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ABSTRACT 

An examination of the f i rs t  o r d e r  s teepest  descent method 

for  minimizing deterministic functions leads to  the specification 

of sufficient conditions assur ing  the convergence with probability 

one of a new stochastic approximation algorithm. The algorithm 

is interpreted as a stochastic descent method using a constant, as 

opposed to a continually decreasing s tep length. The c ruc ia l  con- 

vergence condition i s  that the variance of the gradient should be 

zero  as well as a minimum at the solution point. 

The rather  narrow c l a s s  of problems to which the new 

algorithm is applicable can be extended to include many useful 

problems by employing accelerator  methods adapted f rom the 

field of Monte-Carlo techniques, both to sat isfy the condition, and 

to acce lera te  convergence. 

Simple i l lustrative examples demonstrating the effective - 
ness  of the new algorithm a r e  presented. 
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The convergence conditions for the basic stochastic 

approximation algorithm originated by Robbins and Monro [l] 

a r e  now well known. Important resul ts  are due to  Blum [2], 

Dvoretzky [3], and Gladyshev [4]. The cruc ia l  condition for  

convergence with probability one i s  that  the step s ize  should 

progressively decrease  in  such a way that the stochastic var ia -  

tion in  the correct ion t e r m  dies out. 

Although the stochastic approximation algorithm can be 

given numerous interpretations,  one par t icular ly  fruitful point 

of view i s  to in te rpre t  i t  as a stochastic descent method for  

finding the expected minimum of a stochastic function. In this  

light it i s  logical to investigate possible correspondences with 

determinis t ic  descent algorithms. The determinis t ic  counter- 

pa r t  of the Robbins-Monro algorithm, the first o r d e r  s teepest  

descent method, differs only i n  that a constant s tep length can 

be used, thereby resulting in a fas ter  convergence for a n  

equivalent problem. 

is  taken to mean that deterministic problem which is identical 

with some stochastic problem under consideration except f o r  the 

absence of the pr imary  random variable(s).  

In this paper the term 'equivalent problem'  

The present  paper is concerned with developing a 

stochastic approximation algorithm whose ra te  of convergence 

i s  comparable to that of the deterministic s teepest  descent 

method for the equivalent problem. This algorithm uses  constant 



step lengths a s  opposed to the conventional schemes,  and is 

shown to converge under the appropriate conditions with pro-  

bability one. 

2 .  Convergence of the Deterministic Algorithm 

As an introduction it i s  useful to derive briefly sufficient 

convergence conditions for the deterministic steepest  descent 

algorithm; i t  will  be found in  the next section that these a r e  very 

s imilar  to  the stochastic convergence requirements .  

the deterministic algorithm 

Consider 

for minimizing with respect  to u some function H(u). 

A aHL (uk) 
i s  assumed to exis t  everywhere; Uk i s  an 

auk 
(uk) = 

n-vector. 

in  f(u) ) a t  u = 0. 

under the following conditions : 

Let there  be a unique solution point (i. e . ,  a zero  

The algorithm converges to  the solution point 

the inequality being s t r ic t  except a t  the solution T 
(a) \f(q 3 0 ,  

point; (2) 

Proof:  

Forming the inner product: 
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Using the inequality of Eqn. ( 3 ) ,  

T 2 T  T u u - { 2 P  - P d}Ukf(uk) ; U k t l  U k t l  k k  

and ii Eqn. (4 j  is satisfied 

Hence i f  u 

Taking the infinite sum of Eqn. ( 5 )  

i s  finite, then uk and f(u ) a r e  finite for all k > 1. 1 k 

m 

T 
G U ~ U  1 1  - {Zp - p‘d} 1 uzf (u , )  ; 

k= 1 

ukf(uk) < a  , which must then imply that f(u ) + 0 uk’ k hence 

k=  1 

and so the algorithm converges.  

3 .  Convergence of the Stochastic Algorithm 

In considering the stochastic approximation algorithm, 

nconvergencen will be used in  two senses .  “Deterministic 

convergencen will be taken to mean the convergence of the 

algorithm in expectation; that i s ,  E\ --i* 0 ;  

%tochastic convergence ‘I will be taken to mean the reduction 

of the variance of the correct ion te rm p f ( x )  to ze ro  as the 

solution point is reached. 

very s imilar  conditions hold on the one hand for the convergence 

of the deterministic algorithm given above; and on the other f o r  

k + . 

