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SOLAR THERMOELECTRIC GENERATOR ' 

DESIGN AND DENELOF'MENT PROGRAM 

V. Raag, R.E. Berlin, and L.H. Gnau 

AB STRACT 

A silicon-germanium so la r  thermoelectric generator has been designed f o r  
operation a t  a dis tance of 0.25 AU from t h e  sun. 

watts  of  e l e c t r i c a l  power a t  a nominal load voltage of  28 vo l t s ;  produces 3 6 4  
watts p e r  square foo t  of generator area; and weighs 3.23 pounds pe r  square foot .  

The design and analysis  of both thermoelectric and mechanical performances of th is  

generator Engineering layout  drawings of t he  generator  

and i t s  components a re  a l s o  presented. 

The generator de l ive r s  150 

a re  considered i n  de t a i l .  

1 



I. SUMMARY 

The object ives  o f  this program, as defined by Contract NAS3-10600, are :  

1) the  design of a 150-watt, 28-volt f l a t  p l a t e  s o l a r  thermoelectr ic  gen- 

e r a t o r  u s i n g  s i l i c o n  germanium as t h e  thermoelectr ic  mater ia l ,  and 2) t h e  

f ab r i ca t ion  of th ree  (3) representa t ive  sec t ions  of t h e  generator  (nine 

couples i n  a three-by-three array) f o r  t e s t  by NASA. T h i s  r epor t  covers t h e  

design o f  t h e  Solar  Thermoelectric Generator prepared during Tasks I and 11. 
A subsequent repor t ,  t o  be issued a t  t h e  conclusion of Task 111, will descr ibe 

the  panel  f ab r i ca t ion  program. 

i 

The po ten t i a l  appl ica t ions  o f  this generator  design would include s o l a r  

probes o r  in te rp lane tary  missions requir ing t h e  operation of spacecraf t  i n  

t he  region between Mercury and t h e  Sun. 

e l e c t r i c  generators alone o r  combined with so l a r  photovol ta ic  power suppl ies  

would appear f eas ib l e ,  However, i n  the  former case, l i t t l e  o r  no e l e c t r i c a l  

power would be generated i n  transit, i.e,, from Earth t o  design poin t ,  

E i the r  t h e  use of so l a r  thermo- 

A ma jo r  design goalwas t o  achieve a low-weight panel  s t ruc ture .  

spec i f i c  weight goal  of 4 pounds per  square f o o t  was establ ished,  with a 

capab i l i t y  of producing a m i n i m u m  of 35 watts of e l e c t r i c a l  power per  square 

foo t  when operating a t  a d is tance  of 0025  astronomical u n i t s  from t h e  suno 

A generator  

To achieve an optimal thermoelectric design configurat ion having a minimum 

system weight, there  was need a t  t h e  beginning of th i s  program f o r  ana ly t i c  

techniques b e t t e r  than thoss  previously used. 

e l e c t r i c  devices operating with a constant heat  source were no t  su i t ab le  f o r  

de t a i l ed  performance ca l cu la t ions  and f o r  t h e  design and optimization of 

thermoelectric generators  because of over-simplification and/or t h e  method of 

approach. (See Section 11.) Therefore, t he  appropriate  performance equa- 

t i o n s  were derived i n  d e t a i l  snd programmed f o r  so lu t ion  on a high speed RCA601 
Computer. 

P r i o r  analyses of thermo- 

The derived ana lys i s  which i s  discussed i n  d e t a i l  i n  Section 11, i s  unique 
i n  t h a t  i t  considers t he  heat-balance e f f e c t s  a t  t h e  hot  and cold s ides  of  t h e  



panel ( t h e  t ransverse  heat  f l o w  i n  the  hot  shoe and r ad ia to r )  and the  genera- 

t i o n  of Thomson heat  i n  t h e  thermoelements, 

Poisson heat-flow equations ins tead  of using a numerical approximation. 

addi t ion,  t h e  hot  and cold junct ion temperatures are not  assumed t o  be f ixed.  

It a l s o  solves  t h e  r e s u l t i n g  

I n  

The r e s u l t i n g  analysis, a f t e r  programming and debugging, was then ava i l ab le  

as a highly f l e x i b l e  and accurate  t o o l  f o r  optimization. 

t o  der ive  t h e  reference design, which involved t h e  ca l cu la t ion  of some 1300 

configurat ions,  i s  described i n  Section I11 A. Brief ly ,  t h e  procedure 

involved varying f o u r  parameters (hot shoe area AS, p-type element c r o s s  

sec t iona l  a r e a  +, element l eng th  e ,  and load r a t i o  m ) ,  screening the  

r e s u l t i n g  1300 configurat ions t o  narrow the range of considerat ion by c ross  

p l o t t i n g  of parameters, and then recalculat ing t h e  couple t o  thermoelec t r ica l ly  

optimize t h e  configuration. 

The procedure used 

After t h e  optimum thermoelectr ic  couple configurat ion was selected,  consider- 

a t ion  o f  t h e  state-of-the-art  capabi l i ty  t o  f a b r i c a t e  extremes i n  hot  shoe 

and element s i z e s  d i c t a t ed  making minor modif icat ions ( increase  t h e  element 

length and c ross  sect ion area)  t o  t h e  design t o  assure mechanical s t a b i l i t y .  

The reference design determined f r o m  t h e  combined thermoelectr ic  and mechanical 

ana lys i s  i s  as follows: 

No. o f  Couples 

Current 

Voltage 

Power 

?Iff i c i  ency 

Weight 

Area 

Spec i f ic  Weight 

Power/&e a 

Po we r/Weight 

Heat Transmitted 

. I  

Reference Design 

4.80 

5063 amps 
26.6 v o l t s  

150 watts 
3.57 percent  

1303 l b s  

~ $ ~ 1 2  f t 2  

3.23 l b / f t 2  

36.36 watts/ft2 

11 27 w a t t  s / lb 

a90 watts 

Objective 
- 

28 

150 

3 



H o t  Junction Temperature 

Cold Junction Temperature 

H o t  P l a t e  Temperatures 

w e  
Center 

Cold P la t e  Temperatures 

w e  
Center 

Reference Des im 0b.i ec t ive  
- 1063.8 "K (1456 OF ) 

702.8 "K (805OF) - 
nominal 

llOO09 OK (1521OF) 150OOF 
1064.4 OK (l457OF) - 

- 683.3 OK (784'OF) 

687.5 O K  (777,OF) - 

The selected generator configuration cons i s t s  of  two panels of  240 couples 

each, each p a n e l  consis t ing o f  20 sect ions f i t t e d  i n t o  a Beryllium frame. 

Once the  reference design was establ ished,  and approved by NASA, de ta i l ed  

design layouts of the  generator and t e s t  sect ions were prepared (see Sections 

I11 E and I V  A) .  

assuming specified environmental loadings, was performed (Section I11 F) 

Acceleration, v ibra t ion ,  acoust ic  noise,  and thermal cycling were considered. 

The analysis  indicated t h a t  t he  s t r e s s  l e v e l s  a re  well  below the  allowable 

s t r e s seso  

A s t r e s s  ana lys i s  of  t he  thermoelectric generator components, 

In addition, t he  temperature p r o f i l e  (Section I11 B) and the  component weight 

analysis  (Section I11 C )  on t h e  panel were performed, 

was a l s o  u t i l i z e d  t o  determine the  e f f e c t  of varying the  c h a r a c t e r i s t i c s  of 

the  hot shoe absorber coating and the  r ad ia to r  coating on the  performance of 

the  generator (Section I11 D). Furthermore, it was possible  t o  evaluate the  

off-design performance of the  generator a t  d i s tances  o ther  than 0,25 AU from 
the  sun (Section I11 D) . 

The computer ana lys i s  

In  summary, t he  following are  the  achievements of this phase of  t h e  program: 

A) A s i l i con  germaniun so la r  thermoelectric generator design has been 

determined which will produce 150 wat ts  a t  a spec i f i c  weight of 3.23 
l b / f t  

at ing i n  the  range of 0.25 AU from t h e  suno 

2 and 36.4 watts/ft2,  which can be u t i l i z e d  f o r  missions oper- 
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A rigol-ous an 

derived and computerized for use i n  design and evaluation of  so l a r  

thermoelectric generators (and which can be adapted t o  isotope 

appl icat ion with a minor modification). 

A-6Jy accurate thermoelectric ana lys i s  has been 

Detailed design layouts  of the generator and t e s t  panel have been 

prepared . 
Supporting s t r e s s  analyses have been prepared i n  depth, 

Off-design generator performance conditions have been analyzedo 
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11. SOLAR PANEL THEXMOELECT€UC GENERATOR PERFORMANCE C f i C U L A T I O N S  

In  the  design and i n  the  performance ana lys i s  of  thermoelectric power gener- 

a tors ,  a var ie ty  of methods a re  comonly used. 

based on the assumption t h a t  t he  generator operates  between f ixed  hot- and 

cold-junction temperatures. (19 2, Fixed temperature operation i m p l i c i t l y  

assumes tha t  t he  generator operates  between a heat  source and a hea t  sink of  

i n f i n i t e  capacity, Although t h i s  assumption permits considerable simplifica- 

t ion  i n  performance analyses, t he  r e s u l t s  may be considered only approximate 

because i n  ac tua l  prac t ice  t h e  assumption i s  not  j u s t i f i ed .  

cat ions,  thermoelectric generators  a re  coupled t o  f i n i t e  heat sources 

supplying constant amounts of heat,  

s i t ua t ion  t h a t  i s  converse t o  t h e  one usual ly  assumed; namely, t h e  hot- and 

cold-junction temperatures a re  var iab le  and the  hea t  input  i s  f ixed,  Solar  

thermoelectric generators and radioisotope thermoelectric generators  a re  

examples of devices operating i n  this manner. 

t h e  difference between the  t w o  types operation i s  analogous t o  t h a t  i n  t h e  

operation of an e l e c t r i c a l  network under constant voltage and constant current  

conditions 

The most usual  of these  a re  

I n  most appli-  

This condition corresponds t o  t h e  

A s  Castro and Hapb3)point out, 

A few treatments of t he  performance of thermoelectric devices have considered 

operation under conditions o f  constant hea t  input,  (3,4,5) These treatments,  

however, are not generally su i t ab le  f o r  de t a i l ed  performance analyses and f o r  

t he  design and optimization of thermoelectric generators because of fu r the r  

simplifying assumptions and/or t he  method of  approach, Castro and  hap^'^) have 

outlined the method t o  be used i n  analyzing t h e  performance of a thermoelectric 

device operating under conditions of f ixed heat input  but,  f o r  t h e  case of  a 

so la r  thermoelectric generator, have neglected re rad ia t ion  e f f e c t s  a t  t he  hot 

side. 

l o s ses  i n  the device. 

Generally, they do not consider shunt heat l o s s e s  o r  p a r a s i t i c  e l e c t r i c a l  

Fuschi l lo  e t  a d 4 )  have t r ea t ed  the  case of  a solar thermoelectric generator 

operating , i n  space i n  the form of a panel. 

do account f o r  reradiat ion e f fec ts  a t  the  hot s ide  of t he  panel, bu t  do not 

account f o r  temperature drops i n  t h e  thermoelectr ical ly  passive members of t he  

thermal c i r cu i t ;  nor do they account for p a r a s i t i c  e l e c t r i c a l  losses. 

I n  t h e i r  analyses, Fuschi l lo  e t  a l  

Moreover, 
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they make t h e  imp l i c i t  assumption t h a t  the  n- and p-type l e g s  of t h e  thermo- 

couples possess  i d e n t i c a l  thermoelectric proper t ies ,  a condition t h a t  i s  

rarely, i f  ever, met i n  prac t ice .  

power i s  t r ans fe r r ed  t o  t h e  load when the i n t e r n a l  and load r e s i s t ances  are 

matched. 

conditions,  and only appl ies  under conditions of f ixed  temperature operation. 

Final ly ,  Fuschi l lo  e t  a l ( 4 )  neglec t  the e f f e c t s  of t ransverse  heat  f low i n  t h e  

heat-col lect ion and heat-reject ion p l a t e s  on t h e  opposite f aces  of t h e  panel, 

and i m p l i c i t l y  assume t h e  temperature independence of t he  Seebeck coef f ic ien t  

of t h e  thermoelectr ic  mater ia l  by neglecting Thomson heat  i n  t h e  n e t  hea t  

balance of t he  thermoelementso 

The f u r t h e r  assumption i s  made t h a t  m d m u m  

T h i s  condition i s  not  t r u e  f o r  operat ion under f ixed hea t  input  

Lyon and A n d e r ~ o n ' ~ )  descr ibe a s o l a r  thermoelectric energy conversion panel  

i n  terms of a simultaneous set of time-dependent, non-linear second-order 

d i f f e r e n t i a l  equations. 

solved numerically on a computer. 

more sophis t ica ted  than most o thers  and makes fewar simplifying assumptions, 

it i s ,  nevertheless ,  unsui table  for designing a p r a c t i c a l  s o l a r  thermoelectr ic  

energy conversion panel and for character iz ing t h e  performance of t h a t  panel  

i n  terms of changing input  condi t ions and panel propert ies .  The reasons f o r  

this conclusion are:  

across  a l l  thermoelec t r ica l ly  passive members (such as e l e c t r i c a l  i n su la to r s ,  

cur ren t  conductors, etc.) between t h e  thermoelements and t h e  heat-col lect ion 

and heat-reject ion p l a t e s  t h a t  usually e d s t  i n  an actual generator  and 2) 
t h a t  t h e  treatment i s  based on i n i t i a l l y  chosen hot- and cold-junction tempera- 

t u r e s  and calculated generator  dimensions. 

temperatures t o  vary and t o  f i x  t h e  enerator configurat ion because t h i s  i s  

how a generator  ac tua l ly  operates. (" To study t h e  behavior of a generator  
under condi t ions of varying input ,  such as varying values  of inc ident  s o l a r  

heat  flux, i t  i s  much more convenient t o  use t h e  l a t t e r  approach. 

cedure i s  a l s o  t r u e  i f  it i s  des i red  t o  i n v e s t i g a t e  the  performance of a 

f ixed configurat ion solar thermoelectric panel i n  terms of varying p rope r t i e s  

of component mater ia ls ,  such a s  the  emittance c h a r a c t e r i s t i c s  of coatings,  

which may undergo change with time. Moreover, Lyon and Anderson") only t r e a t  

t h e  case i n  which d i r e c t  heat  t r a n s f e r  between t h e  heat-reception and heat- 

r e j e c t i o n  p l a t e s  takes p lace  by radiation. Many so la r  panel  thermoelectr ic  

Because of non-analyticity, these  equations are 

Although this treatment i s  considerably 

1) t h a t  t h e  treatment neg lec t s  t he  temperature drops 

It i s  more r e a l i s t i c  t o  allow 

This pro- 
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generators,  however, a re  designed with in su la t ion  i n  t h e  space between the  

p l a t e s  so tha t  t he  ac tua l  mode of heat t r a n s f e r  i s  conduction r a the r  than 

rad ia t ion .  

Because of some of the  shortcomings of  most  previous attempts t o  def ine t h e  

method o f  analysis o f  thermoelectric devices, it was concluded t h a t  a new 

ana lys is  would be required t o  permit t h e  design and optimization of  p r a c t i c a l  

solar thermoelectric generators operating i n  space. A s  a r e s u l t ,  appropriate 

performance equations were derived i n  d e t a i l  and programmed f o r  solut ion on 

a high speed computer, 

l a t e r .  O f  a l l  previous attempts t o  r igorously def ine the  performance ana lys i s  

of so l a r  thermoelectric generators,  t h a t  of Lyon and Anderson") probably most 

c losely approximates the  present  treatment. 

d e t a i l  t he  heat balance e f f e c t s  a t  the  hot and cold s ides  of the  panel and 

account f o r  t h e  generation (absorption) o f  Thomson heat  i n  the  thermoelements. 

Both of  these e f f e c t s  a re  generally handled supe r f i c i a l ly  o r  completely 

ignored i n  most o ther  treatments. 

between the  present  work and t h a t  of Lyon and Anderson('), Aside from the  

shortcomings already c i ted ,  which have been accounted f o r  i n  the  present  

treatment, Lyon and Anderson") obtain numerical solut ions t o  t h e i r  differen-  

tial equations on a computer. 

geometry of heat-reception and heat-rejection p l a t e s  enables ana ly t i ca l  

solut ion of t hes s  d i f f e r e n t i a l  equations. 

s l i g h t  l o s s  of r igor ,  which i n  prac t ice  has almost negl ig ib le  e f f e c t s  on the  

r e su l t s ,  but permits considerably grea te r  i n s igh t  i n t o  t h e  physics of  t h e  

problem, 

Anderson(') solve the  time-dependent problem, whereas the  present  work considers 

the  time-independent s i tua t ion ,  

where the re  a r e  rapid changes i n  the  inc ident  perpendicular heat  flux on t h e  

heat-reception p la te ,  

planet  o r  if the  generator rap id ly  a l t e r s  i t s  o r i en ta t ion  with respect  t o  t he  

suno 

Final ly ,  modifications i n  t h e  present development w i l l  a l s o  permit i t s  use i n  

the  design and analysis  of radioisotope thermoelectric generators. 

The method used f o r  doing t h i s  work W i l l  be developed 

Both treatments consider i n  

There a re ,  however, basic  d i f fe rences  

In  the  present  work, a s impl i f ica t ion  of the  

The s impl i f ica t ion  r e s u l t s  i n  a 

Another basic d i f fe rence  between t h e  two treatments i s  t h a t  Lyon and 

Time-dependence i s  important only i n  cases  

Such changes m a y  occur i n  the  close proximity of a 

The present treatment does not consider such s h o r t - t h e  t r ans i en t  e f f ec t s ,  
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The model used i n  developing the  necessary equations which descr ibe the  per- 

formance of a so la r  thermoelectric generator i s  i l l u s t r a t e d  i n  Figure 1, 
The s ingle  thermocouple represents  a building-block o f  t he  generator and 

serves a s  t h e  u n i t  on which a l l  calculat ions a re  performed. Desired power 

INCIDENT HEAT 

HEAT RECEPTION PLATE 

HOT STACK 

INSU LATl ON (OPT1 ONA L) 

THERMOELEMENTS 

ELECTRICAL CONNECTOR 

COLD STACK 

HEAT REJECTION PLATE 

REJECTED HEAT 

FIGURE 1. SCHEMATIC-CROSS SECTION OF THE THERMOCOUPLE 

voltage c h a r a c t e r i s t i c s  of  a system are obtained by appropriate combinations 

of s ing le  thermocouples. 

reception and heat-rejection p l a t e s ,  i n  between which a re  the  n- and p-type 

thermoelectric elements. 

a re  so-called "stacks" which metal lurgical ly  connect t he  elements t o  the  p la tes .  

The purpose of the  stacks i s  t o  re l ieve  s t r e s s e s  t h a t  a r i s e  from d i f f e r e n t i a l  

thermal expansion o f  the  p l a t e s  and the elements, and t o  afford low-loss 

thermal coupling between these members. 

e l e c t r i c a l  i n su la to r s  t o  i s o l a t e  t h e  e l e c t r i c a l  c i r c u i t  from the  remainder of 

t h e  s t ruc ture .  

not occupied by thermoelements may be f i l l e d  with thermal insu la t ion .  

