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On the Stability Constraints and 
Oscillatory Behavior of Coupled Systems 

J. K. Aggarwal and H . H . Bybee 
Department of Electrical Engineering 

The University of Texas 
Austin, Texas 

Abstract: 

The system described b y  the differential equation 

% + g(k) + h(x) = 0 

has  been extensively investigated both from the stabil i ty as well as 

oscil latory points of view. The present paper d iscusses  some properties 

of a class of higher order systems which are  obtained by coupling second 

order systems of the above form. Sufficient conditions a re  derived for 

such  a system to be s table  and the  effects of introducing additional non- 

l inear i t ies  in  t h e  feedback path are discussed.  The oscillatory behavior 

is discussed  qualitatively and some new resul ts  are  presented concerning 

(1) t h e  coupling of an  oscillatory system to a stable system, and (2) the 

coupling of two oscil latory systems. 

1. Introduction 

Much work has  been done on nonlinear second order differential 

systems from both stabil i ty and periodic behavior standpoints because of 

the ease of applying analytic and topological methods to their solution. 

An extensive bibliography is found in Cesar i  [l]. Two of the more 

. 
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general bas ic  second order forms are,  

and 

Constraints must be  placed on the nonlinear functions t o  assure asymp- 

totic stabil i ty in  the large, instability, or the existence of a l i m i t  cycle .  

For the  sake of completeness two typical results are  given below for the 

system (1). 

System (1) is asymptotically s tab le ' in  the large if  

i) xh(x) > 0 ,  x # 0; h(0) = 0 

ii) kg(k) > 0, k # 0; g(0) = o 
iii) J'" h(u)du -, m as 1x1 -, oJ 

This resul t  is proved by  using the Liapunov function 
0 

2 
(3) V(x,A) = 1/2 A + f x  h(u)du 

0 

and applying LaSalle' s Theorem E21 for which (i) and (ii) above assure  

that  the origin is the only solution along which 3 = 0.  

If g(k) = Agl(k) and h(x) i n  system (1) are continuous along with 

their  first derivatives,  then there exists at least one (nonconstant) 

periodic solution, x(t), provided there a r e  positive constants a ,  m,  and 

M such  that  

i) g,(jr) > m  for IAl>a 

ii) g (A) > -M for a l l  A 1 
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iii) 

iv) 

g (k) < 0 in  some neighborhood of S O  excluding S O ,  

xh(x) > 0 ,  x #  0,  h(0) = 0 

1 

v) 

The proof of this  result uses the positive definite auxiliary func- 

Ih(x)l -)a and h (x ) / lX  h(u)du-( 0 a s  1x1 -)a. 
0 

tion (3) to show that all trajectories, except the origin, started within 

a s m a l l  neighborhood of the origin leave that neighborhood and all tra- 

jectories started sufficiently far from the origin are shown to enter a 

special  curve constructed from V. (For proof see [l]). 

For system (2) the Liapunov function (3) gives r ise  t o  a stability 

result  similar t o  (*) and Wax [3] has  recently proved the l i m i t  cycle 

theorem for a subclass of this  system. 

Higher order systems may be constructed by coupling second 

order subsystems as  follows: 

K ,  + g,(k.) + h.(x.) + k.(x) = 0 
1 1 1  1 1  1 

i =  l , Z , .  . . , n  

(4) 

- 
x = (X1'X2I.  . . /x,) 

The result  on asymptotic stability may be extended t o  include the above 

higher order systems. 

The 2n-order system (4) is asymptotically stable in  the large 

i f for  i =  1 , 2 , . . . , n  

(***) . 
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iii) 

iv) JXi h.(u)du -.) aD a s  lxil and 

v) 

ki(G) = a U(z) where U is a positive semidefinite function 
a xi 

1 
0 

the  set of equations hi(xi> + kd;) = 0, i = 1,2 I . . . n, has  

only the trivial solution x = 0. 
- -  

One can prove th i s  resul t  using LaSalle' s Theorem [Z] where the 

Liapunov function is 

V(G,$) = 1/2 c n xi .2 + c" Jxi hi(u)du -+ U(';, 
i= 1 i=l o 

(5) 

for which 
n 

i= 1 
ir(XlZ1 = - c f.g.(Ai). 

1 1  

N o  resul ts  similar to (**) above exist for the system (4 ) .  However, 

very restricted resul ts  on amplitude bounds are  avai lable .  

Aggarwal [41 has  shown for the  system 

3 
% + A ( f  /3 - A) + Bx= -4x-Y) 

the existence of a n  "inner" amplitude bound and th i s  resul t  may be 

generalized t o  the situation where more than two oscil lators are  coupled. 

This paper d i scusses  the stabil i ty constraints and oscillatory 

behavior of system (4) and its extensions.  Also, resul ts  on the oscilla- 

tory behavior of the coupled systems, when one subsystem is stable  

and the  other oscillatory, or when both subsystems are  oscillatory are  

presented. 
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2 .  Stability of Coupled Systems 

An extension of the System (4) with a single dissipative element 

has  the form 
- 

i =  1 ' 2 ,  ..., n 

where 
[t 1 

e = { O  depending upon the system. 
i - 1  

m 

In the above system the  coupling terms are  
n 

ki(G) + e,f( c 
m= 1 

e k ) 1 m m  

i = 1,2,. . . , n .  

