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INTRODUCTION

The structural loads and accompanying stresses arising from the
responses of airplanes to the velocities of the atmosphere during flight
through turbulent air have been of concern throughout the history of
airplanes. In fact, this was the subqect of the first technical report
published by the NACA in 1915. The effort required to develop gust loed
design methods may be appreciated from a chronological résumé presented
in reference 8.

Experience has shown that the local air velocities are continuous
and randam in nature and definable only in a statistical sense. Conse-
quently the responses of the airplane can only be known in a staﬁistical
sense. Of the methods of response calculations available to the designer,
the spectral density approach is perhaps the best. This approach, in
contrast with earlier methods, accounts for the continuous nature of
turbulence, including the effects of repeated gust peaks of various
intensities, sizes, and phasing. The spectral approach provides statis-
tical descriptions of the dynamic responses from a combination of a
power spectral description of the turbulent velocities and solutions of
linear equationé 6f motion of the airplane. The linear equations can be
written to include elastic modes of vibration as well as the rigid-body
modes of motion.

Inherent in the use of this approach of the problem are several
important assumptions that must be employed. The intuitive concept that

the atmosphere must be described by time and spatial averages that vary




with position and time, respectively, 1s amended by the assumption that
1t consists of "patches" of stationary (time-invariant averages) and
hamogeneous (spatially invariant averages) turbulence. For these patches,
time and statistical averages are assumed to be equivalent, an assump-
tion which compensates for the lack of an ergodic theorem in fluid
mechanics. Also, the probabllity distribution of the homogeneous and
stationary patches of turbulence has been shown to be nearly Gaussian
which allows the speétral density function to give a complete statistical
description of the random responses. Taylor's hypothesis 1s assumed to
be valid. This hypothesis assumes that the turbulence pattern is essen-
tially frozen until the airplane has passed through it; consequently,
the time displacements are equivalent to longitudinal space displacements.
Another assumption concerns the existence and determination of a
characteristic length in the atmosphere. The characteristic length of
the atmosphere is assumed to be glven by the scale of turbulence. This
length appears as a parameter in the mathematical description of turbu-
lence and serves as a useful indication of the influence of the turbulence
environment on the response of an alrplane. The scale of turbulence is a
function of altitude for altitudes below 1,000 feet, and in this range
there is evidence that its wvalue is approximately equal to the altitude.
The most commonly used formulation of the spectral approach is the
"one-dimensional analysis." This formulation of the problem is charace
terized by the assumption that the airplane responds only to variations
of the gust velocity along the flight path. The spatial pattern of

turbulence along the flight path is related to the response of the




airplane through the airplane's velocity and the use of Taylor's
hypothesis. The response spectrum is related to the frequency response
function and the gust spectrum by the classical input-output relation
for a linear system responding to & random excitation. The frequency
response function is the response of the airplane to a sinusoidal wave
of downwash along the flight path that is constant along the span. The
response spectrum provides statistical parameters for the response.
These are the mean-square value (the ares under the response spectrum)
and the average number of mean crossings per unit time (proportional to
the second moment of the area under the response spectrum). The one-
dimensional gust response analysis has been and continues to be the most
frequently used type of analysis. The reason for this is that it has
been used with outstanding success when applied to existing airplanes
operating at altitudes higher than 1,000 feet.

It is a general consensus of opinion, however, that the one- .
dimensional analysis may not be sufficient to analyze airplanes with
large spans flying at altitudes of 1,000 feet or less. In such cases s
an analysis that accounts for the spanwise variation of the gust
velocities can be used. Several formulations of this type of analysis,
called a "two-dimensional analysis,” have been present in the technical
literature for some time. Although each formulation expresses the |
response in the form of a spectral density function, they are consid-
erably different with respect to the distinct elements of the response

problem. These elements are:




(a) The statistical description of the atmosphere.

(b) The calculation of the aerodynamic forces associated with the
turbulence field.

(c) The calculation of the frequency response functions.

(d) The mathematical form of the input-output relation used to
calculate the response.

These elements are not independent; in fact, the latter three are
strongly dependent upon the form of the first element. This will be
shown in the following discussion of previous work on the two-dimensional
gust response problem.

Liepmann in reference 28 presented one of the earliest studies of
the influence of a two-dimensional turbulence field on the gust response
of an airplane. The influence of the spanwlse variation of the gust
velocities was analyzed by describing the atmosphere by & two-dimensional
gust spectrum which represents the atmosphere as s superposition of an
infinite number of sinusoidal waves of shearing motion of all orlenta-
tions and wavelengths. The response characteristics of the airplane-are
described by the two-dimensional frequency response function, which
represents the response of an airplane to a downwash field described by
& slnusoidal wave along the flight path and a sinusoidal wave along the
span. The input-output relation for this formulation expresses the
response spectrum as the integral of the product of the square of the
modulus of the frequency response function and the gust spectrum where
the integration 1s performed with respect to the spanwise frequency
variable. Liepmann applied this formulation to the calculation of the

mean square value of the 1ift on a rigid wing. The frequency response




function was computed using simple-strip analysis aerodynamic theory,

and was used to investigate the limiting cases of the mean-square value
of the 1lift for large and small values of the span which provided closed-
form expressions for the integrals. For the case of a small value of the
span, the expression is shown to be the same as the one-dimensional.

In references 25 and 26, Diederich presented a different formulation
of thé two-dimensional response problem. This formulation differs from
that of Liepmann by the description of the spanwise variation of the
gust velocities. The atmosphere is described by a correlated gust spec-
trum that analyzes the spanwise variation as a spanwise correlation of
the gust velocities. The significance of this change is reflected in
the calculation of the frequency response function and the input-output
relation. The spanwise correlated frequency response function is the
response of the ailrplane to a downwash distribution described by a
sinusoidal wave along the flight path and a spanwise impulse function
along the wing. The input-output relation relates the response specfrum
to a spatial convolution of the product of the gust spectrum and the
frequency response function. In reference 25 the formulation was applied
to the calculation of the mean-square value of the 1lift. The limiting
case for small values of the span is shown to give the same result as
Liepmann. In reference 26, Diederich used a modified-strip analysis and
reciprocal flow relations to calculate the responses of a rigid and
flexible mathematical model to a two-dimensional turbulence field.
Diederich presents the result that the ratio of two-dimensional to one-
dimensional rigid-body acceleration mean-square value approaches unity

as the ratio of the span to scale of turbulence approaches zero.




The principal feature of this formulation 1s that it requires the
calculation of an unsteady pressure distribution on a wing of finite
aspect ratio to a downwash dlstribution described by an impulse function.
This calculation has not been done in closed form and is very difficult
to perform numerically. Diederich avoids this difficulty by the
incorporation of a 1ift distribution that must be calculated by wing
reciprocal flow relations and modified-strip analysis. This difficulty
of the calculation of the 1ift distribution places a practical limitation
on the formulation, especially for the flexible modes; consequently, it
is not easily applied to an analysis with many degrees of freedom.

Houbolt in reference 27 used the turbulence description of Diederich
to formulate the two-dimensional problem. Otherwise, the formulation
differs from Diederich in that the problem is analyzed by dividing the
wing into streamwise strips and replacing the spatial convolution in the
input-output relation with & double summation. This analysis was applied
to the calculation of the response of a cantilevered wing to two-
dimensional turbulence. The effect of a spatial tuning of the flexible
modes with the 1ift distributions 1s calculated and shown to be more
significant for the highest wing modes. This formmlation has a severe
aerodynamic limitation because a 1lift distribution is required that
represents the response to a downwash distribution described by an
impulse function along the span. This 1lift distribution can only be
treated practically by two-dimensional unsteady aerodynamic theory, and

is limited to the use of a simple-strip analysis.




Etkin in reference 31 used the formulation of Liepmann to calculate
the response of a lifting surface to a two-dimensional downwash expanded
in terms of a Taylor's series. This expansion enabled him to utilize
the familiar stability derivatives to calculate the frequency response
function which is the summation of the responses of each of the downwash
terms in the series. The analysis was applied to the response of a flat
plate in unsteady two-dimensional incompressible flow, and gave a good
approximation of the Sear's function for wvalues of reduced frequency
less than one. This formulation has a bullt-in frequency limitation due
to the dropping of the higher order tems_ of the expansion; a limitation
that would be too restrictive for a large airplane with poorly damped
elastic modes.

The literature survey discussed above revealed that with the
exception of one method these formulatlons are not well suited for
incorporating refined aerodynamic force calculations for flexible air-
planes. The excepted method by Liepmann appeared to be suitable, but
had applied only to the determination of the mean-square 1ift on a rigid
wing. The present study explores the feaslbllity of extending Liepmann's
formulation to the general problem of determining motion and load
responses of a flexible airplane flying in a two-dimensional turbulence
field.

The object of this dissertation is to develop a practical and
accurate two-dimensional gust response analysis. Liepmann's formulation
has several advantages over the previously mentioned formulations.

First, it formulates the generalized gust forces by calculating the




response of a lifting surface to a downwash distribution described by a
sinusoldal wave along the flight path and a sinusoidal wave along the
span. Thus, 1t avolds the aerodynamic difficulties inherent in Houbolt's
formulation and does not require the 1lift distribution associated with
the reciprocal flow relations of Diederich. The major feature of the
formulation is its aerodynamic versatility. The response of the lifting
surface can be calculated either directly in terms of a pressure distri-
bution by using an unsteady lifting-surface aerodynamic theory, or in
terms of an unsteady 1lift distribution calculated by a modified-strip
analysis that includes unsteady finite span induction effects. This
formulation calculates the frequency response function directly and does
not have an upper frequency limitation as severe as Etkin's formulation.
The relationship between the response spectrum and the product of
the two-dimensional frequency response function and the two-dimensional
gust spectrum is an integration with respect to the spanwise frequency
variable. This form of the input-output relation provides a clear
insight to the weighting influence of the gust spectrum on the response
function, in a manner analogous to the one-dimensional analysis. In
addition, the effect of the aspect ratio of the wing on the response
spectrum is clearly shown, an effect inherently missing in the one-~
dimensional analysis. This formulation, however, has a limitation; viz.,
a truncation error in the response spectrum. This limitation exists
because in the numerical evaluation of the response spectrum the integra-

tion can be performed only to a finite upper limit.




A survey of literature on the theory of turbulent fluid flow
revealed that no one source provided a complete presentation of the
general theory of isotropic, homogeneous turbulent flow with regard
to general effects of atmospheric turbulence on the response of airplanes.
Since the determination of a two-dimensional description of atmospheric
turbulence was necessary for this study, those aspects of the existing
information pertinent to the multidimensional description of atmospheric
turbulence have been assembled and presented herein for sake of complete-
ness in Chapter One. A brief review of the general theory of isotropic,
homogeneous turbulent flow is presented and the multidimensional
Von Karman and Dryden representations given. Also Presented is a dis-
cussion of the assumptions necessary to use current mathematical descrij)-
tions for an input to a mathematical model representing an airplane.

Chapter Two presents the different forms of the input-output
relation for the two-dimensional gust analysis used by various investi-
gators. Herein the different mathematical formulstions are compared
and their relationships are discussed.

The three forms of the input-output relation are discussed with
regard to their merits and disadvantages in Chapter Three. The two-
dimensional formulation is presented and its Principgd elements are
described. The principal elements are the calculation of the frequency
response function, the welghting influence of the two-dimensional gust
spectrum, and the effect of the truncation error on the response spectrum.
The two-dimensional generalized gust forces are formulated in terms of

lifting-surface aerodynamic theory and the equations of motion are
developed.
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Chapter Four presents an application of the two-dimensional gust
response analysis to a mathematical model of an airplane in the form of
a trend study. The analysis is used to predict the longitudinal motion
and load responses of an airplane to a two-dimensional vertical gust
velocity field. Results in the form of response spectra and statistical
parameters are presented and compared with corresponding results of a
one-dimensional analysis. Consideration is given to the effects of a
finite aspect ratio on the variation of the statistical parameters with
span to scale of turbulence ratio. Also, the effect of truncation error

on the response spectra is examined.
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CHAPTER ONE
MATHEMATICAL DESCRIPTION OF ATMOSPHERIC TURBULENCE

The purpose of this investigation is to prepare an analysis which
can predict the dynamic response of airplanes to atmospheric turbulence.
A basic principle of system analysisvstates that the response of a linear
system can be determined if the input and input-output relation are
known. Clearly, an adequate mathematical model of the earth's atmosphere
is required. |

Experience has shown that the motion of the atmosphere must be
mathematically described as a random process. A theory for the specific
case of homogeneous and isotropic turbulent flow has been develdped
(refs. 1 through 6 and 9 through 18). This theory has produced several
mathematical representations of turbulence, two of which have been
successfully used to describe stmospheric turbulence. A detailed presen-
tation of the derivation of these two representations is given in
appendix A.

The use of the two mathematical representations for describing the
atmosphere's motion requires consideration of the conditions under which
these representations are to be used. In these representations the
atmosphere 1s described as a continuous, homogeneous, stationary and
isotropic random process. These conditions are satisfied by the atmosphere
in a localized area for short periods of time. In addition, for these
representations to be used for the input to an airplane, Taylor's hypoth-

esis must be valid. This enables the flight path displacement coordinate

L7
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to be related to the time coordinate through the airplane's velocity.

For conventional airplanes under normal circumstances, Taylor's hypothesis
has been shown to be valid.

1.1 General Formulation

The atmosphere will be assumed to be a continuous medium. This
assumption is reasonable because of the role that viscosity plays in
damping small scale, high frequency motion of a fluid. It also allows
‘that the motion and physical properties of the atmosphere are subject to
the governing laws of a continuous fluid.

The motion of the atmosphere is given by the instantaneous velocity
which is assumed to be the sum of a steady velocity and a zero-mean
turbulent fluctuation velocity, denoted u(x,t). The turbulent fluctua-
tion velocity is mathematically described by a random vector field which
is a function of time and spatial coordinates. The magnitude of the
components of u(x,t); u, v, w are usually rather small, at least
small compared to the speed of sound, which allows the incompressible

form of the continuity and Navier-Stokes equations to be used.
Veu=0 (1)
1
_a-_1:+2'w_=_-p—vp+vv22 (2)
The mathematical description of atmospheric turbulence is provided
by the solutions of equations (1) and (2) which satisfy prescribed

initial and boundary conditions. The boundary conditions are specified

by the statistical properties of the motion with respect to position,
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while the initial conditions are specified by the statistical propexrties
7ith respect to time. TFor the limited extent of the atmosphere whicn
may be assumed to be homogeneous, the boundary conditions specify that
the motion be statistically uniform. The initial conditions specify
that at some instant u(x,t) is a random function of position which
must conform to given probability laws. Then if g(;,t) is specified
statistically at one instant, through equations (1) and (2) which deter-
mine the way in which any particular velocity distribution changes with
time, the random velocity field is statistically determinate (ref. 6).

