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FOREWORD 

Research r e l a t e d  t o  advanced nuclear rocket p ropu ls ion  i s  described 
herein. 
Taylor, Nuclear Systems Div is ion,  NASA Lewis Research Center as Technical 
Manager. 

Th is  work was performed under NASA Grant NsG-694 w i t h  M r .  Maynard F. 
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ABSTRACT 

The importance of coaxial jet flows has led to much investigation i n  the 

In this work ax ia l  turbulence intensities in  a coaxial flow of dissimilar gases f ield. 

are presented. The system consisted of a circular freon 12 stream issuing in to a 

faster and much larger a i r  stream. The a i r  - freon 12 density ra t io  i s  1/4. The 

velocity ratios ranged from 40:1 to 5:l with an absolute air velocity not exceed- 

ing 56.0 f t  / sec. The system i s  assumed to be incompressible and no appreciable 

temperature variation was observed. Measurements were made wi th  hot-fi lm anemo- 

meters. An aspirator probe and a parallel f i lm probe were used. These probes were 

control led by two independent constant temperature channels. 

The magnitude of the ax ia l  turbulence intensities depends much on the vel- 

ocity ratio o f  the sti-earnj. 

point between the centerline and the radius o f  the inner iet and then diminish to the 

free stream turbulence intensity. 

tensity was between 40-45% i n  the in i t ia l  mixing region and from 10% - 15% i n  the 

"similarity region". The free stream turbulence was about 3%. In the two cases of 

high a i r  - freon velocity rat io a maximum turbulence intensity of 70% was obtained 

in  the in i t ia l  mixing region. This maximum i s  close to the centerline. Measurements 

were taken a t  a number of ax ia l  positions, including some very close to  the iet inlet.  

The closes: was 1/3 diameter downstream and the farthest 1 1  diameters, 

It is u s i j ~ l l y  found to have a m a x i m ' ~ m  valve c t  scme 

For most of the runs this maximum turbulence in- 

Density fluctuations were also measured but these are shown to be damped 

by the measuring device. Values of the correlation between velocity and density 

fluctuations obtained are not va l id  and hence are not presented, as the damped 

density fluctuations affect this quantity considerably. 

A comparison i s  made between axial turbulence intensities for the hetero- 

geneous case and those for the homogeneous case available i n  the literature. 

V 
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. CHAPTER I 

I NTRO DUCT10 N 

The phenohena o f  coaxial f low mixing of parallel streams occurs i n  many 

practical situations today. The development and wide use of ejectors, ie t  pumps, 

after burners, combustion chambers, plasma injection systems and lately, the gas- 

eous core nuclear rocket have led to extensive investigations of the coaxial jet. A 

i e t  entering a quiescent f lu id  through a small aperture i s  cal led a free jet. 

outer stream i s  also moving, i t  i s  referred to as a compound iet. The ie t  i s  classified 

as homogeneous or heterogeneous depending on whether the two streams are similar 

or not. 

I f  the 

Previous investigators have worked with heated and isothermal homogen- 

eous free jets, heated and isothermal homogeneous compound jets and heterogeneous 

free and compound jets. Schlichiing and Andrcde w F r e  perhaps the first to  pre- 

sent solutions for the free jet. Their work, however, was restricted to laminar jets 

and hence, was of academic importance only. Since then, investigations have been 

confined to the more important turbulent jet. These include similarity solutions for 

average velocities and concentrations i n  the flow field, determination of shear stresses, 

and subsequent estimation of the eddy viscosity. 

work were done i n  this area. More recent presentations include turbulence measure- 

ments in the jet mixing region,axial and radial turbulence intensities i n  a homogen- 

eous compound jet and terperature and concentration fluctuations i n  a free jet. 

1 2 

Both analyt ical and experimental 

The object of this work i s  to  present ax ia l  turbulence intensities i n  a hetero- 

geneous compound jet. Figure 1.1 represents the flow system. A circular freon 

stream flowed into a large faster moving air stream which could be considered of in- 

f in i te  extent. A solid boundary separated the two fluids unt i l  the point of in i t ia l  

mixins. The flow was always i n  the very low subsonic range and assuned to be iso- 

thermal and inco,npressible. The instrumentation consisted of hot-f i  Im anemol;ietei-s, 

1 
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- two constant temperature control channels, a digital and an RMS voltmeter and a 

sum and difference unit. The hot-fi lm anemometers used were an asiprator probe 

and a parallel w i i e  probe. 

An  atternpt was made to  measure concentration fluctuations i n  the f ield. 

The measuring device, however, damped out these fluctuations considerably and 

this was detected by the resulting impossible values of the correlation. Chapter VI 

discusses this as we l l  as a comparison of the homogeneous turbulence intensity data 

3 of Zawacki . 
The air-fre'on density ratio i s  1/4. The velocity ratios ranged from 5 to  1 

to  40 to  1 .  The outer a i r  stream velocity was always greater than the inner freon 

stream velocity. The maximum air velocity was 56 ft/sec w i th  an in i t ia l  turbulence 

intensity o f  about 3%. 

erature hot-f i lm anerxomete: are good for the turbulence intensities i n  the flow f ield. 

I t  i s  assumed that measurenients made wi th  a constant temp- 

3 



CHAPTER I1 

BACKGROUND 

Consideradle investigation on the mixing o f  coaxial streams has already 

been made and yet very l i t t le  basic information on the turbulence i s  avai lable. A 

very brief review of these past investigations, w i th  special reference to  measure- 

ments of turbulent quantities w i l l  be presented i n  this chapter. 

It has been shown experimentally that i n  turbulent flows the resultant trans- 

fer of mass heat and momentum i s  far greater than that of molecular transfer. Hence 

a majority of the investigations are confined to turbulent flows. These are charac- 

terized by a random fluctuating flow superimposed on a time smoothed mean flow. 

The instantaneous velocity components, pressure and density can be expressed i n  terms 

of a time-averaged mean quantity and a fluctuating quantity i n  the fol lowing manner. 

