VOLUME 5

SYNTHESIS OF CALCULATIONAL METHODS FOR THE DESIGN AND ANALYSIS OF RADIATION SHIELDS FOR NUCLEAR ROCKET SYSTEMS

TIC-TOC-TOE
 A FORTRAN PROGRAM FOR THE TEMPERATURE IN THE COOLANT IANK AND OTHER CALCŪLATIONS AND FOR THE THERMAL NEUTRON ORIGINATING ENERGY

by
T. M. Jordan
and
H. C. Woodsum

Contract No. NAS-8-20414
Contract No. DCN-16-28-0029(IF)

ACKNOWLEDGMENT

The authors appreciate the guidance provided by Mr. Henry E. Stern, Deputy Manager, Nuclear and Plasma Physics Division, George C. Marshall Space Flight Center, the technical monitor of the contract.

Abstract

This report is Volume 5 of nine volumes of the final report on "Synthesis of Calculational Methods for the Design and Analysis of Radiation Shields for Nuclear Rocket Systems". Presented in this volume is a description of the TIC-TOC-TOE program for the Temperature In the Coolant Tank and Other Calculations and for the Thermal neutron Originating Energy.

The TIC-TOC-TOE program, which is written in FORTRAN IV language, performs rapid calculations of heating rate distributions in on-axis liquid hydrogen propellant tanks. Neutron and photon sources from the reactor are expressed as multigroup, angular equivalent point sources. The propellant tank geometry is described by a series of axisymmetric truncated cones and/or cylinders. Basic heating rate data are interpolated from curve-fits of M. O. Burrell's Monte Carlo data which are built into the program.

Quantities calculated by the TIC-TOC-TOE program for specified points in the tank include: 1) gamma ray heating by energy group, 2) neutron kinetic heating by fast energy group, 3) capture gamma ray heating due to neutron captures in liquid hydrogen, and 4) capture gamma ray heating due to neutron captures in tank wall.

These same quantities are also obtained for points at the corners of the volume elements employed in performing volume integrations over the tank. Quantities obtained from the volume integration include: 1) total gamma and neutron heating rate as a function of propellant height, 2) radial and volume averaged heating rates as a function of propellant height, 3) radial averaged temperature rise as a function of time for a no-mix fluid model, and 4) temperature rise as a function of time for a complete mix fluid model.

TABLE OF CONTENTS

SECTION Page
ABSTRACT iii
1.0 INTRODUCTION 1
2.0 PROGRAM DESCRIPTION 5
2.1 Basic Data 5
2. 2 Point Angular Sources 7
2.3 Propellant Tank Geometry 8
2. 4 Direct Gamma Ray and Fast Neutron Heating 12
2. 5 Capture Gamma Ray Heating 14
2.5.1 Wall Capture Gamma Ray Heating 15
2.6 Average Energy Deposition 18
2.7 Propellant Temperature Rise 19
3.0 PROGRAM LOGIC 21
3. 1 Point Calculations 21
3.1.1 Direct Heating 21
3.1.2 Capture Heating 21
3.2 Volume Calculations 22
4.0 INPUT DATA INSTRUCTIONS 23
5.0 SAMPLE PROBLEM 33
5.1 Problem Description 33
5.2 Calculated Results 33
6. 0 REFERENCES 39/40
Appendix A. Listing of Program 41

LIST OF ILLUSTRATIONS

Figure Page
1 Schematic Diagram of the Early Design Method 3
2 Propellant Tank Geometry 9
LIST OF TABLES
Table
1 Sample Problem Print Out 34

SECTION

1.0 INTRODUCTION

The TIC-TOC-TOE program is written in FORTRAN IV for the IBM 7094 and CDC 6600 computers. This program utilizes curve-fit Monte Carlo heating rate data ${ }^{(1)}$ generated by M. O. Burrell of the Marshall Space Flight Center (MSFC), to obtain heating rates in an on-axis liquid hydrogen propellant tank whose geometry is described bv a series of truncated cones and cylinders. The radiation source is expressed as an equivalent point angular dependent source for three pre-selected gamma ray energy groups, and five pre-selected neutron energy groups (three fast, one epithermal and one thermal).

TIC-TOC-TOE is an integral part of the "early" design method provided for the Marshall Space Flight Center under this contract. A simplified schematic diagram of the "early" design method is shown in Figure 1 and is described in detail in Volume 1. The starting point for the method is the POINT program (Volume 2) which prepares cross section and other basic data for use in the transport programs. In the "early" design method (Figure 1), the TAPAT program system (Volume 3) computes one dimensional neutron and photon fluxes in the reactor geometry. From these fluxes, neutron and photon sources and distributions are obtained and are used as input to the KAP-V program. The KAP-V program (Volume 4) provides gamma ray and fast neutron radiation levels at locations external to the reactor. Radiation levels from the KAP-V program at a specific radial distance from the center of the reactor can then be employed in the TIC-TOC-TOE program (Volume 5) for calculating radiation quantities of interest in an on-axis liquid hydrogen propellant tank.

Quantities calculated by the TIC-TOC-TOE program for specified points in the tank include:

1) gamma ray heating by energy group,
2) neutron kinetic heating by fast energy group,
3) capture gamma ray heating due to neutron captures in the liquid hydrogen, and
4) capture gamma ray heating due to neutron captures in the tank wall.

These quantities are also obtained for points at the corners of the volume elements employed in performing volume integrations over the tank. Quantities obtained from the volume integration include:

1) total gamma and neutron heating rate as a function of propellant height,
2) radial and volume averaged heating rates as a function of propellant height,
3) radial averaged temperature rise as a function of time for a no-mix* fluid model, and
4) temperature rise as a function of time for a complete mix* fluid model.

Typical computer runs on the IBM 7094 require approximately 10 milliseconds per point if the capture gamma ray heating (from both the wall and propellant) is not computed. If these capture gamma ray heating rate components are calculated, a volume integration over the entire tank is performed for each point and the computer time per point becomes proportional to the number of points used in this numerical volume integration.

Section 2.0 of this report presents the equations involved in this program. The program logic is discussed in Section 3.0. Detailed input instructions are given in Section 4. 0 . Section 5.0 contains a sample problem and a description of the output format. The program listing is given in an appendix.

[^0]

SECTION

2.0
 PROGRAM DESCRIPTION

This section describes the seven essential parts of the TIC-TOC-TOE programs which are:

1) The Monte Carlo data built into the program
2) The point angular source
3) The propellant tank geometry
4) Gamma ray and neutron kinetic heating calculations
5) Capture gamma ray heating calculations
6) Total heating rate calculations
7) Temperature rise calculations.

2.1 BASIC DATA

The basic data used in this program are based on the Monte Carlo calculations of M. O. Burrell reported in Reference 1. These data include propellant heating rates and thermal neutron capture rates as a function of depth, z^{\prime}, and radius, r, in a flat bottomed cylindrical tank for unit monoenergetic sources. All of these data have been empirically fitted, as a function of the two spatial parameters r and z^{\prime}, in the general form:

$$
\begin{equation*}
F\left(r, z^{\prime}\right)=\sum_{k=0}^{1} A_{k}(r) \exp \left[-B_{k}(r) \min \left(z_{o^{\prime}} z^{\prime}\right)+C_{k}(r) \max \left(0, z^{\prime}-z_{o}\right)\right] \tag{2.1}
\end{equation*}
$$

where:

$$
\begin{align*}
& z_{0} \quad=\quad \begin{array}{l}
\text { a constant depth into the tank defining a breakpoint in the } \\
\text { empirical fit of the } z \text { dependence. }
\end{array} \\
& A_{k}(r)=\sum_{l=0}^{2} a_{l, k^{r}}^{l} ; a_{1, k}, 1=0,1,2 \text { are constants }
\end{align*}
$$

$$
\begin{align*}
& B_{k}(r)=\sum_{l=0}^{2} b_{l, k} r^{l} ; \quad b_{l, k} \quad, l=0,1,2 \text { are constants } \tag{2.3}\\
& C_{k}(r)=\sum_{l=0}^{2} c_{l, k^{r}} \quad ; \quad c_{l, k} \quad, l=0,1,2 \text { are constants } \tag{2.4}
\end{align*}
$$