The statistical uniformity specified by the boundary conditions
implies that the Joint-probability distribution of the values of
u(x,t) for any set of points in space~-time, u(x) + y, t] + T),‘
E(Eg Y, byt 1), L., E(En +Y¥, t, + 1) 1s independent of the space
vector y and time difference +t. Turbulent flow which is assumed to
Lave this joint-probability distribution is called homogeneous and
stationary.

ine validlity of this assumption for atmospheric turbulence depends
on the extent of the atmosphere that is being considered. Intuitively,
the consideration of the effects of climate, weather and terrain on the
atmosphere's motion may be used to blace a quantitative limit on the
extent of the atmosphere that should be considered homogeneous. The
atmosphere as a whole must be considered to be nonhomogeneous. However,
that there do exist small "patches" of the atmosphere which may be con-

sidered homogeneous has been shown in reference 8. The sizes of the




patches have no defined limits, they may vary from many miles in clear
air to several thousand feet in thunderstorms.

The description of atmospheric turbulence is given by the statistical
description of the turbulent fluctuation velocity. It is a premise of
probability theory that a random function such as u(x,t) 1is determined
statistically by the complete set of Joint-probability distributions of
the values of g(;,t) at any n vaiues of x and t,n having any
integral value. These jolnt-probability density functions can be
expressed in terms of a nth-order joint-characteristic function

My(ig1, ..., ian) by a multiple n-dimensional Fourier transform.

n © o
P(El:---)_‘in) = (%) f ...j Mu(igl,...,i_cl,n)
ele " m + ... +an * widag, ... dg (3)

The characteristic function 1s defined as the statistical average of
exp(iay * uy + ... + iay * u,), reference 7. A series expansion of the
Joint characteristic function in terms of the joint-moments may be
obtained through the use of power-series expansions of the exponentials
in the integral expression, equation (3). Interchanging orders of
integration and summation, the mean-value velocity products are defined
as the statistical average of the joint-moments. The joint-characteristic

function can be expressed in terms of the mean-value velocity products

My(1gy,...,1ay) = ﬁ : i%,.Ln-l'“,t(g.‘j . EJ)m]

J=l m=0
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Therefore, the Joint-probability density functions are related to the
complete set of mean-value velocity products provided the inverse Fourier
transform of equation (3) exists. The set of mean-value veloclty products
consists of components which are the statistical average of the product

of m components of the velocities at n different points.

Q) et = By ety () o ()
The configuration formed by those n of the points X1y X2y « - .y Xpm
that are different is specified by the 3(n - 1) dimensional vector r.
Since each of the m velocities transform under change of coordinate
system like a first order tensor and since this property 1is retained
after the linear operation of teking a statistical average has been
made, the 3" scalar components, Qg??..p(i:t) form an m-order
Cartesian tensor.

It has been sh;wn by using the governing equations of motion that
Qj(_?) _.p(g,t) for the value of n = 2 1is sufficient to describe homo-
geneous and isotropic turbulence, reference 6. This case is for velocity
components taken at two points and has the name correlation tensor. Only

two correlation tensors are shown to be important, these are the double

correlation tensor, m = 2 whose components are

(2)

Ryy(z,to) = Qg3 (2,tg) = Efuy (%) 60 )uy(x5,t,]) (%)

and the triple correlation tensor, m = 3 whose components are

T (Ety) = Q) = By (b0 Ju, (D (x5t ] (5)
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The time t, appears in equations (4) and (5) to establish that the

statistical average is taken at a constant time, to. Thus, the
symbolization of time will not appear in any of the following expressions
for the components of the correlation tensors.

The statistical description of atmospheric turbulence is also given
by a mathematical expression called the spectral tensor, whose components

are related to the components of the correlation tensor through a Fourier

transform pair.

Qij(ﬂ) = ﬁ% k/;: Rij(E)e-i(ﬂ * r)dr (6)
@ =% [ rgeetia - par (7)

The vector g 1s called the wave number vector and defines the
location of & point in wave number space which is related to the corre-
lation vector r through the above transform.

The condition for the existences of the spectral tensor is

/m Ryy(r)dr <

~00

f Tyk(r)dr < o

00
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Batchelor in reference 9 has shown that the integrals do exist when the
velocity components are chosen such that their mean is zero. J. Kampe
de Ferlet in reference 17 has presented the properties of the spectral
tensor components in equation (10). Some of these properties are:

a) Oij(g) is a continuous and complex function of Q.

b) ¢1J(Q) has Hermitian symmetry.

c) The diagonal components ¢ii(g) are real, positive and

bounded functions of g.

1.2 Requirements for Airplane Response Calculations

The mathematical model of turbulence is sufficiently described by
the correlation tensors. Unfortunately, for homogeneous turbulence
this description has little value because of the complex structﬁre of
the correlation tensor. This complexity may be appreciated by considering
the expression for the components of the double correlation tensor, which
contains 31 terms (ref. 6, p. 44). The complexity of the tensor correla-
tions may be lessened by assuming that the turbulent velocity field has
some statistical symmetry. The assumption of isotropic symmetry provides
the simplest expressions for the correlation tensor. Isotropy requires
that the statistical description of E(E:t) be invariant under rotations
and reflections of the reference coordinate system. A less restrictive
assumption is that the turbulence is axisymmetric. The statistical
description of axisymmetric turbulence is invariant for rotations about
& given vertical vector and for reflections of the configuration of the

vector argument in any point.
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Measurements of atmospheric turbulence indicate that its statistical
properties are essentially inveriant in all directions in a glven hori-
zontal plane, but do vary with altitude, reference 8. These measurements
are the basis for assuming that in general the atmosphere may be considered
to have axisymmetric statistical properties, which implies that an air-
plane in level flight would experience the same turbulence environment
regardless of heading. Furthermore, these measurements are the basis
for justifying the assumption that the turbulence encountered by the
airplane in a horizontal plane at s glven altitude has 1sotropic statis-
tical properties.

Being able to justify the use of isotropic symmetry in a horizontal
plane is very important because the present descriptions of turbﬁlence,
are limited to isotropic symmetry. Isotropic theory has provided
mathematical functions for the components of the correlation tensors
which are the solutions of the equations of motion given by equations (1)
and (2). This theory is the result of extensive research on the descrip-
tion of isotropic turbulence in fluid flow, references 1 through 6 and
9 through 18. A detailed discussion of the theory of isotropic turbulence
and the resulting mathematical representations are presented in Appendix A.
Having justified the use of isotropic symmetry to describe atmospheric
turbulence in a horizontal plane, attention is now turned to the Justi-~
fication of using it to describe atmospheric turbulence as an input to
an airplane response analysis.

In general, turbulence velocities are space and time dependent. For

purposes of airplane response, the variation is assumed to be space
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dependent, and invariant with the time of traverse by an airplane. This
model is a result of Taylor's hypothesis. Taylor in reference 1 intro-
duced the assumption that if the velocity of the airstream is very much
greater than the turbulent velocity, the spatial pattern of turbulent
motion is carried past a fixed point by the mean wind speed without any

essential change. Lin in reference 16 has investigated this hypothesis

and found that for wind tunnel turbulence the criteria for its validity
is

z
U—é<<1 (8)

Applying this to the case of the airplane flying through the atmosphere
results in a requirement that the speed of the airplane must be ﬁuch
greater than the root-mean-square of the turbulent velocity. This insures
that the gust pattern of the atmosphere will remain essentially the

same, or "frozen" until the airplane has traversed the given body of

alr. For the flight conditions of the airplanes considered in this
investigation, Taylor's hypothesis will be assumed to be valid.

Taylor's hypothesis provides an equivalence of space and time
averages through the speed of the airplane in the direction of flight.
However, the correlation tensors are described in terms of statistical
averages and their relations to time or spatial averages must be con-
sidered, references 17 and 18. From a statistical viewpoint, a
statistical average, for example, equation (4), is the only mathematically
rigorous average that should be used in the formulation of the theory of

isotropic turbulent flow. The statistical average is taken over an
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ensemble of sample of turbulent velocity functions. An example of this

average 1s given by the double correlation tensor.

RiJ(E:to) = dbf uiujp(ui,uj)duiduj (9)

Unfortunately, statistical averages cannot be measured; instead time or
spatial averages must be used. A consequence of Taylor's hypothesis is
that the turBulent velocities are independent of time and thét a spatial
average must be used to formulate the gust response problem. The spatial

average in terms of the double correlation tensor is

1 .
Rij(r,to) = 1im o ug(x,t0)us(x + r,t)dx (10)

Vg—» o B VYVyp
For the spatial displacement along the flight path, the double correlation

tensor mey be formulated by a time average of the turbulent velocities.

Ryy(7) = RELY 5 f_z ug (V) (¢ + 7)at (11)
The average is performed with respect to a time that is related to the
spatial displacement through airplane's velocity.

Some relation between the three types of averages is needed to
establish a completely rational theory of turbulence. In classical
mechanics this relation is provided by an ergodic theorem which states
the equivalence of all three averages. Unfortunately in fluid mechanics,

no ergodic theorem has yet been provem. However, it has been assumed in




past work and in this investigation that all three types of averages,
and consequently the double correlation tensors given by equations (9),
(10), and (11) are equivalent.

The last assumption concerned with the justification of using
isotropic theory to describe atmospheric turbulence is that of dimen-
sionality. The concept of dimensionality is concerned with the necessity
of accounting for each gust velocity component's dependence on each
spatial coordinate. A measure of the dependence of a gust velocity
component on a spatial coordinate is given by comparing the character-
istic length of the airplane with the characteristic length of
turbulence.

The characteristic length of atmosphere turbulence is giveﬂ by the
scale of turbulence. This length was introduced by Taylor in reference 1
and is used as a parameter in the mathematical descriptions of atmospheric
turbulence. Its value 1s a function of altitude for the range of altitude
below 1,000 feet for which there is evidence that its value is approxi-
mately equal to the altitude. The scale of turbulence is physically
interpreted by Houbolt in reference 8, to be a rough measure of the
largest distance that two points in a turbulent flow can be separated
before the correlation between gust velocities becomes zero. It is a
useful measure of the development of the inertial transfer of energy of
turbulent flow (see Appendix A).

When a characteristic length of the airplane is small compared to

the scale of turbulence, the gust velocities are nearly invariant with
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respect to the spatlal coordinate considered. This is shown by examining
the influence of the vertical variation of the gust velocities on the
response of an airplane. The conventional airplane is usually small in
the vertical direction and for this case the correlation of the gust
velocities over this direction is nearly unity. Thus the alrplane is
insensitive to changes of u(x,t) in the vertical direction.

The influence of the spanwise variation of the gust velocities on
the gust response of an airplane is measured by comparing the span with
the scale of turbulence. When the span 1s large the effect of the span-
wise variation of the gust velocities can be significant. When the span
is small, the effect of the spanwise variation of the gust velocities is
small.

For the case of an alrplane that is small in the vertical direction
and has a large span, the turbulence description is two-dimensional, that
is, it varies only in the horizontal plane of flight. For an airplane
that is small in the vertical direction and has a small span, the
turbulence description is usually considered to be one-dimensional, that
is, it varies only along the flight path.

1.3 Mathematical Representations

The most commonly used expressions for the representation of atmos-
pheric turbulence are the Dryden and Von Karman spectral density functions
which are named after their developers. A detailed derivation of these
spectra in multidimensional form and their corresponding correlation

functions are presented in Appendix A. The one- and two-dimensional
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spectra for a vertical gust velocity component are used in the response

calculations in this investigation and are presented here

DRYDEN
_ 2
05500 = 17 22 (12)
2
[+ (a)7]
— 2 2
(Ia;)” + (Lay)
®53(Ql,92) = 3L§w2 L 2 575 (13)
(1 + (10))% + (10,)°]
VON KARMAN
2
8/
(o) - w2 7 3(0_0) (14)
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%55(01,0,) = %02x 7 (15)

The arguments 0 and Qo of the spectra denote components of the wave
number space while the scale of turbulence L, reference wave number qg,

(see Appendix A), and the mean square value of the vertical gust velocity
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are mathematical parameters that must be determined.

discussion of the experimental determination of I, and

in reference 8.
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CHAPTER TWO
FORMULATION OF THE INPUT-OUTPUT RELATION

The formulation of a gust response analysis requires not only the
mathematical description of the two physical quantities involved, the
dynamic characteristics of the airplane and the turbulence of the atmo-
sphere, but also the mathematical relationship between them. This mathe-
matical relationship is called the input-output relation. The mathematical
form of the input-output relation depends upon the formilation of the
analysis and the multidimensional form of the turbulence description.

For the two-dimensional gust analysis, four forms of the input-output re-
lation are developed in Appendix B. These forms are discussed with respect
to their mathematical structure and the efforts of previous investigators
to analyze two-dimensional gust response of airplanes.

The formilation of the gust response analysis governs the complexity
of the mathematical model of an airplane flying through a turbulence field.
The most general case of formulation is the three-dimensional which requires
that the airplane be described as a system which is sensitive to changes
of gust velocity in all three coordinate directions. While this formulation
1s conceptually more desirable than either the one- or two-dimensional
cases, in practice it does not appear to be necessary and its use involves
needless complexity.

The complexity of the model may be substantially reduced by reducing
the dimensionality of the formulation. This is done by considering the
airplane to be sensitive to changes in the gust velocity along the flight

path only. The airplane may be regarded to be a lifting point or

31
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line concurrent with the line of flight. The validity of this one-
dimensional formulation is dependent upon the comparison of the span of
the airplane with the scale of turbulence. The one-dimensional gust
analysis has been developed and extensively used. It will be used in
Appendix B to provide the basis for the development of the two-dimensional
formulation and it also provides a reference for comparison with the two-
dimensional analysis.

The mathematical model of an airplane flying through the atmosphere
can be made more realistic by allowing the airplane to respond only to
variations of the gust velocity in the plane of its equilibrium position.
This equilibrium position is specified to be the x~y plane with regspect
to a rectangular x, y, z coordinate system chosen such that the mean values
of theArespective gust velocity components, u, v, w are zero. This model
is visualized to be an airplane represented as an unrestrained elastic
planar lifting surface flying with the steady velocity U along the negative
X axis, and through a continuously varying two-dimensional gust field.