- 
u =u+ u' v = v +  v' p = T +  p, P = P + p '  

The average term denoted by the barred quantity i s  defined by taking a time average 

of the instantaneous component over a time interval T .  This time T i s  large com- 

pared to  the time scale of turbulence but small enough to detect slow variations or 

unsteadiness in  the mean flow. For a general component Q therefore 

and 

T j-++T Q. I dt = 0 

t 

W h i l e  the time average of any one fluctuating quantity i s  zero, the time average o f  

a product of two fluctuatina quantities i s  not  nccessaril;, zero and i n  fact i s  zero only 

i f  the two quantities are completely independent of each other. 

4 



* Concepts: 

For pure laminar flow the shearing stress T i s  given by 
zr 

where p i s  the molecular viscosity and - ?U the radiaI-Gelocity gradient. 
ar 

In 1887, T.V. Boussinesq studying the turbulent free iet, introduced for the 

first time an analogy between the turbulent shear stresses and the laminar sheer stress. 

He defined the turbulent shear stress T L r  as the product of the time smoothed radial 

velocity gradient and a turbulent transport coefficient At, cal led the eddy viscosity. 

This tutbulent viscosity A 

the fluid, but instead, i s  dependent upon the local nature of f low. An apparent 

. To determine a kinematic viscosity E for turbulent f low i s  defined as c = - 
relationship between eddy viscosity and the flow field, emperical mechanisms of tur- 

bulent transport were put forward. Among the most common and widely used theories 

are Prandtl's o ld  and new mixing length theories, Taylor's hypothesis and Reichardt's 

theory. 

unlike the molecular viscosity p , i s  not a property of 
t, 

At 
P 

4 

Many of the investigators i n  the f ie ld  of turbulent jets were involved w i th  

t '  
determining a value for the eddy viscosity A 

cteristics o f  the streams either analy t ica l ly  by using one of the four emperical trans- 

Others studied the mixing chara- 

port mechanisms or by experimental measurements. 

from investigation to investigation as did experimental techniques. A few of the in- 

5 8 9 
vesiigators are, Tollmein , Goertle:, Kenthe7, Squire and Trouncer , Ferri et a1 , 
Alp in ier i  10 , Rag;chle 11  , Boehmanl2 and Weinstcin 13 . 

Systems and situations varied 

5 
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round free jet. He measured turbulence intensities i n  a homogeneous ie t  w i th  a hot 

wire anemometer and later w i th  Uberoil' reported temperature fluctuations in  a hot 

Corrsin appears to  be the first to report any fluctuating data on the * 

jet. 

Tani and Kobashi'' reported measurements of turbulent quantities for homo- 

geneous coaxial flow in  1951. Their apparctus consisted o f  a 9 mm dia. ie t  exhaust- 

ing into a tunnel 60 cm x 60 cm. Wi:h a hot wire anemometer they measured tur- 

gulence intensities in  the axial (0 ) and radial (@ ) directions'and the 

turbulent Reynolds stress u'v' . They presented curves of each quantity versus a di- 

mensionless radius, for various ax ia l  positions, a l l  we l l  downs:rearn from the jet mouth. 

They noted that the maximum ax ic l  turbulence intensity 

imum turbulent shear. The curve had no such extremities, In  a contuina- 

tion of the work Kobashi 

a hot free ie t .  taken wi th  c sinp!e wire anemometer. 

uatiny temperature fi, 0 and the correlation u' 6 vers-ls dimension- 

less radius. The temperature fluctuations had u local maxima, and he concluded that 

these fluctuations were associated wi th  the ax ia l  veloci'ty fluctuations. He also re- 

ported no simalirity property in  the velocity fluctuations. 

- 

occured at the max- 

17 
i n  1952 reported temperature fluctuation measurements o f  

Ke reported curves of f luct- - 

3 
Zawacki working wi th  coaxial hornogeneous ccnstant tempcrature turbulent -- 

. His and -- u'v '  \/;= G -- 
jets has also reported turbulent quantities = , - 

U U fi: J Z  
apparatus consisted of a 3/4" dia. ie t  i n  an 8" x 8" duct. Measuremenh vtcre made 

by single and X hot f i lm anemometers. He took measurements a t  various ax ia l  pos- 

itions, close to the nozzle as we l l  as far downstream. Rosensweig l 8  used an optical 

technique to measure concentration fluctuations i n  a smoky jet. 

Blackshear and Fingerson19 also have reported concentration fluctuation 

measurcrcents in  a free jet. 

into room c i r  as the medium. 

They used a heliurn i e t  issuing from a 1.27 cm or i f ice 

Measurements were taken wi th  an ori f ice or aspii-ator 

6 



. 
c probe, described in Chapter IV.  These were made 15 diameters away from the 

orifice. 

It is  shokn in Chapter VI that concentration fluctuations measured by an 

aspirator probe are definitely damped by the tube and are therefore not of the same 

magnitude a s  fluctuations i n  the flow field. 

20 Conger used a closed system wind t u n n e l  and hot wire anemometers to 

measure concentration and velocity fluctuations. He assutned that because of the 

nature of the setup there was isotropic turbulence and therefore no correlution of 

velocity to density or temperature. 

and separate the velocity and concentration fluctuations. 

He could thus use a parallel wire anemometer 

7 



CHAPTER I l l  

A N A LY T I C A L 

1 1 1  - 1 

I l l  - t - 1 Fundanentat RcIation&ips 

Hot-wire Anemometer Techniques 

Heat transfer from small heated cylinders was first studied extensively i n  

. Many other investigations of the 
21 

connection wi th  hot-wire anemometry by King 

problem have been undertaken since ( 22, 23, 24 ). 

heat transferred from a hot sensor can be represented by an expression of the form 

I t  i s  we l l  established that the 

P = [ A + B V ~ ] [ T ~ - T ~ ]  Ill - 1 - 1.1 

where A and B are nurnerical constants, V i s  the normal velocity past the sen- 

sor, T i s  the temperature of the sensor, T the temperature o f  the environment, 

and P the power required to maintain the sensor at the temperature TS. The con- 

stant n i s  usually taken to be 1/2. An equation of this form adequately describes 

the power input versus velocity characteristics for hot-wire anemometers so long as 

the velocity i s  sufficiently high. 

the power input versus square root o f  velocity curve i s  non-linear. 

