SYNTHESIS OF CALGULATIONAL METHODS FOR THE

 dESIGN AND ANALISIS OF RADATION SHIELDS for Nuclear kocket systemsContract No. NAS - $8-20414$
Contract NO DCN - 16-28-0029 (IF)

2 \triangle I FINAL PROGRESS REPORT

Volume

GPO PRICE \$ \qquad
CFSTI PRICE(S) \$ \qquad

$$
\text { Hard copy (HC) } \quad \$ 3.00
$$

Microfiche (MF) . .65

VOLUME 8

SYNTHESIS OF CALCULATIONAL METHODS FOR THE DESIGN AND ANALYSIS OF RADIATION SHIELDS FOR NUCLEAR ROCKET SYSTEMS

DAFT
ODD-K ANGULAR FLUX IAPES PROGRAM
by
R. K. Disney
and
S. L. Zeigler

ACKNOWLEDGMENTS

The authors wish to acknowledge the efforts of T. M. Jordan and R. G. Soltesz of Westinghouse Astronuclear Laboratory for their guidance in the formation of the DAFT program. Likewise, the authors appreciate the guidance provided by Mr. Henry E. Stern, Deputy Manager, Nuclear and Plasma Physics Division, George C. Marshall Space Flight Center, the technical monitor of the contract.

Abstract

This report is Volume 8 of nine volumes of the final report on "Synthesis of Calculational Methods for the Design and Analysis of Radiation Shields for Nuclear Rocket Systems. " Presented in this volume is a description of the DAFT (ODD-K Angular Flux Tape) program.

DAFT, a FORTRAN IV program for the IBM 7094 computer, is part of the "final" design method as described in Volume I. This program is the data processing routine which prepares angular, spatial, and energy distribution data for in put to the FASTER Monte Carlo program (Volume 9) from the surface angular leakage flux data of the two-dimensional transport program ODD-K (Volume 6).

The processing of the surface flux data in a form readily usable in the Monte Carlo program, FASTER, is achieved by reducing the surface multigroup angular leakage flux data into a histogram representation of the spatial, angular, and energy flux at the surfa ce of a two dimensional (R, Z) cylindrical reactor mockup. The DAFT program reduces the ODD-K surface angular flux data such that a limited number of areas, each having a defined angular energy flux, at the periphery of a reactor can be input to the FASTER program. Subsequently, the FASTER program can be used to predict the external radiation environment and/or propellant tank heating with a minimum amount of computer time and a maximum of accuracy for a given cost. If this ODD-K, DAFT combination is not used, the FASTER program must be used with volume distributed sources.

TABLE OF CONTENTS

Section Page
ABSTRACT iii
1.0 INTRODUCTION 1
2.0 PROGRAM DESCRIPTION 5
2.1 Angular Flux Data 6
2.2 Angular Flux Calculations 12
3.0 PROGRAM LOGIC 19
3.1 Tape Assignments 19
4.0 INPUT DATA DESCRIPTION 23
4.1 Card Input 23
4.2 Tape Input 24
5.0 OUTPUT DATA DESCRIPTION 25
APPENDIX--FORTRAN Source Deck Listing 27
LIST OF ILLUSTRATIONS
Figure Page
1 Schematic Diagram of the "Final" Design Method 3
2
ODD-K R, Z Mesh Cell 7
3
ODD-K Discrete Directions 8
4 DAFT Surface Area Index 13
5
DAFT Program Structure 21
6 FLOW CHART FOR THE DAFT Program 22LIST OF TABLES
Table Page
1 Recommended ODD-K Quadrature Sets 11
2 Calculations Performed by DAFT Subroutines 20

SECTION

1.0 INTRODUCTION

This report is Volume 8 of nine volumes of the final report on "Synthesis of Calculational Methods for the Design and Analysis of Radiation Shields for Nuclear Rocket Systems." Presented in this volume is a description of the DAFT (OD D-K Angular Flux Tape) program.

The DAFT program, which is written in FORTRAN IV language, is a data processing link in the "final" design method provided for the Marshall Space Flight Center (MSFC). A simplified schematic diagram of the "final" design method is shown in Figure 1. This method is fully described in Volume 1 of this report. As shown in the Figure 1, the DAFT program prepares angular flux data for use in the FASTER program. The starting point for the final design method is the POINT program (Volume 2) which prepares cross section and other basic data for use in the transport programs. In the "final" design method (Figure 1), the ODD-K two-dimensional transport program (Volume 6) provides neutron and photon energy fluxes throughout the reactor geometry. The NAGS data processing program (Volume 7) processes those fluxes and calculates neutron and photon radiation levels, and neutron and photon energy sources within the reactor system. These sources can be employed in either the KAP-V program (Volume 4) or the FASTER Monte Carlo program (Volume 9) for obtaining radiation levels at locations external to the reactor system. In addition, the FASTER program can compute heating rate distributions in the liquid hydrogen propellant (in either an on-axis or an off-axis tank) and the radiation level at the payload. Alternately, the DAFT program (Volume 8) can prepare neutron and photon energy and angular dependent fluxes at the reactor surface from the ODD-K program results for use in the FASTER Monte Carlo program.

