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FOREWORD

This report describes work performed in the Department of
Mechanical Engineering at the Carnegie Institute of Technology of
Carnegie-Mellon University for Langley Research Center, National
Aeronautics and Space Administration, under NASA grant NGR-39-002-023,
"Analysis of Notches and Cracks.'" The work was performed between
October 1966 and December 1967, and is a continuation of earlier
work by the author. Notes for this report are kept in File SM-7;

it is one of several to be issued in conjunction with this effort, the

others including:

Further Comment on the Association between Crack Opening
and GI’ J. L. Swedlow, International Journal of Fracture
Mechanics, 3, 1, March 1967, pp 75-79.

Character of the Equations of Elasto-Plastic Flow in Three
Independent Variables, J. L. Swedlow, International Journal
of Non-Linear Mechanics, to appear.

Analysis of Cracks and Notches, J. L. Swedlow, ASM Transactions
Quarterly, 60, 3, September 1967, p 557.

Conversion of Uniaxial Stress-Strain Data for Use in Elasto-
Plastic Analysis, J. L. Swedlow, Report SM-2, Department
of Mechanical Engineering, Carnegie-Mellon University.

Invited Discussion of the Paper, Elastic-Plastic Stress and Strain
Distributions Near Crack Tips Due to Antiplane Shear
(ASME paper 67-WA/MET-19), J. L. Swedlow, Report SM-3,
Department of Mechanical Engineering, Carnegie-Mellon
University.

Equations of Elasto-Plastic Flow for Antiplane Shear, J. L.
Swedlow, Report SM-4, Department of Mechanical Engineering,
Carnegie-Mellon University.

Three-Dimensional Elastostatics -- A Direct Formulation,
T. A. Cruse, Report SM-5, Department of Mechanical
Engineering, Carnegie-Mellon University.

Analysis of Notches and Cracks: Progress in Pilot Comparisons
between Experiment and Theory, J. L. Swedlow, Report SM-8,
Department of Mechanical Engineering, Carnegie-Mellon
University.
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ABSTRACT

Using a recently derived form of the equation for elasto-plastic
flow, procedures are set up for the solution of initial- and boundary-
value problems. Attention is directed specifically to the problem of
a longitudinally stressed, axisymmetric notched rod. The problem is
stated explicitly in terms of ellipsoidal coordinates, which seem most
natural for the geometric character of the problem. The basic numerical
procedures are outlined in some detail, and their application to the
problem at hand is discussed. Means for managing and utilizing the output
are considered although, at this writing, no actual data are in hand.

The underlying feature of the whole procedure is to provide solutions
to such problems in general, such that the solutions will be of consistently

high accuracy.
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I. INTRODUCTION

It has become nearly truistic to observe that, in the context of
fracture mechanics, our knowledge of the stress and strain fields in
the vicinity of cracks suffers from the exclusion from analysis of the
effects of plasticity, or yielding. The procedures now available
derive mainly from linear elasticity and its results for highly
idealized bodies.l’2 That such procedures have been successful is
hardly contradictory; much effort has been expended in defining
the restrictions under which linear fracture mechanics, as it is
called, is applicable.

The picture that seems to emerge is that linear fracture mechanics
represents a limit case of sorts. That is, such procedures are
meaningful for materials and/or geometries in which but little yielding
occurs at the point of fracture initiation. Somewhat more yielding
tends to invalidate the predictions of linear fracture mechanics, and
the associated procedures appear incapable of being suitably modified
to account fully for greater amounts of yielding.

Hence, a reexamination of the associated problems in continuum
mechanics is indicated. The ultimate goal is, in a broad sense, to
develop a more generalized understanding of the stress and strain
fields accompanying the event of fracture (or rupture, fatigue, etc.),
while retaining the useful simplicity now at hand. In particular, any
further results should contain the present (elastic) results, both as a
limit case and as a measure of the changes that occur as yielding
proceeds.

In considering what sorts of features ought to be included in

such work, one might define three main categories: material
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nonlinearities, geometric nonlinearities, and true geometric repre-
sentation. The first of these involves mainly the event of plastic

flow, and can include as well items such as creep, strain-weakening

and -strengthening (in cyclic loading), and so on. The second incorporates
the changing shape of a body as deformation proceeds, either locally

or globally. The third category relaxes our historical limitations

of treating problems in two spatial variables.

