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A B S T R A C T  

A polarization curve of the s i lver  anode in ammoniacal electrolyte 

suitable for use in comparing our current  density distribution data with a 

theoretical  analysis of current  density distribution has been obtained. 

Attempts to use  this system in a determination of surface a r e a  of a s intered 

s i lver  electrode have failed. 

Sintered s i lver  electrodes consisting of spherical  si lver par t ic les  

of known diameters  were  prepared. 

electrolytic surface a r e a  was determined. 

areas agreed well with calculated a r e a s  when par t ic les  in the 24-48 micron  

s ize  range were  used. 

These were  oxidized and their  effective 

These experimental surface 

Agreement was not as good with smal le r  par t ic les .  

Silver foil electrodes were oxidized with and without ultrasonic 

vibrations to determine the effect these vibrations would have on the charging 

capacity. 

densities. 

by fractur ing of the oxide layer  by the vibrations. 

Increases  of 870 and 25% were  observed for  two different cur ren t  

These increases  a r e  attributed to increased surface a r e a  caused 
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S E C T I O N  I 

POTENTIAL AND CURRENT VARIATIONS 

OVERTHEELECTRODESURFACE 

(POLARIZATION MEASUREMENTS) 

Introduction 

In the experimental program of determining how temperature ,  e lectro-  

lyte conductivity, and average current  density affect cu r ren t  density distribu- 

tion over the surface of s i lver  electrodes,  we a r e  attempting to compare our 

data with the theoretical predictions of Wagner . 
analysis include families of curves showing the rat io  of local cur ren t  density 

to average current  density (J/Jave) as a function of distance a c r o s s  the elec-  

t rode sur face  for  particular values of the ratio ka /a .  

equal to the product of the conductivity of the electrolyte,  u, and the slope of 

the anodic polarization curve,  ha; a is the.half-width of the anode. 

1 The resu l t s  of Wagner’s 

The parameter  ka is 

Therefore ,  

k a / a  = ah,/a = u/a IdaE/dJ( 

Before prec ise  comparisons can be made of the distribution of cur ren t  

density with Wagner’s theory,  experimental  values of ha and u are needed. 

Data on conductivity of the electrolyte a r e  readily determined. 

tion of the polarization curve of the s i lver  anode in ammoniacal electrolyte is 

reported her  e. 

The determina-  

Exp e rim en tal  

The modified Haring cell and Luggin capillary measuring sys tem have 

The capillaries used here ,  however, were  different f rom been described” ’. 
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those described previously. The capillaries had been made f rom 3 m m  soft  

glass  tubing with an approximately 3 mm long piece of Intramedic polyethylene 

tubing (0. D. .61  mm, I. D. .28  mm) sealed into a constricted end with epoxy 

cement. The sea l  was tes ted for electr ical  leakage p r io r  to use. It has  been 

observed that the epoxy sea l  occasionally developed an  electr ical  leak a f te r  

the capillary had been in service.  This resul ted iri higher potential m e a s u r e -  

ments because the potential measured was the potential a t  the leak in the epoxy 

seal.  Thus the IR-drop between the capillary tip and the seal  was included in 

the potential measurement .  To avoid this leakage and yet to permi t  easy  com- 

par ison with ea r l i e r  measurements ,  glass  capi l lar ies  we re  selected for use 

which had tip dimensions close to those of the polyethylene tubing. F o r  example, 

the inside diameters  and outside diameters of the capi l lar ies  used for  the 

experiments  reported he re  were: 

I. D. 0. D. 

#1 . 2 7  m m  . 6 7  m m  

#2 . 2 7  m m  .66  m m  

The polyethylene capillary measurements  a r e  I .  D. .28  m m  andO..D. . 61  mm.  

The electrolyte used for  all experiments in this repor t  contained the 

following species  in the concentrations shown. 

14.7 - N NH40H 

0.10 - N KN03  

0 .025  - N AgN03 

All mater ia l s  used were  reagent grade. 
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Polarization Curve Determination 

S 
rl 
1 
1 
d 
1 

The method used in obtaining data for  this curve is described in an 

3 ea r l i e r  repor t  . Briefly stated,  the procedure is  to measu re  the electrode 

potential for severa l  different current  densities. 

concentration overpotential, non-uniform cur ren t  distribution, capillary 

shielding, and IR-drop a r e  also discussed in that report .  The procedure 

for  eliminating IR-drop - f rom the potential measurements  involves the mea-  

surement  of potential a t  various known distances f rom the electrode sur face  

and the extrapolation of these potentials to the potential a t  the electrode s u r -  

face. 

