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INTROSJCTION

The structural loads and accompar_Ting stresses arising from the

responses of alrplanes to the velocities of the atmosphere during flight

through turbulent air have been of concern throughout the history of

airplanes. In fact, this was the subject of the first technical report

published by the NACA in 1915. The effort required to develop gust load

design methods may be appreciated from a chronological r_sum_ presented

in reference 8.

Experience has shown that the local air velocities are continuous

and random in nature and definable only in a statistical sense. Conse-

quently the responses of the airplane can only be known in a statistical

sense. Of the methods of response calculations available to the designer,

the spectral density approach is perhaps the best. This approach, in

contrast with earlier methods, accounts for the continuous nature of

turbulence, including the effects of repeated gust peaks of various

intensities, sizes, and phasing. The spectral approach provides statis-

tical descriptions of the dynamic responses from a combination of a

power spectral description of the turbulent velocities and solutions of

linear equations of motion of the airplane. The linear equations can be

written to include elastic modes of vibration as well as the rigld-body

modes of motion.

Inherent in the use of this approach of the problem are several

important assumptions that m_st be employed. The intuitive concept that

the atmosphere must be described by time and spatial averages that vary

1
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with position and time, respectively, is amended by the assumption that

it consists of '_atches" of stationary (tlme-invarlant averages) and

homogeneous (spatially inv_rlant averages) turbulence. For these patches,

time and statistical averages are assumed to be equivalent, an assump-

tion which compensates for the lack of an ergodic theorem in fluid

mechanics. Also, the probability distribution of the homogeneous and

stationary patches of turbulence has been shown to be nearly Gaussian

which allows the spectral density function to give a complete statistical

description of the random responses. Taylor's hypothesis is assumed to

be valid. This hypothesis assumes that the turbulence pattern is essen-

tially frozen until the airplane has passed through it; consequently,

the time displacements are equivalent to longitudinal space displacements.

Another assumption concerns the existence and determination of a

characteristic length in the atmosphere. The characteristic length of

the atmosphere is assumed to be given by the scale of turbulence. This

length appears as a parameter in the mathematical description of turbu-

lence and serves as a useful indication of the influence of the turbulence

environment on the response of an airplane. The scale of turbulence is a

function of altitude for altitudes below 1,000 feet, and in this range

there is evidence that its value is approximately equal to the altitude.

The most cc_nonly used formulation of the spectral approach is the

"one-dlmensional analysis." This formulation of the problem is charac-

terized by the assumption that the airplane responds only to variations

of the gust velocity along the flight path. The spatial pattern of

turbulence along the flight path is related to the response of the



3

airplane through the airplane's velocity and the use of Taylor's

hypothesis. The response spectrum is related to the frequency response

function and the gust spectrum by the classical input-output relation

for a linear system responding to a random excitation. The frequency

response function is the response of the airplane to a sinusoidal wave

of downwash along the flight path that is constant along the span. The

response spectrum provides statistical parameters for the response.

These are the mean-square value (the area under the response spectrum)

and the average number of mean crossings per unit time (proportional to

the second moment of the area under the response spectrum). The one-

dimensional gust response analysis has been and continues to be the most

frequently used type of analysis. The reason for this is that it has

been used with outstanding success when applied to existing airplanes

operating at altitudes higher than 1,O00 feet.

It is a general consensus of opinion, however, that the one-

dimensional analysis may not be sufficient to analyze airplanes with

large spans flying at altitudes of 1,O00 feet or less. In such cases,

an analysis that accounts for the spanwise variation of the gust

velocities can be used. Several formulations of this type of anal_sis,

called a '%wo-dimensional analysis," have been present in the technical

literature for some time. Although each formulation expresses the

response in the form of a spectral density function, they are consid-

erably different with respect to the distinct elements of the response

problem. These elements are:



(a) The statistical description of the atmosphere.

(b) The calculation of the aerodynamic forces associated with the
turbulence field.

(c) The calculation of the frequency response functions.

(d) The mathematical form of the input-output relation used to

calculate the response.

These elements are not independent; in fact, the latter three are

strongly dependent upon the form of the first element. This will be

shown in the following discussion of previous work on the two-dlmensional

gust response problem.

Liepmann in reference 28 presented one of the earliest studies of

the influence of a two-dimensional turbulence field on the gust response

of an airplane. The influence of the spanwise variation of the gust

velocities was analyzed by describing the atmosphere by a two-dlmensions_l

gust spectrum which represents the atmosphere as a superposition of an

infinite number of sinusoidal waves of shearing motion of all orienta-

tions and wavelengths. The response characteristics of the airplane are

described by the two-dimensional frequency response function, which

represents the response of an airplane to a downwash field described by

a sinusoidal wave along the flight path and a sinusoidal wave along the

span. The input-output relation for this formulation expresses the

response spectrum as the integral of the product of the square of the

modulus of the frequency response function and the gust spectrum where

the integration is performed with respect to the spanwlse frequency

variable. Liepmann applied th_s formulation to the calculation of the

mean square value of the lift on a rigid wing. The frequency response
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function was com_uted using simple-strip analysis aerodynamic theory,

and was used to investigate the limiting cases of the mean-square value

of the lift for large and small values of the span which provided closed-

form expressions for the integrals. For the case of a small value of the

span, the expression is shown to be the same as the one-d_mensional.

In references 25 and 26, Diederich presented a different formulation

of the two-dimensional response problem. This formulation differs frsm

that of Liepmann by the description of the spanwlse variation of the

gust velocities. The atmosphere is described by a correlated gust spec-

trum that smmlyzes the spanwise variation as a spanwise correlation of

the gust velocities. The significance of this change is reflected in

the calculation of the frequency response function and the Input-output

relation. The spanwise correlated frequency response function is the

response of the airplane to a downwash distribution described by a

slnusoidal wave along the flight path and a spanwise impulse function

along the wing. The Input-output relation relates the response spectrum

to a spatial convolution of the product of the gust spectrum and the

frequency response function. In reference 25 the formu]_tlon was applied

to the calculation of the mean-square value of the lift. The limiting

case for small values of the sl_n is shown to give the same result as

Liepmann. In reference 26, Diederich used a modified-strip analysis and

reciprocal flow relations to calculate the responses of a rigid and

flexible mathematical model to a two-dlmensional turbulence field.

Diederlch presents the result that the ratio of two-dimensional to one-

dimensional rigid-body acceleration mean-square value approaches unity

as the ratio of the span to scale of turbulence approaches zero.
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The principal feature of this formulation is that it requires the

calculation of an unstead_ pressure distribution on a wing of finite

aspect ratio to a downwash distribution described by an impulse function.

This calculation has not been done in closed form and is very difficult

to perform numerically. Diederich avoids this difficulty by the

incorporation of a llft distribution that must be calculated by wing

reciprocal flow relations and modlfied-strip analysis. This difficulty

of the calculation of the lift distribution places a practical limitation

on the formulation, especially for the flexible modes; consequently, it

is not easily applied to an analysis with mar_y degrees of freedom.

Houbolt in reference 27 used the turbulence description of Diederich

to formulate the two-dimenslo_al problem. Otherwise, the formulation

differs fr_n Diederlch in that the problem is analyzed by dividing the

wing into streamwise strips and replacing the spatial convolution in the

Input-output relation with a double summation. This analysis was applied

to the calculation of the response of a cantilevered wing to two-

dimensional turbulence. The effect of a spatial tuning of the flexible

modes with the lift distributions is calculated and shown to be more

significant for the highest wing modes. This formulation has a severe

aerod_nsm_c limitation because a lift distribution is required that

represents the response to a downwash distribution described by an

impulse function along the sl_n. This lift distribution can only be

treated practlcally by two-dimensional unsteady aerodynamic theory, and

is limited to the use of a slmple-strip analysis.
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Etkin in reference 31 used the formulation of Liepmann to calculate

the response of a lifting surface to a two-dlmensional downwash expsmded

in terms of a Taylor's series. This expansion enable_ him to utilize

the familiar stability derivatives to calculate the frequency response

function which is the summation of the responses of each of the downwash

terms in the series. The analysis was applied to the response of a flat

plate in unsteady two-dlmensional incompressible flow, and gave a good

approximation of the Sear's function for values of reduced frequency

less than one. This formulation has a built-in frequency limitation due

to the dropping of the higher order terms of the expansion; a limitation

that would be too restrictive for a large airplane with poorly damped

elastic modes.

The literature survey discussed above revealed that with the

exception of one method these formulations are not well suited for

incorporating refined aerod_c force calculations for flexible air-

planes. The excepted method by Liepmann appeared to be suitable, but

had applied only to the determination of the mean-square lift on a rigid

wing. The present study explores the feasibility of extending Liepmann's

formulation to the general problem of determining motion and load

responses of a flexible airplane flying in a two-dlmensional turbulence

field.

The object of this dissertation is to develop a practical and

accurate two-dimensional gust response analysis. Liepmann's formulation

has several advantages over the previously mentioned formulations.

First, it formulates the generalized gust forces by calculating the
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response of a lifting surface to a downwash distribution described by a

sinusoidal _ve along the flight path and a sinusoidal wave along the

span. Thus, it avoids the aerodynamic difficulties inherent in Houbolt's

formn2_tion and does not require the lift distribution associated with

the reciprocal flow relations of Diederich. The major feature of the

formulation is its aerobic versatility. The response of the lifting

surface can be calculated either directly in terms of a pressure distri-

bution by using an unsteady lifting-surface aerodynamic theory, or in

terms of an unsteady lift distribution calculated by a modified-strip

analysis that includes unsteady finite span induction effects. This

formnl_tion calculates the frequency response function directly and does

not have an upper frequency limitation as severe as Etkin's formulation.

The relationship between the response spectrum and the product of

the two-dlmensional frequency response function and the two-dlmensional

gust spectrum is an integration with respect to the spanwise frequency

variable. This form of the input-output relation provides a clear

insight to the weighting influence of the gust spectrum on the response

function, in a manner analogous to the one-dimensional analysis. In

addition, the effect of the aspect ratio of the wing on the response

spectrum is clearly shown, an effect inherently missing in the one-

dimensional analysis. This formulation, however, has a limitation; viz.,

a truncation error in the response spectrum. This limitation exists

because in the numerical evaluation of the response spectrum the integra-

tion can be performed only to a finite upper limit.
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A survey of literature on the theory of turbulent fluid flow

revealed that no one source provided a complete presentation of the

general theory of isotropic, homogeneous turbulent flow with regard

to general effects of atmospheric turbulence on the response of airplanes.

Since the determination of a two,dimensional description of atmospheric

turbulence was necessary for this study, those aspects of the existing

information pertinent to the multidimensional description of atmospheric

turbulence have been assembled an_ presented herein for sake of complete-

ness in Chapter One. A brief review of the general theory of isotropic,

homogeneous turbulent flow is presented and the mnltidimensional

Von Earman an_ Dryden representations given. Also presented is a dis-

cussion of the assumptions necessary to use current mathematical descrip-

tions for an input to a mathematical model representing an airplane.

Chapter Two presents the different forms of the Input-output

relation for the two-dimensional gust analysis used by various investi-

gators. Herein the different mathematical formnlations are compared

and their relationships are discussed.

The three forms of the input-output relation are discussed with

regard to their merits and disadvantages in Chapter Three. The two-

dimensional formulation is presented and its prlncil_ elements are

described. The principal elements are the calculation of the frequency

response function, the weighting influence of the two-dimensional gust

spectrum, and the effect of the truncation error on the response spectrum.

The two-dimenslonal generalized gust forces are formnlated in terms of

lifting-surface aerodynamic theory and the equations of motion are

developed.



i0

Chapter Four presents an application of the two-dimensional gust

response ar_lysis to a mathematical model of an airplane in the form of

a trend stucly. The analysis is used to predict the longltu_inal motion

and load responses of an airplane to a two-dimensional vertical gust

velocity field. Results in the form of response spectra and statistical

parameters are presented and cc_pared with corresponding results of a

one-dimensional analysis. Consideration is given to the effects of a

finite aspect ratio on the variation of the statistical parameters with

span to scale of turbulence ratio. Also, the effect of truncation error

on the response spectra is examined.
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CHAPTER ONE

MATHEMATICAL DESCRIPTION OF ATMOSPHERIC TURBULENCE

The purpose of this investigation is to prepare an analysis which

can predict the dynamic response of airplanes to atmospheric turbulence.

A basic principle of system analysis states that the response of a linear

system can be determined if the input and input-output relation are

known. Clearly, an adequate mathematical model of the earth's atmosphere

is required.

Experience has shown that the motion of the atmosphere must be

mathematically described as a random process. A theory for the specific

case of homogeneous and isotropic turbulent flow has been developed

(refs. 1 through 6 and 9 through 18). This theory has produced several

mathematical representations of turbulence, two of which have been

successfully used to describe atmospheric turbulence. A detailed presen-

tation of the derivation of these two representations is given in

appendix A.

The use of the two mathematical representations for describing the

atmosphere's motion requires consideration of the conditions under which

these representations are to be used. In these representations the

atmosphere is described as a continuous, homogeneous, stationary and

isotropic random process. These conditions are satisfied by the atmosphere

in a localized area for short periods of time. In addition, for these

representations to be used for the input to an airplane, Taylor's hypoth-

esis must be valid. This enables the flight path displacement coordinate

17



18

to be related to the time coordinate through the airplane's velocity.

For conventional airplanes under normal circumstances, Taylor's hypothesis

has been shown to be valid.

1.1 General Formulation

The atmosphere will be assumed to be a continuous medium. This

assumption is reasonable because of the role that viscosity plays in

damping small scale, high frequency motion of a fluid. It also allows

that the motion and physical properties of the atmosphere are subject to

the governing laws of a continuous fluid.

The motion of the atmosphere is given by the instantaneous velocity

which is assumed to be the sum of a steady velocity and a zero-mean

turbulent fluctuation velocity, denoted u(x,t). The turbulent fluctua-

tion velocity is mathematically described by a random vector field which

is a function of time and spatial coordinates. The magnitude of the

components of u(x,t); u, v, w are usually rather small, at least

small compared to the speed of sound, which allows the incompressible

form of the continuity and Navier-Stokes equations to be used.

v. __=o (1)

8_u i
8t +u " VI/_= - _7p + w_2_u (2)

The mathematlcal description of atmospheric turbulence is provided

by the solutions of equations (1) and (2) which satisfy prescribed

initial and boundary conditions. The boundary conditions are specified

by the statistical properties of the motion with respect to position,



19

while the initial conditions are specified by the statistical properties

with respect to time_ Foi _ th_ limited extent of ih_ atmo_l,hei'e _,h±_;-%

may be assumed to be homogeneous, the boundary conditions specify that

the motion be statistically uniform. The initial conditions specify

that at some instant u(x,t) is a random function of position which

must conform to given probability laws. Then if u(x,t) is specified

statistically at one instant, through equations (1) and (2) which deter-

mine the way in which any particular velocity distribution changes with

time, the random velocity field is statistically determinate (ref. 6).