The thermocouple configuration cons i s t s  of heat- 

Generally, on both ends of t h e  thermoelements, there  

If necessary, t he  s tacks a l so  include 

To minimize shunt heat  losses ,  the  space between the  p l a t e s  
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The thermocouple shown i n  Figure 1 has a fixed configuration and contains  

d e f i n i t e  mater ia ls  with t h e i r  corresponding physical  p roper t ieso  

couple configuration, although f ixed,  i s  completely a r b i t r a r y  and the  dimen- 

sions of i t s  components have i n  no respect  been optimized. 

thermocouple i s  assumed t o  be exposed t o  a perpendicular heat flux W. 

o f  the  f i n i t e  thermal res i s tance  of t he  thermocouple configuration, t he  inc ident  

heat f l u x  w i l l  e s t ab l i sh  a temperature d i f fe rence  across  it. 
appearing on the  back s ide of  t he  thermocouple w i l l  be d iss ipa ted  by rad ia t ion  

i n t o  space a t  an assumed space temperature of  zero degrees Kelvin, 

The thermo- 

One f ace  of t he  

Because 

The heat 

The t o t a l  heat incident  on t h e  thermocouple i s  given by 

where + i s  t he  area and a i s  the  absorp t iv i ty  of t h e  heat-reception plate .  

The t o t a l  heat,  QT, flowing from the  heat-reception t o  t he  heat-reject ion 

p l a t e  i s  l e s s  than the  incident  heat,  Q,, because some of t he  heat  absorbed 

by the  heat-reception p l a t e  i s  reradiated i n t o  space, as expressed by 

where u i s  t he  Stefan-Boltmann constant,  €> i s  the  emissivity,  and TH(A)  

i s  the temperature of  t he  heat-reception p l a t e  surface. The temperature of 

the  heat-reception p l a t e  surface i s  not constant because the  heat  received 

by the  p la te  tends t o  p re fe ren t i a l ly  f l o w  towards the  thermoelements which 
o f fe r  l e s s  thermal res i s tance  t o  heat f l o w  thandoes d i r e c t  t r ans fe r  between 

the  heat-reception and heat-reject ion plates .  

e i t h e r  by the in se r t ion  of  thermal insu la t ion  between the  p l a t e s  o r  by low 

emissivity coatings between o r  on t h e  in s ide  surfaces  of t he  p la tes .  

r e su l t an t  transverse heat  flow i n  t h e  p l a t e s  gives  r i s e  t o  temperature 

gradients.  

indicat ing t h a t  t he  va r i ab le s  used must be compatible with those of t he  

incremental a rea  dA. The choice o f  var iab les  o r  coordinates W i l l  be deferred 

u n t i l  l a t e r .  

by in tegra t ion  over t he  surface. 

B i rec t  t r a n s f e r  i s  inh ib i t ed  

The 

The A i n  the  function TH(A)  serves only temporarily as a dummy, 

The t o t a l  heat reradiated by the  surface i s  therefore  obtained 
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On the  opposite face  of the  panel, the outer  surface of the  heat-rejection 

p l a t e ,  a l s o  having an a rea  +, i s  cooled by the  rad ia t ion  of heat  t h a t  has 

been t ransported through the  thermocouple. 

than QT by t h e  amount t h a t  has been converted t o  e l e c t r i c i t y .  

be wr i t ten  

The quant i ty  of  such heat  i s  l e s s  

Thus, it may 

where Po i s  the  e l e c t r i c a l  power output, Cc i s  t h e  emissivity, and T C ( A )  i s  
the  temperature of t he  outer  suPface o f  t he  heat-rejection p la te .  Just  as 

i n  the  case of t he  heat-reception p l a t e  and f o r  a s imilar  reason, t he  temp- 

erature  of t he  heat-rejection p l a t e  i s  position-dependent and t h e  t o t a l  

heat rad ia ted  i s  obtained through in tegra t ion  over t he  surface. 

To obtain expressions f o r  t he  temperature funct ions TH(A)  and T C ( A ) ,  it 
i s  necessary t o  solve Poisson's equation f o r  t he  heat-reception and heat- 

r e j ec t ion  p la tes .  

sence o f  heat sources and heat sinks and i s  given by 

Poisson's equation descr ibes  steady heat f l o w  i n  the  pre- 

R 
- k  

v 5  = - ( 4 )  

where R represents  the  r a t e  a t  which heat i s  supplied per  u n i t  volume and 

k i s  the  thermal. conductivity of t h e  material.. 

there  a r e  three  contr ibut ions t o  R,viz.,the inc ident  heat from t h e  sun, the  

heat re rad ia ted  from the  face of t h e  plate,and the  shunt heat t ransfer red  

d i r e c t l y  between the  heat-reception and heat-rejection p la tes .  

reception p l a t e ,  t he  quant i ty  R, denoted a s  %, may therefore  be wr i t ten  a s  

For t he  heat-reception p l a t e ,  

For the  heat- 

where tH i s  the  thickness of  t h e  heat-reception p l a t e ,  A 

heat-reception and heat-rejeotion p l a t e s  not covered by the  n- and p-type 

thermoelements, and dQ (A)/dA 

i s  the  area of  t h e  
.S 

i s  the shunt heat per  u n i t  area d i r e c t l y  trans- 
S S 

fe r red  between the  heat-reception and heat-rejection p l a t e s  a s  a function o f  
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pos i t ion  on these  p la tes .  

dQ (A)/dA 

Depending on t h e  mode of shunt hea t  transfer, 

has the  following forms: 
S S 

( 6 )  

dQ ( A )  k -- S = 3 l[TH(A)-ATH(A)l - [TC(A) + ATC(A) 

S ts dA 

dQs ( A) 

dA I[ - 
T H ( d  ( A )  14- [TC(A) + ATc(A)]41 ( r ad ia t ion )  

5 

where ks i s  t h e  thermal conduct ivi ty  and ts i s  t h e  thickness  of insu la t ion .  

The emissivity,  €s, i s  t h e  n e t  emissivi ty  of t h e  inne r  surfaces  of t h e  two 

p l a t e s  and may be approximated by t h e  expression f o r  t he  n e t  emiss iv i ty  of two 

p a r a l l e l  surfaces 

- 1 
+-  - 1  CS - 

‘HI ‘CI 

(7) 

where CHI and €CIare t h e  emis s iv i t i e s  of t h e  inne r  surfaces  of t h e  heat- 

recept ion and heat-reject ion p l a t e s .  

by appropriate subscripts,  account f o r  t h e  d i f fe rences  i n  t h e  temperatures of 

t he  outer  and inner  sur faces  of t h e  heat-reception and t h e  heat-reject ion 

p l a t e s e  

t i ve ly ,  where IfI and Kc r e f e r  t o  the  thermal conductances of t h e  heat-reception 

and heat-rejection p la tes .  

position-dependent a x i a l  t empera tursdrops  i n  t h e  two p l a t e s  by t h e i r  average 

values and i s  va l ida ted  by t h e  f a c t  t h a t  such drops a re  t y p i c a l l y  of t h e  order  

of a degree centigrade o r  less, depending on panel  cons t ruc t iona l  ma te r i a l s  

and p r sc i se  configuration. Eqs. ( 6 )  i m p l i c i t l y  neglect  t h e  t ransverse  hea t  

flow i n  t h e  in su la t ion  o r  t h e  r ad ia t ion  space between the  p l a t e s  because 

in t eg ra t ion  of the  equation 

i n  weighted average temperatures being used. 

approximation because i n  most thermocouples of p r a c t i c a l  i n t e r e s t ,  shunt hea t  

forms only a very s m a l l  por t ion of t h e  t o t a l  hea t  transmitted.  Furthermore, 

i n  most cases, TH(A)  and TC(A) are only r e l a t i v e l y  slowly-Yarying funct ionso 

Naturally, i n  the  limit of vanishing kS o r  €s, t h e  approximation becomes exact. 

The AT f a c t o r s  i n  Eqs. (61, i d e n t i f i e d  

Therefore, they m a y  be approximated by +/%, and (Q,.+’o)/Kc, respec- 

This  approximation e f f ec t ive ly  rep laces  t h e  

i n  the  ca lcu la t ion  of t o t a l  shunt hea t ,  r e s u l t s  

This  i s  a re la t ive ly  minor 
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I n  a manner s imi la r  t o  t he  case of t he  heat-reception p l a t e ,  the  quant i ty  R 
f o r  t he  heat-reject ion p l a t e ,  denoted by Rc, i s  given by 

R = -  '(A) + dQ S (*) ] 
dA 

-9 

1 
tC 

where tC i s  the  thickness of t he  heat-rejection p la te .  

only two terms en ter  t he  equation3 

shunt hea t  d i r e c t l y  t ransfer red  t o  the  p la te .  

In  this instance,  

the hea t  radiated i n t o  space and t h e  

Eq. (4) with Eqs, (5) and (8) 
heat-reception and heat-rejection plates.  

however, a r e  nonanalytic i n  the  sense tha t  closed-form solut ions a re  not  gen- 

e r a l l y  possible .  

o r  t o  simplify the  problem so t h a t  analyt ic  so lu t ions  a re  possible. 

the  l a t t e r  approach f o r  calculat ion purposes, it i s  assumed t h a t  t h e  heat- 

reception and heat-rejection p l a t e s  possess r a d i a l  symmetry. I n  o ther  words, 

f o r  ca lcu la t ion  purposes, the  p l a t e s  of square c ros s  sect ion a re  replaced by 
p l a t e s  of c i r c u l a r  c ross  section so that  t he  t o t a l  p l a t e  areas  remain the  

same. 

possessing an a rea  equal t o  the  combined areas  of t h e  n- and p-type thermoelements. 

The l a t t e r  approximation i s  negl ig ib le  i n  many cases  because frequent ly  t h e  

n- and p-type thermoelements a re  purposely designed with semicircular 

sec t iona l  areas.  

t h e  t o t a l  cross-sectional a r ea  of  the  two thermoelements i s  already near- 

c i rcu lar .  

urat ion.  

r a the r  than of square p l a t e s  i s  good because it d i r e c t l y  en ters  i n t o  the  calcu- 

l a t i o n  of only the  t ransverse temperature d i s t r i b u t i o n  of t he  p l a t e s  and, i n  

def ine the temperature d i s t r i b u t i o n  i n  t h e  

The equations f o r  t he  two cases,  

The way t o  proceed i s  t o  e i t h e r  obtain numerical, so lu t ions  

Adopting 

The thermoelements are combined i n t o  one of c i r cu la r  cross  sect ion,  

cross- 

Facing each other, with a m a l l  separation between them, 

Figure 2 schematically i l l u s t r a t e s  t h e  assumed thermocouple config- 
The approximation r e su l t i ng  from t h e  assumption of c i r c u l a r  p l a t e s  

most cases o f  p r a c t i c a l  i n t e r e s t ,  only 

thermocouple performance. This e f fec t  

the  t ransverse temperature-drop i n  t h e  

thermoelectric material .  Usually, t h e  

l a t t e r  a 

has a second order e f f ec t  on calculated 

may be seen approximately by comparing 

p l a t e s  with t h a t  across the  ac t ive  

former i s  only a few percent of  t h e  

13 



HOT STACK 

HEAT RECEPTION PLATE 

TH E RMOE L EM EN TS 

INSULATION 
COLD STACK 

HEAT REJECTION PLATE 

ACTUALPLATE 
CONFIGURATION 

FIGURE 2. MODEL OF THERMOCOUPLE USED IN TRANSVERSE 

HEAT FLOW CALCULATIONS 

Before proceeding with t h e  mathematical development, it may a l s o  be w e l l  t o  

emphasize the f a c t  t h a t  t he  r a d i a l  geometry adopted f o r  t ransverse hea t  calcula- 

t i o n  i n  t h e  p l a t e s  has no e f f ec t  on the  geometry of  t he  remainder of  t h e  

thermocouple because, a s  already s ta ted ,  t he  shunt heat  d i r e c t l y  t ransfer red  

between the heat-reception and heat-rejection p l a t e s  i s  assumed t o  be a x i a l l y  

d i rec ted  with no t ransverse component. A s imi la r  assumption will be made f o r  

heat flowing i n  the  thermoelements. 

all t h e  calculat ions performed f o r  the  por t ions  of t he  thermocouple between 

the  p l a t e s  will be independent of  t h e  prec ise  geometry of  t he  components i n  t h e  

plane p a r a l l e l  t o  the  p la tes .  

a reaof  the components, not t h e i r  p rec ise  configuration. 

The r e s u l t s  of these assumptions a re  t h a t  

The only f a c t o r  of i n t e r e s t  i s  the  cross-sectional 



Poisson's Eq. ( 4 )  i n  two-dimensional cy l indr ica l  coordinates may be wr i t ten  

as 

Because of symmetry, t he  second term on the  l e f t  hand s ide  of Eq. ( 9 )  
vanishes and the  r e s u l t  i s  an ordinary second-order d i f f e r e n t i a l  equation, 

Upon subs t i tu t ion  f r o m  Eqs. (5) and ( 8 ) ,  the  d i f f e r e n t i a l  equations f o r  

t he  heat-reception and heat-rejection p la tes  may be wr i t ten ,  respect ively,  

as 

1 
r 
- 

- 1 
r 

where kH 
ind ica te  

( r+)=--  1 
d r  k ~ t ~  

1 

and kC are  t h e  thermal conduct ivi t ies  of t he  two plates .  

t h a t  the  shunt heat t r a n s f e r  terms Q 
Eqs. (6) 

a re  funct ions of both T H ( r )  and 
S 

T C ( r ) ;  therefore ,  Eqs. (10) a re  simultaneous, 

s o l u t i o n . i s  t o  s e t  T C ( r )  i n  t he  f i r s t  of %so (10) equal t o  a constant and solve 

f o r  T H ( r ) .  

solut ion t o  be found f o r  T c ( r )  which i s  now subs t i tu ted  i n  the  f i r s t  equation 

so t h a t  a new solution f o r  T H ( r )  may be found. 

often a s  i s  necessary t o  obtain consistency o f  t he  funct ions f o r  T H ( r )  and T C ( r )  

between successive approximations, 

In  pr inc ip le ,  t he  method of  

Subst i tut ion o f  t h i s  T H ( r )  i n  the  second of  Eqs. (10) enables a 

The process i s  repeated as 

Although i n  pr inciple ,  4 s 0  (10) may be conveniently solved; i n  pract ibe,  

because of the  nonl inear i ty  of  t he  r igh t  hand sides,  t he  solut ions a r e  not  

e a s i l y  obtained. 

apparent a f t e r  Eqso (10) a r e  rewr i t ten  a s  

A simpler and more e f fec t ive  method of  solut ion becomes 

RC ( r 2 )  =,- 
kc 

dT 

r d r  
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where % and Rc a re  given by 

Eqs. (l), ( 2 ) ,  and ( 3 )  have been used t o  wri te  Eqs. (12). 

t he  position-dependent heat transfer r a t e s  pe r  u n i t  area by t h e i r  average 

values i n  Eqs. (12), it i s  possible  t o  t r e a t  I$ and Rc as constants,  The 

solution of Eqs. (11) i s  now t r i v i a l ,  being obtained by two successive in t e -  

grations.  

t he  temperature gradient  a t  t he  edge of t h e  two p l a t e s  vanishes. 

i t i o n  corresponds t o  t h e  assumption t h a t  p l a t e  edges a re  insu la ted  and a l l o w s  
the  evaluation o f  one of  t he  two in tegra t ion  constants.  

d i s t r ibu t ions  obtained f o r  t he  two p l a t e s  a re  given by the  funct ion 

By replacing all 

After t h e  f i r s t  in tegra t ion ,  use i s  made of the  condition t h a t  
This cond- 

The temperature 

T ( r )  = R [ro2 In (E)- $ (r2 

where r and ro are  the  r a d i i  between which 

evaluated. Eq. (13) i s  general  and appl ies  

the  heat-rejection p la tes .  The d i s t inc t ion  

i 

(13) 

t he  temperature d i s t r i b u t i o n  i s  
equally t o  the  heat-reception and 

between the  two cases can be 

made by appropriate subscr ipts  on T (r) 

corresponds t o  t h e  outer  edge of t he  p l a t e ,  whereas r represents  t he  radius  

of t h e  combined n- and p-type thermoelements (Figure 2). The temperature, 

T ( r i ) ,  corresponds t o  t he  temperature of t he  region on the  surfaces  of t h e  

heat-reception and heat-rejection p l a t e s  immediately adjacent t o  the thermo- 

elements- This region i s  assumed t o  be equal i n  a rea  t o  t h e  t o t a l  area of 

the  thermoelements and t o  have the  constant temperature.T(ri)  . 
t i o n  i s  consis tent  with t h a t  made i n  regard t o  axial heat  flow i n  the  thermo- 

elements when the  ax ia l - f low region i s  extended on t h e  extremit ies  of t he  

thermoelements t o  include the  hot and cold s tacks  and the  cen t r a l  port ions of  

each p la te .  

t he  heat-reception and heat-rejection p l a t e s  not  covered by t h e  thermoelements, 

a re  given by 

T (Ti) , R and k. The rad ius  ro 

i 

T h i s  assump- 

The heat  t r ans fe r  r a t e s ,  % and Re, averaged over t h e  port ions of 
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where A 

Eqs. (11) were solved by f i x i n g  the  values of  and Rc. Because the  solut ions 

of these equations, represented by Eq. (13), a r e  used successively i n  t h e  

solut ion of t h e  over-all  problem, as  will be seen l a t e r ,  t h e  f ixed  values of F$ 

and Rc will a l s o  be i t e r a t e d ,  

and T (r .)  i n  any given i t e r a t i o n  w i l l  be used i n  Eqs. (14) t o  obtain new 

and Rc values  f o r  use i n  t h e  next i t e r a t ion ,  

t he  e f f e c t s  of replacing the  position-dependent heat  t r a n s f e r  r a t e s  per  u n i t  

area by t h e i r  average values i n  Eq. (12)0 
Eqs. (11) a re  solved i n  e f fec t  through a method of  successive approximations, 

and A a r e  the  cross-sectional a reas  of n- and p-type thermoelements. 
n P 

The values ca lcu la ted  f o r  ,%, Q,, Po, T H ( r i ) ,  

rk C l  
Thus, it i s  possible  t o  minimize 

The n e t  r e s u l t  i s  t h a t  Poisson’s 

Radii ri and ro m a y  now be expressed i n  terms of t o t a l  p l a t e  areas  

the  a reas  An and A 

and 

of  t h e  n- and p-type thermoelements as 
P’ 

For sake of completeness, the  area of shunt heat  t r ans fe r ,  A 

I n  terms of  t he  other  areas  as  
m a y  be defined 

S’ 

As = + - (An + Ap’ 

The defined system of coordinates t o  be used i n  t r e a t i n g  the  heat-reception 

and heat-reject ion p l a t e s  and the  expressions obtained f o r  the  temperature 

d i s t r i b u t i o n s  on these p la tes ,  can now be used t o  rewri te  4 s .  (21, ( 3 ) ,  and 

(6), Eq. (2) may now be wr i t ten  as  

‘i 
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r i 

i r 

Because some of t he  indicated in t eg ra t ions  a r e  no t  e a s i l y  accomplished i n  

ac tua l  use, it i s  convenient t o  replace the  in t eg ra t ions  by summations. To 

avoid rewrit ing Eqs, (17), (18), and (19) i n  terms of f i n i t e  sums, only the  

general  formula t h a t  appl ies  t o  all of these  equations i s  given 

r i 

where f ( r )  r e f e r s  t o  any of t h e  integrands i n  Eqs. (171, (18), and (191, n i s  

the  summation index, and N i s  the  number of terms i n  each sum by which it i s  
desired t o  approximate the  in t eg ra l s .  

the  more closely the  i n t e g r a l s  a r e  approximated. 

