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Abstract

This document reports the development of a criterion to be used in determining

the natural modes and frequencies of vibration of a structure by analysis of a suit-

able conceptual or mathematical model. Analyses of complex structures by the

method of component mode syntheses typically yield results that are accurate in

the lower modes and inaccurate in the higher modes. The equat!on developed in
this report yields a criterion that indicates which modes are accurate, or repre-

sentative of the real structure, and which modes are inaccurate. This criterion is

applied to the analysis of a real structural system.

iv JPL TECHNICAL MEMORANDUM 33-364



A Criterion for Selecting Realistic Natural

Modes of a Structure

I. Introduction

All methods for vibration analysis of real structures are

approximate methods, in the sense that the real structure

(having in principle an infinite number of degrees of

.freedom) is represented by a model having a finite num-

ber. Analysis methods may be classified broadly under

two categories: lumped parameter and modal methods.

In lumped parameter methods, the physical aspect of the

structure is altered in the modeling process by repre-

senting it as a finite number of rigid masses and mass-
less, elastic connecting elements. In modal methods, the

modeling process limits the virtual displacements of the
structure to those that are defined by a finite number of

assumed displacement modes. In either case, the effect

of modeling is to introduce errors in the computed modes

and frequencies of vibration. These errors are reduced

generally by increasing the number of degrees of freedom

(dof), although a countereffect may be introduced by the

JPL TECHNICAL MEMORANDUM 33-364

possibility of increasing numerical round-off errors in the

computations.

Nevertheless, it is common experience that an effective

means of reducing errors and of gaining information con-

cerning convergence of solutions is to improve the model
in successive steps. This method requires several complete

and independent solutions and is a laborious and time-

consuming procedure.

The analysis carried out in this report represents an

attempt to learn something about such errors by other

means than carrying out successive solutions. It has been
found that the results obtained lead to a useful criterion

that enables the analyst to determine, within close limits,

those natural modes resulting from the analysis of a par-

ticular model which closely represent natural modes of

the actual structure as they might be illustrated by a

greatly improved model.



II. Analysis

The ith natural mode and frequency of a structure are given by the following matrix equation:

Mq_o_) = Xo_ Kq_o_)

where

M = mass matrix

K= stiffness matrix

),o, = ith eigenvalue

= 11  o,

_oo, = natural frequency in the ith mode

q") = eigenvector in the ith mode0

(1)

The subscript 0 denotes approximate results obtained by use of a conceptual model having a number of degrees of

freedom appropriate to the needs of the problem at hand and the computer equipment available for the solution. The

accuracy of the results can be bettered by an improvement in the conceptual model which generally results in a larger
number of degrees of freedom. The eigenvalue problem associated with an improved model is written in Eq. (2), where

it is assumed that the adopted coordinate system is one in which coupling occurs only in the mass matrix. An example

is shown later in which such a coordinate system is illustrated.

(9,)

where

and

M.O-F M,_.j t q" } =)t,i IK,_

M °o = M = mass matrix for the original model

K °° -- K = stiffness matrix for the original model

M "n = mass matrix associated with the added degrees of freedom in the improved model

K"" -- stiffness matrix associated with the added degrees of freedom

M °_, M "° = mass coupling matrice s

A_ = ith eigenvalue for the improved model

= ith eigenvector for the improved model
(q")

Equation (2) can be written in two separate matrix equations as follows:

MOOq°") + MO-q -(') = A_KOOqO(')

M-Oq °") + M--q- '') = MK.-q--)

From Eq. (4), the subvector q"(') is found in terms of qO.) as follows:

(3)

(4)

(5)
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q-(" = (MK _" -- M_)-_ M_OqO")

z



b

This is substituted into Eq. (3) to yield the following relationship:

[M °O + M °" (MK"" - M"")-' M "°] q"'" = X,K°°q °"' (6)

This equation expresses an eigenvalue problem of the same order as Eq. (1), from which improved eigenvalues and

eigenveetors, _t_ and qO-_, are expected. The original mass matrix is altered by the addition of an incremental mass
matrix 8Mi, where

8M, = M °" (X,K "n - M'*) -' M n° (7)

Equation (6) may then be written in the form

(M + 8M,) qO,,, = X,KqO,,, (8)

It is noted that Eqs. (1) and (8) differ only by the addition of the incremental mass matrix 8M,. Their solutions are

compared by using the linear extrapoIation

X, = Xo,_ + 8),_ (9)

qO(,, -- qO(,, + 8q(i) (10)

Substituting into Eq. (8) and subtracting Eq. (1) lead to the following result:

(M - Xo_K) 8q"' + 6M,qo"_ + $M,Sq'" = *X_Kqo"_ + $x_K_q ") (11)

This equation is premultiphed by the transposed eigenvector in the jth mode q_J_*. The following scalar equation
results:

q_ i)r (M Xo,K) 8q c° + qo_ilT 8Miq$ _ + "°'* &_d._,_(i) qo(_*- -,o _ ..... a = 8X_ Kq(o ') +/_Ziqo_i}*K&q _i> (12)

in case ] = i, the first term in this equation vanishes by virtue of Eq. (1). If second-order terms are neglected, i.e.,

qo'_*SM,Sq "_ = 0
(la)

8A_qoC_KSq(i_ = 0

the following equation results:

_ qo'S_*$Miqo(i_
_Xi (i_ ._ (14)

qo Kqo

Using Eq. (1), this result can be expressed in the following form:

Either Eq. (14) or Eq. (15) can be used to estimate predicted improvements in the computed eigenvalue for any given

mode brought about by the addition of new degrees of freedom associated with an improved conceptual model. It is

emphasized that these results permit only an estimate of the correction because of errors introduced by neglecting the
terms indicated in Eq. (13).