The statistical uniformity specified by the boundary conditions

implies that the Joint-probability distribution of the values of

u(x,t) for any set of points in space-time, u(x_l + y, tI + T),

U(X 2 + y, t2 + T), •., U(_ n + y, tn + T) is independent of the space

vector y and time difference T. Turbulent flow which is asslnned to

have this joint-probability distribution is called homogeneous and

stat ionary.

:ihe -_al±dltj of this assumption for atmospheric turbulence depel.d_.

on the extent of the atmosphere that is being considered. Intultlv_ly,

the consideration of the effects of climate, weather and terrain on the

atmosphere's motion may be used to place a guantitative limit on the

extent of the atmosphere that should be considered homogeneous. The

atmosphere as a whole must be considered to be nonhomogeneous. However,

that there do exist small "patches" of the atmosphere which may be con-

sidered homogeneous has been shown in reference 8. The sizes of the
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patches have no defined limits, they may vary from many miles in clear

air to several thousand feet in thunderstorms.

The description of atmospheric turbulence is given by the statistical

description of the turbulent fluctuation velocity. It is a premise of

probability theory that a random function such as _(x,t) is determined

statistically by the complete set of Jolnt-probabillty distributions of

the values of _(x,t) at any n values of x and t,n having any

integral value. These Joint-probability density functions can be

expressed in terms of a nth-order Jolnt-characterlstlc function

Mu(i__l , ..., icon) by a multiple n-dimensional Fourier transform.

p(ul,...,_un) = ...

e-i(__l " U_l + ... + _n " U_n) d__l ... _--n (3)

The characteristic function is defined as the statistical average of

exp(i__l • u_l + ... + i_n • _Un), reference 7. A series expansion of the

joint characteristic function in terms of the Joint-moments may be

obtained through the use of power-series expansions of the exponentials

in the integral expression, equation (3). Interchanging orders of

integration and summation, the mean-value velocity products are defined

as the statistical average of the Joint-moments. The Joint-characteristic

function can be expressed in terms of the mean-value velocity products

Mu(i_--l''''ji_n) = j___iI>=_O(i)mE[(m'. _ " )m31
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Therefore, the Jolnt-probabillty density functions are related to the

complete set of mean-value velocity products provided the inverse Fourier

transform of equation (3) exists. The set of mean-value velocity products

consists of componentswhich are the statistical average of the product

of m componentsof the velocities at n different points.

Q(m)lj...p(rjt) = EEui(xl,tl)uj (x2,t2) .. .Up(_m,tm)_

The configuration formed by those n of the points X_l, x2, • ., xm

that are different is specified by the 3(n - l) dimensional vector r_.

Since each of the m velocities transform under change of coordinate

system llke a first order tensor and since this property is retained

after the linear operation of taking a statistical average has been

made, the 3m scalar components, Q(m) .p(r,t) form an m-orderlJ..

Cartesian tensor.

It has been shown by using the governing equations of motion that

Q(i_ ..p(r,t) for the value of n = 2 is sufficient to describe homo-

geneous and isotroplc turbulence, reference 6. This case is for velocity

components taken at two points and has the name correlation tensor. Only

two correlation tensors are sho_n to be important, these are the double

correlation tensor, m = 2 whose components are

Rij(r,to) = Q_)(r,to) = EEui(xl,to)Uj(_,to) _ (4)

and the triple correlation tensor, m = 3 whose components are

0 (3) fr t _
Tijk(r,t o) - _ljk__, o j = EEui(_Xl,to)Uj(_xl,to)Uk(_X2,to)_ (5)
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The time to appears in equations (4) and (5) to establish that the

statistical average is taken at a constant time, to . Thus, the

symbolization of time will not appear in any of the following expressions

for the components of the correlation tensors.

The statistical description of atmospheric turbulence is also given

by a mathematical expression called the spectral tensor, whose components

are related to the components of the correlation tensor through a Fourier

transform pair.

_lj(g)= _ Rij(r)e-i(_•r)_ (6)

i/®Wijk(_) = _ TiJk(r)e'i(_- • _r)dr

The vector __ is called the wave number vector and defines the

location of a point in wave number space which is related to the corre-

lation vector r through the above transform.

The condition for the existences of the spectral tensor is

J= R±j(r)dr_< ®
-.@0

(7)

/.= Tijk(r)dr < =
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Batchelor In reference 9 has shown that the integrals do exist when the

velocity components are chosen such that their mean is zero. J. Kampe

de Ferlet In reference 17 has presented the properties of the spectral

tensor components in equation (lO). Some of these properties are:

a) _lj(_) is a continuous and complex function of _.

b) $1J(_) has Hermitian symmetrY.

c) The diagonal components $ii(_) are real, positive and

bounded functions of _.

1.2 Requirements for Airplane Response Calculations

The mathematical model of turbulence is sufficiently described by

the correlation tensors. Unfortunately, for homogeneous turbulence

this description has little value because of the complex structure of

the correlation tensor. This complexity may be appreciated by considering

the expression for the components of the double correlation tensor, which

contains 31 terms (ref. 6, p. 44). The complexity of the tensor correla-

tions may be lessened by assuming that the turbulent velocity field has

some statistical symmetry. The assumption of isotroplc symmetry provides

the simplest expressions for the correlation tensor. Isotropy requires

that the statistical description of u(x,t) be invarlant under rotations

and reflections of the reference coordinate system. A less restrictive

assumption Is that the turbulence Is axlsymmetric. The statistical

description of axisymmetric turbulence is invarlant for rotations about

a given vertical vector and for reflections of the configuration of the

vector argument in any point.
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Measurements of atmospheric turbulence indicate that its statistical

properties are essentially invarlant in all directions in a given hori-

zontal plane, but do vary wlth altitude, reference 8. These measurements

are the basis for assuming that In general the atmosphere may be considered

to have axlsymmetrlc statistical properties, which implies that an alr-

plane in level flight would experience the same turbulence environment

regardless of heading. Furthermore, these measurements are the basis

for Justifying the assumption that the turbulence encountered by the

airplane In a horizontal plane at a given altitude has Isotroplc statis-

t ical properties.

Being able to Justify the use of isotroplc symmetry in a horizontal

plane is very important because the present descriptions of turbulence

are limited to isotroplc symmetry. Isotroplc theory has provided

mathematical functions for the components of the correlation tensors

which are the solutions of the equations of motion given by equations (1)

and (2). Thls theory is the result of extensive research on the descrip-

tion of isotropic turbulence in fluid flow, references 1 through 6 and

9 through 18. A detailed discussion of the theory of Isotroplc turbulence

and the resulting mathematical representations are presented in Appendix A.

Having Justified the use of isotroplc symmetry to describe atmospheric

turbulence In a horizontal plane, attention is now turned to the Justi-

fication of using it to describe atmospheric turbulence as an input to

an airplane response analysis.

In general, turbulence velocities are space and tlme dependent. For

purposes of airplane response, the variation Is assumed to be space



dependent, and invariant with the time of traverse by an airplane. This

model is a result of Taylor's hypothesis. Taylor in reference 1 intro-

duced the assumption that if the velocity of the airstream is very much

greater than the turbulent velocity, the spatial pattern of turbulent

motion is carried past a fixed point by the meanwind speed without any

essential change. Lin in reference 16 has investigated this hypothesis

and found that for wind tunnel turbulence the criteria for its validity

is

P
< < 1 (8)

U2

Applying this to the case of the airplane flying through the atmosphere

results in a requirement that the speed of the airplane must be much

greater than the root-mean-sguare of the turbulent velocity. This insures

that the gust pattern of the atmosphere will remain essentially the

same, or "frozen" until the airplane has traversed the given body of

air. For the flight conditions of the airplanes considered in this

investigation, Taylor's hypothesis will be assumed to be _lid.

Taylor's hypothesis provides an equivalence of space and time

averages through the speed of the airplane in the direction of flight.

However, the correlation tensors are described in terms of statistical

averages and their relations to time or spatial averages must be con-

sidered, references 17 and 18. From a statistical viewpoint, a

statistical average, for example, equation (4), is the only mathematically

rigorous average that should be used in the formulation of the theory of

isotropic turbulent flow. The statistical average is taken over an
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ensemble of sample of turbulent velocity functions.

average is given by the double correlation tensor.

An example of this

Rij(E,t O) = ZJ Z ulujp(ui'uj)duiduj (9)

Unfortunately, statistical averages cannot be measured; instead time or

spatial averages must be used. A consequence of Taylor's hypothesis is

that the turbulent velocities are independent of time and that a spatial

average must be used to formulate the gust response problem. The spatial

average in terms of the double correlation tensor is

Rij(Z,to) = lim 1 JV BVB _ _B ui(_'t°)uJ(_ + E't°)dE
(lo)

For the spatial displacement along the flight path, the double correlation

tensor may be formulated by a time average of the turbulent velocities.

Rij(T) = lim _ ui(t)uj(t + T)dt (ii)
T_ T

The average is performed with respect to a time that is related to the

spatial displacement through airplane's velocity.

Some relation between the three types of averages is needed to

establish a completely rational theory of turbulence. In classical

mechanics this relation is provided by an ergodic theorem which states

the equivalence of all three averages. Unfortunately in fluid mechanics,

no ergodic theorem has yet been provem. However, it has been assumed in
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past work and in this investigation that all three types of averages,

and consequently the double correlation tensors given by equations (9)_

(lO), and (ll) are equivalent.

The last assumption concerned wlth the Justification of using

Isotroplc theory to describe atmospheric turbulence Is that of dimen-

slonallty. The concept of dlmenslonallty is concerned with the necessity

of accounting for each gust velocity component's dependence on each

spatial coordinate. A measure of the dependence of a gust velocity

component on a spatial coordinate is given by comparing the character-

istic length of the airplane with the characteristic length of

turbulenc e.

The characteristic length of atmosphere turbulence is given by the

scale of turbulence. This length was introduced by Taylor in reference 1

and is used as a parameter In the mathematical descriptions of atmospheric

turbulence. Its value is a function of altitude for the range of altitude

below 1,O00 feet for which there is evidence that its value Is approxi-

mately equal to the altitude. The scale of turbulence is physically

interpreted by Houbolt In reference 8, to be a rough measure of the

largest distance that two points In a turbulent flow can be separated

before the correlation between gust velocities becomes zero. It is a

useful measure of the development of the inertial transfer of energy of

turbulent flow (see Appendix A).

When a characteristic length of the airplane is small compared to

the scale of turbulence, the gust velocities are nearly invarlant wlth
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respect to the spatial coordinate considered. Thls is shown by examining

the influence of the vertical variation of the gust velocities on the

response of an airplane. The conventional airplane Is usually small In

the vertical direction and for thls case the correlation of the gust

velocities over thls direction is nearly unity. Thus the airplane Is

insensitive to changes of u(x,t) in the vertical direction.

The influence of the spanwlse variation of the gust velocities on

the gust response of an airplane Is measured by comparing the span wlth

the scale of turbulence. When the span Is large the effect of the span-

wise variation of the gust velocities can be slgnlficant. When the span

is small, the effect of the span_rlse variation of the gust velocities is

small.

For the case of an airplane that is small In the vertical direction

and has a large span, the turbulence description is two-dlmensional, that

Is, it varies only In the horizontal plane of flight. For an airplane

that Is small in the vertical direction and has a small span, the

turbulence description is usually considered to be one-dimenslonal, that

is, it varies only along the flight path.

1.3 Mathematical Representations

The most co_nonly used expressions for the representation of atmos-

pheric turbulence are the Dryden and Von Karman spectral density functions

which are named after their developers. A detailed derivation of these

spectra in multidimensional form and their corresponding correlation

functions are presented in Appendix A. The one- and two-dimensional



spectra for a vertical gust velocity component are used in the response

calculations in this investigation and are presented here
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DRYDEN

l + 3(Zal)2

[i + (Zal)2#

(12)

(_1) 2 + (_2)2

I1 + (I4Q1)2 + (I_2)2f/2

(z3)

VON KARMAN

2
_33(_1 ) = L_,_ 1 + _ooI (14)

2 I 212
16-7- _o/ + \_o/ (l_)

%3(_1'_2)= 9_o% 2 _ 7/3

The arguments _l and _2 of the spectra denote components of the wave

number space while the scale of turbulence L, reference wave number no,

(see Appendix A), and the mean square value of the vertical gust velocity
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are mathematical parameters that must be determined. A detailed

discussion of the experimental determination of L and _2 is presented

in reference 8.



CHAPTER TWO

FORMULATION OF THE INPUT-OUTPUT RELATION

The formulation of a gust response analysis requires not only the

mathematical description of the two physical quantities involved, the

dynamic characteristics of the airplane and the turbulence of the atmo-

sphere, but also the mathematical relationship between them. This mathe-

matical relationship is called the input-output relation. The mathematical

form of the input-output relation depends upon the formulation of the

analysis and the multidimensional form of the turbulence description.

For the two-dimensional gust analysis, four forms of the input-output re-

lation are developed in Appendix B. These forms are discussed with respect

to their mathematical structure and the efforts of previous investigators

to analyze two-dimensional gust response of airplanes.

The formation of the gust response analysis governs the complexity

of the mathematical model of an airplane flying through a turbulence field.

The most general case of formulation is the hhree-dimensional which requires

that the airplane be described as a system which is ssnsitive to changes

of gust velocity in all three coordinate directions. While this formulation

is conceptually more desirable than either the one- or two-dimensional

cases, in practice it does not appear to be necessary and its use involves

needless complexity.

The complexity of the model may be substantially reduced by reducing

the dimensionality of the formulation. This is done by considering the

airplane to be sensitive to changes in the gust velocity along the flight

path only. The airplane may be regarded to be a lifting point or

31



32

line concurrent with the line of flight. The validity of this one-

dimensional formulation is dependentupon the comparison of the span of

the airplane with the scale of turbulence. The one-dimensional gust

analysis has been developed and extensively used. It will be used in

Appendix B to provide the basis for the development of the two-dimensional

formulation and it also provides a reference for comparison with the two-

dimensional analysis.

