADDRnYIMATlt’ 

-Q- ACTUAL VALUES 

I I I I I 
I s l I3 I7 21 

n 

FIGURE 6. HECKL’S APPROXIMATE FREQUENCY EQUATION 
AND ACTUAL EQUATION VERSUS n FOR 
VARIOUS VALUES OF m 

28 



Third Presentation 

The third and final analysis is essentially a modification of the 

work done by Bolotin (1962). Going back to equation (38) for the 

number of natural frequencies for a shell of revolution 

N(w) = fi!k (f%)1'2 
2n2 D 

/e2[w2-Qi(cos2eX+ sin2e)2]1'2dB . 
% 

At this point the restriction that the shell of revolution is a 

cylinder is introduced and thus implies that al = I, a 2 = an , and 

x= 0. The notation is also converted to that used by Heckl, so that 

N(w) = -& / 
62 

~11 - 1 sin e] 4 l/2de 
V2 

, 
61 

(51) 

where again the limits on the integral are such that the term in the 

brackets remains positive in the first quadrant. Hence, the following 

integral expression for the number of resonant frequencies is obtained. 

L& 
sin 

N(w)=~ s 
-k 2 

iv 
4 l/2 

- sin e] de . (52) 
0 

The upper limit on the integration holds for v < 1. For v greater 

than or equal to one, the upper limit s/2 is used. Differentiating 

equation (52) with respect 

tained. 

to v, the modal density expression is ob- 

. -1 r 
=a.2 sin vv 

n (~1 d0 
2h fO 

% 
sin40]1'2 l 

(53) 

Again the upper limit must be r/2 when v is equal to or greater than 

one. 



Expressions (52) and (53) may be evaluated numerically by means of 

Simpson's Rule using a digital computer. This has been done and values 

have been obtained for each of the one-third octave bands. Along with 

the above calculations, an approximate modal density expression has 

also been calculated by subtracting the successive N values and then 

dividing the result by the change in v from one station to the next. 

This was done because this is essentially the procedure which was used 

in calculating the modal density experimentally. The results of the 

computations appear in Table 1. 

Summary 

The results of the three presentations for the number of natural 

frequencies and the modal density have now been obtained. As a final 

step the notation used by Bolotin will be converted to that of Heck1 

so that the notation will be consistent for all three cases. This has 

been done and the principal results of all three derivations appear in 

Table 2. In order to compare these three sets of results numerical 

evaluation is carried out and displayed graphically in Figures (7) and 

(8) l Figure 7 shows the number of resonant modes in dimensionless form 

versus the dimensionless frequency and Figure 8 shows the modal density 

in dimensionless form versus the dimensionless frequency for all three 

cases. 

It may be noted after examining Figures 7 and 8 that all three 

presentations converge for frequencies above the ring frequency (v = 1) 

as was expected. However, below the ring frequency the differences.are 

quite noticeable. The results of Bolotin and the modified Bolotin 

30 



Table 1. Tabulation of dimensionless number of natural frequencies 
and dimensionless modal density for a cylindrical shell 
using the modified Bolotin analysis 

Center&' Upper N.rrh/& Ib' n.2h/fi ld n.2h/fi lk' 
V V approx. 

0.00725 0.00812 0.00064 

0.00912 0.0102 0.00090 

0.0115 0.0129 0.00128 

0.0145 0.0162 0.00181 

0.0182 0.0204 0.00255 

0.0229 0.0257 0.00361 

0.0288 0.0323 0.00510 

0.0363 0.0407 0.00721 

0.0457 0.0512 0.0102 

0.0576 0.0645 0.0144 

0.0725 0.0812 0.0204 

0.0912 0.102 0.0289 

0.115 0.129 0.0411 

0.145 0.162 0.0583 

0.182 0.204 0.0829 

0.229 0.257 0.118 

0.288 0.323 0.169 

0.363 0.407 0.242 

0.457 0.512 0.349 

0.576 0.645 0.509 

I - 

0.0800 

0.0899 

0.101 

0.113 

0.127 

0.143 

0.161 

0.181 

0.203 

0.229 

0.258 

0.291 

0.329 

0.373 

0.424 

0.485 

0.557 

0.647 

0.765 

0.0751 

0.0844 

0.0947 

0.106 

0.119 

0.134 

0.151 

0.169 

0.19-1 

0.215 

0.242 

0.273 

0.308 

0.349 

0.396 

0.451 

0.517 

0.597 

0.698 

0.834 

Table continued 
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Table 1 (continued) 

CenteG' Upper N.vh/a lk' n.Ph/a ICI n.2h/filb/ 
V V approx. 

