	ENGINEERING AND
	INDUSTRIAL RESEARCH STATION
	Quarterly Progress Report #14
	NAS8 - 11334
RESEA	ARCH STUDY FOR DETERMINATION OF LIQUID SURFACE PROFILE
	IN A CRYOGENIC TANK DURING GAS INJECTION
	September 18 - December 18, 1967
CFSTI PRICE(S) \$ Hard copy (HC) 2. 7 Microfiche (MF) 65	COLLEGE OF ENGINEERING N 68-15122 (ACCESSION NUMBER) (PAGES) (PAGES) (PAGES) (PAGES) (PAGES) (CODE) (CODE) (CODE) (CATEGORY)
	MISSISSIPPI STATE UNIVERSITY STATE COLLEGE, MISSISSIPPI

https://ntrs.nasa.gov/search.jsp?R=19680005653 2020-03-12T12:06:48+00:00Z

Engineering and Industrial Research Station College of Engineering Mississippi State University P. O. Drawer PE, State College, Mississippi 39762

Quarterly Report #14, NAS8-11334 RESEARCH STUDY FOR DETERMINATION OF LIQUID SURFACE PROFILE IN A CRYOGENIC TANK DURING GAS INJECTION

Period Covered: September 18, 1967 - December 18, 1967

AUTHORS:

Dr. William D. McCain, Jr. Mr. James T. Smith Mr. Thomas J. Rice

Quarterly Report: Contract Number: NAS8-11334 Control Number: DCN-1-5-52-01148=01 (1F)

December 18, 1967

This report was prepared by Mississippi State University under NAS8-11334, RESEARCH STUDY FOR DETERMINATION OF LIQUID SURFACE PROFILE IN A CRYOGENIC TANK DURING GAS INJECTION, for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration. The work was administered under the technical direction of the Propulsion and Vehicle Engineering Laboratory of the George C. Marshall Space Flight Center with Mr. Karl Fritz acting as project manager.

TABLE OF CONTENTS

LIST OF	FIGURES	, o , a	0	٥	0	q	o	۰	•	٥	•	0	•	•	.•	o	0	.•	ie.	.0	o		٥	o	iv
LIST OF	TABLES.	0 0	o	.0	o	•	.0	ò	o	.0	•	0	.0	•	ø .	•	0	ò	o	o	Ō	.0	۰	٠	vi
NOMENCLA	TURE	o •		ō	0	•	٥	ø	0	ō	ō	•	•	.o	e -	0	0	o	0	.0	.0	۰	.0	•	vii
INTRODUC	TION	je 0	,o	o	o	.0	o	9	0	0	. •	•	•	۰	•	۰	.•	.0	.0	۰	.0	•	o	o	1
ANALYSIS	OF PROC	GRES	S.	o	0	•	•	•	<u>,</u> 0	0	•	¢	ø	•	•	ø	۰	ø	o	•	ò	۰	٠	• 0	2
PROGRESS		0 9	•	0	•	o	ø	•	o	ø	٠	۰	o	•	•	. 0	•	۰	۰	o	٠	•	o	•	2
PLANS FC	R NEXT O	QUAR	TE	R.	o	٠	ò	ò	è	0		•	.0	0	.0	.0		o	0	0	o	0	0	۰	6

LIST OF FIGURES

The second second

Figure		Page
1.	Entrainment versus Viscosity for Test Section Two (1/4-Filled, Five-Foot Horizontal, Four- Inch Diameter Pipe) for an Average Time Interval of Two Minutes for Various Air Flow Rates	8
2.	Entrainment versus Viscosity for Test Section Two (1/4-Filled, Five-Foot Horizontal, Four- Inch Diameter Pipe) for an Average Time Interval of Five Minutes for Various Air Flow Rates	9
3.	Entrainment versus Viscosity for Test Section Two (1/4-Filled, Five-Foot Horizontal, Four- Inch Diameter Pipe) for an Average Time Interval of Ten Minutes for Various Air Flow Rates	10
4.	Entrainment versus Viscosity for Test Section Two (1/4-Filled, Five-Foot Horizontal, Four- Inch Diameter Pipe) for an Average Time Interval of 15 Minutes for Various Air Flow Rates	11
5.	Entrainment versus Viscosity for Test Section Two (1/2-Filled, Five-Foot Horizontal, Four- Inch Diameter Pipe) for an Average Time Interval of Two Minutes for Various Air Flow Rates.	13
6.	Entrainment versus Viscosity for Test Section Two (1/2-Filled, Five-Foot Horizontal, Four Inch Diameter Pipe) for an Average Time Interval of Five Minutes for Various Air Flow Rates	14
7.	Entrainment versus Viscosity for Test Section Two (1/2-Filled, Five-Foot Horizontal, Four- Inch Diameter Pipe) for an Average Time Interval of Ten Minutes for Various Air Flow Rates	15
8.	Entrainment versus Viscosity for Test Section Two (1/2-Filled, Five-Foot Horizontal, Four-I Inch Diameter Pipe) for an Average Time Interval of 15 Minutes for Various Air Flow Rates	16
9.	Photograph of Test Section Four	17
10	Test Section Four with Air Directed Vertically De-	
TO °	ward into the Longitudinal Center of the Horizontal Pipe	18
	C C C C C C C C C C C C C C C C	

