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The moments of gating of signals with a limited spectrum, which assure

a maximum speed of convergence of a Kotelnikov series, are selected. A choice
is also made of the discrete values of a signal with a limited spectrum. These
values are in fact Fourier coefficients of spectral density which satisfy the

zero boundary conditions along the phase,
INTRODUCTION

Discrete (harmonic) correctors (Fig. 1) are used widely for the compen-
sation of distortions within the information transmitting channels (Ref. 1, 2).
The calculation and adjustment of these correctors is made in accordance to
the instant values g(to + kat) (k =0, *1, *2, ...) of the pulse reaction of
the communication channel g(t), which in the simplest case is a low frequency

signal with a practically limited spectrum,
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Fig., 1

The lattice function (discrete reaction) g(to + k At) (Fig. 2) is obtained
by gating (selection) of the function g(t) in accordance with the Kotelnikov
theorem., A number of questions® arise here, the sense of which is contained
in the following. It is absolutely necessary to determine the value of t,» at
which the discrete reaction g(to + k At) describes in an ideal manner the con-
tinuous reaction g(t), i.e. the value t,, at which the rate of decrease of the
selections of g(to + k At) with the growth of k is at a maximum and the spectral
characteristic of g(t) and g(to + kat) (k=0, 1, 2, ...) coincides with the

frequency range in question. In addition it is necessary to point out the rule
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for numeration of the discrete values g(to + k At), according to which these

are in fact Fourier coefficients of spectral density which satisfy the zero

boundary conditions along the phase.
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The purpose of this paper is to give a reply to these questions.

STATEMENT OF THE PROBLEM

Let's assume that we have a function of time g(t), the spectral density

G(iw) of which is limited by a certain frequency w, iG(iw)I

= 0 when lwl > We e

In other words g(t) is the pulse reaction of the low frequency channel,

the transmission coefficient G(iw) of which is limited sharply along the bend

of the transmitting frequencies.

It is necessary to expand g(t) into a Kotelnikov series*:

in order to fulfill the following conditions:
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(1)

1) the spectral density of the series in Equation (1) G(iw) is equal to

the spectral density of the function g(t) throughout the section [-wc, wc],

including the boundary points twc

: G(iw)

= G(iw), lwls w,, and consequently

the symbol for agreement in Equation (1) can-be substituted by the symbol for

equality;

*The symbol ~ is the symbol of agreement which indicates that the spectral
densities of the right and left parts are equal in the case of all w, with the
exception of specified points.




2) the expansion should be carried out in such a manner that the coeffi-
cients in Equation (1) g(tO + k At) should decrease at a possibly maximum
speed, i.e. that the series in Equation (1) should agree with the maximum
speed, and when k is finite (for instance, m 2 k 2 -n) would approximate g(t)

in the most favorable manner.

If, during the expansion of the function g(t), the conditions 1) and 2)
are satisfied, then we consider that g(t) is represented in an optimum manner

by the Kotelnikov series.

If the first condition is not satisfied, then it is impossible to adjust
the harmonic corrector according to the discrete reply g(to + k At) of the
communication channel in such a manner that the amplitude-frequential and
and phase-frequential characteristics of the channel would thereby become cor-
rected along the entire 0 to w, range. Nonfulfillment of the second condition
results in an unjustified complication of the corrector since it is necessary

to take into consideration a large number of terms of the series in Equation

(1).

The calculation and adjustment of the harmonic correctors is accomplished

according to the discrete reaction g(to + k At) without consideration of ty

i.e. according to the spectral density g(iw) of the function g(t - to) (the t,

lag is not corrected).

According to a previously published paper (Ref. 3) the harmonic corrector
compensates for the distortion of frequency characteristics E(iw) along the
entire frequency range [0 to wc], including the point W, s only in the case when
G(iw) satisfies the boundary conditions along the phase .

' arg G(iwc) = 0, (2)

A question arises in conjunction with this problem on the correct numera-
tion of the discrete pulse reaction g(to + k At), which might be formulated as
follows. Let's assume that we have a finite sequence qf the numbers ags ary
Ay sy an_i, a s about which it is known that these are in f#ct instant values

of the function g(t).