S e 

If the velocity i s  low, below one foot per second, 

Each investigator's results may be put into the form of equation Ill -1-1 1. 

The difference in the analyses lies i n  the expressions for the constants A and B. The 

23 
following emperical relationship describing the heat transfer was given by Kramers 

and i s  widely used. 

1/3 Re0.5 N u = 0 . 4 2  PPS2 + 0.57 Pr I l l  - 1 - 1 - 1.2 

where N u  i s  the Nusselt number, 

number. T h e  constants A and B ure given by 

Pr i s  the Prandtl number, and Re i s  the Reynolds 



. 
0.42 e T kf 0.20 

A =  I ( W f  
c t R  

1 
III - 1 - 1.3 

a n d  e is t h e  conversion cons tan t ,  k t h e  thermal conduct iv i ty ,  p t h e  viscosity,  

p t h e  dens i ty ,  a t h e  l inear  temperature  coeff ic ient  of e l e c t r i c a  I resist ivity,  

the w i r e  res is tance a t  a re ference  temperature  T 1 t h e  w i r e  length,  d t h e  w i r e  

d iameter  a n d  t h e  subscript  f means the  e n t i t y  is eva lua ted  a t  t h e  film temperature .  

The  f i l m  temperature  is t aken  a s  a n  a r i thmet ic  average  of t h e  sensor tempera ture ,  T 

a n d  t h e  environment  temperature  T . Thus t h e  constants A a n d  B depend on t h e  

physical propert ies  of h e  surrounding m e d i m  a s  w e l l  as t h e  dimensions of t h e  w i r e .  

RO 1 

0' 

S 

e 
H 

In p r a c t i c e ,  A a n d  B w e r e  experimental ly  de te rmined  for a i r  a n d  

o ther  freon-air  mixtures.  It was  pos:ible t o  c a l c u l a t e  t h e  equiva len t  length a n d  d ia -  

meter  of t h e  sensor from a pure a i r  ca l ibra t ion  and equat ions  111-1-1.3 a n d  111-1-1.4 

a n d  then es t imate  A a n d  B for o ther  gas  mixtures by  comparing physical  propert ies .  

This es t imate ,  however ,  w a s  not  a c c u r a t e  enough a n d  t h e  constants,  A a n d  B ,  w e r e  

c a l c u l a t e d  for various freon-air  mixtures from equation 111-1-1.1. G r a p h s  of A a n d  

B versus g a s  densi ty  w e r e  drawn.  

The  real u t i l i ty ,  however ,  of hot-wire anemometers  is in the  rneasure- 

ment of turbulent  properties such a s  tu rbulence  intensity a n d  turbulent  shear ing stress. 

The  v e l o c i t y  past  the  sensor V is  assumed t o  be made up  of a n  a v e r a g e  stream vel-  

o c i t y  U a n d  f luc tua t ing  components  u '  qnd v '  in  t h e  flow d i rec t ion  a n d  perpend- 

icular t o  t h e  flow d i rec t ion  respec t ive ly .  

9 
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A 

Thus 

Ill - 1 - 1.5 

n The quantity V may be expanded i n  a Taylor series to  give 

U' n ( n - 1  ) u' n v f 2  

U 2 U2 2 us 
vn = u n  [ I +  n -  + - + - -  +...I 

III - 1 - 1.6 

with the assumptions 

u' < <  u 

v ' < <  u 

Equation 111-1-1.6 may be lineat-ized to  give 

Ill - 1 - 1.7 

Ill - 1 - 1.8 

This expression may then be substituted into equation 111-1-1.1 to give the instant- 

aneous power supplied to  the sensor 

Ill - 1 - 1.9 

whereP 

power level caused by the fluctuating velocity u ' .  

defined as 

i s  th-? average power level and p i s  the small variation about the average 

i s  The average power level P 

P = [ A + B U " ] [ T ~ - T ~ ]  

and the power level a t  zero velocity P i s  defined by 
0 

Ill - 1 - 1.10 

I l l  - 1 - 1 . 1 1  

10 



. 
Equations 111-1-1.9, Ill-1-1.10, and I l l -1-1.11 may be combined to give 

U t  

U 
.- P!” - - - - 

0 
P -  P Ill - 1 - 1.12 

Since the average values of p and u’ are zero, the root mean square ( rrns ) 

values are normally used as a measure of turbulence. Defining u” as the root 

mean square value of u’ and p2 as the root mean square value of p, equation 

111-1-1.12 may be writ ten for a constant density gas 

p-= 0 
p -  Po U 
- 

Ill - 1 - 1.13 

The quantity on the right hand side of this equation i s  known as the turbulence inten- 

sity. Thus, the turbulence intensity of the fluctuating component of the velocity i n  

the mean flow direction may be easily calculated from this relationship. 

Equation 111-1-1.12 may be obtained in a different manner. Differentiating 

equation 111-1-1.1 for constant density gives 

dP = n B V n - ’  I l l  - 1 - 1.4 

Assuming that the fluctuating power p and the fluctuating velocity u’ may be sub- 

stituted for dP and dV respectively and using equations 111-1-1.5 and 111-1-1.7, 

equation Ill-1-1.14 may be writ ten 

I l l  - 1 - 1.15 

This equation may then be combined wi th  equations 111-1-1.10 and 111-1-1.11 to 

give equation I l l -1-1.12.  The reason that i v~o methods of deriving this equation 

are given here i s  that the first method shows that the turbulence intensity calculated 

11 



from this equation i s  for the fluctuating velocity i n  the mean flow direction whi le  

the second method of derivation i s  somewhat simpler and w i l l  be used i n  connection 

with turbulence measurements i n  a heterogeneous system. 