The methods used to reduce 

The extrapolation of these data was done by a leas t  squares  computer 

The polar iza-  program. 

tion curve for  the s i lver  foil anode i s  shown in  F igure  1. 

A sample of these extrapolated data is in Table 1. 

There  a r e  st i l l  some problems with the polarization data which we 

have not yet resolved. 

densit ies produce different surface roughness f ac to r s  when dissolving the 

s i lver  anode. 

r en t  density and thus the overpotential. 

would then show a relationship to electrode history. 

the effect of cur ren t  density on the electrode surface roughness factor.  

The f i r s t  is the possibility that different cur ren t  

An increased roughness factor would decrease  the actual cu r -  

The measured  electrode potential 

We plan to determine 

The second problem is the non-reproducibility of polarization measu re -  

2 ments  made a t  cur ren t  densities below 1 m a / c m  . This,  however, does not 

severe ly  hinder the comparison of our data with Wagner 's  theory. 

comparison can be made using the polarization data obtained for  the cur ren t  

density range of 1 to 5 m a / c m  . 

A good 

2 This fivefold change in cur ren t  density r e p r e -  

mv  
m a / c m 2  

o r  a change of 32070 in sen ts  a change in ha of 1 3 . 7  mv to 4 . 3  
m a / c m  
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ka /a .  

distribution (Final Report' of J P L  contract  951554) were  a l so  ca r r i ed  out in 

this cur ren t  density range. 

(See F igure  1.)  The studies of the effect of geometry on cur ren t  density 

Possible  Use of the Polarization Curve for Surface Area  Estimation 

Polarization measurements attempted on s intered s i lver  electrodes 

gave very  poor results.  

indefinitely. 

caused by the electrode reaction within the pores  of the s intered electrode 

a r e  very difficult to s t i r  away. 

ducibility which we experienced. 

The major difficulty was that the potentials drifted 

A possible explanation for this is that concentration gradients 

This would also account for the poor r ep ro -  

Because of this problem, we a r e  investigating another system for s u r -  

The electrode reaction of this system i s  the evolu- face  a r e a  measurements .  

tion of hydrogen a t  the s i lver  cathode in  KOH. 

this system. 

react ion p rogres ses  as does the s i lver  anode in ammoniacal electrolyte. 

second is that the slope of the polarization curve dAE/dJ is much s teeper .  

Thus much l a rge r  e r r o r s  in the potential measurements  can be tolerated. 

There  are two advantages to 

The f i r s t  is that the electrode surface does not change as the 

The 

Conclusions and Future  Work 

Although some problems were  encountered in  the polarization measu re -  

ments ,  a polarization curve of the s i lver  foil anode in the ammoniacal e lectro-  

lyte has  been obtained which can be used to determine values of ha for  a com- 

par ison of our current  density distribution data with Wagner 's  theory. 

plan a s e r i e s  of experiments where we will determine J/JaVe for  various 

W e  
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electrolyte conductivities, 0, electrode widths, Z a ,  and cur ren t  densit ies 

(ha changes as a function of current  density). 

can then be determined f rom the experimental data and then J/Jave can be 

calculated f r o m  Wagner's theory for comparison. 

Values of the pa rame te r  k a / a  

The ammoniacal-silver anode was found unsatisfactory for  surface 

area determinations of s intered electrodes.  

tion a t  a s i lver  cathode) i s  being investigated. 

An al ternate  sys tem (Hz evolu- 
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S E C T I O N  I 1  

DETERMINATION O F  EFFECTIVE 

ELECTROLYTIC SURFACE AREA 

Introduction 

The purpose of our work i n  this section of the contract  is  to find and 

apply methods other than the one previously reported for the determination 

of the effective electrolytic surface area of s intered s i lver  e lec t rodes , .  

The reason for  this is to pe rmi t  us  to check the accuracy of that  method, 

which involves the measurement  of the t ime during which the potential of 

an Ag-Ag2O electrode remains  essentially constant under the influence of 

a constant applied current .  The principle upon which the method is  based 

2 

is that the thickness of the oxide layer formed on the surface of the s i lver  

is a function of the cur ren t  density. By varying the cur ren t  applied to an 

electrode of unknown surface a r e a  until the length of the Ag-Ag20 plateau 

matches the plateau length of a smooth standard electrode,  one can then 

a s sume  that the electrodes were  oxidized a t  the same  cur ren t  density and 

have equal depths of penetration. 

the unknown electrode, one can calculate the surface area. 

F r o m  the cu r ren t  and cur ren t  density a t  

More detail is 

2 given in  a previous r epor t  . 
To check this method we have prepared  s intered electrodes of cal-  

culated known surface a rea .  

lytic surface a r e a s  were  determined. 