$r \quad=\quad$ the radial distance from the tank centerline.
$z^{\prime} \quad=\quad$ the distance into the tank parallel to the centerline.
$\min \left(z_{0}, z^{\prime}\right)=$ the smaller of the numbers z_{0} and z^{\prime}
$\max \left(0, z_{0}-z^{\prime}\right)=$ the larger of the numbers 0.0 and $z_{0}-z^{\prime}$

The functions curve fit using Eq. 2.1 are:
$h_{1}\left(r, z^{\prime}\right)$, the volumetric energy deposition from 6 Mev Gamma Rays
$h_{2}\left(r, z^{\prime}\right)$, the volumetric energy deposition from 3 Mev Gamma Rays
$h_{3}\left(r, z^{\prime}\right)$, the volumetric energy deposition from 1 Mev Gamma Ray
$h_{4}\left(r, z^{\prime}\right)$, the volumetric energy deposition from 7 Mev Neutrons
$h_{5}\left(r, z^{\prime}\right)$, the volumetric energy deposition from 3 Mev Neutrons
$h_{6}\left(r, z^{\prime}\right)$, the volumetric energy deposition from 1 Mev Neutrons
$\dot{g}_{1}\left(r, z^{\prime}\right)$, the volumetric capture rate from 7 Mev Neutrons
$\dot{g}_{2}\left(r, z^{\prime}\right)$, the volumetric capture rate from 3 Mev Neutrons
$\dot{g}_{3}\left(r, z^{\prime}\right)$, the volumetric capture rate from 1 Mev Neutron
$\dot{g}_{4}\left(r, z^{\prime}\right)$, the volumetric capture rate from 0.1 Mev Neutrons
$\dot{\mathrm{g}}_{5}\left(r, z^{\prime}\right)$, the volumetric capture rate from 2 ev Neutrons

A comparison between the empirical fit and the Monte Carlo energy deposition and capture rate data is given in Reference 2. In general, accuracy within 5 percent of the "smoothed" Monte Carlo data is obtained.

The above functions are extrapolated from the conditions used in the original Monte Carlo study. In particular, this data is extrapolated to account for:

1) different tank bottom shape (flat in the Monte Carlo calculations), and
2) different source to propellant tank separation distance (11.25 feet in the Monte Carlo calculations).
The extrapolation techniques are discussed in connection with equations presented later.

2.2 POINT ANGULAR SOURCES

The point sources required for TIC-TOC-TOE are determined from flux calculations performed at a fixed radial distance, R (in feet), from the center of the reactor sources (usually assumed to be the core geometric center). These fluxes are assumed to be azimuthally symmetric and are supplied for a series of energy groups as a tabulated function of the polar angle, θ, measured from the center-line axis of the reactor-propellant tank configuration:
$\theta_{\mathbf{i}}=$ the ith polar angle (degrees)
$\phi_{i, i}=$ the flux in the i th energy group at the ith polar angle (particles $/ \mathrm{cm}^{2} / \mathrm{sec}$)
These data define the equivalent point source, $S_{i}(\mu)$ for each group i, where μ is the cosine of the polar angle, θ. The angular dependence is then obtained by a linear interpolation in μ :

$$
\begin{equation*}
S_{i}(\mu)=\frac{\left(\mu-\mu_{i+1}\right) S_{i, i}+\left(\mu_{i}-\mu\right) S_{i, i+1}}{\mu_{i}-\mu_{i+1}} \tag{2.5}
\end{equation*}
$$

for $\mu_{i} \geq \mu>\mu_{i+1}$

Laboratory
where

$$
\begin{align*}
& \mu_{i}=\cos \theta_{i} \quad i=1,2, \cdots \tag{2.6}\\
& S_{i, i}=4 \pi(30.48 R)^{2} \phi_{i, i} \quad i=1,2, \cdots ; i=1,2, \cdots, 8 \tag{2.7}\\
& R \quad=\text { the reference radius at which the fluxes are given (feet) }
\end{align*}
$$

The source group structure is fixed by the Monte Carlo energy deposition and capture distribution data with the notation:

Group 166 Mev gamma rays
Group 23 Mev gamma rays
Group 31 Mev gamma rays
Group $4 \quad 7 \mathrm{Mev}$ neutrons
Group 53 Mev neutrons
Group $6 \quad 1 \mathrm{Mev}$ neutrons
Group $7 \quad 0.1 \mathrm{Mev}$ neutrons
Group 8 thermal neutrons

2.3 PROPELLANT TANK GEOMETRY

The propellant tank geometry as shown in Figure 2 is described by a series of truncated cones and/or cylinders with center lines on the z-axis of the coordinate system. The $i \underline{t h}$ section of the tank is the volume bounded by:
$z=z_{i}$, the z - plane at the bottom of the section,
$z=z_{i}+y^{\prime}$ the z - plane at the top of the section, and
$R_{\text {max }}(z)=a_{i}+b_{i} z_{\text {, the }}$ the equation of the cone or cylinder at the side of the section. (2.8)

Figure 2. Propellant Tank Geometry

The constants a_{i} and b_{i} determine the equation of the line between the points $\left(r_{i}, z_{i}\right)$ and $\left(r_{i}+1, z_{i+1}\right)$

$$
\begin{aligned}
& b_{i}=\frac{r_{i}+1^{-r_{i}}}{z_{i}+1^{-z_{i}}} \quad\left(b_{i}=0 \text { for cylindrical tank sections }\right) \\
& a_{i}=r_{i}-b_{i} z_{i} \quad\left(a_{i}=r_{i}=r_{i}+1\right. \text { for cylindrical tank sections) }
\end{aligned}
$$

The complete tank geometry is specified by a tabulation of the points $\left(r_{i}, z_{i}\right)$, $i=1,2, \ldots, I+1$ where I is the total number of volume sections required to describe the shape of the tank.

The tank wall is assumed to have a constant thickness, ${ }^{\dagger}{ }^{\prime}$, over the outer boundary of the tank; its finite thickness is not treated explicitly in the geometric calculations. Instead, the tank wall effect is approximated using the outward unit vector, \vec{n}, normal to the tank surface as described below.

All distance calculations required by the TIC-TOC-TOE program are performed by the function subprogram PATH. The geometric calculations generally involve a point \vec{r} in the tank and a unit direction vector $\vec{\Omega}$ from this point where:

$$
\begin{align*}
& \vec{r}=x \vec{i}+y \vec{i}+z \vec{k} \\
& \vec{\Omega}=\alpha \vec{i}+\overrightarrow{\beta i}+\gamma \vec{k} \tag{2.9}
\end{align*}
$$

$\vec{i}, \vec{i}, \vec{k}$ are unit vectors parallel to the coordinate system axis.
x, y, z are rectangular coordinates
$\alpha \prime \beta, \gamma$ are direction cosines with respect to the x, y, and z axes, respectively.

The distance s_{w} from \vec{r} along $\vec{\Omega}$ to the surface of the tank is computed as:

$$
\begin{align*}
& s_{w}=\min \left\{\frac{\left.z_{1+1^{-z}}^{\gamma}, s_{i}, s_{i+1} \ldots, s_{i}\right\} \text { if } \gamma>0}{s_{w}=\min \left\{\frac{z_{1}-z}{\gamma}, s_{1}, s_{2}, \ldots, s_{i}\right\} \quad \text { if } \gamma<0}\right. \tag{2.10}
\end{align*}
$$

where
$z_{i+1} \geq z \geq z_{i}$, i.e. the point \vec{r} is in the i th section of the tank,
$\left(z_{1+1}-z\right) / \gamma$ is the distance to the top of the tank from \vec{r} along $\vec{\Omega}$
$\left(z_{1}-z\right) / \gamma$ is the distance to the bottom of the tank from \vec{r} along $\vec{\Omega}$
s_{i} is the smaller of the positive distances (if any) to the \mathbf{i} th conical or cylindrical boundary of the tank.