Obviously, t he  g rea t e r  t he  value of N, 

Eqo (17) represents  the heat  balance a t  t h e  heat-reception p la te .  

corresponding re la t ionship  f o r  t h e  heat-reject ion p l a t e  i s  given by Eq. (18) . 
Eq0 (19) descr ibes  the  d i r e c t  shunt heat  t r a n s f e r  between the  two p la t e s .  

What i s  s t i l l  needed, however, i s  a r e l a t ionsh ip  descr ibing the  heat  t r a n s f e r  

between t h e  p l a t e s  t h a t  t akes  place through the  thermoelements. 

ship i s  obtained from de ta i l ed  hea t  balancing a t  e i t h e r  t h e  hot  o r  t he  cold 

junct ions o f  t he  thermoelements. 

ship may be wr i t ten  

The 

T h i s  re la t ion-  

For t h e  hot  junct ion,  t he  following re la t ion-  
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where I$ i s  the  thermal conductance of the thermocouple, T H j  and TCJ are t h e  

hot and cold junct ion temperatures, respectively,  I i s  the  current  flowing 

i n  the  thermocouple, SHj i s  t h e  absolute value of  t h e  Seebeck coeff ic ient  

difference between the  n- and p-type thermoelements a t  the  hot junction, RI 
i s  the  t o t a l  i n t e r n a l  e l e c t r i c a l  res is tance of  t he  thermocouple, and p i s  the  

temperatur-averaged ne t  Thomson coef f ic ien t  of t he  thermoelements. 

term on t h e  r i g h t  hand s ide of  Eq. (21) represents  t he  heat conducted through 

the  thermoelements. 

a s  a r e s u l t  of  t h e  P e l t i e r  e f fec t .  The t h i r d  accounts f o r  t he  f a c t  t h a t  one- 

half  of t h e  Joule heat generated i n  t h e  l e g s  o f  t he  thermocouple a s  a r e s u l t  of 

current  flow i s  conducted t o  t he  hot junction, and t h e  l as t  term makes a 

similar assumption about t he  heat  generated (absorbed) i n  the  l e g s  a s  a r e s u l t  

of  t he  Thomson ef fec t .  

The f i r s t  

The second describes t h e  heat  absorbed a t  t he  hot  junction 

( 7 )  

Current I i n  the  thermocouple may be expressed i n  terms of e l e c t r i c a l  r e s i s -  

tances, junct ion temperatures, and Seebeck coe f f i c i en t  values as 

where S i s  the  temperature-averaged absolute value of t he  difference between 

the  Seebeck coe f f i c i en t s  of t h e  n- and p-type thermoelements, % i s  t h e  value of 

e l e c t r i c a l  load resis tance,  and m i s  the r a t i o  of load t o  i n t e r n a l  e l e c t r i c a l  

res i s tance ,  

found 

Subst i tut ing Eq. (22) i n  Eq. (21) and solving f o r  THJ, it i s  

1 

where a, b, and c a re  given by 
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Eq. (23) r e l a t e s  t h e  hot  and cold junction temperatures of  t h e  thermoelements 

i n  terms of  thermocouple mater ia l  cha rac t e r i s t i c s ,  e l e c t r i c a l  load res i s tance ,  

and t h e  t o t a l  heat transported t o  t h e  hot junct ions of t he  thermoelements. 

Because the heat balance Eq. (23) i s  wr i t ten  i n  terms of t he  hot and cold 

junction temperatures, and because the  remainder of t he  heat balance Eqs. (171, 
(18), and (19) are  wri t ten i n  terms o f  t he  temperatures of  t he  cen te r  

port ions of  the  heat-reception and heat-rejection p l a t e s ,  TH(ri) and TC(r i )  , 
it i s  necessary t o  r e l a t e  these temperatures. T h i s  re la t ionship  i s  achieved 

by considering axial  conduction of  heat through the  hot and cold s tacks  and 

the  plates .  On the  cold s ide,  t h e  re la t ionship  may be expressed as 

QT-Qs-po + QYP0 

KC 
TCJ = TC(ri)  + 

s 

where Kcs i s  t h e  thermal conductance of t h e  cold s tacks and KC i s  t h e  axial 

thermal conductance of  t he  h e a t r e j e c t i o n  p la te .  

on t h e  ho t  s ide has the  form 

The corresponding equation 

where %s i s  t h e  thermal conductance of  t he  hot s tacks and % i s  the  a x i a l  

thermal conductance of t he  heat-reception p l a t e .  Eqs. (24) and ( 2 5 )  a re  only 

approximate because,for t he  a x i a l  temperature-drops across the  heat-reception 

and heat-rejection p la tes ,  as already s ta ted ,  they o n l y  represent  average 

values. Because of  t he  inherent  smallness of such temperaturedrops,  however, 

the  effect  of this approximation on f i n a l  r e s u l t s  i s  negl igible ,  

Impl ic i t  i n  the above developmentis  the  assumption t h a t  both t h e  n- and p-type 

thermoelements have iden t i ca l - junc t ion  temperatures. 

assumption depends pr imari ly  on the  r e l a t i v e  thermal conductances of the  hot 

and cold s tacks o f  the  thermocouple. The junct ion temperatures a re  very close 

t o  each other if t h e  s tacks a re  highly conductive i n  comparison t o  t h e  thermo- 

couple legs. Because this condition i s  basic  t o  obtaining m a x i m u m  performance 

from a thermocouple, only s tacks which f u l f i l l  this requirement a re  general ly  

The v a l i d i t y  of this 
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used i n  p r a c t i c a l  thermocouples. Moreover, i n  some instances,  t he re  a re  no 

s tacks a t  one o r  both s ides  of the  thermoelements; i n  other  instances,  both 

thermoelements share a common stack. 

junct ions have t o  be a t  t h e  same temperature, 

of i d e n t i c a l  temperatures f o r  t he  junctions of n- and p-type thermoelements i s  

considered t o  be well j u s t i f i e d .  

In such cases, by de f in i t i on ,  t he  

I n  all cases, however, t he  use 

One more equation i s  needed t o  complete t h e  formal exposition o f  performance 

equations f o r  a so l a r  thermoelectric power generator. 

straightforward and r e l a t e s  e l e c t r i c a l  power output t o  t h e  temperatures, t he  

mater ia l  cha rac t e r i s t i c s ,  and the  configuration of t h e  thennocoupler 

This equation i s  

Most of t h e  performance equations i n  the foregoing treatment contain configur- 

ation-dependent quan t i t i e s  such a s  conductances and resis tances .  

d e f i n i t i o n  of these quan t i t i e s  i n  terms of mater ia l  p roper t ies  and geometry i s  

t r i v i a l  and will be deferred u n t i l  l a t e r .  

ca lcu la t ion  of  temperature-averaged thermoelectric property da t a  and the  compu- 

t a t i o n  of thermocouple weight. 

The prec ise  

T h i s  condition a l s o  appl ies  t o  t h e  

An inspect ion of the  above equations shows t h a t  there  a re  bas ica l ly  f i v e  

unknown q u a n t i t i e s  t h a t  must be determined so t h a t  thermocouple performance 

may be completely characterized. 

and TH(ri) .  

these f i v e  quant i t ies ,  viz. (171, (181, (19), ( 2 3 ) ,  and ( 2 6 ) .  It i s  assumed 

These quan t i t i e s  are $r, Qs, Po, TC(ri) ,  
However, there  a re  the  same number of basic  ,equations t h a t  r e l a t e  

t h a t  Eq. (23) may be expressed i n  terms of  T C ( r . )  and TH(ri) ins tead  of TCJ 
and THJ by means of Eqs. (24.) and (25). By combining and rewri t ing some of  

l. 

t he  f i v e  equations, it i s  possible  t o  reduce t h e  number of unknown quan t i t i e s  

and the  corresponding number of equations, 

change t h e  basic problem which i s  one of  a s e t  of simultaneous equations. 

Because of the  nature of t he  equations involved, it i s  not possible  t o  reduce 

the  s e t  t o  one equation and one unknown through ana ly t ic  techniques. 

solut ion must be obtained by a method of successive approximations a s  follows: 

However, this procedure does not 
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A f ixed thermocouple configuration i s  assume-. 

component geometry, i s  completely a r b i t r a r y  because it i s  not  known a p r i o r i  

f o r  what combination o f  component dimensions thermocouple performance i s  
optimized o r  s a t i s f i e s  imposed boundary conditions,  

all required mater ia l  p roper t ies  t h a t  en te r  i n t o  t h e  r e l a t ed  equations. 

Because most mater ia l  p roper t ies  a re  temperature-dependent and because, i n i t i a l l y ,  

t he  temperature range i s  unknown over which the  thermocouple will ac tua l ly  

operate, it i s  su f f i c i en t  i n  the  first approximation t o  choose property values 

t h a t  a r e  averages i n  the  temperature range over which it i s  reasonably expected 

t o  operate. 

temperatures have thus been established, new values  f o r  t he  required proper t ies  

m a y  be subst i tuted and the  ca lcu la t ion  repeated. Because the  solut ion of t he  

over-all problem, as will be shor t ly  seen, i s  obtained by successive approxi- 

mations, it Will be s u f f i c i e n t  t o  use the  temperatures of a given approximation 

t o  ca lcu la te  t h e  temperature-averaged proper t ies  which wi l l  be used i n  the  

next approximation before the  start of  each new i t e r a t i o n .  

procedure i s  conveniently done by introducing property da ta  a s  a funct ion of  

temperature e i t h e r  a t  f ixed temperature i n t e r v a l s  o r  i n  the  form of  equations 

obtained from f i t t i n g  the data .  Because it i s  t h e  thermoelectric property da ta  

that generally have the  g rea t e s t  e f f e c t  on calculated thermocouple performance, 

it usual ly  suf f ices  if only these da ta  are in tegra ted  a f t e r  each i t e r a t ion .  

remainder of t h e  proper t ies  may i n i t i a l l y b e  given approximate average values 

t h a t  remain f ixed throughout t h e  calculat ion.  

h i s  configuration, i n  terms of 

Values a re  assumed f o r  

After a solut ion has been obtained and more prec ise  operating 

On a computer, this 

The 

The use of 4. (1) enables the  ca lcu la t ion  of t h e  heat  incident  Q, on the  

thermocouple f o r  a given value of incident  solar-heat flux W which i s  a function 

of the  distance from the  sun. 
ported through the  thermocouple, quant i ty  % i s  assigned some a r b i t r a r y  value 

i n  the  range of  zero t o  QI. 
are  zero, other equally a r b i t r a r y  values could be used. With values  assigned 

t o  Qr,  Qs, and Po, it i s  apparent t h a t  i n  Eq. (18) t h e  only remaining unknown 

i s  T C ( r i ) .  
power, a s  well as outside the  integrand, it i s  not  possible  t o  solve Eq. (18) 
analy t ica l ly  f o r  T C ( r i ) ;  graphical  o r  numerical methods a re  needed. The value 

of  T C ( r i )  thus calculated,  with t h e  assigned values  of  Qr,  Q s ,  and Po, may now 

Because only a por t ion  of this heat  i s  trans- 

Although it i s  i n i t i a l l y  assumed t h a t  Po and Qs 

Because T C ( r i )  occurs i n  t h e  integrand, which i s  ra i sed  t o  the  fou r th  
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be used t o  ca lcu la te  TGj by Eq. (24.1 which, i n  turn,  i s  used t o  ca l cu la t e  

THJ i n  Eq. (23) . 
(17), enables the  determination o f  €+. The calculated values  of  T C ( r i )  

added t o  t he  assigned values of &r, Qs, and Po, permit t h e  ca lcu la t ion  o f  ,& 
by means of Eq. (19). 
4. (26) allow the  determination of P The values  thus determined f o r  f+, 
Qs, Po, T H ( r i ) ,  and T C ( r i )  form first  approximation estimates.  

these f i r s t  approximation estimates j u s t  determined,the procedure i s  repeated 

t o  obtain second approximation values  of  these quant i t ies .  

of  the  procedure w i l l  y ie ld  higher order approximationso 

values of  t h e  f i v e  quan t i t i e s  do not change within some prescribed l i m i t s  

between two successive approximations, the ca lcu la t ion  i s  then complete 

because self-consistency has been obtained and the  equations a re  simultaneously 

sa t i s f i ed .  

Eq. (25) r e l a t e s  THJ t o  T H ( r i ) ,  which subs t i tu ted  i n  Eq. 

S 
The calculated values of  THJ and TCJ subs t i tu ted  i n  

0 
By use of 

Further  r epe t i t i on  

When t h e  calculated 

Depending on the  r e l a t i v e  importance of t he  var ious contr ibut ing terms t o  the  

equations, t he  previously described sequence of ca lcu la t ions  i s  sometimes not 

self-convergent i n  t h a t  the  values  of the f i v e  quan t i t i e s  do not converge t o  

fixed va lues  a s  a funct ion of  successive i t e r a t ions .  

diverge. 

consistency value, t h e  more rapid i s  the divergence of t he  f i v e  quan t i t i e s  

between successive approximations. 

of % i s  t o  i t s  self-consistency value, t he  slower i s  the  divergence r a t e .  

If the  value of  QT a t  self-consistency i s  used in i t i a l ly  i n  t h e  calculat ion,  

the  f i v e  quan t i t i e s  do not change between successive approximations and the  

equations a r e  therefore  simultaneously sa t i s f i ed .  

it i s  therefore  necessary t o  search f o r  t he  proper value of 4 t o  be used 

i n i t i a l l y .  T h i s  propsr value will a l s o  give self-consistency i n  the  calcula- 

t i ons  and w i l l  y i e ld  the appropriate values o f  s, Po, TH(ri), and T G ( r i )  f o r  

t h e  thermocouple. The search i s  performed e i t h e r  graphical ly  o r  numerically. 

Actually, t he  values 

In  such cases, the  f u r t h e r  the i n i t i a l  value of % i s  from i t s  self-  

Conversely, the  c loser  t he  i n i t i a l  value 

I n  cases of nonconvergency, 

T (r. ) , and T (r. ) have been determined Once t h e  f i v e  quan t i t i e s  G+, s,, Po, 

f o r  a f ixed  thermocouple configuration, the  remaining performance parameters 

f o l l o w  immediately. 

f rom Eqo (22) and load voltage % i s  obtained from 

c 1  

The current  which f l o w s  i n  the  thermocouple i s  calculated 

D A 
0 5 =I (27) 
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The eff ic iency of the thermocouple i s  defined as 

P 

= $  
The foregoing development contains var ious thermal conductance terms t h a t  

contain the  geometry as w e l l  as the  thermal conductivity of  t he  respect ive 

components. These a re  given by 

A + A  n 
kHS 

- 
KHS - tHS 

knA + k A - T -  e 

5 s  - tCS 

A + A  n 
kCS 

- 

(29) 

The subscripts n and p i n  Eqs. (29) r e f e r  t o  n- and p-type thermoelements, 

respectively. A l l  t’ s 
r e f e r  t o  thicknesses; A ’ s  r e f e r  t o  cross-sectional areas; and k ’ s  r e f e r  t o  
thermal conductivity values. 

values averaged over t h e  temperature range of  thermocouple operation. The 

symbol 1 r e fe r s  t o  t he  length of t he  thermoelements. 

ends of the  thermoelements are assumed t o  have cross-sectional a reas  i d e n t i c a l  

t o  those of t h e  thermoelements. Furthermore, it i s  i m p l i c i t l y  assumed t h a t  

t he  n- and p-type thermoelements a re  s i tua ted  on common stacks of a reas  An + A P 

A s  already discussed, such assumptions about t h e  s tacks have l i t t l e  bearing 

on thermocouple performance and therefore  are permissible. 

t h a t  i n  order t o  ca lcu la te  %s and I$,,, values  are needed f o r  t he  respect ive 

thermal conductivit ies.  

The other  subscr ip ts  have been previously defined. 

The thermal conduct iv i t ies  kn and k P r e f e r  t o  

The s tacks at  both 

Eqs. (29 )  i nd ica t e  

Because s tacks typ ica l ly  contain more than one mater ia l ,  



it will be necessary t o  use average thermal conductivity values. 

thermal conduct ivi ty  of a multimember component i s  defined as 

The average 

t k =  
E L  
i k. 

1 

where the  subscr ipt  i denotes the  ith member 

the  component, 

A s  previously,  t h e  f a c t o r s  m and ri, entering 

and t i s  t h e  t o t a l  thickness  of  

the  above performance equations 

a re  r e l a t ed  t o  t he  i n t e r n a l  thermocouple res i s tance  % by m = I$,/RI. 

f o r  any desired value of m, it i s  necessary t o  ca l cu la t e  % i n  order t h a t  5, 
m a y  be specif ied,  

Therefore, 

The i n t e r n a l  res is tance % o f  t he  thermocouple i s  given by 

2r + -  2rCn + CD + 
An P A S (31) 

where p 

t he  thermocouples (averaged over t he  temperature range of thermocouple 

operation) and rCn and r 
of t he  i n t e r f a c e s  between the  n- and p-type elements and t h e i r  respect ive 

meta l l ic  end pieces,  The quant i ty  rS represents t he  remaining extraneous 

i n t e r n a l  e l e c t r i c a l  res i s tance  and i s  primarily the  r e s u l t  of  res i s tance  i n  

current-carrying interconnects.  

and pp a r e  the  e l e c t r i c a l  r e s i s t i v i t i e s  of  t he  n- and p-type l e g s  of 

c r e  the  contact " r e s i s t i v i t i e s "  (un i t s  of  ohm-cm2) 

n 

CP 

A s  previously indicated,  t he  mater ia l  property da ta  used i n  the  foregoing 

ca lcu la t ions  should be averaged over the temperature range of thermocouple 

operation, 

average values  i n  the  over-all calculation by obtaining new averages a f t e r  

each i t e r a t i o n ,  and t h a t  it i s  essent ia l  t o  do this only with the  thermo- 

e l e c t r i c  property da ta  of t he  n- and p-type thermoelements- For the  sake 

of completeness, a general equation which def ines  the  averaging method i s  

given 

Also discussed was the manner o f  incorporating the  r e su l t an t  
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€ =  

dT 

T C J  

i where t i s  the t o t a l  thickness  of t h e  component. 