The mathematical model of an airplane flying through the atmosphere

can be mademore realistic by allowing the airplane to respond only to

variations of the gust velocity in the plane of its equilibrium position.

This equilibrium position is specified to be the x-y plane with respect

to a rectangular x, y, z coordinate system chosen such that the meanvalues

of the respective gust velocity components,u, v, w are zero. This model

is visualized to be an airplane represented as an unrestrained elastic

planar lifting surface flying with the steady velocity U along the negative

x axis, and through a continuously varying two-dimensional gust field.

2.1 Two Dimensional Correlation Relation

The mathematical form of the description of atmospheric turbulence

governs the form of the input-output relation. One description of iso-

tropic turbulence is given by the correlation function which through the

input-output relation expresses the response in the form given by equation

(Bl2):

 U_b/2 h(tl'Yl) (t2'Y2) (t2 + - tl,Y 2 - yl)dtldt2dYldY 2
(16)

The dynamic characteristics of the airplane are described by the impulse



response function h(t,y),

by a unit time-spatial impulse
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which is the response to a downwash represented

w(x,y,t) = 5(t-_)5(y- yl) (17)

The impulse response function h(t,y) is an aerodynamic influence function

which relates the desired response, e.g. lift or stress, to the downwash

by relating the pressure at one point Yl on the wing to the past history

of the downwash intensity at another point on the wing Y2" For Gaussian

turbulence, the spectral density function of the response is needed to

obtain the necessary statistical parameters of the response. Although this

spectrum could be obtained by taking a Fourier transform of Rp(_) it can

be calculated directly by usingthe proper form of input-output relation.

2.2 Cross-SpectrumRelatlon

The spectral density function of the response is given by two differ-

ent forms of the input-output relation equations (B14) and (Big). One of

these describes the input in terms of the spatial cross-spectral density

functiOn_w(_,r2) which is related to the correlated spectral density

function for vertical gust velocity by equation (B16). This relation is

_P(_) = O-b/2 U-b/2 _(_'yl)_*(_'y2_w(_'r2)dyldy2 (18)

The dynamic characteristics of the airplane are given by the frequency

response function H(_,y) which is the response to a downwash represented

by a sinusoidal wave of frequency _ and a spatial impulse function.

w(x,y,t) = ei_t-x/U)5(y - yl) (19)
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The frequency response function H(_,y) is an influence function which

relates the desired response to the downwash by relating the pressure at

any point y on the wing due to a traveling wave of downwash of length

2_U/_ at another point on the wing Yl. Diederich in reference 25

discussed the calculation of H(_,y). He considered two separate cases,

one for the total loads of an airplane, the other for local loads and

their distribution.

Diederich first discussed the case for total loads, in particular

the total lift and rolling moment. For these loads the influence function

was identified with a specific lift distribution on the wing in reverse

flow by using the reciprocity theorems of linearized lifting-surface

theory. Using this theory and the assumption that the llft distribution

of an oscillating wing is essentially independent of frequency, Diederich

wrote the influence function for total loads in the form

(20)

The function H(_) is the one-dimensional frequency response function and

_as calculated from modified strip analysis aerodynamic theory. The

function y(y) is the steady-state llft distribution for a uniform down-

wash distribution. The use of equation (20) enables the input-output

relation given by equation (18) to be written

spectral density function _we(_) is called an averaged spectrum.The

It is averaged in the sense that the cross-spectrum of the down,ash is

integrated with respect to the steady state llft distribution y(y)
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f bCW_(_) = 1_ F(r2)$w(_,r2)dr2 (22_
b

_0

through the function P(r2) which is the autoconvolution of 7(Y)

f b/2 - r2
r(r2) :  -b/2 +  2)dY

The expressions for the total loads given by equations (21) and (22)

are used in reference 26 to calculate the effect of spanwise variation

of the vertical gust velocity on the vertical acceleration and rolling

acceleration of an airplane. It is shown that the mean-squarevalue of

the vertical acceleration response to the averaged spectrum is substantially

reduced for high values of b/L and aspect ratio. The mean-square value of

the rolling acceleration response to a vertical gust velocity is shown to

become significant for moderate values of b/L.

For the local llft of the wing the influence function H(w,y) is

difficult to analyze. This function defines the contribution of one

station on the wing to the lift at another station and thus represents a

Green's function for the unsteady spanwise lift distribution which can not

be identified with an easily calculated lift distribution on the wing in

reverse flow. Diederlch in reference 25 presents a method to calculate

the local response influence functions. This method is a generalization

of a method used in steady flow and is also based on the separation of

the unsteady and spatial parts of the function. The local lift is
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j. _ b/2_(y,t) = i h(tl)dtl I _- G(y,q)_(t - tl,q)d _ (23)
b/2

This function is used to determine the required influence functions for

the calculations of the spectral density function of the response.

Diederich used modified-strip-analysis aerodynamic theory for the calcula-

tion of H(w), the Fourier transform of h(t). The function G(y,q) is the

Green's function that relates the local lift to the local do_mwash dis-

tribution.

In reference 26, Diederich assumed the local lift given by equation

(23) can be calculated by sunning the contributions to the lift from each

natural mode. This modal approach enabled the influence function to be

written

N

\

i=l

and the input-output relation becomes

N N

_ (_) (25)
*P(m) = L L Re(Hi(_)H_(_)}*weij

i=z j=l

The averaged spectrum is given in terms of the spatial cross spectrum

rb

Ij{weij(_) = _ 0
£1J (r2)_'w '(_°'r2 )dr2

and the function rij(r 2) which is the autoconvolution of _i(y)

2 # b/2- r2
rij(r2) = _ _-b/2 7$(Y)_j(Y + r2)dY
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With these expressions Diederich shows that the mean-square values of

the root bending moment of a rigid and flexible wing on an airplane free

to move vertically vary from the mean square values calculated from a one-

dimensional analysis.

Houbolt in reference 27 has presented an alternate method of finding

the spectral density function of the response. He used the concept of

equation (B6) which describes the spectral density function of the re-

sponse in terms of the spectral density function SWnm(W)

N N

Sp(_O) = Hn( (_0)
I

n=l m=l

This function is defined by equation (B7) and is related to the isotropic

correlation spectral density function by equation (B9). Using the axis-

symmetric property of the input spectrum given by equation (BIO), the re-

sponse is

*P(_) = _)Wll(_) L Hn((_IH_((_ + 2@Wl2(U)lRe Hn(_lHn+l(C_°

Cn=l

(26)

P ,-1

+ ... + 2_WlN(_)ReLHn(CO)H_(_) J

responseThe frequency response function Hn(_) is the to a do_mwash - "^_

is a sinusoidal wave of frequency _ and is constant over the spanwise

element.

(27)

Wn(X,t ) = ei_t-x/U) (2'8)



The function Hn(_ ) is the aerodynamic influence function that

relates the lift at one designated station to the downwash at

another station interval n. Houbolt used strip analysis aerodynamic

theory to analyze the response of a cantilever beam to a random input.

His results show the high occurrence of a spatial tuning of the deformation

modes with the lift distributions, which results in the higher modes

being excited more than the lower modes.

2.3 Two-Dimensional Spectrum Relation

The second form of the input-output relation which describes the

response in terms of a spectral density function is

: IH( ,a2)12%( ,a2)da2 (29)

This expression relates the response to the two-dimensional spectral

density function which is related to the corresponding function of iso-

tropic turbulence for vertical gusts by equation (B21). The dynamic

response characteristics of the airplane are given by the two-dimensional

frequency response function H(_,g2) which is the response to a downwash

field represented by two sinusoidal waves

w(x,y,t) = ei_t-x/U)e i_J (30)

The two-dimenslonal response function H(_,_2) is an influence function

which relates the response to the downwash by relating the pressure to a

sinusoidal wave along the flight path of wave length 2_U/_ and to a

wave in the lateral direction of wave length 2_/_ 2.

This form of the input-output relation has been used by Etkin in

references 31 and 32 to formulate the dynamic response of an airplane to



39

turbulence. Etkin approximated the downwash field by a two-dimensional

Taylor's series expansion about the airplane center of gravity. This

expansion enables the do_nwash field to be represented by the superposition

of several relatively simple spatial distributions, each of which varies

periodically. These distributions are called equivalent gust mode shapes

which provide the boundary conditions for determining the aerodynamic

response function. Thus H(_l, _2 ) is found to be the summation of the

responses to the equivalent gust modes. The expansion of the frequency

response function is placed in the input-output relation and the spatial

frequency component is integrated over finite limits of _2" The total

mean square value of the response is calculated by summing the mean-square

values for each term of the expansion. Etkin applied this theory to the

normal force and moment response of a flat plate with unsteady two-

dimensional aerodynamic theory. With this procedure he obtained the Seat's

function for both the moment and normal force for values of reduced fre-

quencyup to 1.O.



CHAPTERTHREE

FORMULATIONOFTHETWO-DIMENSIONALGUSTRESPONSEANALYSIS

The formulation of the two-dimensional gust response analysis has

been presented in the form of three different input-output relations.

Although the mathematical structure of each relation is different, all

three of them express the statistical properties of the response in terms

of the input and the 4ynamic characteristics of the airplane. Having

described the motion of atmospheric turbulence, the use of one of these

relations requires only the calculation of the dynamic characteristics

of the airplane.

3.1 Discussion of Previous Work on the Formulation of the Two-Dimension_!

Gust Response Problem

The first form of input-output relation given by equation (16) has

little practical value, because the influence function h(t,y) is difficult

to calculate. This difficulty exists because presently used methods of

obtaining pressure distributions on the finite span of a wing in unsteady

flow usually require numerical methods which do not lend themselves to the

analysis of downwash distributions represented by impulse functions. This

form has the additional disadvantage of relating the influence function to

the input spectrum through a time and spatial convolution. Furthermore, the

description of the response is a correlation function which in itself does

not easily permit the calculation of all the required statistical parameters

of the response. For these reasons, this form of the input-output rela-

tion is useful for conceptual purposes only.

4O
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Since for a Gaussian process the spectrum of the response does permit

the calculation of all the required statistical parameters, obtaining it

directly would be a better method. The spectrum of the response can be cal-

culated from either one of the two forms of the input-output relation. One

of these forms is given by equation (18), a form which expresses the dynamic

characteristics of the airplane in terms of the influence function _(_,y).

This function is also difficult to calculate because the downwashdistri-

bution in the lateral coordinate is represented by an impulse function.

Another undesirable feature is the spatial convolution which mmst be per-

formed to calculate the spectrum of the response.

Diederich's formulation of the problem in terms of the influence

function _(_,y) is given by equation (21). Evidence that the spatial and

frequency parts maybe separated is indicated by Pratt in reference 35 for

rigid body motion. He showsthat for the rigid-body plunge mode, the span-

wise lift distributions are essentially independent of the frequency of

oscillation. This is shownto be true for swept and straight wings in

compressible flow. The steady-state lift distributions are calculated for

rigid-body modesby using the reciprocity theorems of lifting-surface

theory.

The formulation expressed by equation (21) was used by Colemanin

reference 34 to correct flight test data for the effects of spanwise

variations in the vertical gust velocity. The experimental normal accelera-

tion frequency response functions were calculated by two different methods.

Whenthe correction was applied to these response functions they showeda

better agreementover a frequency range that extended from the short period

frequency up to the first elastic mode.
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For the inclusion of elastic modesin the analysis, Diederich's

formulation becomescomplex. In general, the lift distributions are

difficult to calculate. They are not easily identified with corresponding

reverse flow conditions and have to be calculated directly. The modal

analysis given by equation (25) would be difficult to incorporate for an

analysis with manydegrees of freedom.

For the large flexible airplane, Diederich assumesthat the modal

approach is an inadequate formulation of the response analysis. He

develops an analysis which is based on the use of a local lift distribu-

tion that is used to form an influence function which is needed to calcu-

late the motion and load responses. Since neither this formulation nor

the modal approach have been applied to an airplane for which experimental

response data is available, the validity of this assumption is not known.

Houbolt in reference 27 formulates the problem by replacing the spatial

convolution by a double summation. His formulation requires the generalized

coordinates to be calculated for N numberof intervals taken on the lifting

surfaces. The lift distributions required for the calculation of Hn(_)

are difficult to obtain for an unrestrained airplane with manyelastic

degrees of freedom. Also a large numberof intervals should be taken to

assure a reasonable degree of accuracy for the analysis.

Etkin in reference 31, avoided the mathematical difficulties associated

with the downwashrepresented by a spatial impulse function by using the

expression for the downwashgiven by equation (30). This expression,

presented by Ribner in reference 30 defines the downwashto be the super-

position of an infinite numberof inclined sinusoidal waves of shearing
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motion. Using equation (29) for the input-output relation, Etkin's

expansion of the downwash field results in the response becoming the

summation of the responses of the individual derivative terms of the

expansion. He has shown that only the second-order derivative terms

need be retained to include the aeroelastic effects of the lowest flexible

modes on the response. The response to the zero-order and first-order

derivative terms of the expansion are the classical aerodynamic stability

derivatives. The second-order derivative terms contain the aeroelastic

effect of the local lift and its distribution. The response to the down-

wash expansion has a frequency limitation associated with the dropping of

the third-and higher-order terms. The lower limiting value of the wave

lengths 2_/_i, 2w/_ 2 which are adequately represented is twice the cor-

responding airplane dimension (length or span). This formulation has a

built-in frequency limitation that would be too restrictive for a large

airplane with poorly damped elastic modes.

3.2 Presentation of the Two-Dimensional Gust Response An_Sysis

The purpose of this investigation is to develop an analysis that

accurately accounts for the contributions of the structural modes to the

motion and load responses of a large flexible airplane. The analysis is

fo_lated by using the exact expression for the two-dimensional frequency

response function. With this function and the two-dimensional isotropic

gust spectrum, the input-output relation of equation (29) is used to cal-

culate the response spectrum. Three aspects of the analysis will be

discussed. These are: I) the calculation of the frequency response
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function, 2) the relation between the function and the input spectrum,

and 3) the integration of the product to obtain the response spectrum.