JPL TECHNICAL MEMORANDUM 33-364 3



I|1.Application to the Method of ComponentMode Synthesis
In the method of component mode synthesis (Refs. 1 and 2), Eq. (1) takes the following form.

0

(le)

In this equation, the superscript B relates to a set of basic coordinates that define two classes of generalized displace-

ments of a structural system composed of a finite number of connected components. One class of displacements includes

those in which the components undergo rigid-body displacements. The other class includes those that are compatible

with generalized displacements of the redundant constraints in the connection system among the components. From

another point of view, it can be said that the basic displacements are defined by (and are compatible with) displace-

ments of the connection system. Because the number of connections is considered to be finite, it follows that {q_)

is necessarily finite.

The superscript N in Eq. (16) relates to a set of normal coordinates that define displacements of the system relative

to the connection system. It is convenient, although not necessary, to think of these coordinates as the normal coordi-

nates of the components that define their vibration modes with all connections completely fixed. In this case, the sub-
matrices M s's" and K s's' are diagonal. In any case, it is shown (Refs. 1 and 2) that the submatrices K B_ and K nB are null

matrices so long as the so-called normal coordinates define displacements relative to the connection system. It is clear

that there is no limit to the number of normal coordinates so that {qor} is made finite only by selecting an arbitrary finite
number of them. In terms of modal coordinates, one usually would begin with the lowest frequency modes and select as

many modes, in the order of ascending mode numbers, as considered necessary.

The superscript n in Eq. (2) refers to an additional set of normal coordinates corresponding to higher modes beyond

those selected for the original solution of Eq. (1).

The mass matrix in Eq. (2) may now be written as follows:

p, ooI 7=I' , , ol
--- T ------"i_---o

(17)

The two nu|lsubmatrices clearly result fromthechoice of orthogonal normal modes. Similarly, the stiffness matrix has
the form

0 rK... I 0 I
(18)

The incremental mass matrix 8M_ given by Eq. (7) may now be expressed as follows:

r- M e" -1 I
(19)

where

3MB8 = MB. (XiK-,_ - M--)-_ M-n (20)

4 JPL TECHNICAL MEMORANDUM 33-364



The numerator on the right side of Eqs. (14) and (15) becomes

° '"° t-o-Fo]

B(l) T BB flB_O= qo 8M_ _o

q_'"TMn" (,_K"" - M"")-I M "8 aB("

The denominator on the right side of Eq. (14) may be rewritten in a similar way, as follows:

(21)

tqqo'"'Xqo"' t- L o I Krrj

: N(iI_TKBBnIi}_ -_-tl(i).*,T_VNtI(i)N
"1 0 --- _tO "10 -- "10

a(_)"as follows:From Eq. (16) it is seen that -_o""_"can be expressed in terms of -_o ,

=- - M qo

Substituting this into Eq. (22) yields the following:

(22)

(23)

q,,,qC.,,) = q_,,Br [KBB + MBr (M,Vr -- Ao,KNN)-,KrN (M ._ -- xo,KNN) -' M *'B] qo"'_0 ---_10
(24)

Hence, Eq. (14) may take the form

qo_"Br MB" (XiK"" -- M"")-' M"Sq_ i>_

82_, q_,)_r [KBB + MBN (MrS _ XoiK2Vr)-i K Nz¢(Mrr - Ao_Krr) -' M _'B] q_o""
(25)

As it stands, this equation must be solved by iteration, using Eq. (9), because the eigenvalue _,i, appearing in the

numerator on the right side, is unknown. Hence, ff will be more convenient to simplify the equation by substitution

of Eq. (9) directly, although this procedure involves an additional approximation. Attention is focused on the matrix

X_K"_ -- M"", which is a diagonal matrix in which the/th diagonal element is ,,,_.Ki M s . Note that

where

1

and ,o, i is a natural frequency of the appropriate component with fixed constraints. Therefore,

A, -- Xn i

JPL TECHNICAL MEMORANDUM 33-364



Anj
The flh element of the inverse matrix (X_K"" -- M"") -1 is M7 _-'

X_ -- Anj

If Eq. (9) is substituted, the above fraction can be expanded in a power series in 8X_, thus,

Xn] Anj _..j
-- 8Ai

X_ -- _"_i Xo/- _._ (_,0i -- X,j) _

+ higher order terms in 8xi

The inverse matrix may be written, neglecting the higher-order terms, as follows:

(MK"" - M"") -1 = ItM n"-' - L,M n71'_Z_

where

a diagonal matrix

An

a diagonal matrix

In a similar way, the denominator on the right side of Eq. (25) can be reduced, as follows:

(M_r - Z0,K.VN)-, KV.V (M_VN_ Xo,K.V_)-, = LNMN_ "-'

where

a diagonal matrix

When the foregoing expressions are substituted into Eq. (25) that equation takes the following form:

(/)sT Bn nn I nB (i)Bqo M HM M qo

_._ = qo._.f [K BB + MR_LNM_-_M_'B + M_"L.M .... M.B] q_o_. (2o)

This equation may be expressed in summation form for computational purposes, as follows:

nB nB 71T + nA

tTfi)nfl(i)_ _'_11 "'Lkl •

-,o, .o, M)_.v )_01__ X_.z
j:l k=x /=nr+l

.. .. (27)

"°' ._..,"• (Xo,-
j=l k:l |=nB+l

where

nB= number of basic degrees of freedom of the system

n¢ = total number of degrees of freedom of system whose eigenvalues and eigenvectors are h0_, q_0/_, respectively.

na = number of additional fixed-constraint normal modes chosen to represent the true system.

6 JPL TECHNICAL MEMORANDUM 33-364



In using Eq. (27)a set of eigenvalues, 2`o_, and eigen-

vectors, ,"J will have been obtained from a solution of

the system having nr dof of which nB represents the num-

ber of basic dof. To carry out these solutions, elements of
the stiffness matrix K RB and those of the mass matrices

M Bx, M _-_, up to nT degrees of freedom will have been

obtained. In addition, masses corresponding to the added

do[ rta must be determined as well as the additional quan-

tities 2`_-.

In principle, if an exact solution is to be obtained for

purposes of comparison na--_ _. However, it will be

found that this number may remain finite because 82,--_ 0

as na is increased. In practice, a limit will be reached

beyond which further added degrees of freedom will have
no substantial effect on the results.

IV. An Example

The foregoing procedure is applied to the structure

shown in Fig. I, It is a plane frame composed of uniform

beams of various cross-sections connected rigidly together.

All beams are considered to be axially rigid. The base of

the central beam is fixed rigidly to ground. The in-plane

natural modes and frequencies of this structure have been

determined by using the method of component mode syn-

3

t

2

_,-7

t..7

3

L

V_D'5 _._

1

Lp..8

4

..6

_-6

--_/2--

4

J

thesis (Refs. 1 and 2). Results were obtained using six

different generalized coordinate systems having 16, 24, 32,

40, 48, and 56 dof. The structure has eight basic do[ indi-

cated by the eight basic displacement coordinates shown

in Fig. 2. For the 16-dof model, the first of the fixed-fixed

normal modes of each of the eight members, identified by

the numbered sectional views in Fig. 1, are included. Note

that all members are fixed at both ends except No. 2,

which is a cantilever. The 24-dof model includes the first

two fixed-fixed normal modes of each member. The re-

maining models are obtained by adding up the third

through the sixth normal modes of each member.

Figure 1. Frame structure treated in example

The complete sets of eigenvalues and eigenvectors for

each of the six models are available but not reported in

this paper. Only those having a significant bearing on the

results of this study are given. In Table 1, the mode num-
bers related to each model are listed in the order of

Table !. Comparison of mode numbers

Type
of 16 dof 24 dof 32 dof 40 dof 48 dof 56 dof

Mode

G t I 1 1 1 1

G 2 2 2 2 2 2

G 3 3 3 3 3 3

L 4 4 4 4 4 4

G 5 5 5 5 5 5

____ G666666G 7 7 7 7 7 7

l -- 8 8 8 8 8

G 10 11 11 11 I1 11

___ L -- -- 12 12 12 12G 11 12 13 13 13 13

L 12 13 14 14 14 14I I

014875 d _ _ L -- 14 15 15 15 15

SECTION4-4 L _ -- -- 16 16 16

G 13 15 16 17 17 17
Old

G 14 17 17 18 18 18
L -- 16 18 19 19 19

L,II_ d _,]-_ G -- 18 19 20 20 2O

SECTION 5-5 L .... 21 21

L -- -- 20 21 22 22

015 d G -- 19 21 22 23 23

_ L ..... 24

025d/i_, G -- -- 22 23 24 25
SECTION 6-6 G -- -- 1 24 25 26

L -- -- 23 25 26 27

005 d L -- -- 24 26 27 28

G -- -- -- 27 28 29

_-----_--]_- L __ -- -- 28 29 30
_Vd-I_ --

G __ -- -- 30 30 31
SECTIONS 7-7 AND 8-8

L _ -- -- 29 31 32

G -- -- -- 31 32 33

JPL TECHNICAL MEMORANDUM 33-364 7
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0