These were oxidized and their  effective electro-  
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Experimental 

The sintered electrodes of known surface a r e a  were  prepared  f rom 

si lver  powder consisting of spherical  s i lver  par t ic les  of known diameters .  

These spherical  s i lver  powders were obtained f rom Par t i c l e  Information 

Service,  600 South Springer Road, Los  Altos, California 94022. The pow- 

d e r s  had been separated into various s ize  ranges by an air p r e s s u r e  flow 

sys tem in which the heavy, large diameter par t ic les  were  trapped and the 

light, small diameter par t ic les  were collected from .the column a t  different 

air p re s su res .  The par t ic le  s ize  ranges of the powders used in the p repa ra -  

tion of the sintered electrodes a r e  given in Table 2 . .  By use of a microscope 

with a vernier  eye piece,  the spread of diameters  of the par t ic les  in a given 

s ize  range was determined. (Table 3 ) .  The distribution i s  seen to be approxi- 

mately gaussian. 

These powders were  pressed into electrodes and sintered at  6OO0C 

for  3 0  minutes. The electrodes were then weighed and the total surface a r e a  

calculated. The formula used for this calculation is  given below. 

6w 
Pd 

d = diameter  of par t ic le  
p = density of s i lver  
w = weight of electrode 
A = total surface a r e a  

A = -  

2 If the surface a r e a  is expressed as an a r e a  p e r  unit m a s s  ( cm /gm) ,  the 

formula  is rear ranged  to give the following: 

a r e a  - 6 - -  
unit m a s s  pd 

In this calculation we a s sume  that the total sur face  a r e a  i s  the sum of the 

sur face  a r e a s  of the spherical  particles that make up the electrode. The re  

is a possible e r r o r  evident in this assumption. The total surface a r e a  w i l l  be 
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l e s s  than the sum of the par t ic le  surface a r e a s  because p a r t  of the surface of 

each of the par t ic les  will be pressed  against i t s  neighbors. 

radius of this contact a r e a  is smaller  than the depth of penetration of the oxide 

layer ,  the quantity of s i lver  oxidized will be virtually unchanged by the contact. 

Only i f  the par t ic les  a r e  p re s sed  or melted together until the radi i  of the 

contact areas become la rge  compared to the depth of penetration does ser ious 

e r r o r  resul t  f r o m  the assumption that the ent i re  spherical  surface reac ts .  

Microscopic examination of the electrodes shows that l i t t le distortion o r  

melting took place. 

of s intered electrodes made f rom particles of each s ize  range. 

electrodes were sintered, they were soaked in 0. 1 N KOH for  15 minutes. 

They were  oxidized, the cur ren t  densities were  determined f rom the standard 

curve; and the surface a r e a  was calculated. The reproducibility of the oxida- 

tion runs was i770. 

obtained f rom these experimental measurements  a r e  a l so  shown in  Table 2. 

However, i f  the 

Table 2 l i s t s  the calculated surface area pe r  unit mass 

After these 

The effective electrolytic surface a r e a s  pe r  unit m a s s  

Re s u l  t s and Di s cus sion 

F r o m  Table 2,  one can see that the percentage e r r o r  for  the smal le r  

s ize  ranges ( 6  to 9 microns)  is much grea te r  than for the la rge  s ize  ranges 

(24 to 48 microns) .  

oxide is formed, there  i s  the possibility of a filling of the holes in an electrode 

if the depth of penetration is sufficient. 

dimensions of the open spaces in the electrode a l so  decrease.  

with smal le r  par t ic les  a fixed depth of oxidation is m o r e  likely to resul t  in a 

filling of the open spaces  than i s  the case  with l a rge r  par t ic les .  

Since there  is  expansion of the s i lver  par t ic les  as -silver 

As the par t ic le  s ize  decreases ,  the 

Therefore,  

I t  appears  
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probable that en t i re  regions of an  electrode prepared  f rom sufficiently smal l  

par t ic les  can be made  electrochemically inactive by being sealed off f rom the 

remainder  of the electrode. 

Calculations made for  electrodes prepared  f rom par t ic les  of the s izes  

that we used indicate that the volume increase  ranges f rom about 270 for  the 

l a rges t  par t ic les  to about 570 for  the smal les t  par t ic les .  Since even close 

packing of spheres  gives about 26y0 open space,  i t  is evident that all holes 

o r  p o r e s  in the electrodes a r e  not in any case  being filled by oxide formation. 

