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ABSTRACT

An examination of the first order steepest descent method
for minimizing deterministic functions leads to the specification
of sufficient conditions assuring the convergence with probability
one of a new stochastic approximation algorithm. The algorithm
is interpreted as a stochastic descent method using a constant, as
opposed to a continually decreasing step length. The crucial con-
vergence condition is that the variance of the gradient should be
zero as well as a minimum at the solution point.

The rather narrow class of problems to which the new
algorithm is applicable can be extended to include many useful
problems by employing accelerator methods adapted from the
field of Monte-Carlo techniques, both to satisfy the condition, and
to accelerate convergence.

Simple illustrative examples demonstrating the effective-

ness of the new algorithm are presented.
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The convergence conditions for the basic stochastic
approximation algorithm originated by Robbins and Monro [1]
are now well known. Important results are due to Blum [2],
Dvoretzky [3], and Gladyshev [4]. The crucial condition for
convergence with probability one is that the step size should
progressively decrease in such a way that the stochastic varia-
tion in the correction term dies out.

Although the stochastic approximation algorithm can be
given numerous interpretations, one particularly fruitful point
of view is to interpret it as a stochastic descent method for
finding the expected minimum of a stochastic function. In this
light it is logical to investigate possible correspondences with
deterministic descent algorithms. The deterministic counter-
part of the Robbins-Monro algorithm, the first order steepest
descent method, differs only in that a constant step length can
be used, thereby resulting in a faster convergence for an
equivalent problem. In this paper the term 'equivalent problem'
is taken to mean that deterministic problem which is identical
with some stochastic problem under consideration except for the
absence of the primary random variable(s).

The present paper is concerned with developing a
stochastic approximation algorithm whose rate of convergence
is comparable to that of the deterministic steepest descent

method for the equivalent problem. This algorithm uses constant



step lengths as opposed to the conventional schemes, and is
shown to converge under the appropriate conditions with pro-

bability one.

2. Convergence of the Deterministic Algorithm

As an introduction it is useful to derive briefly sufficient
convergence conditions for the deterministic steepest descent
algorithm; it will be found in the next section that these are very
similar to the stochastic convergence requirements. Consider

the deterministic algorithm

Uy =Yy Py (1)

for minimizing with respect to u some function H(u).

T
- )é oH (uk)
k' auk

n-vector. Let there be a unique solution point (i.e., a zero

is assumed to exist everywhere; u is an

in f(u)) at u = 0. The algorithm converges to the solution point
under the following conditions:

(a) u.;ff(u.k) 2 0, the inequality being strict except at the solution

point; (2)
®) el < aul ) ; (3)
(c) p<2/4d. (4)
b o

Forming the inner product:

g1 Ut = B " 2P o Iy + pEttey) T ilay) -




Using the inequality of Eqn. (3),

T T 2., T ,
Uppy Yiepr S Uty T {20 - pTabuy f(uy) ()

and if Eqn. (4) is satisfied
T T
Ukl Ykt S YUk (6)
Hence if uy is finite, then Uy and f(uk) are finite for all k > 1.

Taking the infinite sum of Eqn. (5)

@

T 2 T
u u_ < urlru1 - {2p - p~d} Z ukf(uk) R
k=1

T . .
hence z uy f(uk) <® . which must then imply that W f(uk) —> 0
k=1

and so the algorithm converges.

3. Convergence of the Stochastic Algorithm

In considering the stochastic approximation algorithm,
"convergence" will be used in two senses. "Deterministic
convergence” will be taken to mean the convergence of the
algorithm in expectation; that is, Euk 2> 0; k=—=>=,
"Stochastic convergence" will be taken to mean the reduction

of the variance of the correction term Pf(uk) to zero as the

solution point is reached. In this section it will be shown that
very similar conditions hold on the one hand for the convergence
of the deterministic algorithm given above; and on the other for

the deterministic convergence of the stochastic algorithm to be

described.