It is necessary to numerate correctly this sequence, i.e. to determine

which of the a, values are equal to g(to), g(to + At), g(to - At), etc., SO as
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to satisfy thereby the requirements of the second condition. The problem is
reduced to the finding of the value g(to), which is known as the - basic
reference value. The remaining values of g(t  + k At) are obtained automatically.
A nonfulfillment of these requirements leads to the fact that it might not be
possible quite frequently to adjust the corrector according to the pulse reac-

tion g(t).

OPTIMUM REPRESENTATION OF A FUNCTION WITH A
LIMITED SPECTRUM BY THE KOTELNIKOV SERIES

We shall expand the G(iw) spectral density into a Fourier series along

the section ['wc’wél:

—lel \A loxdt — . 3
G (iw)~c™ _Zc,‘e , (Al mc)' @)

where (Ref. 4) . .
C_,=Atg(ty+xdl), (k=01 £2..). - - (4)

Apparently, _ . -
G(i(ﬁ)zc_lwloz C,‘elw"Al'»
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5(1 (D) =§i C,; elwh’At.

It is known that a Fourier series of the G(iw) function coincides with
the values of the given function throughout the ]w‘< W, interval, provided
. that this is a continuous function within the indicated interval. During the
fulfillment of this condition it is possible to put down the following:

Giw)=G(iv), lv<o. 6))

Let us examine the behavior of the series in Equation (3) at the point
of the saltus of the function for the following cases:

1. The module ‘G(iw)l has a discontinuity at the point w5 arg G(iw)
is a continuous function of |w|< w, The Fourier series of such a function
coincides at the point Wy with the values of the module and the argument
(Fig. 3):

— 0, < 0)] 4 1G (i 0, — O)f -~
[G 10, = 100eat O 000 =0,

arg G (i) = arg G (i w,),

that is 'G'(imk) # G(iw, ).
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2. The argument of the spectral density G(iw) contains a discontinuity
at the point wy, and the module |G(iw)l is a continuous function of (lml< we) e
This case represents the greatest interest because it uncovers one of the
characteristics of convergence of a Fourier series of a complex function, This
characteristic is contained in the fact that the Fourier series of a complex
function with a discontinuity of the argument coincides with the following

values (Fig. 4a,b):

la—(iﬂ)x)lz‘za(imx)c()s ?l_;?ﬁ l' (6)
arg'G(iw,,)=_‘?_lj‘2_‘i?_' =

where ¢; = arg G(iwy + 0), ¢z = arg G(iwy - 0).

Thus we observe at the point wy a defect of the function lé(iw)l, which
is contained in the fact that the value of Ié(iwk)| drops out of the general
course of the curve lG(iw)l (Fig. 4a). The discontinuity in the phase leads

to a change of the amplitude of the spectral component wy.

The amplitude error depends on the magnitude of the saltus in the ¢; - ¢)
phase and when ¢; - ¢ = nm(n = 1,3,5,...) ‘G(iwk)l = 0, i.e. the w, harmonics
is absent in the spectrum of G(iw) and G(iw). In the case when the n are even
(n=0,2,4,...) IG(iwk)|=,§(iwk)‘distortions of the amplitude.of the wy component

are also absent.

3. The module |G(iw), and the argument arg G(iw) contain discontinuities
at the point wy. The Fourier series of such a function agrees at the point

wy with the values:

Vel [ 1G (i wg—-0) -] G (i og—0) | 91— 92
|G (1we)]= s tcos > [.,
arga(imx)z%}—“—.




4. Let's assume that G(iyw) is continuous along the section ['wc’ We -
The equality (5) is thereby carried out for all values of w <.w., with the
exception of the boundary points #y., in the case of which the Fourier series
in Equation (1) agrees, according to the module and the argument, with the
values:
|Glo,)| =G (iw)cosg argG(io)=0, (8)
where ¢c = arg G(iw.).

' Consequently G(iwc) # G(iw,). The formulas in Equation (8) are obtained
from the Equations (6) and (7), if we assume that 91 = -¢p2. Lt follows from
Equation (8) that only after the boundary condition

¢, =argG(iw)=0 ‘ (9)
is carried out, the equality G(iw) = G(iw) (lw‘< w.) will be true, and the
sign for correspondence in Equation (1) will be substituted by a sign for

equality.

