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ABSTRACT 

The vibrational character is t ics  of composite (cone -cylinder) 

shells a r e  investigated analytically and experimentally. 

of the c i rcu lar  joint connecting the conical and the cylindrical shell 

components i s  discussed in detail. Both the analysis  and the experimental  

resu l t s  reveal  that the derivatives of the mode functions a r e  discontinuous 

a t  the joint, where a V-shaped minimum of normal  displacement was 

observed in a l l  modes being excited. 

concentration i s  involved even in free vibrations of such shell  s t ructures .  

The jump conditions a r e  formulated for the cone-cylinder joint, and var ious 

approaches of solving this problem are  discussed. 

The behavior 

It i s  evident that dynamic s t r e s s  
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INTRODUCTION 

In the existing l i terature  on vibrations of e las t ic  shells,  abundant 

information has  been accumulated on the vibrational charac te r i s t ics  for 

e lementary shell configurations. 

with but a few exceptions, these previous investigations have been 

exclusively dealing with thin shells of revolution with simple, analytical 

meridian curves,  of which the cylindrical, spherical ,  and conical shel ls  

have received by f a r  the most  attention. 

developed general  finite -difference4 o r  numerical  integration5) techniques 

which allow the calculation of the natural  frequencie.s and mode functions of 

a r b i t r a r y  shel ls  of revolution, no specific discussion, however, is  available 

concerning vibrations of a composite shell  whose meridian contains a 

geometric o r  mater ia l  discontinuity. 

to provide prel iminary information of the boundary-laye r effects of such 

discontinuities when the composite shell i s  in vibration. 

Recent surveys 1, 2, 3''c indicate that, 

Although a few investigators have 

The present  investigation is intended 

Contradictory to what some previous authors  have expected. (e.. g..,. 

Ref. 7),  when a composite shell  is vibrating a t  one of i t s  resonant f r e -  

quencies, the mode shape in the meridional direction i s  not, a s  a rule,  

given by a smooth curve. On the contrary, the derivatives of all displace- 

ment  functions (including the slope of normal  displacement, 

be shown to be discontinuous a c r o s s  the joint. 

a w /  a s )  may  

This  i s  both an analytical 

:#Superscripts r e fe r  to references cited a t  the end of this  report .  



2 

deduction f rom elast ic  shell theory, and an actual observation f r o m  the 

mode -shape mapping in the present  experiments on two corn-posite (cone - 

cyl inder)  shell models, in which a V-shaped minimum of normal  displace- 

ment  w was observed in a l l  normal  modes being excited. 

An important consequence of this boundary-layer phenomenon i s  

the la rge  dynamic s t r e s s e s  induced in  the neighborhood of the joint. 

extremely sha rp  curvature change observed nea r  the joint indicates that 

the shell  mater ia l  may suffer local plastic deformation even when the 

vibration amplitude i s  relatively small. 

bending s t r e s s e s  may easi ly  lead to  mater ia l  fatigue o r  f rac ture  and thus 

requi res  special  attention in the analysis and design of such composite shell  

s t ruc tures .  

The 

The vibratory nature of the local  



ANALYSIS 

Discontinuities a t  Joints 

Before we examine the vibrational charac te r i s t ics  of a specific 

composite (cone -cylinder) shell, it  i s  expedient to classify the different 

types of discontinuities possible at  the joints of composite shel ls  of 

revolution, and discuss  their  effects on s t r e s s e s  and deformations. Let 

(r ,  8, z )  be the reference cylindrical coordinates, where z coincides with 

the ax is  of symmetry  of the shell, then the meridian curve of the mid-  

surface may  be represented by the parametr ic  equations 

r = r ( s )  , z = z ( s )  (1 1 

where s is the a r c  length measured  along the meridian.  

rad i i  of curvature  a r e  

The principal 

where pr ime denotes differentiation with respect  to the argument  s, a n d +  

is the colatitude angle between a normal and the z-axis, 

+ = tan-1 ( z t / r l )  ( 3  1 

F o r  a composite shell, r and z a r e  continuous functions of s, but their  

derivatives m a y  be discontinuous a t  the joint s = sjt.  
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Referr ing to the curvilinear coordinates (s, e), a f i r s t -o rde r  shell  