2.1 Two Dimensional Correlation Relation

The mathematical form of the description of atmospheric turbulence
governs the form of the input-output relation. One description of iso-
tropic turbulence is given by the correlation function which through the
input-output relation expresses the response in the form given by equation

(B12):

b/2 o0
RP(T) Z*[/:b/Q k[]:“ h(tl,yl)h(ta,YQ)Rw(tg + 1 - t1,¥p - y1)dtidtody,dys

(16)
The dynamic characteristics of the airplane are described by the impulse
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response function h(t,y), which is the response to a downwash represented

by a unit time-spatial impulse

w(x3,8) = 8(t - Boty - 3y) 17)

The impulse response function h(t,y) is an aerodynamic influence function
which relates the desired response, e.g. 1lift or stress, to the downwash
by relating the pressure at one point y, on the wing to the past history
of the downwash intensity at another point on the wing yp. For Gaussian
turbulence, the spectral density function of the response is needed to
obtain the necessary statistical parameters of the response, Although this
spectrum could be obtained by taking a Fourier transform of RP(T) it can
be calculated directly by using the proper form of input-output relation.
2.2 (Cross-Spectrum Relation

The spectral demnsity function of the response is given by two differ-
ent forms of the input-output relation equations (B14) and (B19). One of
these describes the input in terms of the spatial cross-spectral density
function %w(w,rz) which is related to the correlated spectral density
function for vertical gust velocity by equation (B16). This relation is

b/2  pbf2 . .
bp(@) = | o / o p OB @2 (oo ay, (18)

The dynamic characteristics of the airplane are given by the frequency
response function ﬁ(u,y) which is the response to a downwash represented

by a sinusoidal wave of frequency w and a spatial impulse function.,

w(x,y,t) = elet-x/V)g(y _ y ) (19)
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The frequency response function ﬁ(a%y) is an influence function which
relates the desired response to the downwash by relating the pressure at
any point y on the wing due to a traveling wave of downwash of length
2nU/a> at another point on the wing y1. Diederich in reference 25
discussed the calculation of H(w,y). He considered two separate cases,
one for the total loads of an airplane, the other for local loads and
their distribution.

Diederich first discussed the case for total loads, in particular
the total 1ift and rolling moment. For these loads the influence function
was ldentified with a specific 1ift distribution on the wing in reverse
flow by using the reciprocity theorems of linearized lifting-surface
theory. Using this theory and the assumption that the 1ift disfribution
of an oscillating wing 1s essentially independent of frequency, Diederich

wrote the influence function for total loads in the form

H(wyy) = B(w)7(y) (20)

The function H(w) 1is the one-dimensional frequency response function and
was calculated from modified strip analysis aerodynamic theory. The
function (y) 1s the steady-state 1ift distribution for a uniform down-
wash distribution. The use of equation (20) enables the input-output

relation given by equation (18) to be written

4p(@) = [H(e) % ye(e) (21)

The spectral density function éwe(w) is called an averaged spectrum.
It is averaged in the sense that the cross-spectrum of the downwash is

integrated with respect to the steady state 1lift distribution 7(y)




b
byole) - L fo DMy (wyrp)ar, (22)

through the function I(rp) which is the autoconvolution of ¥(y)

b/2~r
r(r,) =% fb/z : 7(y)7(y + rp)dy

The expressions for the total loads given by equations (21) and (22)
are used in reference 26 to calculate the effect of spanwise variation
of the vertical gust velocity on the vertical acceleration and rolling
acceleration of an airplane. It is shown that the mean-square value of
the vertical acceleration response to the averaged spectrum is substantially
reduced for high values of b/L and aspect ratio. The mean-square value of
the rolling acceleration response to a vertical gust velocity is shown to
become significant for moderate values of b/L.

For the local 1ift of the wing the influence function fi(w,y) is
difficult to analyze. This function defines the contribution of one
station on the wing to the 1lift at another station and thus represents a
Green's function for the unsteady spanwise 1lift distribution which can not
be identified with an easily calculated 1ift distribution on the wing in
reverse flow., Diederich in reference 25 presents a method to calculate
the local response influence functions. This method is a generalization
of a method used in steady flow and is also based on the separation of

the unsteady and spatial parts of the function. The local 1ift is
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w b/2
Uyt =2 [ nepay & \‘/_b/e 6(y,nw(t - ty,n)an (23)

00

This function is used to determine the required influence functions for
the calculations qf the spectral density function of the response,
Diederich used modified-strip-analysis aerodynamic theory for the calcula-
tion of H(w), the Fourier transform of h(t). The function G(y,n) is the
Green's function that relates the local 1ift to the local downwash dis-
tribution.

In reference 26, Diederich assumed the local 1ift given by equation
(23) can be calculated by summing the contributions to the 1ift from each

natural mode. This modal approach enabled the influence function to be

written

N

H(“’)Y) = L Hi(m)7i(y) (24)
i=1
and the input-output relation becomes

-

[>1=
[~=

bp(@) = R, {(H; (@)1} (a) ) Oue, (@) (25)

i

1
]

1

The averaged spectrum is given in terms of the spatial cross spectrum
1 [P A
(w) = = ;. (r;). (w,r,)dr
¢weij b ‘/O ijv e tw 2772

and the function Iij(rz) which is the autoconvolution of Yi(y)

b/2-r
ryy(rg) = fb/z 2 713y (v + rp)ay
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With these expressions Diederich shows that the mean-square values of
the root bending moment of a rigid and flexible wing on an airplane free
to move vertically vary from the mean square values calculated from a one-
dimensional analysis.

Houbolt in reference 27 has presented an alternate method of finding
the spectral density function of the response. He used the concept of
equation (B6) which describes the spectral density function of the re-
sponse in terms of the spectral density function ¢w (w)

'nm
N N

) ) (e, (o (26)

n=1 m=1

]

(@)

This function is defined by equation (B7) and is related to the isotropic
correlation spectral density function by equation (B9 ). Using the axis-

symmetric property of the input spectrum given by equation (B10), the re-

sponse is
N N-1
v % \’ 3%
bp(@) = by (@) /_i B0 | + 20, (0)Ry| ) i, (@)L, (o) -
n= =

+oee. + 2¢wlN(w)Re[ﬁn(a9H§(wi]

The frequency response function Hn(w) is the response to a downwash which

is a sinusoidal wave of frequency ® and is constant over the spanwise

element.

w(x,t) = el t-x/0) (28)
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The function Hp(w) 1s the aerodynamic influence function that
relates the 1ift at one designated station to the downwash at
another station interval n. Houbolt used strip analysis aerodynamic
theory to analyze the response of a cantilever beam to a random input.
His results show the high occurrence of a spatial tuning of the deformation
modes with the 1lift distributions, which results in the higher modes
being excited more than the lower modes.

2.3 Two-Dimensional Spectrum Relation

The second form of the input-output relation which describes the

response in terms of a spectral density function is

bp(@) = fo |1 (,02) [Pay (a,00)dnp (29)

This expression relates the response to the two-dimensional spectral
density function which is related to the corresponding function of iso-
tropic turbulence for vertical gusts by equation (B21). The dynamic
response characteristics of the airplane are given by the two-dimensional
frequency response function H(w,0p) which is the response to a downwash

field represented by two sinusoidal waves
; i
w(x,y,t) = elat-x/U) t02Y (30)

The two-dimensional response function H(aygg) is an influence function
which relates the response to the downwash by relating the pressure to a
sinusoidal wave along the flight path of wave length QnU/w and to a
wave in the lateral direction of wave length En/Qe.

This form of the input-output relation has been used by Etkin in

references 31 and 32 to formulate the dynamic response of an airplane to
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turbulence. Etkin approximated the downwash field by a two-dimensional
Taylor's series expansion about the airplane center of gravity. This
expansion enables the downwash field to be represented by the superposition
of several relatively simple spatial distributions, each of which varies
periodically. These distributions are called equivalent gust mode shapes
which provide the boundary conditions for determining the aerodynamic
response function. Thus H(Qi’ 92) is found to be the summation of the
responses to the equivalent gust modes. The expansion of the frequency
response function is placed in the input-output relation and the spatial
frequency component is integrated over finite limits of 92. The total
mean square value of the response is calculated by summing the mean-square
values for each term of the expansion. Etkin applied this theorj to the
normal force and moment response of a flat plate with unsteady two-
dimensional aerodynamic theory. With this procedure he obtained the Sear's
function for both the moment and normal force for values of reduced fre-

quency up to 1.0.




CHAPTER THREE
FORMULATION OF THE TWO-DIMENSIONAL GUST RESPONSE ANALYSIS

The formulation of the two-dimensional gust response analysis has
been presented in the form of three different input-output relations.
Although the mathematical structure of each relation is different, all
three of them express the statistical properties of the response in terms
of the input and the dynamic characteristics of the airplane. Having
described the motion of atmospheric turbulence, the use of one of these
relations requires only the calculation of the dynamic characteristics

of the airplane.

3.1 Discussion of Previous Work on the Formulation of the Two-Dimensional
Gust Responge Problem

The first form of input-output relation given by equation (16) has
little practical value, because the influence function h(t,y) is difficult
to calculate. This difficulty exists because presently used methods of
obtaining pressure distributions on the finite span of a wing in unsteady
flow usually require numerical methods which do not lend themselves to the
analysis of downwash distributions represented by impulse functions. This
form has the additional disadvantage of relating the influence function to
the input spectrum through a time and spatial convolution. Furthermore, the
description of the response 1s a correlation function which in itself does
not easily permit the calculation of all the required statistical parameters
of the response. For these reasons, this form of the input-output rela-

tion is useful for conceptual purposes only.

ko
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Since for a Gaussian process the spectrum of the response does permit
the calculation of all the required statistical parameters, obtaining it
directly would be a better method. The spectrum of the response can be cal-
culated from either one of the two forms of the input-output relation. One
of these forms is given by equation (18), a form which expresses the dynamic
characteristics of the airplane in terms of the influence function f(w,y).
This function is also difficult to calculate because the downwash distri-
bution in the lateral coordinate is represented by an impulse function.
Another undesirable feature is the spatial convolution which must be per-
formed to calculate the spectrum of the response.

Diederich's formulation of the problem in terms of the influence
function R(w,y) is given by equation (21). Evidence that the spétial and
frequency parts may be separated is indicated by Pratt in reference 35 for
rigid body motion. He shows that for the rigid-body plunge mode, the span-
wise 1lift distributions are essentially independent of the frequency of
oscillation. This is shown to be true for swept and straight wings in
compressible flow. The steady-state 1lift distributions are calculated for
rigid-body modes by using the reciprocity theorems of lifting-surface
theory.

The formulation expressed by equation (21) was used by Coleman in
reference 34 to correct flight test data for the effects of spanwise
variations in the vertical gust velocity. The experimental normal accelera-
tion frequency response functions were calculated by two different methods.
When the correction was applied to these response functions they showed a
better agreement over a frequency range that extended from the short period

frequency up to the first elastic mode.
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For the inclusion of elastic modes in the analysis, Diederich's
formulation becomes complex. In general, the 1ift distributions are
difficult to calculate. They are not easily identified with corresponding
reverse flow conditions and have to be calculated directly. The modal
analysis given by equation (25) would be difficult to incorporate for an
analysis with many degrees of freedom.

For the large flexible airplane, Diederich assumes that the modal
approach is an inadequate formulation of the response analysis. He
develops an analysis which is based on the use of a local lift distribu-
tion that is used to form an influence function which is needed to calcu-
late the motion and load responses. Since neither this formulation nor
the modal approach have been applied to an airplane for which exberimental
response data is available, the validity of this assumption is not known.

Houbolt in reference 27 formulates the problem by replacing the spatial
convolution by a double summation. His formulation requires the generalized
coordinates to be calculated for N number of intervals taken on the lifting
surfaces. The 1lift distributions required for the calculation of Hn(u)
are difficult to obtain for an unrestrained airplane with many elastic
degrees of freedom. Also a large number of intervals should be taken to
assure a reasonable degree of accuracy for the analysis.

Etkin in reference 31, avoided the mathematical difficulties associated
with the downwash represented by a spatial impulse function by using the
expression for the downwash given by equation (30). This expression,
presented by Ribner in reference 30 defines the downwash to be the super-

position of an infinite number of inclined sinusoidal waves of shearing
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motion. Using equation (29) for the input-output relation, Etkin's
expansion of the downwash field results in the response becoming the
summation of the responses of the individual derivative terms of the
expansion. He has shown that only the second-order derivative terms
need be retained to include the aeroelastic effects of the lowest flexible
modes on the response. The response to the zero-order and first-order
derivative terms of the expansion are the classical aerodynamic stability
derivatives. The second-order derivative terms contain the aeroelastic
effect of the local 1ift and its distribution. The response to the down-
wash expansion has a frequency limitation associated with the dropping of
the third-and higher-order terms. The lower limiting value of the wave
lengths 2ﬂA21, 2nA22 which are adequately represented is twice tﬁe cor-
responding airplane dimension (length or span). This formulation has a
built-in frequency limitation that would be too restrictive for a large
airplane with poorly damped elastic modes.
3.2 Presentation of the Two-Dimensional Gust Responge Analysis

The purpose of this investigation is to develop an analysis that
accurately accounts for the contributions of the structural modes to the
motion and load responses of a large flexible airplane. The anslysis is
formilated by using the exact expression for the two-dimensional frequency
response function. With this function and the two-dimensional isotropic
gust spectrum, the input-output relation of equation (29) is used to cal~
culate the response spectrum. Three aspects of the analysis will be

discussed. These are: 1) the calculation of the frequency response
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function, 2) the relation between the function and the input spectrum,
and 3) the integration of the product to obtain the response spectrum.

The two-dimensional frequency response function H(w,nz) is an asero-
dynamic function that relates the response through the local 1ift and its
distribution to the downwash field. Mathematically it is a complex func~
tion whose real and imaginary parts are represented by surfaces. The
intersection of these surfaces with a plane through the w axis produces
two curves which are the real and imaginary parts, respectively, of the one-
dimensional frequency response function. The calculation of H(w,Qz) is an
extension of the work of Pratt who in reference 33 used the lifting sur-
face asrodynamic theory of reference 39 to calculate one-dimensional fre-
quency response function.,

The major feature of this formulation is the versatility concerning
the use of aerodynamic theory used in the calculation of the two-dimensional
frequency response function. This formulation can utilize lifting-surface
theory as well as strip-analysis theory. The presentation of the formula-
tion is given in a form which incorporates lifting-surface theory. An
example of this theory is given in references 38 and 39.

The airplane will be regarded to be an unrestrained flexible planar
lifting surface whose equilibrium position is given by the coordinate
system presented in the previous chapter. The vertical deviation of the
airplane from its equilibrium position is specified by the coordinate z.
Assuming the deviations to be small, the governing equations of motion can
be linearized. The superposition principle can then be used to express

the deviation in the form of the summation of the natural modes of motion
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and deformation gi and the generalized coordinates q; -

N
O
2= ) &394
1=1
The generalized coordinates are the solutions of the linear governing
equations of motion for the airplane subjected to a two-dimensional gust

field given by equation (30). These equations are

N N
J=1 J=1

The equations of motion have inertial coupling terms present in the form
of the generalized mass terms Mij which are the integration of the weighted

inertial distribution p(x,y) over the surface S.