In this section i t  will be shown that 

the deterministic convergence of the stochastic algorithm to be 

de s c 1- ibe d . 
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The problem is now to minimize with respect  to u the 

function EH(u, 5 )  where E is a vector of random variables  with 

zero expectation and finite variance.  The stochastic descent 

algorithm is 

- - Uk - pf(uk) 9 k t l  U (7) 

where as before the s tep length P i s  a constant, but now 

which is a random variable .  

moments of f(u ) exist ,  and let the unique solution point be 

Suppose that all the relevant 

k 

u = 0 at  Ef(u) = 0. Then the algorithm converges to the solu- 

tion point under the following conditions: 

(a) ,,TEE f(u k ) 2 0 , the inequality being s t r ic t  except at the 

solution point; ( 8 )  

Here E 

of the random variable E 

Proof: 

denotes expectation with respec t  to the cur ren t  sample E 

k ’  

Taking the total  expectation (i. e . ,  on all samples  of 5 

from f, through E ) of the inner product fo rm of Eqn. (7)  k 

Using Eqn. (9) af ter  taking i t s  total  expectation also, 
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and if Eqn. (10) is satisfied 

T d Eu u T 
EUk+l U k t l  k k '  

T 
k k  

Assuming the moments of u1 t o  be finite then u u i s  a super -  

martingale [ 51. Again taking a n  infinite sum of Eqn. (1 1 ) 

T T 2 T 
Eu,u, d Eu 1 1  u - { Z P  - P d } C  Eukf(uk) , 

which implies that 

i T  Eukf(u k ) c w . 

k= 1 

Using the expectation of Eqn. (9 ) ,  Eqn. (13) implies that 

and since it is universally t rue that 

then 

(13)  

Hence Ef(u ) + 0 (but not necessarily monotonically unless Ef(u) 

is monotonic in u ) ,  and so u + 0 a s  k -3 13 ; and the stochastic 

algorithm converges in expectation. 

k 

k 

The close similari ty in the conditions for each of the two 

proofs is  to be noted. Intuitively i t  may  be expected that the 

ra tes  of convergence (in the sense of deterministic convergence 
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in the stochastic c a s e )  will be substantially the same for both 

the stochastic problem and i t s  equivalent determinis t ic  problem. 

Only a few fur ther  steps a r e  required to show conver- 

gence with probability one under the same conditions. 

Proof: 

It has a l ready been shown that 

co 

T v 2 Eukf(u k ) < OD 

k= 1 

Hence over some subsequence of the sequence {k} 
T 
k k  E f ( \ )  + 0 with probability one. But u u is a super -  

$ 5  T martingale, implying that u u and hence a l so  u converge 

with probability one to  a random variable [5].  

k k  k 
These two 

facts a r e  sufficient for convergence of the algorithm with 

probability one to the solution point. 

4. Interpretation of the Convergence Conditions 

It is easily seen that the implication of the convergence 

condition of Eqn. ( 9 )  is that a t  the solution point not only is 

Ef(u) zero,  but so  a l so  is Var{f(u)}. 

from the corresponding condition for the original stochastic 

approximation scheme. 

[4] there  is the looser requirement that Var{f(u)} should have 

some finite minimum, not necessar i ly  zero,  a t  the solution 

point. 

This differs quite sharply 

As is given by Gladyshev for  example 

At f i r s t  sight this is a monumental difficulty, since very  
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few functions f(u) ,  excluding even the l inear case ,  satisfy 

this  condition. 

to problems in which there i s  simple multiplicative noise. 

Example 1: 

Apparently the new method can only be applied 

Let f(u) = u t uf where f has ze ro  mean and unit variance.  

This sat isf ies  the conditions given by Eqns. (8) through (10); the 

solution point is at  u = 0. 

simulation of the descent algorithms over 2 5  i terat ions.  

the new algorithm (curve 2 )  i s  a considerable improvement over 

the original stochastic approximation scheme (curve 1) where in 

this  case  the s tep length P decreases  a s  l/k from i t s  initial 

value. 

the steepest  descent method i s  given for comparison (curve 3 ) .  

Figure 1 shows the resu l t s  f rom the 

Clear ly  

The solution of the equivalent deterministic problem by 

5. Application of Monte -Carlo Accelerator  Techniques 

The c l a s s  of problems which can  be solved effectively 

by use of the new stochastic dzscent algorithm can be consider-  

ably enlarged by borrowing accelerator  techniques from the 

field of Monte-Carlo methods. To  date there  seems  to have 

been little cross-fert i l ization between these two fields: the 

monograph of Hammersley and Handscomb [6]  has been found 

very useful in the development of the work in this section. 

The so-called naive Monte-Carlo method i s  itself a 

stochastic approximation scheme of the original type using a 

harmonically decreasing step length. Let  f .  be a sequence of 
1 
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< ,.,,,,,,.dent -AC.nT)- randem s a m p l e s  from. s e m e  prnhabili ty distribution; 
- 

let g ( e . )  be a sequence of random variates  with expectation g. 
1 

Then u = g(ei)  i s  an unbiased est imator  of E .  This sum- k k  
i =  1 

mation can  be written iteratively in  the form:  

which is  immediately recognizable. 