theory gives the following set  of equations governing the f ree  vibrations of 

shel ls  of revolution. These consist  of five equations of motion, 

rNs ,  s + Nse, e t  (Ns - N0)cos  4 + rQs/R1 = phruptt  

8 t t  t Ne, e t 2Ns6 C O S  9 t Q e  sin c$ = phrv rNse, 

rQs, s t Qe 6 t Q, cos 9 - rNs/R1 - N e  sin 9 = phrw, tt (4 1 

rMs,  s t Mse, 6 t (Ms - M ~ ) C O S  9 - rQ, = (Ph3/ 12) r P s ,  t t  

rMse, + Me, 0 + 2Ms6 C O S  - rQ0 = (ph3/12)rPe,  tt 

and eight constitutive equations, 

N, = C[(u ,  

N e  = C [ r -  '(v e t u cos 9 t w sin 4) t V ( U  

t w/R1)  t ( v / r ) ( v  6 t u cos 9 t w sin + ) I  

t w/R1)]  
9 9 s  

1 - v  
2 Q, =- CK [P ,  t w, - u / R 1 1  
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-. 
in which subscr ipts  following comma denote par t ia l  differentiation with 

respec t  to  the subscript  variables,  C = E h / ( l  - v 2 ) i s  the extensional 

modulus, D = Eh3/  12 (1 - v 2 ) the flexural modulus, and other notations 

a r e  those commonly used in shell theory. 

pa rame te r s  entering into the governing Eqs.  (4) and ( 5 ) ,  we can classify 

the possible joint discontinuities into the following categories:  

F r o m  an examination of the 

I. Geometric Di s continuitie s 

Joints where R1 i s  discontinuous. 
of this type i s  furnished by the joint connecting a hemi-  
spherical  bulkhead to a cylindrical shell. 

A familiar example 

Joints where +, or  equivalently, R2 is  discontinuous. 
The joint connecting a conical shell t o  a cylindrical 
shell, a s  discussed below, i s  an example. This type 
of joint has  a much s t ronger  discontinuity and, a s  w i l l  
be seen, may suppress  local deflection like a stiffening 
ring. 

Joints where the thickness h has  an abrupt change. If 
the difference in thickness i s  sufficiently large,  say a 
ratio of ten to one, then the thinner shell may be con- 
s idered clamped at the joint. 

11. Material  Discontinuities 

Joints of two shell components made of different mater ia l s ,  
so  that the elast ic  modulus E and Poisson ' s  ra t io  v change 
abruptly, 

It i s  evident that, in an actual joint, two o r  more  types of discon- 

tinuities l is ted above m a y  be present  together. In any case,  the conditions 

that mus t  be satisfied by the ten fundamental shell var iables  (eight i f  

c lass ical  shell  theory i s  employed) at the joint can be put into the following 

general  fo rm:  



in which the superscr ipt  I 1 - ' l  denotes the value a t  one side of the joint, 

- 0, while l'Sll the value a t  the other side of the joint, s = Sj t  + 0. = 'jt 

It is seen that the f i r s t  five conditions, ( 6 ) ,  ensure  the compatibility of 

the displacement field so that no cracks exist, and the remaining five 

conditions, (7), a r e  mere ly  Newton's third law that action equals reaction. 

If we introduce ( 5 )  into (7 )  and make use of (6)  to cancel some equal 

t e rms ,  we can in general  obtain a set of "jump conditions" for each type 

of discontinuity. 

discontinuity in curvature i s  given by 

For  example, i f  the joint i s  of type I ( a )  and the known 

1 1 

A K 1  = R' - - 1 R i  

then the conditions ( 6 )  become simply 

and the jump conditions obtained from (7), simplified with the help of (9) ,  

m a y  be shown a s :  
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= - W - A K ~  9 s  
AU - = u , ~  -t - u -  

9 s  

t - W - ,  = u - A K ,  Aw , E w  
I -  9 s  

Av, s = AQS, s = 4 3 ,  s = o  

Therefore ,  the displacements u and w a r e  continuous functions of s with 

only piecewise continuous derivatives:k, while v, P s  and 

first derivatives.  

have continuous 

Aside f rom the discontinuity at the joint line, the solution of the 

f ree  vibration problem of axisymmetr ic  composite shells may proceed 

s imilar ly  to that of simple shells. 

shell var iab les  have the usual form 

F o r  a normal-mode vibration, the 

where w i s  a natural  frequency and n an  integer representing the c i rcum-  

ferential  wave number;  however, the mode functions with subscr ipt  n a r e  

no longer smooth functions of s a s  in the case of simple shells.  

the s t r e s s  conditions ( 7 )  
9 s ’  

:::If w e  impose the continuity of the slope w 
wi l l  be violated paradoxically. 