The two-dimensional frequency response function H(w,_2) is an aero-

dynamic function that relates the response through the local lift and its

distribution to the downwashfield. Mathematically it is a complex func-

tion whosereal and imaginary parts are represented by surfaces. The

intersection of these surfaces with a plane through the _ axis produces

two curves which are the real and imaginary parts, respectively, of the one-

dimensional frequency response function. The calculation of H(_,_2) is an

extension of the work of Pratt whoin reference 33 used the lifting sur-

face aerodynamic theory of reference 39 to calculate one-dimensional fre-

quency response function.

The major feature of this formulation is the versatility concerning

the use of aerodynamic theory used in the calculation of the two-dimensional

frequency response function. This formulation can utilize lifting-surface

theory as well as strip-analysis theory. The presentation of the formula-

tion is given in a form which incorporates lifting-surface theory. An

example of this theory is given in references 38 and 39.

The airplane will be regarded to be an unrestrained flexible planar

lifting surface whoseequilibrium position is given by the coordinate

system presented in the previous chapter. The vertical deviation of the

airplane from its equilibrium position is specified by the coordinate z.

Assumingthe deviations to be small, the governing equations of motion can

be linearized. The superposition principle can then be used to express

the deviation in the form of the summationof the natural modesof motion



and deformation _i and the generalized coordinates qi"

N
V_

z = ____iqi
i=l

The generalized coordinates are the solutions of the linear governing

equations of motion for the airplane subjected to a two-dimensional gust

field given by equation (30). Theseequations are

N N

J=l j =l

The equations of motion have inertial coupling terms present in the form

45

of the generalized mass terms Mij which are the integration of the weighted

inertial distribution _(x,y) over the surface S.

(31)

MiJ : _JS _(x'Y)_i(x'y)_j(x'y)dx dy
(32)

The generalized forces are given by two terms: the forces due to the

airplane motion Q Mij(w) and the forces due to the gust velocity field

Q_(w,_2). The generalized motion forces are dependent only on the modal

displacements and velocities of the airplane.

M =  i(x,yl p (x,y, Idx ayQiJ
(33)

These forces provide both an aeroelastic coupling and damping to the air-

M
plane. The differential pressure distribution APi(x,y,w) is found by

applying the boundary conditions in the form of the modal shapes and
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slope to the llfting-surface aerodynamic theory. An example of the

boundary conditions for several rigid body and flexible modes is given

in reference 33.

The generalized gust forces are

dy (34)

The pressure distribution _p_(x,y,_,_2) is calculated by applying the

boundary conditions in the form of equation (30) to the llfting-surface

aerodynamic theory. These generalized down,ash forces and consequently

the equations of motion differ from the one-dimensional case by the

functional dependence of _2" By setting _2 = 0 the generalized

coordinates are calculated for a one-dlmensional gust analysis from

equation (31).

Once the generalized coordinates are calculated, the motion response

of the airplane is known. The two-dimensional coordinates are used to

calculate the two-dimensional frequency response functions for the motion

and load responses. The motion frequency response functions are calcu-

lated directly from the generalized coordinates, while the load response

functions are calculated by summing the forces on the airplane. These

forces are due to the motions of the airplane, the inertia forces, and

the applied external forces due to the gust velocity.

The square of the modulus of the two-dimenslonal frequency response

functions is used to weight the input spectrum. This product (integrand

of equation (29)) is a two-dlmenslonal response spectrum that is repre-

sented by a surface. The volume under the surface is the mean-square

value of the response. The influence of the scale of turbulence on the



response spectrum is shownby relating the nondlmenslonal arguments of

the input spectrum and of the square of the modulus of the frequency

response function. These relations are

47

T, (37)I_I : k_

I_2= _ "_ (36)

The one-dimensional effect of the input spectrum is given by the ratio

of the scale of turbulence to the reference semichord _. This ratio

is the measure of the effect of the size of the chord on the gust

response of an airplane. The measure of the two-dimensional effect of

the input spectrum is given by the ratio of the scale of turbulence and

the semispan of the airplane. This ratio, b/L, is the measure of the

effect of the size of the span on the gust response of the airplane.

The response to two-dimensional turbulence requires that both the

one-dimensional and two-dimensional parameters be considered. These

parameters are not independent. For a given airplane geometry they are

related through the aspect ratio AR

=AR (37)
b

2L

The nondimensional form of equation (29) is

_0 _
(38)

This relation requires that the integration of the two-dlmensional response

* The numerical
spectrum be carried out for all positive values of _2"



I

amy% %Tun

(o_)

(6;) _p(_)_ ¢ o/ = e_

gni_A gx_nbs-u_gw gsuodsg= gq_

gq% mo_ pgu?g%qo gq ugo m'_%ogds gsuo_sg_ gq_ _0_ pguy_%qo s_g%g_,.r_d

mna%ogds gsuodsg_ I_UOSSUgm_p-oa% Rang ¢_%uT_%_go jo gg_ep Ku_ q%ya _o_zg

sSq% g%1_nl-gA8 o& "_mx%ogds gsuodsga 8na% gq% u_q% ssg I _ma%ogds esuodsgx

pg%_ouna% gq% g_gm 0% sy aoxxg g_% _o %o81jg g_& "%YmyI uoy%_aSg%uy

gq% pu_ _q/q jo sgnI_ gq% 'gsuodsga gq% Io snTnpom g_% Io gx_nbs gq% _o

aosA_qaq aq% uo %uapuadgp s_ _a%oads aSuodsaX pa%gouna% aq% Jo uo]%gTno

-Igo 8q% u? pgonpox%u_ xoa_8 8_Z "(_;) uo?%_nbe u? pgsn gq uoT%_aS8%u_

jo %ym_T xgddn g%yuyj _ %_q% sgaynbga _a%ogds gsuodsgx gq% io uoy_inoT_o

8_



CHAPTER FOUR

PRESENTATION OF THE TREND STUDY RESPONSE CALCULATIONS

The two-dimensional gust response analysis was formulated in the

previous chapter. This analysis is used to predict the longitudinal re-

sponse of an airplane to a two-dimensional vertical gust velocity field.

The analysis is applied to two mathematical models of an airplane, both of

which are described in detail in Appendix C. Results for the acceleration

and bending moment responses are calculated for both models using two strip-

analysis aerodynamic theories. These results in the form of response

spectra and statistical parameters given by equations (39) and (41) are

compared to the corresponding results of a one-dimensional analysis. The

truncation errors for the acceleration and bending moment response spectra

are evaluated.

The major elements of the two-dimensional gust response analysis pre-

sented in the previous chapter were: the aerodynamic representation of the

generalized forces; the weighting of the frequency response fUnction with

the gust spectrum; and the truncation error. The objective of this chapter

is to emphasize the two-dimensional effects of the latter two elements.

This is done in the form of a trend study which shows the effect of the two-

dimensional scale parameter b/L and the truncation error on the one-

dimensional response spectra.

4.1 Description of the Mathematical Model

The airplane is represented by an unswept tapered wing and a lumped

mass fuselage. It is restrained against all motion and deformation except

rigid-body vertical motion and wing vertical bending deformation. The

49
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two models considered in the calculations are rigid and elastic. The

rigid-model has only a plunging mode while the elastic model includes two

wing elastic vertical bending modes as well.

Lagranges equations of motion are used to calculate the frequency

response functions. The nondimensional form of the equations of motion

given by equation (31) are expressed in terms of nondimensional generalized

^ ^ M ^G
coordinates qi, mass parameter k, generalized forces QiJ, Qi and reduced

frequency k.

N

A \ ^ ^

J=l

(42)

The generalized mass terms are calculated by equation (32) usingorthogonal

free-free symmetric wing bending modes, normalized such that the mass terms

have the values

(_a i = JMiJ = i _ j

which in nondimensional form are

2Ma

C z pS_

4.2 Description of the Aerod_c Representations of the Generalized Forces

For the trend study the nondimensional generalized forces are cal-

culated by using strip-analysis aerodynamic theory. This theory provides

a clear manner of expressing the influence of the spatial frequency on the

unsteady llft distributions of the wing. The price of this visualization

is a theory which does not correct the unsteady lift distribution for finite

aspect ratio.
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Strip-analysis is concerned only with the spanwise lift distribution

on the wing. This distribution is found by calculating the local lift on

each of a number of streamwise strips on the wing. The local lift per

unit strip width is assumed to be proportional to the local angle of

attack. The generalized forces are formulated in terms of the unsteady

lift distributions for two-dimensional incompressible flow. These dis-

tributions are discussed in detail in Appendix C.

The generalized aerodynamic forces due to motions are:

_iJ = k2Aij - 21C(k)Bij

The terms Aij and Bij are nondimensional coefficients which represent

the contributions of the unsteady apparent mass and circulatory distri-

butions respectively. The function C(k) is the well known Theordorsen

function for incompressible two-dimensional flow. The nondimensional

coefficients are defined in Appendix C.

The strip-analysis formulation of the generalized gust forces re-

quires that the contribution of the spanwise frequency distribution of

the downwash be treated as an angle of attack distribution which is in-

dependent of reduced frequency. This requirement allows the unsteady

part of the local lift to be calculated separately from the remaining

spatial part of the generalized forces. Thus, the generalized gust

forces are

^G
Qi = K(k)BBi(_)
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The unsteady part of the generalized gust force K(k) is called the cir-

culation f_uuction, It represents the response of a lifting chord to a

traveling sinusoidal wave acting along the flight path. The incompressible

two-dimensional flow expression of K(k) is given in Appendix C.

The contribution of the spanwise frequency distribution is given by

BBi(_2*_ This term is the response of the lifting surface to a sinusoidal

wave acting along the span.

1 _l )eia2y.= y(y* _i(Y*)dy*BBi(_) _ i

The function y is a symmetrical normalized lift curve slope distri-

bution which is used to weight the symmetrical modes_i" Expanding the

exponential function in terms of trignometric functions, BBi(_2*) is ex-

pressed in terms of a real and imaginary function. The imaginary part of

BBi(_2*) is an odd function because of the sin (_2*y*) term. This part

of BBi(_2*)vanishes whenthe integration over the even limits is per-

formed. Thus BBi(_2*)is a real function for symmetrical modesand it is

given by

BB±(a ) = g

The generalized coordinates are calculated by solving the set of

simultaneous equations given by equation (42). These coordinates are

used to calculate the two-dimensional frequency response function. The

motion frequency response functions are calculated directly from the

generalized coordinates. The load frequency response functions are cal-
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culated by summingthe inertial forces and aerodynamic forces due to the

airplane motions and the gust field.

The bending momentfrequency response function is calculated by

taking the momentof the total load distribution on the wing. The wing-

root bending momentis

= KCk)BB'(a_) +3 [k2A_ - 2ikCCk)B_ + 2_k D_q i (45)
b jwoa i=l

The nondimensional coefficients Ai, Bi, and Di are the contributions of

the apparent mass, velocity and inertial forces respectively. These

coefficients are defined in Appendix C. The term BB' (_) represents the

moment of the gust force distribution on the wing.

1 JO 1 **BB'(a_) = g 7(n*) eiG2n n* an*

It is a complex function whose imaginary part represents the rolling

excitation of the wing of a sy_netric_l elastic mode. For

symmetric bending moment responses the imaginary part is neglected and

BB' (_2") is

BB' (f_) = _ 7(_*)eos(g_N*)9* dg* (46)

Equation (38) is used to calculate the response spectrum in terms of

the two-dimensional frequency response functions. The frequency response

function is weighted by the normalized two-dimensional Dryden vertical gust

velocity spectrum. This spectrum is derived by using the nondimensional

argument relations given by equations (35) and (36) and the input spectrum
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given by equation (13).

CD(k,2_)

(I_l)2 + (I412) 23AR

(47)

The normalized one-dimensional Dryden vertical gust spectrum is derived by

using equation (35) and the input spectrum given by equation (12).

CD (k) (48)

This spectrum is used to weight the square of the modulus of the one-

dimensional frequency response function tO obtain the response spectrum.

¢(k) : IH(k)12_D(k) (4.9)

4.3 Spanwise Variation Effect of the Vertical Gust Velocity on the

Longitudinal Response of an Airplane

The spanwise variation effect is measured by comparing the responses

calculated by the two-dimensional analysis with the corresponding response

calculated by the one-dimensional analysis. From equation (47) the re-

sponse spectra calculated from the two-dimensional analysis is shown to

depend explicitly on the parameter b/L. This parameter involves the

scaling of the airplane with respect to the turbulence of the atmosphere.

A change in the value of b/L may be considered as either a change in the

size of the airplane with respect to the turbulence or vice versa. The

geometric scaling relation is given by equation (37). The proper geometric

scaling for the airplane and turbulence configuration is maintained pro-

vided that the same value of aspect ratio is used for all values of b/L.
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Other scaling parameters must be considered to assure that the different

airplane and turbulence configurations are dynamically similar. This

similarity is maintained by keeping the forces of each configuration

properly scaled.

Holding the mass parameter constant maintains the proper ratio of

airplane and fluid inertial forces. Similarly, the elastic and aero-

dynamic force ratios are held constant. These force ratios are combined

to form the mechanical vibration constant. This scaling parameter pro-

vides the natural frequencies for dynamically similar airplanes. Provided

that the mass, stiffness, and lift distributions are the same for all con-

figurations, dynamically similar mode shapes are calculated. Thus, the

corresponding generalized mass and force terms in equation (42) provide

equations of motion for dynamically similar configurations.

The ratio of mass between the wing and airplane is varied to measure

the effect of mass distribution on the two-dimensional analysis response

spectra. The total mass of the airplane and mass distribution of the

wing is held constant. Mode shapes to be used in the generalized mass

and force terms of the equations of motion are calculated for each value

of mass ratio considered.

The motion and load responses are calculated for both the rigid and

elastic models. For each of the models the responses are calculated by

using simple-strip analysis and modified-strip analysis aerodynamic theories.

The normalized llft curve slope distribution for the simple strip analysis

is equal to the distribution of the normalized chord of the wing. The

two-dimensional incompressible value of 2_ is used for the total lift

curve slope C_c.
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The motion frequency response function of the rigid body model is

calculated from equation (42) for a value of N = i. The solution of this

equation is the rigid-body plunge displacement. The plunge displacement

for a given value of reduced frequency is proportional to the spatial fre-

quency part of the generalized gust force. The spatial frequency distri-

bution function BBI(_2*) is given by equation (44) for the rigid-body

plunge mode _i = I and is plotted as a function of 22" in figure i. The

function has its maximnmvalue for _2" = O, and decays to ten percent of

this value for a value of _2" corresponding to one and a quarter waves on

the semispan.