Therefore ,  unless very uneven oxidation occurs  in our electrodes in the ear ly  

s tages  of the run,  there  appears  to be small likelihood of a seal-off of seg-  

ments  of the electrode. Much smaller  par t ic les  would be required.  

Qualitative experiments made upon new vacuum-deposited s i lver  

sur faces  indicate that 0. 1 N KOH does not wet the s i lver .  

in sur face  a r e a s  for  electrodes with smal l  par t ic les  may  be caused by non- 

penetration of electrolyte into the smal l  pores .  A s  noted below, we plan to 

study this problem. 

The discrepancies 

Future Work 

Additional electrodes prepared f rom spherical  par t ic les  will be studied 

in o r d e r  to resolve the problem of discrepancy of calculated and measured  

sur face  a r e a s  where small par t ic les  a r e  used. 
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S E C T I O N  I 1 1  

THE EFFECTS O F  ULTRASONIC VIBRATIONS 

ON THE OXIDATION O F  SILVER 

Int r o duc t ion 

The depth of oxidation of a smooth s i lver  e lectrode is a function of the 

cur ren t  density. 

electrolytic surface a rea .  

the extent to which this oxidation depth is a l te red  by physical s t r e s s e s ,  such 

as ul t rasonic  vibrations, 

This observation is the basis  for a determination of effective 

In this p a r t  of our  p rogram,  we a r e  determining 

4 Skalozubov, Kukoz, and Mikhailenko have observed a 10% increase  in 

charging capacity of s intered silver e lectrodes by subjecting them to ultrasonic 

vibrations during the f i r s t  thirty minutes of the f i r s t  oxidation. The electrodes 

w e r e  exposed to 21,000 her tz  at a power density of 2 - 3  wat ts /cm2 of electrode 

a r e a  at 20 f 2OC. A mercury-mercur ic  oxide re ference  electrode w a s  used to 

follow the oxidation. 

showed that the 10% increase  was preserved .  

unspecified power density increased the capacity of the s intered electrode up 

Subsequent discharge-charge cycles without vibrations 

Vibrations a t  100 hz and an 

to 207?J. 

The explanation for  this increase  in  charging capacity was given as an  

Our purpose is to de t e r -  i nc rease  in  the effective surface a r e a  of the s i lver .  

mine whether this increase  is caused by (1) f ractur ing of the oxide layer ;  

(2) increased  circulation of electrolyte to previously unreacted s i lver  sur faces ;  

o r  ( 3 )  other factors  not yet considered. 
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Experimental 

To eliminate the problems associated with electrolyte circulation 

through deep po res ,  s i lver  ‘foil was chosen for  initial observations.  

foil  d i scs  with a total geometric surface a r e a  of 0.  688 crn2 were  oxidized a t  

150.0 vamps and 20.0 f . l0C without the vibrations and the roughness factor 

was calculated to be 1.16 f .02 (Table 4). 

Silver 

A mercury-mercur ic  oxide r e f e r -  

ence electrode was used to follow the reaction. 

and frequency of our  ultrasonic generator caused the mercu r i c  oxide to sepa r -  

a te  f r o m  the mercu ry  and remain suspended in the solution. In o rde r  to retain 

I t  was found that the energy 

confidence in the re ference  electrode, we used an electrode which could be 

located outside the ultrasonic vibrator (F igure  2) .  

e lectrode described by Wales and Burbank 

The s i lver  -s i lver  oxide 

5 was prepared  and was found to be 

suitable. 

unstable during the r i s e  a t  the end of the plateau (F igure  3 ) .  

Even with the external reference half-cell,  the potential was very 

Thermocouples 

w e r e  used to monitor the temperature  because thermometers  were  rendered 

use l e s s  by the vibrations. The temperature  of the solution was controlled 

only to k2OC because the cooling was not efficient enough to counteract the 

heating caused by the vibrator.  

capacity to be very  dependent on temperature  

be bet ter  controlled. 

Previous experiments have shown the charging 

2 
so  the tempera ture  will have to 

Data and Resul ts  

f l  

Oxidations of s i lver  foil subjected to vibrations of a frequency of 

80,000 hz and a power density of 120 wat t s /cm2 were  ca r r i ed  out at  22  f Z0C 

and 218 yamps/cm2 using the s i lver-s i lver  oxide reference electrode. The 
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reproducibility was only *570 but the roughness factor was 1.25,  an increase  

2 of 870. One run was made at a lower cur ren t  density (98.8 yamps /cm ) and 

a roughness factor of 1. 45 was obtained for  an increase  of 2570 (Table 4). 