Vibrations of Composite Conic -Cylindrical Shells 

The geometry of the composite shell to be considered is  defined 

Let a denote the semivertex angle of the truncated conical in Figure 1. 

shell component, which extends f rom s = s1  to s = s2, s being m e a s u r e d f r o m  

the vertex.  

radius  a = s 2  sin a ,  and length L. 

broken line, 

At the major  edge s2, i t i s  joined to a cylindrical shell with 

The meridian i s  thus given by the 

2 r ( s )  = s s i n a  , s1  5 s L s 

, S 2 < - S L S  t L  2 r ( s )  = a 

and the colatitude angle + i s  constant in each component, 

+ = + - = T r / 2 - a  , S l L S < S Z  

+ = ++ = T I 2  
( 1 3 )  

, s < s l s 2 + L  2 

Therefore ,  the joint belongs to type I(b), with the given discontinuity 

A + = +  + - + - = a  

The governing shell  equations may  be obtained by using (12) and (13) in 

(4)  and (5). The conditions ( 6 )  now may be writ ten 

+ u -  sin a + w -  cos a = w , 

u- cos a - w -  sin a = u , + 

v -  = v+ , p, = p; , p i =  p i ,  

and, s imilar ly ,  the conditions ( 7 )  become: 
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To  determine the jump condition of the derivatives of the displace- 

ments ,  we introduce the corresponding constitutive equations into (15), 

and simplify the r e su l t  with the help of (14), to obtain 

+ 
w = w -  cos a - P i ( 1  - C O S  a )  

9 s  ms 

1 I/ + sin a [u- t - (v-0  t u -  s i n a  t w- cos a )  (1 - V ) K  m s  a 

V u+ = u;s cos  a - - 
8 s  a t u -  sin a t w- c o s  a ) ( l  - cos a )  

F r o m  the first two equations above, i t  can be seen  that the jump conditions 

for w 

orde r  shei l  theory considered. This fact makes  all analyt ical  methods 

using equations in  t e r m s  of displacement var iab les  alone unsuitable f o r  

the solution of th i s  problem. 

and u ms Y S  
a r e  ve ry  complicated even within the scope of the f irst-  

F o r  example, the Four i e r  expansion method 



used  i r i  Refs. 8ai;d 9 wi!! not readi ly  yield convergent resul ts>;  because no 

proper  account can be easi ly  taken of the jump condition (16) .  Also, i f  

finite -difference techniques a r e  used to solve the governing ciiifereritial 

equations in displacements,  one wi l l  find that the finite -difference equations 

a t  the joint become ext remely  unwieldy due to the imposit ion of (16). 

On the other  hand, the numerical  integration methods,  such as  

the computer  technique developed by Kalnins 5 , can account for  the joint 

conditions, (14) and (1  S ) ,  with relatively simple modification, In the se  

methods,  the fir s t  derivatives of the ten fundamental var iab les  a r e  direct ly  

integrated by numerical  means ,  and  the natural  frequencies a r e  determined 

by t r i a l  and e r r o r .  

shel l  equations procceds f rom s = s1 to the joint s = s2, the conditions (14) 

and (15)  a r e  imposed to obtain a se t  of "initial values"  of the ten fundamental 

Thus, when the numer ica l  integration of the conical 

var iab les ,  then the integration process  may be c a r r i e d  on beyond the joint, 

using a consistent s e t  of shell  equations for  the cylindrical  shell  component, 

Other detai ls  of this  technique w i l l  not be d iscussed  fur ther  here ,  since, 

bes ides  the modification outlined above, the r e a d e r s  m a y  be r e f e r r e d  to 

Ref. 5. The degree  of validity of these joint conditions, however, w i l l  be 

d iscussed  fur ther  in the next section. 