My = ] et ot Gonax oy (32)

The generalized forces are given by two terms: the forces due to the
airplane motion Qfg(u) and the forces due to the gust velocity field
Qg(w,ﬂz). The generalized motion forces are dependent only on the modal

displacements and velocities of the airplane.

(e = fjs £ (2,108, 7, w)ax ay (33)

These forces provide both an aeroelastic coupling and damping to the air-
plane. The differential pressure distribution Ap?(x,y,w) is found by

applying the boundary conditions in the form of the modal shapes and




slope to the lifting-surface aerodynamic theory. An example of the
boundary conditions for several rigid body and flexible modes is glven
in reference 33.

The generalized gust forces are

Qg(‘”:ﬂg) = '/]S §i(x,Y)APg(x,y,vw)92)dx dy (34)

The pressure distribution Ap%(x,y,w,gg) is calculated by applying the
boundary conditions in the form of equation (30) to the lifting-surface
aerodynamic theory. These generalized downwash forces and consequently
the equations of motion differ from the one-dimensional case by the
functional dependence of (o. By setting ip = 0 the generalized
coordinates are calculated for a one-dimensional gust analysis ffom
equation (31).

Once the generalized coordinates are calculated, the motion response
of the airplane is known. The two-dimensional coordinates are used to
calculate the two-dimensional frequency response functions for the motion
and load responses. The motion frequency response functions are calcu-
lated directly from the generalized coordinates, while the load response
functions are calculated by summing the forces on the airplane. These
forces are due to the motions of the airplane, the inertia forces, and
the applied external forces due to the gust velocity.

The square of the modulus of the two-dimensional frequency response
functions is used to weight the input spectrum. This product (integrand
of equation (29)) is a two-dimensional response spectrum that 1s repre-
sented by a surface. The volume under the surface is the mean-square

value of the response. The influence of the scale of turbulence on the
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response spectrum is shown by relating the nondimensional arguments of
the input spectrum and of the square of the modulus of the frequency

response function. These relations are

o, = k2 (35)
1o, = af o (36)

The one-dimensional effect of the input spectrum is given by the ratio
of the scale of turbulence to the reference semichord <. This ratio
is the measure of the effect of the size of the chord on the gust
response of an airplane. The measure of the two-dimensional effect of
the input spectrum is given by the ratio of the scale of turbuleﬁce and
the semispan of the airplane. This ratio, b/L, is the measure of the
effect of the size of the span on the gust response of the airplane.

The response to two-dimensional turbulence requires that both the
one~dimensional and two-dimensional parameters be considered. These
parameters are not independent. For a given airplane geometry they are

related through the aspect ratio AR

g- (37)
2L
The nondimensional form of equation (29) is
o) = | Jutx,a5)|% (x,0%)a0x (38)
o »2 w' 2Mal e

This relation requires that the integration of the two-dimensional response

spectrum be carried out for all positive values of g;. The numerical




o)
mpmﬂd¢ |
-
(TH) 2 — 2 =%
mp(m)d¢én
2/1 .

3W[3 FTuUN

xad adors oAT3Tsod YITM uwsmW 2Y3 JO sSBUTSIIOD JO Joqumu a3eIsA® 9]

(o) wp(m)d ¢:[ - 4

2/t

anTeA axenbs-ussw=-q001 aguodsax ayf

0
(66) wo@)e [ = 4

anTeA aasnbs~-uvamw ssuodsat sy,
{9a® sJajoweged 989yl ‘una3oads asuodsed poagBOUNIY
9Y3} woxg pauTelqo 2q ued umaj3oads asuodssa SY3 WOJIJ PaUTIBIQO SI8jowsIed
TBOT3ST3BYS JIBITTWBI 9U3 BI0ads ssuodsad ay3 peqeTNOTEO SUTABH
*£1oyBaedes paulwexs 9q 3snu
mI309ds 9suodsad TBUOTSUSWIP-OMY Uo®d ‘AJuBlaoo JO 99a8sp Auw Y3IM JOIID
STY} 9j3enTeAS O -umaj3oads ssuodssa sanaj ayjz usyy ssaT unaqdads asuodsag
Pa38BOUNIY SUJ OYBUW O3 ST JOIIS 9YJ JO 309JJ° Y] °*ITWIT UOTIBIFSGUT
3yl pus ‘q/q JO senTBA 3y} ‘ssuodsax syj3 JO sunpouw ay3 JO aIenbs ayj Jo
JI0TABYSQ 3y} uo quapuadep ST umaioads osuodsea pagsouna) ayy Jo uoI}B8TNO
=TB2 9Y3 UT PSONPOIIUT JI0JIS Y] °(Q¢) uorisnbs ul pesn aq uoryBIFToquf
Jo 3TwiT xaddn 93TuUTI B 98U} saxrnbox wayoads asuodsag 9yl JO UOT}BINOTBO

8t



CHAPTER FOUR

PRESENTATION OF THE TREND STUDY RESPONSE CALCULATIONS

The two-dimensional gust response analysis was formulated in the
previous chapter. This analysis is used to predict the longitudinal re-
sponse of an airplane to a two-dimensional vertical gust velocity field.
The analysis is applied to two mathematical models of an aeirplane, both of
which are described in detail in Appendix C. Results for the acceleration
and bending moment responses are calculated for both models using two strip-
analysis serodynamic theories. These results in the form of response
spectra and statistical parameters given by equations (39) and (41) are
compared to the corresponding results of a one-dimensional analyéis. The
truncation errors for the acceleration and bending moment response spectra
are evaluated.

The major elements of the two~dimensional gust response analysis pre-
sented in the previous chapter were: the aerodynamic representation of the
generalized forces; the weighting of the frequency response function with
the gust spectrum; and the truncation error. The objective of this chapter
is to emphasize the two-dimensional effects of the latter two elements.
This is done in the form of a trend study which shows the effect of the two-
dimensional scale parameter b/L and the truncation error on the one-
dimensional response spectra.

4.1 Degcription of the Mathematical Model
The airplane is represented by an unswept tapered wing and a lumped

mass fuselage. It is restrained against all motion and deformation except

rigid-body vertical motion and wing vertical bending deformation. The

49




two models considered in the calculations are rigid and elastic., The
rigid-model has only a plunging mode while the elastic model includes two
wing elastic vertical bending modes as well.

Lagranges equations of motion are used to calculate the frequency
response functions. The nondimensional form of the equations of motion
given by equation (31) are expressed in terms of nondimensional generalized

coordinates Gi, mass parameter )\, generalized forces‘afg, ag and reduced

frequency k.

N
(k§ - k2)7\§i - >_, aj@fj = 2@% (42)
31

The generalized mass terms are calculated by equation (32) using:orthogonal

free-free symmetric wing bending modes, normalized such that the mass terms

have the values

which in nondimensional form are

2Mg
= 43
A o, o (43)

a
4.2 Description of the Aerodynsmic Representations of the Generalized Forces

For the trend study the nondimensional generalized forces are cal-
culated by using strip-analysis aerodynamic theory. This theory provides
a clear manner of expressing the influence of the spatial frequency on the
unsteady 1ift distributions of the wing. The price of this visualization

is a theory which does not correct the unsteady 1ift distribution for finite

aspect ratio.



ol

Strip-analysis is concerned only with the spanwise 1lift distribution
on the wing. This distribution is found by calculating the local 1lift on
each of a number of streamwise strips on the wing. The local 1lift per
unit strip width is assumed to be proportional to the local angle of
attack. The generalized forces are formulated in terms of the unsteady
1ift distributions for two-dimensional incompressible flow. These dis-
tributions are discussed in detail in Appendix C.

The generalized aerodynamic forces due to motions are:

~ 2
th’fj = K%A;; - 21C(k)By

The terms Aij and Bij are nondimensional coefficients which represent
the contributions of the unsteady apparent mass and circulatory distri-
butions respectively. The function C(k) is the well known Theordorsen
function for incompressible two-dimensional flow. The nondimensional
coefficients are defined in Appendix C.

The strip-analysis formulation of the generalized gust forces re-
quires that the contribution of the spanwise frequency distribution of
the downwash be treated as an angle of attack distribution which is in-
dependent of reduced frequency. This requirement allows the unsteady
part of the local 1lift to be calculated separately from the remaining
spatial part of the generalized forces. Thus, the generalized gust

forces are

Q% = k(x)BB, (a})
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The unsteady part of the generalized gust force K(k) is called the cir-
culation function: It represents the response of a 1lifting chord to a
traveling sinusoidal wave acting along the flight path. The incompressible
two-dimensional flow expression of K(k) is given in Appendix C.
The contribution of the spanwise frequency distribution is given by
BBy (92*). This term is the response of the lifting surface to a sinusoidal

wave acting along the span.

1
BB, (08) = & jl y(y*)e 82V ¢ (y*)ay*

The function y is a symmetrical normalized 1ift curve slope distri-
bution which 1s used to’weight the symmetrical modes Ei. Expanding the
exponential function in terms of trignometric functions, BBi (02*) is ex~
pressed in terms of a real and imaginary function., The imaginary part of
BBi(Qz*) is an odd function because of the sin (Qz*y*) term. This part
of BBi(Qz*) vanishes when the integration over the even limits is per-
formed. Thus BBi(Q 2*) is a real function for symmetrical modes and it is

given by
S
B8, (08) - jo 7(3*)cos (asy* ), (y*)ay* (44)

The generalized coordinates are calculated by solving the set of
simultaneous equations given by equation (42). These coordinates are
used to calculate the two-dimensional frequency response function. The
motion frequency response functions are calculated directly from the

generalized coordinates. The load frequency response functions are cal-
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culated by summing the inertial forces and aerodynamic forces due to the
airplane motions and the gust field.

The bending moment frequency response function is caleculated by
taking the moment of the total load distribution oﬁ the wing. The wing-

root bending moment is

*
= |BM(k,02)
We

N
1\ . , A
= = K(k)BB' (08) + 3 Z (k2] - 21kc(x)B) + 2NBD; )3, (45)
Ma 2 1=1
The nondimensional coefficients Ai, Bi’ and Di are the contributions of
the apparent mass, velocity and inertial forces respectively. These

coefficients are defined in Appendix C. The term BB'(QS) represents the

moment of the gust force distribution on the wing.

1 1 0% ¥
BB'(03) = 3 f y()e P2 e an
0

It is a complex function whose imaginary part represents the rolling
excitation of the wing of a symmetrical elastic mode. For
symmetric bending moment responses the imaginary part is neglected and

BB' (Qo%) is
1 1
B (ag) = & | (n)cos(agn)ny ant (46)
0

Equation (38) is used to calculate the response spectrum in terms of
the two-dimensional frequency response functions. The frequency response
function is weighted by the normalized two-dimensional Dryden vertical gust
velocity spectrum. This spectrum is derived by using the nondimensional

argument relations given by equations (35) and (36) and the input spectrum



54

given by equation (13).

optiong) - 28 o)+ (tno)”
plk,935) =
n(%ﬂ)z [ + (12" + (Ia2)2:|5/2 )

The normalized one-dimensional Dryden vertical gust spectrum is derived by

using equation (35) and the input spectrum given by equation (12).

L1+ 3(1y)°

dp() = 2 g (48)
c [l + (1) ]
This spectrum is used to weight the square of the modulus of the one-
dimensional frequency response function to obtain the response spectrum.
2
o(k) = |B(k)| op(x) - (49)

4.3 Spanwise Variation Effect of the Vertical Gust Velocity on the

Longitudinal Response of an Airplane

The spanwise variation effect 1s measured by comparing the responses
calculated by the two-dimensional analysis with the corresponding response
calculated by the one-dimensional analysis. From equation (47) the re-
sponse spectra calculated from the two-dimensional anaslysis is shown to
depend explicitly on the parameter b/L. This parameter involves the
scaling of the airplane with respect to the turbulence of the atmosphere.
A change in the value of b/L may be considered as either a change in the
size of the airplane with respect to the turbulence or vice versa. The
geometric scaling relation is given by equation (37). The proper geometric
scaling for the airplane and turbulence configuration is maintained pro-

vided that the same value of aspect ratio is used for all values of b/L.
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Other scaling parameters must be considered to assure that the different
airplane and turbulence configurations are dynamically similar. This
similarity is maintained by keeping the forces of each configuration
properly scaled.

Holding the mass parameter constant maintains the proper ratio of
airplane and fluid inertial forces. Similarly, the elastic and aero-
dynamic force ratios are held constant., These force ratios are combined
to form the mechanical vibration constant. This scaling parameter pro-
vides the natural frequencies for dynamically similar airplanes. Provided
that the mass, stiffness, and 1ift distributions are the same for all con-~
figurations, dynamically similar mode shapes are calculated, Thus, the
corresponding generalized mass and force terms in equation (42) ﬁrovide
equations of motion for dynamically similar configurations.

The ratio of mass between the wing and airplane is varied to measure
the effect of mass distribution on the two-dimensional analysis response
spectra., The total mass of the airplane and mass distribution of the
wing is held constant. Mode shapes to be used in the generalized mass
and force terms of the equations of motion are calculated for each value
of mass ratio considered.

The motion and load responses are calculated for both the rigid and
elastic models. For each of the models the responses are calculated by
using simple-strip analysis and modified-strip analysis aserodynamic theories.
The normalized 1ift curve slope distribution for the simple strip analysis
is equal to the distribution of the normalized chord of the wing. The
two-dimensional incompressible value of 2m is used for the total 1lift

curve slope Cza.
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The motion frequency response function of the rigid body model is
calculated from equation (42) for a value of N = 1. The solution of this
equation is the rigid-body plunge displacement. The plunge displacement
for a given value of reduced frequency is proportional to the spatial fre-
quency part of the generalized gust force. The spatial frequency distri-

bution function BBl(Qz*) is given by equation (44) for the rigid-body

*
2

function has its maximum value:ﬁnrﬂz* = 0, and decays to ten percent of

this value for a value of Q;* corresponding to one and a quarter waves on

plunge mode §l = 1 and is plotted as a function of Q. in figure 1. The

the semispan.

The plunge velocity and plunge acceleration for a given value of k
are also proportional to BBi(9*¥) . The plunging acceleration fréquency
response function is calculated and normalized by the "sharp edge" gust
acceleration.