(32) 

I 

where t represents the property of which t h e  average i s  desired. 

appl ies  equally t o  pn, pp, k,, kp, 5 ,  and p. 
i s  defined 8s S = S - S 

P n  
where the  p =  T P -  n' 

legs .  The def in i t ion  of T i s  T =  T dS/dT. 

Thus 

The Seebeck coef f ic ien t ,  S, 

and t h e  n e t  Thomson coef f ic ien t ,  p, i s  defined as 
T ' S  are the  Thomson coe f f i c i en t s  of t h e  ind iv idua l  

The weight of  the  thermocouple follows d i r e c t l y  from t h e  dimensions and 

mater ia l s  assumed f o r  t he  components of t he  thermocouple. 

thermocouple weight Wt i s  given by 

Thus, t h e  t o t a l  

w t H  = w  + w m + W I + W T + w c S + W S + w c  (33)  

where the  subscripts o f  t he  ind iv idua l  terms have been previously defined. 

The individual weight terms are  calculated from 

wi = Aiti b i  ( 346) 

where i re fe r s  t o  the  ith component and & i s  the  densi ty  of t h e  component. 

Because some components, such as the  hot and cold stacks,  contain more than 

a s ing le  member, t he  densi ty  used i n  ca lcu la t ing  the  weight must be an average. 

The average value of densi ty  f o r  multimember components i s  defined a s  

A s  has already been indicated,  t h e  performance ca lcu la t ions  of a thermocouple 

a re  done by i n i t i a l l y  a s d n g  a r b i t r a r g  dimensions f o r  t h e  var ious components. 
I n a p a c t i c a l p o w e r  generator, however, it i s  important t h a t  performance be 

optimized with respect t o  some parameter, such as spec i f ic  power (wat ts  per  
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pound) o r  eff ic iency,  which i s  d i r e c t l y  r e l a t ed  t o  t h e  economics of  producing 

e l e c t r i c a l  power i n  a space application. 

the  v a r i a t i o n  of  parameters. 

the  cross-sectional a reas  of t he  elements, An and A 

heat-reject ion p l a t e  areas ,  AT, the  thermoelement length,  &, and t h e  r a t i o  

of load t o  i n t e r n d  e l e c t r i c a l  res is tance,  m. Each of these parameters may 

be var ied  independently f o r  f ixed  values of t h e  o the r  parameters. Thus the  

performance may be optimized with respect t o  a l l  parameters. 

cedure may be automated by programming a computer t o  search f o r  t he  optima 

by i t s e l f .  

This optimization i s  done through 

The important parameters i n  this respect  a r e  

the  heat-collection and 
P’ 

The whole pro- 



111. SOLAR PANEL THERMOELECTRIC GENERATOR REFERENCE DESIGN 

The primary object ive of this program I s  t o  design a silicon-germanium so la r  

panel thermoelectric generator weighing l e s s  than 4.0 pounds per  square f o o t  

of panel area and producing 35 watts of e l e c t r i c a l  power pe r  square f o o t  when 

operating a t  a dis tance of 0.25 astronomical u n i t  from the  sun. 

object ives  a r e  the  preparation o f  a de t a i l ed  design of  a generator t h a t  not  

only meets t h e  primary object ive but a lso produces approximately 150 watts 
of  e l e c t r i c a l  power a t  a load voltage of  about 28 vol t s .  

temperature of operation of t he  absorption coating t o  be used on t h e  heat- 

reception plate ,  t h i s  p l a t e  i s  constrained t o  operate a t  a nominal temperature 

of 1500OF. 

reference design, a r e  t o  be fabr ica ted  and supplied t o  the  National Aeronautics 

and Space Administration f o r  evaluation. 

Arudliary 

Because of t he  l imi ted  

Final ly ,  several  sect ions of t he  panel, representat ive of  t he  

T h i s  section of t he  repor t  discusses  i n  d e t a i l  how a reference design was 

formulated t o  meet t he  s t a t ed  program objectives.  

of  t he  detai led performance cha rac t e r i s t i c s  of this generator, together  with 

weight and temperature p ro f i l i ng  i n  terms of generator components. 

layout drawings of t he  generator and i t s  components a re  a l s o  included. 

Detailed s t r e s s  analyses of the  generator and i t s  components are presented 

i n  terms of ant ic ipated shock and vibrat ion,  a s  w e l l  a s  temperature cycling 

conditions encountered during and subsequent t o  vehic le  launch. 

performance under a va r i e ty  of off-design conditions will be discussed. 

A discussion i s  included 

Engineering 

Generator 

A. Performance of t he  Reference Des im Generator 

The method of calculat ing the  performance o f  a so l a r  panel thermoelectric 

generator outl ined i n  Section I1 has been applied t o  t h e  case of a generator 

operating a t  a dis tance of 0.25 astronomical uni t  from the  sun. 
the  compleldty of  t he  general  equations developed i n  Section 11, t he  cal-  

culat ions have been programmed f o r  solut ion on a high-speed RCA 601 computer. 

To optimize the  performance of t h e  generator,  as discussed i n  Section 11, 
it i s  necessary t o  vary a number of parameters t h a t  pe r t a in  t o  panel con- 

figuration. 

configuration'which m a y  be considered t o  represent  a d i f f e r e n t  generator. 

Because of 

Every va r i a t ion  of parameters results i n  a modified thermocouple 
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Examination of many d i f f e ren t  cases enables the  choice of t he  thermocouple 

configuration t h a t  corresponds t o  the optimum generator. 

complex equations, even on a high-speed computer, the  design ca lcu la t ions  

f o r  each thermocouple configuration take appreciable time which when 

mul t ip l ied  by the  many cases, becomes excessive,, 

i n i t i a l  scanning of numerous thermocouple configurations,  corresponding 

t o  extensive var ia t ions  of per t inent  parameters, was done with somewhat 

s implif ied equations, 

time, 

i n  t h e  f i n a l  de ta i led  performance analysis of t h e  optimum configuration 

thermocouple, a s  well  a s  of t he  reference design thermocouple which, a s  

noted below, deviates  somewfiat from the  optimum. The s impl i f ica t ion  

introduced i n t o  t h e  i n i t i a l  calculat ions pertained pr imari ly  t o  t he  

t ransverse heat f l o w  i n  t h e  heat-reception and heat-reject ion p la tes .  

Thus, t he  i n i t i a l  ca lcu la t ions  were performed e s s e n t i a l l y  with equations 

t h a t  neglected t h e  t ransverse component of heat  f low i n  t h e  p la tes .  

The r e su l t an t  performance parameters calculated were opt imis t ic  i n  t h a t  

a p a r t  of t he  temperature-drop t h a t  ac tua l ly  occurred i n  the  heat-reception 

and heat-reject ion p l a t e s  was added t o  the  temperature-drop across the  

thermoelements. 

formance cha rac t e r i s t i c s  f o r  a given thermocouple configuration and inc ident  

so l a r  flux, it does, however, permit a reasonably accurate  determination 

of t h e  configuration with optimized performance. 

Because of  t h e  

For this reason, t he  

T h i s  procedure yielded r e a l  savings i n  computer 

The full  complement of  equations developed i n  Section I1 was used 

Even though this simplification r e s u l t s  i n  enhanced per- 

If desired,  after i n i t i a l  optimization with t h e  simplified equations, t he  

procedure may be repeated with t h e  ref ined equations over a narrow range 

around the  i n i t i a l l y  determined optimum. However, t h e  procedure was not 

repeated because, a s  will be seen l a t e r ,  t h e  optimm configuration was 

not selected f o r  the  reference design. Another s impl i f ica t ion  i n  the  i n i t i a l  

ca lcu la t ions  pertained t o  t he  use of  f ixed values  of  average thermoelectric 

p rope r t i e s  and t o  the  neglect  o f  the generation (absorption) of Thomson hea t  

i n  t h e  thermocouple legs. 

were made, 

t h e  figure-of-merit i n  Eq. (23) of Section 11, 
meri t  def ines  the  optimum r a t i o  of  n- and p-type thermoelement cross-sectional 

I n  addition, a few other  minor s impl i f ica t ions  

O f  these, mention may be made of t he  use of t h e  expression f o r  

The use of t h e  figure-of- 



areas  and thereby replaces  the  two var iab les  An and A 

variable.  Although th i s  p a r t i c u l a r  s impl i f ica t ion  has been made almost 

invariably i n  every pas t  treatment of thermoelectric device performance 

( f o r  example; i n  all of  t he  referances c i t e d  i n  Section I1 with t h e  

exception of Reference 5 )  , including performance under both f ixed  

heat input and f ixed temperature operating conditions,  it s t r i c t l y  

appl ies  o n l y  t o  t h e  l a t t e r  mode of operation, 

above simplifications i n  i n i t i a l  ca lcu la t ions  were introduced t o  conserve 

computation time, 

of t he  optimum configuration and the  reference design thermocouples d id  

not use these simplifications.  

by a s ingle  
P 

A s  already s ta ted ,  t h e  

Final  ca lcu la t ions  t o  determine the  prec ise  performance 

The thermoelectric property da t a  used f o r  t he  silicon-germanium a l loys  

(Section V) do not  pe r t a in  t o  t he  proper t ies  extant  i n i t i a l l y  i n  t h e  

al loys,  but t o  those present  a f t e r  the  bulk of an i n i t i a l  adjustment has 

taken place. 

the  approach of dopant concentration i n  so l id  solut ion t o  i t s  so l id  

so lubi l i ty  equilibrium a t  t he  operating temperature. 

exponential i n  time and, therefore ,  most of it occurs r e l a t i v e l y  ea r ly  i n  

l i f e  (approximately one ha l f  of t he  t o t a l  change i n  f i v e  years  of operation 

will have taken place i n  the  f i rs t  1500 hours)., The e f f e c t  of this 

adjustment on the  proper t ies  of t he  a l loy  i s  t o  s l i g h t l y  increase i t s  
e l e c t r i c a l  r e s i s t i v i t y  and Seebeck coe f f i c i en t  values  so t h a t  t h e  quant i ty  

S /p ,  which i s  proport ional  t o  the  e l e c t r i c a l  power output, i s  s l i g h t l y  

decreased, The use of  property da t a  t h a t  accounts f o r  most of t he  i n i t i a l  
adjustment, permits t he  performance c h a r a c t e r i s t i c s  calculated f o r  t h e  

s o l a r  thermoelectric generator t o  correspond t o  t h e  values an t ic ipa ted  

a f t e r  some operating time. 

T h i s  adjustment occurs i n  t h e  n-type a l l o y  and r e s u l t s  from 

The process i s  

2 

Initial performance w i l l  be s l i g h t l y  higher. 

A s  outl ined i n  Section II, t he  method of optimizing the  so l a r  panel design 

has been t o  assume f ixed panel configurations,  with d e f i n i t e  component 

materiels and t h e i r  associated physical p roper t ies ,  and t o  ca l cu la t e  t h e  

whole spectrum of performance c h a r a c t e r i s t i c s  f o r  each configuration. 

Thus it has been possible  t o  choose the  configuration that y i e l d s  optimum 

performance under specified heat-reception p l a t e  temperature conditions 
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( 1 5 O O O F )  . 
the  spec i f i c  power (watts per  pound) del ivered by t h e  so la r  panel. 

define t h e  range of panel configurations i n  which optimum performance 

occurs, t h e  following four  parameters were i n i t i a l l y  varied over six 
d i f f e r e n t  values  each: 

The primary c r i t e r i o n  f o r  optimizing performance has been 

To 

2 AS = 2,  4 ,  8, 16,  32, 64 cm 

A = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 cm 
P 
1 = 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 cm 
m = 0.2, 0.4, O m 8 9  1.6, 3-29 6.4 

2 

T h i s  va r i a t ion  resu l ted  i n  t h e  calculat ion o f  t h e  performance o f  a t o t a l  

of 60606.6 ~ 1 2 9 6  d i f f e r e n t  cases which correspond t o  216 d i f f e ren t  thermo- 

couple configurations operating under conditions of  s i x  d i f fe ren t  r a t i o s  

o f  load-to-internal res is tance.  

i n  Section I1 subject  t o  the  s implif icat ions discussed previously, was 

performed f o r  each of t h e  1296 cases on the  RCA 601 Computer a t  the  David 

Sarnoff Research Center i n  Princeton. 

d i r e c t l y  between the  heat-reception and the  heat-rejection p l a t e s  of  t he  

thermocouple was assumed t o  occur by conduction through insu la t ion .  The 

procedure used t o  solve Eq. (18) f o r  TC(ri) was the  use of a root-finding 

method t h a t  has been programed as a subroutine f o r  the RCA 601 computer, 

In  this method, an adaptive search i s  conducted by an extrapolat ion scheme, 

quadratic i n  nature,  and root  finding v i a  Muller’s method. 

has been exercised t o  avoid by-passing near mult iple  zeros. 

permits recursive use f o r  solving nonlinear systems of  equations, 

following performance parameters were pr in ted  out  f o r  each case calculatedr 

AS, An, +, e 9 m, T C ( r i ) ,  TCj, THJ, T H ( r i ) ,  $9 81, Po, 1, EL, W t ,  7 9 

The whole sequence of ca lcu la t ions  out l ined 

The shunt hea t  t r a n s f e r  which occurs 

Special  care 

The subroutine 

The 

Po/+ Wt/+ 

The r e s u l t s  of the  calculat ion of the i n i t i a l  1296 cases were p lo t t ed  and 

cross-plotted t o  e s t ab l i sh  the  approxlmate ranges of  As, A 

i n  which thermocouple performance was optimized. 

f o r  t h e  following ranges o f  the parameters: 

4O(A /A Q60, The optimum performance values  f o r  Asband A 

i n  terms of a range of values o f  the r a t i o  AS t o  A ; t he  performance was 

p r a c t i c a l l y  independent of the  individual  values  of AS and A f o r  a f ixed 

,f? , and m values  
P’ 

T h i s  optimization occurred 

0,4cm,< 1 <008cm1.Q.6, and 

are  indicated 
S P  P 

P 

P 
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r a t i o  of As t o  A . T h i s  condition e s s e n t i a l l y  removed another va r i ab le  

from t h e  i n i t i a l  optimization of  thermocouple performance, However, it 

s t r i c t l y  applies only t o  t h e  simplified i n i t i a l  calculat ion,  and i s  not  

a s  va l id  i n  t he  case of the  more rigorous calculat ions.  

of  t h e  r a t i o  A /A 

optimum value to  be determined f o r  t he  o ther  variable.  

P 

The optimization 

and the  f i x i n g  of  e i t h e r  of the  two va r i ab le s  enabled an 
S P  

The f ixed  value 

chosen f o r  e i t h e r  AS o r  A depends on such mechanical considerat ions as 
P 

s t rength of t he  thermocouple, 

A 

extreme value of e /A .  
the  a reas  o f  the  heat-reception and heat-rejection p la tes .  If, as i n  t h i s  case, 

t he  heat-reception p l a t e  i s  made of a semiconductor mater ia l ,  there  i s  usua l ly  an 

upper l i m i t  caused by manufacturing techniques on how l a r g e  an area i s  

p rac t i ca l ly  feasible .  

Thus, it would not be des i rab le  t o  make 

unduly small and thereby obtain a thermoelement t h a t  possesses an 
P 

Conversely, a l a rge  value of AS implies a l a rge  value f o r  

After determining the  ranges of the  parameters f o r  which t h e  performance 

of t h e  solar panel thermocouple optimizes, t h e  procedure was repeated f o r  

f i n e  var ia t ion  of  the  parameters over the  indicated ranges, s t i l l  using t h e  

simplified design equations. 

values 

The parameters were now given t h e  following 

+ = 8, 12, 18, 27, 40.5 cm 2 

A = 0,2 cm 2 
P 1 = 0,4, 0.5, 0.6, 0.7, 0.8, 0*9, 1.0 cm 

m = 1.0, 1.2, 1.4, 1.6 

Only one value was used f o r  A . 
f a c t o r  i n  As-and A -var ia t ion i s  the  r a t i o  As/A 

of A /A 

value f o r  A so  long as the  r a t i o  A A remains a t  i t s  optimum value, 

A s  already indicated,  t he  important 
P 

Thus, t h e  optimization 
P P 

f o r  t he  f ixed  value of A = 0.2 enables the choice of any o ther  
S P  P 

P s / P  

To i l l u s t r a t e  how the  optimum values  of t h e  parameters f o r  t he  so l a r  panel 

thermocouple were determined, t h e  sequence of operations w i l l  be out l ined 

i n  d e t a i l .  The computer r e su l t s ,  similar t o  those i n  the  f i r s t  run i n  

which 1296 cases were calculated,  were p lo t t ed  and cross-plotted. 

shows a plot  of specif ic  power Po/Wt as a funct ion o f  A /A f o r  t h e  d i f f e r e n t  
Figure 3 

S P  
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values  of  thermoelement length. The value of 1.2 has been used f o r  m. 

A s  w i l l  become apparent l a t e r ,  1.2 i s  the  a p p r o h a t e  value of  m f o r  which 

performance i s  optimized. 
curves shift t o  decreasing AS/A values f o r  increasing values  of &. In 
addition, t h e  highest  value of Po/Wt occurs a t  a value of 4 s / A p  = 80 and 

appears t o  correspond t o  a thermoelement o f  l ength  close t o  0.6 cm, To 

more precisely determine the  optimum value of thermoelement length,  t h e  

da ta  of Figure 3 have been cross-plotted i n  Figure 4 with t h e  thermoelement 

length a s  t h e  independent var iab le  and 4 s / A  as a parameter. Values of  1 
a re  now chosen f o r  which t h e  var ious A s / A  curves a re  a t  t h e i r  m a x i m a .  T h e s e k  

values  are p lo t ted  as a funct ion of AS/A i n  Figure 5. 
t he  optimum value of 1 i s  exact ly  0.6 cm. 

pendent requirement that the  heat-rekeption p l a t e  temperature be 150OOF 

( i o w x j ,  it i s  necessary t o  p l o t  this temperature a s  a funct ion of  AS/A 
f o r  d i f f e ren t  values  o f  f? (Figure 6) . Where A s / A  = 80 and 1 = 0.6, t h e  

heat-reception p l a t e  temperature i s  a l i t t l e  higher than specified. 

The opthum Po/Wt values  of t he  ind iv idua l  

P 

P 

P 
When A s / A  = 80, 

P P 
Because there  e x i s t s  t he  inde- 

* 
P 

P 
In  

order t o  obtain the  required temperature it w i l l  be necessary t o  s l i g h t l y  

decrease e i t h e r  the  value of 9 s / A  o r  of  e.  Maintaining the  value of e and 

decreasing 4 s / A  t o  77 s a t i s f i e s  the  temperature requirement. 

e f f e c t  of t h i s  change on the  main performance ind ica to r  Po/Wt, Figure 3 has 

been pa r t ly  rep lo t ted  i n  Figure 7 with l a r g e l y  expanded scales.  

conditions, t he  reduction of 

of 0.6 cm. has p r a c t i c a l l y  no e f f e c t  on t h e  spec i f i c  power. 