The distances $s_{\mathbf{i}}, \mathbf{i}=1,2, \ldots, \mathrm{l}$, are computed, as required, from equation 2.8 by noting that for points on the boundary:

$$
\begin{equation*}
R_{\text {max }}\left(z+\gamma s_{i}\right)=a_{i}+b_{i}\left(z+\gamma s_{i}\right)=\left[\left(x+\alpha s_{i}\right)^{2}+\left(y+\beta s_{i}\right)^{2}\right]^{1 / 2} \tag{2.11}
\end{equation*}
$$

An expansion gives:

$$
\begin{align*}
& {\left[\begin{array}{l}
\left.\alpha^{2}+\beta^{2}-\gamma^{2} b_{i}^{2}\right] s_{i}^{2}+2\left[\alpha x+\beta y-\gamma b_{i}\left(a_{i}+b_{i} z\right)\right] s_{i} \\
\\
+\quad x^{2}+y^{2}-\left(a_{i}+b_{i} z\right)^{2}=0
\end{array}\right.} \\
& \text { or: } \quad \\
& \quad s_{i}=\frac{-B \pm \sqrt{B^{2}-A C}}{}
\end{align*}
$$

where

$$
\begin{align*}
& A=\alpha^{2}+\beta^{2}-\gamma^{2} b_{i}^{2} \\
& B=\alpha x+\beta y-\gamma b_{i}\left(a_{i}+b_{i} z\right) \tag{2.13}\\
& C=x^{2}+y^{2}-\left(a_{i}+b_{i} z\right)^{2}
\end{align*}
$$

The cosine of the angle between $\stackrel{\rightharpoonup}{\Omega}$ and the outward normal \vec{n} at the tank surface is given by

$$
\mu_{w}=|\gamma| \quad \begin{align*}
& \text { if the top or bottom of the tank yields the minimum } \tag{2.14a}\\
& \text { distance s. }
\end{align*}
$$

In the latter case the normal vector is computed as:

$$
\begin{equation*}
\vec{n}_{i}=\frac{c_{1} \vec{i}+c_{2} \vec{i}+c_{3} \vec{k}}{\left[c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right]} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{1}=x+\alpha s_{i} \\
& c_{2}=y+\beta s_{i} \tag{2.16}\\
& C_{3}=-b_{i}\left[a_{i}+b_{\mathbf{i}}\left(z+\gamma s_{i}\right)\right]
\end{align*}
$$

2.4 DIRECT GAMMA RAY AND FAST NEUTRON HEATING

The heating rate from direct gamma rays and fast neutrons at a specified point \vec{r}, at a radius r and height z, is determined by an extrapolation of the curve-fit Monte Carlo data. For the \mathbf{i} th group, this extrapolation is:

$$
\begin{equation*}
\dot{H}_{i}(r, z)=S_{i}(\mu) \dot{h}_{i}\left(r, z^{\prime}\right) \frac{s_{o}^{2}}{s_{i}^{2}} \exp \left[-\Sigma_{i}^{w} \Delta s_{w}\right] \tag{2.17}
\end{equation*}
$$

where

$$
\begin{align*}
& \begin{array}{l}
s_{0}^{2}=\quad \begin{array}{l}
11.25^{2}+r^{2}, \text { the square of the distance to the volume element } \\
\text { in the original Monte Carlo calculation }
\end{array}
\end{array} \\
& \dot{h}_{i}\left(r, z^{\prime}\right)=\text { the heating rate from the } i \text { th energy group } \\
& \stackrel{\rightharpoonup}{r}_{0}=\text { the angular point source position } \\
& s_{t}=\quad \text { the total distance from the source point to the point in the tank } \\
& s_{t}=\left|\stackrel{\rightharpoonup}{r}_{0}-\stackrel{\rightharpoonup}{r}\right| \\
& \vec{\Omega}=\text { the unit direction vector from } \vec{r}_{r} \text { to } \vec{r}_{0} \\
& \vec{\Omega}=\left(\vec{r}_{0}-\vec{r}_{r}\right) / s_{t} \\
& \mu=-\vec{k} \cdot \vec{\Omega}=|\gamma| \\
& s_{w}=\quad \begin{array}{l}
\text { the distance from the point } \vec{r} \text { to the tank wall along the } \\
\text { direction } \vec{\Omega}
\end{array} \\
& z^{\prime}=\mu s_{w^{\prime}} \text { the axial penetration distance into the tank. } \\
& \Sigma_{i}^{w}=\text { the total attenuation cross section of the tank wall for } \\
& \text { particles in the } i \text { th group. } \\
& \Delta s_{w}=\quad \text { the distance in the tank wall, approximated by } \\
& \Delta s_{w}=\quad{ }_{w} / \vec{\Omega} \cdot \vec{n} \tag{-2.23}
\end{align*}
$$

2.5 CAPTURE GAMMA RAY HEATING

The energy deposition due to the liquid hydrogen capture gammas at a point \vec{r} in the tank is computed by a volume integration over these capture sources. This volume integratron is performed by subroutine TOE using spherical coordinates with the coordinate system centered at the point \vec{r}. The equation used for the propellant capture gamma ray heating is:

$$
\dot{H}_{p}(r, z)=\mu_{p}^{a} E_{p}^{\gamma} C \int_{-1}^{1} \int_{0}^{2 \pi} \int_{0}^{s} \frac{S_{p}\left(\overrightarrow{r^{\prime}}\right)}{4 \pi s^{2}} \exp \left[-\mu_{p}^{\dagger} s\right] B_{p}\left(\mu_{p}^{\dagger} s\right) s^{2} d s d \theta d \mu(2.24)
$$

where

$$
\begin{align*}
& \dot{H}_{p}(r, z)=\text { the propellant capture gamma heating rate at } \vec{r}, \text { i.e. at } r \text {, and } z, \\
&=\text { the energy absorption coefficient, } \\
& \mu_{p}^{a} E_{p}^{\gamma}=\text { the capture gamma ray energy }(2.23 \mathrm{Mev}), \\
&=\text { a units conversion factor, } \\
&=\text { the cosine of the polar angle, } \\
&=\text { the azimuthal angle, } \\
& \theta=\text { the distance from } \vec{r} \text { along } \vec{\Omega} \\
& s=\vec{i} \sqrt{1-\mu^{2}} \text { cos } \theta+\vec{i} \sqrt{1-\mu^{2}} \sin \theta+\vec{k} \mu \\
& \vec{\Omega} \tag{2.25}\\
& \overrightarrow{r^{\prime}}=\stackrel{\rightharpoonup}{r}+\frac{s}{\Omega}, \text { the capture gamma ray source point, }
\end{align*}
$$

$$
\begin{array}{ll}
\mu_{p}^{\dagger} & =\text { the mass attenuation coefficient, } \\
B_{p}\left(\mu_{p}^{\dagger} s\right) & =\text { a polynomial buildup factor, and } \\
S_{p}\left(r^{\prime}\right) & =\begin{array}{l}
\text { the volumetric capture gamma ray source strength at the } \\
\text { source point. }
\end{array}
\end{array}
$$

The capture gamma ray source strength is determined from the curve fit Monte Carlo data as:

$$
\begin{equation*}
S_{p}\left(\overrightarrow{r^{\prime}}\right)=\sum_{i=4}^{8} \frac{\left(11.25+z^{\prime}\right)^{2}+r^{2}}{\left|\stackrel{\rightharpoonup}{r^{\prime}}-\vec{r}_{0}\right|^{2}} g_{i-3}\left(r, z^{\prime}\right) s_{i}\left(\mu^{\prime}\right) \exp \left[-\Sigma_{i}^{w} \Delta s_{w}\right] \tag{2.26}
\end{equation*}
$$

The same procedures used in this source strength calculation are used in defining the point wise heating rates from direct gamma rays and fast neutrons, i.e. eq. 2.17.