d 

If the composition of the f luid flowing past the hot-wire i s  variable, then 

the quantities A and B i n  equation 111-1-1.1 w i l l  no longer be constant since 

they depend on the physical properties o f  the surrounding medium. The power input 

to the hot-wire w i l l  depend upon the concentration C or the density 0 as wel l  

as the velocity past the sensor. The total derivative of the power input to the sen- 

sor may be writ ten 

Differentiation of equation 111-1-1.1 for a variable density shows that 

Ill - 1 - 1.16 

Ill - 1 - 1.17 

Substituting the fluctuating power p, the fluctuating velocity u' and the f luct- 

uating density c' for dP, dV and d6 respectively and combining equations 

111-1-1.17, 111-1-1.16, 111-1-1. 5 and 111-1-1.7 gives 

where 

and 

S' = nBV n- 1 ( TS - T e )  

Ill - 1 - 1.18 

1 1 1  - 1 - 1.19 

I l l  - 1 - 1.20 

12 
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6 Dividing equation Ill-1-1.18 by ( TS - Te ) w e  get 

P'. = M j  + NU' I l l  - 1 - 1.21 

where 

Squaring equation 111-1-1.21 and averaging we sse that 

- 
Ill - 1 - 1.23 2 

- _I 

( p') 2 = M2 + 2 MN p'u' + N2 u' 

A f f i x ing  the subscript 1 

1.21 can be rewritten for each of the sensors as 

for the first f i lm and 2 for the other fi lm, equation 111-1- 

P,' = Ml D'  + N lu '  Ill - 1 - 1.24 

P2' = M2 P '  + N2u' Ill - 1 - 1.25 

The sum and difference o f  the two signals are 

(Pl '+P2')  = ( M 1 + M 2 ) p ' +  (N1  + N 2 ) u '  Ill - 1 - 1.26 

Squaring equations 111-1-1.25, 111-1-1.26 and Il l-1-1.27 and averaging, 

2 7  - - - 
P1 '2 = M12 P r 2  + 2M1N1 D' u' + N1 u Ill - 1 - 1.28 

Ill - 1 - 1.29 

13 



-- -_ - 
( P i  + P i )  2 = (h",l+M2)2 ,I2 t 2 (M1 + M2) (N1 + N2) C'u' + (Ni+N2)2~,2 

A 

III - 1 - 1.30 

Ill - 1 - 1.31 

In the set of independen eqbations 111-1-1 .28 to Ill-1-1.31, we have the - -  - 
unknown variables p", -,'ut and u'".  The quantities Mi, M2, Ni t  N21 P i ,  

Pi,  ( P i  + P i  ), and ( P,' - P i  ) are quantities that can be meascired or calcul- 

ated. I t  appears, therefore, that the variables p t 2  I ~ ~ ' u ' ,  and u r2  could be 

easily determined i f  any three of the above four equations are used. This was sug- 

gested by Corrsin 

ever, i t  has been shown, and i s  discussed i n  detai l  by A .  P. M ~ n t e a l e y r e ~ ~ ,  that 

- -- - 

24 
and others using hot-wire anemometry i n  turbulent flows. How- 

the magnitude of p" i s  very small in compr ison ' to  the other two variables, The 

error in measuring the fluctuating power i s  about the same magnitude as 
- 
p'" so 

that the equations are not actual ly independent. 

errors affect the value of p'" i n  the equations tremendously, indicating that p" 

has to be estimated otherwise, and then p'u' and u" calculated from equa- 

tions 111-1-1.28 and 111-1-1.29. 

Hence, these small experimental 
- - 

7 - 

111-2 Method o f  Calculation 

A special hot-fi lm sensor cal led an aspirator probe i s  used to measure con- 

centrations i n  the flow f ield. The operating principle i s  discussed i n  Chapter IV. 

The electrical power input to  the sensor to  maintain i t  a t  a constant temperature i s  

proportional to the molecular weight of the gas flowing past i t ,  and thus, a very 

smooth curve of gus density versus power input can be drawn. This curve i s  determined 

14 
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c from a previous calibration of the probe for different known mixtures of the two gases. 

The velocity past the sensor has a negligible effect on the power dissipation. Hence, 

i f  Pc be the power input to the sensor, we have 

Ill - 2 - 1.1 Pc = f (0) 

differentiating the above equation and assuming that a small change on P 

dP 

i. e. 
C ,  

p,, and that similarly d p  = n' , w e  have i s  the fluctuating power 
C 

Squaring both sides of equation 111-2-1.2 and averaging, we have 

I l l  - 2 - 1.2 

Ill - 2 - 1.3 

;If (c) 

a P  
p can be measured on an RMS voltmeter and from a graph of Pc versus F,-- 

C 

- 
a t  any 0 can be easily determined. Thus p f 2  can be calculated inside the aspir- - 
ating probe. Wi th this value of p f 2  we can use equations 111-1-1.28 and 

111-1-1.29 to determine p'u' and uJ2.  
- - 
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CHAPTER IV 

EXPERIMENTAL 

Figure IV.1 shows the experimental setup used to obtain data. Essentially 

i t  consists of a 4 foot long, 3/4 inch diameter stainless steel tube mounted co- 

axially in a 6 foot vertical plexiglass duct of square cross section. A centrifugal 

blower with its inlet connected to the bottom of the duct pulled the outer stream ai r  

through the duct, and metered, constant temperature freon 12 was pressure fed 

through the 3/4 inch steel tube as the inner jet. Hot-wire anemometers were 

mounted on a traversing mechanism geared to  the duct to  traverse the f ie ld  rad ia l ly  

and axial ly, and their power outputs were controlled by two independent channels 

and recorded on a digital voltmeter. 

Duct and Glower 

plexigluss 3/4 inch th ick.  I t  was divided in to three sections and joined by flanges. 

The flanges were sealed wi th  O-rings to prevent a i r  leakage. The duct corners were 

backed wi th  aluminum angles secured to i t  by set screws. The first section, a 24 

inch entrance region, was made long enough, to ensure a parallel f low f ie ld  w i th  

just small boundary layer bu i ld  up, and to  dmnp out large scale turbulence. The 

second was the mixing section, a 36 inch stretch, where the inner, denser freon 

stream mixed wi th  the outer air stream. The third anrl exit  section was a 12 inch 

run stacked wi th  cardboard honeycomb to prevent any swirl ing o f  the f lu id  due to  

exit  effects. 

to eliminate the turbulence and temperature effects of the blower, the outer stream 

ai r  was sucked through the test section by the blower instead o f  being blown through. 