The plunge velocity and plunge acceleration for a given value of k

are also proportional to BBl(£2_ • The plunging acceleration frequency

response function is calculated and normalized by the "sharp edge" gust

acceleration.

2BBI(O)

The square of the modulus of _(k,_2*) is plotted for selected values of k

against _2" in figure 2. Thesecurves exhibit the decay and periodic

properties of the function BBI(£2*). For low values of £2* , the variation

12 12of Iz(k,_2*) with g2* is essentially constant. The values of Iz(k,G2*)

for this range of values of _2" are the same as the one-dimensional fre-

quency response function for corresponding values of k.

Using equations (38) and (47) the plunge acceleration response spectrum

is calculated. Figure 3 presents the acceleration spectrum for a value

of b/L =0.5. The acceleration response spectrum calculated from a one-
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dimensional analysis is also shorn for comparison. These two response

spectra show a constant percentage difference for low values of reduced

frequency. For large values of k, the two-dimensional analysis spectrum

is attenuated more than the one-dimensional analysis spectrum. Figure 4

shows the higher attenuation of the two-dimensional analysis response

spectrum on a linear plot. The area of the two-dimensional analysis

acceleration spectrum is about 15 percent less than the area of the one-

dimensional analysis spectrum. The reduction in mean-square value and No

of the acceleration response for this and other values of b/L is shown in

figure 5.

Figure 5 shows that the two-dimensional analysis response parameters

do not approach the one-dimensional response parameters for values of b/L

near zero. Diederich's results (reference 26), in contrast, indicate that

the ratio of the two-dimensional to one-dimensional rigid body acceleration

mean square value does approach unity as b/L approaches zero. The varia-

tion of the ratio of the response parameters with b/L can be explained by

examining the effect of the aspect ratio on the product of the input spectrum

and frequency response function.

The rigid-body acceleration response spectrum is given in terms of the

gust spectrum and the frequency response function for a rectangular wing

formLulated by simple strip theory.

k2 _ Isin n_ 12fO " 'k *_d*¢(k) = 4 (50)
k2 +
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The behavior of the response spectrum is examined for two limiting

cases of the gust spectrum. The limiting form is specified by whether the

value of k is less than or greater than _-A-_-
AR "

gust spectrum is given by

For values of k (_ the
AR

b

The roll-off point of the spectrum is given by the value of b/2L. For a

value of b/2L = .25, figure 3 shows the response spectrum calculated by

the two-dimensional analysis differs from the one-dimensional response

spectrum by a constant ratio. As shown in figure 6, decreasing the value

of b/2L to .025 decreases the weighting influence of the frequency re-

sponse f_nction; consequently, the response spectra calculated by both

analysis are the same for all values of k <.00_.

For values of k > b/2L the gust spectrum is
AR '

b

(52)

For these values of k, the roll-off point is independent of b/2L. This

can be seen by comparing the values of k in figures 3 and 6 for which the

two-dimensional attenuation of the response spectra begins. Unless the

value of kAR = 0, the response spectrum calculated by the two-dimensional

analysis is attenuated by the frequency response function for all values

of b/2L. For the value of AR= 0 the response spectra calculated byboth

analysis are same, a result to be expected since the one-dimensional analysis
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response spectrum is independent of aspect ratio. Thus the ratio of the

response parameters do not approach unity for small values of b/L if the

aspect ratio is greater than zero. The reduction of the ratio of the re-

sponse parameters is also dependent on the value of the mass parameter.

The ratio of two-dimensional to one-dimensional response parameters de-

creases as the mass parameter decreases.

An evaluation of the stress responses in the wing is made by calcu-

lating the wing bending moment response. The wing-root bending moment is

calculated by using equation (45) for a value of N = i. This bending

moment frequency response function is normalized by the "sharp edge" gust

bending moment.

:
_k)BB'(_)

BB'(O)
lg 2A, 2ikC(k)B_ + 2_2D 7 _

+ ± - UBBT(0)

The bending moment response is dependent on the moment of the gust force

distribution as well as its distribution. For small values of 22*, the

bending moment frequency response function has the characteristics of the

one-dimensional frequency response function. It is proportional to the

acceleration response and approaches a value of zero for decreasing k.

Figure 7 shows that for increasing values of _2" this trend is no longer

seen. This distinct behavior of the two-dimensional bending moment fre-

quency response function is dependent on the value of k.

For low values of k, the influence of the inertial forces on the re-

sponse is negligible. The velocity forces are proportional to the gust

forces through the generalized coordinate ql" The moment of the spatial

frequency part of the gust force is given by equation (46). The variation
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of BB' (_2-) with _2" is shown in figure i. The phasing between gust forces

and the displacement is such that the bending moment response is propor-

tional to the difference of B_(_2*) and BB' (22")" The bending moment is

for values of _2" near zero. However, for large values of _2" ' the bend-

ing moment increases. For example, for a value of k = .0001, the bending

frequency response function modulus squared has a peak which is five orders

of magnitude greater than its _2" - 0 value.

The two-dimensional analysis bending moment has a response spectrum

which is quite different from the one-dimensional analysis spectrum. The

variation of the response spectrum with k is constant for small values of

reduced frequency. This deviation from the one-dimensional analysis is

shown in figure 8. It is a result of the peaking behavior of the frequency

response function for low values of k. Another deviation for large values

of k is shown to be an attauuation of the two-dimensional analysis spectrum.

Of these two deviations only the attenuation for large values of k is

significant. The effect of the attenuation on the response statistical

parameters is shown in figure 9. The spectrum calculated by the two-

dimensional analysis gives a 20 percent reduction of mean square value

for a value of b/L = .5. The variation with b/L of the reduction in mean-

square value and _o given by the two-dimensional analysis is presented in

figure i0.

A

The variation of the bending moment mean-square value of No with mass

ratio is shown in figures ii and 12 respectively. When most of the weight

of the airplane is in the fuselage, a substantial reduction in bending

moment is given by the two-dimensional analysis. The reduction decreases
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for increasing values of mass ratio. A significant point to be made is

A

that No is increased for large values of mass ratio by the two-dlmensional

analysis. The trend of the mean-square value and No is due to the fact

that for a one-dlmensional analysis the inertial load distribution of a

flying wing is nearly the same as that of the motion and gust forces. The

inertial load distribution tends to cancel the motion and gust forces on

the wind and results in a decrease of the bending moment. For the two-

dimensional analysis, the gust forces are not cancelled by the inertial

forces and therefore, the bending moment does not vanish for values of

mass ratio near unity.

The influence of elastic wing bending modes on the two-dimenslonal

response analysis is shown by calculating the bending moment response

for the flexible model. The two-dimenslonal frequency response function

is calculated from equation (45) for a value of N = 3. The spatial fre-

quency variation of the flexible bending moment response differs from the

rlgld-body response by the presence of the terms BB2(g2* ) and BB3(g2* ).

These functions represent the flexible wing bending modal contributions to

the bending moment response and are presented in figure 13. The maximum

value for each function occurs at a value of _2" for which the variation of

the function cos(_2*y* ) with y* approximates the respective mode shape.

Figure 14 shows that the variation of the flexible bending moment response

with _2" for small values of k is the same as the rlgid-body response.

For increasing values of k the contribution of the functions BB2(_2* ) and

BB3(_2* ) becomes significant. This is shown by the peaks in the frequency

response function for the k values of .15 and ._2. These values of k

represent the natural reduced frequencies of the first and second wing
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bending modes, respectively. The peaking influence of the elastic modes on

the frequency response function is called "spatial resonance" by Houbolt

in reference 27.

The bending moment response spectra calculated from the one- and two-

dimensional response analyses are shown in figure 15. The influence of

the spatial resonance effect appears in the highest wing bending mode. The

spectrum peak corresponding to this mode for the two-dimensional analysis

is approximately four times higher than the peak for the one-dimensional

analysis. While this spatial resonance effect has little influence on the

A

mean-square value of the response it does effect the response No. This is

shown by the comparison of the response spectra calculated by both analyses

which is presented in figure 16. The mean-square value of the flexible

bending moment response calculated by the two-dimensional analysis is 78

percent of that calculated by the one-dimensional analysis. The variation

of the reduction in mean-square value and No with b/L is presented in

figure 17. The reduction of No is less for the flexible model than that

for the rigid model. This is a result of the spatial resonance of the

flexible model. The variation of the mean-square value and N for both
O

the one- and two-dimensional analyses with mass ratio is shown in figure

!8 and 19, respectively. The variation of mean-square value is similar to

the variation of the mean-square value calculated by the rigid model

analysis. The variation of the flexible model _o is less than the varla-

#%

tion of rigid model N o.

A more realistic mathematical model of the two-dimensional response

problem is formulated by using a modified-strip_nalysls aerodynamic theory.
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The prominent feature of this theory is that the spanwise llft distribution

has a value of zero at the wing tip. The lift-curve slope distribution is

calculated by using a steady-state lifting line theory. For the calculations

a lift-curve slope distribution for a wing of aspect ratio 6, taper ratio

1/2 and total lift-curve slope 4.321 is used. This distribution is cal-

culated from a matrix formulation of the Weissinger L-method presented in

reference 45 and is discussed in detail in Appendix C.

The effect of using the modified-strip analysis for the calculation

of the generalized forces is shownin figure 20. The function BB2(_2*)

differs little from BB2(G2*) calculated by simple-strlp theory. The

function BB3(_2*) is different than the simple-strip analysis function for

small values of _2"" The effect of using the modified-strip analysis is

also seen in the flexible bending momentfrequency response function. The

peaks of the function shownin figure 21 illustrates two effects of the

modified analysis. The first effect is the decrease in aerodynamic damping

which is a result of the loss of wing tip contributions to the generalized

motion forces. The second effect is an increase of the spatial resonance

of the elastic modes.

The response spectra also reflect the effects of the modified analysis.

The peak in the spectra of the secondflexible wing modecalculated by the

two-dimensional analysis is roughly 15 times greater than the peak calcu-

lated by the one-dimensional analysis. The increase in spatial resonance

effect and the decrease in aerodynamicdamping are shownin figure 22. The

increase of the influence of the elastic modeson the bending momentre-

sponse spectra occurs at such high values of reduced frequency that its
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effect on the response statistical parameters is negligible. This is

shown in figure 23. The varistions of _ and No with b/L and mass ratio

for the modified-strip analysis have the same trends as the variations

calculated by the simple-strlp analysis and consequently are not shown.

4.4 Truncation Error

The numerical integration of ecpation (38) can be performed only to

some finite upper limit which produces a truncation error. The effect of

the finite upper limit (a value of 3_ is used in the trend study calcula-

tions) on the response statistical parameters is explained in this section.

A rough measure of the effect of truncation on the response spectra

is evaluated by examining the effect of truncating the integral of the

gust spectrum. The two-dimensional Dryden gust spectrum given by

equation (47) is integrated over G2* to an upper limit of _2" = 3_ for a

value of b/L --O. 5. The truncated spectra and its mean-square value are

compared to the one-dimensional Dryden gust spectrum given by equation (48).

The effect of truncation is significant only for large values of k, for

example at a value of k = i, the truncated spectrum is 83.9 percent less

than the exact spectrum. The deviation of the truncated spectrum at high

values of k is not reflected in the mean-square value. The mean-square

value of the truncated spectrum differs from the one-dimensional value by

O. 8 percent.

Weighting the gust spectrum with the frequency response function

atte_ates the spectrum for high values of k and reduces the effect of

truncation on the response spectrum. The truncation error for rigid-body

acceleration response is examined by doing a closed form integration of



equation (38).

calculated by simple-strip theory.

assumedto be independent of k, i.e.

The generalized gust force for an untapered wing is

The frequency response function is

Using this relation and equation (38) the truncation error is
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_l sin G_ 12c(k): (53)

Equation (53) is difficult to evaluate in closed form. Because of

this difficulty the truncation error is examined for two limiting cases of

the gust spectrum. For case one the effect of truncation on the response

spectrum for small values of k is considered. The values of k for which

this case applies is k <b__ and the gust spectrum is given by equation

(51). The effect of truncation on the response spectrum is not significant,

less than one percent of the error under the truncated spectrum, provided

that values of b/2L are very much less than the upper limit of integration.

The second case examines the effect of truncation on the response

spectrum for large values of k. The values of k for which case two applies

is k >_ and the gust spectrum is given by equation (52). The effect
AR

of truncation on the response spectrum is dependent upon the value of the

roll-off point of the gust spectrum. For low values of the roll-off point,

i.e., kAR<< _, the asymtotic expression of equation (52) is

_D(k'_ )_ 3AR (_) i
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This expression of the gust spectrum is substituted into equation (53) and

integrated. The value of the truncation error is given by equation (C37)

in Appendix C. The truncation error was evaluated for values of the upper

limit of _2" that ranged from 2.0 to I0.0 and values of b/L from O.05 to

O. 5. This study showed that the truncation error is largest for high values

of b/L and low values of the integration upper limit. For the values of k

for which equation (54) applies, i.e., .04< k < < .5, the truncation error

is less than 5 percent of the area under the truncated spectrum for a value

of b/L = .5 and a value of upper limit of 2.0.

For high values of the roll-off point, i.e., kAR > _, the gust

spectrum becomes

_D(k,_) _ _k3(AR)2

The percentage truncation error for this range of k values is given by

equation (C38) in Appendix C. The percentage error was evaluated for

values of the upper limit that ranged from 2.0 to lO.0, and values of b/L

from 0.05 to O. 5. A maximum percentage error of 14.4 percent was calcu-

lated for a value of upper limit of 2.

An evaluation of the effect of truncation is made for the flexible

bending moment. The frequency response function shown in figure 21 has

a large variation with _2" for values of _2" near 3_. The mean-square

value of the response is calculated for the response spectra for values of

the upper limit of _2" that range from 3, to 2.5. The variation of the

mean square value with the upper limit of _2" is shown in figure 2_. This

study shows that no appreciable error (less than 1 percent of the 3- value)
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occurs above a value of upper limit of _2" = 6.0. The mean-square value

for an upper limit of _2" = 2.5 differs by 6.3 percent from the value for

A

an upper limit of _2" = 3-. The variation of No with upper limit of _2"

shows the same trend as the mean-square value. No for an upper limit

limit of G2* = 2.5 differs by 8.2 percent from the value of an upper limit

of _2" = 3_.



DISCUSSION

An analysis is formulated that predicts the motion and load responses

of an airplane to a turbulence field that varies along the span as well

as along the line of flight. A major feature of this formulation of the

two-dimensional gust response problem is its aerodynamic versatility.