The problem is now to minimize with respect to u the
function EH(u, £) where £ is a vector of random variables with
zero expectation and finite variance. The stochastic descent
algorithm is

weyq =9y - PEY) (7)
where as before the step length P is a constant, but now

A 3H(uk, gk)

U T

f(u

which is a random variable. Suppose that all the relevant
moments of f(uk) exist, and let the unique solution point be
u =0 at Ef(u) = 0. Then the algorithm converges to the solu-

tion point under the following conditions:

(a) u.gEg,f(uk) 2 0, the inequality being strict except at the

solution point; _ (8)
2

1) Egllttu)l® < au Egtu) ; (9)

(c) p<2/d. | (10)

Here E.{;3 denotes expectation with respect to the current sample
of the random variable gk .
Proof:

Taking the total expectation (i.e., on all samples of §
from ’;“1 through Ek) of the inner product form of Eqn. (7)

T _ T 2 2
Eu ) Wy = Eu oy = 2PEu f(u ) + P E| £ )" .
Using Eqn. (9) after taking its total expectation also,

T T 2 T )
Eup g%y S By vy - {2p - p©d} Eu, f(u,) ; (11)




and if Eqn. (10) is satisfied

T T
=
Euk+l Wbl Eukuk . (12)

T
Assuming the moments of u, to be finite then ul;uk is a super-

martingale [5]. Again taking an infinite sum of Eqn. (l1)

T T 2 T
Eugu, < Euju, - {20 -p d}z Eu,_f(u)
k=1

which implies that

@©

Z Eugf(uk) <o | (13)
k=1

Using the expectation of Eqn. (9), Eqn. (13) implies that

@©

D Elglf <=

k=1
and since it is universally true that

2
Bl ® > 2]

then

@

2
D B |® < -

k=1

Hence Ef(uk) ~> 0 (but not necessarily monotonically unless Ef(u)

is monotonic in u), and sou, — 0 as k —> = ; and the stochastic

k )
algorithm converges in expectation.
The close similarity in the conditions for each of the two

proofs is to be noted. Intuitively it may be expected that the

rates of convergence (in the sense of deterministic convergence




in the stochastic case) will be substantially the same for both

the stochastic problem and its equivalent deterministic problem.
Only a few further steps are required to show conver-

gence with probability one under the same conditions.

Proof:

It has already been shown that

=
Z Eugf(uk) < =
k=1

Hence over some subsequence of the sequence {x}
T .
K Uk 1S a super-

T . -
ukEEf(uk) —> 0 with probability one. Butu K

T
Kk Uk and hence also u, converge

with probability one to a random variable [5]. These two

martingale, implying that u

facts are sufficient for convergence of the algorithm with

probability one to the solution point.

4. Interpretation of the Convergence Conditions

It is easily seen that the implication of the convergence
condition of Eqn. (9) is that at the solution point not only is
Ef(u) zero, but so also is Var{f(u)}. This differs quite sharply
from the corresponding condition for the original stochastic
approximation scheme. As is given by Gladyshev for example
[4] there is the looser requirement that Var{f(u)} should have
some finite minimum, not necessarily zero, at the solution

point. At first sight this is a monumental difficulty, since very




few functions f(u), excluding even the linear case, satisfy
this condition. Apparently the new method can only be applied
to problems in which there is simple multiplicative noise.
Example 1:

Let f(u) = u + u€ where £ has zero mean and unit variance.
This satisfies the conditions given by Eqns. (8) through (10); the
solution point is at u = 0. Figure 1 shows the results from the
simulation of the descent algorithms over 25 iterations. Clearly
the new algorithm (curve 2) is a considerable improvement over
the original stochastic approximation scheme (curve 1) where in
this case the step length P decreases as 1/k from its initial
value. The solution of the equivalent deterministic problem by

the steepest descent method is given for comparison (curve 3).

5. Application of Monte-Carlo Accelerator Techniques

The class of problems which can be solved effectively
by use of the new stochastic descent algorithm can be consider-
ably enlarged by borrowing accelerator techniques from the
field of Monte-Carlo methods. To date there seems to have
been little cross-fertilization between these two fields: the
monograph of Hammersley and Handscomb [6] has been found
very useful in the development of the work in this section.

The so-called naive Monte-Carlo method is itself a
stochastic approximation scheme of the original type using a

harmonically decreasing step length. Let 'g"i be a sequence of
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Then up = '12 Z g(gi) is an unbiased estimator of g.- This sum-

i=1
mation can be written iteratively in the form:
1
e = T lee eEd
which is immediately recognizable.

It might be expected that Monte-Carlo accelerator
techniques would be of considerable use in the present algorithm,
in the same way that they are for the conventional stochastic
approximation algorithm. ‘ On examination, two methods in
particular are immediately applicable; the antithetic variate
method, and the control variate method.