qj

V

i

q2

%

I

I
I
I
I

(-

I

I

0

qz

%

Figure 2. Generalized basic displacement coordinates

descending eigenvalues, or ascending frequencies. This

table shows that a given mode does not necessarily carry

the same mode number horizontally across the table; i.e.,

it may have a different position in the frequency spec-
trum related to the different models. The reason for this

is that the introduction of new displacement coordinates
associated with the fixed-fixed normal modes of some o£

the members gives rise to localized eigenmodes in which

the primary response is associated with those particular

members. Thus, the system eigenvalues associated with

those localized modes are very nearly equal to the eigen-

values for the corresponding fixed-fixed modes. The mem-

bers that contribute to this beha_or are Nos. 5, 6, 7,

and 8, which are quite flexible as compared with other

members to which they connect; therefore, they may

vibrate locally in modes that approximate very closely

their own fixed-fixed modes. The first six fixed-fixed eigen-

values for all members of the system are listed in Table 2.

The localized modes are identified in Table 1 by the let-

ter L. In contrast, the G, or general, modes are those in

which the entire system responds, as indicated by eigen-
frequencies distinct from the local member frequencies

and by sizable response in the q_, or basic, part of the
eigenvectors. It is the system behavior in these latter

modes that is of concern in this report. Table 1 does not

include a comparison of the higher mode numbers be-

cause a casual examination of the modal frequencies and

vectors beyond the numbers listed shows a complete

8 JPL TECHNICAL MEMORANDUM 33-364
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Table 2. Fixed- constraint eigenvalues of members

Member Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.26291317 E-03 0.68410542 E-04 0.25035174 E-040.19977469 E-02

0.50556673 E-02

0.19977469 E-02

0.84060359 E-02

0.78036988 E-03

0.55492975 E-02

0.31214797 E-02

0.49943673 E-O1

0.12872827 E-03

0.26291317 E-03

0.11062750 E-02

0.10270045 E-03

0.73031423 E-03

0.41080178 E-03

0.65728294 E-02

0.16419083 E-04

0.68410542 E-04

0.28785499 E-03

0.26722868 E-04

0.19002928 E-03

0.10689150 E-03

0.17102,635 E-02

0.42757627 E-05

0.25035174 E-04

0.10534194 E-03

0.97793657 E-05

0.69542164 E-04

0.39117460 E-04

0.62587936 E-03

0.11218886 E-04

0,15646972 E-05

0,11218886 E-04

0,47206361 E-04

0.43823775 E-05

0.31163573 E-04

0,17529510 E-04

0,28047215 E-03

0.57510490 E-05

0.70118040 E-06

0.57510490 E-05

0.24199023 E-04

0.22465036 E-05

0.15975136 £04

0.89860145 E-05

0.14377623 E-03

lack of relationship. It may be concluded that the higher

modes are meaningless, insofar as their relationship to
the real structure is concerned.

V. Results

In assessing the results of this study as embodied in

Eq. (27), it is necessary to compare values of 82, as given

by that equation to comparable values obtained by direct

eigenvalue solutions obtained for the structure of Fig. 1.

As noted previously, these solutions were carried out for

as many as 56 do[. All of the computed eigenvalues are

given in Tables 3 and 4. In Fig 3, curves are plotted for

each mode shown in Table 1, comparing the eigenvalues

obtained for the 56-do[ model with those for the 16-, 24-,

32-, 40-, and 48-dof models. These curves show that the

eigenvalues for the first 33 modes, as obtained from analy-

sis of the 56-do[ model, can be considered accurate. There-

fore, those modes can be used as standards for comparison,

insofar as eigenvalues are concerned.

Tables 5 through 8 show calculated values of (k_ :'_ --
,\_rq/M,r_ for each mode included in Table 1, where

;d _'_ = eigenvalue in the nth mode for the 56-dof model

X:,r_ = eigenvalue in the nth mode for the rth-dof model

r - 16, 24, 32, and 40.

These tables also include values of 8A/"Ao where 8A is

obtained from Eq. (27) and ;to takes the values x<_).

These results are plotted in Figs. 4 through 7 for the

16-, 24-, 32-, and 40-do l models. In each case, the eigen-

values (as compared with the 56-dof model) are very

Table 3. Eigenvalues of 16-, 24-, and 32-dof systems

Mode

1 5.494

2 1.192

3 0.5777

4 0.4998 X 10

5 0.4032 X 10

6 0.1342 X 10 -_

7 0.7752 X 10 :

8 0.5555 X 10 _

9 0.3115 X 10 _

10 0.1796 X 10 :

11 0.1379 X 10 _

12 0.7792 X 10 ::

13 0.3555 X 10 :_

14 0.2735 X 10 :_

15 0.1659 X 10 :'