0.725 

0.912 

1.15 

1.45 

1.82 

2.29 

2.88 

3.63 

4.57 

5.76 

7.25 

0.812 0.755 

1.000 1.1478 

1.02 1.21 

1.29 1.76 

1.62 2.35 

2.04 3.05 

2.57 3.91 

3.23 4.98 

4.07 6.32 

5.12 7.98 

6.45 10.08 

8.12 12.71 

0.939 1.056 

1.38 1.656 

1.31 1.181 

1.13 1.092 

1.07 1.052 

1.04 1.031 

1.02 1.019 

1.01 1.012 

1.01 1.007 

1.00 1.005 

.l.OO 1.002 

al 
Note: the dimensionless frequency values chosen for this tabula- 

tion correspond to the one-third octave band frequencies for the cylinder 
used in the experimental work. This would not necessarily be the case 
for any other cylinder. 

h/Plotted at upper v. 

g/Plotted at center v. 
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Table 2. Surmuary of analytical results for the number of natural 
frequencies and iuodal density of a cylindrical shell 

Bolotin's Results: 

n(w) - $Hl($ , 0) 

v>l 

v<l 

Heckl's Results: 

v>l N(w) -$ l ;v 

a6 

n(w) - 2h 

v<l d 
3 312 N(w) -Tlh l TV 

n (4 a4-T = - . $ [$7r + arc sin (2V-111 
2h 

Modified Bolotin Results: 

N(w) - @ se2 [v2 - sin4e]1'2 de 
0 

n(w) - && 
2h 

. $. se2 [l - + sin4e]'1/2 de 
0 V 

v>l e2 -t; v<l e2 = sin-l VG 
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analysis are seen to be the same for the number of resonant frequencies 

and only slightly different for the modal density. The reason for this 

slight difference in the modal density curves is due to an approxima- 

tion made by Bolotin in order to express the modal density in elliptic 

integral form. It may also be noted that the results of Heck1 are 

lower than the other results for the number of resonant modes and the 

number of natural frequencies below the ring frequency. Since it was 

shown earlier that Heckl's results would be on the conservative side it 

is reasonable to suspect that this is the reason for the difference. 
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EXPERIMENTAL PROGRAM 

Objective 

In conjunction with the theoretical work presented, an experi- 

mental program was conducted in order to provide a comparison with the 

analytical work. The main objective of this program was to physically 

count the resonant frequencies of a thin cylindrical shell, and in this 

manner to experimentally determine the modal density of the shell. 

Finally, by non-dinmnsionalizing the results a comparison could be 

made between the analytical results and the experimental values. 

Experimental Setup 

The cylindrical shell which was used in this work was chosen so 

that it would have a ring frequency well within the range of the equip- 

ment being used in the investigation. It was also chosen to have 

sufficient separation between modes so that the counting of the resonant 

frequencies would be possible with some degree of accuracy. The dimen- 

sions and specifications of the actual cylinder used in this investi- 

gation are given in Table 3. The arrangement of the instrumentation 

used in this work, which is shown in Figure 9, consisted first of an 

oscillator with a continuous sweep range of twenty to twenty thousand 

HZ. The signal from the oscillator was fed to a power amplifier and 

then to an electromagnetic shaker. The shaker in turn excited the test 

cylinder. An accelerometer was mounted on the freely suspended cylin- 

der as a pickup, and its output was fed through a preamplifier and a 

signal amplifier to a graphic level recorder. The recorder was also 
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Table 3. Experimental cylinder specifications and nondimensionalizing 
conversion factors for experimental data 

Cylinder Data 

Material 

Diameter (2a) 

Thickness (h) 

Length (1) 

Young's Modulus (E) 

Density (PI 

Velocity of Wave (CL) 
Propagation 

Ring Frequency 

Stainless Steel 304 

4.5 in. 

0.0625 in. 

36.0 in. 