Physical  Significance and the Boundary-Layer S t r e s s e s  

The above ana lys i s  of the joint, t rea ted  a s  a line of discontinuity, 

provides  a mathematical  model of physical real i ty  within l inear  e las t ic  

:;:Note that the Four i e r  s e r i e s  expansion of piecewise smooth functions a r e  
not t e rmwise  differentiable.  twice. 
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shel l  theory which i s  similar to  other sirlgular qiiaiititizs in mechanics 

such a s  concentrated force ,  line load, point source o r  sink, vortex s t r ee t ,  

etc.  These concepts idealize the complicated but highly localized physical 

phenomenon and simplify the analytical solution of problems. To analyze 

the validity of this  mathematical  model, we w i l l  inve stigate a limiting proce s s 

which has the cone-cylinder joint as  its limit, 

Consider that  a t ransi t ion zone at the joint i s  cut off and replaced 

by a toroidal  shell  adapter with small radius  of curvature 6R1 a s  indicated 

in Fig. 2. The-width of the toroidal segment would be a 6R1. Note that 

the center  of the meridional a r c  must fall on the bisector  of the joint angle 

to allow a smooth t ransi t ion,  F r o m  the constitutive equations [Eq,  (5)1, 

we find that 6R1 appea r s  at severa l  places in the denominator of the 

coefficients. Therefore ,  the narrow toroidal  segment i s  enormously 

s t i f fer  than a neighboring s t r i p  in the conical o r  cyl indrical  shell  due to  

the smal lness  of 6R1. When we take the limiting process  of moving the 

center of the a r c  toward the corner ,  6R1 will soon r each  the same o rde r  

of magnitudes as  the shel l  thickness h, and  thus shell  theory ceases  to 

apply. Meanwhile, severa l  important f ea tu re s  w i l l  be lo s t  in  the limiting 

p rocess :  

(1) The much g r e a t e r  bending stiffness of the toroidal  segment, 
o r  the limiting ring with "L-cross  section, " cannot be 
retained in  the analysis of the limit case, In the previous 
formulation of l inear  shell theory and joint conditions, the 
bending rigidity D = Eh3/12 (1 - v 2 )  was used throughout the 
composite shell. 
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Figure 2. Transition Zone of a Cone-Cylinder Joint 



(2; Due t u  this la rge  bcr;dir,g s t i f h e s s  of the Ifjoint-ring1'  with 
L - c r o s s  section, the local l a t e r a l  displacement w will be 
greatly suppressed, a s  w i l l  be seen l a t e r  in the experimental  
mode shape plot. Therefore,  the joint has  the function of 
a r ing stiffener,  on which l a rge  t r ansve r se  shearing ioads 
(a:,)- and (QZn) , together with other loads, a r e  exer ted  by 
the conical and cylindrical  shell, respectively. A schematic  
drawing of a section of the "joint-ring" i s  shown in Fig. 3 .  
This  "ring-action" of the joint cannot be fully accounted for  
in the limit case of l inear  shell  equations and joint conditions. 

t 

( 3 )  If we examine the joint-ring separately (Fig. 3) ,  we can a s s e r t  
that  the loads (QZn)- and (Q:n)S will be supported jointly by 
the bending s t r e s s ,  Men, and the hoop s t r e s s ,  Nen, within the 
L - c r o s s  section. Therefore,  the local  membrane  s t r e s s e s  a r e  
a l s o  profoundly affected by the "ring-action, 
membrane  s t i f fness  has no apparent  increase  at the joint. 

although the 

In short ,  the mathematical  discontinuity o r  the physical "ring - 

action" a t  the cone -cylinder joint c r ea t e s  a sys tem of boundary-layer 

s t r e s s e s  superposed on the s t r e s s  field predicted by the l inear  shell  theory 

and joint conditions. F r o m  the qualitative analysis  of the ring-action 

given above, some general  understanding can be obtained. A few important  

boundary-layer s t r e s s e s  a r e  shown qualitatively in Fig. 4. 

In this  connection, we conclude that even if we can solve the system 

of e l a s t i c  shell  equations, (4)  and (51, together with prescr ibed  boundary 

conditions and the joint conditions (14) and (15), with high accuracy  (say, 

by a modified Kalnins' numerical  integration technique 5 ), the r e s u l t s  will 

s t i l l  be only a n  approximate solution t o  this  problem. Although some 

boundary-layer shell  theories  a r e  discussed in  the l i t e ra ture ,  to  the au tho r ' s  

knowledge, they a r e  not readily applicable to the solution of th i s  composite 
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Figure 3. Schematic of the Loads on the "Joint- Ring" 
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shel l  vibration probki i i ,  iri which  an  ir?teric?r boundary-layer phenomenon 

mus t  be analyzed. 