16 0.6201X 10

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

16 dof 24 dof 32 dof

5.494

1.192

0.5777

0.4998

0.4032

0.1343

0.7778

0.6559

0.5559

0.3115

0.2658

0.1541

0.7800

0.7323

0.5813

0.4106

0.3482

0.2720

0.1280

0.1027

0.7870

0.5885

0.2107

0.1705

I

I

I

w

5.494

1.192

0.5777

X 10 _ 0.4998

X I0 _ 0.4033

X 10 _ 0.1344

X 10 _ 0.7779

X 10 _ 0.6559

X 10 _ 0.5559

X 10 -_ 0.3115

X 10-= 0.2660

X 10 _ 0.1708

X 10 _ 0.1545

X 10 -3 0.7800

X 10 _ 0.7334

X 10 _ 0.5884

X 10 n 0.5115

X 10 _ 0.4106

X 10 _ 0.3477

X I0 _ 0.1905

X 10 4 0.1435

X 10 _ 0.1154

X 10 4 0.1068

X 10 _ 0.1024

0.7889

0.6043

0.2970

0.2675

0.2112

0.1714

0.6682

0.4805

X 10 _

X 10 _

X 10 -_

X 10 -'_

X 10"

X 10-"

X 10-"

X 10 _

XIO _-

XIO _-

X 10-:'

X 10 -_

X 10 _

XIO _

X I0 _

X 10 3

X 10 :_

X I0 _

X10"

X 10 :_

X 10 _

X I0 4

X I0 -4

X 10 4

X 10 _

)<10 _

XIO 4

XlO _

XlO 5

accurate in the lower modes and tend to become very

inaccurate in the higher modes. The transition is abrupt,

occurring either very suddenly at a well-defined mode

number or with somewhat more gradual deterioration

over two or, at most, three mode numbers. In all cases,

the comparable value of 8X/X,, as determined from

Eq. (27) shows the same abrupt deterioration at the same

range of critical mode numbers.

JPL TECHNICAL MEMORANDUM 33-364 9
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Mode

I 5.494

2 1.192

3 0.5777

4 0.4998 X 10

5 0.4033 X 10 1

6 0.1344 X 10 1

7 0.7780 X 10 -2

8 0.6559 X 10 "_

9 0.5559 X 10 =

10 0.3115 X 10 _

11 0.2663 X 10 =

12 0.1708 X 10 :