A fair amount of speculation and some very intense effort have
been directed toward including these features in analysis. The present
report is concerned with efforts in the first category, material
nonlinearities. Moreover, a matter of continuing concern is to ensure
that the procedures being developed do not necessarily preclude
eventual consideration of the other features needed in analysis.

Earlier effort53’4’5 along these lines may be viewed in retrospect
as pilot work. Those procedures involved formulation of the equations
of elasto-plastic flow in a manner amenable to analysis, and development
of efficient although crude numerical methods for problem solution.

In effect, the earlier work has paved the way for the present effort
by demonstrating that the procedures and methods are viable. Moreover,
close examination of the results pointed up specific requirements to
be met by more carefully prepared analyses.

As a result, the present program of research has been establishéd
with three main objectives. The first is development of very accurate
numerical procedures for solving the exact equations of elasto-plastic
flow, with emphasis on problems involving notches and cracks. Secondly,

direct comparison between the results of such work and similarly




precise experiments are to be made to establish the manner in which
such analyses may be regarded as physically meaningful. Finally, the
'anélytical tools thus developed are to be applied systematically to
determine the interplay between material pfoperties, geometry, loading
conditions, and failure phenomena.

This report is concerned with the numerical procedures noted
above. The first step in their establishment has been a reformulation
of the equations of elasto-plastic flow.6 This work has resulted in
an explicit statement of Navier's equations, that is, the equilibrium
equations written in terms of the displacement (rates). It has been
found that these equations are quasi-linear, which greatly facilitates
numerical solutions. Moreover, for materials whose stress-strain
curve is monotonic, the equations are elliptic. This means that
arbitrary work-hardening may, from a procedural standpoint, be treated
merely as an extension of elasticity.

The next step has been the adoption of a generic view of notch and
crack problems. Since numerical solution methods are unavoidable,
computation of the infinite stresses associated with perfectly sharp
cracks becomes problematic. On the other hand, actual cracks are not
perfectly sharp but have root radii of the order of 10-4 in, or less.
Such root radii engender stress concentration factors of the order of
102. It was thus concluded that geometries with similar stress
concentrations are to be preferred, for two reasons. First, they
model the physical situation more accurately than the mathematical
abstraction of a perfectly sharp crack and, second, they preclude the

necessity of finding an infinity on the computer.




Such an approach follows, of course, the pattern of using elliptic
coordinates set by Inglis7 and Griffith8 long ago. As a test case, two
numerical elastic analyses were performed and compared to exact
analytical results.9 The first, for torsion, was compared to the
classical paper by Filon,10 and the second for planar elasticity
simulated Griffith's problem.8 The comparison showed errors of the
order of 1% or less for values of the ratio, root radius/semi-focal
distance, as low as‘10-4. Thus the analysis of notches and cracks is
to be performed in elliptic coordinates, with the stress concentrator
being simply a preselected coordinate line. Distinction between a
notch and a crack becomes arbitrary; for example, a crack might be
defined as any stress raiser whose (elastic) stress concentration factor
exceeds ten,

As a final step in establishing numerical procedures, detailed
numerical methods must be defined. Based on earlier work,s’9 it
was found that the repeated application of Taylor's series is sufficient
to meet.this need. Details of these methods appear below.

In order to make this presentation explicit, attention herein
is directed toward the problem of the tension of an axisymmetric notched
rod. The procedures are equally applicable to planar elasto-plastic
flow; indeed the latter cases are somewhat more simplified in that
circumferential stress and strain components need not be calculated

simultaneously with the others.




IT. PROBLEM STATEMENT

The problem to be treated, as noted above, is that of the
‘tension of an axisymmetric, notched rod. The rod has a radius, in its
unnotched portion, of R; its length is 2H; and the notch is of
hyperbolic shape* of depth D, root radius p. We presume loading to be
axial only and insist that it, too, be axisymmetric. Loading may be
generated either by displacements or stresses imposed on the rod
ends; for simplicity we use here a constant axial stress. See

Figure 2.1,

>N

Figure 2.1 - Geometry of
axisymmetric rod under
tension, 0 =0 at z = + H,

Rod radius“is R, notch
depth D, and notch root radius D /—J
pn

L df

By symmetry, we need consider only the first quadrant of the domain;
further detail appears below.
The governing equations for this case are derived elsewhere,6

and that development need not be repeated here. For these equations

* More accurately, an hyperboloid of one sheet.
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to become explicit, specification is to be made of two elastic
constants, the inelastic portion of the stress-strain curve, and a
loading function ¢.