27.6 x lo6 lbf/in.2 

0.280 lbm/in.3 

1.95 x lo5 in./sec 

1.38 x lo4 Hz 

Conversion Factors 

Dimensionless Frequency 

v=Tlf frequency in Hz 

where T 
1 

= 2ra/CL = 0.0000725 

Dimensionless Number of Resonant Frequencies 

N= T2 (number of resonances) 

where T2 = trh/& a. = 0.0031489 

Dimensionless Modal Density 

n=T 3 (number of resonances)/Av 

where T3 = 2h/&II = 0.002005 
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used to drive the sweep of the oscillator so that the two were synchro- 

nized. Another accelerometer pickup was mounted to the shaker head 

and fed back by means of another signal amplifier to the oscillator 

feedback circuit. In this way the. input to the cylinder was held 

constant over the desired frequency range. Some care had to be taken, 
. 

however, in order to insure that the control did not interfere with the 

output since some mechanical feedback was encountered from the cylinder 

to the shaker. Several photographs of the experimental apparatus are 

shown in Figures 10 through 13. 

Operation 

The pickup accelerometer was mounted to the cylinder by means 

of a hard wax. This mounting method was used since it offered the best 

response of several methods tried (in comparison with a rigid mount) 

and could be used on a curved surface. It also provided a means of 

mounting the accelerometer without physically altering the cylinder 

itself. This was desirable since several accelerometer mounting posi- 

tions were to be used in the experiment. After the accelerometer was 

mounted, the frequency range was swept slowly and the results recorded 

on frequency calibrated paper. The entire frequency range over which 

readings were taken (approximately 200 to 20,000 Hz) was divided into 

several ranges so that different sweep speeds and paper speeds could be 

used in order to get adequate separation between the resonant frequen- 

cies so that they did not overlap and make counting impossible. Once 

sufficient data had been collected for several accelerometer locations 

the data was analyzed. 
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Reduction of Data 

The recorded data obtained was first broken down into standard 

one-third octave band frequency ranges, see Table 4. The number of 

resonant peaks appearing in each of the bands was then counted. In 

this way, knowing the frequency range and the number of modes, the modal 

density for each of the one-third octave bands could be determined. 

The results obtained in this manner were then nondimensionalized using 

the factors given in Table 3. The results of this reduction are given 

in Tables 5 through 10, as well as in Figures 14 and 15. Figure 14 shows 

the data for the number of resonant modes and Figure 15 shows the data 

for the modal density. In each case the analytical curves for the 

modified Bolotin approach are shown. 

At this point some mention should be made concerning the 

difficulties encountered in counting the number of resonant frequencies. 

First of all, since an accelerometer was used as a pickup, only the 

acceleration at the point of mounting was recorded. Therefore it is 

obvious that for some of the vibrational modes passed through, the 

accelerometer could have been either at a node or in the near vicinity 

of a node. For this reason the magnitude of the peaks recorded varied 

widely. The regulation circuit helped to keep the mean response in 

about the lame place, however, some of the peaks were very slight while 

others were quite distinct. This made it difficult at times to 

distinguish real resonant peaks from stray electrical noise and other 

effects which were always present. However, this difficulty was pre- 

dominant only for the lower modes, and became much less of a problem as 

the number of modes within a given frequency band increased. It was 

43 



Table 4. Tabulation of standard one-third octave bands 

Center Frequency Lower Frequency 
HZ HZ 

16 14.8 

20 17.8 

25 22.4 

31.5 28.2 

40 35.5 

50 44.7 

63 56.7 

80 70.9 

100 89.2 

125 112 

160 141 

200 178 

250 224 

315 282 

400 355 

500 447 

630 563 

800 709 

1000 892 

1250 1120 

Upper Frequency 
HZ 

17.8 

22.4 

28.2 

35.5 

44.7 

56.3 

70.9 

89.2 

112 

141 

178 

224 

282 

355 

447 

563 

709 

892 

1120 

1410 

Table continued 
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Table 4 (continued) 

Center Frequency Lower Frequency 
HZ HZ 

Upper Frequency 
HZ 

1600 1410 1780 

2000 1780 2240 

2500 2240 2820 

3150 2820 3550 

4000 3550 4470 

5000 4470 5630 

6300 5630 7090 

8000 7090 8920 

10000 8920 11200 

12500 11200 14100 

16000 14100 17800 

20000 17800 22400 
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Table 5. Expe.rimental data for position 1 