LIST OF FIGURES -- continued

Figure

11.	Entrainment versus Viscosity for Test Section Four (1/4-Filled, Four-Inch Diameter Horizontal Pipe) for an Average Time Interval of Two Minutes for Various Air Flow Rates.	19
12.	Entrainment versus Viscosity for Test Section Four (1/4-Filled, Four-Inch Diameter Horizontal Pipe) for an Average Time Interval of Five Minutes for Various Air Flow Rates	19
13.	Entrainment versus Viscosity for Test Section Four (1/4-Filled, Four-Inch Diameter Horizontal Pipe) for an Average Time Interval of Ten Minutes for Various Air Flow Rates	20
14.	Entrainment versus Viscosity for Test Section Four (1/4-Filled, Four-Inch Diameter Horizontal Pipe) for an Average Time Interval of Fifteen Minutes for Various Air Flow Rates.	20

v

Page

LIST OF TABLES

Table		Page
1.	Legend for Figures 1 through 4	7
2.	Legend for Figures 5 through 8	12
3.	Deviation in Experimental and Calculated Values of Entrainment for 1/4-Filled Case	21
4.	Deviation in Experimental and Calculated Values of Entrainment for 1/2-Filled Case	22
5.	Entrainment Data for Test Section Four, 1/4-Fill	ed
	Flow Rates	23

vi

NOMENCLATURE

A _v	void area of the partially filled horizontal pipe
E	fraction of the total amount of water initially present in the test section removed by the air stream within a given time
Ecalculated	entrainment calculated from Equation (2)
^E data	entrainment found experimentally
H v	distance from the liquid surface to the upper pipe surface
° M	air mass flow rate, lbm/min.
N _{Re}	air Reynolds number, $N_{Re} = \frac{H_v M}{A_v \mu_a}$
t	time
μ	dynamic liquid viscosity
μ _a	dynamic viscosity of air

INTRODUCTION

This is the fourteenth Quarterly Progress Report for NAS8-11334, RESEARCH STUDY FOR DETERMINATION OF LIQUID SURFACE PROFILE IN A CRYOGENIC TANK DURING GAS INJECTION. The period covered is September 18, 1967 to December 18, 1967.

ANALYSIS OF PROGRESS

The primary effort during this report period was directed toward the development of preliminary correlation equations for the entrainment data previously obtained with test section two. These equations allow the prediction of entrainment as a function of time, liquid viscosity, and Reynolds number. Even though the correlation will require some refinement, it does show that entrainment can be predicted with a reasonable degree of accuracy for a given system.

The construction of test section four was completed this quarter and data for the 1/4-filled case were obtained. These data have not been fully evaluated but indications are that they behave in a manner similar to those data obtained with test section two.

PROGRESS

A preliminary system of correlation equations has been developed for the entrainment data obtained with test section two. The data for test section two are tabulated in Quarterly Progress Report #13. These data were analyzed in terms of the air mass flow rate (expressed as Reynolds Number N_{Re}), liquid viscosity μ (normalized with respect to the viscosity of water at standard conditions), initial liquid depth, and time duration t. In seeking the functional relationship

$$E = f(N_{Re}, \mu, t), \qquad (1)$$

it was observed that plots of entrainment versus viscosity on log-log

- 2 -

coordinates resulted in straight lines for different Reynolds numbers and time durations. Based on these plots, the correlation equation was assumed to be of the form

$$E = C_1 \mu^{C_2},$$
 (2)

where C_1 and C_2 are constants for a given Reynolds Number and time, and μ is the dynamic liquid viscosity. Least-squares regression techniques were used in determining C_1 and C_2 as functions of Reynolds number and time.

For the 1/4-filled case, C_1 was found to be related to Reynolds number by the equation

$$\ln (C_1) = 0.622 \ln \left[\frac{N_{Re}}{10^6} \right] + 1.463. \quad (3)$$

The equation for C_2 was determined to be

$$\ln (-C_2) = A \ln \left[\frac{N_{Re}}{10^6} + B \right]$$
 (4)

where

$$A = 0.1678 t - 2.990$$
 (5)

and

$$B = 0.3088 t - 11.473.$$
 (6)

- 3 -

Substitution of C_1 and C_2 into equation (2), along with the corresponding value of liquid viscosity, yields the predicted value of entrainment.