Conclusions and Future  Work 

The increase  in charging capacity of a s i lver  foil electrode, caused 

by ultrasonic vibrations,  shows that the increase  in effective surface a r e a  

is probably caused, a t  least  in  part ,  by fracturing of the oxide layer .  As 

one would expect, more  fracturing occurs  when the oxidation requi res  a 

longer time and more  fracturing resu l t s  in a grea te r  increase  in charging 

capacity. 

resul t  as the f rac tures  in  the oxide surface intermittently open cur ren t  paths 

of reduced resis tance.  

electrically res is tant  silver(1) oxide layer  covers the fracture .  

The unstable potential during the las t  s tages  of oxidation may  

The potential is momentarily depressed until the 

Future Work 

Since depth of oxidation is temperature-dependent,  the temperature  

will be controlled to k0. l0C.  ' With this refinement, p rec i se  measurements  

of increase  in charging capacity a t  different charging r a t e s  will be made. 

Silver foil will be subjected to the vibrations before oxidation ra ther  than 

during oxidation to determine the pers is tence of any s t ra ins  resulting fr0.m 

the vibrations. Charging capacity will be studied a s  a function of frequency 

and power density of the vibrations. Then these experimental techniques will 

be extended to sintered silver electrodes.  
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TABLE 1 

Extrapolated Polar izat ion Data 

s tandard 
de vi a t  ion 

(mv) 

Current 
density 

2 ( m a / c m  1 

r) 

(mv) 
( extrapolate d) 

slope 
d&/dx 

(mv/ inc  h) Run # 

107 

110 

113 

116 

119 

122 

125 

128 

131 

134 

137 

140 

143 

146 

149 

152 

155 

158 

161 

164 

3.22 69.97 809.7 0.4760 

2. 58 59. 81 648.3 0. 5121 

1.94 52. 78 485.3 0.4190 

0.4671 1.61 49.34 405.9 

326.0 1. 30 45.43 0.  3033 

0.964 244.0 40. 53 0.2136 

162.9 

80.60 

0.645 

0.  323 

35.05 

28 .  84 

57.64 

0. 3478 

0.2984 

634. 5 2 .57 0.3831 

1.93 

6.48 

52. 52 476. 5 0.2035 

0. 9987 

1.6975 

81.02 

80.12 

74.83 

72.18 

1606. 5 

1431. 5 

1273. 5 

5. 78 

1. 1466 5. 14  

4. 50 

3.86 

3.21 

1112. 5 0.7992 

0.6467 

0.2867 

69.56 953.1 

791.7 

392.9 

64.35 

50.89 1. 61 0.2521 

46.38 1 .28  315.3 0.4334 

0.966 42.37 235.6 0.1306 

0.642 36.48 156.1 0. 1715 
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TABLE 3 

Pa r t i c l e  Counts of Spherical Silver Pa r t i c l e s  

24 to 48 micron range 
number of diameter s ize  
par t ic les  in microns 

3 46 

16 39 

1 7  33 

11 26 

2 

par t ic les  50 

20 

average 3 3  

6 to 9 micron  range 
number of diameter s ize  
par t ic les  in microns 

1 10 

8 9 

22 8 

18 7 

1 6 

par t ic les  50 average 8 



150.0 

150.0 

150.0 

150.0 

150.0 

150.0 

150.0 

150.0 

150.0 

150.0 

150.0 

150.0 

150. 0 

150.0 

150.0 

68.0 

TABLE 4 

Effect of Ultrasonic Vibrations Upon 

the Roughness Factor  of Silver Foi l  

Temperature  
("C. ) 

20.0 kO.1 

20.0 fO.l 

20.0 f 0.1 

20.0 f 0.1 

20.0 f 0.1 

20.0 f 0.1 

20.0 f 0.1 

20.0 f 0-1 

20.0  f 0 .1  

20.0 f 0.1 

22 f 2 

22 f 2 

22 f 2 

22 k2 

22 f 2 

22 f 2 

Plateau 
Length 

(Minutes) 

4. 70 

4.75 

4.45 

4. 30 

4.10 

4.95 

4.75 

4.80 

4. 50 

4.47 

5. 30 

5.55 

5. 60 

4. 80 

4. 90 

17.30 

Ultrasonic 
Vis r ation s 

No 

N o  

N o  

No 

N o  

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

16 

Roughness 
Factor  

1. 18 

1. 18 

1. 14 

1.12 

1.08 

1.21 

1. 18 

1.19 

1. 15 

1. 14 

1.26 

1. 28 

1.23 

1 . 1 9  

1.20 

1.45 
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Figure  1 
s i lver  foil electrode. 
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Figure 2 
vibrator.  
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Figure 3 
plateau of s i lver  subjected to ultrasonic vibrations. 
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