Center 
V 

Av Wpe 1: 
V 

Number 
of Total Nd bl n- 

Modes Number 

0.0576 0.0133 0.0645 2 3 0.0094 0.3015 

0.0725 0.0167 0.0812 2 5 0.0157 0.2401 

0.0912 0.0210 0.102 3 8 0.0252 0.2854 

0.115 0.0265 0.129 3 11 0.0346 0.2269 

0.145 0.0333 0.162 7 18 0.0567 0.4215 

0.182 0.0419 0.204 9 27 0.0850 0.4307 

0.229 0.0528 0.257 11 38 0.1197 0.4177 

0.288 0.0665 0.323 21 59 0.1859 0.6332 

0.363 0.0837 0.407 28 87 0.2739 0.6707 

0.457 0.105 0.512 35 122 0.3842 0.6683 

0.576 0.133 0.645 48 170 0.5353 0.7236 

0.725 0.167 0.812 72 242 0.7620 0.8644 

0.912 0.210 1.02 127 369 1.1619 1.2125 

1.15 0.265 1.29 161 530 1.6689 1.2182 

1.45 0.333 1.62 193 723 2.2767 1.1621 

zv Number of resonances is plotted at upper v. 

k/Modal density is plotted at center v. 
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Table 6. Experimental data for position 2 

Center 
V 

Av Upper 
V 

Number 
of Total Nd bl n- 

Modes Number 

0.0576 0.0133 0.0645 

0.0725 0.0167 0.0012 

0.0912 0.0210 0.102 

0.115 0.0265 0.129 

0.145 0.0333 0.162 

0.182 0.0419 0.2oi 

0.229 0.0528 0.257 

0.288 0.0665 0.323 

0.363 0.0837 0.407 

0.457 0.105 0.512 

0.576 0.133 0.645 

0.725 0.167 0.812 

0.912 0.210 1.02 

1.15 0.265 1.29 

1.45 0.333 1.62 

2 3 

3 6 

3 9 

4 13 

7 20 

9 29 

11 40 

19 59 

23 82 

35 117 

47 164 

81 245 

116 361 

150 511 

171 682 

0.0094 0.3015 

0.0189 0.3602 

0.0283 0.2864 

0.0409 0.3026 

0.0629 0.4215 

0.0913 0.4307 

0.1259 0.4177 

0.1858 0.5729 

0.2581 0.5509 

0.3684 0.6683 

0.5164 0.7085 

0.7715 0.9725 

1.1368 1.1075 

1.6091 1.1349 

2.1475 1.0296 

a/Number of resonances is plotted at upper v. 

b/Modal density is plotted at center v. 
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Table 7. Experimental data for position 3 

Center 
V 

Av Uw I: 
V 

Number 
of Total Nid &I 

Modes Number 

0.0576 0.0133 0.0645 2 3 0.0094 0.3015 

0.0725 0.0167 0.0812 2 5 0.0157 0.2401 

0.0912 0.0210 0.102 3 8 0.0252 0.2864 

0.115 0.0265 0.129 4 12 0.0378 0.3026 

0.145 0.0333 0.162 7 19 0.0598 0.4215 

0.182 0.0419 0.204 10 29 0.0913 0.4785 

0.229 0.0528 0.257 12 41 0.1291 0.4557 

0.288 0.0665 0.323 20 61 0.1921 0.6030 

0.363 0.0837 0.407 25 86 0.2708 0.5989 

0.457 0.105 0.512 34 120 0.3778 0.6492 

0.576 0.133 0.645 48 168 0.5290 0.7236 

0.725 0.167 0.812 77 245 0.7715 0.9245 

0.912 0.210 1.02 118 363 1.1431 1.1266 

1.15 0.265 1.29 154 517 1.6279 1.9652 

1.45 0.333 1.62 171 688 2.1664 1.0296 

Number of resonances is plotted at upper v. 

brModa1 density is plotted at center v. 
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Table 8. Experimental data for position 4 

Center 
V 

Av Upper 
V 

Number 
of Total d nw 

Modes Number 

0.0576 0.0133 0.0645 

0.0725 0.0167 0.0812 

0.0912 0.0210 0.102 

0.115 0.0265 0.129 

0.145 0.0333 0.162 

0.182 0.0419 0..204 

0.229 0.0528 0.257 

0.288 0.0665 0.323 

0.363 0.0837 0.407 

0.457 0.105 0.512 

0.576 0.133 0.645 

0.725 0.167 0.812 

0.912 0.210 1.02 

1.15 0.265 1.29 

1.45 0.333 1.62 

7 

9 

12 

18 

26 

36 

47 

78 

122 

153 

168 

4 

7 

10 

14 

21 

30 

42 

60 

86 

122 

169 

247 

369 

522 

690 

0.01259 

0.0220 

0.0315 

0.0441 

0.0661 

0.0945 

0.1323 

0.1889 

0.2708 

0.3842 

0.5322 

0.7778 

1.1619 

1.6437 

2.1727 

0.4523 

0.3602 

0.2864 

0.3026 

0.4215 

0.5427 

0.4557 

0.5427 

0.6228 

0.6874 

0.7085 

0.9365 

0.1648 

1.1576 

1.0115 

g'Number of resonances is plotted at upper v. 