It remains  to mention that the la rge  dynamic s t r e s s e s  induced iiear 

The local maximum the joint add considerable importance to  the problem. 

s t r e s s  n e a r  the joint m a y  be seve ra l  o r d e r s  of magnitude g rea t e r  than the 

s t r e s s e s  e lsewhere,  and m a y  even reach the yield s t r e s s  a t  relatively low 

ampli tudes o r  under ordinar i ly  safe dynamic environment. The vibratory 

o r  revers ib le  nature  of the se  boundary-layer s t r e  s se  s make s the joint 

e specially vulnerable to  possible mater ia l  shake -down o r  fatigue. 
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Experiments were run on two shell  models having the geometr ies  

descr ibed in  Table 1. The experiments were s imi la r  to those descr ibed 

in Ref. 9 for conical shells. The essential  features  of the experiments  

a r e  that the s teel  shells a r e  driven by a pulsed magnetic field, and the 

t r ansve r se  displacement i s  measured by a noncontacting probe. In this 

manner ,  neither the excitation nor the measuring sys tem adds additional 

m a s s  o r  stiffness to the thin shell. 

TABLE 1 

B oun da r y 
Model No. U s2 - s1 a L C on di t ion 

1 15" 13. 57" 7. 0" 21.0" Free ly  supported 
2 5" 11. 15" 7. 0" 11. 15" Clamped 

~ _ _ _ _ _ ~ ~  

The shell models were formed f rom 0. 010-inch thick rolled s teel  

shim stock. 

f rom the flat sheet with one welded seam along a meridian.  

was arc-welded with a butt-joint so  that a negligible discontinuity was 

formed in the shell. 

was s imiiar ly  arc-welded and carefully ground to eliminate thickness 

change 

Both the conical and cylindrical components were formed 

This seam 

The c i rcu lar  joint connecting the cone and the cylinder 

A photograph of the experimental apparatus  and instrumentation 

The shell models a r e  supported f rom a mandrel  of i s  shown in Fig. 5. 
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a vertfca!!y ~ ~ o u n t e c !  lathe bed. 

used to simulate the freely supported edge condition for Model No. 

The right-angle groove in the circular plates supp~r t i ng  the "pper and 

lower ends is machined to a close-tolerance fit with the edge of the shell. 

Fo r  Model No. 2, the edges of the shell were soldered into U-shaped 

grooves in the end plates to simulate the clamped boundary condition. 

The boundary support in F ig .  5 i s  that 

1. 

Excitation to  the shells was produced by a pulsed magnetic field 

f rom four small  e lectromagnets  located a t  opposite ends of both a diameter  

of the conical shell and a diameter of the cylindrical shell, 

shell  components receive energy during resonance to compensate fo r  

damping, and the excitation of a normal mode i s  thus optimized by 

eliminating the reliance on energy t ransfer  a c r o s s  the joint. 

of the excitation was controlled by an oscil lator driving the electromagnets  

through a power amplifier.  

mode, a phase control i s  added so that the two pa i r s  of e lectromagnets  a t  

opposite s ides  can be operated either in-phase o r  out-of-phase depending 

upon the circumferential  wave number n being ei ther  even or  odd. 

position of the excitation along a meridian ( s  direct ion)  of the shell  i s  a l so  

adjustable so  that various axial  modes may be optimally excited. 

so that both 

The frequency 

In order  to optimize the excitation of each 

The 

The t ransverse  displacement w i s  mapped with an inductance type 

displacement probe mounted on a long lead screw which can be adjusted to 

a position paral le l  to a generator either of the cone o r  of the cylinder. Thus, 
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the probe can t r ave r se  the she!! iz t h e  s di rect isn.  The entire shell  and 

excitation system may be rotated 360" on the central  mandrel  allowing a 

circumferent ia l  mode shape plot a l s o .  F o r  d i rec t  plotting of the mode 

shapes,  the position of the displacement probe with respect  to the shell  i s  

given by a ro ta ry  potentiometer on  the mandrel  and a resis tance slide 

wire  on the lead screw assembly. 

ment detector i s  conditioned through a tracking fi l ter ,  tuned to the excitation 

frequency. 

scope, frequency counter, o r  x - y  pen r eco rde r  for mode shape plots. 