{(a) The Antithetic Variate Method

The basic idea of the antithetic variate method is to use
instead of the sample g(’g“i), a linear combination of two negatively
correlated samples such that the expectation remains unchanged.
If Ei is a sample from a symmetric distribution with zero mean,

and g(Ei) is predominantly odd in Ei’ then the substitution
a _ L -
e’ (5) = 5 {a(g) +gl-£,)}

is both simple and effective.

Consider now the application to the new stochastic approxi-

mation algorithm, replacing f(uk) by ia(uk) in Eqn. (7) where

\

! T T
) BH(uk, gk) SH(U.k, -Ek)

a1 .
-ZW au du

(u) (14)

k k i



Under the above assumption on the symmetry of the distribution
for Sk’ Efa(u_k) = Ef(uk) so that if the modified algorithm con-~

verges, it will do so to the solution point. If in addition

8H(u, £) _ _ OH(Y, -£)
ou - ou ’ (15)

where u represents the solution point u = 0, then exactly as in the
equivalent deterministic problem, convergence to the solution
point can be achieved over some range of P for functions f(u)
which do not increase too fast with u (i.e., Egn. (9) can be
satisfied over all the interesting range of u).
Example 2:

Let f(uk) = (1 + Sl?'(')uk + 0. 1(«'K + Sk)3. For this example
Eqgn. (9) does not hold, so the new algorithm will not converge
with probability one,; the original stochastic approximation
scheme with decreasing as 1/k does so however. On the other

hand
Plug) = (1 +EDu +0.1(us + 3w 8 (16)

which satisfies Eqns. (9) and (14) , so that the modified new
k algorithm will converge with probability one. Figure 2 shows
the results of simulation of the various algorithms over 25 itera-

tions. The modified new algorithm (curve 3) again converges

*

Actually in this example for any finite P there is a small finite
probability of the algorithm diverging, but in practice this does
not invalidate the scheme.

-10-
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considerably faster than the original stochastic approximation
algorithm (curve 1). If the antithetic variate technique is not
. used, stochastic convergence is not assured (curve 2).
(b) The Control Variate Method

Eséentially the control variate method splits the variate
g( §i) into the sum of two parts: g(Ei) = E(gi) + gc(Ei). The split
is made so that the expectation of E(’g“i) may be found analytically.
~ Let this expectation be g; then an unbiased estimate of the

expectation of g(£.), denoted by g, is given by
g(£.), g, is g

k

-~ 1 c
uk =8 + E Z g (Sl) ’
i=1

and this estimate will have a smaller variance than the estimate
computed by the naive Monte-Carlo method for the same value
of k.

Turning to the present descent method for solving Ef(u) = 0,

a similar split can be made:
Ef(u) = Ef(u) + EfS(u)
where Ef(u) = f(u) can be found analytically. Then in Eqn. (7)

the sample f(uk) is replaced by
flu,) + fc(uk) . (17)

Used by itself, the control variate method will not be able to
widen the class of problems which the new stochastic descent
algorithm can handle unless fortuitously Ek can be contrived

only to enter multiplicatively into fc(uk). However used in

-12-




Example 3:
. . _ 2 3
As in the previous example f(uk) =(1 + sk)uk + 0. l(uk + ’g"k) .

The antithetic variate sample ia(uk) given by Eqn. (16) is split

into the two parts:
z _ 2 e _ 3 2
f(uk) = (1 + Sk)uk ; f (uk) = 0. l(uk + 3uk'g°k)

For this example, then, E(llk) = 2u, if §k has unit variance. The

k

descent algorithm is given by Eqn. (7), substituting 2u,_ + fc(uk)

k
for f(uk). Figure 3 shows the improvement obtainable by the use

of a combination of the antithetic and control variate methods

(curve 2) over the use of the antithetic variate method only (curve 1).

6. Conclusion

It has been shown at any rate for the simple and rather
contrived examples given in the previous sections, that a con-
stant step length algorithim converges considerably faster than
the usual stochastic approximation algorithm. This is intuitively
reasonable in general (except maybe for pathological problems)
if the variance of the parameter u can be reduced fast enough.
Hopefuliy this can be achieved bv using Monte-Carlo accelerator
techniques.

Further examination of deterministic descent methods is

likely to lead to new algorithms for stochastic optimization. The

-13-
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ideal goal would be to create a range of algorithms so that most
problems could be solved as quickly and efficiently from the

computational point of view as their deterministic counterparts.

-15-
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