Any given function of G(iw), which is continuous along the section [wc, we J
can be converted in such a manner that it will satisfy the condition outlined
in Equation (9), if we proceed as follows. We shall multiply G(iw) by eiwto,

by selecting

— i '
to—'_‘—‘)f, (10)

which is equivalent to the subtraction of the shaded section from the charac-

‘teristic of ¢(w) = arg G(iw), as indicated in Fig. 5.
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The obtained function G(iw) = G(iw)eiwto satisfies the boundary condition
of Equation (9), consequently the Fourier series of the function

5(1 )= .\E C. ellumA't (11)
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coincides throuhout the [-w., wc] section with the values of the function

G(iw). By restating Equation (11) as follows:

L SN D 1o fy wa
(l“"))f;-(l(lu)) :-.;(](lu))C i ,:;:C ’ X C,; Clu’KA’

e

and by taking the reciprocal Fourier conversion of both parts we obtain

o
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gl)=-\ G(iw)c' ’dm-_»_z gl bl
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o [t — (to~i- 1 b 1)}

The given Kotelnikov series represents accurately the initial g(t) function.
Consequently the series presented in Equation (1) defines accurately a

function with a limited spectrum, provided that:

a) its complex demsity G(iw) is continuous along the w < w. section;

b) the to parameter is chosen in accordance with Equation (10).

It should be emphasized that of the four examined cases the greatest inter-
est is presented by the last case, because practically all signals are charac-
terized by a continuous spectral density. However the possibility of the
presents of signals with a saltus in the phase and amplitude characteristics
is not excluded. An example of the acquisition of such a signal is given in
Fig. 6. A pulse sequence with a T-period of succession (Fig. 6a), the spectral

density of which is a periodic function and contains dicontinuities at the

points w, = %r (Fig. 6b), is passed through a low frequency filter with a eritical
" frequency of w! > we¢, in result of which we obtain a signal with a limited

spectrum and a saltus of the spectral density (Fig. 6c).
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We shall show now that by selecting t, in accordance with Equation (10)
the values of the lattice function g(t +kAt) decrease at a maximum possible
rate with the increase of k, and consequently the series presented in Equation
(1) converge at a maximum possible rate, and in the case of the given values
of k (-n € k £ m) the partial sum

N sin o[£ — (¢ K 88)]

will approximate the g(t) function in the best way.

We shall separate the actual and imaginary parts of the function E(iw)
G(iw) = Alw) + iB(w), where A(w) = |G(iw)|cos p(w), B(w) = |G(iw)|sin ¢lw).
During the expansion of G(iw) into a Fourier series the function A(w) is re-
presented by a series along the cosines and B{w) is represented by a series
along the sines:

A (w) - }_] a,Ccosnd{w, B(m)':::"\l_)’J besink Al o,
v 1

~where ay = Cy + C_, bk = Ck - C_k. '

If the A(w) and B(w) functions are continuous along the < w. section
and they satisfy the boundary conditions of A(wc) = A(-we)s B(we) = B(-we) = 0,
. then the coefficients decrease at a rate of %2, and the by coefficients decrease
atarate of %3 (Ref. 5). The coefficients Cyx decrease ata rate of not less

7 agt+bk _ag-bg
2 and C"k - 2 ..

The boundary condition for B(w) is fulfilled only through the selection

than

%2, because Cp =

of ty in accordance with Equation (10), otherwise B(w.) # B(-wc) # 0. conse-
quently the by coefficients decrease at a rate of % and the rate of decrease
of Ck drops to % also, i.e. by k times.

The reasonings on the rate of decrease of the Ci coefficients are true
also in respect to the lattice function g(ty, + k Aty , on the strenght of the

correlation (4).

The stated consideration shows that a correct choice of the t, parameter
raises the rate of decrease of the values of g(ty + k At) by k times. Therefore
the indicated characteristic should be taken into comnsideration during the
selection of a function with a limited spectrum. Thus the gating of a function

with a limited spectrum must be accomplished not only synchronously, but also




in phase with the highest w. frequency.