System (7) is asymptoticall stable in the larg- if in additi  )n 

to the conditions (***) the following condition on f holds: 

Uf(u) > 0, u #  0,  f(0) = 0. 

Again th i s  result follows from the use  of LaSalle' s Theorem [Z] where 

the  Liapunov function is (5). This result  m a y  eas i ly  be extended t o  

systems with several dissipative elements. 

Another generalization of the System (4) has  the form 

% + fi(+ + = 0 (8) 

i =  1 , 2 , .  ..,n 

where 

*i = q k i )  + hi(Xi). 
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The 2n-order system (8) i s  asymptotically stable in the large if  

for i =  1 , 2 ,  ..., n 

i) 

ii) 

iii) 

iv) 

v) 

vi) 

vi i) 

re U is a posi ive semidefinite function 

the  se t  of equations f .(a.)  + ki(o) = 0 has  only the trivial 

solution 0 = 0. 

1 1  - -  

This theorem is proved by applying the Liapunov function 
n n 

V(E,z)  = J"i f,(u)du + C Jxi h:(x,)k.dk, + U(,) 
1 1 1 1 1  i=l 0 i=l o 

for which 

3 .  Dissipatively Coupled van der Pol Oscillators 

In  the case of the conservatively coupled van der Pol oscil lators 

a n  inner amplitude bound always exis ts ,  however, for the c a s e  of dis- 

sipatively coupled van der Pol oscillators, a n  inner amplitude bound 

may be found only for a certain range of resistance.  By the inner ampli- 

tude bound is meant a closed surface in the phase space such that a l l  
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trajectories starting within the surface leave the surface and no tra- 

jector ies  enter  the surface (except the origin). For the system 
3 
1 2 j z  .. 

X -I- e1 (3- 'E1) -I- w X = -C(x1-x2) -R(k -A ) 1 1  1 2  

3 

Ci e l ,  e 2 i  R >  0. 

using the  Liapunov function 

2 2 
2 2 w2 2 

X 
2 2 c  , A  / X  ,K ) =  1/2 (Al+jr )+-(x - x ' )  +-x +- v(xl 1 2 2 2 2 1 2  2 1  2 2 '  

one f inds tha t  

On converting I? = 0 to polar coordinates in  the (A , A  ) plane it is 

found tha t  if a n  R is taken such that 

1 2  

€ l e 2  

€1+€2 
O s R <  - 

then  a n  inner amplitude bound exists.  The general inner amplitude 

bound is the  hypersurface V = a constant = 1/2 r where r is the radius 2 

of the  circle centered at the origin in the (5 jC ) plane that can be in- 1' 2 

scribed i n  the curve = 0,  that is 

2 2 2 
e l C O ~  0 + c s in  e - R(cos 8 - s in  8) 

elcos 8 + e 2 s i n  e 
11 2 2 

4 4 r = min 13( 

O s e 5 2 ~ ~  



A s  a n  example, solutions were computed numerically for system (9) with 

el=l, e2=3, R =  0.5. 

The solutions do  not rapidly converge to a periodic solution. If R is 

increased to 0.8, the previous established condition on R is violated, 

and a n  inner amplitude bound may not be computed by this  method. 

The previous discussion has  shown that even though the exis- 

tence of periodic solutions cannot be proven theoretically one can  prove 

that given systems can  never decay to their singular point a t  the origin. 

4 .  Consenratively Coupled van der Pol Oscillator and a Stable System 

The behavior of the coupled system when a damped simple 

harmonic oscillator and a van der Pol oscil lator a r e  conservatively 

coupled has  been investigated. The system 

K + Al + x1 = (x2-x1) 1 .. 3 x + E(R2/3 - k2) + x2 = (x -x ) 2 1 2  

may be investigated using the positive definite function 

2 2  2 2 2  
1 2  1 2  1 2  V(Xl,A1,X2’k2) = 1/2 [ j c  + k  + (x -x ) + x  + x  3 .  

4 
2 2  j c  

1 3 
.2 HereV = -x - C (  - - R2 ) 

and V = 0 can  be  seen  to go through the origin of the (k , A  ) plane a s  1 2  

goes  through zero. Thus no circle can  be  drawn in the (k A ) plane 
2 1’ 2 

around the origin and inside the V = 0 curve. This means that no inner 

amplitude bound may b e  found from V under consideration but for C =  10, 
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numerical solutions show that  the  two equations lock into a periodic 

solution. The above absence of resul ts  may be observed for systems 

of the form 

aU*(X, xz) 

axl  
K 1+ klgl(") + = o  

Z 2 + " ( 3 - -  2 

3 
j c  au*(x, I xz) 

k ) +  = o  
ax 2 

where U*(xl, xz) is a positive definite radially unbounded function and 

g (k ) > 0 for all k gl(-K1) = gl(K1) and g (0) is finite. 1 1  1' 1 

5. Discussion 

Stability constraints have been derived for two general forms of 

coupled systems of second order nonlinear differential equations. Exam- 

p l e s  of these  systems have been investigated for oscillatory behavior, 

and  general conditions have been derived to assure  that their solutions 

never decay even though the systems have dissapative coupling. Further 

work is being undertaken on oscillatory behavior of such systems so as 

to find a resul t  similar to (**) for higher order systems. The hypersurface 

computed to find a n  inner amplitude bound is the first step.  Numerical 

r e su l t s  are not presented here for lack of space.  
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