2

-k“Aq1
Y k Q* = —
2(k,08) 2BB, (0)

The square of the modulus of E(k,ﬂéﬂ is plotted for selected values of k
against 92* in figure 2. These curves exhibit the decay and periodic
properties of the function BBl(Qéﬁ. For low values of ©,* , the variation
of ‘;(k,ﬂz*)lz with Q5% is essentially constant. The values of ';(k,nz*)lz
for this range of values of 92* are the same as the one-dimensional fre-
quency response function for corresponding values of k.

Using equations (38) and (47) the plunge acceleration response spectrum
is calculated. Figure 3 presents the acceleration spectrum for a value

of b/L =0.5. The acceleration response spectrum calculated from a one-
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dimensional analysis is also shown for comparison. These two response
spectra show a constant percentage difference for low values of reduced
frequency. For large values of k, the two-dimensional analysis spectrum
is attenuated more than the one-dimensional analysis spectrum. Figure 4
shows the higher attenuation of the two-dimensional analysis response
spectrum on a linear plot. The area of the two-dimensional analysis
acceleration spectrum is about 15 percent less than the area of the one-
dimensional analysis spectrum. The reduction in mean-squaré value and ﬁo
of the acceleration response for this and other values of b/L is shown in
figure 5.

Figure 5 shows that the two-dimensional analysis response parameters
do not approach the one-dimensional response parameters for values of b/L
near zero. Diederich's results (reference 26), in contrast, indicate that
the ratio of the two-dimensional to one-dimensional rigid body acceleration
mean square value does approach unity as b/L approaches zero. The varia-
tion of the ratio of the response parameters with b/L can be explainéd by
examining the effect of the aspect ratio on the product of the input spectrum
and frequency response function.

The rigid-body acceleration response spectrum is given in terms of the
gust spectrum and the frequency response function for a rectangular wing

formilated by simple strip theory.

2

sin 95
o (k,05 )dan (50)

%
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The behavior of the response spectrum is examined for two limiting

cases of the gust spectrum. The limiting form is specified by whether the
value of k is less than or greater than béﬁé. For values of k‘5h§§L the

gust spectrum is given by

AR Sf (Q§)2

3
op(ka3) = . o5/2 (51)
b *
[KEE) + (02) ]5

The roll-off point of the spectrum is given by the value of b/2L. For a

value of b/2L = .25, figure 3 shows the response spectrum calculated by
the two-dimensional analysis differs from the one-dimensionsl response
spectrum by a constant ratio. As shown in figure 6, decreasing the value
of b/2L to .025 decreases the weighting influence of the frequency re-
sponse function; consequently, the response spectra calculated by both
analysis are the same for all values of k <,004.

For values of k > héﬁL , the gust gpectrum is
b
3AR —
_ 2L 1 (52
*) =~
o (k,08) ~ — )

/2
[(xar)® + (n;)g_'f
For these values of k, the roll-off point is independent of b/2L. This

can be seen by comparing the values of k in figures 3 and 6 for which the
two-dimensional attenuation of the response spectra begins. Unless the
value of kAR = O, the response spectrum calculated by the two-dimensional
analysis 1s attenuated by the frequency response function for all values
of b/2L. For the value of AR = O the response spectra calculated by both

analysis are same, a result to be expected since the one-dimensional analysis
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regponse spectrum is independent of aspect ratio, Thus the ratio of the
response parameters do not approach unity for small values of b/L if the
aspect ratio is greater than zero. The reduction of the ratio of the re-
sponse parameters is also dependent on the value of the mass parameter.
The ratio of two-dimensional to one-dimensional response parameters de-
creases as the mass parameter decreases.

An evaluation of the stress responses in the wing is made by calcu-
lating the wing bending moment response. The wing-root bending moment is
calculated by using equation (45) for a value of N = 1. This bending
moment frequency response function is normalized by the "sharp edge" gust

bending moment.

k(k)BB' (Q8) §
2 + 1i®a1 - 21kc(x)B] + 2NeBD) |—=

BM(k,08) =~ (0) 2 BB' (0)

The bending moment response is dependent on the moment of the gust force
distribution as well as its distribution. For small values of 92*, the
bending moment frequency response function has the characteristics of the
one-dimensional frequency response function, It is proportional to the
acceleration response and approaches a value of zero for decreasing k.
Figure 7 shows that for increasing values of 92* this trend is no longer
seen, This distinct behavior of the two-dimensional bending moment fre-
quency response function is dependent on the value of k.

For low values of k, the influence of the inertial forces on the re-
sponse is negligible. The wvelocity forces are proportional to the gust
forces through the generalized coordinate &l. The moment of the spatial

frequency part of the gust force is given by equation (46). The variation
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of BB'(Q,*%) with Qu* is shown in figure 1. The phasing between gust forces
and the displacement is such that the bending moment response is propor-
tional to the difference of BB(2,*) and BB'(Ry*). The bending moment is
for values of Q% near zero. However, for large values of 92* » the bend-
ing moment increases. For example, for a value of k =.0001, the bending
frequency response function modulus squared has a peak which is five orders
of magnitude greater than its Q% = 0 value.

The two-dimensional analysis bending moment has a response spectrum
which is quite different from the one-dimensional analysis spectrum. The
variation of the response spectrum with k is constant for small values of
reduced frequency. This deviation from the one-dimensional analysis is
shown in figure 8. It is a result of the peaking behavior of the frequency
response function for low values of k. Another deviation for large values
of k is shown to be an attewuation of the two-dimensional analysis spectrum.
Of these two deviations only the attenuation for large values of k is
significant. Th; effect of the attenuation on the response statistical
parameters is shown in figure 9. The spectrum calculated by the two-
dimensional analysis gives a 20 percent reduction of mean square value
for a value of b/L = .5, The variation with b/L of the reduction in mean-
square value and ﬂo glven by the two-dimensicnal analysis is presented in
figure 10.

The variation of the bending moment mean-square value of ﬁb with mass
ratio is shown in figures 11 and 12 respectively. When most of the weight
of the airplane is in the fuselage, a substantial reduction in bending

moment is given by the two-dimensional analysis. The reduction decreases
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for increasing values of mass ratlo. A significant point to be made is
that ﬁo is increased for large values of mass ratio by the two-dimensional
analysis. The trend of the mean-square value and ﬁo is due to the fact
that for a one-dimensional analysis the inertial load distribution of a
flying wing is nearly the same as that of the motion and gust forces. The
inertial load distribution tends to cancel the motion and gust forces on
the wind and results in a decrease of the bending moment. For the two-
dimensional analysis, the gust forces are not cancelled by the inertial
forces and therefore, the bending moment does not vanish for values of
mass ratio near unity.

The influence of elastic wing bending modes on the two-dimensionsal
response analysis 1s shown by calculating the bending moment response
for the flexible model. The two-dimensional frequency response function
is calculated from equation (45) for a value of N = 3. The spatial fre-
quency variation of the flexible bending moment response differs from the
rigid-body response by the presence of the terms BBy(Q5%*) and BB3(92*).
These functions represent the flexible wing bending modal contributions to
the bending moment response and are presented in figure 13. The maximum
value for each function occurs at a value of Q5% for which the variation of
the function cos(Qg*y*) with y* approximates the respective mode shape.
Figure 14 shows that the variation of the flexible bending moment response
with 02* for small values of k 1s the same as the rigld-body response.
For increasing values of k the contribution of the functions BBQ(QQ*) and
BB3(92*) becomes significant. This is shown by the peaks in the frequency
response function for the k values of .15 and .52. These values of k

represent the natural reduced frequencies of the first and second wing
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bending modes, respectively. The peaking influence of the elastic modes on
the frequency response function is called "spatial resonance" by Houbolt
in reference 27,

The bending moment response spectra calculated from the one- and two-~
dimensional response analyses are shown in figure 15. The influence of
the spatial resonance effect appears in the highest wing bending mode. The
spectrum peak corresponding to this mode for the two~dimensional analysis
is approximately four times higher than the peak for the one-dimensional
analysis. While this spatial resonance effect has little influence on the

mean-square value of the response it does effect the response ﬁ . This is

o
shown by the comparison of the response spectra calculated by both analyses
which is presented in figure 16. The mean-square value of the flexible
bending moment response calculated by the two-dimensional analysis is 78
percent of that calculated by the one-dimensional analysis. The variation
of the reduction in mean-square value-and ﬁo with b/L is presented in
figure 17. The reduction of ﬁo is less for the flexible model than that
for the rigid model. This is a result of the spatial resonance of the
flexible model. The variation of the mean-square value and ﬁo for both
the one- and two-dimensional analyses with mass ratio is shown in figure
18 and 19, respectively. The variation of mean-square value is similar to
the variation of the mean-square value calculated by the rigid model
analysis. The variation of the flexible model ﬁo is less than the varia-
tion of rigid mode].ﬁo.

A more realistic mathematical model of the two-dimensional response

problem is formulated by using a modified-strip-analysis aerodynamic theory.
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The prominent feature of this theory is that the spanwise 1ift distribution
has a value of zero at the wing tip. The lift-curve slope distribution is
calculated by using a steady-state 1lifting line theory. For the calculations
a lift-curve slope distribution for a wing of aspect ratio 6, taper ratio
1/2 and total 1lift-curve slope 4.321 is used. This distribution is cal-
culated from a matrix formulation of the Weissinger L-method presented in
reference 45 and is discussed in detail in Appendix C.

The effect of using the modified-strip analysis for the calculation
of the generalized forces is shown in figure 20. The function BB2(02*)
differs little from BB2(02*) calculated by simple-strip theory. The
function BB3Q22*) is different than the simple-strip analysis function for
small values of Q5*%. The effect of using the modified-strip analysis is
also seen in the flexible bending moment frequency response function. The
peaks of the function shown in figure 21 illustrates two effects of the
modified analysis. The first effect is the decrease in aerodynamic damping
which is a result of the loss of wing tip contributions to the generalized
motion forces. The second effect is an increase of the spatial resonance
of the elastic modes.

- The response spectra also reflect the effects of the modified analysis.
The peak in the spectra of the second flexible wing mode calculated by the
two-dimensional analysis is roughly 15 times greater than the peak calcu-
lated by the one-dimensional analysis. The increase in spatial resonance
effect and the decrease in aerodynamic damping are shown in figure 22. The
increase of the influence of the elastic modes on the bending moment re-

sponse spectra occurs at such high values of reduced frequency that its
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effect on the response statistical parameters is negligible. This is
shown in figure 23. The variations of Eﬁz and ﬁo with b/L and mass ratio
for the modified-strip analysis have the same trends as the variations
calculated by the simple-strip analysis and consequently are not shown.
4.4 Truncation Error

The numerical integration of eqiation (38) can be performed only to
some finite upper limit which produces a truncation error. The effect of
the finite upper 1imit (a value of 3m is used in the trend study calcula-
tions) on the response statistical parameters is explained in this section.

A rough measure of the éffect of truncation on the response spectra
is evaluated by examining the effect of truncating the integral of the
gust spectrum., The two-dimensional Dryden gust spectrum given by
equation (47) is integrated over Q,% to an upper limit of az* = 3m fof a
value of b/L = 0.5. The truncated spectra and its mean-square value are
compared to the one-dimensional Dryden gust spectrum given by equation (48).
The effect of truncation is significant only for large values of k, for
example at a value of k = 1, the truncated spectrum is 83.9 percent less
than the exact spectrum. The deviation of the truncated spectrum at high
values of k is not reflected in the mean-square value. The mean-square
value of the truncated spectrum differs from the one-dimensional value by
0.8 percent.

Weighting the gust spectrum with the frequency response function
attermates the spectrum for high values of k and reduces the effect of
truncation on the response spectrum. The truncation error for rigid-body

acceleration response is examined by doing a closed form integration of
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equation (38). The generalized gust force for an untapered wing is
calculated by simple-strip theory. The frequency response function is
assumed to be independent of k, i.e.
sin QE

*
25

H(k,mé) =

Using this relation and equation (38) the truncation error is

e(k) = J[m

¥*
a3

2

921 ap(x,08)a0 (53)

i/
a3

Equation (53) is difficult to evaluate in closed form. Because of
this difficulty the truncation error is examined for two limiting cases of
the gust spectrum. For case one the effect of truncation on the fesponse
spectrum for small values of k is considered. The values of k for which
this case applies is k <:‘L)£A§L and the gust spectrum is given by equation
(51). The effect of truncation on the response spectrum is not significant,
less than one percent of the error under the truncated spectrum, provided
that values of b/2L are very much less than the upper limit of integration.

The second case examines the effect of truncation on the response
spectrum for large values of k. The values of k for which case two applies
is k >»§§§L and the gust spectrum is given by equation (52). The effect
of truncation on the response spectrum is dependent upon the value of the
roll-off point of the gust spectrum. For low values of the roll-off point,

i.e., kAR << m, the asymtotic expression of equation (52) is
b
o (k,0%) ~ 5AR(QL) 1 5
n *
(%)

(54)
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This expression of the gust spectrum is substituted into equation (53) and
integrated. The value of the truncation error is given by equation (C37)
in Appendix C. The truncation error was evaluated for values of the upper
limit of @g* that ranged from 2.0 to 10.0 and values of b/L from 0.05 to
0.5. This study showed that the truncation error is largest for high values
of b/L and low values of the integration upper limit. For the values of k
for which equation (54) applies, i.e., .04<k << .5, the truncation error
is less than 5 percent of the area under the truncated spectrum for a value
of b/L = .5 and a value of upper limit of 2.0.

For high values of the roll-off point, i.e., kAR> m, the gust

spectrum becomses

3(3:)
o, (k,0%) ~ — (55)
nk”’ (AR)
The percentage truncation error for this range of k values is given by
equation (C38) in Appendix C. The percentage error was evaluated for
values of the upper limit that ranged from 2.0 to 10.0, and values of b/L
from 0.05 to 0.5. A maximum percentage error of 1l4./ percent was calcu-
lated for a value of upper limit of 2.
An evaluation of the effect of truncation is made for the flexible
bending moment. The frequency response function shown in figure 21 has
a large variation with 92* for values of 02* near 3n. The mean-square
value of the response is calculated for the response spectra for values of
the upper limit of 02* that range from 3m to 2.5. The variation of the
mean square value with the upper limit of Q,* is shown in figure 24. This

study shows that no appreciable error (less than 1 percent of the 3m value)
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occurs above a value of upper limit of 92* = 6,0. The mean~-square value
for an upper limit of Q,% = 2.5 differs by 6.3 percent from the value for
an upper limit of Qo% = 3n, The variation of ﬁo with upper limit of Q %
shows the same trend as the mean-square value. ﬁo for an upper limit

limit of Q% = 2,5 differs by 8.2 percent from the value of an upper limit
of Q% = 3m,




DISCUSSION

An analysis is formulated that predicts the motion and load responses
of an airplane to a turbulence field that varies along the span as well
as along the line of flight. A major feature of this formulation of the
two-dimensional gust response problem j.s its aerodynamic versatility.