The DAFT program prepares the data in a form usable in the FASTER (Volume 9) program. The DAFT program reduces the multigroup and angular fluxes at the surface (i. e., bottom, top, and lateral surfaces of an R, Z reactor geometry) into separate spatial, angular, and energy data for a limited number of surface areas. This program can coalesce the surface flux data from an ODD-K problem into as few as three surface area sources, or into as many as the ODD-K problem had for the outer boundary mesh intervals, representing
the bottom, top, and lateral surfaces of the reactor geometry.
The DAFT program uses the variable dimensioning capability of FORTRAN IV and allows general treatment of the discrete ordinate quadrature order (e.g., $\mathrm{S}_{2}, \mathrm{~S}_{4^{\prime}} \mathrm{S}_{6^{\prime}}$ $\mathrm{S}_{8^{\prime}}$. . .) up to the limit of 14,000 memory core storage locations available for data. Experience indicates that a DAFT problem using 16 groups and 1188 mesh cells (incremental volumes) of data from an S_{6} ODD-K problem (36 radial, 33 axial mesh intervals) and reducing them to 11 surface area sources, required only 5,000 of the total available 14,000 storage locations.

Computer running time for the DAFT program is relatively short. The problem described in the previous paragraph required less than two minutes on the IBM 7094 Model II computer.

Section 2 describes the quantities computed by the DAFT program from the twodimensional transport results. The program logic is briefly discussed in Section 3. Section 4 presents the input data requirements. The DAFT code output format is discussed in Section 5. The FORTRAN IV source program is listed in the Appendix.

Figure 1. Schematic Diagram of the "Final" Design Method

SECTION

2.0 PROGRAM DESCRIPTION

The DAFT program calculates the spatial, angular, and energy distribution of the leakage neutron or photon energy flux at the surface of a two-dimensional reactor geometry. This program utilizes, as input, the angular flux data on a binary data tape generated by the ODD-K program (Volume 6). The multigroup angular flux (neutron or photon) data from ODD-K is reduced by DAFT into separable spatial, angular, and energy distributions which are provided in histogram form for use as input to the FASFER program (Volume 9). The following sections will describe the required angular flux data from the ODD-K program and the calculations performed on this data.

2. 1 ANGULAR FLUX DATA

The DAFT program requires as input the angular flux data on a binary tape as calculated by the ODD-K program. The DAFT program is restricted to the following:

1) The angular flux must be from an R, Z ODD-K geometry model.
2) The discrete ordinate quadrature set which defines the discrete directions of the angular flux which must be a rotationally symmetric set.
These restrictions are imposed in the DAFT program since: (1) all data are computed only for an R, Z geometry, and (2) the angular flux is reduced for all surfaces (bottom, top, and lateral surfaces) in a similar fashion.

Surface angular fluxes are obtained from the ODD-K program at the surface midpoint of each mesh cell on the surface of the reactor geometry. These angular fluxes are discrete direction fluxes as obtained during the ODD-K solution for the scalar fluxes. The directions and the weights (solid angle elements on a unit sphere) are determined by the quadrature scheme employed (Volume 6).

In solving for angular fluxes in an ODD-K, R-Z two-dimensional mesh cell description, each mesh cell is a finite volume element of: $\Delta R=R_{i+1}-R_{i}, \Delta Z=Z_{i+1}-Z_{i}$, and $\Delta \theta=\theta_{k+1}{ }^{-\theta}{ }_{k}$ as shown in Figure 2. Because of symmetry in the angle, θ, solutions are only calculated in ODD-K at points A, B, C, D, and P. Points A, B, C, and D are midpoints of each surface of the mesh cell. The angular fluxes which are obtained at each of these points are then used to calculate the angular and the scalar flux at the midpoint, P, of the mesh cell. The calculation of the scalar flux at P is described in detail in Reference 2 and will not be discussed herein. The following discussion gives a description of the ODD-K angular flux solution at the points A, B, C, and D in each outer surface mesh cell which are special output data required for use in the DAFT program. At each midpoint on the four surfaces of the mesh cell as shown in Figure 2, the discrete angular fluxes are solved for a hemisphere of the unit sphere centered about each point. The hemisphere about each point is subdivided into its four octants as shown in Figure 3. These octants represent an S_{6} order angular quadrature. The numbers in the circles in Figure 3 represent points at

Figure 2. ODD-K R, Z Mesh Cell

Figure 3. ODD-K Discrete Directions
which the angular fluxes are obtained in the ODD-K S_{6} solution. As shown in Figure 3, the unit vectors (μ, η, ξ) are represented in an S_{6} angular quadrature as direction cosines $\mu_{1}, \mu_{2} \mu_{3}, \eta_{1}, \eta_{2}, \eta_{3}, \xi_{1}, \xi_{2}, \xi_{3}$. With the same distribution of $\mu_{i^{\prime}} \eta_{i^{\prime}} \xi_{i}$ on each unit vector, the discrete directions on the surface of the hemisphere lie on latitudes and longitudes which maintain rotational symmetry in the hemisphere. This rotational symmetry is required in DAFT since all angular flux data are reduced to two separate angular flux distributions on the unit vectors μ and ξ.

The recommended discrete ordinate quadrature set for the $R-Z$ geometry is the even moment symmetric set as suggested by Lathrop. The ODD-K quadrature sets including direction cosines and quadrature weights are presented in Table 1 for quadratures of order 2,4, and 6. As indicated in Figure 3 and presented in Table 1, there are 30 discrete directions in an S_{6} ODD-K solution. The numerical solution requires an initial direction solution for each ξ_{i} level (e. g. , in $S_{6}:-\xi_{1^{\prime}}-\xi_{2^{\prime}}-\xi_{3^{\prime}}+\xi_{1^{\prime}}+\xi_{2^{\prime}}+\xi_{3}$) in the hemisphere. These initial directions (indicated as $1,8,13,16,23$, and 25 in Figure 3) are each assigned a quadrature weight of zero and do not enter into the scalar flux solution. Therefore, only 24 angular fluxes with non-zero weights are obtained in the S_{6} hemisphere.