2.5.1 Wall Capture Gamma Ray Heating

The energy deposition from capture gamma rays produced in the tank wall is computed concurrent with the calculation of the liquid hydrogen capture gamma component. A single capture gamma ray energy is allowed and the energy deposition is computed at points in the propellant tank as:

$$
\begin{align*}
& \dot{H}_{w}(r, z)=\mu_{w}^{a} E_{w}^{\gamma} C \int_{-1}^{1} \int_{0}^{\Omega^{\prime}} \underbrace{2 \pi}_{0} \int_{s^{s}}^{{ }^{w}}{ }^{s}{ }^{w}+\Delta s{ }_{w} \frac{s_{w}\left(\overrightarrow{r^{\prime}}\right)}{4 \pi} \frac{\exp \left[-\mu_{w}^{\dagger}{ }^{t}\right]}{s^{2}} \\
& B_{w}\left(\mu_{w}^{\dagger} s\right) s^{2} d s d \theta d \mu \tag{2.27a}
\end{align*}
$$

Astronuclear
Laboratory
where
C is a units conversion factor
μ_{w}^{a} is the energy absorption coefficient of liquid hydrogen for the wall capture gammas
$\mathrm{E}_{\mathrm{w}}^{\gamma}$ is the energy (Mev) of the wall capture gammas
μ_{w}^{\dagger} is the mass attenuation coefficient of the liquid hydrogen for the wall capture gammas
$B_{w}\left(\begin{array}{c}\dagger \\ \left.\mu_{w} s\right) \\ \text { hydrogen }\end{array}\right)$ is a polynomial buildup factor for the wall capture gammas in liquid hydrogen
Δs_{w} is the slant thickness of the wall as seen by the point, \vec{r}
$S_{W}\left(\vec{r}^{\prime}\right)$ is the volumetric source strength of capture gammas in the tank wall
$\bar{\Omega}^{\prime}$ is the unit direction vector from the capture point to the angular point source
Note: this integration is limited to portions of the tank wall which can "see" the equivalent angular point source.

The attenuation of these capture gamma rays by the tank wall is neglected so that the integration reduces to

$$
\begin{align*}
& \dot{H}_{w}(r, z)= C \mu_{w}^{a} E_{w}^{\gamma} \int_{-1}^{1} \int_{0}^{2 \pi}\left\{\int_{\Omega_{w}^{\prime} \cdot \vec{n}>0}^{s} s_{w}^{s}\left(\vec{r}^{\prime}\right) d s\right. \\
&\left.\frac{\exp \left[-s_{w}^{\prime}\right.}{4 \pi}\right] \\
& s_{w}^{\dagger}\left(\mu_{w}^{\dagger} s\right) d \theta d \mu \tag{2.27b}
\end{align*}
$$

The capture gamma source is obtained from the neutron fluxes at the tank wall as:

$$
\begin{equation*}
s_{w}\left(\bar{r}^{\prime}\right)=\sum_{i=4}^{8} \Sigma_{i}^{c} \frac{s_{i}\left(\mu^{\prime}\right)}{4 \pi t^{2}} \exp \left[-\Sigma_{i}^{\dagger} \Delta s_{w}\right] \tag{2.28}
\end{equation*}
$$

where
$\Sigma_{i}^{c} \quad$ is the neutron capture cross section for source group i

+ is the distance from the angular point sources to the tank wall
Δs_{w} is the distance into the tank wall of the capture source point measured along the line from the angular point source to the capture point.
From Figure 2, the distance Δs_{w} is given by

$$
{ }_{w}{ }_{w}-\vec{n} \cdot \vec{\Omega}\left(s-s_{w}\right)=\vec{n} \cdot \vec{\Omega} \cdot \Delta s_{w}^{\prime}
$$

$$
\Delta s_{w}^{\prime}=\frac{{ }^{\dagger}{ }_{w}-\vec{n} \cdot \vec{\Omega}\left(s-s_{w}\right)}{\vec{n} \cdot \vec{\Omega}^{\prime}}
$$

Since the attenuation of the wall capture gammas by the tank wall is neglected, the source term in eq. 2.27 b is obtained analytically:

$$
\begin{aligned}
& \int_{s_{w}}^{s_{w}+\Delta s_{w}} \\
& s_{w}\left(\vec{r}^{\prime}\right) d s=\sum_{i=4}^{8} \frac{\Sigma_{i}^{c}}{4 \pi \dagger^{2}} s_{i}\left(\mu^{\prime}\right) \\
& \int_{s_{w}}^{s} w^{+\Delta s_{w}} \exp ^{2}\left[-\Sigma_{i}^{\dagger}\left(\frac{{ }_{w}-\vec{n} \cdot \overrightarrow{\bar{\Omega}} \cdot\left(s-s_{w}\right)}{\vec{n} \cdot \vec{\Omega}^{1}}\right)\right] d s
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{i=4}^{8} \frac{\Sigma_{j}^{c}}{\Sigma_{i}^{\dagger}} \frac{S_{i}\left(\mu^{\prime}\right)}{4 \pi t^{2}}\left(1-\exp \left[-\Sigma_{i}^{\dagger}{ }_{w}{ }_{w} / \vec{n} \cdot \vec{\Omega}^{\prime}\right]\right) \frac{\vec{n} \cdot \vec{\Omega}^{\prime}}{\vec{n} \cdot \vec{\Omega}} \tag{2.29}
\end{equation*}
$$

Substitution into eq. 2.27b yields the final equation evaluated in subroutine TOE:

$$
\begin{align*}
& \dot{H}_{w}(r, z)=C_{\mu}^{a} w_{w}^{E_{w}^{\gamma}} \int_{-1}^{1} \int_{0}^{2 \pi} \int_{\overrightarrow{\Omega^{\prime}}}^{8} \sum_{i=4}^{8} \frac{\Sigma_{i}^{c}}{\Sigma_{i}^{\dagger}}{\underset{i}{i}}^{S_{i}}\left(\mu^{\prime}\right) \\
& \begin{array}{r}
\left(1-\exp \left[-\Sigma_{i}^{t}{ }_{w}+\vec{n} \cdot \vec{\Omega}^{\prime}\right]\right) \\
\times \frac{1}{4 \pi t^{2}} \frac{\vec{n} \cdot \vec{\Omega}^{\prime}}{\vec{n} \cdot \vec{\Omega}^{2}} \frac{\exp \left[-\mu_{w^{s}}^{\dagger}\right]}{4 \pi}{ }_{B_{w}}^{B_{w}}\left(\mu_{w^{s}}^{\dagger}\right) d \theta d \mu
\end{array} \tag{2.30}
\end{align*}
$$

2.6 Average Energy Deposition

The total heating rate at a point is given by a summation over the various heating rate components.

$$
\begin{equation*}
\dot{H}(r, z)=\sum_{i=1}^{6} \dot{H}_{i}(r, z)+\dot{H}_{p}(r, z)+\dot{H}_{w}(r, z) \tag{2.31}
\end{equation*}
$$

The total energy deposited in the tank per unit time is then obtained by an integration over the tank volume. The energy deposition rate for propellant levels up to z is denoted by $\dot{H}(z)$ and is given by

$$
\begin{equation*}
\dot{H}(z)=\int_{z_{1}}^{z} 2 \pi \int_{0}^{R_{\max }\left(z^{\prime \prime}\right)} \dot{H}\left(r^{\prime \prime}, z^{\prime \prime}\right) d\left(\frac{r^{n^{2}}}{2}\right) d z^{\prime \prime} \tag{2.32}
\end{equation*}
$$

where r " is the variable radius and $z "$ is the variable axial coordinate. The volume averaged heating rate for the propellant below z is simply:

$$
\begin{equation*}
\dot{H}_{V}(z)=\frac{1}{V(z)} \quad \dot{H}(z) \tag{2.33}
\end{equation*}
$$

where

$$
\begin{equation*}
V(z)=2 \pi \int R_{\max }^{2}\left(z^{\prime \prime}\right) d z^{\prime \prime} \tag{2.34}
\end{equation*}
$$

The radial averaged heating rate at the propellant height z is given by:

$$
\begin{equation*}
\dot{H}_{A}(z)=\frac{2 \pi}{A(z)} \int_{0}^{R_{\max }(z)} \dot{H}\left(r^{\prime \prime}, z\right) d\left(\frac{r^{\prime \prime 2}}{2}\right) \tag{2.35}
\end{equation*}
$$

where $A(z)=\pi R_{\text {max }}^{2}(z)$

2.7 Propellant Temperature Rise

Neglecting the fact that heating rates are perturbed by the total amount of propellant in the tank, the temperature rise can be computed as a function of the time, , after which the tank starts to empty.