The generalized aerodynamic forces can be calculated either by an unsteady
lifting surface theory or an unsteady modified-strip analysis that
includes unsteady finite span induction effects.

The analysis was applied to mathematical models of a rigid and a
flexible airplane in the form of a trend study. Results of this study
indicate that the influence of spanwise variation of the vertical.gust
velocity on the longitudinal motion and ioad responses can be significant
for a large flexible airplane flying at altitudes of 1,000 feet or less.

With one important exception the results of the present procedure
are generally similar to those of past investigations. The trend study
results of thls formulation show the rigid-body acceleration response
predicted by a one-dimensional analysis to.be a conservative estimate
for large values of span to scale of turbulence ratio. Also, a con-
servative estimate of the rigid-body bending moment exists for various
values of wing to fuselage mass ratio.

The exception to similarity to past results is that the conservative
estimate of rigid-body acceleration exists for small values of span to
scale of turbulence ratio. This difference is due to the influence of the

aspect ratio on the weighting of the frequency response function with the
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gust spectrum. This result is in contrast with results of earlier inves-
tigatlons that have shown the one-dimensional analysis to be a limiting
case of the two-dimensional analysis. This study has shown that the
limiting case exists only for a value of aspect ratio equal to zZero,
which points out the fact that the effect of aspect ratio is inherently
missing in the one-dimensional analysis.

Both the rigid and flexible bending moment responses are shown to be
different than the one-dimensional analysis responses. This difference
is seen at both low and high values of reduced frequency. Only the
difference at high frequencies is shown to be significant. For the model
of the flexible airplane, a spatial tuning of the 1lift distribution with
the elastic deformation modes is shown to result in a significant amount
of amplification of the bending moment response spectra. The natural
frequencies of the elastic modes were so high and widely separated,
however, that the spatial resonance of the modes did not significantly
affect the values of the response statistical parameters.

An important objective of the trend study was to evaluate the effect
of the truncation error on the response spectra. This error is a conse-
quence of the numerical integration of the input-output relation being
performed to a finite upper limit. The error was evaluated for both
rigid-body acceleration and flexible bending moment responses. It was
found that the truncation error was small for values of upper limit of
integration that are greater than a limit that represents a full wave of
downwash along the semispan. Furthermore, this error 1s not a serious

limitation to this formulation of the gust response problem. The only
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practical limitation imposed by the truncation is the loss of resolution
of the downwash description for higher values of integration upper limit.
The trade-off between the effect of truncation error and resolution is
largely a matter of the abllity to use more control points along the semi-
span in the aerodynamic force calculations.

Since this investigation did not deal with an application of the
formulation to & large flexible airplane, further work in this area may
be desirable. Specifically, the effects of sweep, flexibility, compressi-
bility, and a rigid-body pitching degree of freedom should be ascertained

on the basis of a comparison of calculated and flight test results.
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APPENDIX A

THE DESCRIPTION OF HOMOGENEOUS AND

ISOTROPIC TURBULENT FLUID FLOW

This appendix presents the mathematical description of homogeneous
and isotropic turbulent fluid flow. A brief presentation of the principles
and assumptions concerning isotropic and homogeneous turbulent flow theory
is made and the resulting correlation functions and spectral density
functions are presented.

A.1 General Development

The kinematics and dynamics of isotropic and homogeneous turbulence
were developed by Von Karman and Howarth, who in reference 2 use& the
work of Reynolds and Taylor to develop a general theory of isotropic tur-
bulent flow. Von Karman and Howarth generalized Taylor's concept of the
correlation function to three dimensions. The result of this generaliza-
tion was the time averages of the products of two, G;E; and three, G;E;E;
velocity components taken at two different points x and x'. They showed
that for homogeneous turbulence these averages form the components of two
tensors and are scalar functions of the separation of the two points. The
property of isotropy was shown to give the tensors spherical symmetry which
resulted in the vanishing of all but five of the velocity averages. The
mean square values of the velocity components are equal and are independ-~

ent of position.
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If statistical and time averages are equivalent then the time averages

of the products of the velocity components of the double and triple

correlation tensors (equations (4) and (5)) can be equated.

Ryy(r) = uyu] (42)

Tijk(z) = ujuguy (23)

By either examining the structure of the time averages, reference 2, or
using the mathematical properties of the isotropic correlation tensors,

reference 6, the components of the double and triple correlation tensors

can be shown to have the forms

Rij(z) = ?E—(r)ré—g(r) Ty + g(r)BiJ.] (a4)
— 3/2 - r) -
Ti,jk(z) = (u2)5/ E{(r) h(r; 29(z) I'irjrk
o B oo a) L su] (15)

The scalar functions in the above expressions are the non-vanishing time

averages of the products of the velocity components.

£(r) = («)upu]
g(r) = (v)uyal
n(r) - (@7 o

k) = @ B
—,3/2

a(r) = (u@) ulugué
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These scalar functions are not independent. This follows from the
application of the continuity condition to the double and triple correla-

tion tensors.

ORij(x) _ (26)
Bri

1 pic(x) =0 (a7)
ark

These expressions furnish the following relations between the scalar

functions.

g(r) = £(r) + 5 £'(r) | (8)
k(r) = -2h(r) (49)
a(r) = -n(r) - S n'(x) (10)

The dynamical relations for the scalar functions are found by applying
the momentum condition to the correlation tensors. The governing equations
are the incompressible Navier-Stokes equations which in tensor notation are

ou . .ou _

2
The Laplacian operator Vx is

-%%P_+ v Veu (a11)
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and p and v denote pressure and viscosity respectively. The governing
equations for the dynamics of the correlation functions are determined by
multiplying equation (All) by uy and ui and adding the resulting time
averages. Using equations (A2) and (A3) these equations in tensor nota-

tion become

-g—.g Rij(ﬁ) - S%;EfiJk(E) + Tkji(z).] =2y V2Rij(£) (a12)

These equations may be reduced to a partial differential equation relating

the scalar functions f(r) and h(r), through the use of equations (Ak4)-(A10).

) 2y3/2fomn b\, (0%, kot
S;(u ) + 2(u=) (5; + = h) =2vu (5r2 + Br) (A13)

This expression is called the Von Karman-Howarth equation. Although this
equation has been solved only for the limiting cases of large and small
Reynolds numbers, it has provided the mathematical basis for understanding
turbulent flow. For large values of Reynolds numbers, Von Karman assumed
that the scalar functions are independent of viscosity and preserve their
shape. This concept of self-preserving correlation functions is based on
the assumption that both f and h are functions of one variable, r/L only
and that the scale of turbulence L changes with time. Batchelor in
reference 9 has presented a concise and complete discussion of the self-
preserving solutions of equation (A13).

The concept of self-preserving correlation functions has both mathe-
matical and physical significance. Mathematically it provides a trans-

formation that reduces equation (A13) to an ordinary differential equation.
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Physically, the concept is an assumption which concerns the decay of the
energy of turbulent flow.

Kolmogoroff, reference 9, used the concept of similarity in a local
sense to produce a theory of energy dissipation. The term local implies
that only small scale motion can be considered to be both isotropic and
self-preserving. The extent of this local region is largely dependent on
the Reynolds numbers of the flow. Kolmogoroff's theory was presented in
the form of two similarly hypothesis which combine to supply the descrip-
tion of energy decay of small scale turbulence.

A.2 Energy Fouation of Isotropic Flow

The local similarity theory of Kolmogoroff becomes important when
applied to the energy equation of isotropic flow. This equation is derived
by taking a three dimensional Fourier transform of equation (A12) and
using equations (6) and (7). Contracting this equation and multiplying
by 4n02 the governing equation for the decay of energy is

g—t E(q) +W(Q) = -2va2E(q) (A14)

The function E(Q) is called the energy density function. It repre-
sents the distribution of the total kinetic energy per unit mass of the

fluid in wave number space. It is related to the spectral tensor by

B0) = % 04(a) 1 summed (a15)
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The function W(R) is called the work density function. It represents
the amount of energy transferred by the non-linear inertial terms con-
tained in an element of wave number space. It is related to the transform

of the triple correlation tensor by

2
W) = T 2o (@) k summed (416)

The governing energy equation shows the generally accepted concept of

energy decay:

a) The low wave numbers contain the bulk of the energy while viscous
dissipation is negligible.

b) The low wave numbers furnish energy by the action of inertial
forces to the higher wave number ranges where it is dissipated
by viscosity.

This concept and the Kolmogoroff hypothesis, imply that the decay process
can not be considered to be similar for all values of wave numbers.,
A.3 Development of Multidimensional Spectra

The importance of the energy density function is that its definition,

equation (Al5), provides a relation between it and the energy spectral

tensor. The form of the spectral density tensor is written
2 5(2) = Ala)asay + B(a)dyy (417)

in terms of the scalar functions A and B with argument @. This result has
been presented by Batchelor, reference 6 and Coburn reference 13. The

scalar functions may be found by applying the continuity condition to




equation (A17)

9;94(a) = 0 (A18)

and using equation (Al5). Once the energy density function is known,

@ij(g) may be found.

0;4(a) = i—sﬁm(o%ij - 9404) (A19)

The components of the double correlation tensor and the spectral
density tensor are expressed in terms of the scalar correlation functions
f(r) and g(r) and the energy density function E(Q) respectively. The
definition of the scalar correlation functions provides an intepretation
for the subscript notation of these tensors. The diagonal elements of
the double correlation tensor represent either a longitudinal correlation
f(r) or a lateral correlation g(r). By letting the subscripts i = 1,2,3
represent velocity components in the longitudinal (flight path), lateral,
and vertical directions respectively, the diagonal terms of these tensors
represent correlation functions and spactral density functions for the
longitudinal, lateral  and vertical components of the gust velocity. The
off diagonal terms of the double correlation tensor and the spectral tensor
represent crogs-correlations and cross-spectral density functions bewteen
the gust velocity components.

The correlation functions for one- and two-dimensions are found by
letting the spatial separation distance be

r=r]

r% + r%

"

r
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respectively. The spectral density functions for one- and two-dimensions
are found by integrating the corresponding higher dimensional spectral

density function over the undesired wave number axis. For example,

q)iJ(Ql’gE) = b/(‘) q>iJ(9_)dQ3 (A20)

-]

¢44(0) = jo @y 4(0),05)d0, (421)

For two-dimensional turbulence a correlated spectral density tensor exists

whose components are
- ,
¢1J(Ql,r2) = fo 04 5(ay,05)c0s (2,r5)dn; (A22)

Several expressions describing the turbulent motion of a fluid have been
developed. Only the expressions due to Dryden and Von Karman will be
presented, however, additional expressions may be found by consulting
references 4, 11, 14, and 15.

4e4 Von Karman Representation

Von Karman in reference 4 presented an expression for the description

f isotropic turbulent flow in terms of the energy density function. He
assumed that W(Q) can be expressed in terms of E(Q) andq. Then substi-
tuting this expression for W(Q) into equation (Al4), he considered two
cases of flow. While both of these cases neglected the decay term, the

first case neglected the viscous term. The solution for this case is




B(q) ~ q-9/3 (A23)

which is the result of Kolmogoroff for large wave numbers, reference 9.
The second case wag that of including the viscous terms and assuming

that E(Q) preserves its shape for small and intermediate values of wave

numbers. This resulted in a solution of E(Q) which involves integrals of

E(Q) but has the limiting form for small wave numbers

L

E(Q) ~q (A24)

This expression agrees with the results of many authors for low wave
numbers, reference 12. Von Karman proposed an interpolation form for E(Q)

which has equations (A23) and (A24) for its limiting forms.

5 (%)
E(q) = 2 &2 o 7 (425)

[ee)]

The corresponding scalar correlation functions are

2/3
£(r) = E(a.r) 3k
1\ ‘o 1/3
r(3)
22

/3 1/3 QoT
g(r) = r(—l)(nor) [13/3(901') -5 KE/B(QOI')] (A27)
3

(aor) (A26)

From these expressions the one-, two-, and three-dimensional correlation

functions and spectra are
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ONE-DIMENSIONAL
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R33(rl)
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A.5 Dryden Representations

Dryden presented an expression for the description of turbulence in
terms of a correlation function, which is expressed in terms of the
exponential decay function. He found that this expression gave a good
fit on experimentally measured correlation functions, reference 5, and
spectral density functions, reference 3. These data were measured from
turbulence which occurred behind a screen placed in a wind tunnel.

Dryden has shown good agreement between the expression
£(r) = /L (A36)

and experimental data for experimentally obtained values of L. Houbolt

in reference 8 has presented an expression for the energy density function.

_ w8 (1)

x Ei . (10)233

E(q) (837)
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The limiting form for small @ 1is in accordance with previous theory,
reference 12, and Von Karman's expression, equation (A24). The limiting

form for large O 1is
E(R) ~ =2 (A38)

which is not in agreement with either the theory of decay or the expression
of Von Karman, equation (A23). This is a result of the form of f(r)
given in equation (A36).

For this scalar function to be a solution of equation (Al13), f(r)
must be similar for all values of r and Reynolds numbers. This in turn
demands similarity of E(Q) for all g which is incompatible with both
physical reasoning and experimental results. Dryden discusses thé form
of f(r), reference 5, and shows that its slope at r = 0 is -l/L.

This does not agree with the properties of f(r) which shows that its
slope at r = O should be zero. This discrepancy has led Dryden to
state that equation (A36) is not correct for values of r near zero.

The scalar correlation function g(r) is found from equations (A36)

and (A8).

g(r) = (1 - gi)e-r/L (a39)

From equations (A36), (A39), and (A37) the one-, two-, and three-

dimensional correlation functions and spectra are
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p(t) = fm hy(t1)wa(t - t1)dty (B2)

-00

[>1=

=
1l
=

When the downwash inputs are the vertical gust velocities of homogeneous
and stationary atmospheric turbulence, the description of the response

is provided by the correlation function

=

)=
]\/

=

i

—
=]
il
=L

Ry(r) = p(t)p(t + 1) = fmj " By (4 ()R, (7 + tp = t))dtydtp

(B3)

The cross-correlation function Ran is the spatial correlation of the
nth and mth inputs which are assumed to have zero means and satisfy the
1imit of equation (10). The cross-correlation function is dependent
only on the spatial separation of the nth and mth inputs, rpy and the
spatial separation ri. For isotropic atmospheric turbulence, the
assumption that Taylor's hypothesis is valid enables the time and

spatial coordinates to be related through the airplane's velocity:

r; = Ur (B4)




APPENDIX B

DEVELOPMENT OF THE TWO-DIMENSIONAL

INPUT~OUTPUT RELATIONS

The purpose of this Appendix is to derive the two-dimensional
input-output relations which are discussed in Chapter Two and are used
in the calculations.