k'Modal density is plotted at center v. 
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Table 9. Experimental data for positiori 5 

Center 
V 

Av Upper 
V 

Number 
of, 

Modes 
Total 
Number 

0.0576 0.0133 

0.0725 0.0167 

0.0912 0.0210 

0.115 0.0265 

0.145 0.0333 

0.182 0.0419 

0.229 0.0528 

0.288 0.0665 

.0.363 0.0837 

0.457 0.105 

0.576 0.133 

0.725 0.167 

0.912 0.210 

1.15 0.265 

1.45 0.333 

0.0645 

0.0812 

0.102 

0.129 

0.162 

0.204 

0.257 

0.323 

0.407 

0.512 

0.645 

0.812 

1.02 

1.29 

1.62 

3 4 

2 6 

3 9 

4 13 

7 20 

9 29 

12 41 

20 61 

25 86 

33 119 

50 169 

76 245 

115 360 

150 510 

162 672 

0.0126 

0.0189 

0.0283 

0.0409 

0.0629 

0.0913 

0.1291 

0.1921 

0.2708 

0.3747 

0.5322 

0.7715 

1.1336 

1.6059 

2.1161 

0.4523 

0.2401 

0.2864 

0.3026 

0.4215 

0.4307 

0.4557 

0.6030 

6.5989 

0.6301 

0.7538 

0.9124 

1.0979 

1.1349 

0.9754 

a/Number of resonances is plooted at upper V. 

b/ Modal density is plotted at center v. 



Table 10. Experimental data for position 6 

Center 
V 

Av Upper 
V 

Number 
of Total 8 b/ . n- 

Modes Number 

0.0576 0.0133 0.0645 1 2 0.0063 0.1508 

0.0725 0.0167 0.0812 2 4 0.0125 0.2401 

0.0912 0.0210 0.102 3 7 0.0220 0.2864 

0.115 0.0265 0.129 5 12 0.0378 0.3783 

0.145 0.0333 0.162 7 19 0.0598 0.4215 

0.182 0.0419 0.204 10 29 0.0913 0.4785 

0.229 0.0528 0.257 12 41 0.1291 0.4557 

0.288 0.0665 0.323 21 62 0.1952 0.6332 

0.363 0.0837 0.407 26 88 0.2771 0.6228 

0.457 0.105 0.512 33 121 0.3810 0.6301 

0.576 0.133 0.645 49 170 0.5353 0.7387 

0.725 0.167 0.812 79 249 0.7841 0.9485 

0.912 0.210 1.02 110 359 1.1305 1.0502 

1.15 0.265 1.29 145 504 1.5870 1.0971 

1.45 0.333 1.62 172 676 2.1287 1.0356 

=/Number of resonances is plotted at upper v. 

b/Modal density is plotted at center v. 
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also found to be very difficult to count the resonant peaks for the 

modes near the fundamental mode , and obtain any sort of agreement with 

theory. This was due to the fact that both the modal density expres- 

sion and the expression for the number of resonant frequencies are 

represented by continuous functions, and this is obviously not a very 

good representation near the fundamental mode of vibration. In this 

region theory predicts fractional numbers of modes and this is ob- 

viously impossible to obtain by physically counting resonant peaks. 

Hence the reader will note a large degree of scatter in the experimental 

results for the lower frequencies, as would be expected. 
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SUMMARY AND CONCLUSIONS 

The.results of the three analytic procedures for the number of 

resonant frequencies and the modal density for the- cylindrical shell 

are given in Table 2. Also plots of all three are shown in Figures 7 

and 8.' It may be seen that Heckl's resultsaresanewhat lowerthan those 

obtained by the other two procedures below the ring frequency. The 

reason for this may be attributed, at least in part, to the approxima- 

tions made by Heck1 in his expression for the natural frequencies of a 

cylinder. It has been noted already that the terms omitted by Heck1 

would tend to lead to somewhat conservative results below the ring fre- 

quency and this seems to be the case. The results obtained by the 

other two derivations are seen to be quite close together for the modal 

density expression and identical for the number of resonant frequencies, 

The slight difference in the modal density expression may be attributed 

to two factors. First of all some approximation was necessary in 

Bolotin's derivation in order to express the modal density as a com- 

plete elliptic integral of the first kind, and secondly in the numeri- 

cal integration of the modal density expression, it was necessary to 

truncate the interval very slightly (10W6) in order to avoid trouble 

at the upper limit of integration. The first factor probably tended 

to increase the modal density slightly.below the ring frequency, thus 

making the results slightly higher than is actually the case. The 

second factor obviously lowered the modal density expression slightly, 

thus making the results of the modified Bolotin approach slightly lower 

than would actually be the case. Hence it is felt that the exact 
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solution to the problem is between the results of the modified Bolotin 

approach and the results obtained by Bolotin for the modal density. 