The bottom o f  the duct was connected to  the suction end of the blower by 8 inch 

diameter sheet fiietal tubing. The blower, a Buffalo type, GE low pressure drop, 

high calocicity, 15 HP, centrifusal blower had its output controlled by  a butterfly 

valve located just before the in le t  end. There was no means of  measuring the 

The duct had an 8 inch square cross section and was made from 

In order to  obtain a f latter velocity prof i le in  the outer a i r  stream and 

16 
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. 
volumetric thruput of the blower, but the outer stream velocity was determined by 

an anemometer. ( The maximum velocity obtained was 56 ft/sec .) 

4 

A 24 inch by 1/2 inch slot was mi l led i n  the test section o f  the duct and 

the traversing mechanism mounted on the duct. The gearing system i n  the housing 

permitted radial and ax ia l  movement of the probe along a plane containing the axis 

o f  the duct. A 4 inch diameter port hole was cut to  provide access to the inside o f  

the duct and i t  was through this that the hot-fi lm anemometers were f ixed to  the probe 

holder. An air f i l ter  was mounted on top of the duct to prevent f ine dust particles i n  

the air from being sucked in to the test section and damaging the anemometers. I t  also 

served to  break up any large eddies. 

The 3/4 inch diameter stainless steel tube wi th  a wa l l  thickness of 0.0135 

inches was clamped onto a bracket on the duct and checked to be vert ical wi th  a 

plumb bob. A 4 foot length o f  tubing was needed to  insure a fu l ly  developed tur- 

bulent prof i le in  the tube. 

itor the supply of freon to the inner iet.  The rotameters were mounted on a large 

plywood board along wi th  four pressure gauges and two pressure regulators to control 

the outlet pressure. The rotameters were selected to al low a wide range of f low rates 

of the inner streani and could administer from 0.06 SCFM freon 12 to 50 SCFM 

freon 12 a t  an outlet pressure of 65 psig wi th in  + 1% accuracy. For air, the 

range was 0.1 SCFM to 90 SCFM a t  an outlet pressure o f  40 psig. Small needle 

valves at the outlet of the rotarneters permitted fine regulation of the stream rate. 

Three high precision Brooks rotameters were used to  mon- 

- 

Freon 12 was obtained from 145 pound cylinders. To compensate for the 

cooling resulting from vaporization of l iquid freon i n  the cylinder, the cylinders were 

heated in a large jacketed steam ket t le  ha l f - f i l led w i th  water, thus maintaining 

fairly constant temperature and pressure i n  the cylinder. The water temperature was 

maintained around 100°F. 

18 
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Hot-wire Anemometer System T h e  hot-wire ancmorneter instrumentation consist- 

ing of single wire probes, parallel wire probes, aspirator probes, probe holders, 

angle adapters, two constant temperature control channels and related monitoring 

equipment was purchased from Thermo-Systems lncorpotated i n  St. Paul , Minnesota, 

and was of the constant temperature type. The control channels were independent 

and each c h a n n e l  could control one sensor. It was possible to monitor either t h e  

power input to the  sensor or the bridge voltage from the constant temperature con- 

trol channels. Each u n i t  was equipped with a linearizer that provided a direct 

measure of power dissipation of the wire. The monitoring equipment included a 

digital voltmeter, a Hewlitt Packard RMS voltmeter, a sum and difference unit that 

could add or subtract the outputs from the two independent channels and a dual beam 

oscilloscope. T h e  power input to the  sensor was monitored for calibration and read 

as G voltage from the digita! voltmeter which was directly proportional to the sensor 

power input. Similarly, the  rms value of the fluctuating power input to t h e  sensor 

was read a s  an rrns voltage directly proportional to the  rms power. T h e  dual beam 

oscilloscope enabled t h e  simultaneous display of two output signa Is, t h u s  permitting 

comparison of the signals of separate sensors. It also indicated instability of any 

sensor on stream. 

Most of t h e  sensors used i n  the experiment were of the hot-film type. The  

sensor consisted of a thin f i l m  of platinum o n  a quartz cylinder. 

were larser in diameter than the hot wires and were more durable and stable. 

the experiment two probes were used: 

probe. 

( 0.00015" ) wire were mounted 0.01 

single probe. The wires were oriented in a plane perpendicular to the plane of the 

traversing rriechunisr;) and were connected to the probe holder by tl ninety degree 

angle adapter. 

The hot f i l m  sensors 

For 

( a  ) parallel wire probe ( b ) aspirator 

In the parallel wire probe a 2 m i l  (0.002" ) f i l m  and a 0.15 m i l  

inches apart, parallel to each other on a 

The sensors were, therefore, in a flow field with no extei-nul interference. 

19 
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The aspiratoi- probe was a concentration measui-ing device and consisted of a 1 mi l  4 

sensor mounted inside an 0.08 inch ID tube. The tube was connected to an angle 

adapter and then fo the probe holder. The tube contained a jewel bearing wi th  a hole 

diameter of 0.098 inches - 0.001 inch behind the f i lm. A vacuum pump sucked 

through the probe holder and could sufficiently reduce the pressure downstream from 

the bearing to  insure sonic velocity a t  the throat of the bearing. Th is  sonic velocity 

depended on the molecular weight of the gas and therefore, on the composition. The 

power d iss ip ted at the f i lm would depend on composition and the velocity of the gas 

passing through; but the ve loc i ty  past the f i lm could be related to the sonic velocity 

by the equation of continuity, and since this depended on concentration, the power 

dissipated from the f i lm could be related to concentration. The device withdrew only 

a small sample from the stream as would any other concentration measuring device, 

but provided instantaneous readings a t  the point of interest. 