The two-dimensional input-output relation is developed as an
extension of one-dimensional theory. This extension is easily perceived
by using the development of system analysis with multiple inputs.
Consider the wing of an airplane to have N distinct downwash inputs
wn(t) and a single response p(t). FEach one of the downwash inbuts
1s assumed to act over a finite interval of the span Ay. If, in
addition, the downwash input is assumed to be invariant in the lateral
direction over Ay, the resulting response for that interval is given

in terms of the downwash by

py(t) = fw hy(ty)wp(t - t7)dtq (B1)

-0

The function hn(t) is the linear response of the airplane to the
individual downwash wh(t) that is mathematically described to be a
unit impulse at time t; and a constant over the spanwise interval Ay .

Assuming the entire system to be linear, the superposition principle can

be applied and the total response is

91
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This relation and the assumption that time and statistical averages are
equivalent allows the isotropic two-dimensional correlation function

presented in Appendix A to be used for the cross-correlation function.

anm('l' + t2 - tl) = R33(rl’rnm) (B5)

The statistical description of the response in the frequency domain is

given by the Fourier transform of the correlation function, assuming

the relation

0
J[ RP(T)dT <o
=00

is satisfied. Assuming that the Fourier transform of the right hand
side of equation (B3) exists, the spectral density function of the

response 1s

¥
) Ep( (el (@) (86)

m=1

=

pp(®) =

It
[

I

The frequency response functions Hp,(w) are the Fourier transforms of
the impulse response functions hp(t). These functions Hp(w) represent
the complex amplitude of the response of the airplane to & sinusoidal

downwash of unit amplitude which is constant over Ay and has frequency

w.
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The spectral density function d)an is the spatial cross-spectral

density function of the nth and mth inputs and it is the Fourier trans-

form of Ry ()

bg(@ =% | Ry (memior ar (57)

For isotropic atmospheric turbulence, the assumption that Taylor's

hypothesis 1s valid provides an analogous relation to equation (B4)

w = Uy (B8)

This relation and the assumption that time and statistical averages are
equivalent allows the isotropic two-dimensional correlation spectral
density function presented in Appendix A to be used for the cross-spectral

density function

A

b33 (Q1,7nm) (B9)

¢an(u9 = %

For isotropic turbulence the cross-spectral density functions <bWhm(aﬂ

have the property that the only distinct spectra are

k=0, ..., N-1i
b

Witk,i

¢

(B10)

Yi,i+k ¥1,1+k

-
1
=
-
=
1
=

This property allows the response spectral density function defined

by equation (B6) to be written
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N N-1
0 p(e) =bw; (@) ) H(@E(@)| + 2y, (@Fe| ) Hn(wa1 (o)
n=1 :3
+ ...+ 2¢1N(09Re[?n(aﬂHﬁ(wi]

A continuous two-dimensional input-output relation is obtained by
applying the 1limit N - and Ay - 0 to equation (B2). The summation
is replaced by an integration over the span and the downwash is now a

function of the lateral coordinate and time. The total response 1is

b/2 e
p(e) = | o 7 nteyute - 4 yaay (B11)

This expression is the extension of the one-dimensional response analysis
to include a continuous spanwise variation of the downwash. The function
h(t,y) represents the response of the airplane to a downwash represented
mathematically by a time-space impulse function applied at time t; and
at wing station y.

When the downwash input is the vertical gust velocity of a homo-
geneous and stationary atmospheric turbulence field, the description

of the response is

rb/2 o
Rp(T) = L[];b/e k[]im h(t1,y1)n(t,¥2)Ry(ts + 7 - t1,y0 - y1)dtidtadydys

(B12)
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The cross-correlation function Ry (ty + T - t1,yo - y;) 1s the spatial
correlation of the inputs which are assumed to have zero means and
satisfy the limit of equation (10). For isotropic atmospheric turbulence,
the assumption that Taylor's hypothesis is valid enables equation (BA4)

to be used along with the assumption that time and statistical averages
are equivalent to relate the isotropic two-dimensional correlation

function presented in Appendix A to the cross-correlation function.

Rtz + 1. - t1,|y2 - y1|) = R33(r1,r2) (B13)

The statistical description of the response in the frequency domain is

b/2 rb/2 . n
0@ = j_b/2 oo HomD B (@38, (myman, v, (B1k)

The spectral density function $w(ayr2) is the spatial cross-spectral

density function of the inputs and it is the Fourier transform of

RW(T,IYQ - yll)

§ (oly, -y -2 jw R (1,1vp - ¥;|)e™1oT ar (815)

For isotropic atmospheric turbulence, equation (B8) and the assumption

that time and statistical averages are equivalent allows the isotropic
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correlated spectral density function presented in Appendix A to be used

for the cross-spectral density function.

A

%w(“%' o - y1|) = %]‘ ¢55(Ql,r2) (B]_6)

The frequency response function H(w,y) is the Fourier transform

f(w,y) = /m h(t,y)ei¢t at (B17)
0
and it represents the complex amplitude of the response of the airplane
to a downwash field which is expressed mathematically as the product of
a spatial impulse function applied at y and a sinusoidal wave field
of unit amplitude and frequency w. The quantity ﬁ(ayyl)ﬁ*(w,ye)
a complex quantity but the imaginary part can be ignored becaﬁse in
the spatial correlation of equation (Blk), &(w,|y2 - yl‘) is an even
function of |y, - ¥].

An alternate form of the two-dimensional input-output relation is
obtained by removing the spatial correlation of equation (BI4). The
convolution is removed by expressing the correlation spectral density
function in terms of the two-dimensional spectral density function
®w(a»gg). These two spectra are related by a spatial Fourier transform

[+ -]

A i -
§ ooy, - =% [ o mayet!¥eTalee o (818)

-0
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Using this expression in equation (Bl14) the input-output relation is

1 [° 2
¢ p(w) =§j | B(@s00)] 0y (0,00)d0, (B19)
=00
The function H(w,0p) 1s a two-dimensional frequency response function
that represents the complex amplitude of the response of the airplane
to a two-dimensional downwash field represented by two sinusoidal waves
of unit amplitude and frequencies w and Qo. It is defined in terms

of the frequency response function H(w,y) by

o
H(w,) = j f(w,y)e™¥92 ay (B20)
- v
For isotropic atmospheric turbulence, equation (B8) and the assumption
that time and statistical averasges are equivalent allows the isotropic
two-dimensional spectral density function presented in Appendix A to

be used for the two-dimensional spectral density function defined by

the inverse Fourier transform of equation (B18).

(Dw(w)QQ) = %‘I' %3(91;92) (B21)




APPENDIX C

DESCRIPTION OF THE TREND STUDY MATHEMATICAL MODEL

The mathematical model of the airplane used for the trend study
calculations will be presented in this Appendix. The expressions for
the generalized forces and the frequency response functions are presented
and the corresponding two-dimensional response spectra are calculated.
From these spectra the truncation error is evaluated and the response
statistical parameters are calculated.

C.1l Fquations of Motion

The airplane is represented by an unswept tapered wing and a lumped
mass fuselage. It 1is restrained against all motion and deformation
except rigid-body vertical motion and wing vertical bending deformation.
The total plunging displacement of any point of the airplane is given
in terms of the sum of the products of the natural modes of motion and

their associated generalized coordinates.

{

1

£ (x,y)a4(t) (c1)

]
i}
L\/

[urn
I}
—

The generalized coordinates are calculated by solving Lagranges
equations of motion, equation (31), for the plunging motion of the
airplane subjected to a two-dimensional sinusoidally varying downwash
field. The equations of motion are simplified by using weighted mode

shapes that satisfy
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b/2 Mo 1= )
[ ey (ay - (c2)
2 0 1]

The orthogonality property of equation (C2) is satisfied by using
free-free symmetrical vertical wing bending modes. These modes are
normalized by weighting them by the mass distribution m(y).

For the trend study calculations it is necessary to work with
nondimensional parameters. This requires that the equations of motion
be expressed in terms of nondimensional generalized coordinates, masses,
and forces. The nondimensional reduced frequency parameter, k, is

commonly used. It is related to the circular frequency by

o
k‘U

(c3)

From these relations the equations of motion written in terms of reduced

frequency are

Lo

N
2
(g) (1 - ¥E)Myay (x, 0p) = Z Qfy(k)ay(e, a2) + Qf(k,0p) (ck)

J=1

C.2 Generalized Forces

For the trend study the nondimensional generalized forces are
calculated by strip-analysis aerodynamic theory. Strip analysis is
concerned only with the spanwise 1ift distribution on the wing. This
distribution is found by calculating the local 1ift on each of a number

of streamwise strips on the wing. The local 1ift per unit strip width
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is assumed to be proportional to the local angle of attack. For the

case of simple-strip analysis, two-dimensional flow theory is applied to
each individual strip. The vortex sheet on the wing is replaced by a
single concentrated bound vortex which is located at the quarter-chord
point. The boundary condition associated with the location of the vortex
is the downwash at the three-quarterfchord point. The selection of the
downwash at this point requires that the local lift-curve slope have the
two-dimensional incompressible value 2x. This value of 2x is signifi-
cant when unsteady flow is being considered. Fach individual strip is
considered to be an oscillating flat plate in two-dimensional incompressible
flow. For a straight wing the unsteady 1ift of each strip is given by
Theoderson in reference 44%. This unsteady simple-strip analysié has been
used by Barmby, Cunningham, and Garrick in reference 46 for flutter
studies of both straight and unswept wings.

Yates, in reference 41, presents a modified unsteady strip-analysis
theory. He modifies the unsteady simple-strip theory for finite span
effects by letting the position of the aerodynamic center move from the
quarter chord. This change of position of the aerodynamic center requires
that the boundary condition be the downwash taken at a location on the
chord other than the three-quarter-chord point. This modification of the
simple-strip analysis is reflected only in the circulatory terms of the
expression of the unsteady 1ift distribution. The modification of these
terms is made by letting the local lift-curve slope have a value other than
2n  and taking the effective angle of attack at some position other than

the three-quarter-chord point. The value of the local-1ift curve slope
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Clo ¢can be calculated from any suitable steady-state aerodynamic theory
for finite wings. The value and location of the effective angle of
attack is given in reference 41.

The generalized motion forces are formulated from the modified -
strip analysis. The incompressible unsteady spanwise 1ift distribution

for an unswept oscillating wing is
M 12|22\ c
Uiyom) = 0P| ZE(E)” - 1oy, (8ot (c5)

The unsteady circulating term of the 1ift distribution is given by the
two-dimensional incompressible Theodorsen function glven in reference Lk

in terms of the Bessel functions Jp and Yn-

o(k) = (k) + 1% (k) (c6)
=(31(k) + ¥y(k)) + 1(¥Y(k) - Ty (k))

The modified-strip analysis is used for the formulation of the
generalized gust forces. The unsteady 1ift distribution resulting from
8 two-dimensional sinusoidal downwash field is given in terms of the
local lift-curve slope and effective angle of attack. The value of the
local lift-curve slope C1q Can be calculated from any sultable steady-
state aerodynamic theory for finite wings. The local angle of attack is

the downwash normalized by the airplane velocity U.

Wi i
a = T% elks g 2¥ (c7)
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The downwash is taken at a point on the chord given by reference 41,
The response of a rigid two-dimensional wing in incompressible flow to a
one-dimensional sinusoidal downwash field is given in reference 2k,
Modifying this expression for finite span effects and the local angle of
attack given by equation (CT7), the incompressible unsteady 1ift distribu-

tion is

{)'G(}';k)ﬂg) = pUac c K(k)z%}‘ elf2y (08)

la,

The function K(k) is called the circulation function and is given in

reference 24,

K(k) = c(k)[J (k) - 107(k)] + 13y (k) , (c9)

Substituting the 1ift distributions given by equations (C5) and (C8) into
the expressions for the generalized forces given by equations (33) and

(34), respectively, the generalized forces are

"b/2 5/ \2
) 2nkefc c
foj(k) = pU ~/-b/2 [T(a) - 1kcza<6)c(k)]gi§j dy (c10)
W -b/2
Qg(k,gg) = pUEK(k)-ﬁ‘1 L/:b/z ce,, cos(Qyy)e; dy (c11)

The antisymmetrical term in the spatial frequendy term is neglected
because the integral of an odd function over a symmetric interval vanishes.
These forces are written in terms of a normalized 1ift-curve slope

distribution 7y. The local lift-curve slope is normalized by the total
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lift curve slope Cio ©of the wing. The spanwise variable is normalized
by the semispan and forces are expressed in terms of nondimensional

coefficients.

N
. 2
Qfy(k) = CropU®s > qj<Aij £ - ikC(k)BiJ) (c12)
571
QG(x,08) = CroPUPSK (k)72 BB; (0%) (c13)

The nondimensional coefficients and variables are

1 2 .
_1/2 c
Ay = 5(%) fo (&) sy o (e2)
1 1
By =3 |t e (c15)
1
53, (08) = & fo y(y*)eos (a5y*)e; dy* (c16)
"
2

o]
N %
i
P
Vo

no
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The nondimensional equations are written in terms of the nondimensional
generalized coordinate ﬁi by substituting the generalized forces given

by equations (C1l0) and (Cll) into equation (C4) and defining the mass

parameter A.

)=

(6 - ¥)NG; (k,08) - ) ,(k,08) (kPA;; - 21kC(k)By,) = 2K(k)BB, (a5)

.
]
'._J

(c17)

A= EEI:E—E (c18)

C.3 Frequency Response Functions

The frequency response functions needed to determine the desired

response spectra are expressed in terms of the nondimensional generalized

coordlinates.

Two-Dimensional Analysis
The two-dimensional frequency response functions are calculated from
the nondimensional generalized coordinates which are found to be solutions
of the equations of motion given by equation (Cl17). The response

functions calculated in this study are presented below.

Plunge Displacement
The nondimensional plunge displacement frequency response function
is the nondimensional generalized coordinate for the rigid-body plunging

mode of the airplane, =1.

3
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= ql(k)QE) (Cl9)

Plunge Velocity
The plunging velocity frequency response function is normalized by
the gust velocity magnitude and is calculated in terms of the plunge

displacement.

a, (k,0%)

D * _
z(k’Qg) WG

- 1k4, (k,08) (ce0)
Plunge Acceleration
The plunging acceleration frequency response function is normalized
by the "sharp-edge gust" acceleration, which neglects the motion aero-
dynamic forces and considers only the response to the steady part of the

gust forces.