No Mix Model
The radial averaged temperature rise of propellant, initially at a height z at time $\tau=0$, can be determined by integrating the heating rate over the time required to reach the tank outlet. Assuming no mixing of the propellant, then:

$$
\begin{equation*}
\Delta T(z)=\frac{1}{C_{p}} \int_{0}^{\tau(z)} \dot{H}_{A}\left(z^{\prime \prime}\left(\tau^{\prime}\right)\right) d \tau^{\prime} \tag{2.37}
\end{equation*}
$$

where C_{p} is the specific heat.
But $\frac{d z^{\prime \prime}}{d \tau^{\prime}}=\dot{V} / A\left(z^{\prime \prime}\right) \quad$ where \dot{V} is the volumetric flow rate
so that

$$
\begin{gather*}
\Delta T(z)=\frac{1}{C_{p}} \int_{0}^{z} \dot{H}_{A}\left(z^{\prime \prime}\left(\tau^{\prime}\right)\right) \frac{d \tau^{\prime}}{d z^{\prime \prime}} d z^{\prime \prime}=\frac{1}{C_{p}} \int_{0}^{z} A\left(z^{\prime \prime}\right) \dot{H}_{A}\left(z^{\prime \prime}\right) d z^{\prime \prime} \tag{2.38}\\
=\dot{H}(z) / C_{p} \dot{V} \tag{2.39}
\end{gather*}
$$

where τ is given by

$$
\begin{equation*}
r=V(z) / \vee \tag{2.40}
\end{equation*}
$$

Complete Mix Model

The temperature rise under the assumption of a complete and instantaneous mix of the energy deposited in the tank can be determined by solving a differential equation

$$
\begin{equation*}
\frac{d H(z)}{d \tau}=\dot{H}(z)-\dot{V} H(z) / V(z) \tag{2.41}
\end{equation*}
$$

where $H(z)$ is the total energy contained in the tank when the propellant level has dropped to a height z. The time at this condition is

$$
\begin{equation*}
\tau=\frac{V_{0}-V(z)}{V} \tag{2.42}
\end{equation*}
$$

or alternatively
$V(z)=V_{0}-V_{\tau}$
where V_{0} is the total tank volume.
Solution of eq. 2.41 yields the temperature rise when the propellant has dropped to the height z :

$$
\begin{equation*}
\Delta T(z)=\frac{1}{C_{p} V} \int_{z}^{z^{\prime}+1} \dot{H}_{V}\left(z^{\prime \prime}\right) A\left(z^{\prime \prime}\right) d z^{\prime \prime} \tag{2.43}
\end{equation*}
$$

with the corresponding time

$$
\begin{equation*}
\tau(z)=\frac{1}{V} \int_{z}^{z_{I}+1} A\left(z^{\prime \prime}\right) d z^{\prime \prime}=\frac{V_{0}-V(z)}{V} \tag{2.44}
\end{equation*}
$$

SECTION

3.0 PROGRAM LOGIC

The TIC-TOC-TOE program accepts all input data before proceeding to the calculation of propellant heating rates. Detailed input instructions are given in Section 4.0. Some of the input data are altered as they are input. In particular, the point angular source is defined from input fluxes tabulated at discrete polar angles.

3.1 POINT CALCULATIONS

Heating rate calculations are first performed for discrete points in the tank as specified in the input. The point heating calculations are performed in subroutine POINT. This subroutine is also utilized in the volume integrations, discussed in Section 3. 2, where the discrete points are specified by the numerical integration procedures.

3.1.1 Direct Heating

The POINT subroutine computes the direction and total distance from the point in the tank to the source point. The distance in the propellant and the normal derivative at the surface are then computed by the function subprogram PATH. Next, the angular point source is interpolated to obtain the groupwise source for the direction from the source point to the point in the tank. The axial penetration, z^{\prime}, is computed and the heating rate obtained for each group by eq. 2.1 using the function subprogram CURVE to evaluate eq. 2. 2, 2.3, and 2.4.

3.1.2 Capture Heating

The option indicator for capture gamma ray calculations is checked. If requested, these capture calculations are performed by subroutine TOE.

The TOE subroutine performs an integration over the tank volume to obtain capture gamma ray heating rates. The volume integration is performed in a spherical coordinate system centered at the point in the tank as indicated in eq. 2. 24 and 2.27.

The first procedure in this volume integration is to define a discrete direction through the tank based on the discrete directions obtained from the solid angle portion of the
integration. The distance to the tank surface and the outward normal are then computed for this direction by PATH. The volume integration then involves a spatial integration along the path to the wall. Each of the discrete points generated along the path by the numerical spatial integration is a point source of hydrogen capture gammas. The source strength at each of these point sources is obtained from equation 2.1 using subroutine GAMMAS in conjunction with the function subprogram CURVE.

After evaluating the point sources along the line to tank wall, the tank wall capture gamma heating contribution is obtained using eq. 2.30

3.2 VOLUME CALCULATIONS

The volume integration option is checked after all point calculations have been performed. If requested, this integration is performed in a cylindrical coordinate system.

The outermost integration involves the integration along the length of the tank. The inner integration is an area integration. Discrete points are generated for the area integration and the pointwise heating rates are obtained by subroutine POINT.

The radial averaged heating rate, eq. 2.35, is obtained from the inner area integration and volume averaged heating rates are obtained from eq. 2.33 by the integration of the area averages over the axial distance.

The no-mix temperature rise is computed during the volume integration using eq. 2.39. Appropriate quantities are saved for the complete mix temperature rise, eq. 2.43 after the volume integration is completed.

SECTION

4.0 INPUT DATA INSTRUCTIONS

The TIC-TOC-TOE program utilizes standard FORTRAN input statements. A variety of formats are used. Each format utilizes various combinations of the following data fields:

1) hollerith information: A4 field (4 columns)
2) integer data: 13 field (3 columns)
3) floating point data: E9.0 field (9 columns)

NOTE: For floating point data entered without a decimal point, the decimal point is assumed to be to the right of the data field.
In preparing data, it should be remembered that all blanks in integer or floating point fields are interpreted as zeros. Therefore, all integers (including exponents of floating point numbers) must be right adjusted.

Each physical data card is written on the output file as soon as it is read from the input file. The resulting printout includes the information in card columns (cc) 73 through 80 of the data cards. Since TIC-TOC-TOE does not print details of problem data except for the input cards, prolific use of card labeling is desirable. A note of warning: in obtaining the card identification from cc 73-80, all unused data fields in cc 1-72 are interpreted as data and these unused fields should be blank or contain valid data punches.

CARD A, First title card for labeling the printout
NOTE: This card is always required

COLUMN	FORMAT	SYMBOL	DEFINITION
$1-80$	$20 A 4$	$-2-$	Any desired information for problem identi- fication-this will appear on the first line of each output page.

CARD B Second title card for labeling the printout
NOTE: This card is always required

COLUMN	FORMAT	SYMBOL
$1-80$	$20 A 4$	$\ldots-$

DEFINITION

Any desired information for problem identification. This will appear on the second line of each output page.