The results of the experimental work which was performed are shown 

plotted in Figures 14 and 15 along with the modified Bolotin analytical 

results for the number of resonant frequencies and the modal density. 

It may be seen that the experimental results are in excellent agreement 

with the modified Bolotin curve for the number of resonant frequencies. 

It has already been pointed out that some scattering of points is to 

be expected for the lower values in the vicinity of the fundamental 

mode where these concepts are not really valid. Experimental agreement 

with the modal density curve is also good, although not quite as good 

as for the number of resonant modes. For the modal density, the 

scattering of experimental data is much more pronounced for the lower 

frequencies as would be expected. However, as the frequency increases 

and the concept of modal density becomes a better indication of what is 

really happening, good agreement is obtained between the experimental 

values and the results of the modified Bolotin approach. Since the 

modal density is a continuous representation of discrete events, it is 

not possible to obtain good results at the lower frequencies in the 

vicinity of the fundamental frequency of the structure. 

In conclusion it may be said that either the expression obtained 

by Bolotin or by the modified Bolotin approach gives values for the 

number of resonances in a thin cylindrical shell which are in excellent 

agreement with the experimental values. Hence the modified Bolotin 

approach gives an accurate integral expression for the number of reso- 

nant modes in a cylindrical shell above and below the ring frequency 
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and may be plotted or tabulated in dimensionless form,for convenient 

use. It may be noted also that this expression is continuous at the 

ring frequency and does not have a discontinuity at this point as did 

Heckl's approximate expressions. 

The conclusions which may be drawn for the modal density expres- 

sion are not quite as obvious. First of all there is only a slight 

difference between Bolotin's values and those obtained with the modi- 

fied Bolotin approach. Secondly the experimental data is such that 

it is not innnediately evident which is the better of the two representa- 

tions. However, it is felt that the modified Bolotin results are in 

slightly better agreement with the experimental results and hence should 

be considered the more accurate of the two. However, there is really 

not sufficient difference in the two results to warrant further work 

on this point. The modified Bolotin approach gives an integral expres- 

sion for the modal density of a thin cylindrical shell which may be 

plotted or tabulated as a function of frequency in dimensionless form 

for convenient use by the engineer, 

It may also be concluded that the expressions obtained for the 

number of resonant modes and the modal density are not really valid 

for frequencies below and in the vicinity of the fundamental mode of 

the structure. This is due to the fact, which has been mentioned pre- 

viously, that the continuous functions for the number of resonances 

and the modal density do not represent what is really happening in this 

region. In a sense it is statistical information about a small number 

of events, and therefore is not an adequate representation of the 

phenomenon. 
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APPENDIX. LIST OF SYMBOLS 

- radius of cylinder or circular plate 

- principal d.imension of shell surface 

- longitudinal wave velocity - fi 

- sound wave velocity in air 

- stiffness modulus - Eh3/12(1-v) 2 

- Young's modulus 

- frequency 

- thickness of plate or shell 

- wave number 

- length of cylinder or beam 

- surface dimension of plate 

- integer value 

- number of resonant modes 

- integer value 

- one-half circumferential modes 

- modal density 

- amplitude of excitation 

- radius of shell curvature 

- cylindrical coordinate 

T1 T2 T3 - conversion factor 

vO 
- volunm! 

V - radial velocity amplitude 

V .a - axial velocity amplitude 

Vt - tangential velocity amplitude 
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W 

X1 x2 

a 

8 

< dw > 

8 

% e2 

K 

P 

P 

V 

- displacement normal to surface 

- generalized coordinate 

- stress coefficient 

- h/2 Jj'a 

- modal spacing 

- cylindrical coordinate 

- limits on k-space integral 

- radius of gyration 

- density 

- Poisson's ratio 

- dimensionless frequency - wa/CL = @inR 

- mna/a 

- stress function 

- R1/R2 

- (E/ P )1'2/R1 

- angular frequency 

60 NASA-Langley, 1967 - 32 CR-897 
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