Resonance i s  determined a s  the frequency a t  which maximum 

The 

The output signal f rom the displace- 

The fi l tered output signal can be recorded on e i ther  an oscil lo- 

t r ansve r se  amplitude response i s  observed on the oscilloscope. 

accuracy of this method depends upon the sharpness  of the amplitude- 

frequency response curves which, f o r  low damping s t ruc tures  such a s  

the shells tested,  i s  sufficient to distinguish resonances separated by 

only a few cycles per  second. 

frequency counter. 

phase relationship between the driving signal f rom the oscil lator and the 

response signal f rom the displacement detector,  both appear on the 

oscilloscope screen. Upon crossing a nodal line, the phase shifts 180" 

and i s  easi ly  detected by the rotation of the Lissajous figure on the oscil lo- 

scope. Mode shapes can be plotted directly on an  x-y pen recorder ,  with 

the rectified normal  displacement amplitude on the y axis,  and the c i rcum-  

ferential  o r  meridional position on the x axis. 

Frequencies a r e  read  f rom an electronic  

Modes may be identified most  easi ly  by observing the 
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The resonant frequencies fo r  the two composite shell models tes ted 

a r e  presented graphically in Figs. 6 and 7. The measu red  frequency, in 

cpss is plotted against the circumferential  wave number n, for the axial  

mode number m = 1 and 2 ,  

Fo r  Model No, 1 ,  the resonant frequencies a r e  very  close to the 

corresponding ones of the cylindrical component alone, with the joint 

considered a s  f reely supported also,  This  i s  because the 15" cone is  

much shor te r  and stiffer (due to  the taper )  than the cylindrical component, 

and thus has relatively little motion during resonance compared to the 

cylinder. The solid curves  in Fig. 6 a r e  the calculated frequencies of the 

cylindrical component alone, considered a s  f reely supported a t  both ends. 

The ma te r i a l  pa rame te r s  used in these calculations a r e  E = 30 x 10 6 psi ,  

-V = 0. 3, and p = 7. 35 X lb s ec  2 / in,  We wi l l  d iscuss  la te r  the 

relationship of the mode shapes in the two cases .  

If we examine the constraint  that the cylindrical shell  component 

fee ls  a t  the joint, we find that there a r e  two important changes f r o m  the 

idealized freely supported edge: 

re leased  (see Fig. 8 )  which tends t o  lower the frequency; ( 2 )  the condition 

N 

frequency. F r o m  Fig .  6, we see that, for n <  5, the fo rmer  has  s t ronger  

(1)  the conditions w = 0 i s  now partially 

= 0 i s  now partially res t ra ined,  thus there  i s  a tendency to r a i se  the 
S 
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effects to cause an appreciabie frequency dec rease ;  fer n = 5 - 9 ;  the 

la t ter  overshoots slightly; while for larger  n, a l l  effects become negligible. 

Similar  observation can be made for  m 2 2. 

Figure 7 shows the s imilar  frequency plot for Model No. 2, which 

has  a much weaker discontinuity (5" change in 9) a t  the joint. 

shell components a r e  of the same height (11. 15"), and therefore have 

near ly  the same stiffness. The two edges of the composite shell were 

soldered to the end plates, a s  described before, to simulate the clamped 

boundary; however, since the shell  is extremely thin (h / a  = 0. 00143) and 

the soldering mater ia l  was softer than rolled steel, the resulting boundary 

condition i s  believed to lie somewhat between the clamped edge and the 

simply supported edge (with meridional constraint) ,  a s  indicated by the 

mode shape plots ( F i g s .  9 and 10). Fo r  the in te res t  of comparison, ca l -  

culation w a s  made for the theoretical frequencies of a clamped (solid curve 

in Fig. 7 )  and a simply supported (dashed curve in Fig. 7 )  cylindrical shell 

with the same total height a s  the model, but without the 5" taper.  

calculation was made with a computer program utilizing the Four ie r  

expansion method developed in Refs. 8 and 9. 

r a i s e s  the frequencies a s  expected, 

The two 

The 

It is  seen that the joint 

The frequency plots for both shel ls  a r e  character ized by having a 

minimum frequency for each axial  mode number m, occurr ing a t  some 

value of n. This i s  s imilar  to  the behavior of the supported c i rcu lar  
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cylindrical  shell, sometimes r e fe r r ed  to  a s  "Arnc?ld-Warhurton effect. 