13 0.1546 X 10 2

14 0.7800 X 10 _

15 0.7335 X 10 :_

16 0.6262 X 10 '_

17 0.5889 X 10 -_

18 0.5110 X 10 _

19 0.4106 X 10

20 0.3478 X 10 -'_

21 0.1912 X 10 -_

22 0.1668 X 10 -_

23 0.1425 X 10 3

24 0.1147 X 10 3

25 0.1068 X 10 _

26 0.1024 X 10 -=

27 0.6971 X 10 .4

28 0.6269 X 10 -4

Table 4. Eigenvalues of 40-, 48-, and 56-dof systems

40 dof 48 dof 56 dof

5.494

1.192

0.5777

0.4998 X 10 '

0.4033 X 10

0.1344 X 10 -1

0.7780 X 10 :

0.6559 X 10 :

0.5559 X 10 '

0.3115 X 10 :

0.2663 X 10 "-'

0.1708 X 10 _"

0.1546 X 10 "_

0.7800 X 10 -:_

0.7335 X 10:'

0.6262 X 10 _

0.5892 X 10 :_

0.5122 X 10 3

0.4106 X 10 :_

0.3478 X 10 =

0.2804 X 10 :'

0.1912 X 10 =

0.1667 X 10 "

0.1428 X 10 _

0.1150 X 10 :_

0.1068 X 10 3

0.1024 X 10 =

0.7078 X 10

Mode

5.494 29

1.192 30

0.5777 31

0.4998 X 10 _ 32

0.4033 X 10 _ 33

0.1344 X 10 _ 34

0.7780 X 10 : 35

0.6559 X 10 : 36

0.5559 X 10 : 37

0.3115 X 10-: 38

0.2663 X 10 : 39

0.1708 X 10 _ 40

0.1546 X 10: 41

0.7800 X 10 -_ 42

0.7335 X 10 = 43

0.6262 X 10 a 44

0.5892 X 10 -3 45

0.5123 X 10 = 46

0.4106 X 10 -3 47

0.3478 X 10 -3 48

0.2804 X 10 -3 49

0.1913 X 10 -:3 50

0.1675 X 10 -_ 51

0.1437 X 10 -= 52

0.1429 X 10 -_ 53

0.1150 X 10 _ 54

0.1068 X 10 -_ 55

0.1024 X 10 -:_ 56

40 dof 48 dof 56 dof

0.3916 X 10-"

0,3818 X 10 "_

0.2977 X 10 -4

0.2866 X 10-'

0.2671 X 10 _

0.1628 X 10

0.1330 X 10 4

0.9790 X I0 -_

0,6422 X 10 _

0.5518 X 10 -5

0.3132 X 10 '_

0.1704 X 10 -_

i

i

0.6806 X 10 4

0.6113 X 10 4

0.7077 X I0 -4

0.6806 X 10 -4

0,6124 X 10 -_

0.3917 X 10 -_

0.3825 X 10 _

0.3282 X 10 _

0.3102 X 10 -_

0.2919 X 10 .4

0.2671 X 10 -*

0.1764 X 1_ _

0,1753 X 10 _

0.1601 X 10 _

0.1541 X 10 _

0.1074 X 10 _

0.9780 x 10 -_

0.8986 X 10 _

0.7670 X 10 _

0.6816 X 10 _

0.6367 X 10 -_

0.4383 X 10- a

0.4261 X 10 _

0.3802 X 10 _

0.2876 X 10 _

0.2248 X 10 _

0.1799 X 10 "_

0.1387 X 10 _

0.9037 X 10 -_'

0.4563 X 10 =

0.3916 X 10 4

0.3804 X 10

0.3123 X 10 _

0.2921 × 10

0.2671 X 10 _

0.1765 X 10 *

0.1753 X 10 _

0.1551 X 10-"

0.1343 X 10 _

0.1047 X 10 -_

0.9779 X 10 "_

0.6852 X 10 _

0.4860 x 10 -5

0.4387 × 10 _

0.3062 X 10 -_

0.1996 X 10 -_

0.1411 X 10 -_'

0.7319 X 10 -e

i

A comparison of modal quality as indicated by differ-

enees in eigenvectors is more difficult to make. Recogniz-

ing, however, that eigenvectors have the property of

uniqueness in direction, a comparison of their directions

may be made. Specifically, this is done by finding a gen-

eralized angle between the eigenvectors of the 16-, 24-,

and 32-do[ models and those of the 56-dof model. Because

this involves vectors of different dimensions, the 56-dof
eigenvector is truncated to match the dimension of the

r do_ vector to which it is compared.

The scalar product of any two vectors, say q,, and q_, is given by q_ • q_ = q_q_ cos (q,, qz). The generalized cos (q_, qz)
is given by

(q_" q_)_
cos-"(q,, q.,): (q,. q.,)

The generalized sin (q_, qz) is given by sin'-' (q,, qe) = 1 -- cos z (q_, q_,). In matrix form, this equation appears as follows:

r'_'._')/_" [m] '{_<os'_}.)_sin-'c = 1 - '_° ""
({q_,->}T [m] {q,_')},,)({_"'},, [m] {q,<,_' },,) (28)

where

sin _ e = a measure of eigenvector error

{q_n},, _-- eigenvector in nth mode for r do[ model

{_f") ). = truncated eigenvector in nth mode for 56-dof model

[m] = r X r mass matrix.

10 JPL TECHNICAL MEMORANDUM 33-364
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Figure 3. Eigenvalue ratios X(56_

In Eq. (28), mass weighting is used in recognition of the standard modal orthogonality criterion. For two equal vec-

tors it is clear that sinZe = 0, and that it becomes unity for two orthogona] vectors.

Equation (28) is applied to the 16-, 24-, and 32-dof models and the results are shown in Table 9, and are plotted in

Figs. 8 through 10, together with the corresponding values of 8x/xo from Eq. (27). Again, it is clear that the general

deterioration of the eigenvectors occurs abruptly and at the same range of mode numbers at which the eigenvalue accu-

racy deteriorates.
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Table 5. Comparison of eigenvalue errors, 16 dof

Mode

i

2

3

4

5

6

7

8

9

lO

11

12

13

14

15

16

17

18

_(le)

0.549400 E-01

0.119200 E-01

0.577700 E-O0

0.499800 E-01

0.403200 E-01

0.134200 E-01

0.775200 E-02

0.555500 E-02

0.311500 E-02

0.179600 E-02

0.137900 E-02

0.779200 E-03

0.355500 E-03

0.273500 E-03

0.5494 E-01

0.1192 E-01

0.5777 E-O0

0.4998 E-01

0.4033 E-01

0.1344 E-01

0.7780 E-02

0.6559 E-02

0.5559 E-02

0.3115 E-02

0.2663 E-02

0.1708 E-02

0.1546 E-02

0.7800 E-03

0.7335 E-03

0.6262 E-03

0.5892 E-03

0,5123 E-03

_(16)

o

o

0

0

0.25 E-03

0.15 E-02

0.36 E-02

0.72 E-03

0

0.48 E-O0

0.12 E-O0

0.10 E-02

_. Eq. (27)