4y (k,08) k2N4; (k,q5)

iy 2BBY

(ca21)

Sl %) =
7 ( ,92)

The sharp-edge gust acceleration is

2
=

c

Zg
Bending Moment
The wing bending moment frequency response function is found by
taking the moment of the total load distribution on the wing. The total
load distribution consists of the inertial, motion, and gust forces

acting on the wing.
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“b/2 N 5\2
BM(k,0%,¥) = / 16 (k,0%,m) + > LM(k,n) + (g) kgeiqim(n)} (n - y)dn-
L y p—
=1

(ce2)

The load distributions of the motion and gust forces are given by
equations (C5) and (C8), respectively. The antisymmetric part of the

gust forces is neglected since only the symmetric bending moment response
is desired. The bending moment is rewritten in a manner similar to that

used for the equations of motion. The nondimensional bending moment at

the root, that is, y = 0 1s
N
A \m(k)QE}O) _ ;L1 \ > . o T
(UM %/ = = K(K)BB' + 3 Z (k%] - 21kc(k)B] + 222D, |8,
i=1

(ce3)

The dimensionless coefficients and variables are

1 2
R & 2n (¢ *gm¥*
Aj =3 fo o\ E1mdn

Lol
B5=§f 7(n*)g n¥an*
0
1
Dy = f 7 (0% Jm* n¥dn¥
0
!
miag) =3 [ ol )eos(agmar
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The wing-root bending moment frequency response function 1s normalized
by bending moment resulting from the steady-state gust forces, that is,

for k

0. This reference bending moment is found from equation (C23)

for k = Q% = Q.

<'E% \&4(0,0,0) _ BB,
2

w g Ve

The normalized nondimensional wing-root bending moment frequency response

function is

N
BM N K(k)BB' (%) 1 O : ' 4
;E(k,gg,o) - ST * 3 ;21 [@a; - 21ke(x)B] + 2Ak2D£]§§T(67

(cok)

One-Dimensional Analysis
The one-dimensional frequency response functions are related to the
two-dimensional frequency response functions by setting Q§ =0 in
equations (C19), (C20), (c21), and (C24).

C.4 Response Spectra

The response spectra needed to determine the statistical parameters

for the responses of the airplane are calculated.




110

Two-Dimensional Analysis
The two-dimensional response spectra are calculated by multiplying
the normalized two-dimensional Dryden gust velocity spectrum by the
square of the modulus of the two-dimensional frequency response functions
given by equations (C19), (C20), (C21), and (C24). Integrating these
spectra over finite limits of the spatial frequency X%, a response
spectrum is obtalned from the two-dimensional analysis for each response

variable,
QZ 2
= ¥ ¥* ¥
o (k) /o |H(k,02)l o, (k0% )aaX (c25)

The normalized two-dimensional Dryden vertical gust velocity spectrum is

AR (107)% + (10p)°

{5) 0w a)? v (10

(DD(k:Q*) = (c26)

The arguments on the left and right hand side of the expression are

related by equations (35) and (36).

1
o

L
L = k 2

2L
= ¥ =X
Lo, = a3 3
One-Dimensional Analysis
The response spectra are obtained by multiplying the square of the
modulus of the one-dimensional frequency response functions times the

one-dimensional normalized Dryden gust velocity spectrum.
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b (k) = | H(K)| %y (k) (c27)

The normalized one-dimensional Dryden vertical gust velocity spectrum is

2
§pli) = L L 2101) (c28)

n@) [1+ (1@1)2]2

C.5 Statistical Parameters

The one-dimensional response spectra obtained from the two-
dimensional analysis and the one-dimensional analysis are integrated
over finite limits of reduced frequency to obtain the desired response

statistical parameters.

Mean-Square Value
The mean-square value of the response was calculated by using

equation (39).

k
( )2-= fo $(k)ak (c29)

Root- Mean-Square Value
The root-mean-square value of the response was calculated by using

equation (40).

/2

1
VO 2 = Uok ¢(k)dk]
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Number of Mean Crossings
The average number of mean crossings was calculated by using

equation (41).

1/2

[ e
1 L0
- . 1
k
[;/ﬁ ¢(k)d%]
0

7 (c30)

c
oHC.‘IOz

C.6 Parameter Data

The scaling laws which govern the change of nondimensional

parameters in the trend study calculations are presented.

Frequency Response Functions

The normalized nondimensional frequency response functions are
developed in terms of nondimensional quantities. These quantities are
dependent on the geometry, mass, stiffness, and aerodynamic properties
of the airplane. A change in one or more of these properties must
conform to scaling laws which provide the relations between the non-
dimensional forms of these properties. The quantities that govern the
values of the frequency respense functions are

a) Mode shapes £ (y*)

b) Normalized 1lift distribution y(y*)

c) Normalized mass distribution m*(y*)
The nondimensional coefficients used in equations (C17) and (C23) are

constant for a change in the physical properties of the airplane provided
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the mode shapes, normalized lift distribution, and normalized mass
distribution are not changed.

The mode shapes are calculated from the governing equation of motion,

reference 24.
b\
) = M
[ ()] - (2—2-1? m*(y*)g = O (c31)

The mode shapes are the same for any two different airplane configurations
that have the same mass distribution, stiffness distribution I*(y*)
and mechanical vibration constant a%(b/2)3MR/EIR. The mechanical
vibration constant can be written in terms of the nondimensional
parameters A and k by using equations (C3) and (C18).
2(bY b)*
—wig—leR = (Constant )k®ACy,, %(% 9—23) (c32)

This relation shows that the natural reduced frequencies are the
same for any two configurations that have the same values of:

d) Ratio of aerodynamic forces to elastic forces 1/2 pUS/E

e) Mass parameter A

f) Ratio of wing span to reference stiffness (b/e)u/IR
Equation (C18) shows that the mass parameter is inversely proportional
to the total lift-curve slope and equation (C23) shows that the natural

reduced frequencies are independent of C For the trend study

I
calculations the above parameters are held constant for a given value

of the ratio of the wing mass to fuselage mass. The corresponding
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natural mode shapes and reduced frequencies were calculated for different

values of the ratio of wing mass to fuselage mass.

Response Spectra
The calculation of the two-dimensional response spectrs requires
the changing of the two-dimensional scale ratio b/2L. This in turn
changes the one-dimensional scale ratio L/ in accordance with
equation (37). For the trend study calculations the value of the aspect
ratio is held constant. This constraint gives the proper geometry

scaling for the airplane.

Stiffness Values
The values of the stiffness distribution, reference stiffnéss,
and influence coefficients used in the trend study calculations are

taken directly from example problem 2-1 in reference 2k.

Mass Values
The mass distribution values for a wing mass to fuselage mass

ratio of 0.585 and the value of reference mass is given in table I.

Mode Shapes and Frequencies
The calculated natural mode shapes and natural frequencies for a

value of wing mass to fuselage mass ratio of 0.585 is given in table I.

Aerodynamics
Two strip-analysis aerodynamic theories are used to calculate the

normalized 1ift distributions used in the trend study calculations.
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Simple-Strip Analysis
Simple-strip analysis assumes that the local lift-curve slope of
each section of the wing is constant and has the two-dimensional value
of 2n. The 1ift distribution is then proportional to the normalized

semichord relation.

H(r) = (£) = 138613501, - 0.555555565%) (c33)

Modified-Strip Analysis

The normalized 1lift distribution for the modified-strip analysis 1is
calculated from reference 45. This reference uses a matrix formulation
of the Weissinger L-method of solving the three-dimensional steady flow
equation. The solution of this equation is the values of the 1ift distri-
bution ch/ECIa at selected semispan points. This distribution is
dependent on the wing geometry and angle of attack distribution taken
at the three-quarter-chord location. The symmetric distribution for a
given angle of attack distribution <}L} can be calculated from the

presented values of the symmetric aerodynamic influence matrix
CCZ _ 1
{'C_:C]'_a} N Cm@'g {c,}

The normalized 1ift distribution 7 1is defined in terms of a unit angle
of attack distribution. The distribution » 1is calculated in terms of
the symmetric distribution CCZ/ECDx by the following relation.

oA CIACERY: (c34)
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The symmetric influence matrix corresponding to an aspect ratio of 6,
a taper ratio of 1/2, and a total lift-curve slope of 4.321 is used for

the trend study calculations.

Coefficient Values
The values of the coefficients used in equations (C12) and (C23)
for a value wing mass to fuselage mass ratio of 0.585 and values of
Clg ©of 2n and 4.321 are presented in table IT.

C.7 Truncation Error

An analytical evaluation of the truncation error of the one-
dimensional response spectra is made. The evaluation is made for the case
of simple-strip analysis aerodynamic theory and the rigid-body plunge
mode. For this case, the frequency response function is sssumed to be

independent of reduced frequency Kk, and has the form

sin QE
H(k,08) = —=— (€35)
2
Using this expression, the truncation error is formulated by comparing

the one-dimensional response spectrum given by equation (C25) with the

response spectrum given by equation (38).

2
© fsin qX
e(x) - ] Z22) o (k08 )aat (c36)
a Q25

This expression is difficult to evaluate in closed form. Because
of this difficulty, the truncation error is evaluated in closed form

only for large values of k, that is, k > (b/2L)/AR. For these values
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of k, the gust spectrum is approximated for two limiting values of the

roll-off point.

For low values of the roll-off point, that is, kAR < < w, the
asymptotic expression of equation (52) is given by equation (54).
Substituting this expression into equation (C36), the truncation error

expressed in terms of the cosine integral function Ci(z) 1is,

0 - )

1 ,cos(Pa)f 1 _ _1_ +58in(2a)f 1 1\ ci(2a)
8a 2 \ga2 uat 2 \gad 3a 3

)

(C37)

For high values of the roll-off point, that is, kAR > n, the gust
spectrum is given by equation (55). The gust spectrum is independent
of QZ and a percentage error is calculated by normalizing equation (C36)

by

The percentage truncation error in terms of the sine integral function

Si(z) is

1 1 2 s
EEJ—‘:- - a—I-t- COS(28.) - ; 81(28.) (C38)

m
l\)lt\t
=
i
'-l
+




TABLE I.~- TREND STUDY ATRPLANE CHARACTERISTICS

Airplane Parameters

Mass Parameters, A . . . v v v v v v v v v e e e e e e . 45,656
Aspect Ratio, AR « v « v v v v v v e e e e e e e e e 6.154
Taper Ratio . . . v & v v v v o v b e e e e e e e e e e 0.hhk
Reference Stiffness, EIp, St . . . . . . . . . . . ... 6.8x 100
Reference semichord, T, inches . . . « « «v v v v o o « . . 81.25
Reference Mass, Mg, slugs . . . + ¢« « v v « v v v v o o . 1503.05

Mass Distribution and Mode Shapes

y* m* £y Es Es
0 0.4151 1.0 -0.1586 0.1383
0.18 0.141 1.0 -0.1177 -0.0362
0.372 0.2433 1.0 -0.0052 -0.1418
0.536 0.1002 1.0 0.2593 -0.3720
0.736 0.0811 1.0 0.5132 0.0415
0.916 0.0162 1.0 1.0 1.0

Reduced Frequencies of Orthogonal Modes

k.l = 0.0
kp = 0.156
k3 = 0.525
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TABLE II.- TREND STUDY FORCE AND MOMENT COEFFICIENTS

Simple Strip Theory CLJ = 2n
Ajq = 0.5247 Al = 0.1982
Ao = 0.2933 AL = 0.2991
Ajz = -0.0537 Ay = 0.062k
Ars = 1.280
B = 0.2179
Apz = 0.6732
B = 0.4060
Azz = 1.196
By = 0.1455
By; = 0.5000
H D, = 0.122h
Bip = 0.k37h
D> = 0.117h
Bjz = 0.0421
Dy = -0.0395
B22 = lo756
ng = 1;076
B33 = 1.607

Modified Strip Theory C; = L.321

[0

Ay = 0.7629 Al = 0.2882
A5 = 0.3961 AY = 0.4266
Ayz = -0.0076 Ay = 0.1074
Ass = 1.771

B = 0.211k
Apz = 1.012

BY = 0.3305
Azz = 1.973

B = 0.0607
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TABLE IT.- Concluded

Modified Strip Theory Cp = 4
a

21

= 0.5000

"

0.3547
-0.0301
1.262
0.6170

1.269

Dy

Do

o

fi

0.1224

0.117k

-0.0395
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Spanwise frequency, 52;

Figure 1l.- Two-dimensional rigid body gust force variation
with spanwise frequency.
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2D analysis
—=———1D analysis

Rigid body acceleration response spectrum, ¢(k)

Reduced frequency, k

Figure 4 .- Comparison of rigid body acceleration response spectra
calculated by the one- and two-dimensional analyses

(b/L = 0.5).
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Rigid body bending moment response spectrum, ¢(k)
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m — 2D analysis
~——— 1D analysis

o)}
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Reduced frequency, k

Figure 9.- Comparison of rigid body bending moment response
spectra calculated by the one- and two-dimensional
analyses (b/L = 0.5, mass ratio = 0.585).
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Figure 10.- Reduction of rigid body bending moment mean square
value and N0 given by two-dimensional analysis variation
with b/L (mass ratio = 0.585).
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*
BB3(92)

Spanwise frequency, 9;

Figure 13.- Two-dimensional flexible gust force variation
with spanwise frequency.
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2D analysis
—-——— 1D analysis

Flexible bending moment response spectrum, ¢(k)

Reduced frequency, k

Figure 16.- Comparison of flexible bending moment response
spectra calculated by one- and two-dimensional
anslyses (b/L = 0.5, mass ratio = 0.585).

136



-

e

Two-dimensional analysis to one-dimensional analysis ratio

2z

BM2

157

e

0] .1 .2 .3 .4

Span to scale of turbulence ratio, b/L

Figure 17.- Reduction of flexible bending moment mean square value
and N_ given by two-dimensional analysis variation with b/L
(mass ratio = 0.585).
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calculated by one- and two-dimensional analyses variation with
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Figure 19.- Comparison of flexible bending moment N calculated
by one- and two-dimensional analyses variation wgth
mass ratio (b/L = 0.5).
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Figure 20.- Modified strip analysis two-dimensional flexible gust
force variation with spanwise frequency.
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Figure 23.- Modified strip analysis comparison of flexible bending
moment respose spectra calculated by the one- and two-
dimensional analyses (mass ratio = 0.585, b/L = 0.5).
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Figure 23.- Modified strip analysis comparison of flexible bending
moment respose spectra calculated by the one- and two-
dimensional analyses (mass ratio = 0.585, b/L = 0.5).
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Flexible bending moment mean-square value, BMZ

1hy

Spanwise frequency upper limit of integration

Figure 24.- Modified strip analysis flexible bending moment
mean square value variation with upper limit of
integration (mass ratio = 0.585, b/L = 0.5).