The value of n a t  which the minimum frequency occurs  is  a l so  dependent 

upon the geometric parameters  of the shell, mainly the thickness ra t io  

h / a ,  F o r  low values of n, the frequency curve turns  sharply upward 

because of the rapid increase of the membrane s t ra in  energy in this 

region. 

predominantly by the bending stiffness of the shell, 

Fo r  large n (short  wavelength), the s t ra in  energy i s  contributed 

We should emphasize that the high density of resonant frequencies 

and the increased stiffness a t  the joint often resu l t s  in considerable difficulty 

in experimental  separation of some neighboring modes and, in fact, 

difficulty in excitation of a pure normal mode a t  near ly  a l l  the resonances 

tested. It i s  difficult to make general s ta tements  about the frequency 

spectrum fo r  composite shells,  since i t  is influenced by so  many factors ,  

Mode Shapes 
. ~~ 

The most  striking feature disclosed in this modal vibration exper i -  

ment of composite shells i s  probably the unexpected nonanalytical mode 

shapes in meridional direction, a s  plottedin Figs. 8 through 10. The V-shaped 

minimum of the w-s  curve observed a t  the joint in all mode-shape mappings 

i s  a d i rec t  evidence of the "ring-action" discussed previously, and of the 

existence of a boundary-layer, 

The circumferential  mode shapes, however, appear  to be propor-  

tional to sin n e  a s  expected. The nodal pattern, therefore,  st i l l  consisted 
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of para l le l  c i rc les  and equispaced rrieridiaiis a s  ir, s fnp le  axisymmetr ic  

shells.  It should be emphasized that, for the second axial mode, m = 2,  

the middle nodal c i rc le  does not necessar i ly  coincide with the joint. 

Model No. 1, these middle nodal c i rc les  always occurred  within the 

cylinder, while for Model No. 2,  the exact position of the nodal c i r c l e s  

was extremely difficult to determine, because of the difficulty in exciting 

a pure mode. But for this special shell geometry, the middle nodal c i rc le  

i s  probably very close to the joint, 

F o r  

All the mode shape mappings for m = 1 have the same general  

appearance;  therefore,  only selected modes (for some n values)  a r e  

presented. 

No, 1, It i s  seen that the conical component has  much l e s s  motion, and 

that the cylindrical component has  a mode shape of near ly  half sine wave - 

the mode shape for a f reely supported cylinder. 

pract ical  purposes,  the joint, together with the cone, may be considered 

roughly as  a ring support in the calculation of resonant frequencies (solid 

curve in F i g  6).  This conclusion applies, of course,  only to cases  when 

the conical component is relatively short  and the cone angle sufficiently 

large.  

Figure 8 shows the typical meridional mode shape for Model 

Therefore ,  f o r  a l l  

F igures  9 and 10 show the typical meridional mode shapes of Model 

No. 2 fo r  f i r s t  axial modes. The t ransverse  displacement w always has  

two near ly  equal peaks, one in each shell component. The magnitude of 
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the displacement a t  the j o in t  generally drnps to l e s s  than half the peak 

displacement, forming a sharp  valley. It i s  suspected that, for some cases  

when the amplitude i s  sufficiently large, a segment of "piasric hinge" iiiai; 

be developed a t  each antinode of the circular joint. 

We might point out that the absolute accuracy of the mode shape 

mappings i s  ra ther  poor. Also, the amplitude response a t  resonance does 

not appear  to have any uniform progression with frequency o r  the circum- 

ferent ia l  mode number. 

difficulty in exciting a pure normal  mode., 

These a r e  mainly due to the previously mentioned 
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It is  felt t h a t  the following conclusions may  be justifiably made 

f rom the work presented, 

1. Modal vibrations of axisymmetr ic  composite shells present  

a unique problem in shell theory, with an unsolved analytical paradox 

and grea t  experimental  difficulties. 

hinges on a bet ter  understanding and analysis  of the boundary-layer region 

enclosing the joint. 

A satisfactory solution of this problem 

2. The meridional mode shape of a composite shell always con- 

tains a V-shaped minimum a t  the joint, with the local displacement ampli-  

tude greatly suppressed by the ring action of the joint. 

3 .  Dynamic s t r e s s  concentration wi l l  undoubtedly occur a t  the 

joint, even during free vibration of the shell. The use  of a composite 

shell without reinforcement is not recommended for s t ruc tures  in any 

dynamic environment, in view of i ts  vulnerability to c rack  formation. 

4. The frequencies plotted against  c i rcumferent ia l  wave number 

n f o r m  a smooth curve for each axial mode number,  with a minimum a t  

some value of n, s imilar  to the supported c i rcu lar  cylindrical shell, 

5.  The frequency spectrum i s  extremely dense,  The t ransverse  

displacement response to foreign excitation i s  likely to be complicated, 

participated by a grea t  number of modes. 
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