Figure 7, i s  a p l o t  of  t he  1500OF heat-reception p l a t e  temperature contour. 

The optimum thermocouple configuration i s  immediately determined when e i t h e r  

‘Is o r  A i s  specified.  

t o  make heat-reception p l a t e s  l a r g e r  than 2.825 cmon the  side,  t he  t o t a l  

P 
To see t h e  

P 

Under these  

A from 80 t o  77 a t  a thermoelement length  
Y P  

Superimposed on 

Because it i s  impract ical ,  f o r  f ab r i ca t ion  reasons, 
P 

area % can have a maximum value of 7.975 cmO2 Employment of  t h e  r e l a t i o n  (1) , 
which gives the  optimum r a t i o  of  thermoelement l e g  areas  i n  terms of t he  

figure-of-merit re la t ionship  and of t h e  p rope r t i e s  of the  silicon-germanium 

al loys,yields  An = 1.644 A . Making use of this r e l a t i o n  between l e g  a reas  

i n  4.’ (16) of Section I1 along with As = 77A and % = 7.975 crno2, enables 

the  determination of A 

P 

P 
= 0,100 cmO2 Based on previous experience, t he  cold 

P 
stack thickness has been s e t  a t  0.368 cm.and t h e  thickness of t h e  heat- 

reception and the  heat-rejection p l a t e s  i s  constant a t  O,L!+.57 and 0.1650 cm., 

*Neglect o f  t ransverse hea t  flow i n  i n i t i a l  ca lcu la t ions  causes 
the calculated value of heat-reception p l a t e  outer-surface tempera- 
ture t o  be constant over t he  whole p l a t e  area- 
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respectively.  

has a pyramidal shape i n  the  reference design, it has been replaced f o r  

ca lcu la t ion  purposes by a f l a t  p l a t e  having the  same cross-sectional a rea  

and volume. 

There i s  no hot stack, Even though the  heat-reception p l a t e  

The chosen solar panel thermocouple configuration has optimum performance 

c h a r a c t e r i s t i c s  i n  terms of t he  simplified equations. 

t i on  would be normally performed with t h e  t o t a l  set of equations i n  Section 

I1 by varying the  configuration over a narrow range around t h a t  j u s t  

es tabl ished.  T h i s  procedure, however, was not  followed because a f t e r  t he  

approximate optimum design was reviewed i n  d e t a i l  by RCA and NASA pro jec t  

personnel a t  t he  Lewis Research Center, it was concluded t h a t  this design 

was somewhat extreme i n  r e l a t i o n  t o  t he  present  development program. 

Therefore a thermocouple configuration t h a t  was more capable of f ab r i ca t ion  

within the  framework of t he  present program was chosen f o r  t h e  reference 

design, 

f o r  t h e  r a t i o  of the  areas  of t he  heat-reception p l a t e  and the  thermoelements) 

it a l s o  meant an increase i n  thermoelement length,  

t he  thermocouple performance was no longer a t  i t s  optimum. 

The f i n a l  optimiza- 

T h i s  s tep  meant t h e  choice of a configuration with a smaller value 

The n e t  r e s u l t  was t h a t  

For t h e  sake of  completeness, before continuing the  discussion o f  t h e  

reference design, t he  configuration corresponding t o  t h e  approximate optimum 

performance was used i n  de ta i led  calculat ions with the  fu l l  set of  equations 

i n  Section 11. The r e s u l t s  of this calculat ion,  f o r  m ~ 1 . 2 ,  a r e  l i s t e d  i n  

Table I: 
TABLE I 

OPTIMUM PERFORMANCE 

Heat-Reception P la t e  Outer Edge Temperature 

Heat-Reception P la t e  Center Temperature 

Hot Junction Temperature 

Cold Junction Temperature 

Heat-Rejection P l a t e  Center Temperature 

Heat-Rejection P la t e  Outer Edge Temperature 

Thermocouple Efficiency 

Specif ic  Power 

1099.0°K 

10 55 , 9 O K  

1055 2 O K  

713.9OK 

690 .O OK 
685 ,O O K  

3-13% 
12.49 w/lb 
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TABLE I (Cont.) 

Power Output/Couple 

Weight/Area 

Power Output/Area 

Lo ad Volt  ag e/C ouple 

Lo ad Curr en t / C  ouple 

0 . 274 watt 

2.56 l b / f t 2  

31 -97 w/f t 
0.1051 v o l t  

2.612 amps 

For a generator t o  produce 150 watts a t  28 vo l t s ,  548 couples must be 

combined i n  ser ies-paral le l .  

desired voltage, enhances the  r e l i a b i l i t y  of t h e  system. 

t i c s  of a generator with 548 couple a t  m ~1.20 will be: 

This arrangement, i n  addi t ion t o  giving t h e  

The character is-  

Power Output 

Load Voltage 

Load Current 

T o t a l  Area 

Total  Weight 

143.1 watts 
28.8 v o l t s  

4.70 f t 2  

12.02 l b s  

5-22 amps 

The t o t a l  area and the  weight of the  generator do not  include contr ibut ions 

from t h e  mounting frame and the  r i b s  on the  heat-rejection p la tes .  

t h e  approximate optimum-performance (in terms of wat ts  pe r  pound) generator 

does not  meet t he  object ive of  35 watts per  square f o o t  of panel area; 

whereas the reference design generator does, but a t  a s l i g h t l y  increased 

generator weight. 

does not possess a uniform 15OODF ( 1 0 S Q K )  temperature because of  t ransverse 

heat flow. Except f o r  the  per ipheral  a reas  of t he  p la te ,  t h e  temperature i s  
generally l e s s  than 15OO0F0 The be l i e f  i s  t h a t  t he  s l i g h t l y  higher tempera- 

t u r e  t h a t  e x i s t s  a t  t h e  periphery has no adverse e f f e c t s  on t h e  c h a r a c t e r i s t i c s  

of  t h e  emittance and t h e  absorption,coating. 

Moreover, 

Also apparent i s  the  f a c t  t h a t  t he  heat-reception p l a t e  

A s  already s ta ted ,  because of  g rea te r  compat ibi l i ty  with the  present  

state-of-the-art fabr ica t ion  techniques, a thermocouple configuration was 

selected f o r  the  reference design with r e l a t i v e  component dimensions l e s s  

extreme than those determined f o r  t he  approximate optimum thermocouple. 

The thermoelement length  was f ixed a t  1.0 cm. and de ta i l ed  design calcula- 

t ions ,  similar t o  t h e  ones discussed previously, were repeated t o  prec ise ly  



define a new configuration. The use of a heat-reception p l a t e  o f  m a x i m u m  

s i ze  (% = 7.975 cmD2) showed t h a t  t h e  thermoelement a reas  of  A = 0.2684 

cmO2 and A = 0.1632 cmO2 resu l ted  i n  heat-reception p l a t e  temperatures 

t h a t  c losely correspond t o  those determined f o r  t he  thermocouple which 

possesses the  approximate optimum configuration. On t h e  average, such 

temperatures satisfy the  c r i t e r i o n  o f  150O0F heat-reception p l a t e  tempera- 

tu re .  

thermocouple f o r  m ~ 1 . 2  are  l i s t e d  i n  Table 11: 

n 

P 

The de ta i led  performance cha rac t e r i s t i c s  of the  reference design 

TABLE I1 
REFERENCE DZSIGM PERFOFWANCE 

Heat-Reception P l a t e  Outer Edge Temperature 

Heat-Reception P la t e  Center Temperature 

Hot Junction Temperature 

Cold Junction Temperature 

Heat-Rejection P la t e  Center Temperature 

Heat-Rejection P la t e  Outer Edge Temperature 

Thermocouple Efficiency 

Specif ic  Power 

Power Output/Couple 

1100.9 OK 

10 64.4°K 
1063080K 

702.8OK 

687 . 5 OK 

3 . 57% 
683.3OK 

11 . 27 w/lb 

0.312 watt 

Weight/Area 

Power Output/Area 

Lo ad V o l t  ag e/C ouple 

Lo ad Current/C ouple 

3.23 lb/f t '  

3 6 . 3 6 w/f t 
0.1108 v o l t  

2,817 amps 

To obtain a generator with t h e  desired power and vol tage cha rac t e r i s t i c s  

(approximately 150 watts and 28 vol t s )  480 couples a re  used i n  a ser ies-  

p a r a l l e l  arrangement. 

each panel cons is t s  of  20 sections,  and each sect ion has 1 2  couples. 

Two iden t i ca l  panels o f  240 couples each a r e  s e t  up; 

The over-all performance of the reference design generator a t  m = 1.20 

w i l l  ber 

Power Gutput 149.8 watts 

Load Voltage 26.6 v o l t s  

Load Current 5.63 amps 



Total  Area 4.12 f t 2  

T o t a l  Weight 13.29 l b s  

The t o t a l  area and the  weight of the  generator do not  include contr ibut ions 

from the  mounting frame and the  r i b s  of t h e  heat-rejection p l a t e s .  

Figure 8 shows the  power output of t he  generator f o r  a var iab le  load i n  

terms of t h e  r a t i o  of  load-to-internal res is tance.  

t h a t  power output maximizes i n  the  range of m ~ 1 . 2  t o  1.3* 
i l l u s t r a t e s  the  incorrectness  of the  assumption frequent ly  made t h a t  

maximum power i s  del ivered t o  the  load when t h e  load and i n t e r n a l  res i s -  

tancesare equal. 

reference design generator a re  graphical ly  i l l u s t r a t e d  i n  Figure 9 as a 

function of  load current .  Figure 9 shows t h a t  i f  t h e  desired operation i s  
t o  be a t  a load voltage of  28 vol t s ,  r a the r  than a t  the  26.6 v o l t s  corres- 

ponding t o  m = 1.20 given i n  the  tabulat ion,  all that need be done i s  t o  

increase t h e  load  res i s tance  s l igh t ly .  The resultant e f f ec t  on power 

output i s  negligible.  

The curve f u r t h e r  shows 

T h i s  p l o t  

Final ly ,  t h e  over-all performance cha rac t e r i s t i c s  of t he  

Be TemDerature P ro f i l e  of t h e  Reference Desim Thermocoude 

A s  a par t  of t h e  performance analyses of t h e  reference design thermocouple, 

de ta i led  ca lcu la t ions  were performed of t h e  temperatures a t  a va r i e ty  Of 

key places as follows: 

Outer edge of outer  surface of heat-reception p l a t e  

Center of ou ter  surface of heat-reception p l a t e  

Center of inner  surface of heat-reception p l a t e  

Hot junction of the thermoelements 

Cold junction of t he  thermoelements 

Center of inner  surf ace of heat-rej ect ion p l a t e  

Center of ou ter  surface of heat-rejection p l a t e  

Outer edge of outer  surface of heat-rejection p l a t e  

1100 . 9 OK 
1064.4 OK 
1063 . 8 OK 

1063 8 OK 

70 2 . 8OK 
687 . 6 OK 
687.5 O K  

683.3 OK 

The center of t he  inner  surface of the  heat-reception p l a t e  and the  hot  

junctions of t h e  thermoelements are noted t o  be a t  t h e  same temperature. 
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T h i s  condition e x i s t s  because there i s  no stack a t  t he  hot end of t he  

s t ructure .  

Figure 10. 

and heat-reject ion p l a t e s  f o r  calculat ion purposes, t he  temperature pro- 

f i l e s  shown f o r  these p l a t e s  represent averages. 

The temperature p ro f i l e  of t h e  s t ruc ture  i s  i l l u s t r a t e d  i n  

Because o f  the r ad ia l  geometry assumed f o r  t he  heat-reception 

C. Weight Analysis of the  Reference Desim Generator 

A de ta i led  weight ana lys i s  o f  any given thermoelectric s t ruc tu re  i s  made 

a s  a p a r t  of t h e  performance calculat ions out l ined i n  Section 11. 
r e s u l t s  of  such a weight analysis  f o r  t h e  reference design so la r  thermo- 

e l e c t r i c  generator a re  tabulated a s  fo l lows:  

The 

Member 

Heat-reception p l a t e  

In  s u l  a t i on 

Thermoelement s 
Cold Stack 

E l e c t r i c a l  connector 

Heat-re j ect ion p l a t e  

Total  

Weight per 
Thermocouule 

0.007170 l b  

0.007250 l b  

0.003369 l b  

0.003786 l b  

0,000752 l b  

0.005363 l b  

0.027690 l b  

Generat o r  

3,441 l b s  

3.479 l b s  

1.617 l b s  

1.817 l b s  

0.361 l b  

2.575 l b s  

13,290 l b s  

Weight (L80 couule s) 

I n  a t o t a l  generator, t he re  a re  addi t ional  members t h a t  have not  been 

included i n  the  previous tab le .  

components a re  l i s t e d  below; 

The de ta i led  weights of these addi t ional  

Weight per  Generator 
Member The rmoc ouul e Wei Pht (L80 c ouule s) 

Studs 0.000034 lb 0.016 l b  

Nuts 0.000353 l b  0.026 l b  

Panel Section Ribs 0.002740 l b  1.315 l b s  

Mounting Frames 0.006080 l b  2,918 l b s  

T o t a l  0.008907 l b  4.275 l b s  

Because the ribbing on the  panel sect ions and the  mounting frames f o r  the  

sec t ions  have not been subjected t o  design optimization, t he  l i s t e d  weights 

of  these components a re  preliminary and probably only represent, a t  best, 
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upper limit values. 

of these  components w i l l  be considerably reduced. Just a s  i n  the  case of  

generator weight, t he  t o t a l  generator a rea  has contr ibut ions from f a c t o r s  

o ther  than t h e  thermocouples. 

frames and t h e  spacings between the heat-reception p l a t e s  of adjacent 

thermocouples. Thus, whereas the combined area  of all of t he  thermocouples 

i s  4.U square f e e t ,  t h e  t o t a l  area of t h e  generator, including t h e  f a c t o r s  

j u s t  mentioned, i s  4.49 square feet., 

It i s  expected t h a t  upon optimization, t h e  weights 

These f a c t o r s  a r e  the  edges of t h e  mounting 

D, O f f  - Desim Performance of  Reference Desim Generator 

It i s  apparent from the  equations i n  Section I1 t h a t  the  performance of  a 

s o l a r  thermoelectric generator i s  s t rongly dependent on the  emittance and 

absorption cha rac t e r i s t i c s  of the coat ings on the  heat-reception and heat- 

r e j ec t ion  p l a t e  surfaces  as well as  on the  so l a r  heat f l u x  indident  on t h e  

generator. 

ing assumed values  f o r  these properties! 

The present reference design has been developed with t h e  follow- 

a = 0.85 

f, = 0.10 
cc = 0.85 

2 w = 2.24 watts/cm. 

The inc ident  f l u x  value o f  2.24 watts/cmO2 corresponds t o  t he  perpendicular 

flux a t  a dis tance of 0.25 astronomical u n i t  from the  sun. 

Because the  proper t ies  of the  coatings may change with t i m e ,  it i s  valuable 

t o  know how such changes would a f fec t  t h e  performance of t h e  reference 

design generator. 

generator depends on t h e  distance and/or the  or ien ta t ion  of t h e  panel 

with respect  t o  the  sun, it i s  a lso  of i n t e r e s t  t o  know how t h e  performance 

of t he  reference design generator depends on incident  flux. 

performance ca lcu la t ions  of t he  reference design generator, using the  equations 

of  Section 11, were accordingly performed f o r  var iab le  values of a , €Hy %, 
and W. 
p lo t t ed  i n  the  included figures. 

Moreover, inasmuch as the  so l a r  f l u x  inc ident  on the  

Detailed 

Some of t he  r e s u l t s  o f  these "off  design" ca lcu la t ions  have been 

47 



Figures 11 t o  14 pe r t a in  t o  the  inc ident  so l a r  f l ux  of  2024 watts/cmO2 at  
the  design distance of 0.25 astronomical u n i t  from t h e  sun, and show t h e  

e f f e c t s  of varying values  of  a , CH and CC on t h e  reference design generator 

performance and temperatures. Of t he  th ree  propert ies ,  it i s  t h e  emissivi ty  

of t h e  heat-rejection p l a t e ,  G, t h a t  has the  l e a s t  e f f e c t  on generator 

performance. 

p l a t e ,  E,, t h a t  has the  g rea t e s t  e f f ec t .  

generator performance under varying conditions of emittance and absorption 

coatings, t he  r e s u l t s  of these  "off-design" s tudies  a re  usefu l  i n  ind ica t ing  

which parameters a re  most c r i t i c a l  and, therefore ,  which proper t ies  should 

receive t h e  g rea t e s t  a t t en t ion  i n  development work on coatings. 

l3y t h e  same token, it i s  the  emissivi ty  of t h e  heat-reception 

In  addi t ion t o  i l l u s t r a t i n g  

If design values a re  assumed f o r  t he  proper t ies  of t he  coatings,  as l i s t e d  

previously, it i s  a l s o  of i n t e r e s t  t o  know how the  performance and tempera- 

t u r e s  of t he  reference design generator depend on the  incident  solar f lux.  

For example, assumed perpendicular i ty  of incidence ind ica t e s  t he  expected 

performance of the  generator as a funct ion of  its dis tance  from t h e  sun. 

Conversely, a t  the  design dis tance of 0.25 astronomical u n i t  from the  sun, 
o r  a t  any other  dis tance f o r  t h a t  matter, t he  dependence of performance on 

incident f l u x  may be in te rpre ted  as giving t h e  performance as a funct ion of 

generator tilt angle with respect  t o  inc ident  radiation. 

from t h e  sun, nonperpendicularity o f  the  plane of t h e  generator t o  inc ident  

radiat ion will na tu ra l ly  reduce the  inc ident  flux. 

r e s u l t s  of performance ca lcu la t ions  as a funct ion of  inc ident  s o l a r  f lux.  

The r e s u l t s  have been presented as a funct ion of t he  dis tance from the  sun 
which impl ic i t ly  assumes perpendicular i ty  of t he  plane of t h e  generator t o  

incident radiat ion.  

t he  sun t o  the  incident  perpendicular so l a r  f l u x  (solar constant)  : 

A t  any d is tance  

f igu re  1 5  shows t h e  

For grea te r  general i ty ,  Table IIIrelates d is tance  from 

TAELE I11 
INCIDENT SOLAR FLUX VS. DISTANCE FROM THE SUN 

Distance From Sun- Distance From Solar C o n p n t -  

0 .1 9.3 x 10 6 l4.00 

Astronomical Units Sun - Miles Watt s/cm. 

3.50 
6 
6 

0.2 18.6 x 10 
0.4 37.2 x 10 0.88 
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TABLE 111 (Cont.) 

Distance From Sun- 
Astronomical U n i t s  

0.6 
0.8 

1.0 

Distance From Solar Constant- 
Sun - M i l e s  Watts/cm.' 