A comparison of the experimental entrainment and the entrainment as predicted by equations (2) through (6), is shown in Figures 1 through 4 for the 1/4-filled case. Table 1 shows the range of error resulting from use of the prediction equations. The percent error was calculated using the relation

percent error =
$$\frac{\frac{E_{data} - E_{calculated}}{E_{calculated}} \times 100$$
 (7)

The correlation equations for the 1/2-filled case were developed in the same manner as in the 1/4-filled case. Again, equation (2) was used as the prediction equation where C_1 is defined by the relation

$$\ln (C_1) = 0.269 \ln \left[\frac{N_{Re}}{10^6}\right] + 0.631$$
(8)

and C_2 is determined by the equation

$$\ln (-C_2) = A \ln \left[\frac{N_{Re}}{10^5} \right] + B .$$
 (9)

The term B in equation (9) is a function of time as expressed by the equation

$$B = \frac{5.36}{t} - 13.6, \tag{10}$$

- 4 -

and A is a constant

$$A = -3.19.$$
 (11)

Figures 5 through 8 show a comparison between the experimental and predicted entrainment for the 1/2-filled case. The range of error in the predicted results is presented in Table 2.

It is realized that considerable error exists between the experimental entrainment data and those values predicted by the equations presented herein. However, with the exception of the two-minute runs, it is felt that the system of equations gives reasonable accuracy. Additional work will be conducted on the correlation system next quarter in an effort to refine the present equations.

Construction of test section four was completed this quarter and acquisition of data for the 1/4-filled case was begun. A photograph of test section four is shown in Figure 9, and a schematic may be seen in Figure 10. The entrainment data for the 1/4-filled case are presented in Table 5. These data are also shown in Figures 11 through 14 as log-log plots of entrainment E versus viscosity μ for various times and Reynolds numbers. Analysis of these results has not been completed but observation of Figures 11 through 14 shows that these data behave similarly to previous data obtained with test section two. Note that the entrainment versus viscosity data plots as a straight line on log-log coordinates.

- 5 -

Plans for Next Quarter

The acquisition of data with test section four will be continued next quarter in an effort to make valid conclusions concerning the introduction of the T-section. In particular, the 1/2-filled case will be studied. Work will also continue on the correlation system in order to refine the equations presented in this report.

Exp	erimental V	alues of	Entrainment
	Re	ynolds N	umber
¢	D	5.2 x	104
C	3	6.45 x	10 ⁴
Ĺ	2	7.82 x	104
4		10.8 x	10 ⁴

Values of Entrainment Calculated from Equation (2)

Reynolds Number

 5.2 x 1	04
 6.45 x 1	0 ⁴
 7.82 x 1	0 ⁴
 10.8 x 1	04

- 8 -

.

Entrainment, E

- 10 -

- 11 -

Table 2. Legend for Figures 5 through 8.

	Experiment	tal Values	s of Entrainment
		Reynolds	Number
	0	5.5	$x 10^{4}$
•		6.94	$x 10^4$
		8.31	$\times 10^{4}$
	+	11.20	x 10 ⁴
	Values of	Entrainm	ent Calculated from Equation (2)
		Reynolds	Number
		5.5	x 10 ⁴
		6.94	x 10 ⁴
		8.31	$\times 10^{4}$
	<u></u>	11.2	$\times 10^{4}$

- 12 -

- 13 -

- 14 -

- 16 -

Figure 9. Photograph of Test Section Four.

Figure 10. Test Section Four with Air Directed Vertically Downward into the Longitudinal Center of the Horizontal Pipe.

Figure 11. Entrainment versus Viscosity for Test Section Four (1/4-Filled, Four-Inch Diameter Horizontal Pipe) for an Average Time Interval of Two Minutes for Various Air Flow Rates.

Figure 13. Entrainment versus Viscosity for Test Section Four (1/4-Filled, Four-Inch Diameter Horizontal Pipe) for an Average Time Interval of Ten Minutes for Various Air Flow Rates.