CARD 0, Input controls for data cards

NOTE: This card is always required		
COLUMN	FORMAT	SYMBOL
1-3	13	INI
4-6	13	IN2
7-9	13	IN3
10-12	13	IN4
13-15	13	IN5
16-18	13	IN6
19-21	13	IN7
22-24	13	IN8
25-27	13	IN9
28-30	13	IN10
31-33	13	INII

DEFINITION

Input control for Card 1, comments.
INI ≤ 0, do not input Card 1 .
INI > 0, input Card I.
Input control for Card 2, limits and options.
IN2 ≤ 0, do not input Card 2.
IN2 > 0, input Card 2.
Input control for Card 3, point source location.
IN3 ≤ 0, do not input Card 3.
IN3>0, input Card 3 .
Input control for Card 4, polar angles for fluxes.
IN4 ≤ 0, omit Card 4 .
IN4 >0, input Card 4.
Input control for Card 5, polar fluxes.
IN5 ≤ 0, omit Card 5.
IN5 >0, input Card 5.
Input control for Card 6, flux scaling factors.
IN6 ≤ 0, omit Card 6.
IN6 >0, input Card 6.
Input control for Card 7, tank wall cross section.
IN7 ≤ 0, omit Card 7.
IN7 >0, input Card 7.
Input control for Card 8, tank wall source.
IN8 ≤ 0, omit Card 8 .
IN8 >0, input Card 8.
Input control for Card 9, cubic buildup.
IN9 ≤ 0, omit Card 9 .
IN9 >0, input Card 9.
Input control for Card 10, tank geometry. IN10 ≤ 0, omit Card 10 .
IN10 >0, input Card 10 .
Input control for Card 11, point detectors.
INII ≤ 0, omit Card 11 .
INII >0, input Card 11 .

CARD 0, Input controls for data cards (continued)			
COLUMN	FORMAT	SYMBOL	DEFINITION
$34-72$	1313	---	These columns are not used and should be left blank.
$73-80$	$2 A 4$	Any desired information for card identi- fication.	

CARD 1, Comments
NOTES: a) omit this card if $\mathbb{N L} \leq 0$
b) supply N$]$ physical cards if $\mathrm{NI}>0$.

COLUMN	FORMAT	SYMBOL	DEFINITION
$1-72$	18A4	---	Any information for description of problem.
$73-80$	$2 A 4$	---	Any information for card identification.

CARD 2, Limits and options.
NOTES: a) omit this card if $\mathbb{I N} 2 \leq 0$.
b) supply this card if $\mathrm{IN} 2>0$.

COLUMN	FORMAT	SYMBOL	DEFINITION
1-3	13	NAMAX	Number of angles used to tabulate fluxes defining point angular sources $2 \leq \text { NAMAX } \leq 25$
4-6	13	NRMAX	Number of conical and cylindrical sections of the tank $1 \leq \operatorname{NRMAX} \leq 24$
7-9	13	NTOE	Capture gamma ray calculation option. NTOE $=0$, do not calculate. NTOE = 1, calculate.
10-12	13	NPOINT	Number of discrete points in the tank-described on Card 11. $0 \leq \mathrm{NPOINT} \leq 100$
13-15	13	NVOLYM	Volume integration option to obtain heating distributions, total heating and temperature rise. NVOLYM $=0$, do not integrate. NVOLYM = 1, integrate.

CARD 2, continued

COLUMN	FORMAT	SYMBOL
$16-18$	13	NIZMAX
$19-21$	13	NIRMAX
$22-24$	13	NITMAX
$25-27$	13	IPMAX
$28-30$	13	ITMAX
$31-33$	13	ISMAX
$34-72$	1313	---
$73-80$	$2 A 4$	-

DEFINITION

Number of intervals in the axial integration to obtain heating distributions.

Number of intervals in the radial integration to obtain heating distributions.

Number of intervals in the azimuthal integration to obtain heating distributions. Use NITMAX = 1 .

Number of intervals in the polar integration to obtain capture gamma ray heating (discrete points on Card 11 have their own limit).

Number of intervals in the azimuthal integration to obtain capture gamma ray heating.
Number of intervals in the distance integration to obtain capture gamma ray heating.

These columns are not used and should be left blank.

Any information for card identification.
CARD 3, Point source location and other parameters.
NOTES:
a) omit this card if IN3 ≤ 0.
1 b) supply this card if IN3>0.

COLUMN	FORMAT	SYMBOL	DEFINITION
1-9	E9.0	XS(1)	X-coordinate of the source point (ft). use $\mathrm{XS}(1)=0.0$.
10-18	E9.0	XS(2)	Y -coordinate of the source point (ft). use $\mathrm{XS}(2)=0.0$.
19-27	E9.0	XS(3)	Z -coordinate of the source point (ft).
28-36	E9.0	RADIUS	Distance from source point for which polar fluxes are tabulated (ft).
37-45	E9.0	WALL	Tank wall thickness (ft).
46-54	E9.0	ADUMI	Volumetric flow rate ($\mathrm{ft}^{3} / \mathrm{sec}$)

CARD 3, continued

COLUMN	FORMAT	SYMBOL	DEFINITION $55-63$
E9.0	ADUM2	Specific heat of propellant (watt sec.cm degree	
$64-72$	E9.0		

CARD 4, Polar angles at which polar fluxes are tabulated
NOTES:
a) omit this card if $1 \mathrm{~N} 3 \leq 0$.
b) supply this card if $\mathrm{IN} 3>0$.

COLUMN	FORMAT	SYMBOL
$1-72$	$8 E 9.0$	$C S A(1)$

CSA(2)

DEFINITION

First polar angle at which fluxes are tabulated. CSA $(1)=0.0$.

Second polar angle at which fluxes are tabulated. $\operatorname{CSA}(2)>\operatorname{CSA}$ (1)

-

-

CSA(NAMAX)

73-80
2A4

Last polar angle at which fluxes are tabulated.

Any information for card identification.
CARD 5, Fluxes at discrete polar angles
NOTES: a) omit these cards if $\operatorname{IN} 5 \leq 0$.
b) supply these cards if IN5 >0, one for each polar angle and in the order of the increasing polar angles (NAMAX physical cards).

COLUMN FORMAT
1-72
8 E9.0

SYMBOL
FLUX(1,I)

FLUX (2,I) $\quad 3 \mathrm{Mev}$ photon flux at polar angle CSA(I) (photons/ $\mathrm{cm}^{2} \mathrm{sec}$).

1 Mev photon flux at polar angle CSA(I) (photons $/ \mathrm{cm}^{2}{ }^{\text {sec }}$).

CARD 5, continued COLUMN FORMA

SYMBOL	DEFINITION
FLUX $(4,1)$	7 Mev neutron flux at polar angle CSA(I) ($\frac{\text { neutrons }}{\mathrm{cm}^{2} \mathrm{sec}}$)
FLUX $(5,1)$	3 Mev neutron flux at polar angle CSA(I) (neutrons/ $\mathrm{cm}^{2}-\mathrm{sec}$)
$\operatorname{FLUX}(6,1)$	1 Mev neutron flux at polar angle CSA(1) (neutrons/cm ${ }^{2}$ - sec)
$\operatorname{FLUX}(7,1)$	0.1 Mev neutron flux at polar angle CSA(I) (neutrons/cm ${ }^{2}-\mathrm{sec}$)
FLUX $(8,1)$	thermal neutron flux at polar angle $\operatorname{CSA}(1)$ (neutrons $/ \mathrm{cm}^{2}$ - sec)
---	Any information for card identification.