The angular flux data obtained from the ODD-K program for use in the DAFT code is the mesh cell surface data at the outer radius, top surface and bottom surface of the $\mathrm{R}-\mathrm{Z}$ reactor geometry. These data, which are obtained as binary tape output, include the angular flux data at the points A for all the outer reactor radius mesh cells, C for all the top surface mesh cells, and D for all the bottom surface mesh cells.

The angular flux data obtained for each group, g, from the ODD-K program includes:

1. The bottom surface angular flux ${ }^{\mathrm{B}}{ }_{\mathrm{ig}}$ from each radial mesh interval, i, and group g.
2. The top surface angular flux ${ }^{B 6}{ }_{\text {ig }}$ for each radial mesh interval, i, and group g.
3. The outer radial surface angular flux, B2 ig for each axial mesh interval i, and group g.

The angular flux data, ${ }^{B 4}{ }_{i g}, B 6_{i g}, B 2{ }_{i g}$ are input to DAFT as a binary data tape. This tape contains the ODD-K problem title, the geometric data of mesh coordinate dimensions (i.e., the radius or axial dimension of the surface which define the mesh cells in ODD-K), the quadrature direction cosines and weights, and the angular flux data. The first six logical tape records are:

1) The ODD-K problem title.
2) The radii of the mesh cell description (ODD-K input).
3) The axial dimensions of the mesh cell description (ODD-K input).
4) The direction cosines (ξ) of the ODD-K problem (M5 data list).
5) The direction cosines (μ) of the ODD-K problem (M7 data list).
6) The quadrature or direction weights of the ODD-K problem (W0 data list).

The data remaining on the tape consists of a set of logical tape records for each group in the multigroup solution. This tape is generated by ODD-K on the MSFC IBSYS version 13 tape number B-4. The actual data obtained from an ODD-K problem is nine logical records, of which, only three are actually needed for data processing in the DAFT program. The excess of data is obtained because the numerical solution of the group fluxes is solved in two passes (i.e., downward and upward) through the mesh cell description; the angular fluxes, $B 4{ }_{i g}$ and $B 6_{i g^{\prime}}$ are obtained each time the top $(i=J M)$, and bottom ($i=1$), mesh cell rows are passed. The fourth logical record of the set of nine for each group contains the angular flux ${ }^{B 4}{ }_{\text {ig }}$, at the bottom row. The seventh logical record contains the angular flux, $B 6_{i g}$, at the top row. The ninth logical record is the outer radial surface angular filux, B2. ig. The other records (first, second, third, fifth, sixth, and eighth) are excess data. The binary tape with nine records for each group, 1 to the number of groups in the ODD-K problem, is edited by the DAFT program.

TABLE 1
RECOMMENDED ODD-K QUADRATURE SETS

		Direction Cosines		Weights
	$\mu_{m}(M 7)$	$\left(S_{2}\right)$	$\xi_{m}(M 5)$	$W_{m}(W 0)$
1.	-1.000		-0. 57735	0.0
2.	-0.57735		-0.57735	0.250
3.	-0.57735		-0. 57735	0.250
4.	-1.0000		$+0.57735$	0.0
5.	-0.57735		+0. 57735	0.250
6.	+0.57735		$+0.57735$	0.250
	$\mu_{m}(M 7)$	$\left(S_{4}\right)$	$\xi_{m}(M 5)$	$W_{m}(W 0)$
1.	-0.9367418		-0.3500212	0.0
2.	-0.8688903		-0.3500212	0.0833333
3.	-0.3500212		-0.3500212	0.0833333
4.	+0.3500212		-0.3500212	0.0833333
5.	+0.8688903		-0.3500212	0.0833333
6.	-0.4950046		-0.8688903	0.0
7.	-0.3500212		-0.8688903	0.0833333
8.	+0.3500212		-0.8688903	0.0833333
9.	-0.9367418		$+0.3500212$	0.0
10.	-0.8688903		+0.3500212	0.0833333
11.	-0.3500212		$+0.3500212$	0.0833333
12.	+0.3500212		+0.3500212	0.0833333
13.	+0.8688903		+0.3500212	0.0833333
14.	-0.4950046		+0.8688903	0.0
15.	-0.3500212		$+0.8688903$	0.0833333
16.	+0.3500212		+0.8688903	0.0833333
	$\mu_{m}(M 7)$	$\left(S_{6}\right)$	$\xi_{m}(M 5)$	$W_{m}(W 0)$
1.	-0.9637974		-0.2666355	0.0
2.	-0.9261808		-0.2666355	0.0440315
3.	-0.6815076		-0.2666355	0.0393017
4.	-0.2666355		-0.2666355	0.0440315
5.	+0. 2666355		-0.2666355	0.0440315
6.	+0.6815076		-0.2666355	0.0393017
7.	$+0.9261808$		-0.2686355	0.0440315
8.	-0.7318110		-0.6815076	0.0
9.	-0.6815076		-0. 6815076	0.0393017
10.	-0.2666355		-0.6815076	0.0393017
11.	$+0.2666355$		-0.6815076	0.0393017
12.	+0.6815076		-0.6815076	0.0393017
13.	-0.3770795		-0.9261808	0.0
14.	-0.2666355		-0.9261808	0.0440315
15.	$+0.2666355$		-0.9261808	0.0440315
16.	-0.9637974		+0.2666355	0.0
17.	-0.9261808		+0.2666355	0.0440315
18.	-0.6815076		+0. 2666355	0.0393017
19.	-0.2666355		1 10. 2666355	0.0440315
20.	10.2666355		10.2666355	0.0440315
21.	+0.6815076		10.2666355	0.0393017
22.	10.9261808		10.2666355	0.0440315
23.	-0.7318110		+0.6815076	0.0
24.	-0.6815076		10.6815076	0.0393017
25.	-0.2666355		+0.6815076	0.0393017
26.	$+0.2666355$		10.6815076	0.0393017
27.	+0.6815076		10.6815076	0.0393017
28.	-0.3770795		10.9261808	0.0
29.	-0.2666355		10.9261808	0.0440315
30.	10.2666355		10.9261808	0.0440315