We shall mention one characteristic of the examined optimum gating. Since
the coefficients in the series of Equation (1), g(ty, + k At), drop to infinity

at a rate of % and the envelope functions

sin og [t — ((y-L-m A b)) (m_—:Ob 1,2..)
o [t — (to+m b t)] v

drop at a rate of %2 (t = k At), then in the presence of a sufficiently large
t, (t=— =) the series in Equation (1) are described asymptotically by the func-
tion

A =D sin o, (£ — £,)
() 0 (¢ —1t) '

(D is a specified constant), the zeros of which are distributed at the (to+k At)
points. It is therefore possible to state that the optimum gating dictates
such a selection of ty, at which the gating is carried out at the zeros of the

g(t) function in the presents of a sufficiently high t.

Evidently if g(t) is an even function in respect to a specific moment of
time, t', then it is necessary to select ty=t’and this will assure an optimum

’

g(t) gating.

SELECTION OF A BASIC REFERENCE PULSE

—-lorgdt

We shall construct a trigonometric polynomial Q===ié age
which, when correctly numerated, represents a partial sumxg% the Fourier series
of spectral density E(iw) in Equation (11) and has therefore the characteristic
arg Q = 0 (w = wc). This characteristic is included included in the numerat-
ion principle of the sequence {ak}. The ay valuesshould be numerated in such
a manner that they will represent coefficients of the Fourier series of the
function which satisfies the boundary condition of Equation (9). By changing
the @ frequency from o = 0 to w = w, the Q-vector will describe an angle equal

zero within the complex plane.

The angle described by the Q-vector will equal zero only in the case when
y q
the Q-polynomial is multiplied by the ewiniA multiplier
Ql — Q Clm n A[z:\i: a,,(c_l w (Kk=n,) &t
N K=0

or by changing the numeration of the ajp values:




m-—-1,

o B ’ —lwK Al o
Q=" > 4, ¢ RS Cpm) s
K=l

"

‘'where n; is the number of roots of the algebraic polynomial Px)e= 3 Xt

K Y
along the module. These roots are lesser than a unit (i.e. they are located ,

within the z complex plane inside of a unit radius).

We consider .that the P(x) polynomial does not contain any roots which are
located on the circle of a unit radius, and this corresponds to the case when
lG(iw)I# 0 (Iw\s we) (Ref. 6). By comparing the coefficient of the Qi poly-
nomial with the values of g(ty, + k At) we obtain:

& (t)) =aui; g (fo+Al) =am+1; g (fo+{A) =ani+.
Thus the selection of a basic reference value is reduced to the finding

of the number of roots of the P(x) polynomial, the module of which is less
than a unit. )

EXPERIMENTAL VERIFICATION

" The harmonic correctors are calculated and adjusted according to the dis-
crete values of the pulse reaction of the low frequency communication channel.
Such reactions represent for all practical purposes signals with a limited

spectrum and therefore the preceding considerations apply in their case.
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In Fig. 7a, 8a and 9a are given the oscillograms of the pulse reaction

of a low frequency'filter of the m type. The bright areas on the graph correspond
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to the Kotelnikov intervals At = % (we is the cutoff frequency of the filter),
c :

in which the selection of the g(k At) discrete values accomplished. The figures
differ from each other only by the positions of the bright areas on the graphs,

i.e. by the positions of the moments of selection.
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In Fig. 7b, 8b and 9b are shown respectively the descrete reactions of
g(k At) which are obtained at various positions of the selection moments. The
optimum position of the selection moments is given in Fig. 9. When t is suffi-
ciently large (t > 7At) the selection moments coincide with the zeros of the
g(t) pulse reaction. The thereby obtained g(k At) descrete reaction contains
a maximum rate of decrease of the g(k At) values. As is evident in the oscil-
lograms g(k At) = 0 when k 2 7, i.e. it is sufficient to have 10 values of
g(k At) (-3 < k < 7) in order to describe fully the continuous g(t) reaction
in accordance with the Kotelnikov theorem, as shown in Equation (l1). In the
case of a nonoptimum position of the gating moment (Fig. 7 and 8), at least
a 2 to 2.5 times larger number of g(k At) (-3 <€ k <17) values is required in

order to describe satisfactorily g(t).

Fig. 8 corresponds to a selection of gating moments at which the obtained
basic reference value g(0) coincides with the g(t) maximum. As can be seen by
comparing Fig. 8 and 9, such a selection in the case of asymmetric pulse react-

ions does not constitute an optimum,
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