CARD 6, Flux scaling factors.
NOTES: a) omit this card if IN6 ≤ 0.
b) supply this card if $1 \mathrm{~N} 6>0$.
c) all numbers on this card are used and should be non-zero.
\(\left.$$
\begin{array}{ccc}\begin{array}{c}\text { COLUMN } \\
1-72\end{array} & \text { FORMAT } & \text { SYMBOL }\end{array}
$$ \begin{array}{l}DEFINITION

Multiplicative scaling factor for group 1

input fluxes (6 Mev gammas) if they were

not in the right units.\end{array}\right]\)| Multiplicative scaling factor for group 2 |
| :--- |
| input fluxes (3 Mev gammas) in case they |
| were not in the right units. |

CARD 7, Tank wall cross sections
NOTES: a) omit this card if $1 N 7 \leq 0$.
b) supply this card if IN7 >0

COLUMN

1-72
FORMAT
SYMBOL
SGT(1)

DEFINITION

Attenuation coefficient of tank wall for group 1 sources (cm^{-1})
SGT(2) Attenuation coefficient of tank wall for group 2 sources (cm^{-1})

SGT(8)	Attenuation coefficient of tank wall for group 8 sources $\left(\mathrm{cm}^{-1}\right)$
$73-80$	2A4

CARD 8, Tank wall capture gamma source
NOTES: a) omit this card if $\operatorname{IN} 8 \leq 0$
b) supply this card if IN8>0

COLUMN	FORMAT	SYMBOL
$1-72$	$8 E 9.0$	ENG
		ACF

FRA(1)
FRA(2)

DEFINITION

Tank wall capture gamma ray energy (Mev)
Attenuation coefficient of liquid hydrogen for tank wall capture gamma (cm^{-1})

Energy absorption coefficient of liquid hydrqgen for tank wall capture gamma (cm^{-7})

Fraction of 7 Mev neutrons removed by tank wall that are captured in wall
Fraction of 3 Mev neutrons removed by tank wall that are captured in the wall

CARD 8 (Continued)

COLUMN	FORMAT	SYMBOL FRA(5)		
$73-80$	$2 A 4$	---		DEFINITION
:---				
Fraction of thermal neutrons removed by				
tank wall that are captured in the wall				

CARD 9, Tank wall capture gamma buildup factor
NOTES: a) omit this card if IN9 ≤ 0
b) supply this card if IN $9>0$

COLUMN	FORMAT	SYMBOL	DEFINITION
1-36	4E9.0	BUF(1)	Constant term in cubic build representation
		BUF(2)	Coefficient of linear term in buildup
		BUF(3)	Coefficient of squared term in buildup
		BUF(4)	Coefficient of cubed term in buildup
37-72	4E9.0	---	These columns are not used and should be left blank
73-80	2A4	---	Any information for card identification

CARD 10, Tank geometry description
NOTES: a) omit this card if 1 N10 ≤ 0
b) supply this card (s) if $1 \mathrm{~N} 10>0$

COLUMN	FORMAT	SYMBOL
$1-72$	$8 E 9.0$	$\operatorname{ARE}(1)$
		$\operatorname{ZEE}(1)$
		$\operatorname{ARE}(2)$

ZEE(2)

DEFINITION

Radius of bottom of first tank section (ft)
Height of bottom of first tank section (ft)
Radius of top of first tank section (ff) (= radius of bottom of second tank section)

Height of top of first tank section (ft) (= height of bottom of second tank section)

CARD 10 (Continued)

COLUMN	FORMAT	SYMBCL	DEFINITION
		ARE $(N R M A X+1)$	Radius of top of last tank section (ft)
		ZEE $(\mathrm{NRMAX}+1)$	Height of top of last tank section (ft)
$73-80$	$2 A 4$	$-\cdots$	Any information for card identification

CARD 11, Detector point parameters
NOTES: a) omit this card if $\mathrm{INII} \leq 0$
b) supply this card for 1 N 11 points if $\mid \mathrm{N} 11>0$
COLUMN
$1-3$
$4-6$
$7-9$
$7-9$
$10-12$

$13-18$	---
$19-27$	E9.0
$28-36$	E9.0
$37-45$	E9.0
$54-72$	$3 E 9.0$
$73-80$	$2 A 4$

SYMBOL
I
INT(1, I)
$\operatorname{INT}(2, \mathrm{I})$

INT(3, I)

$X D(1,1)$
$X D(2,1)$
$X D(3,1)$

2A4

DEFINITION
Index of point being described
Intervals in polar integration for capture gammas
Intervals in azimuthal integration for capture gammas

Intervals in distance integration for capture gammas
These columns are not used
x coordinate of point (ft)
y coordinate of point (ft)
z coordinate of point (ft)
These columns are not used
Any information for card identification

NOTE: Use either $x=0.0$ and $y=$ radius or $x=$ radius and $y=0.0$

SECTION

5.0 SAMPLE PROBLEM

This sample problem is one of several calculations performed in the checkout of the TIC-TOC-TOE program. This particular problem does not employ all of the options coded in the program.

5.1
 PROBLEM DESCRIPTION

This problem employed the propellant tank model described in Volume 1 of this report. The equivalent angular point sources were defined from fluxes obtained from the KAP-V point kernel program described in Volume 4.

The data cards for this problem are not shown since the data on the cards appear in the printout shown in Table 1. The first page of the printout, labeled CASE 1, PAGE 1 in the upper right hand corner, contains the input data. The first two lines of the printout contain the descriptive information as supplied on data cards A and B.

The remainder of the lines on this first printout page correspond to data cards 0 through 11. The printout contains the data in the same form as it was entered -- with one exception; the card identification in card columns 73-80 appears on the left side of the printout and is followed by three periods. Note: some of the data cards did not contain identification punches.

Two major characteristics of this problem are noted: (1) the neutron sources are input as zeros, and (2) the tank wall was not treated.

5.2 CALCULATED RESULTS

Discrete Points

The remainder of the Table 1 contains selected pages of the printout of the computed heating rates. The page identified as CASE 1, PAGE 2 contains pointwise heating rates for the individual points defined via card type 11. The columns on this printout page contain the point number, the point coordinates (radius and height) and the heating rates in watts $/ \mathrm{cm}^{3}$

TIC-TOC FOR NR-1 MSFC TA gamma only--gamma frum k				NK 15 FEET	SEPARATION	case 1		- tictoc and toe**case *astronucleah lag*page		
0		0	11	111	111	$10-0$	-0 -0 -0	-0 -0 -0	-0	$\begin{array}{llll}-0 & -0 & -0 \\ -0 & -0 & -0\end{array}$
2		7	70	101100	3300	-0 0	-0 $-0 \quad 0$	-0 -0 -0		
3	-••	0.		0.	0.	1.0000E*01	${ }_{4}^{0.0000 E * 01}$	$6.7200 E * 01$ 5.0000001	$1.0700 E * 44$ $6.0000 E *$	
4	...	0.		$1.00005 * 01$	2.0000E +01		4.0000E* 01	${ }_{0}$ S.	$\begin{aligned} & 6.0 \\ & 0 . \end{aligned}$	U.
51	...	9.40	ODE +11	$3.5000 E+12$ $3.3000 E+12$	4.3000E+12	$0 \cdot$	$0:$	0 -	0 .	
52	...	9.40	OOEF+11	3.0000E+12	3.9000E+12	0.	0.	0.	0.	\%
5 5	1.30	00E+12	$3.4000 \mathrm{E}+12$	$4.7000 \mathrm{E}+12$	$0 \cdot$	0	0.	0.	0.
55	\bullet		OOEP12	$6.3000 \mathrm{E}+12$	$9.8000 \mathrm{E}+12$	0.	0.	0.	0.	0.
6	...	2.50	00E+12	${ }_{1} \cdot 2000 \mathrm{E}+13$	2.800 Et +13	$0 \cdot$	0.		0.	
57	\bullet	$3 \cdot 0$	OE*O0	1:000ue +00	1:0000E*00	1.0000E*00	1.0000E*00	1.0000E*00	1.0000 e00	
7	-•	-0.		-0.	-0.	-0.	-0.	$0 \cdot$	-0.	-0.
	...	-0.		-0.	-0.	-0				
10		-0.0.5000E+01	-0.0VODE+00	${ }_{1.5800 E+01}$	6.5000E*00	1.7000E*01	8.2000E*00	1.8500E 0
10		1.0	-00E*0			2.6000E+01	1,6000E*01	3.0000E*01	1.6000t+01	6.0000 E -
1011	- 0	1.3	- 0 - 0 -	2_{-0}	$1: 5000+01$	O.,	1.5100E+01	-0.	${ }^{-0}$	$0 \cdot$
1112	\ldots	2	-0 -0	-0	0.	0.	$1.5500 \mathrm{E}+01$	-0.	-0.	-0.
113	...	3	-0 -v	-0)	0.	$0 \cdot$	$1.6000 \mathrm{E}+01$	-0.	-0.	-0.
11		4	-0 -0	-0	${ }_{0}$,	0°	2,0000E01		-0.	.
115	-.	5	-1) -0	-0		$0 \cdot$	$2.6500 \mathrm{E}+01$	-0.	-0.	-0
116	.		-0 -0 -0 -0	-010		$0 \cdot$	3.1500E+01	-0.	-0.	-0
11 11 11		$\stackrel{7}{9}$	-0 -0	-0	T.2000E*00	0.	1.7500E+01	-0.		
119		9	-0 -	-0	$1.2400 \mathrm{E}+01$	0	3.0000E*01		-0.	
1110		10	-0 -	-0						