2.2 ANGULAR FLUX CALCULATIONS

The calculations performed in DAFT are restricted to the reduction of the outer surface angular flux data for each mesh cell into a limited number of surface area sources. The surface area of each outer mesh cell in the ODD-K problem is the initial data computed by DAFT. These data, obtained as a list of values, start at the bottom surface with the mesh cell at the centerline of the R, Z geometry. The surface mesh point index sequence is: one to the number of radial mesh cells $I M$; then $I M+1$ to the sum of $I M+J M$, where $J M$ is the number of axial mesh intervals; and then, $I M+J M+1$ to $I M+J M+I M$. Therefore, the total number of source mesh point data from an ODD-K problem is $I M+J M+I M$ sets of multigroup angular flux data. A schematic diagram of the DAFT surface area indexing system is shown in Figure 4.

The surface area of each bottom mesh cell follows as:

$$
\Delta \mathrm{A}_{\mathrm{k}}=\pi\left(\mathrm{R}_{\mathrm{i}+1}^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right)
$$

where: $k=$ the source mesh point index, $k=1$ to $I M$
$i=$ the radial mesh cell coordirate index, $i=1$ to $I M$
$R_{i}=$ the radial mesh cell coordinate dimensions which define the coordinates of the mesh cell surfaces.
$\Delta A_{k}=$ the external surface area of k th surface mesh cell
The description of the surface area of each top mesh cell is identical to the bottom mesh cell as described above. The surface source mesh point index, k, is ordered such that: $\Delta A_{I M+J M+1}=\Delta A_{I M^{\prime}} \Delta A_{I M+J M+2}=\Delta A_{I M-1}$, etc., to $\Delta A_{I M}+J M+I M$

$$
=\Delta A_{1}
$$

The surface area of each lateral surface mesh cell follows as:

$$
\Delta A_{k}=2 \pi\left(R_{I M+1}\right)\left(Z_{i+1}-Z_{i}\right)
$$

where: $k=$ the source mesh point index from $I M+1$ to $I M+J M$.
$\mathrm{i}=$ the axial mesh cell coordinate index, $\mathrm{i}=1$ to JM .
$Z_{i}=$ the axial mesh cell coordinate dimensions which define the axial coordinates of the mesh cell surfaces.
(W) Astronuclear

Figure 4. DAFT Surface Area Index
$R_{1 M+1}=$ the radius of the outer surface of the R, Z geometry.
$\Delta A_{k}=$ the external surface area of the k th surface mesh cell.
The areas are used in conjunction with the angular flux data to obtain integral surface source data for each incremental surface area.

Angular flux data calculations use the discrete direction quadrature weights and the conditions of a symmetric quadrature set to obtain the angular flux in a reduced form.

Consider the S_{6} angular quadrature as illustrated in Figure 3. These data can be reduced to a polar distribution (the average angular flux at each ξ value) and an azimuthal distribution (the average angular flux at each μ value) on the unit sphere as shown in Figure 3. The polar distribution computation of surface angular flux follows as:

Average surface angular flux at each ξ value (latitude on the unit sphere)
$N_{k g}^{\prime}=\frac{\sum_{m} N_{m k g} \times{ }^{W 0_{m}}}{W^{\prime}} \quad$ for all values in level I
where: $m=$ the discrete direction index

$$
\begin{aligned}
N_{\mathrm{kg}}^{\prime} & =\text { the average angular flux at each } \xi \text { value (latitude) } \\
\mathrm{k} & =\text { the source mesh interval index } \\
N_{m k g} & =\text { the multigroup angular flux } B 4_{\mathrm{mig}^{\prime}}{ }^{\mathrm{B}} 6_{\mathrm{mig}^{\prime}} \text { or } \mathrm{B} 2_{\mathrm{mig}} \\
W 0 & =\text { the quadrature weight (the area on the unit sphere) } \\
W^{\prime} & =\text { the total area on the unit sphere for a given } \xi \text { value. }
\end{aligned}
$$

The DAFT program performs the above calculation in an S_{6} angular quadrature with indices as follows:

$$
\text { for } \begin{aligned}
I & =1, m=29,30 \\
I & =2, m=24-27 \\
I & =3, m=17-22 \\
I & =4, m=2-7 \\
I & =5, m=9-12 \\
I & =6, m=14,15
\end{aligned}
$$

The average surface angular flux on each μ value (longitude on the unit sphere) is:

$$
N_{k g}^{n}=\frac{\sum_{m} N_{m k g} w O_{m}}{W^{n}} \quad \text { for all } m \text { in level } n
$$

where $N_{\mathrm{kg}}^{\mathrm{n}}$ is the average angular flux at each μ value (longitude).
The DAFT program performs the above calculation in an S_{6} angular quadrature with indices as follows:

$$
\begin{aligned}
& \text { for } n=1, m=2,17 \\
& \mathrm{n}=2, \mathrm{~m}=3,9,18,24 \\
& n=3, m=4,10,14,19,25,29 \\
& n=4, m=5,11,15,20,26,30 \\
& \mathrm{n}=5, \mathrm{~m}=6,12,21,27 \\
& \mathrm{n}=6, \mathrm{~m}=7,22
\end{aligned}
$$

The angular flux data foreach surface mesh cell are then used to calculate the surface source for each incremental area on the basis of input data which specifies the number of ODD-K surface mesh cells and the number of groups to be included in each surface area source in the DAFT calculations.