+ 

Calibration o f  the Hot-fi Im Anemometers - Equipment The calibration section con- 

sisted of a 15 foot length of 2 inch diameter schedule pipe w i th  its ex i t  end en- 

closed i n  a 6 inch x 6 inch plexiylass chamber 36 inches long. This chamber 

prevented convection currents i n  the room from causing any disturbance to the flow 

pattern i n  the pipe. A traversing mechanism was mounted on this chamber, and i t  

permitted only vertical movement of the probe. Lateral alignment had to be done 

by moving the pipe or chamber. A gas mixing section prior to the calibrating sec- 

t ion uchieved perfect mixing of the a i r  and freon streams, and the gas issuing from the 

test section was tested to show a homogeneous mixture. The device was made up of 

three two-inch pipe couplings w i th  two inch to one inch bushings at each end. The 

couplings and bushings were connected i n  series by one inch nipples. A two-inch 

tee with bushinss was connected to one of the end couplings. The three couplings 

and the tee were packed wi th  copper scouring Fads. The a i r  and freon streams en- 

tered through sepirate ends in  the tee and then passed throush the three couplings 

--- -- 

20 



- 
in  series before entering the test section. 

enough to i n s u r e  f u l l y  developed laminar or turbulent profiles. 

The test section was chosen to be long 

Constant tkmperature freon 12 was supplied from heated freon cylinders, 

mentioned earlier, and the air  was taken from a compt-essed air  line. 

scrubbed and filtered before entering t h e  rotameter. The Brooks high accuracy rota- 

meters metered accurate flow rates of air  and freon to the mixing device. A diagram 

of t h e  flow pattern is shown in f igure  IV.2. 

The air was 

Procedure Before making any measurements, calibration procedures were estab- 

lished to determine relations between output of the hot-fi Im sensor and gas concen- 

tration and velocity. A calibration for the pure air case was obtained f i rs t .  

laminar velocity profile i t  was assumed that the centerline velocity or maximum vel- 

ocity is twice the average velocity. Air a t  various laminar flow rates was admitted 

through a rotameter to t h e  caiibrating section and for each f!cw mte, a single hot- 

f i l m  sensor in  t he  pipe registered t h e  maximum power dissipated. This  was read off 

the digital voltmeter i n  millivolts. The point of mcximum velocity indicated by the 

sensor was always on or about the centerline of the pipe assuring good profiles. The 

power dissipated from t h e  hot f i l m  was plotted against the square root of the  maximum 

velocity and a linear relationship was obtained. With a hot f i l m ,  thus  calibrated, 

and able to determine any air velocity, a check on the assumption that the rnaxirnum 

velocity was twice the average velocity was made. A complete velocity profile 

across a section of the pipe was determined and integrated across the radius to obtain 

the average velocity. This average velocity compared wi th in  three percent to the 

averase velocity set by the rotameter. Care was taken to always keep the air past 

the sensor a t  a velocity greater than 1 ft/sec while calibrating, as a t  velocities 

below th is ,  free convection plays a significant role in the heat transfer from the hot 

sensor and the sensor equations have to be modified to include th is  phenomenon. 

' For a 

In the turbulent region a relationship between maximum velocity in the pipe 
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. and average velocity indicated by  the rotameter was required. 

w i th  the three high accuracy rotameters to produce gas mixtures of required con- 

I t  was not possible 

centrations and sti l l 'remain in  the laminar region. 

brated a t  known turbulent velocities. Two assumptions were made here: ( 1 ) the 

turbulence introduced had no effect on the average measurement; ( 2 ) the rat io 

of average velocity to maximum velocity was only a function of the Reynolds number. 

A calibrated sensor was introduced into the calibrating section and air velocities a t  

Thus, sensors were to  be ca l i -  

various Reynolds numbers i n  the turbulent region metered through the rotameters. 

each case, the maximum power dissipated by the sensor was converted to  a velocity 

and, knowing the average velocity from the rotameter, a rat io o f  average velocity 

to maximum velocity ( U : U ) calculated. A plot o f  Uavg/ Urnax versus 
avg max 

Reynolds Number for the 2 inch sch. ox) pipe i s  shown i n  figure IV.3. With this 

for Reynolds Numbers up to 50,000, the sensor was reliltionship of U 

calibrated for freon air mixtures of 0.1 , 0.2, 0.4, 0.5, 0,6, 0.8 and 1 .O 

mole percent freon. 

sor was found to be linear wi th  the square root o f  the velocity. Calibration curves 

o f  power input versus square root of velocity were obtained for pure air, pure freon, 

and six other intermediate concentrafions. Two typical calibration curves are shown 

in figure IV.4. Calibration curves for each o f  the wires i n  the parallel wire probe 

were thus obtained. 

For 

avg 1 'max 

For each of the concentrations the power dissipated by the sen- 

As was discussed before, the power input to  the hot-fi lm i n  the aspirating 

probe was dependent only on the molecular weight of the gas and hence obtaining a 

relation between gas density and power input to the f i lm was rather straight forward. 

Freon 

mixtures varying from pure air to  pure freon. The aspirator probe was introduced 

into the test pipe und the vacuum pump turned on. 

sensor input i n  mil l ivolts. 

12 and a i r  were metered through the rotameters to give eight different gas 

The digital voltmeter read the 

The input was found to  be constant ucross the entire pipe 
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cross-section indicating complete homogenity. A graph of millivolts registered 

versus gas density was drawn and shown in  figure IV.5. 

Experimental Procedure 

velocity ratio included four runs:  

1 .  

A set  of data for a particular inner stream to outer stream 

A run  with the aspirator probe to determine density profiles; the aspirator 

probe was introduced into the test section through the port hole and connected to 

the holder. It was then taken u p  to the mouth of the 3/4 inch diameter stain- 

less steel pipe and centered. A diameter of the probe tube was made tangent to 

the outer circumference of the steel pipe and the probe was then moved i n  3/8 

inch onto the centerline, 

and was  aligned with the initial position by a cathetometer. The signal from the 

probe was transmitted to the digital voltmeter and the average power input  to the 

probe recorded. The required freon f low rate was set by the rotameter, the blower 

and the  vacuum pump turned on and various positions i n  the flow field were probed. 