55.7 x 10 

7403 x 10 
92.9 x 10 

0.39 

0.22 

0.14 

6 
6 
6 

T h i s  t a b l e  may be used i n  conjunction with Figure 1 5  t o  determine the  per- 

formance of  the  reference design generator a s  a function of  generator tilt 
angle. Thus, i f  the  generator i s  a t  some d is tance  from the  sun but  it i s  
t i l t e d  such t h a t  t he  incident  flux i s  l e s s  than the  solar constant a t  t h a t  

dis tance,  a new effect ive distance corresponding t o  t he  ac tua l  heat f l u x  
a t  t h e  generator may be obtained. 

enables the  ac tua l  generator performance t o  be determined. 

p l o t s  of hot  and cold junction temperatures, values of t o t a l  heat  t ransmit ted 

per  couple, and generator eff ic iency i n  terms of  dis tance from the  sun. 

E l e c t r i c a l  power output per couple may be e a s i l y  obtained from the  da t a  i n  
Figure 15 by multiplying the  eff ic iency by the  heat t ransmit ted pe r  couple. 

T o t a l  generator power i s  480 t imes t h a t  product. 

T h i s  e f f e c t i v e  distance,  used i n  Figure 15 ,  
Figure 1 5  shows 

E. Layout Drawings of  the  Reference Des im Generator 

The de ta i l ed  layout of the  solar thermoelectric reference design generator 

and i t s  components isshown i n  Figures 16 t o  21. 

each drawing follows: 

A br i e f  descr ip t ion  of 

F i m e  16 - Coude Assembly: 

assembly with t h e  heat-reception p l a t e  and the  pedestals  attached t o  t h e  

cold shoes. 

shows the  de ta i led  layout of t h e  thermoelement 

Fifnrre 17  - Cold End Assemblrr: shows the  configuration and composition of 

t h e  cold s tack with e l e c t r i c a l  interconnects and the stud f o r  mounting the  

thermocouple on the  heat-rejection p la te .  

Fieure 18 - Thermocouple Subassembly: 

t h e  t o t a l  reference design thermocouple, with the  exception of t he  heat- 

r e j ec t ion  p la te .  

shows t h e  de ta i led  configuration of  
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F i m r e  19 - Generator Panel Section Assemblx: shows the  layout  of t h e  

reference design generator panel section, including the  heat-rejection 

p l a t e .  

F i m r e  20 - Generator Panel  Assembly: 

sec t ions  t o  form a panel of t h e  reference design generator. 

panels form t h e  t o t a l  generator. 

shows the  combination of  panel 

Two such 

Figure 21 - Generator Panel KLectrical Schematic: 

t r i c a l  combination of t h e  thermocouples of a reference design generator 

panel t o  give s e r i e s  - p a r a l l e l  redundancy, 

i l l u s t r a t e s  t he  elec- 

F. St re s s  Analysis of Solar Thermoelectric Generator Panel Components 

The reference thermoelectric couple and panel configurations have been 

s t ruc tu ra l ly  analyzed t o  determine the  maximum s t r e s s  l e v e l s  t o  be anti- 

cipated when the  panel generator i s  subjected t o  t h e  following individual  

o r  combined environmental loading requirements: 

Acceleration: 

minutes i n  both d i r ec t ions  along three  mutually perpendicular axes. 

The panel s h a l l  withstand 7 g ' s  accelerat ion f o r  f i v e  

Vibration: 

resonant frequencies between 16 and 2000 HZ f o r  1 5  minutes along three  

mutually perpendicular axe s . 
The panel s h a l l  withstand v ib ra t ion  of  a 5-g peak a t  t he  

Acoustic Noise: 

integrated sound pressure l e v e l  of 148 dec ibe ls  re fer red  t o  0.0002 

dyne per ma2, with the  frequency spectrum specif ied i n  Contract 

The panel sha l l  withstand f o r  f i v e  minutes a t o t a l  

NAS3-10600. 

Thermal. Transient: 

i ng  thermal t r ans i en t  t e s t :  

surface temperature of 1500OF as rap id ly  as possible  when subjected t o  

the  thermal flux required t o  achieve this hot  junction temperature. 

Immediately af ter  temperature equilibrium has been establ ished,  heating 

The panel shall withstand two cycles  of t he  follow- 

The panel shal l  be heated t o  an absorber 
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s h a l l  cease. 

temperature by rad ia t ing  t o  the  surrounding w a l l s  of a l iqu id-  

nitrogen-cooled chamber. When a n  equilibrium temperature has been 

obtained, t he  absorber surface s h a l l  be reheated t o  an equilibrium 

temperature o f  1500°F. 

an equilibrium temperature d i c t a t ed  by t h e  surroundings. 

The panel  s h a l l  be allowed t o  cool t o  an equilibrium 

The panel s h a l l  again be allowed t o  cool  t o  ' I  

The r e s u l t s  o f  t he  de t a i l ed  stress analysis are described a f t e r  t h e  

following account of t h e  analysis procedure, 

t h a t  a subs tan t ia l  margin of s a fe ty  e x i s t s  between t h e  ca lcu la ted  

m a x i m u m  s t r e s ses  f o r  each condition and f o r  t he  mater ia l  s t rength  

capabi l i ty .  (Tables I V  and U,) 

The conclusions ind ica t e  

T h i s  procedure was followed i n  performing t h e  analysis :  

concentrated on the  ana lys i s  of t h e  m a x i m u m  s t r e s s  l e v e l s  f o r  t h e  thermo- 

e l e c t r i c  couple and the  r ad ia to r  base p la te .  

was made of the  generator frame because 1) the  program objec t ives  required 

emphasis on the  d e t a i l s  of t h e  thermoelectr ic  configuration r a t h e r  than on 

the  generator configuration and 2) because no spec i f ic  s a t e l l i t e  o r i en ta t ion  

had been defined. To a l a r g e  extent ,  t h e  spec i f ic  s a t e l l i t e  configurat ion 

and t h e  method of attachment of t he  panels  t o  the  s a t e l l i t e  will cont ro l  

the  s t r e s s  l e v e l s  i n  t h s  generator frame. F o r  example, p o t e n t i a l l y  

excessive s t r e s s e s  caused by v ibra t ion  can be reduced t o  within t h e  allow- 

able l e v e l  by e i t h e r  re loca t ing  t h e  poin t  of attachment of t h e  frame t o  

i t s  hinge attachment o r  struts, o r  by placing a damping mechanism i n  t h e  

strut between the  panel and the  s a t e l l i t e .  Therefore, a v ib ra t ion  analysis 

of t h e  generator frame has not  been performed, 

of t h e  generator frame has been confined t o  a determination of t h e  severest  

po ten t i a l  accelerat ion s t r e s s  l e v e l s  f o r  conservative approximations of 

the  actual  loading conditionso 

Attention w a s  

A less  de ta i l ed  analysis 

Consequently, t h e  ana lys i s  

The ana lys i s  considered only e l a s t i c  response of t h e  material. 

as t h e  thermoelectric mater ia l  i s  a semiconductor which would tend t o  

experience l i t t l e  p l a s t i c  deformation p r i o r  t o  f a i l u r e ,  t h e  p l a s t i c  e f f e c t s  

are not  being considered. 

Inasmuch 
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1. CaDabilits of t he  S t ruc ture  t o  Withstand Acceleration Requirement 

Reauirementr The panel s h a l l  withstand 7 g ' s  accelerat ion f o r  f i v e  

minutes i n  both d i r ec t ions  along three mutually perpendicular axes. 

Analysis: 

shoe a t  the  cold end were selected as t h e  most c r i t i c a l  acceleration- 

induced s t r e s s e s  i n  the  thermocouple because 

The s t r e s s e s  a t  the  bond of t h e  SiGe element t o  t h e  tungsten 

a) The s t r e s ses  i n  t h e  region of t h e  hot  end bond w i l l  be subs t an t i a l ly  

l e s s ,  r e su l t i ng  f rom a s igni f icant ly  smaller moment being induced by 

a smaller mass (hot shoe) acting through a shorter  arm. 

b) Though the  moment i n  t h e  region of  t h e  couple (cold stack) below 

the cold shoe i s  s l i g h t l y  la rger  than a t  t h e  cold end bond, t he  

moment of  i n e r t i a  of  t h e  members i s  grea te r ,  and the  mater ia l  i s  

capable of withstanding higher s t r e s s e s  i n  tension than SiGe. 

Thus the  r e l a t i v e l y  high moment, produced by accelerat ion a t  the  point  

of t he  couple where the  mater ia l  i s  l e a s t  capable of withstanding 

t e n s i l e  s t resses ,  makes this t h e  most c r i t i c a l  region t o  analyze. 

a. Acceleration-Induced Stresses  i n  Thermocoude 

Case I. Acceleration i n  t h e  X-Direction 

I n  t h i s  case, t he  primary s t r e s s  i s  induced by the  bonding moment. 

An accelerat ion i n  the  &direction will generate a moment about 

point  0. 

s t ress .  

i n i t i a l l y :  t o t a l  amount = M 

(Figure 22.) This moment must be r e s i s t ed  by a bond 

The moment caused by acce lera t ion  wi l l  be determined 

element %ot  shoe 

where 

(moment a r m )  = a vH bH (1 + 3 
%ot shoe (Fhot shoe 2 

- - 
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where V i s  volume of  hot  shoe, b i s  dens i ty  of 

a i s  acce lera t ion j  and t o  f ind Melement9 consider 
H 

of t h e  element, dm. 

Z 

hot  shoe material, 

a s m a l l  increment 

FIGURE 22. LOAD DISTRIBUTION IN X-DIRECTION 

a s  T7?R2dZ 
2 dZ = R2dtJ 

2 dF = adm = a 6 TdVT = a 6 

0 
J 



TABLE IV 
CALCULATED MAXIMUM STRESS LEVELS I N  PANEL COMPONENTS 

Environmental Loading 

1. Acceleration 

2. Vibration 

3. Acoustic Noise 

4. Thermal Stresses  

ComDonent and M a x i m u m  S t r e s s  Level 

Thermoelement bond t o  cold shoe - Max-X = 12.2 p s i  

Mm-Y = 7.0 p s i  

Max-Z  = 2.2 p s i  

Max-X = 3875 p s i  

Max-Y = 5360 p s i  
Generator Frame 

T hermo c ouple Max-X = 9.0 p s i  

Max-Y = 18.3 p s i  

Radiator Base P l a t e  M a x  = 103 p s i  

Thermocouple Max-X = 25.5 p s i  

M u - Y  = 51.8 p s i  

Radiator Base P la t e  M a x  = 660 p s i  

Thermocouple-Element Max = 11,900 p s i  

compression 

Hot  Shoe M a x  = 10,600 p s i  

tension 

TABLE V 

MECHANICAL PROPERTIES OF COMPONENT MATERIALS 

Modulus o f  

18 x 10 6 p s i  

U1 t i m a t  e T en s i l e  

p-type 3900 p s i  

n-type 4400 p s i  

U1 tima t e C ompr e ssi on 
Mat e r i a l  E l a s t i c i t y  S t  rene: t h  'Strength 

150,000 ps i  S i l icon  Germanium 

-- 6 
6 

Beryllium ( a t  400%) 42 x 10  p s i  30,000 p s i  

S i l icon  Molybdenum 18 x 10 p s i  20,500 p s i  - 
(as determined f o r  

conditions of thermal 

s t r e s s )  

The d e t a i l e d  analyses which support the previously discussed conclusions 

are : 
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where 6 
of element and 8 i s  the  m@ar coordinate used i n  in t eg ra t ion ,  

Theref ore, adding (36) and (37) we g e t  

i s  dens i ty  of SiGe, VT i s  volume of element, R i s  rad ius  T 

2 2  a b T  W R  + 
4 Total  Moment = 

Now,the r e s i s t i n g  moment, o r  t h e  moment due t o  t h e  bond stress Will 
be determined. 

i n  Figure 23. 

Consider a s t r i p  i n  t h e  plane of t h e  bond as shown 

(Force acts perpendicular t o  the  plane of t h e  paper.) 

I 1 S t r i p  Area dA = 2R sine dx a 

where x = R-Rcos8 =R(l-cose 

and dx = R s ine  de 

therefore  dA = 2R s i n  8 de 2 2  

I I and the  incremental  fo rce  dF i s  
2 dF = adA = 20% s in2  dB , 

where c i s  t h e  bond stress,and 

dM = xdF = 2R a (1-cose) s in2  Ode. 
'FIGURE 23. SECTION IN PLANE 

OF BOND 3 

In tegra t ing  between the  limits 0 and T/2 gives  

Now we can equate (38) and (39) and solve f o r  Q t o  obtain 

a s T  TR2E + a v H b H ( l ? +  - tH 
2 

3 
4 

u =  

(39) 

now subs t i tu t ing  t h e  following constants  

3 2 e = 1.0 cm.; b T  = 3.53 g / ~ m . ~ ;  a = 7(980) = 6.86 x 10  cm./sec ; 

'nleg 
t H 

= 0.414 cm.; R = 0.322cm.; tiH= 2.6 g / ~ m . ~ ; h  2 = 1.127cm,; 



we obtain 

HOT 

3 = 840 x 10 dynes/cmO2 = 12.2 p s i  
3 2 b e g  

l e g  
u n  = 416 x 10 dynes/cm. = 6 p s i  

(assuming, conservatively, tha t  e i t h e r  l e g  m a y  be required t o  absorb 

t h e  e n t i r e  weight of the  hot shoe). 

The above-calculated maximurn s t r e s s e s  f o r  the n- and p-legs a r e  

negl igibly m d l  . 
Case I1 - Acceleration i n  the Y-Direction 

A s  i n  Case I, the  primary s t r e s s  i s  induced by the  bending moment. 
(Figure 2.4) 

An accelerat ion i n  t h e  

Y-direction will generate 

a moment about point  0 

which must be r e s i s t e d  by 

t he  bond s t r e s s .  (Point 0 

m a y  be loca ted  a t  any 

po s i  ti on t h a t  simpli f i e s 

ca lcu la t ion  o f  moments.) 

FIGURE 24. LOAD DISTRIBUTION IN Y-DIRECTION 

The Moment M which r e s u l t s  from accelerat ion w i l l  be the  same a s  i n  

Case I (Eq. (38) because the mass increment and t h e  acce lera t ion  a re  

the  same, as i n  t h e  dis tance the  fozce a c t s  through, 

The moment caused by bond s t r e s s  

t h a t  of  Case I. 

i n  Figure 25. 

wil l ,  however, be d i f f e r e n t  from 

Consider a s t r i p  i n  the  plane of  t he  b n d ,  a s  shown 

(Force a c t s  perpendicular t o  t he  plane of t he  paper.) 
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0 m S t r i p  Area dk = R s ine  dy 

where y = R-R cos0 i s  R(1-cose) 

dy = R sine de 

t he re fo re  dA = R 2 2  s i n  8 d e  

and t h e  incremental  fo rce  
dF =QdA = O R  2 2  s in  B de 

in tegra t ing  between the  l i m i t s  0 and 7T/2 gives  

m 

7TR’ u 
2 9 M =  

equating moments by Eqso (38)  and ( 4 1 ) ,  and solving for u gives 

L. 

a 6 T  T R L  2 2  

u =  

using the  previously denoted constants ,  w e  obtain 

3 u pleg = 483 x 10 dynes/cm.2 = 7.0 p s i  
3 2 = 2.40 x 10 dynes/cmo = 3.5 p s i  o n  

1% 

(again,  making t h e  conservative assumption t h a t  e i t h e r  l e g  may be 

required t o  absorb the  e n t i r e  weight of t h e  hot  shoe),  

The above ca lcu la ted  m a x i m u m  s t r e s s e s  f o r  t h e  n- and p-legs are 

negl igibly small. 
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Case I11 - Acceleration i n  the %Direction 

In this case, a normal t ens i l e  ( o r  compressive) load i s  placed on 

the  bond, 

Total  Force, F = ma (43) 

= ( c T v T + 6  H H  v ) a  

and the  normal force F causes a s t r e s s  

where 2 A i s  cross  sect ional  a r ea  of element(TR ) 
and subs t i tu t ing  (43) i n t o  (4.4) gives  

u =  ( ' T  'T -I- 'H 'H) a 
A (45 1 

subs t i tu t ing  the  previously denoted constants  i n  (45) we obtain 

3 2 

3 
upleg = 1 5 1  x 10 dynes/cm. = 2*2 p s i  
u n  = 1 0 1  x 10 dynes/cmO2 = 1.5 p s i  

l e g  

(again, making the conservative assumption t h a t  e i t h e r  l e g  may be 

required t o  absorb the  en t i re  weight of  the  hot shoe), 

The above calculated s t resses  f o r  t h e  n- and p-legs a r e  negl ig ib ly  

mall . 
Final ly ,  accelerat ion a t  any angle can be resolved i n t o  X, Y, and Z 
components. Because the  maximum accelerat ions on each axis generate 

negl igible  s t r e s s e s  a t  t he  region of t he  bond, a resolved acce lera t ion  

i n  any d i rec t ion  will also generate a t r i v i a l  s t ress .  
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b. Acceleration-Induced S t r e s ses  i n  Generator Frame 

! 
1 
! 

frame, two c r i t i c a l l y  located 

sec t ions  of t he  frame a r e  i s o l a t e d  as 

fixed-end can t i l eve r  beams, and a re  

assumed t o  ca r ry  a f r a c t i o n  o f  t h e  

panel  weight g r e a t e r  than a propor- 

r-p\ t i o n a l  d i s t r i b u t i o n  would require .  
/ 

The two sec t ions  se lec ted  a re  shown 

i n  Figure 26 which a l s o  shows t h e  

assumed method of attachment of t he  

I \  
I\ 
1 2  

/ 

FIGURE 27A. LOADING ON SECTION OF FRAME 

W Ib/ in.  ponding t o  2 t ransverse  row of 

c w i  i i i I i I, 4 sec t ions) .  Figures  27A and 27B0 
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(8) The proper t ies  of t he  channel cross sect ion o f  t h e  beam a r e  

I, r’ 
(47) 3 = 1 t IY 3 Y 

+ a(b-y) -(a-t> (b-y-t) 

d 
where y i s  the  d is tance  from t h e  

neut ra l  axis t o  extreme f i b e r  and 

I 

_----- 
I 

I y  i s  the  moment of  i n e r t i a  of t he  

section e 

FIGURE 27B. LOADING ON SECTION OF FRAME 

Subst i tut ing the  following constants 
b = 0.375 in, ,  t = 0.125 in., 

d = 0.250 in , ,  a = 0.500 in ,  

we obtain y = 0.250 i n ,  
~y = 5.53 x 10-3 i n ,  4 

and f o r  a fixed-end cant i lever  the m a x i m u m  moment 

(48) 1 
2 m a x . M = - W L  

where W i s  the  t o t a l  load on t h e  beam, 

8*783 lb’Danel = 1.757 lb., and considering an For L = 13.95 in., W = 5 
accelerat ion of  7 g’s ,  we obtain max. M = 85.7 in .  l b  

My 
and m a x .  s t r e s s  u = I = 3875 lb/in2 i n  tension a t  the  topmost 

f i b e r  of the  beam. 
Y 

Case 11: 

load equivalent t o  one-third of the panel weight (assuming support of 

t he  e n t i r e  port ion of the panel below a l i n e  drawn between one hinge 

support and the  center  edge support) 

Treat as a fixed-end beam carrying an accelerated uniform 
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W = 2.93, L = 11.59 in., acce le ra t ion  = 7 g l s o  

max. moment = 159.4. in- lbs  

m a .  Q = 5360 p s i  

The allowable t e n s i l e  s t r e s s  for Beryllium a t  400°C i s  approximately 

30,000 p s i .  