The following quantities are calculated for each surface area, s:
Total flux in surface area, s
$N_{s}=\sum_{k=N C s_{s-1}}^{N C S_{s}} \sum_{l=1}^{6} \sum_{g=N G S}^{N G F} \Delta A_{k} N_{k g}^{\prime} w^{\prime}$
where N_{s} = the total flux on the surface area, s, defined by the input list of data NCS_{3}, and the sum over neutron or photon energy groups, NGS to NGF. $\mathrm{NCS}_{\mathrm{s}}=$ the list of source mesh point index data defining the last source mesh point data to be included in the source, s. The first source mesh point data is the first surface area to be included in the source, S, or input value $\mathrm{NCS}_{\mathrm{s}-1}$.
$s=$ the surface area source index number
NGS = the group number at which the summation over groups is to begin
NGF = the group number of the final group to be included in the summation over groups.
$\frac{\text { Energy Distribution in surface area, } s}{\text { NCS }}$

Spatial Distribution in surface area, s

Angular Distributions in surface area, s
Polar:
$N_{1}=C x$

Azimuthal:

$$
N_{n}=C \times\left[\sum_{g=N G S}^{N G F} \sum_{k=N C S_{s-1}}^{N C S_{s}} \Delta A_{k} N_{k g}^{n}\right]
$$

where the constant C is either 20 or 1.0 depending upon the surface (top, bottom or side) and the polar or azimuthal distribution. This factor accounts for the zero inward flux in the generalized (over the hemisphere of the unit sphere) integration in DAFT.

The data described above are obtained for surface areas defined by input data. Consider the source mesh interval indexing, k, which defines the bottom surface ($k=1, I M$), the side surface $(k=I M+1$ to $I M+J M)$, and the top surface $(k=I M+J M+1$ to $I M+J M$ $+I M)$ in sequence. There are $I M+J M+I M$ sets of angular flux data for each range in the multigroup solution. The user specifies the number of surface area sources to be obtained from source interval data. Each surface area source includes a set of source mesh interval data. The surface area sources must be continuous from the first to the last source mesh interval to be coalesced into a surface area source. For example, if a DAFT problem has 105 source mesh intervals (36 radial and 33 axial) at the surface, the user may specify a DAFT problem with up to 105 surface area sources. If an 11 (input quantity NMAJOR) surface area source problem is desired, the user would choose 11 source mesh interval numbers such as $22,26,42,47,52,58,62,69,81,100,105$ (input quantities NCS). The DAFT problem would calculate data from the sets of source mesh interval data as:

Surface Area, s

1
2
3
4
5
6
7
8
9
10
11

Source Mesh Intervals Included

$$
1-22
$$

23-36
37-42
43-47
48-52
53-58
59-62
63-69
70-81
82-100
101-105

This source mesh interval data would be obtained for a set of groups as specified by the input quantities NGS and NGF. A single DAFT problem calculates the spectral distribution which includes all groups from NGS to NGF.

Stacked DAFT problems can be run with different intervals of NCS, NGS, or NGF to obtain different spatial and/or energy distributed surface sources (e. g., fast and thermal neutron sources).

SECTION

3.0 PROGRAM LOGIC

The DAFT program is coded in FORTRAN-IV language for the IEM 7094 Model II computer. There are six subroutines in the DAFT program, and the function of each subroutine is given in Table 2. The structural composition of the DAFT program is shown in Figure 5. The flow of information within the DAFT program is given in Figure 6.

3.1 Tape Assignments

The DAFT program uses mnemonic designations for tape units. The use of mnemonic designations allows the unit buffers for those tape units not used by the program to be set to zero. The DAFT program deck listing in the Appendix, includes the required unit routine in the MAP machine assembly language. This routine sets the buffer lengths for tape units UN01, UN02, UN03, UN04, UN07, UN08 equal to zero. The use of the MAP routine allows the DAFT program to operate with 14,000 blank common storage locations in the FIOCS input/output package of the IBSYS Version 13 Monitor System.

The tape assignments in DAFT follow as:

Mnemonic Designation	Logical Tape No.	IBSYS MSFC Version 13 Tape No.	Description	
MI	5		A-2	BCD Input
MO	6	B-1	BCD Output	
MF	9	B-5	DAFT Processed Angular Flux Tape	
MIF	11	B-6	ODD-K Angular Flux Tape	

TABLE 2

CALCULATIONS PERFORMED BY DAFT SUBROUTINES

Subroutine

1. DAFT
2. FLUX
3. SCOUT
4. MAFIA
5. AZMUT
6. POLAR

Calculation Performed

a. Zero out all subscripted variables
b. Read input data
c. Control for two other subroutines
d. Print problem input data
a. Read ODD-K angular flux tape
b. Place DAFT angular fluxes on tape
a. Print DAFT angular flux data
a. Print DAFT input data used in MAFIA
b. Calculate distribution data
c. Print calculated distribution data
a. Calculate average angular flux in the azimuthal angle
a. Calculate average angular flux in the polar angle

$611855-80 B$

Figure 5. DAFT Program Structure

Figure 6. Flow Chart for the DAFT Program

SECTION

4. 0 INPUT DATA DESCRIPTION

Input data to the DAFT program includes: ODD-K problem size parameters, the source mesh interval indices describing the spatial integration, the group numbers to be used to obtain a sum over groups, and the binary data tape from an ODD-K neutron or photon energy problem. The program user may stack DAFT problems. If the program control data are input correctly, the ODD-K angular flux tape is only used in the first DAFT problem and all succeeding DAFT problems may use an intermediate binary data tape containing only the specific angular flux data used in DAFT.