- 20 -

Data Set	Time Duration, minutes	Flow Rate lb/min.	^N Re x 10 ⁻⁶	Viscosity Range, cps	Erroi	r in E %
1	0–2	11.20	5.20	1-164	-26.73	to -12.80
2	0–2	13.90	6.45	1-185	3.72	to 10.91
3	0-2	16.83	7.82	1-216	-2.65	to 4.59
4	0-2	23.23	10.80	1-238	-12.96	to -6.99
5	0-5	11.20	5.20	1-160	-23.92	to -3.07
6	0-5	13.90	6.45	1-200	13.18	to 14.79
7	0–5	16.83	7.82	1-216	6.27	to 11.19
8	0–5	23,23	10.80	1-238	-9.13	to -6.29
9	0-10	11.20	5.20	1-170	-17.66	to 1.37
10	0-10	13.90	6.45	1-230	11.51	to 15.93
11	0-10	16,83	7.82	1-228	. 54	to 12.93
12	0-10	23.23	10.80	1-265	-9.42	to -6.83
13	0-15	11.20	5.20	1-135	-18.07	to 2.09
14	0-15	13.90	6.45	1-230	10.76	to 16.19
15	0-15	16.83	7.82	1-228	10.23	to 11.52
16	0-15	23.23	10.80	1-265	-7.66	to -6.91

Table 3. Deviation in Experimental and Calculated Values of Entrainment for 1/4-Filled Case.

- 21 -

Data Set	Time Duration, minutes	Flow Rate, lb/min.	^N Re x 10 ⁻⁶	Viscosity Range, cps	Error %	in	Ε,
1	0-2	10.10	5.55	1-297	4.08	to	61.43
2	0-2	12.60	6.94	1-222	7.10	to	38.62
3	0-2	15.10	8.31	1-224	6.11	to	19,13
4	0-2	20.40	11.20	1-240	-3.67	to	5,85
5	0-5	10.10	5.55	1-297	-14.50	to	3.63
6	0-5	12.60	6.94	1-222	-1.59	to	. 5.68
7	0-5	15.10	8.31	1-224	-4.26	to	4.27
8	0-5	20.40	11.20	1-246	-4.53	to	-3.31
9	0-10	10.10	5.55	1-312	-13.74	to	2.34
10	0-10	12.60	6.94	1-224	-1.06	to	7.07
11	0-10	15.10	8.31	1-228	-1.43	ţo	3,43
12	0-10	20.40	11.20	1-240	-5.43	to	-3.29
13	0-15	10.10	5.55	1-312	-14.04	to	" 55
14	0-15	12.60	6.94	1-224	-1.41	to	7.40
15	0-15	15.10	8.31	1-228	.14	to	5.43
16	0-15	20.40	11.20	1-240	-4.42	to	-3.35

Table 4. Deviation in Experimental and Calculated Values of Entrainment for 1/2-Filled Case.

Time, minutes	Upstream Air Pressures, inches Hg	Average Reynolds Number, x 10 ⁻⁴	Liquid Viscosity, cps	Entrainment
	DA	ATA SET 1	аннана <u>н талар</u> анда дала, до да да да да се	
0-2	23.0	6.25	7.74	.875
	、		9.70	. 920
			14.8	.833
			26.9	. 756
			60.6	.719
			62.0	.719
	DA	ATA SET 2	<u></u>	an a san an a
0-2	30.0	7.25	18.0	。929
			37.7	.814
			47.3	<u>。8</u> 29
			131.0	.845
	DA	ATA SET 3		- <u></u>
0-5	23.0	6.25	9.05	。915
			12.3	。915
			18.4	。915
			30.4	.814
			60.6	<u>.</u> 809
			67.0	.750
	D	ATA SET 4	1 - Sin Andrew - Thanka - Andrew Style - Sin State	
0-5	30.0	7.25	17.0	. 963
			42.5	。926
			55.6	.894
			131.0	.878

Table 5.	Entrain	ment Data	a for	Test	Section	Four,	1/4-1	Filled	l, for
	Various	Entrapp	ed Li	quid `	Viscosit	ies and	l Air	Flow	Rates.

.0

- 23 -

ię. –

Time, minutes	Upstream Air pressure, inches, Hg	Average Reynolds Number, x 10 ⁻⁴	Liquid Viscosity cps	Entrainment
		DATA SET 5		
0-10	23.0	6.25	11.1	.919
			20.1	。940
			37.0	.880
			60.6	.809
		DATA SET 6		
0–10	30.0	7.25	19.0	۰ <u>988</u>
			35.6	。987
			63.6	。930
			131.0	.866
		DATA SET 7	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	/
0-15	23.0	6.25	11.90	_° 938
			20.10	。959
			39.60	。900
			43.0	_° 890
			120.0	.870
	an tanın yırı alıştığır yartanış tarşınan şina nasızı	DATA SET 8	ىكى ئىلىرى بىلەر بەرسەر بىلەرىي بىلەر بەر يەر <u>بىلەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب</u>	n <mark>a na na na na na na na na na na</mark> na
0–15	30.0	7.25	19.0	1.0
			40.5	1.0
	•		95.0	。978
			173.0	.888

- 24 -