0.269428

0.100438

0.380011

0.252130

0.919051

O.136095

0.279403

0.238122

0.406964

0.455158

0,241134

0.459217

0.66 E-O0 0.816383

0.87 E-O0 0.121926

E-04

E-05

E-04

E-06

E-05

E-04

E-04

E-05

E-07

E-03

E-03

E-06

E-04

E-04

0.490404

0.842603

0.657801

0.504461

0.227939

0.101412

0.360427

0.428662

0.130647

0,253429

0.174861

0.589345

0.229644

--0.445798

E-05

E-06

E-04

E-05

E-03

E-02

E-02

E-03

E-04

E-O0

E-O0

E.03

E-O0

E-01

Table 6. Comparison of eigenvalue errors, 24 dof

12

Mode

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

0.5494 E-01

0.1192 E-01

0.5777 E-O0

0.4998 E-01

0.4032 E-01

0.1343 E-01

0.7778 E-02

0.6559 E-02

0.5559 E-02

0.3115 E-02

0.2658 E-02

0.1541 E-02

0.7800 E-03

0.7323 E-03

0.5813 E-03

0.3482 E-03

0.4106 E-03

0.2720 E-03

0.1280 E-03

0.5494 E-01

0.1192 E-01

0.5777 E-O0

0.4998 E-01

0.4033 E-01

0.1344 E-01

0.7780 E-02

0.6559 E-02

0.5559 E-02

0.3115 E-02

0.2663 E-02

0.1708 E-02

0.1546 E-02

0.7800 E-03

0.7335 E-03

0.6262 E-03

0.5892 E-03

0.5123 E-03

0.4106 E-03

0.3478 E-03

0.2804 E-03

0.1913 E-03

0.1675 E-03

0

0

0

0

0.25 E-03

0.74 E-03

0.26 E-03

0

0

0

0.19 E-02

0.32 E-02

0

0.16 E-02

0.14 E-01

0.47 E-O0

_ Eq. {27}

0.399901E-05

0.161082 E-06

0.656303 E-05

0.161391 E-06

0.506336 E-05

0.219424 E-05

0.254166 E-05

0.113761 E-07

0.568145 E-07

0.192048 E-08

0.482058 E-05

0.468340 E-05

0.487001 E-07

0.897047 E-06

0.433983 E-05

0.148794 E-04

0 0.107298

0.28 E-00 --0.157399

0.31E-O0 0.151368

0.727887

0.135136

O.113606

0.322911

O.125579

O.163383

0.326776

O.173442

O.102203

0.616527

0.181361

0.303920

0.624360

0.122497

0.746573

0.427322

E-07 0.261319

E-04 --0.578673

E-04 O.118256

E-06

E-06

E-04

E.05

E-03

E-03

E-03

E-05

E-04

E-06

E-02

E-02

E-04

E-02

E-02

E-01

E-04

E-01

E-O0

JPL TECHNICAL MEMORANDUM 33-364



Table 7. Comparison of eigenvalue errors, 32 dof

Mode

G i

G 2

G 3

L 4

G 5

G 6

G 7

L 8

L 9

L10

Gll

L12

G13

L14

L15

L16

G17

G18

L19

G 20

21

L 22

G 23

24

G 25

G 26

L 27

L 28

0.5494 E-01

0.1192 E-01

0.5777 E-00

0.4998 E-01

0.4033 E-01

0.1344 E-01

0.7779 E-02

0.6559 E-02

0.5559 E-02

0.3115 E-02

0.2660 E-02

0.1708 E-02

0.1545 E-02

0.7800 E-03

_ Eq. [271

0.7334 E-03

0.5884 E-03

0.5t15 E-03

0.4106 E-03

0.3477 E-03

0.1905 E-03

0.1435 E-03

0.1154 E-03

0.1068 E-03

0.1024 E-03

0.5494 E-01

0.1192 E-01

0.5777 E-O0

0.4998 E-01

0.4033 E-01

0.1344 E-01

0.7780 E-02

0.6559 E-02

0.5559 E-02

0.3115 E-02

0.2663 E-02

0.1708 E-02

0.1546 E-02

0.7800 E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

E-03

0.949275

0.354581

0.133152

0.810465

0.177090

0.359922

0.787631

0.450979

0.307755

0.115138

0.337669

0.500917

0.101382

0.120385

0

0

0

0

0

0

0.13 E-03

0

0

0

0.11E-02

0

0.65 E-03

0

0.7335

0.6262

0.5892

0.5123

0.4106

0.3478

0.2804

0.1913

0.1675

0.1437

0.1429

0.1150

0.1068

0.1024

0.14 E-03

0.14 E-02

0.16 E-02

0

0.29 E-03

0.42 E-02

0.17 E-00

0.24 E-00

0.844317

0.798808

0.762469

0.127043

0.129405

0.285106

0.838132

0.662037

0 0.632306

0 --0.7O4725

E-06

E-07

E-05

E-08

E-06

E-06

E-06

E-08

E-07

E-08

E-05

E-08

E-05

E-07

E-07

E-06

E-06

E-08

E-06

E-06

E-06

E*05

E-06

E-06

0.172784

0.297467

0.230487

0.162158

0.439101

0.267799

0.101251

0.687572

0.553616

0.369625

0.126943

0.293277

0.656193

0.154339

0.115124

0.135759

0.149065

0.309408

0.372175

0.149662

0.584064

0.573689

0.592047

--0.688208

E-06

E-07

E-05

E_06

E-05

E-04

E-03

E-06

E-05

E-06

E-02

E-05

E-03

E_04

E-03

E-02

E-02

E-05

E-03

E-02

E-02

E-01

E-02

E-02

JPL TECHNICAL MEMORANDUM 33-364 13



Table 8. Comparison of eigenvalue errors, 40 dof

Mode

G 1

G 2

C 3

L 4

G 5

G; 6

G 7

L 8

L 9

L 10

Gll

L12

G13

L14

L15

L16

G17

CI8

L19

G 20

L21

L22

G 23

L 24

G 25

G 26

L 27

L28

G 29

L 30

G31

L 32

G 33

_.(4e )