2. Capabi l i ty  o f  S t ruc ture  t o  Withstand Vibration Reauirement 

Reauirement: 

resonant frequencies between 16 and 2000 H 

mutually perpendicular axeso 

The panel  s h a l l  withstand v ib ra t ion  o f  a 5-g peak a t  t h e  

f o r  1 5  minutes along th ree  
I Z 

Analysis: 

support p la te  were analyzed. 

panel frame design, and the  l a c k  of knowledge as t o  method of attachment 

t o  t he  s a t e l l i t e  and the  nature  of t h e  t ransmit ted loads,  a v ib ra t ion  

analysis has not  been made o f  t he  frame. 

been made in  performing t h e  ana lys i s  

support p la te  : 

The vibration-induced s t r e s s e s  i n  the  couple and t he  r a d i a t o r  

Because of t he  preliminary na ture  of t h e  

The following assumptions have 

of  t he  couple and r a d i a t o r  

a) No c red i t  has been taken f o r  damping a t  any poin t  i n  t h e  s t ruc ture .  

Because damping will exist  within t h e  component s t ruc tu re ,  t he  

calculated s t r e s s e s  a re  more severe than the  ac tua l  s t r e s s  state. 

In  addition, damping mechanisms (e.g. between the  panel  frame and 

the  s a t e l l i t e  struts) could be used, i f  required,  t o  reduce high 

s t resses  i n  t h e  frame. 

b) In  t h e  couple, t he  s t r e s s e s  a t  t he  bond of t h e  SiGe element t o  the  

tungsten shoe a t  t h e  cold end were se lec ted  as the  m o s t  c r i t i c a l  

s t r e s ses  induced by v ibra t ion  ( see  discussion under ana lys i s  of 

Accelerat ion-Induced St resses)  . 
c )  The rad ia tor  support p l a t e  has not  been r igorous ly  analyzed as a 

p l a t e .  

(with point loadings)  which, it i s  assumed, behave equivalent ly  t o  

It  has  been broken down i n t o  a series o f  f i xed  edge beams 
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each o ther  f o r  l o a d s  along the same axis. 

of a t y p i c a l  sec t ion  i n  both the X- and Y-directions. 

The ana lys i s  was made 

a. M a x i m u m  Vibration-Induced Stresses  i n  Coude 

.t 
X 

Trea t  t he  couple as a fixed-end 

can t i l eve r  a t  t he  poin t  o f  bonding 

t o  t h e  cold s tack  (Figure 28). 

The n a t u r a l  frequency of v ib ra t ion  

f o r  a can t i l eve r  beam, with an 

end-load W, supporting i t s  own 
weight, w e ,  i s  (9) 

where E i s  modulus of e l a s t i c i t y  

and I i s  moment o f  i n e r t i a .  

The moment of i n e r t i a  about each 
axis i s  given by ( 8 )  

4 I = 0.007d 

Iy = 0.02.45d 4 X 

FIGURE 28. COUPLE AS FIXED END CANTILEVER 

Now, assuming the  weight of the shoe i s  supported equally by t h e  

n- and p-legs f o r  loads  a long  e i t h e r  t h e  X- o r  Y-axis, and u t i l i z i n g  

the  following constants  

6 e =  1.0 em.; E = 1 8  x 10 psi ,  T/J = 3.02 gm (.00666 l b . ) ,  ( w e  
= 0.00127.; dnleg = 0.828 cm.; = 0.00209 lbo, ( w & )  pleg n 

dpleg 
1% 

= 0.644 cmo 

73 



w e  obtain 

4 4 = 7.90 x in. in .  ; (Iy) n 
1% 

= 2.76 x ( I X )  nleg 

= 1-01 x 10-4 in.4j ( I ~ )  pleg = 2.90 x in .  4 ( I X  Pleg 

and 

To avoid the imposition of synchronous v ib ra t ions  which are developed 

i n  component by the  condi%ion of resonance, t he  na tu ra l  frequency of 

v ib ra t ion  o f  every p a r t  should be considerably higher  than t h e  number 

of impulses which the  p a r t  rece ives  during operation, This condition 

of avoiding resonant f requencies  i s  met i n  a l l  ins tances  examined 

above; the  c l o s e s t  t h e  imposed f requencyo approaches t o  t h e  na tu ra l  

frequency wn i s  where ( w ,Y) = 8300 HZ compared t o  w = 2000 Hz. 
'leg 

(10,11) Expressing t h e  above a s  

(52) 1 
1 - B  

u ='-2 = magnification f a c t o r  on f o r c e  o r  and 

moment, the re ln t ionship  between t h e  imposed amplitude of v ibra t ion  

and beam s t a t i c  de f l ec t ion  can be determined from (10,ll) 
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where Y i s  the  r e l a t i v e  def lec t ion  of beam and a. i s  the  

amplitude o f  motion due t o  v ib ra t ion  of frequency o , 
0 

To determine ao, we assume a s inusoidal  mode of vibrat ion,  (10,ll) 

X = a s i n  u t  
e o  
X = a  w c o s w t  ( 5 4 )  
.e O x = -a w 2  s i n w t  

amplitude of acceleration = a w 
2 0 

0 

therefore  f o r  extremes of frequency specified 

a = 0.1912 i n .  ( f o r w =  16  H ) 
a = 12.25 x 10- i n .  ( f o r  w = 2000 H ) 

0 Z 

Z 6 0 

and therefore,  subs t i t u t ing  the appropriate  constants  we obtain 

The maximum def lec t ion  and moment of  a can t i l eve r  beam, with an end- 
load w , supporting i t s  own uniform weight, wj, a re  ( 8 )  

we3 + i w e ) e 3  
8EI max.  Y = -  

o 3EI 

E m a x .  M = ~ k '  + (d) ( ) 
( a t  cold j o i n t  bond) 

( 5 5 )  

(56) 

Solving for W ( subs t i t u t ing  the values  of Y 
and then f o r  m a x h m  moment, we obtain 

previously calculated)  , 
0 

= 0.0076 in . lb  (max.My) = 0.0078 in . lb  n 
1% 1% 

n (max.Mx) 

( max  . Mx) = 0.0072 in . lb  (max.My) = 0.0073 in . lb  
'leg Pleg 
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The maximum bending ( f i b e r )  stress i s  

where C i s  d is tance  from neu t r a l  axis t o  extreme f i b e r .  Using the  

relat ionships ,  C = d/2 (about X - a x i s )  and Cmaxo= 0.5756 R (about 
Y-axis) (9) (58) 

and subs t i t u t ing  the  appropriate values  f o r  M and I, we ob ta in  

( Q  ) = ? 9.3 p s i  
Y Y e g  

The maximum stresses i n  the  SiGe l e g s  caused by t h e  v ib ra t ion  loading 

are negl ig ib ly  small. 
be even smaller, and the  capab i l i t y  of t h e  cold s tack t o  absorb 

s t r e s ses  even grea te r ,  assumption b would appear val id .  

Because the  stresses a t  t he  hot  junct ion w i l l  

b. Maximum Vibration-Induced S t r e s ses  i n  Radiator Support P l a t e  

The ar-alyses o f  stresses induced i n  the  r ad ia to r  base p l a t e ,  Figure 29, 
are covered i n  t h e  following cases  A and B. 

FIGURE 29. SCHEMATIC-RADIATOR BASE PLATE 
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Case A: 
(equivalent) ,  and weight with th ree  concentrated loads  correspond- 

ing  t o  three  thermocouples (Figure 3 0 ) .  

Treat  as  a fixed-edge beam of uniform width, thickness  

To f i n d  t h e  na tu ra l  frequency 

of a fixed-end beam which supports 

several  concentrated loads,  t h e  

Fkyleigh method, using energy 
pr inc ip les ,  i s  applied., (12) 

FIGURE 30. LOAD DISTRIBUTION ON FIXED END BEAM 

The s t a t i c  def lect ion equation of a fixed-end beam with a s ing le  

concentrated load  i s  given by 

Where W i s  the ueight of one thermocouple p lus  one-third the  weight 

of t h e  beam ( t h i s  assumption can be used s ince the  def lec t ion  

caused by the  equivalent concentrated load i s  very near ly  equal t o  
the  def lec t ion  caused by the  weight of t h e  beam) and equals W1 + - W L  3 *  

Now, subs t i tu t ing  the  following constants  i n t o  Eq. (59) 

W = 0.0274 l b ,  "1 = 0,370 in., b 
1 1 

= 2.674 in., L = 3.04.4. i n .  

we obtain f o r  po in t  (1) i n  Figure 30 
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and 

- 0 -00 270 5 
yll - E1 

y1 = yll + y12 

0,000560 - 0.00516 - 
9 '12 - E1 ' '13 - E1 

o .001~04 - 
+ '13 - E1 

now, applying t h e  same method t o  po in t s  (2)  and (3) i n  Figure 30 
and using the  following constants  

= 2,674 in. ,  b2 = 1.522 in., 
W 2 3  = W = 0.0274 Ib., a2 = 1.522 in., a3 
b = 0,370 in., 3 

we obtain 

0.00086 - 0.00561 - 
'21 = '23 - EI ' y22 - E1 

- 0.00735 
- E1 Y = Y  

2 21 + '22 -t '23 

and 

(12) 
Now, t o  f ind  the  na tu ra l  frequency of t he  beam, we use 

where g i s  the  accelerat ion constant.  

For this  case, W = W = W therefore  Eq. (63) reduces t o  1 2 3' 

and Y from Eqs, (60)-(62) and subs t i tu t ing  t h e  values  f o r  Y 1' y29 3 
respect ively , we obtain 
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6 
a = 0.0476 x 10 E 1  n 

6 where E = 42 x 10 ps i  (for Beryllium a t  400 "c) 

(13) The moment of i n e r t i a  of t h e  equivalent uniform beam (Figure 31) i s ,  

BC1 3 - bh 3 + aC2 3 

I =  (65) 3 

where h i s  C1-d 

aH2 + m2 
and C1 =*-) 9 C 2 = H  - c1 

t 
d 

using the  constants  

B = 1.152 in., H = 0.260 in., 

b/2 = 0.536 in. ,  a = 0.080 in., 

d = 0.060 in., 

we obtain 

-- -:- -- 

t- 

C1 = 0.1122 in , ,  C 2  = 0.1478 in., 
FIGURE 31. SECTION OF BASE PLATE RIB h = 0.0522 in. 

and subs t i t u t ing  i n  (65), we obtain I = 578.5 x LO- 6 4  in,, 

which when subs t i tu ted  i n  Eq. (64) gives  

Because the  na tu ra l  frequency i s  w e l l  above the  range of imposed 

frequencies,  there  i s  no chance of resonance occurring. 

Now, using Eqs. (51) - (54) and the  imposed v ib ra t ion  requirements, 

we obtain 

@ =  w/Ln = 0.368 ( f o r  

v = 1/1 - 6 = 1.159 
ao= 12,25 x i n .  (for w = 2000 H ) 

= 2000 H being the  more severe case) 
Z 2 

Z 
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which gives 
y = a v B 2  = 1.94 x 10 -6 in .  

0 0 

Now, the  m a x i m u m  def lec t ion  of the  beam occurring a t  point  (2)  i s  

given by Eq. (61): -6 = O.O0735/EI = 0.331 x 10  in.; t h e  s t a t i c  y 2  
deflect ion i s  therefore  amplified by 

Therefore, the  Maximum Moment i n  the  

ing  from the  v ibra t ion  loading, i s  

t h e  f a c t o r  Yo/Y2 = 5.86. 
beam a t  t h e  f ixed edge, resu l t -  

M = (- 8 + - Wab2 2 + &) 2 (yo&) 
ma. 

where 

which gives M = 0,1019 in .  lba 
m8x. 

The maximum f i b e r  bending s t r e s s  i s  

a i s  0.370 in., b i s  2.674 in . ,  L = 3.0.44. in .  

MC 
I 

g = -  

C1 i s  0.1122 in., C i s  0.1478 in., I i s  578.5 x 10 -6. i n .  4 
2 

where 

o r  u ma. = 26.2 ps i .  

The ult imate t e n s i l e  s t rength of Beryllium a t  4 O O ’ q  i s  approximately 

30,000 psi. 

c omp a r i  son. 

The calculated s t r e s s  i s  therefore  negl ig ib le  by 

Case B: 

(equivalent) ,  and weight with four  concentrated loads corresponding 

t o  four  thermocouples (Figure 32). 

Treat as a fixed-edge beam of uniform width, thickness 

The same procedure i s  

followed i n  this case 

a s  i n  Case A. 

FIGURE 32. LOAD DISTRIBUTION ON FIXED END BEAM 
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The constants  i n  this instance are: 

W = W = W = W = 0.0259 l b  

al = 0.370 in., a 

bl = 3.826 in., b = 2.674in., b ~ 1 . 5 2 2  in., b = 0.370 in, ,  

1 2 3 4  
= 2.674 in., a4 = 3.826 i n .  a3 = 1.522 in., 2 

2 3 4 
L = 4.196 in .  

which,from Eq. (59), gives  

Y =  
11 
Y =  
14 

and 
- 

y1 - 

y21 - 

y2 - 

- 

Y =  zr, 

Y =  
Y =  

- 

3 
4 

I 

3.315 ~ o - ~ / E I ,  y12 = 9.4 ~o - ~ / E I ,  y13 = 5.56 10-~/EI 
9.4745 10-4/~1 

yll + y12 + y13 + y14 = 18.75 10-~/EI 
9.42 x 10-4/~1, Y~~ = 78.8 

5.56 ~ o - ~ / E I  

y21 + y22 + y23 + Y 21, = 153.68 ~ o - ~ / E I  

y2 = 153.68 10-41~1. 
y1 = 18.75 10-41~1 

10-4/~1, Y~~ = 59.9 ~o-~/EI, 

subs t i tu t ing  Y -Y i n t o  Eq. (64) y i e l d s  1 4  

4 w = 2,78 x 10  E1 
E i s  42 x 10 p s i  and I i s  578-5 x 6 n 

where 

and therefore  w =3445 HZ n 

The na tura l  frequency of 34.45 HZ i s  considerably grea te r  than t h e  

m a x i m u m  imposed frequency of 2000 H . 
resonant condition being imposed. 

There i s  no danger of a 
z 

From Eqs. (51)-(54) we obtain 

@ =  0.616; U =  1.61; a = 12.25 x in.; Yo = 7-5 x 10  -6 in , ,  
0 

now the  m a x i m u m  def lec t ion  o f  t h e  beam occurring a t  po in t  (2) i s  

given by Eq. (61) 

6 Y2 = 153.86 x 10-4/EI = 0.633 x 10- i n .  
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The s t a t i c  def lect ion i s  therefore  amplified by t h e  f a c t o r  

Yo/Y2 = 11.85 

and t h e  m a x i m u m  moment i n  the  beam a t  t h e  f ixed  edge, r e su l t i ng  

from the v ib ra t ion  loading, i s  

2 W a 2 b  W a %  
?Lbl + a2b2 + 3 + A (67) max. M = 2 2 2 2 

which gives 

The m a x i m u m  f i b e r  bsnding s t r e s s  

m a .  M = 0,4035 in .  l b .  

U = M C / I  = 103 p s i  m a o  max.  

This  stress i s  a l s o  negl igibly small. 

3. Capability o f  Structure  t o  Withstand Acoustic Noise Reauirement 

Reauirement: 

sound pressure l e v e l  of 14.8 dec ibe ls  r e fe r r ed  t o  0.0002 dynes pe r  cm. 

with the  frequency spectrum shown i n  t h e  Figure 3 i n  t h e  specif icat ion.  

The panel s h a l l  withstand f o r  f i v e  minutes a t o t a l  in tegra ted  
2 

Analysis: 

therefore  this requirement w i l l  be analyzed i n  t h e  same manner as i n  

Section 2, with t h e  same assumptions appl iedD 

Sound i s  e s s e n t i a l l y  a v ib ra t ion  of audible  frequency, and 

To convert  the specified sound pressure l e v e l  t o  & u n i t  pressure loading, 

t h e  following expression i s  used: (16) 

P Sound Pressure Level (db) = 20 loglo o.ooo2 microbar 

where 1 mici-obar = 1 dyne/cm.2, and P i s  t h e  sound pressure o r  t o t a l  

instantaneous pressure a t  t h a t  po in t  i n  t h e  presence of a sound wave 

(minus t h e  s t a t i c  pressure)  
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now f o r  SPL = 148 dbs, we g e t  from Eq.. (68) 
P = 0.11 p s i  

I n  addi t ion,  t h e  n a t u r a l  frequencies of t h e  couple and r a d i a t o r  base 

p l a t e  determined i n  Section 2 are (along X- and Y-axes) f a r  i n  excess 

of t he  range o f  imposed frequencies shown i n  the  specif ied frequency 

spectrum. There i s ,  therefore ,  no p o s s i b i l i t y  o f  a resonant condition 

being imposed a t  any time during operation. 

U t i l i z ing  the  same analyses that were applied i n  Section 2, w e  can 

determine t h a t  instantaneous appl icat ion of t h e  0.11 p s i  pressure 

loading along the  X- o r  Y-axes w i l l  c r ea t e  t h e  following approximate 

m a x i m u m  s t r e s ses :  

1. I n  t h e  SiGe couples: 

( a  ) = 25.5 p s i  ( cy)  = 51.8 p s i  

In  t h e  r a d i a t o r  support p l a t e :  
Case A: Q m a x ,  = 160 p s i  

Case B: umax. = 660 p s i  

'leg 'leg 

2. 

The s t r e s s e s  caused by noise  loading a r e  a l s o  negl ig ib le  i n  r e l a t i o n  t o  

t h e  d lowable  s t resses .  I n  addition, t h e  t o t a l  s t r e s s  l e v e l s  along the  

X- and Y-axes f o r  a simultaneous imposit ion of accelerat ion,  noise,  and 

v ib ra t ion  loading a re  qu i t e  small ,  and well  within t h e  allowable ranges. 

4. Capabi l i tv  of S t ruc ture  t o  Withstand Thermal S t r e s ses  

Two condi t ions w i l l  be examined: 

i n  the  s t ruc tu re  during normal steady s t a t e  operation 
1) t he  maximum thermal s t r e s s e s  induced 

2) t he  maximum thermal s t r e s s e s  imposed 

by the  thermal t r a n s i e n t  t e s t  requirement. 