4. 1 CARD INPUT
 The required data follow as:

Card Type		
1	NSN	
813		

NGP

NRI

NZI

NTYPE

Description

Angular quadrature order of the angular fluxes on the input binary tape (ODD-K) to be processed by DAFT (NSN = 6 for an S_{6} ODD-K problem).

Total number of groups of angular flux data on the input binary tape.

Total number (IM) of radial mesh intervals in the ODD-K problem.

Total number (JM) of axial mesh intervals in the ODD-K problem.

Input binary tape control data.
NTYPE = 2 ; the input tape is an ODD-K generated binary tape (MSFC IBSYS Version 13 tape no. B-6)
NTYPE = 4: the input tape is a DAFT processed tape generated in a previous DAFT problem through the ODD-K tape. (MSFC IBSYS Version 13 tape no. B-5)

Card Type

Variable
NMAJOR

NQUAD
NOUT

Description

Total number of surface area calculations to be performed in DAFT.

Not required input.
Angular flux printed output control data. NOUT = 0: Do not print DAFT angular fluxes NOUT =1: Print angular fluxes for side, top and bottom surface for each group.

2 NCS 2413

3

NGS

NGF

213
The group number in the multigroup data at which the group summation is to begin.

The group number at which the group summation is to end.

4.2 TAPE INPUT
 The required tape input follow as:

Tape B2, B4, B6 (Binary Tape) The angular flux data as binary tape data is required in the tape format as described in Section 2.1. The user provides a tape on either $\mathrm{B}-5$ or $\mathrm{B}-6$ depending on the value of the input quantity NTYPE. The ODD-K tape format is described in Section 2.1 and the DAFT binary flux tape is described in Section 5.0.

SECTION

5.0 OUTPUT DATA DESCRIPTION

The DAFT program prints all input data and computed data of a single problem. The first line of each DAFT problem output is the variable dimension statement, "YOUR DAFT PROBLEM HAS USED N LOCATIONS OF THE AVAILABLE M REAL NUMBER STORAGE LOCATIONS." This line indicates the overall size of a DAFT problem. The DAFT program will terminate all succeeding DAFT problems if $N>M$.

The second set of data is obtained only for a problem which employs an input ODD-K binary tape. The printed output is the ODD-K problem title, and the lists of data ($R, Z, M 5, M 7$, and $W 0$). Also, the angular flux data $B 2, B 4, B 6$ can be printed (if NOUT $=1$) as a column for each surface mesh cell and a line for each discrete direction (e.g., directions 1 through 30 for an S_{6} ODD-K problem).

The third set of data is the surface area of each source mesh interval from 1 to $I M$ + JM + IM (DAFT values: NRI + NZI + NRI).

The fourth set of printed output is the quantities NRI, NZI, NSN, NGP, and NMAJOR.

The fifth set of printed data is the surface area data for each surface area 1 to NMAJOR. The data are: the surface area index, s, surface mesh cell indices, NCS ${ }_{5-1}$ and $\mathrm{NCS}_{s^{\prime}}$ the total flux $\mathrm{N}_{g^{\prime}}$ the energy distribution N_{g} (a histogram with NGS to NGF values); the spatial distribution N_{i} for source mesh points NCS_{5-1} to NCS_{s}; and the angular distributions $N_{1 s^{\prime}} N_{n s}$ with the first column, the polar, and the second column, the azimuthal distribution.
the fortran source deck listing is presented on pages 28 THROUGH 44
IIBFTC DAFFT LIST,REF,DECK,NODD,M94/2,XRT
daft code - odk angular flux tape code to rearrange the sn
DIMENSION TITLE(12)
DIMENSION X(14000)
DIMENSION IX(100)
DIMENSION GAI12.121
DIMENSION GA112,12), GW(12,12),ISURF(3)
DIMENSION NGOOD(1CO)
NNGP NII MOM NOMZ MTYPE, NRM
 NMAXRS $=14000$
NMAXRS $=1$
MI $=5$
MO $=6$
MF $=9$
MSF $=10$
MIF $=11$
MFF $=12$
REWIND MF
REWIND MSF
REWIND MIF
REWIND MTF

[^0]READ(MI,105) (NGOCD(K),K=1,NGPTOT)
x
$\frac{x}{x}$
$\frac{1}{2}$
$=1$
$+\infty$
$0+$
+1
+1
$+4)(N$
$4=N 2 I$
$5=(N S N+4) \leqslant N S N / 2$
NDM $=15$
$6=15 / 2$
NDM2 $=16,11$
$18=M A X \cap(11,121 * 15$
$18=1$
\cup

C
C
$C$$\quad$ IF SO, TRANSFER IMMECIATELY TO MAP OR MAFIA SUBROUTINES
C IFINTYPE.GT. 2 : GO TO 20
C 2 IN2I,NOMI
J9 $9 \mathrm{~J}+12 \neq 15$
C N4 (NRI,NDM, 2
C B2(NZI,NDM)