$$
\begin{aligned}
& 1 \text { MEV N } \\
& \text { WATT/CC }
\end{aligned}
$$

WALL

$$
\dot{0}
$$ 20

3
m

\div

POINT INDEX	RAOIUS (FEET)
1	0.0000
2	$0 \cdot 1768$
3	0.2501
4	0.3063
5	0.3537
6	0.3954
7	0.4332
8	0.4679
9	0.5002
10	0.5305
11	0.5592
12	0.5865
13	0.6126
14	0.6376
15	0.6617
16	0.6849
17	0.7074
18	0.7291
19	0.7503
20	0.7708
21	0.7909
22	0.8104
23	0.8295
2.4	$n .8481$
25	0.8664
26	0.8842
27	0.9017
28	0.9189
29	0.9358
30	0.9523
31	0.9686
32	0.9846
33	1.0004
RADIAL	AVERAGES
VOLUME	AVERAGES
RADIAL	AVERAGED
34	0.0000

${ }_{\text {2 }}^{2}$
0
○－
\％
I

0 －•••••••

6 MEV G 3 MEV G
$0400000000^{4}+$

ONV 75 SE AND $\triangle N D$
AND AND
ANU
aND
 AND
AND
AND AND
AND
AND $Q_{2}^{2} 9_{2} 0$ 른 $000000000^{\frac{a}{2}}$

n＝Nanvaco

M
4
4
ज山心
－

 TEMPERATURE
TEMFERATURE TEMFEHATURE
TEMHERATUME
 TFMPERATUKE
TFMPEHATUKE

＜

㟶范
for the 3 gamma ray groups, the 3 fast neutron groups (zero for this problem), the propellant capture gammas, and the tank wall capture gammas, respectively. The last column is the total heating rate.

Volume Integration

The next part of the printout contains quantities obtained from the volume integration. The page identified by CASE 1, PAGE 3 contains the first part of the results of this integration. The major portion of this pase is the pointwise heating rate as obtained during the area integration over the bottom of the tank. These results are read in the same manner as the preceding page for points entered via Card type 11.

The three lines following the discrete points 1 through 33 contain the area averaged heating rates (watts $/ \mathrm{cm}^{3}$) at the tank bottom, the volume averaged heating rates (watts $/ \mathrm{cm}^{3}$) for all the propellant below the indicated height of 15 feet, and the radial averaged temperature rise and corresponding time (seconds) assuming no mixing of the propellant.

The printout for the volume integration proceeds in this manner for each z-plane generated during the volume integration. The page labeled CASE I, PAGE 101 contains the final points generated in the area integration at the upper propellant level. After the usual summaries of radial and volume averaged heating rates and of no mix temperature rise, there is a summary of the total heating rate (watts) by energy group obtained from the volume integration.

After the summary line containing volume integrated heating rates, the complete mix temperature rise and time (seconds), respectively, are printed for each of the axial positions generated during the volume integration. The remainder of the printout for this problem consisted of similar complete-mix temperature rise results.

6.0 REFERENCES

1. M. O. Burrell, "Nuclear Radiation Transfer and Heat Deposition Rates in Liquid Hydrogen", NASA-TND-1115, August 1962.
2. H. C. Woodsum, P. C. Heiser, "Tank Heating Codes, TIC-TOC and TOE for the IBM-7090 Computer", WANL-TNR-083, January 1963.
3. "IBM 7090/7094 Programming Systems FORTRAN IV Language", C23-6274-1, May 1963.

APPENDIX A

RSQUAR $=P A T H X X, C) * 2$
DRS $=$ RSQUAR/FLOATINIRMOD - 1 RSQ $=-$ DRS
$00150 J J J=1$ NIRMOD
$R S Q=R S Q+D R S$
SQ = RSQ + DRS
$=$ SORTIAMAXICO
$R=S Q R T I A M A X I(O . O$ OSQI)
$S R R=S T M S O N I J J J$ NIRMOD)
THE $=-D T$
DO 150 KK
$10150 K K K=1, N I T M O D$
THE $=$ THE $+D T$
THE $=$ THE
$\times 1=R * C O S T T H E 1$
$\times 2=$ R*SINITHES
SRT $=2.0 \% P I$
IFINETMOD.GT.II SRT $=$ SIMSONIKKK.NTTMODI*DT I. 5
$N=N+1$
CALL POINT(IPMAX,ADUMI, $X, O U T, N$ I
SRA $=$ SRT*SRR
SRA $=$ SRT*SRR
SRB = SRA*SRZ
DO $150 \mathrm{~J}=1,9$
HRAD J$)=H R$

울
 2050
170
SIBFIC
CPOINT
$00130 J=1,2$
$R=R+X(J) * * 2$

INTII) $=$ INPII +1

 01
02
 SUBROUTINE DUTPUTIN,ARE, THE, ZEE, OOTI
COMMON/TAPEID/M1 ,M2 COMMON/TAPEIO/MZ DIMENSION
THET $=$ THE
$\begin{aligned} & \text { THET } \\ & \text { DOTI }\end{aligned}=0.0$
DOT(J) $=$ AMAX1(0.0.DOT(J))
10 DOT(9) $=$ DOT(9) + DOT(J)

$$
\begin{aligned}
& \text { WRITESM2, 2010)N,ARE } \\
& \text { GO TO } 40 \\
& \text { WRITE(M2, 2020100T }
\end{aligned}
$$

$$
\begin{aligned}
& 20 \text { WRITETM2, 2020100T } \\
& 40 \text { RETURN } \\
& 2000 \text { FORMAT } 1 \times, 107 H P O I N
\end{aligned}
$$

HEIGHT 6 MEV G 3 MEV G 1 MEV
TOTAL/IX,6HINDEX
ONE IG 7 MEV $N 3$ MEV $N 1$ MEV N HYOROGEN
IG 2 IIOH
FORMATII
WRITEIM2,2010IN, ARE, ZEE,DOT

2010
2020 FDRMATILX. $14 H T D T A L S$ IWATTSI.1211H. 1 1P9E9.2)
END
IBFTC TRACE M94/2.XR7
CPATH FATH LENGTH IN TANK
FUNCTION PATHIXP,CPI

COMMON/LIMITS/NAMEX,NRMAX,NPOINT,LIM(21)

DIMENSION $X(3), Y(3), C(3)$
ST $=0.0$

[^0]: * In a no-mix fluid model, the heat deposited in the liquid hydrogen is assumed to remain in the same area until that incremental volume of coolant is pumped out of the tank. In a complete mix fluid model, the total heat deposited is assumed to be instantaneously mixed throughout the tank.