The generalized aerodynamic forces can be calculated either by an unsteady

lifting surface theory or an unsteadymodified-stripanalysis that

includes unsteady finite span induction effects.

The analysis was applied to mathematical models of a rigid and a

flexible airplane in the form of a trend study. Results of this study

indicate that the influence of spanwise variation of the vertical gust

velocity on the longitudinal motion and load responses can be significant

for a large flexible airplane flying at altitudes of 1,O00 feet or less.

With one important exception the results of the present procedure

are generally similar to those of past investigations. The trend study

results of this formulation show the rigid-body acceleration response

predicted by a one-dimensional analysis to be a conservative estimate

for large values of span to scale of turbulence ratio. Also, a con-

servative estimate of the rigid-body bending moment exists for various

values of wing to fuselage mass ratio.

The exception to similarity to past results is that the conservative

estimate of rigid-body acceleration exists for small values of span to

scale of turbulence ratio. This difference is due to the influence of the

aspect ratio on the weighting of the frequency response function with the

68
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gust spectrum. This result is in contrast with results of earlier inves-

tigations that have shown the one-dimensional analysis to be a limiting

case of the two-dimensional analysis. This study has shown that the

limiting case exists only for a value of aspect ratio equal to zero,

which points out the fact that the effect of aspect ratio is inherently

missing in the one-dimensional analysis.

Both the rigid and flexible bending moment responses are shown to be

different than the one-dimensional analysis responses. This difference

is seen at both low and high vahes of reduced frequency. Only the

difference at high frequencies is shown to be significant. For the model

of the flexible airplane, a spatial tuning of the lift distribution with

the elastic deformation modes is shown to result in a significant amount

of amplification of the bending moment response spectra. The natural

frequencies of the elastic modes were so high and widely separated,

however, that the spatial resonance of the modes did not significantly

affect the values of the response statistical parameters.

An important objective of the trend study was to evaluate the effect

of the truncation error on the response spectra. This error is a conse-

quence of the numerical integration of the input-output relation being

performed to a finite upper limit. The error was evaluated for both

rigid-body acceleration and flexible bending moment responses. It was

found that the truncation error was small for values of upper limit of

integration that are greater than a limit that represents a full wave of

downwash along the semispan. Furthermore, this error is not a serious

limitation to this formulation of the gust response problem. The only
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practical limitation imposedby the truncation is the loss of resolution

of the downwashdescription for higher values of integration upper limit.

The trade-off between the effect of truncation error and resolution is

largely a matter of the ability to use more control points along the semi-

span in the aerodynamic force calculations.

Since this investigation did not deal with an application of the

formulation to a large flexible airplane, further work in this area may

be desirable. Specifically, the effects of sweep, flexibility, compressi-

bility, and a rigid-body pitching degree of freedom should be ascertained

on the basis of a comparison of calculated and flight test results.
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APPENDIX A

THE DESCRIPTION OF HOMOGENEOUS AND

ISOTROPIC TURBULENT FLUID FLOW

This appendix presents the mathematical description of homogeneous

and isotropic turbulent fluid flow. A brief presentation of the principles

and assumptions concerning isotropic and homogeneous turbulent flow theory

is made and the resulting correlation functions and spectral density

functions are presented.

A.1 General Development

The kinematics and dynamics of isotropic and homogeneous turbulence

were developed by Von Karman and Howarth, who in reference 2 used the

work of Reynolds and Taylor to develop a general theory of isotropic tur-

bulent flow. Von Karman and Howarth generalized Taylor's concept of the

correlation function to three dimensions. The result of this generaliza-

tion was the time averages of the products of two, uiu j and three, uiuj_

velocity components taken at two different points x and x'. They showed

that for homogeneous turbulence these averages form the components of two

tensors and are scalar functions of the separation of the two points. The

property of isotropy was shown to give the tensors spherical symmetry which

resulted in the vanishing of all but five of the velocity averages. The

mean square values of the velocity components are equal and are independ-

ent of position.

u7
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If statistical and time averages are equivalent then the time averages

of the products of the velocity components of the double and triple

correlation tensors (equations (4) and (5)) can be equated.

Rij(r): uiu_ (A2)

Tijk(r) = u.u.uJlj K (A3)

By either examining the structure of the time averages, reference 2, or

using the mathematical properties of the isotropic correlation tensors,

reference 6, the components of the double and triple correlation tensors

can be shown to have the forms

Rij(r) = __f(r)r2 g(r) rir j + g(r)Sij 1

TiJkfE_ , = (_)3/2[_k(r)[ - h(r) - 2q(r) rirjr kr3

h(r)+ A_d+ r_d1+ 5ijrk r 5ikrj r 5jkri

The scalar i_nctions in the above expressions are the non-vanishing time

averages of the products of the velocity components.

f(r) = (_)_lUl

g(r) = (_)_2u_

h(r) = (_)3/2 u_ul

k(r) = (_)3/2 u_u_

q(r): (7)3/2u_u2u_

(A4)

(A5)
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These scalar functions are not independent. This follows from the

application of the continuity condition to the double and triple correla-

tion tensors.

_hj(D = o (A6)
_r i

_Ti_k(r) : o (AT)
_rk

These expressions furnish the following relations between the scalar

functions.

r

g(r) = f(r) + _ f'(r) (A8)

k(r) = -2h(r) (A9)

r h ,q(r) = -h(r) - _ (r) (_o)

The dynamical relations for the scalar functions are found by applying

the momentum condition to the correlation tensors. The governing equations

are the incompressible Navier-Stokes equations which in tensor notation are

8ui 8ui l_p__ V 2u
_+ Uj = --- + V
_t _xj p _x i x i

2
The Laplacian operator V is

X

2 _2 _2 82
= _ + _--_ + _

(All)
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and p and v denote pressure and viscosity respectively. The governing

equations for the dynamics of the correlation functions are determined by

multiplying equation (All) by ui and u_ and adding the resulting time

averages. Using equations (A2) and (A3) these equations in tensor nota-

tion become

_t Rij(--r)- iJk(r) + Tkj i(r)_ --2v V2Rij(r ) (A12)

These equations may be reduced to a partial differential equation relating

the scalar functions f(r) and h(r), through the use of equations (A4)-(A10).

r k -Q r

This expression is called the Von Ks__n-Howarth equation. Although tkis

equation has been solved only for the limiting cases of large and small

Reynolds numbers, it has provided the mathematical basis for understanding

turbulent flow. For large values of Reynolds numbers, Von Karman assumed

that the scalar functions are independent of viscosity and preserve their

shape. This concept of self-preserving correlation functions is based on

the assumption that both f and h are functions of one variable, r/L only

and that the scale of turbulence L changes with time. Batchelor in

reference 9 has presented a concise and complete discussion of the self-

preserving solutions of equation (Al3).

The concept of self-preserving correlation functions has both mathe-

matical and physical significance. Mathematically it provides a trans-

formation that reduces equation (Al3) to an ordinary differential equation.
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Physically, the concept is an assumption which concerns the decay of the

energy of turbulent flow.

Kolmogoroff, reference 9, used the concept of similarity in a local

sense to produce a theory of energy dissipation. The term local implies

that only small scale motion can be considered to be both isotropic and

self-preserving. The extent of this local region is largely dependent on

the Reynolds numbersof the flow. Kolmogoroff's theory was presented in

the form of two similarly hypothesis which combine to supply the descrip-

tion of energy decay of small scale turbulence.

A.2 Energy Fauation of Isotropic Flow

The local similarity theory of Kolmogoroff becomes important when

applied to the energy equation of isotropic flow. This equation is derived

by taking a three dimensional Fourier transform of equation (A12) and

using equations (6) and (7) • Contracting this equation and multiplying

by 44 2 the governing equation for the decay of energy is

_t

The function E(_) is called the energy density function. It repre-

sents the distribution of the total kinetic energy per unit mass of the

fluid in wave number space. It is related to the spectral tensor by

i summed (A 5)
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The function W(_) is called the work density function. It represents

the amount of energy transferred by the non-linear inertial terms con-

tained in an element of wave number space. It is related to the transform

of the triple correlation tensor by

= - -2±GjWkjk(_ ) k summed (A16)

The governing energy equation shows the generally accepted concept of

energy decay:

a) The low wave numbers contain the bulk of the energy while viscous

dissipation is negligible.

b) The low wave numbers furnish energy by the action of inertial

forces to the higher wave number ranges where it is dissipated

by viscosity.

This concept and the Kolmogoroff hypothesis, imply that the decay process

can not be considered to be similar for all values of wave numbers.

A.3 Development of Multidimensional Spectra

The importance of the energy density function is that its definition,

equation (AIS), provides a relation between it and the energy spectral

tensor. The form of the spectral density tensor is written

¢ij(__) = A(G)GiG j + B(_)Sij (A17)

in terms of the scalar functions A and B with argument 2. This result has

been presented by Batchelor, reference 6 and Coburn reference 13. The

scalar functions may be found by applying the continuity condition to



equation (AFT)

8o

ni¢ij(_) = 0 (A 8)

and using equation (AI5). Once the energy density function is known,

$ij (_-)may be found.

¢iJ(_) = _(_25ij - _igJ )

The components of the double correlation tensor and the spectral

density tensor are expressed in terms of the scalar correlation functions

f(r) and g(r) and the energy density function E(Z) respectively. The

definition of the scalar correlation functions provides an intepretation

for the subscript notation of these tensors. The diagonal elements of

the double correlation tensor represent either a longitudinal correlation

f(r) or a lateral correlation g(r). By letting the subscripts i = 1,2, 3

represent velocity components in the longitudinal (flight path), lateral,

and vertical directions respectively, the diagonal terms of these tensors

represent correlation functions and spectral density functions for the

longitudinal, lateral and vertical components of the gust velocity. The

off diagonal terms of the double correlation tensor and the spectral tensor

represent cross-correlations and cross-spectral density functions bewteen

the gust velocity components.

The correlation functions for one-and two-dimensions are found by

letting the spatial separation distance be

r= rI

r= _rl2 + r22

(AI9)
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respectively. The spectral density functions for one- and two-dimensions

are found by integrating the corresponding higher dimensional spectral

density function over the undesired wave numberaxis. For example,

¢iJ (f_l'a2) = _iJ (--_)cl'G3

*lj = ,lj(a ,a2)da2

For two-dimensional turbulence a correlated spectral density tensor exists

whose components are

JO"ij(al,r2) = ,ij(al,a2)cos (a2r2)d2 2

Several expressions describing the turbulent motion of a fluid have been

developed. Only the expressions due to Dryden and Von Karman will be

presented, however, additional expressions may be found by consulting

references 4, ll, 14, and 15.

4.4 Von Karman Representation

Von Karman in reference 4 presented an expression for the description

of isotropic turbulent flow in terms of the energy density functi on. He

assumed that W(g) can be expressed in terms of E(_) and _. Then substi-

tuting this expression for W(_) into equation (A14), he considered two

cases of flow. While both of these cases neglected the decay term, the

first case neglected the viscous term. The solution for this case is

(A20)

(A21)

(A22)
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_,(_)~ _-5/3 (A23)

which is the result of Kolmogoroff for large wave numbers, reference 9.

The second case was that of including the viscous terms and assuming

that E(_) preserves its shape for small and intermediate values of wave

numbers. This resulted in a solution of E(_) which involves integrals of

E(_) but has the limiting form for small wave numbers

4
_,(_)~ (A24)

This expression agrees with the results of many authors for low wave

numbers, reference 12. Von Karman proposed an interpolation form for E(_)

which has equations (A23) and (A24) for its limiting forms.

The corresponding scalar correlation functions are

(A25)

2213 113
f(r) = --7_(_or) Kl/3(Gor)

'UJ
(A26)

22/3

g(r): _(_or)l/3[_/3(_or)
G°r K21(_or)_u

2 3

From these expressions the one-, two-, and three-dimensional correlation

(A27)

functions and spectra are
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THREE-D_SIONAL

TWO -DIMENSIONAL

SPECTRAL DENSITY FUNCTIONS

_(£) =

_ #_212#_]2
55 Lu2 \_oo/ + \no/

9 _ 21_7/6

2

_)z,_-_(_) _f+ \_o/

2 ;_2

¢ii(_i,_2) =--

-- i + {I_I_o)2 11(a2_22u2 \ + -_-\To/

+ \_o / + _oo

/

¢22_i,_2) =

2_-2 + 3\_/ +\_/

+ \Too/L-

_33 (nl'n2) = --

16u 2 \_oJ + \_oo/

9£_F_L+,_o,(_+(_o_)I7/'
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(A28)

{AOO_
k _J/
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, ,11/6 _ +
"(r2_o) K1/6\_or2 \/:

+

+ 8 _ 2 (_or2)5/6K5/6 Gor2 \_o/

_1 2-117/12
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(A31)

_o =_ r(½) = 1.3389853L

(A32)

a2__a2 +n22 +_ (A33)

CORRELATION FUNCTIONS

TWO-D]]_ENSIONAL

Rll(rl,r 2) = 22/3_Ip(_) _°r)I/3Kl/3(_°r)-

Cgo/3r_r-2/3

R22(rl,r 2)
I _g/3_-2/3_2

= 22/3u-2 _or)i/3Kl/3(Go r) - 2

R33(rl,r 2)
= __nor)l/3K1/3 (nor)

r2 = rl2 + r_

(A3g)



ONE-DIMENSIONAL

i

2Lu 2

¢ii(_i) = 7--
1

m

¢22(_1) = Lu.___2

m

¢33(_ ) = T,u2

2

3\_o/

_ll(fll'r2) = _flop(_) (flor#l/6

2 r 5/6

+

+

+

+ {_112
E1 \ao/J

_22(fll,r2 )

+8f_l 2

+

(_--io)2(_or2) ll/6Kl/6C2_o V1

G/
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(A30)

\(A31)



ONE-DIMENSIONAL

Rll(r I) = _(_orl)i/3Kl/3(_orl)

R22 (rl) = (Gorl)I/3 /3 (_orl) _°rl" 7- K2/3(_orl

= 22/3_fg r )I/3FK-.-(_ r. _°rl )_
R33(rl) p(_) ' o i [I/D o ±) "--2--- K2/3(_orl

86

(A35)

A.5 Dryden Representations

Dryden presented an expression for the description of turbulence in

terms of a correlation function, which is expressed in terms of the

exponential decay function. He found that this expression gave a good

fit on experimentally measured correlation functions, reference 5, and

spectral density functions, reference 3. These data were measured from

turbulence which occurred behind a screen placed in a wind tunnel.