We may write the governing equations in an ellipsoidal system
of coordinates (£, 6, n) derived from cylindrical coordinates

(r, 8, z) by

L2 ]
]

b coshi cosn

6 =09 (2.1)

]
1l

b sinhg simm

where b is the semifocal distance of the family of confocal ellipsoids
£ = const and hyperboloids n = const. The following notation is then

introduced:

=]
n

cosh2f - cosly

u, w

displacement components in £, n directions

EE’ €91 en, eEn = strain components

Ug’ oe, on, Tgn stress components

and a dot over any dependent variable denotes its derivative with
respect to time t. The three independent variables in the problem
are seen to be £, n, t; all dependent variables are independent of the
coordinate 6 as a consequence of axisymmetry.

The strain rate - displacement rate relations are




] / ] ()
g = B%r (30/3E + w sin2n/H%)

Ee = g%-(ﬁ tanhg - W tann)
(2.2)
én = {% (3w/3n + u sinh2E/H%)
2e =l/-2—[a{x/a + 3W/3E - (U sin2n + w sinh2€)/H2
£n = BH n u sin2n + w sinh2¢)/H%]
The equilibrium equations become
BUE/BE + &En/an + (05 - ce) tanhg
+ (5 -0 ) sinh2£/H2 + 1 (2 sin2n/H2 - tann) = 0
€ n En
(2.3)
argn/ag + aon/an - (on - ce) tann
- (5 -q ) sinzn/H2 + 1 (2 sinZE/H2 + tanhg) = 0
13 n En

It should be recalled that (2.2) and (2.3) require specification of
initial conditions;6 we presume all dependent variables to be null-
valued at the beginning of loading.

The constitutive relations take the form




L - Zu L] B . L]
Op = Togv (Bpy fp 8y g * Ayz et 285, £ )
c;=2u(a;:+aé+aé+2aé)
0 1-2v 21 ¢ 22 "¢ 23 n 24 “gn
(2.4)
<.J=2u(af-.:+a;:+a.+2aé)
n 1-2v 31 ¢ 32 76 33 34 “&n
.=2u(aé+a.+a;:+2a')
En 1-2v 41 ¢ 42 "8 43 q 44 “&n
where u is the elastic shear modulus, v is Poisson's ratio,
aij = aji i, j =1, 2, 3, 4), and
2 2
a;, = 1-v - (1-2v) B8 aE
a., = v - (1-2v) Bza a
12 E"8
a.,= v - (1-2v) Bza a
13 En
1 2
814 = - -2—(1-2\)) ¢] aEaT
2 2
8,y = 1-v - (1-2v) B a, (2.5)
a,, = v - (1-2v) eza a
23 6 n
1 2
8,4 = - 5—(1-2\)) B aga_
2 2
Byq = 1-v - (1-2v) B an
1 2
azy = - —2-(1-2\)) R ana_[
1 1 2 2
Ay = 5-\:—-&-(1—2\)) B a_




To define the terms in (2.5) we note that the loading function ¢ is

given by

¢ =60, I (2.6)

where J2 and J3 are the second and third invariants of the stress

deviator tensor. Then
yaE = 8¢/3o€
= (26/23,) (3J,/30,) + (36/313) (33 4/35,)
ya, = 3¢/30, (2.7)
Y8y = 3¢/80n

vya_ = a¢/3Tgn

2 2 2 2 1 2
and Yy =1+8 (ag tag ¢+ an tya )
(2.8)
B2 1 ¢
ueép) Y(Gﬁai T Oglg * 93, * ZTEnaT)

The quantity uéz) is the equivalent plastic shear (tangent) modulus.6




equilibrium equations in terms of the displacement rates.
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Inserting (2.2) into (2.4), and the result into (2.3) gives

is written in terms of the following functions

o
L]

sechg

sechg

sech&

sech§

k sechg

sechg

seché

sechg

a(allcoshe)/ag +
a(a14cosh£)/a£ +
a(alscoshs)/ag +

a(alzcoshs)/ag +

3(ag,coshE)/3E +
8(a44cosh£)/3£ +
3(a14cosh£)/8£ +

8(a24cosh£)/3£ +

secn B(a14cosn)/8n
secn 3(a44cosn)/8n
secn a(a34cosn)/an

secn a(a24cosn)/an

secn a(asscosn)/an
secn 8(a34cosn)/8n
secn a(alscosn)/an

secn a(azscosn)/an

The result

(2.9)