The data provided a mapping of the average density field for the flow system. 

The probe was moved downstream on the centerline 

2. A second run  with the signal from the aspirator probe connected to the RMS 

voltmeter gave fluctuating density measurements. 

3. The third run was made with a parallel wire probe. O n l y  a 2 m i l  f i l m  was 

used and the average power supplied to the f i l m  was recorded. The data was used 

to determine average velocity profiles. 

4. For the fourth run  the outputs froin the 2 m i l  and 0. 15 m i l  wires were 

transmitted to the RMS voltmeter und the fluctuating voltage recorded. 
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CHAPTER V 

CALCULATION PROCEDURES 

The fol lowing calibration curves were required for processing the experi- 

mental data: 

( a ) Calibi-ation curve for the aspirator probe-- a relation between power input 

and density; 

( b ) Power versus square root of velocity graphs for various freon-air gas mixtures, 

for both wires on the paral lel w i re  probe; 

( c ) Subsequent 'A' versus density and 'B '  versus density curves as shown i n  

figure V. 1. 

The power input to the aspirator probe was direct ly converted to density from 

the calibration curve ( a  ).  A poI:.nomial function representing t h e  power versus 

density curve was formulated and then the derivative a t  any density wus easily deter- 

mined. Frorc equation 111-2-1.3, we have 

was the rms voltage to the aspirator probe, and a f  ( 
a c l  

a t  various den- 

sities was calculuted by taking the derivative of the polynomial a t  those densities. 

Thus p t 2  i n  the aspirator probe was determined. 

PC 

To determine the velocity a t  a point i n  the flow field, the density a t  that 

point was required, 

o f  A and B were read. Wi th the average power supplied to  the 2 mi l  sensor at 

that point and equation 111-1-1.1 ( P = A + BV1 ' ( TS - T ) ,  the velocity 

was calculated. 

From the 'A '  and 'B '  versus density curves ( c ), the values 

e 

When the rms signals from thz 2 fiiil f i lm and the  0.15 mi l  wi re  were 
--I- 

2 

5' squared and thc nois2 fion: the sum uncl difference unit subtructed frol<, them, 
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b - 
and p i “  were obtained for use in  equaticns 111-1-1.28 and 111-1-1.29. To cal-  

culate M1 and M2’ the quantities (-) were first evaluated. 

The A versus ; and B versus p curves for both wires were approximated by 20 

> A  hB degree polynomials and (L) and (-- ) 
a P  2 0  

M2, N1 and N were of the polynimial at that density. The coefficients M 

calculated from equations 111-1-1.29, Ill-1-1.20 and 111-1-1.22 and equations 

111-1-1.28 and Ill-1-1 .29 were solved sin:ultaneously. 

4 A  8 B  
( T )  and 

calculated by taking the derivatives 

1’ 2 

6; 
The fluctuating density $0; --=- I the turbulence intensity =-- and the 

P U 
__ 

correlation - ’”’ were subsequently obtained. 

GO 
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CHAPTER VI 

RESULTS AND DISCUSSION 

!. Preliminary Discussion 

In h igh ly  turbulent flows i t  has been shown ( 26 ) that hot-wires anemometer 

For the constant temperature variety this i s  less measurements tend to be inaccurate. 

predominant. High radial turbulence intensity ( +=- -) also alters the in i t ia l  equa- 

U 
tions o f  the hot-wire and correction factors should be included. This i s  discussed i n  

3 
detai l  by Zawacki , who has shown, for the homogeneous co-axial compound jet, 

that the radial turbulence intensity i s  within the l im i t  and that the measurements were 

good for the system concerned. I t  i s  therefore not i l log ica l  to assume that under very 

much the same experimental setup measurements i n  the flow f ie ld  of the heterogeneous 

compound jet are also good. 
\ E Z  

Whi le  experimenta I measurements of "&- along the flow f ie ld  have been 
U 

made i t  i s  assumed that because of the low net radial velocity this turbulence inten- 

sity i s  about the same as the turbulence intensity along the axis. 

It has been mentioned before that whereas the fluctuating density measure- 

ments( 0 -) , made wi th  the aspirator probe, were definitely damped and the re- 
II 

- 
P p'U' 

sulting correlation - therefore meaningless, the ax ia l  turbulence inten- 

0 fi; 
obtained by the simultaneous solution o f  the equations Ill-1-1.28 sities fi 

U 
and 111-1-1.29 u i e  val id. 

On the assumption that the density fluctuations measured were damped, the 

density fluctuations determined by the aspirator probe were increased by steady 

amounts and the values o f  the corresponding correlations and the ax ia l  turbulence 

intensities calculated; everything else being the same. 

crecise i n  the density flucfuotion of 150% barely changed the turbulence intensity 

by 8%. I t  was ulso  obsei-vcd that whi le  the correlation would have an irrj?ossible 

I t  was observed that an in-  
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value in i t ia l ly ,  subsequent values obtained by increasing p r 2  were definitely 

possible. A more extensive discussion of this behavior i s  given by Montealeyre 

but an excerpt fro,; the results i s  presented below. 

25 

Run No.  4F Axia l  Position: 2.0" Radial Position: 0.2" 
( from C. L. ) 

- J - 7  U I  Measured 

0.2303 - 1.0060 0.2146 

- 
P 

0.2399 - 0.8624 

0 3999 - 0.771 1 

0.4999 - 0.7399 

0.5999 - 0.7361 

- 
U 

0.2169 

0.2209 

0.2260 

0.2322 

In terms o f  percentages; when \/7--' was changed from 23.03% to - 
P 

changed from 21.46% to 23.22%. The correlation wi th  an Jv.. 60.0% ___ - 
U 

obviously erroneous in i t ia l  value o f  - 1.006 gradually assumed a possible value as 

the density fluctuations were increased. This i s  a definite indication that the den- 

sity fluctuations were damped. 

exhibited essentially the saxe lack of dependence of :I 

It should be noted that a l l  the other calculations 
- - 

2 and ut2. 
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I 

- I I .  Results 

Runs I F  and 2F were taksn a t  high air-ir-on velocity ratios, Run 1 F  was 

a t  a velocity rat io of 36.8 w i th  an absolute outer stream air veloqity of 51. I ft/sec. 