Dryden has shown good agreement between the expression

f(r) = e'r/L (A36)

and experimental data for experimentally obtained values of L. Houbolt

in reference 8 has presented an expression for the energy density function.

E(_): u2--SL (m)4 (A37)

El+ (I_)2_
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The limiting form for small _ is in accordance with previous theory,

reference 12, and Von Karman's expression, equation (A24). The limiting

form for large 2 is

E(£) _ _-2 (A38)

which is not in agreement with either the theory of decay or the expression

of Von Karman, equation (A23). This is a result of the form of f(r)

given in equation (A36).

For this scalar function to be a solution of equation (A13), f(r)

must be similar for all values of r and Reynolds numbers. This in turn

demands similarity of E(2) for all 2 which is incompatible with both

physical reasoning and experimental results. Dryden discusses the form

of f(r), reference 5, and shows that its slope at r = 0 is -1/L.

This does not agree with the properties of f(r) which shows that its

slope at r = 0 should be zero. This discrepancy has led Dryden to

state that equation (A36) is not correct for values of r near zero.

The scalar correlation function g(r) is found from equations (A36)

and (A8).

g(r) = (1- k)e -r/L (A39)

From equations (A36), (A39), and (A37) the one-, two-, and three-

dimensional correlation functions and spectra are
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THREE-DIMENSIONAL

¢22(£) =

_6_u-_ _ + _
_2 (_-+_,_4+_,_+ta_/_

_2
(i + L2n 2 + L2n22 + L2n_) 3

(A40)

TWO-DIMENSIONAL

m

L2u 2

czZ(al,a2) =

m

L2u 2

_22 (nl,.q2)=

_33(az,a2)

2 2 L2D,2 ) 5/2(I+L_I+

i + 4L2£I + L2£_2

(A41,)
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ONE.DIMENSIONAL

Lu-_z * 3La________21

_22(%) _q- (i+ L%_)2

(Ag2)

r2 2 2

)= _I\L / o ', "

(l + 3L _lJL .

* (_+_9 _TT-

= _ i (l + L _i;

r 2 2 2)1
+ 1- (i+ m_i_

(A43)



TWO-DIMENSIONAL

ONE-DIMENSIONAL

CORRELATION FUNCTIONS

Rll(rl,r2) = _(1- r_ le-r/L
2rL/

= _i le_r/L
R22(rl,r2) u-2(l r2- 2rL/

r_ =r_ +_

Rll(r 1) = _e'rl/L

rlle-rl/L
R22(r2) = u-{(l - _j

R33(rl) =u-2(l- _L)e -rl/L J

9o

(A44)

(A4_)
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N

= _ hn(tl)wn(t - tl)dt I

n=l

(B2)

When the downwash inputs are the vertical gust velocities of homogeneous

and stationary atmospheric turbulence, the description of the response

is provided by the correlation function

N N

7,J'j"Rp(,) = p(tlP(t + T) = hn(tl)hm(t2)RWnm(_ + t2 - tl)dtldt 2

n=l m=l

(B3)

The cross-correlation function Rwn m is the spatial correlation of the

nth and mth inputs which are assumed to have zero means and satisfy the

limit of equation (10). The cross-correlation function is dependent

only on the spatial separation of the nth and mth inputs, rnm and the

spatial separation r1. For isotropic atmospheric turbulence, the

assumption that Taylor's hypothesis is valid enables the time and

spatial coordinates to be related through the airplane's velocity:

rI = UT (B4)



APPENDIXB

DEVELOPME_fOFTHETW0-DIMENSIONAL

INI_JT-OUTPUTRELATIONS

The purpose of this Appendix is to derive the two-dimensional

input-output relations which are discussed in Chapter Two and are used

in the calculations.

The two-dlmensional input-output relation is developed as an

extension of one-dimensional theory. This extension is easily perceived

by using the development of system analysis with multiple inputs.

Consider the wing of an airplane to have N distinct downwashinputs

Wn(t) and a single response p(t). Each one of the downwashinputs

is assumedto act over a finite interval of the span ay. If, in

addition, the downwashinput is assumedto be invariant in the lateral

direction over Ay, the resulting response for that interval is given

in terms of the downwashby

Pn(t) = hn(tl)wn(t - tl)dt I (m)

The function hn(t ) is the linear response of the airplane to the

individual downwash Wn(t ) that is mathematically described to be a

unit impulse at time tI and a constant over the spanwime interval ay.

Assuming the entire system to be linear, the superposition principle can

be applied and the total response is

91



This relation and the assumption that time and statistical averages are

equivalent allows the isotroplc two-dlmenslonal correlation function

presented in Appendix A to be used for the cross-correlatlon function.

93

Rwnm(V + t2 - tl) = R33(rl,rnm)

The statistical description of the response in the frequency domain is

given by the Fourier transform of the correlation function, assuming

the relation

f RpC",')d',"<

is satisfied. Assuming that the Fourier transform of the right hand

side of equation (B3) exists, the spectral density function of the

response is

N N

Sp(CO) = Z _ Hn(C°)H_(_)$Wnm (c°)

n=l m=l

(B6)

The frequency response functions Hn(_ ) are the Fourier transforms of

the impulse response functions hn(t ) . These functions Hn(m ) represent

the complex amplitude of the response of the airplane to a slnusoidal

downwash of unit amplitude which is constant over 2kY and has frequency
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The spectral density function _ Wnm is the spatial cross-spectral

density function of the nth and mth inputs and it is the Fourier trans-

form of Rwnm(T )

10o1 Rwnm(I-) e-iC°r dTCWnm(_)= _ _ _® (B7)

For isotroplc atmospheric turbulence, the assumption that Taylor's

hypothesis is valid provides an analogous relation to equation (B4)

: unI (_)

This relation and the assumption that time and statistical averages are

equivalent allows the Isotropic two-dimensional correlation spectral

density function presented in Appendix A to be used for the cross-spectral

density function

_Wnm(e ) = i_33U (_i ,rnm) (B9)

For isotropic turbulence the cross-spectral density functions @Wnm(e)

have the property that the only distinct spectra are

I_ = 0, . . ., N - i@wi'i+k _Wi+k'i _@Wi'l+k i, • ., N - k

This property allows the response spectral density function defined

by equation (B6) to be written

(too)



@ p(_) = @ Wll (_) Hn(_)H_(_ + 2_w12(_)R e Hn(_)H_+I(
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A continuous two-dimenslonal input-output relation is obtained by

applying the limit N _ _ and Ay_ 0 to equation (B2). The summation

is replaced by an integration over the span and the downwash is now a

function of the lateral coordinate and time. The total response is

/ b/2
p(t) = _-b/2 h(t,y)w(t - tl,Y)dtldY

(BII)

This expression is the extension of the one-dimensional response analysis

to include a continuous spanwise variation of the down,ash. The function

h(t,y) represents the response of the airplane to a do_nwash represented

mathematically by a tlme-space impulse function applied at time tI and

at wing station y.

When the do_nwash input is the vertical gust velocity of a homo-

geneous and stationary atmospheric turbulence field, the description

of the response is

Rp(T) = uu-b/2 - h(tl'Yl)h(t2'Y2)Rw(t2 + T - tl,Y 2 - Yl)dtldt2dYldY 2

(Bi2)
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The cross-correlation function Rw(t 2 + v - tl,Y 2 - Yl) is the spatial

correlation of the inputs which are assumed to have zero means and

satisfy the limit of equation (i0). For isotropic atmospheric turbulence,

the assumption that Taylor's hypothesis is valid enables equation (B4)

to be used along with the assumption that time and statistical averages

are equivalent to relate the isotropic two-dimensional correlation

function presented in Appendix A to the cross-correlation function.

Rw(t 2 + T.- tl,ly 2 - Yl I) = R33(rl,r2) (B_3)

The statistical description of the response in the frequency domain is

b/2[ b/2̂ ^ ^
_P(m) _ "/-b/2 _ -b/2 H(_'Yl)H*(_'Y2_w(C°'r2)dYldY2

(BI4)

A

The spectral density function _w(m, r2) is the spatial cross-spectral

density function of the inputs and it is the Fourier transform of

Rw(T'IY2 " yll)

1 -_Rw(_,ly2 -Yll)e-i_ d_Sw(_'lY2" YlI)= (ms)

For isotropic atmospheric turbulence, equation (BS) and the assumption

that time and statistical averages are equivalent allows the isotropic
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correlated spectral density function presented in Appendix A to be used

for the cross-spectral density function.

A

w(_, Iy2 - YlI) = U @33 (_l'r2) (B16)

The frequency response function H(_,y) is the Fourier transform

_(_,y) = h(t,y)e -i_t dt

mOO

(BI7)

and it represents the complex amplitude of the response of the airplane

to a downwash field which is expressed mathematically as the product of

a spatial impulse function applied at y and a sinusoidal wave field

of unit amplitude and frequency _. The quantity H(%Yl)H*(_,y2)

a complex quantity but the imaginary part can be ignored because in

the spatial correlation of equation (B14), _(_,IY2 - Yll ) is an even

function of I Y2 - Yl I"

An alternate form of the two-dimensional input-output relation is

obtained by removing the spatial correlation of equation (B14). The

convolution is removed by expressing the correlation spectral density

function in terms of the two-dimensional spectral density function

_w(_,_2). These two spectra are related by a spatial Fourier transform

ooSw(e, ly2 . yll ) = i ¢w(co,_2)eily2-Yll_2 d_ 2
--00

(m8)
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Using this expression in equation (BI4) the input-output relation is

--00

(BI9)

The function H(_,_2) is a two-dimensional frequency response function

that represents the complex amplitude of the response of the airplane

to a two-dimensional downwash field represented by two sinusoidal waves

of unit amplitude and frequencies _ and _2" It is defined in terms

of the frequency response function H(_,y) by

J ooH(_,Q 2) = H(_o,y)e -iy_2 dy (B2o)

For isotropic atmospheric turbulence, equation (B8) and the assumption

that time and statistical averages are equivalent allows the isotropic

two-dimensional spectral density function presented in Appendix A to

be used for the two-dlmensional spectral density function defined by

the inverse Fourier transform of equation (B18).

1
®w(®m2) = U ( lm2) (B21)



APPENDIXC

DESCRIPTIONOFTHETRENDSTUDYMATHEMATICALMODEL

The mathematical model of the airplane used for the trend study

calculations will be presented in this Appendix. The expressions for

the generalized forces and the frequency response functions are presented

and the corresponding two-dimensional response spectra are calculated.

From these spectra the truncation error is evaluated and the response

statistical parameters are calculated.

C.1 Equations of Motion

The airplane is represented by an unswept tapered wing and a lumped

mass fuselage. It is restrained against all motion and deformation

except rigld-body vertical motion and wing vertical bending deformation.

The total plunging displacement of any point of the airplane is given

in terms of the sum of the products of the natural modes of motion and

their associated generalized coordinates.

N

z = _ _i(x,y)qi(t)

i=l

(cl)

The generalized coordinates are calculated by solving Lagranges

equations of motion, equation (31), for the plunging motion of the

airplane subjected to a two-dimensional sinusoldally varying down, ash

field. The equations of motion are simplified by using weighted mode

shapes that satisfy

i00
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/ b/2 I_a i = Jm(Y)_i(y)_j(y)dy= (C2)
-b/2 i / j

The orthogonality property of equation (C2) is satisfied by using

free-free symmetrical vertical wing bending modes. These modes are

normalized by weighting them by the mass distribution m(y).

For the trend study calculations it is necessary to work with

nondimensional parameters. This requires that the equations of motion

be expressed in terms of nondimensional generalized coordinates, masses,

and forces. The nondimensional reduced frequency parameter, k, is

commonly used. It is related to the circular frequency by

k = _ (C3)
U

From these relations the equations of motion written in terms of reduced

frequency are

N

2 _ k2)Maqi(k, a2 ) = QMj(k)qj( k, a2) + Qi(k,a2 )

j=l

(c4)

C.2 Generalized Forces

For the trend study the nondimensional generalized forces are

calculated by strip-analysis aerodynamic theory. Strip analysis is

concerned only with the spanwise lift distribution on the wing. This

distribution is found by calculating the local lift on each of a number

of streamwise strips on the wing. The local llft per unit strip width
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is assumed to be proportional to the local angle of attack. For the

case of simple-strip analysis, two-dimensional flow theory is applied to

each individual strip. The vortex sheet on the wing is replaced by a

single concentrated bound vortex which is located at the quarter-chord

point. The boundary condition associated with the location of the vortex

is the downwash at the three-quarter-chord point. The selection of the

downwash at this point requires that the local lift-curve slope have the

two-dimensional incompressible value 2_. This value of 2_ is signifi-

cant when unsteady flow is being considered. Each individual strip is

considered to be an oscillating flat plate in two-dimensional incompressible

flow. For a straight wing the unsteady lift of each strip is given by

Theoderson in reference 44. This unsteady simple-strip analysis has been

used by Barmby, Cunningham, and Garrick in reference 46 for flutter

studies of both straight and unswept wings. ..

Yates, in reference 41, presents a modified unsteady strlp-analysis

theory. He modifies the unsteady slmple-strip theory for finite span

effects by letting the position of the aerodynamic center move from the

quarter chord. This change of position of the aerodynamic center requires

that the boundary condition be the downwash taken at a location on the

chord other than the three-quarter-chord point. This modlficatlon of the

simple-strip analysis is reflected only in the circulatory terms of the

expression of the unsteady lift distribution. The modification of these

terms is made by letting the local lift-curve slope have a value other than

2_ and taking the effective angle of attack at some position other than

the three-quarter-chord point. The value of the local-lift curve slope
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for finite wings. The value and location of the effective angle of

attack is given in reference 41.

The generalized motion forces are formulated from the modified-

strip analysis. The incompressible unsteady spanwise lift distribution

for an unswept oscillating wing is

=  O-L Wj _ikc 
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can be calculated from any suitable steady-state aerodynamic theory

(c_)

The unsteady circulating term of the lift distribution is given by the

two-dimensional incompressible Theodorsen function given in reference 44

in terms of the Bessel functions Jn and Yn"

-Jl(k) + iYl(k)
C(k) =

-(Jl(k)+ Yl(k))+ i(Yl(k)- Jo(k))
(C6)

The modlfied-strlp analysis is used for the formulation of the

generalized gust forces. The unsteady lift distribution resulting from

a two-dimensional sinusoidal downwash field is given in terms of the

local lift-curve slope and effective angle of attack. The value of the

local lift-curve slope cz_ can be calculated from any suitable steady-

state aerodynamic theory for finite wings. The local angle of attack is

the downwash normalized by the airplane velocity U.