C B6INRI, NDMI
C $84($ NRI, NDM
JI $2=J 11+11 * 15$

C DINRIFNDM OR NZIFNDM

C FLUXAINZIII | JI 48 |
| :---: |

J $15=J 14+I 2$
CLUXB $15 R I)$
CINRIT
JIT $6+11$
NSTORE $=$ NMAXRS - J17
NRITE(MO, INU)J17,NMAXRS
10? FDRMAT (IHO,5X, 2 GHYOUR DAFT PROBLEM HAS USED I6, $27 H$ LOCATIONS OF TH IF(NSTORE.LT.O) CALL EXIT

$\mathrm{J} 10+112$
N
$=$
+
$\overrightarrow{~-~}$
H

C THEI(NQ)
C THEG(NQ) $=112+19$
C THEG(NO)
J14 $=313+19$
COST(NQ,NRI+NRI +NZI)
C COSI $=114+I 9 * I 8$
$c \operatorname{cosP}(N Q$, NRI +NRI+NZI)

(IZN+IZN+IUN ${ }^{4} N S N$ Ind 3
BIFIII $+\angle I T=8 I T$
IIZN+I甘N+I甘N ${ }^{6} N S N$ IOd 5
$8 I \neq I I I+8 I T=6 I r$
C PD(NSNONRI+NRI+NZII
J2O $=119+I 11 * I 8$
C TA(NSN)
$\begin{array}{r}\text { J21 } \\ \text { CPA(NSNI }\end{array}=\mathrm{J} 20+111$
J22 $=\mathbf{J 2 1}$
C
C NAME (NDET)

c WTA(NSN)

$\mathrm{J} 26=\mathrm{J} 25+11$ NSTORE $=$ NMAXR IFINSTORE.GE.O WRITEIMO,222) 222 FORMAT(1HO,5X, IE AVAILABLE 16 CALL EXIT				

 $x(J 9), x(J 10), x(J 11), x(J 12), x(J 13), x(J 14), x(J 15), x(J 16) ;$
$x(J 17), x(J 18), x(J 19), x(J 20), x(J 21), x(J 22), x(J 23), x(J 24)$,
$x(J 25)$,

$111=$ NGP
$112=$ NSN
C PHIAINRI+NZI+NRI,NDMI
$J 9=J 8+I 8 \geqslant I 5$

$$
\begin{array}{r}
\text { J15 } \\
C \text { PB(NSNi }
\end{array}=\sqrt{14}+112
$$

$$
\text { C MTPINSN: } 516=515+112
$$

$$
\begin{gathered}
\text { C MTPINSN: } \\
\text { J17 }=J 16+112
\end{gathered}
$$

$$
\begin{gathered}
\text { MTAINSN: } \\
J 18=J 17+112
\end{gathered}
$$

$$
\begin{aligned}
& \text { CREA1 18) } \\
& \text { CJ. } 9=J 18+18 \\
& C \text { NCS(NMAJOR) }
\end{aligned}
$$

[^1]TH
ㄴ

\$IBFTC FLUXS LIST,REF,OECK, MODO, M94/2, XR 7
SUBROUTINE FLUXIR, $Z, R I, 21, M 5, M 7, M O, N 2, N 4, B 2, B 4, B 6, D, F L U X A, F L U X B$, SUBROUTINE FLUXIR, Z,RI, 21, MS,MT,HO,N2,N4, B2, B4, B6, D,FLUXA,FLUXB.
IFLUXC,II, $12,13,14,15,16,17,181$ IFLUXC, 11, 12,13,14,15,16,17,18
 $1, N 4(11,15,21,82(12,15), 84(11,15), 86(11,15), 0(18) \quad$ FLUXA(I2),FLUX
$28(11), F L U X C(11)$, 28 (11), FLUXC(I11).
3TITLE(12)
 v
>

 REAL MS,MT,N2,N4

TAPE UNIT B-5 HAS THE FOLLOWING ODOK PROBLEM DATA FOLLOMED BY DIMENSION RECORD
 dit

QUADRATURE OR

훙 DESCRIPTION
u

READ(MIF)(DII),I=I,NTOT)
READ(MIF) (DIIH,I=I,NTOT)

$$
027 \mathrm{M}=1 \text {;NDM2 }
$$

$$
\begin{aligned}
& \text { OD } 27 I=1, N R I \\
& M A=I \&(M-1) \text { कNRI }
\end{aligned}
$$

27 B6(I,M)=D(MA)
READ(MIF)(DII), I=1, NTOT)
READ (MIF) (D(I), I=1,NTOT)
READ(MIF)(D(I), I=1,NTOT)

READIMIFI(DIII,I=1,NTOT)
C EXTRACT SIDE SURFACE ANGULAR FLUXES, 82

EXTRACT TOP SURFACE ANGULAR FLUXES,B4

ANGULAR FLUX DATA ON A5,9
IF(NGOOD(K).LE, O) GO TO 1000

> 101 WRITE (MF) (B2 $(J, M), j=1, N 21, M=1, N O M y$
WRITE(MF) ($B 4(J, M), J=1, N R I), M=1, N D M)$, $1((B 6(J, M), J=1, N R I), M=1, N D M)$ PRINT ANGULAR FLUX OATA

$$
\frac{\pi}{2}
$$

$$
\frac{5}{2} \times
$$

$$
\begin{aligned}
& \text { NZI, NDM, N } \\
& R I, N D M, N R I \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ZI, } \\
& \text { NDM, } \\
& \text { NDM, }
\end{aligned}
$$