 —
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We thus have

2+ ,..2 2 2+, 2
alla u/dt” + 2a143 u/3EIn + a443 u/9n

2 2 2 2 2
a148 w/3E™ + (313+a44)8 w/3Edn + a348 w/9n

[ L) . 2
Agau/ag + Bgau/an + [BE - a4, tann + a24(s1nh25/H

tanhg) + (a11 + a44) sinZn/Hz] a&/ag
[CE - 8, tanhg - a24(sin2n/H2 + tann) - (a33

844) sinhZE/Hz] sw/an + {D_ tanhf + a sechzg

£ 12

2, tanh2t + (C; sinh2t - B sin2n) /H

£

2(- 3, sinh2f tanhg + a5, cosh2g + a24tanh£ sin2n

a4 cosZn)/H2 + [~ (2a13 + a33) sinh22£ + 2a14 sinh2£&sin2n

. 2 4,
844 Sin 2n} /H } u+ {- DE tann - 2a14 +a,, tanh&tann

2 . . 2
a,, sec’n - (BE sinh2g - A_ sin2n)/H

£

[a24 (sinh2&tanhg - sin2ntann) + 3,4 sinh2&tann

. 2 . .2
a1, tanhf sin2n]/H® + [a34 sinh“2¢ + (a44 - 3y,

. . .2 . 2 .
2a11) sinh2£sin2n + a14(2 sinh™ 2 - sin 2n)]/H4} w=0
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2 2 2 2 2
3333 w/9n~ + 2a343 w/andE + a448 w/3E

2 2 20 2 2
a34a u/an” + (a13+a44)a u/IndE + a143 u/ag

. . 2
+ Anaw/an + Bnaw/ag + [Bn + tanhg + a24(sin2n/H

473

+ tann) + (a 4) sinhZE/Hz] aﬁ/an

33734

. 2
+ [Cn + a;, tamn - 8,4 (sinh2g/H® - tanhg&) - (a11

2
sec' n

. 2 .
+ a,,) sin2n/H"] 3u/aE + {- D, tann - a,,

- a tanzn + (Cn sin2n - Bn sinhzg)/H2

22
(2.10b)

+ 2(a12 sin2n tann + a4 cos2n - 354 tann sinh2g
- a cosh2£)/H2 + [- (2a,,+a,.) sin22n + 2a., sin2nsinh?
44 13 %11 34 nsinh2g

*a,, sinhzzs]/H4} W o+ {Dn tanhf + 2a,, + a,, tanntanh¢

34 22

+ a sech2£ - (Bn sin2n - An sinhZE)/H2

24

+ [~ 54 (sin2ntann - sinh2£tanhf) - a,, sin2ntanhg

12

. 2 . 2
+ayg tannsinh2¢£]/H™ + [a14 sin"2n + (a44_al3

- 2a,,) sin2nsinh2¢ + 334(251n22n ) sinh22£)]/H4} Qe

A certain duality may be observed between (2.10a) and (2.10b);
indeed suitable permutations of the coefficients will allow one to

be written directly from the other.
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Boundary Equations: Conditions on various boundary surfaces

may be specified in the usual manner, recalling only that time
dependence must be taken into account for a problem to be properly
posed. Should a boundary surface coincide with a coordinate surface,
conditions may be obtained from the foregoing. Thus, displacements
may be specified directly, and stresses from a suitable combination
of (2.2) and (2.4).

Other surfaces, described more readily in the cylindrical
coordinates (r, 6, z), require transformation formulae.

These relations are, for stresses

&r = [(coshZE-l)(l+cosZn)8E + (cosh2£+1)(1-c052n)5n
- 2 sin2&sin2n %En]/(ZHz)

82 = [(cosh2€+l)(1—c052n)c;g + (coshZE—l)(hcosZn)c}n (2.11)
+ 2 sinh2gsinzn T, 1/(2H°)

t_, = [sinh2gsin2n(G,-6.) + 2(cosh2£c052n-1)%€n]/(2H2)

and, for displacements

Y2(0 sinhfcosn - w cosh&sinn)/H

o
1]

(2.12)

Y2( coshEsinn + w sinh&écosn)/H

3
"
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where u, and W, are displacement components in cylindrical coordinates.
The relations (2.11) and (2.12) may be integrated with respect to
time merely by removing the dots above all dependent variables.