WG (C7)_- eikse i_2y

k__
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The downwash is taken at a point on the chord given by reference 41.

'l-heresponse of a rigid two-dimensional wing in incompressible flow to a

one-dimensional slnusoidal downw_sh field is given in reference 24.

Modifying this expression for finite span effects and the local angle of

attack given by equation (C7), the incompressible unsteady lift distribu-

tion is

_,a(y,k,%) _-pU2cz c K(k)_ e_ (c8)

The function K(k) is called the circulation function and is given in

reference 24.

K(k) C(k)[%(_)- iJl(k)3 + it(k) (c9)

Substitutlngthe lift distributions given by equations (C5) and (C8) into

the expressions for the generalized forces given by equations (53) and

(34), respectively, the generalized forces are

(Cl0)

b/2
cck_ cos(_2y)_ i dy (Cll)

The antisymmetrlcal term in the spatial frequency term is neglected

because the integral of an odd function over a symmetric interval vanishes.

These forces are written in terms of a normalized lift-curve slope

distribution _. The local lift-curve slope is normalized by the total
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lift curve slope CI_ of the wing. The spanwise variable is normalized

by the semispan and forces are expressed in terms of nondimensional

coefficients.

N

Z( k2QMij(k ) = CI_pU2S qj Aij -_ - ikC(k)Bij

j=l

(c12)

(c_3)

The nondimensional coefficients and variables are

(Cl4)

lJ01Bij = _ 7(y*)_i_j dy* (C15)

1/01B_i(__) = _ _(y*)oos(_y*)_i dy* (C16)

y* = Y
b

2

cc Zc_

_CI._
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The nondimensional equations are written in terms of the nondimenslonal

generalized coordinate _i by substituting the generalized forces given

by equations (ClO) and (CII) into equation (C4) and defining the mass

parameter _.

N

(k2i - k2)Z_i(k,_) - ___ qJ(k'C_)(k2Aij - 2ikC(k)Bij ) = 2K(k)BBi(_)

J=l

(C17)

2Ma

PCI_S
(C18)

C.3 Frequency Response Functions

The frequency response functions needed to determine the desired

response spectra are expressed in terms of the nondimensional generalized

coordinates.

Two-Dimensional Analysis

The two-dimensional frequency response functions are calculated from

the nondimensional generalized coordinates which are found to be solutions

of the equations of motion given by equation (C17). The response

functions calculated in this study are presented below.

Plunge Displacement

The nondimensional plunge displacement frequency response function

is the nondimensional generalized coordinate for the rigid-body plunging

mode of the airplane, _l = 1.
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z(k,f___) = = ql(k'f_2)

io7

(019)

Plunge Velocity

The plunging velocity frequency response function is normalized by

the gust velocity magnitude and is calculated in terms of the plunge

displacement.

ql(k,n_)
_(k,nl)= _a : ik_(k,n_) (c2o)

Plunge Acceleration

The plunging acceleration frequencyresponse function is normalized

by the "sharp-edge gust" acceleration, which neglects the motion aero-

dynamic forces and considers only the response to the steady part of the

gust forces.

q'i(k,_) k2%_l(k,_ _)

_s 2BB_l
(c21)

The sharp-edge gust acceleration is

Bending Moment

The wing bending moment frequency response function is found by

taking the moment of the total load distribution on the wing. The total

load distribution consists of the inertial, motion, and gust forces

acting on the wing.
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t=l

(C22/

The load distributions of the motion and gust forces are given by

equations (C5) and (C8_ respectively. The antisymmetric part of the

gust forces is neglected since only the symmetric bending moment response

is desired. The bending moment is rewritten in a manner similar to that

used for the equations of motion. The nondimensional bending moment at

the root, that is, y = 0 is

N

= K(k)BB' + I Ek2Ai - 2ikC(k)B i + 2kk DiJ@i

i=i

(c23)

The dimensionless coefficients and variables are

A!

i lB i = _ 7(Tl*)_i_1*drl*

1D i = 7(_*)m*_*d_*

l#OlBB'(G_) = _ 7(D*)COS(_G_*)TI*dTI*
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The wing-root bending moment frequency response function is normalized

by bending moment resulting from the steady-state gust forces, that is,

for k = O. This reference bending moment is found from equation (C23)

for k = _* = O.

) WG =

The normalized nondimensional wing-root bending moment frequency response

function is

N
A A

_GG(k,_ O) K(k)BB'(2_) i _, _' = BB'(O) + _ [k2A_ - 21kC(k)B' + 2kk2D ii i BB (0)
i=l

(C24)

0ne-Dimensional Analysis

The one-dimenslonal frequency response functions are related to the

two-dimensional frequency response functions by setting _ = 0 in

equations (C19), (C20), (C21), and (C24).

C.4 Response Spectra

The response spectra needed to determine the statistical parameters

for the responses of the airplane are calculated.
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Two-DimensionalAnalysis

The two-dimensional response spectra are calculated by multiplying

the normalized two-dlmensional Dryden gust velocity spectrum by the

square of the modulus of the two-dlmenslonal frequency response functions

given by equations (C19), (C20), (C21), and (C24). Integrating these

spectra over finite limits of the spatial frequency _, a response

spectrum is obtained from the two-dimensional analysis for each response

variable.

(C25)

The normalized two-dimensional Dryden vertical gust velocity spectrum is

CD(k,n*) =
3AR (_1) 2 + (zn2) 2

+ + )_5/2

(C26)

The arguments on the left and right hand side of the expression are

related by equations (35) and (36).

L
L_l = k c

2L

One-Dimensional Analysis

The response spectra are obtained by multiplying the square of the

modulus of the one-dimensional frequency response functions times the

one-dimensional normalized Dryden gust velocity spectrum.
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(_(k) = IH(k)12_D(k)

iii

(C27)

The normalized one-dimensional Dryden vertical gust velocity spectrum is

i l + 3(_l) 2
(c28)

C.5 Statistical Parameters

The one-dimensional response spectra obtained from the two-

dimensional analysis and the one-dimensional analysis are integrated

over finite limits of reduced frequency to obtain the desired response

statistical parameters.

Mean-Square Value

The mean-square value of the response was calculated by using

equation (39).

SO k
( )2= @(k)dk (C29)

Root- Mean-Square Value

The root-mean-square value of the response was calculated by using

equation (40).



Numberof MeanCrossings

The average numberof meancrossings was calculated by using

equation (41).

No No 1

112

(c3o)

C.6 Parameter Data

The scaling laws which govern the change of nondimensional

parameters in the trend study calculations are presented.

Frequency Response Functions

The normalized nondimensional frequency response functions are

developed in terms of nondimensional quantities. These quantities are

dependent on the geometry, mass, stiffness, and aerodynamic properties

of the airplane. A change in one or more of these properties must

conform to scaling laws which provide the relations between the non-

dimensional forms of these properties. The quantities that govern the

values of the frequency response functions are

a) Mode shapes _i(y* )

b) Normalized lift distribution 7(Y*)

c) Normalized mass distribution m*(y*)

The nondimensional coefficients used in equations (C17) and (C23) are

constant for a change in the physical properties of the airplane provided
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the mode shapes, normalized lift distribution, and normalized mass

distribution are not changed.

The mode shapes are calculated from the governing equation of motion,

reference 24.

_ --o
EI R

(C3l)

The mode shapes are the same for any two different airplane configurations

that have the same mass distribution, stiffness distribution I*(y*)

and mechanical vibration constant _i(b/2)3MR/EI R. The mechanical

vibration constant can be written in terms of the nondimensional

parameters _ and k by using equations (C3) and (C18).

_(_)3MREIR (C°nstant) k2_Cl_ (!! 4

This relation shows that the natural reduced frequencies are the

same for any two configurations that have the same values of:

d) Ratio of aerodynamic forces to elastic forces 1/2 pU2/E

e) Mass parameter h

f) of wing span to reference stiffness (b/2)4/I RRatio

Equation (C18) shows that the mass parameter is inversely proportional

to the total lift-curve slope and equation (C23) shows that the natural

reduced frequencies are independent of CL . For the trend study

calculations the above parameters are held constant for a given value

of the ratio of the wing mass to fuselage mass. The corresponding
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natural modeshapes and reduced frequencies were calculated for different

values of the ratio of wing massto fuselage mass.

ResponseSpectra

The calculation of the two-dimensio_l response spectra requires

the changing of the two-dimensional scale ratio b/2L. This in turn

changes the one-dlmenslonal scale ratio L/_ in accordance with

equation (37). For the trend study calculations the value of the aspect

ratio is held constant. This constraint gives the proper geometry

scaling for the airplane.

Stiffness Values

The values of the stiffness distribution, reference stiffness,

and influence coefficients used in the trend study calculations are

taken directly from exampleproblem 2-1 in reference 24.

MassValues

The massdistribution values for a wing massto fuselage mass

ratio of 0.585 and the value of reference massis given in table I.

ModeShapesand Frequencies

The calculated natural modeshapesand natural frequencies for a

value of wing massto fuselage massratio of 0.585 is given in table I.

Aerodynamics

Two strip-analysis aerodynamictheories are used to calculate the

normalized lift distributions used in the trend study calculations.



Simple_trlp Analysis

Simple-strip analysis assumesthat the local lift-curve slope of

each section of the wing is constant and has the two-dimensional value

of 2_. The llft distribution is then proportional to the normalized

semlchord relation.

_(y*) = (_)=1.3846135(1. - 0.95555556y*)

li5

(C33)

Modifled-Strip Analysis

The normalized lift distribution for the modlfied-strip analysis is

calculated from reference 45. This reference uses a matrix formulation

of the Weissinger L-method of solving the three-dlmensional steady flow

equation. The solution of this equation is the values of the lift distri-

bution cc_/_Ci_ at selected semispan points. This distribution is

dependent on the wing geometry and angle of attack distribution taken

at the three-quarter-chord location. The symmetric distribution for a

given angle of attack distribution (m) can be calculated from the

presented values of the symmetric aerodynamic influence matrix

The normalized llft distribution _ is defined in terms of a unit angle

of attack distribution. The distribution 7 is calculated in terms of

the symmetric distribution cc_/_Ci_ by the following relation.

7 = _CI_
(c34)
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The symmetric influence matrix corresponding to an aspect ratio of 6,

a taper ratio of 1/2, and a total lift-curve slope of 4.321 is used for

the trend study calculations.

i16

Coefficient Values

The values of the coefficients used in equations (C12) and (C23)

for a value wing mass to fuselage mass ratio of 0.585 and v_lues of

CI_ of 2_ and 4.321 are presented in table II.

C.7 Truncation Error

An analytical evaluation of the truncation error of the one-

dimensional response spectra is made. The evaluation is made for the case

of slmple-strlp analysis aerodynamic theory and the rlgid-body plunge

mode. For this case, the frequency response function is assumed to be

independent of reduced frequency k, and has the form

sin _

: (c3 )

Using this expression, the truncation error is formulated by comparing

the one-dimensional response spectrum given by equation (C25) with the

response spectrum given by equation (38).

: (C36)

This expression is difficult to evaluate in closed form. Because

of this difficulty, the truncation error is evaluated in closed form

only for large values of k, that is, k > (b/2L)/AR. For these values



of k, the gust spectrum is approximated for two limiting values of the

roll-off point.

For low values of the roll-off point, that is, kAR< < _, the

asymptotic expression of equation (52) is given by equation (54).

Substituting this expression into equation (C36), the truncation error

expressed in terms of the cosine integral function Ci(z) is,

c(k) = _--_(2_)< I 8--_1+ cos2(2a) (j214-_)1 + sin(2a)/.12 \6a 3 3al)+ Ci(2a)3

117

)
(C37)

The percentage truncation error in terms of the sine integral function

Si(z) is

E(k) = 1 + 1 1 cos(2a) - _ Si(2a) (C38)

For high values of the roll-off point, that is, kAR > _, the gust

spectrum is given by equation (55). The gust spectrum is independent

of _ and a percentage error is calculated by normalizing equation (C36)

by



TABLEI.- TRENDSTUDYAIRPLANECHARACTERISTICS

Airplane Parameters

Mass Parameters, k ....................

Aspect Ratio, AR .....................

Taper Ratio ........................

Reference Stiffness, EIE, psi ..............

Reference semichord, _, inches ..............

Reference Mass, MR, slugs ................

Mass Distribution and Mode Shapes

y* m* _i _2

o o.4151 i.o -o.1586

0.18 0.1441 1.0 -0.1177

0.372 0.2433 1.0 -0.0052

0.536 0.1002 1.0 0.2593

0.736 0.0811 1.0 0.5132

0.916 0.0162 1.0 1.0

Reduced Frequencies of Orthogonal Modes

kI = 0.0

k2 = 0.156

k3 = 0.525

45.656

6.154

0.444

6.8 × i0I0

81.25

1303.05

_3

o .1383

-o.o362

-o.1418

-o.372o

o.o415

1.0

_8
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TABLE II.- TREND STUDY FORCE AND MOMENT COEFFICIENTS

Simple Strip Theory

All = 0.5247

AI2 = 0.2933

A13 = -0.0537

A22 = 1.280

A23 = 0.6732

A33 : 1.196

]311 = o.5ooo

B12 : 0.4374

B13 : o.o421

B22 = 1.756

B23 = 1.076

B33 = 1.607

A' = 0.1982
i

A_ = 0.2991

A_ : 0.0624

B_ = 0.2179

B_ : o.4060

: o.1455

DI = 0.1224

D2 = 0.1174

D3 = -0.0395

Modified Strip Theory CL = 4.321

All = 0.7629

AI2 = 0.3961

AI3 : -0.0076

A22 = 1.771

A23 : 1.012

A33 : 1.973

A_ = 0.2882

A_ = 0.4266

A_ = 0.1074

B_ = 0.2114

B_ : 0.33o5

= 0.0607

zz9



TABLE II.- Concluded

Modified Strip Theory CL = 4.321
CL

BII = O.5O00

B12 = 0.3547

BI3 = -0.0301

B22 = 1.262

B23 = o.617o

B33 = 1.269

DI = 0.1224

: o.1174

D3 : -0.o395

120
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Figure i.- Two-dlmensional rigid body gust force variation
with spanwise frequency.
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