It might be expected that Monte-Carlo acce lera tor  

techniques would be of considerable use in  the present  algorithm, 

in  the same  way that they a r e  for the conventional stochastic 

approximation algorithm. On examination, two methods in 

par t icular  a r e  immediately applicable; the antithetic var ia te  

method, and the control variate method. 

(a) The Antithetic Variate Method 

The basic idea of the antithetic variate method is to use 

instead of the sample g ( e . ) ,  a linear combination of two negatively 

correlated samples such that the expectation remains  unchanged. 

If 5 .  i s  a sample from a symmetr ic  distribution with ze ro  mean, 

and g(5,) i s  predominantly odd in 5. 

1 

1 

then the substitution 
1' 

i s  both simple and effective. 

Consider now the application to  the new stochastic approxi- 

mation algorithm, replacing f(uk) by f"(u ) in  Eqn. ( 7 )  where k 
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Under the above assumption on the symmet ry  of the distribution 

for ek, E?(\) = Ef(uk) so that if the modified algorithm con- 

verges, it  will do so to  the solution point. If i n  addition 

.L 0,. 

where u represents  the solution point u = 0, then exactly as i n  the 

equivalent deterministic problem, convergence to the solution 

point can be achieved over some range of P for functions f(u) 

which do not increase too fast with u (i. e . ,  Eqn. (9) can be 

satisfied over all the interesting range of u ) .  

Example 2: 

t For  this example 2 
k k  Let f(uk; = (1 t 5 )u t 0 .  I ( , )  

Eqn. (9)  does not hold, so the new dlgorithm will not converge 

with probability one; the original stochastic approximation 

scheme with decreasing as l /k  does so however. On the other 

hand 

r"c'k) = ( l  Ek)\ 2 

which satisfies Eqns. (9)  and 

3 2 ' '* l(uk ' 3%E,) 9 

14)'k, so that the moc ified new 

algorithm will converge with probability one. F igure  2 shows 

the resu l t s  of simulation of the various algori thms over 2 5  itera- 

tions. The modified new algorithm (curve 3)  again converges 

:$ 

probability of the algorithm diverging, but in  pract ice  this does 
not invalidate the scheme. 

Actually in  this example for any finite P there  is a small finite 
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considerably faster  than the original stochastic approximation 

algorithm (curve 1).  If the antithetic variate technique i s  not 

used, stochastic convergence is not a s su red  (curve 2 ) .  

(b) The Control Variate Method 

Essentially the control var ia te  method spli ts  the var ia te  

g( ti) into the sum of two pa r t s :  g(Ei) = ;(si) t gc(Ei). The spli t  

is made so that the expectation of g ( E . )  may be found analytically. 

Let this expectation be E ;  then a n  unbiased est imate  of the 

expectation of g(ei), denoted by E ,  is given by 

rcI 

1 

i =  1 

and this estimate will have a smal le r  variance than the est imate  

computed by the naive Monte-Carlo method for the s a m e  value 

of k. 

Turning to the present descent method for solving Ef(u)  = 0 ,  

a similar  split can be made:  

Ef(u) = EF(u) t Efc(u) 

where E?(u) = f (u)  can be found analytically. 

the sample f (u  ) i s  replaced by 

, 
A 

Then in Eqn. (7)  

k 
A 

(‘k) * 

Used by i tself ,  the control variate method will not be able to 

widen the c l a s s  of problems which the new stochastic descent 

algorithm can handle unless fortuitously ck can be contrived 

only to  enter  multiplicatively into f (u,). C However used in 
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As in the previous example f(u ) = (1 f ck)uk 2 f 0. 1(uk f f k )  3 . k 

The antithetic variate saniple f ' ( u k )  given by Eqn. (16) is split 

into the two par t s :  

F o r  this example, then, f ( u  ) = 2uk if 5, has unit variance.  

descent algorithm i s  given by Eqn. (7), substituting Zu t fc(u,) 

for f ( \ ) .  Figure 3 shours the improvement obtainable by the use 

of a combination of the antithetic and control variate methods 

The k 

k 

(curve 2 )  over  the use of the antithetic var ia te  method only (curve 1). 

6. Conclusion 

It has bc,eii shown a t  any rate for the simple and ra ther  

contrived examples given in the previous sections,  that a con- 

stant s tep  length algorithm con\rerges considerably f a s t e r  than 

the usual stochastic approximation algorithm. 

reasonable in  general  (except maybe for pathological problems)  

if the variance of the parameter  u can be reduced fast  enough. 

Hopefuli? t h i s  can be  achieved by  using Monte-Carlo acce lera tor  

techniques. 

This i s  intuitively 

Further  examination of deterministic descent methods is 

likely to ledd to new algorithms for stochastic optimization. The 
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ideal  goal would be to c rea te  a range of algorithms so that most 

problems could be solved as quickly and efficiently f rom the 

computational point of view a s  their  deterministic counterparts.  
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