0.5494 E-01

0.1192 E-01

0.5777 E-O0

0.4998 E-01

0.4033 E-01

0.1344 E-01

0.7780 E-02

0.6559 E-02

0.5559 E-02

0.3115 E-02

0.2663 E-02

0.1708 E-02

0.1546 E-02

0.7800 E-03

0.7335 E-03

0.6262 E-03

0.5889 E-03

0.5110 E-03

0.4106 E-03

0.3478 E-03

0.1912 E-03

0.1668 E-03

0.1425 E-03

0.1147 E-03

0.1068 E-03

0.1024 E-03

0.6971 E-04

0.6269 E-04

0.3818 E-04

0.3916 E-04

0.2977 E-04

0.5494 E-01

0.1192 E-01

0.5777 E-O0

0.4998 E-01

0.4033 E-OI

0.1344 E-01

0.7780 E-02

0.6559 E-02

0.5559 E-02

0.3115 E-02

0.2663 E-02

0.1708 E-02

0.1546 E-02

0.7800 E-03

0.7335 E-03

0.6262 E-03

0.5892 E-03

0.5123 E-03

0.4106 E-03

0.3478 E-03

0.2804 ET03

0.1913 E-03

0.1675 E-03

0.1437 E-03

0.1429 E-03

0.1150 E-03

0.1068 E-03

0.1024 E-03

0.7077 E-04

0.6806 E-04

0.6124 E-04

0.3917 E-04

0.3825 E-04

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.51 E-03

0.25 E-02

0

0

0.52 E-03

0.42 E-02

0.28 E-02

0.26 E-02

0

0

0.15 E-01

3_, Eq. (27)

0.503128

0.922295

0.764973

0.913749

0.296346

0.841513

0.220299

0.111695

0.546086

0.411235

0.664211

0.484217

0.228243

0.460428

0.427072

O.173667

0.567745

0.249657

0.867125

0.130841

0.216700

0.464269

0.255172

0.308380

0.217031

0.492459

0.216915

0.120752 E-05 0.192617

--0.151980 E-05 --0.398062

--0.772811 E-07 --0.197347

--0.954271 E-05 --0.320548

0.276419 E-06

0.109938 E-07

0.441925 E-06

0.456692 E-08

0.119516 E-06

0.113099 E-06

0.171393 E-06

0.732608 E-09

0.303569 E-08

0.128100 E-09

0.176879 E-06

0.827043 E-09

0.35286.4 E-06

0.359134 E-08

0.313258 E-07

0.108750 E-07

0.334345 E-06

O.127575 E-05

0.356042 E-09

0.455064 E-07

0.414331 E-07

0.774400 E-06

0.363620 E-06

0.353712 E-06

0.231789 E-08

0.504278 E-08

0.151212 E-06

0.86 E-01

0.60 E-O0

0.26 E-03

0.28 E-O0

E-07

E-08

E-06

E-07

E-05

E-05

E-04

E-06

E-06

E-07

E-04

E-06

E-03

E-05

E-04

E-04

E-03

E-02

E-06

E-03

E-03

E-02

E-02

E-02

E-04

E-04

E-02

E-01

E-01

E-02

E-O0

Mode 16 dof

0.O000O0

0.000O00

0.0O0O00

0.000O00

Table 9. Eigenvector errors, sin 2 _ from Eq. (28)

24 dof 32 dof Mode 16 dof

0.0o0000 0.o00000 15 --

0.000000 0.000000 16 --

0.000000 0.000000 17 0.030021

0.000000 0.000000 18 0.052096

24 dof

0.000118

0.035630

1.144723

32 dof

0.0000O0

0.000008

0.000019
5

6

7

8

9

10

11

12

13

14

0.0000(30

0.0O0O05

O.OOOO67

0.000045

0.000124

0.OO8298

1.007877

0.085626

0.O00000

0.0O0O00

0.0O0000

0.000000

0.O0O0O0

0.O00000

0.000002

0.0O0515

0.005203

0.O000O0

0.0{30000

0.O0O000

0.O0O0O0

0.O00000

0.O0O0O0

0.O000O0

0.00O000

-- O.O(X)116

-- 0.000003

19

20

21

22

23

24

25

26

27

28

m

i

u

i

-0.000001

1.178584

1.5566oo

0.000000

0.028150

0.148993

2.349014

--14.855941

0.OO0082

0.000590
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VI. Conclusion

From the results of the example included in this report, it is tentatively concluded that Eq. (27) offers a valid engi-
neering criterion for delineating between accurate and inaccurate natural modes of a structure as determined by the
method of component mode synthesis, Although Eq. (27) supplies a number related only to eigenvalue error, the results
show that this nurnbor serves equally well in relating to errors in the eigenvectors. Both the eigenvalues and eigenvec-
tots deteriorate in accuracy very rapidly and at the same critical region in the natural mode spectrum.
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