The following assumptions a re  made i n  performing t h e  ana lys i s :  

a)  No s t r e s s  re laxa t ion  caused by creep o r  p l a s t i c  flow i s  assumed. The 

thermal s t r e s s e s  a r e  not  assumed t o  be reduced by mater ia l  

displacement o r  flow a t  e levated temperatures. 

b) The thermal s t r e s s e s  induced i n  t h e  couple i n  t h e  SiMo hot  shoe 

and the  SiGe elements a re  assumed t o  be the  most severe under 

conditions of constant temperatures, o r  o f  t he  imposed operating 

temperature gradient.  

and the  cold st,ack i s  subjected t o  smaller temperature extremes, 

and i s  of t he  s q e  construct ion as t h e  SNAP-1OA ho t  s ide,  which 

has undergone environmental thermal shocks, g rad ien ts ,  and 

cycling f a r  more severe than t h e  requirements of this program 

without ever experiencing a f a i l u r e .  In  addi t ion,  t h e  thermal 

s t r e s ses  i n  the  r ad ia to r  p l a t e ,  stud, and frame w i l l  be small, 

because none of these  components are subject  t o  l a r g e  temperature 

gradients  o r  have any ma te r i a l s  expansion mismatch. 

The cold end junct ion between t h e  SiGe 

a. M a x i m u m  Thermal S t resses  i n  Couple During Normal Operation 

For t h e  bonding of two members, a zero stress state w i l l  exis t  a t  

t he  bonding temperature. A t  any o ther  temperature, t he  non-uniform 

thermal expansion o f  t he  two members w i l l  r e s u l t  i n  a s t r e s sed  con- 

d i t i on .  A t  room temperature, t h e  d i f f e r e n t i a l  expansion of t he  two 

members i s  g r e a t e s t  ( f u r t h e s t  removed from bonding temperatures),  and 

the  s t r e s ses  induced i n  the  region of t h e  bond a r e  therefore  a 

m a x i m u m  a t  room temperature, 

The couple s t ruc tu re  o f  t he  hot shoe bonded t o  the  element can be 

approximated by t h e  s t r u c t u r a l  element i n  Figure 330 
heated t o  temperature Tp and the  element i s  a t  temperature T e e  

Assuming no bowir,g o r  buckling, t h e  thermal s t r e s s e s  i n  p l a t e  cp, 
(15) and i n  element cr a re  given by 

The p l a t e  i s  
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a 

I 

L b - I  

CROSS SECTION 
AREA OF ELEMENT 

where Ep, ap, and Eey cye are t h e  

moduli of e l a s t i c i t y  and coeff i -  

c i e n t s  of thermal expansion of 

t h e  p l a t e  and element, respec- 

tively. 

FIGURE 33. APPROXIMATION OF HOT 
SHOE-TO-ELEMENT CON FlGURATl ON 

The SiMo-to-SiGe bonding temperature i s  approximately 1200OC, there- 

fo re ,  f o r  isothermal room temperature conditions 

T = T = 1200 -25 = 1175OC 
6 P e  

5 = Ee = 18 x 10 p s i  
~ 4 . 0  x 

(y = 4.7 x lo-6/oc e 

and tH = 0.1457 cm., b = 2,825 cm,, Ae = 0.322 cm. 2 ( p  ); 2 1% 0.4l4 cm. ( n  
1% 

when subs t i tu ted  i n  Eqso (69) and (70) we obtain 

f o r  t h e  SiGe n-leg-to-SiMo junct ion 

up = 6500 ps i  ( tension) 

= 8300 ps i  (compression) e 
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f o r  t he  SiGe p-leg-to-SiMo junct ion 

d = 7QO p s i  

=e 

P 
= -7380 p s i  

The SiGe mater ia l  has a measured capab i l i t y  t o  withstand compressive 

loading t o  approximately 130,000 p s i  (U.C.S.) . Analysis o f  var ious  

couple configurations of th is  type i n d i c a t e s  t h a t  t h e  SiMo material 

i s  capable of withstanding a minimum of 20,500 p s i  i n  tens ion  due t o  

thermal s t r e s s  loading. Furthermore, couples having more extreme 

v a r i a t i o n s  i n  geometry are f ab r i ca t ed  with no fa i lures  observed when 

they are  brought down t o  room temperature. 

b. Capabili ty of Couple t o  Withstand Thermal Transient  Reauirement 

Reauirement: 

t r ans i en t  t e s t :  

e r a tu re  of 150O0F as rap id ly  as poss ib le  when subject  t o  t h e  thermal 

flux required t o  achieve this  hot  junct ion temperature. Immediately 

after temperature equilibrium has been es tab l i shed ,  heat ing s h a l l  

cease. The p a n e l  s h a l l  be allowed t o  cool  t o  an equilibrium temp- 

e ra ture  by rad ia t ing  t o  t h e  surrounding w a l l s  of a l i q u i d  ni t rogen 

cooled chamber. 

The panel s h a l l  withstand the  following thermal 

It s h a l l  be heated t o  an absorber surface temp- 

This  cycle s h a l l  be repeated twice, 

Analysis: 

1) t h e  temperature gradient  imposed a t  a ho t  junc t ion  temperature 

of 1 5 O O O F  (816OC) and a cold junct ion temperature of 788OF (420°C), 

and 2) the isothermal state corresponding t o  t h e  l i q u i d  ni t rogen 

temperature o f  -31l0F (-192%). 

Consider t h e  thermal s t r e s s e s  produced i n  the  couple by 

(1) Stresses  CorrespondinP t o  Hot Junction Temperature of 15OOOF 

Referencing t h e  temperature t o  t h e  zero stress temperature, we 

obtain 

Tp = 1200 -816 = 384% (724OF) 

-+ L20 = 582% (lO80OF) 
2 

Te = 1200 - 
(for a l i n e a r  grad ien t )  
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and using the  previously noted constants  i n  Eqs. (69) and (70) 

gives, f o r  t he  SiGe n-leg-to-SiMo junct ion 

u = 9300 p s i  P 
r e  = -11,900 p s i  

and f o r  t he  SiGa p-leg-to-SiMo junct ion 

Q = 10,600 p s i  

re 

P 
= -10,550 p s i  

( 2 )  Stresses  Corresponding t o  Liauid Nitropen Eauilibrium Temperature 

I n  this case, t he  couple s t ruc ture  i s  isothermal a t  an equilibrium 

temperature o f  -311OF (-192%). 

gives  for t he  SiGe n-leg-to-SiMo junct ion 

Applying Eqs. (69) and (70) 

cp = 7700 p s i  

de = -9840 psi  

Q = 8800 p s i  

de 

f o r  t he  SiGe p-leg-to-SiMo junct ion 

P 
= -8750 p s i  

A s  before, t he  m a x i m u m  stresses a re  within t h e  allowable ranges 

determined for t he  mater ia ls ,  Further,  it should be noted t h a t  

thermoelectric couples, similar i n  construction, have been 

subjected t o  rapid immersion ( e s s e n t i a l l y  shock condi t ion)  i n t o  

a l i q u i d  ni t rogen bath with no fa i lures ,  
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IV.  TEST PANEL €EKEFENCE DESIGN 

Layout Drawings of t h e  Reference Desim Test Panel 

RCA i s  obligated t o  f ab r i ca t e  and d e l i v e r  t h ree  f l a t  p l a t e  sec t ions  of t h e  

150-watt SiGe s o l a r  thermoelectric generator,  The reference design of  t he  

t e s t  sec t ion  was changed from twelve t o  nine couples t o  provide a panel 

sect ion geometry compatible with Lewis Research Center t e s t  equipment. 

nine-couple t e s t  sect ion i s  e l e c t r i c a l l y  connected i n  s e r i e s  i n s t ead  of 

s e r i e s  pa ra l l e l .  

The 

The following parameters will apply t o  t h e  nine couple t e s t  panel  when t e s t e d  

under specified design conditions:  

Power i n  Load (watts) 2.81 

Load Voltage ( v o l t s )  1.00 

Load Resistance (ohms) 0 0353 
In t e rna l  Resistance (ohms) 0,295 

Current (amps) 2,82 

Open Ci rcu i t  Voltage 2.05 

Engineering drawings f o r  t he  nine-couple t e s t  panel  sect ion a r e  attached, 

A b r i e f  descr ipt ion of each drawing follows; 

Test  Panel Assembly (Figure 34) - Drawing o f  t h e  nine-couple t e s t  panel 

sect ion depict ing t h e  complete assembly with insu la t ion .  

Test  Panel Base P l a t e  Section (Figure 35) - Dimensioned drawing of t he  

beryllium base p l a t e  f o r  a nine-couple t e s t  panel  section. 

Test Panel E lec t r i ca l  Schematic (Figure 36) - E l e c t r i c a l  schematic of t he  

nine-couple t e s t  panel sect ion showing s e r i e s  c i r c u i t  connection. 

Solar  Test Panel Instrumentation Heat-bceDtion ana 

Heat-Rej ection P l a t e  Thermocoudes (Figure 37) - Instrumentation f o r  t h e  

nine-couple t e s t  panel sect ion showing heat-reception and heat-reject ion 

p l a t e  thermocouple loca t ions  f o r  f i v e  couples, 
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Solar  Test Panel Instrumentation Voltage Taps 

and Current Leads (Figure 38) - Voltage t ap  and current  lead  loca t ions  f o r  

t he  nine-couple t e s t  panel section. 
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NO. OF COUPLES - 9 
I 

FIGURE 36. ELECTRICAL SCHEMATIC-TEST PANEL 
SERIES CIRCUIT 
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Si  Mo HOT SHOE 1 

. 
HOT SIDE 

FIGURE 37. SOLAR TEST PANEL INSTRUMENTATION 
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FIGURE 38. SOLAR TEST PANEL INSTRUMENTATION (VOLTAGE TAPS & CURRENT LEADS) 
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V. THERMOELECTRIC MATERIALS PROPERTIES 

The c h a r a c t e r i s t i c s  of t he  n-type and p-type SiGe and Six0 a l l o y s  employed i n  

t h e  Solar  Thermoelectric Generator design a r e  presented i n  this  sect ion,  

addi t ion,  a discussion of those proper t ies  of SiGe which make it a t t r a c t i v e  

a s  a thermoelectr ic  mater ia l  i s  a l s o  included. 

I n  

A. 

B. 

C. 

Silicon-Germanium Thermoelectric Mater ia l  Proper t ies  

Temperature-dependent thermoelectric p rope r t i e s  f o r  n-type and p-type 

SiGe a l loys  which include e l e c t r i c a l  r e s i s t i v i t y ,  Seebeck coe f f i c i en t ,  

and thermal conductivity a r e  shown i n  Figures  39 through 4.l. 
thermal and mechanical cha rac t e r i s t i c s  of SiGe a l loys  are shown i n  Table 

V I  . 
Essen t i a l  

Silicon-Molybdenum Alloy Material Proper t ies  

The e l e c t r i c a l  r e s i s t i v i t y  and thermal r e s i s t i v i t y  of t h e  s i l i c o n  molyb- 

denum a l l o y  hot  shoe material employed i n  the  development of t h e  s i l i con-  

germanium thermoelectric panels a re  shown i n  Figures 42 and 43. 

Background Information on Silicon-Germanium Thermoelectrics 

While t h e  e f f ic iency  of a thermoelectric generator depends, i n  theory, 

on only a few thermoelectric propert ies ,  i n  p rac t i ce  it i s  necessary that 

t h e  thermoelectric mater ia l  possess a number of addi t iona l  mechanical 

p rope r t i e s  so t h a t  r e l i a b l e  devices can be constructed.  The thermoelectr ic  

ma te r i a l  should have reasonable s t rength,  should be chemically s t ab le  a t  
high temperatures, and should have a l o w  coe f f i c i en t  of thermal expansion 

t o  minimize thermal s t r e s ses ,  In addi t ion,  means should be ava i lab le  f o r  

jo in ing  the thermoelectric mater ia l  t o  o ther  members of t he  thermoelectr ic  

st,-ucture so t h a t  e f f i c i e n t  thermal and e l e c t r i c a l  flux pa ths  can be 

maintained. Silicon-germanium a l l o y s  represent  a major cont r ibu t ion  t o  the  

thermoelectr ic  art  i n  t h a t  they combine good thermoelectr ic  p rope r t i e s  with 

an extremely favorable  combination.of mechanical proper t ies ,  permit t ing 

construct ion of r e l i a b l e  devices with s ign i f i can t  e f f i c i enc ie s ,  

Some of t he  unique f e a t u r e s  of the silicon-germanium thermoelectr ic  a l loys  

a r e  t h a t  they are operable a t  elevated temperatures (approximately 1800 - 
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TABLd VI 

PHYSICAL PROP3RTIES - THERMOELECTRIC MATERIALS 

( Approximat e Value s 1 

Proper ty  SiGe Si-Alloy Hot Shoe 

Thermal ?&pansion 4.8 t o  5.0 x 1 0 e 6 0 K  Same as SiGe 

Tens i le  S t rength  

p-type: 932°F(5000C) 3900 p s i  -- 
n-type: 932°F(5000C) U O O  p s i  -- 

Compressive Strength 150,000 p s i  I 

Avgo Modulus of  Rupture 3600 p s i  -- 
Vapor Pressure  

Den s i  t y  

3 x a t  14.72°F(8000C) -- 
3 3 t o  3.5 g/cm. 3 2.6 g/cm. 
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190O0F ( l O O O ° C ) ;  they a r e  mechanically s t rong ( t e n s i l e  s t r eng th  i s  many 

times t h a t  of conventional thermoelectr ic  mater ia l s )  ; they a r e  l e s s  dense 

than conventional thermoelectr ic  ma te r i a l s  by a f a c t o r  of about two and 

one-half times; they are r e l a t i v e l y  f r e e  from harmful oxidat ion e f f ec t s ;  

they are operable i n  vacuum and air f o r  long per iods without encapsulation; 

they are completely non-magnetic (both t h e  ac t ive  mater ia l  and t h e  normally- 

used RCA contacting mater ia l s )  * 

Other unique f e a t u r e s  which enhance the  a p p l i c a b i l i t y  of SiGe thermo- 

e l e c t r i c  mater ia l s  are: 

Ut i l i za t ion  of t h e  Mater ia l  

The use of many thermoelectric materials i n  p r a c t i c a l  power-generating 

devices has been hampered by t h e  i n a b i l i t y  t o  c rea t e  s tab le ,  strong, 

low-electr ical  r e s i s t ance  contac ts  t o  t h e  materials. 

developed an exce l len t  i on ic  bond t o  me ta l l i c  contac ts  f o r  s i l i c o n  ger- 

m a n i u m ,  

a c t e r i s t i c s  of t h i s  material i n  p rac t i ca l ,  operat ing devices. 

t h i s  development made it f e a s i b l e  t o  meet t h e  design requirements of such 

space power supply systems as the  SNAP-108, 

However, RCA has 

This development was a key s tep  i n  the  u t i l i z a t i o n  of t h e  char- 

I n  f a c t ,  

Eff ic iency 

The ef f ic iency  of silicon-germanium thermoelectr ic  ma te r i a l  i s ,  of course, 

a func t ion  o f  t he  temperature range i n  addi t ion  t o  t h e  device design, 

For t h i s  reason, i t  i s  des i r ab le  t o  have t h e  hot  junct ion temperature as 
high as possible,  Silicon-germanium a l loys ,  with t h e i r  demonstrated 

capab i l i t y  f o r  high-temperature operation i n  p r a c t i c a l  device configurat ions,  

a r e  ab le  t o  take advantage of high-temperature heat  sources t o  gain e i t h e r  

improved thermoelectric e f f i c i e n c i e s  o r  high cold junct ion temperatures 

f o r  minimizing r ad ia to r  weight. 

Radiation Resistance 

Complete quant i ta t ive  da t a  f o r  t he  r ad ia t ion  r e s i s t ance  of silicon-germnium 

a l loys  a re  not  y e t  avai lable;  but i n i t i a l  i nves t iga t ions  have been made, 

Samples of t he  mater ia l  have been exposed t o  in tegra ted  neutron fluxes i n  
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excess of  5 x 10l8 nvt with only minor e f f e c t s  on e i t h e r  t he  Seebeck 

coe f f i c i en t  o r  r e s i s t i v i t y .  Although these ea r ly  t e s t s  were not  performed 

a t  operating temperatures, subsequent annealing of t he  specimens a t  operat- 

ing  temperatures f o r  short  periods removed most of  t he  damage. 

f u r t h e r  inves t iga t ion  o f  the  e f f ec t  of  rad ia t ion  on silicon-germanium a l loys  

i s  necessary, t h e  r e s u l t s  t o  date ind ica te  t h a t  no major  problems will be 

encountered i n  t h i s  area. 

Although 

Mechanical Strength 

Because almost  a l l  space power systems w i l l  be subjected t o  severe mechan- 

i c a l  environments during vehicle  launch, t he  thermoelectric s t ruc tu res  must 

be extremely re l iab le .  

t h e  same favorable mechanical cha rac t e r i s t i c s  a s  the  mater ia l s  themselves. 

For example, modules intended f o r  use i n  t h e  SNAP-1OA system were t e s t ed  

i n  accordance with the  mechanical t e s t s  specif ied f o r  t he  Atlas-Agena 

vehic le  combination. 

f a i l u r e  t o  l e v e l s  twice the  specif icat ion l i m i t .  The t e s t  l imi t a t ions  

ind ica ted  have generally been a l imi ta t ion  of avai lable  t e s t  equipment. 

The devices incorporating SiGe have demonstrated 

I n  all cases, t he  modules have been t e s t ed  without 

Den s i  t v  
A s  mentioned e a r l i e r ,  the  silicon-germanium a l loy  i s  a low-density mater ia l .  

For example, t he  converter system alone of t he  SNAP-1OA has a spec i f ic  

power of  about 4 watts per  pound a t  an e f f ic iency  o f  about 2 percent. 

spec i f i c  power of only the  thermoelectric mater ia l  i s  many times 4 watts 
pe r  pound because most of the  weight i s  incorporated i n  the  rad ia tors ,  i n  

t h e  l i q u i d  metal tubing, i n  t h e  insu la tor  s tacks,  and i n  associated 

s t ruc tures .  Signif icant ly ,  these values a re  not  l imi ted  by the  s t ruc tu res  

but  more by the  avai lable  temperatures. For example, an increase i n  the  

ava i lab le  heat source temperature could increase  both the  e f f ic iency  and 

spec i f ic  power of the  device, without t he  need f o r  major changes i n  the  

s t ruc tu re  

The 

Nomamet ic  

Silicon-germanium thermoelectric mater ia l s  a re  nonmagnetic. 

all of t he  other  mater ia ls  employed i n  making usable thermocouples, 

including the  hot and cold shoes, a r e  nonmagnetic. A s  a r e s u l t ,  no special  

Additionally, 
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precaut ions o r  magnetic shielding a re  needed when using this material i n  

c lose  proximity t o  sens i t i ve  measurement instruments. 

S m a l y  

In  t h e  pas t  f e w  years, advances i n  thermoelectr ic  mater ia l s  and i n  device 

technology have made thermoelectric power systems technica l ly  and prac- 

t i c a l l y  feas ib le .  

supported both by Government programs and RCA funds, has  contr ibuted 

s ign i f i can t ly  t o  t h i s  advance. 

and t h e  contact and device technology a t tendant  on t h e i r  use have been 

demonstrated as a sound b a s i s  f o r  r e l i a b l e  long-l i fe  power systems. 

The work accomplished by RCA i n  thermoelectr ics ,  

The development of  silicon-germanium a l loys  
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