Figures 1F.1 1F.2 and 1F.3 represent the average density, average velocity and 

turbulence - intensity profiles on dimensionless plots. The density profi le was plotted 
- r 

vs /ro where G i s  the local density, 2 i s  0.075 Ib/ft3 
a i r  0 -  P I 

P - pair 

freon a i r  

as 

3 
P i s  0.317 16/ft r i s  the radial position o f f  the center l ine i n  inches and 

r the meun tube radius i s  0.356". The velocity - was similarly plotted against 

freon - 
0 I ,  

"0 r -  
/ro U i s  the IocoI avec-c:;:: velocity and U the outer stream air velocity. 

0 

A t  ax ia l  positions 1/4" and 1/2" a peculiarity i n  the density prof i le was 

r 
observed, an increase in  density a t  /r = 0.6. Th is  phenomena had been detected 

by Zawacki also, but no explanation i s  yet available. Run 2F was taken a t  a vei- 

oc i ty  ra t io  o f  26.5. Figure 2F. l and 2F.2 are similar to  those of Run I F .  

0 
3 

The profiles i n  Figures 1F.3 and 2F.3 show a maximum turbulence in- 

tensity of about 70% a t  1 .O" downstream. 

l ine and were very different from the other profiles. At  1/4" and 1/2" the pro- 

f i les peaked to wi th in  50% at /ro = 0.84. These peaks were narrow and they 

gradually widened, a t  2" wi th  a maximum near 30%, to flatter similar looking 

These maxima, were close to  the center 

r 

profiles a t  4", 6 " ,  and 10" w i th  a maximum of 15% to 8%. The free stream 

turbulence intensity i s  about 3.0%. The double peaked profi le i n  Figure 1F.3 at 

1/2" ax ia l  distance may be due to the irregular velocity prof i le a t  that position. 

There i s  no  definite explanation justifying this behavior. The boundary layer effect 

appears to  be more pronounced a t  this ax ia l  position and this might have caused the 

double peaks i n  the turbulence intensity. 
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.) 

Run 3F and 4F were taken a t  velocity ratios of 9.3 and 5.4 w i th  

absolute a i r  velocities of 51.1 ft/sec. and 54.37 ft/sec. respectively. Density, 

velocity and turbGlence intensity profi les were plotted on the same variables. The 

density profiles were smooth and a t  no ax ia l  position was the density on the center- 

line less than the density at any other radial position. The boundary layer effect 

of the steel tube was easily detected in  the velocit), profi le by a decrease i n  velocity 

a t  /r = 0.84. Veloc i ty  and density profiles begin to  look similar from the 4.0" 

axial position downwards. This occurs a t  1 .O" from the high velocity rat io runs. 

Maxirnuin turbulence intensities for these two cases were about 40.0% to 45.0%. 

r 
0 

The widening of the peaks and the subsequent flattening of the profiles were also 

noted i n  Run 1F and 2F. 

The turbulence intensity f ie ld  could be divided in to two main regions. An 

init ial  region characterized by high narrow peaking of the profiles and a "similarity" 

region where profiles were apparently similar. 

these regions occurred at different ax ia l  position. 

ini t ial  region was restricted to an ax ia l  position o f  2.0" whereas t h i s  extended from 

4.0" to 6.0" a t  the lower velocity ra t io  cases. 

Depending on the velocity ra t io  

For a higher velocity ra t io  the 

In the region close to the ie t  opening the data reported may not be very 

accurate. 

satisfactory data. Furtherrnore, i n  this region a change of F;" affected u l 2  

considerably more than in  other cases 

Because of the nature of the fluctuation i t  was not always possible to take 
-- -I 

A comparison of the above reported data w i th  typical turbulence intensity 

data of Zawacki3 for the homogeneous ie t  show a resemblance in  the profiles. A t  

sniall distances downstream the peaks were narrower and the maxima were only as 

high as 40.0% i n  Zawacki's data. 

r 
/ro = 0.84. The peuks widen v/ith disfunce from the ie i  ri-mrtli and ym:luctll), the 

pl-ofiics look sir>-(ilar. 

These rnaxima occurred a t  a radial position 

In this sir,jilcir region the muxiniurn was not so w e l l  pronounced 
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? 
1 

and hos a mognitude of about 15%. At high velocity ratios however no high 

turbulence intensities were observed on the center-line 1" downstream. No 

double peaks i n  the intensity profiles were observed. 

, 
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CONCLUSIONS 

The conclusions drawn from this expel-imenta I work are: 

1. Theoretikally i t  has been indicated that the equations from three indepen- 

dent hot-fi Irn anemometers provide a method for deterrilining p- J;-. 
L_ 

and 

of the experimental error i n  the data i s  as large as the value of 

hence the equations were not really independent. Another method to estimate 

r ‘u ’ .  For the flow system considered i t  was found that the magnitude - 
p r 2  and 

&?‘ w a s n ec essa ry . 

1 1 ,  The fluctuating power recorded by the aspirator probe i s  not a measure of 

the fluctuating density i n  the flow f ie ld  but o f  that i n  the aspirator tube. These 

fluctuations are considerably damped from those i n  the free stream. 

1 1 1 .  Because o f  the relationship between dZ7’- and a large change 

in the magnitude of dp- usually has only a small effect on the magnitude of 

IV. The turbulence intensity profiles may be divided in to an in i t ia l  region and 

a similar region, much l ike the density and velocity profiles. 

V. In the in i t ia l  region intensities are higher than i n  the similar portion w i th  

maxima having magnitudes about 40%. 

only about 15%. 

In  the similar region intensities are 

The niaximum depends on the velocity rat io o f  the streams. 

VI. There i s  a similarity between intensity profiles of a homogeneous jet and 

those of a heterogeneous jet 
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