8H SIDE ANGULAR FLUXI

$$
\begin{aligned}
& \text { TOP ANGULAR FLUXI } \\
& \text { BOT.ANGULAR FLUX }
\end{aligned}
$$

$$
\begin{aligned}
& 0^{2} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\text { in } \boldsymbol{X} \boldsymbol{x}
$$

$$
0_{0}^{N \alpha \alpha}
$$

 1000

\$ORIGIN
$\$$ IBFTC
SUBROUTINE MAFIAIR,Z,RI,ZI,MS,MT, WO, PHIA,PHIG,PHIS,PHIP,PHIL, PHIT, 1 PA, PB, WTP , WTA, AREA, NCS,
I1, 12,

DIMENSION R(I3), Z(14),RI(11), ZI(12),M5(15), M7(15), WOII5), PHIA(I8,
 2PA(I12), PB(I12),HTP(II21,WTA(I12), AREA(I8), NCS(I9), CAS(8)
DIMENSION GA(12,12),GW(12,12), ISURF(3) DIMENSION NGOOD(100)

REAL M5,M7
PHILIL,NI IS THE AVERAGE FLUX IN EACH AZMUTHIAL BAND L FOR EACH MAJOR
INTERVAL IS THE AVERAGE FLUX IN EACH POLAR BAND L for EACH MAJOR PHIP(L, N) INTERVAL
PHIS(I,N) IS THE SPATIAL DISTRIBUTION IN THE MAJOR INTERVAL N
PHIT(N) IS THE TOTAL FLUX IN THE MAJOR INTERVAL N
PHIG(K,N) IS THE SPECTRUM IN THE MAJOR INTERVAL N INTERVAL
PHIS(I,N) IS THE SPATIAL DISTRIBUTION IN THE MAJOR INTERVAL N
PHIT(N) IS THE TOTAL FLUX IN THE MAJOR INTERVAL N
PHIG(K,N) IS THE SPECTRUM IN THE MAJOR INTERVAL N WTPILIIS THE AREA ON THE UNIT SPHERE FOR EACH BAND L IN THE POLAR
wtalliis the area on the unit sphere for each band l in the azmuthial DIRECTION 2 11,12,13,14,15,16,17,18,19,110,111,1121

CALL AZMUT(NSN, N4, NDM, NDM2, PHI A,WTA, PB,WO, I)
CALL POLAR(NSN,N4, NOM, NDH2, PHIA,WTP,PA,WO, I)

1
(w) Astronuclear Laboratory
\$1BFTC POLA
LIST,REF, DECK,NODO,M94/2,XR7
SUBROUTINE POLARINSN,N4,NDM,NDM2,PHIA,WTP,PA,NO,II

> DIMENSION PHIA(N4, NDM), HTP(NSN), PA(NSN), NO(NDM) DIMENSION GA(12,12), GH(12,12),1SURF(3) DIMENSION NGOOD(100)
> ; NRM : , NTYPE , NDM ,NDM2

> NGPTOT, NGOOD . M I
> ,NGP ,NRI ,NZI
> -NGP
, NOUT 13ON* $\exists 1 W^{*}$ OYOON*

> COMMON NSN
> $\rightarrow N$

$$
\begin{aligned}
& L S=N D M 2+2 \\
& L R=2 \\
& L I=3 \\
& L U=4 \\
& N I=N S N / 2 \\
& L T=N S N \\
& D O 10 L=1, N I \\
& P A(L I)=0 . \\
& P A(L U S=0 . \\
& \text { WTPILI)=0.0 } \\
& \text { WTP(LU) }=0.0 \\
& D O 20 M M=1, L T
\end{aligned}
$$

$$
\begin{aligned}
& \text { PA(LI) }=\text { PA(LI) + PHIA(I,LS)*WC(LS) } \\
& \text { PA(LUS) }=\text { PA(LU) + PHIA(I,LR)*WO(LR) } \\
& \text { WTP(LII }=W T P(L I)+W O(L R) \\
& W T P(L U)=W T P(L U)+W O(L S) \\
& L R=L R+1 \\
& 20 L S=L S+1 \\
& P A(L I)=P A(L I) / W T P(L I) \\
& P A(L U)=P A I L U) / M T P(L U) \\
& L T=L T-2 \\
& L I=L I-1 \\
& L U=L U+1 \\
& L R=L R+1 \\
& 10 L S=L S+1 \\
& \text { RETURN } \\
& E N D
\end{aligned}
$$

\$IBFTC AZMUTH LIST,REF,DECK,NODD,M94/2,XR7
SUBROUTINE AZMUT (NSN, N4,NDM,NDM2, PHIA,WTA,PB, WO, II
**** THIS ROUTINE CALCULATES THE AVERAGE FLUX IN EACH OF THE BANDS DEF

$$
\begin{array}{ll}
\text { SUBROUTINE MAP (R,Z,RI,ZI,MS,M7,WO,PHIA,PHIT,RD, ZD, THEI, THEG,COST, } \\
1 & C O S P, R H O 2, P P, P U, P D, T A, P A, R E S P, N A M E, W T, W T A, \\
2 & I 1, I 2, I I, I 4, I 5, I 6, I 7, I 8, I 9, I 10, I 11, I 12)
\end{array}
$$

$$
\begin{aligned}
& \text { RETURN } \\
& \text { END }
\end{aligned}
$$

[^0]: 5 READ(MI,1C5)NSN,NGP,NRI,NZI,NTOPE, NMAJOR, NQUAD, NOUT, NGPTOT
 1 C5 FORMAT(24I3)

[^1]: WRITEIMO, 3231 J19.NMAXRS