Specific Conditions: The problem at hand is to be solved in

the domain
0 < E < gu

< <
N, <N /2

where
sinh™1 [H/(b sinn)] , n > e
Eu = { (2.13)
cosh™? [R/(b cosn)] , n > n.
and
2 1/2
2(b cosnc)z - RZHZib2 + [(RZ4HZ4bD) - ar%p?] (2.14)

Also, we have

b = (R-D) V1 + p/(R-D)

(2.15)

n,= cos_1 [(R-D)/b]
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Hence the domain is specified once R, H, D, and p are known.
A sketch of a typical domain appears in Figure 2.2, using R = H = 2 in,

D=11in, p

0.1 in. Both the '"physical plane' and the "coordinate
plane,'" i.e., diametrical cross-sections, are shown for later reference.
In the domain, we presume that ¢ = ¢(J2, J3) is given subject

to the constraint6 that ¢ has the dimensions of stress; that
uéz) = uéz)(¢) is specified; and that p and v are known. Then
(2.10a) and (2.10b) are the governing equations.

Boundary conditions are

E=0,n <n<7/2: U=0; W/3E =0

(equivalently, u is antisymmetric
and w is symmetric with respect to £)

0<E<&,n=n.;: O = Tep = 0 (2.16)
£=Eu’ noininc 0r= rZ=O
E=fnn <nsm/2 o =051, =0
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n
[
/2
|
1
/4
|
|
o
GI_ - 4 — | ;.8
/4 /2
2

s eud |

Figure 2.2 - Coordinate plane (above) and physical plane

(below), for R=H=2,D =1, p = 0.1
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and symmetry conditions on the last statement may be used in analogy
to those specified for the first. The function ¢ = o(t) is the loading,
required by the theory to accumulate sufficiently slowly that the

deformation remains quasi-static.
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ITT. PRIMARY NUMERICAL PROCEDURES

The overall numerical procedure rests on three primary
techniques of numerical analysis. The first is repeated applications
of Taylor's series, and is reviewed in some detail below. The second
is a procedure for solving large sets of simultaneous (linear)
algebraic equations, and is based on the work of C. W. McCormick.11
It is a method applicable to sparse but banded matrices and
offers the features of low storage in the computer, high speed,
and controllable accuracy. The third is a standard predictor-
corrector method, introduced below at a more appropriate point.

In addition, there are certain procedures for handling the mass
of output anticipated. These are, at this writing, in initial
developmental stages; further description appears at the enhd of the

report.

TAYLOR SERIES

The theoretical aspects of Taylor's theorem are well
documented and need not be repeated here. Its modes of application,
however, are manifold and bear some discussion.

Consider a coordinate line as might be selected in a "coordinate
plane," shown in Figure 3.1. At equi-spaced points along this line,
the function ¢ - not to be confused with the loading function -
assumes discrete values, as indicated by the subscripts i, j,,,q.

Providing that ¢ is analytic along this line, it possesses
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Figure 3.1 - Coordinate line in a coordinate plane and ¢ evaluated

at equi-spaced points i, j,,,q.

Taylor's series expansions about any point on the coordinate line.
Remark: 1In the following development, equal spacing is
presumed. Arbitrarily unequal spacing may be used, however, to derive
analogous results; the formulae are considerably more involved.12
The requirement of analyticity is not restrictive in the present
problem for, as may be recalled, the domain is such as to exclude

singularities in the solution.

A typical expansion takes the form

2.2 2
¢ = ¢, + (c-cl) 8¢5L/8c + —;—1— (c-cl) 3 ¢l/8c + ...
(3.1)

1 n .n n
+ o (mgp) 9 9,/90 + ...
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In particular we have, with Az = ey " Ty = Ly = Ty etc.,

b= 6, + BL 08, /3r + 2(a0) %02 act + ...
(3.2)

1 n.n n
+ HT-(AQ) 9 ¢z/8§ + ...

If expressions similar to (3.2) are written for ¢j, ¢k’ ¢l, and

¢n, based on (3.1) and with attention paid to the sign and magnitude
of ¢ - %y in (3.1), we arrive at a set of algebraic relations
between ¢ at points neighboring Tos and the value of ¢ and its
derivatives at cz. For example, if we denote a¢2/a; by ¢£', and

so on, we have

1 2 1 .3 4
¢m = ¢£ + AC¢£' + _2_ AL ¢2," + -6 Ag ¢an R %—4_ Az ¢2nn .
b, = ¢, (3.3)
= _1__ 2 n o _ _:_l_ 3, m _1__ 4. un
¢k = ¢2 - AC¢E' * 3 Ag ¢l 3 Ay ¢£ * 57 Atz ¢2 + ...

It is well known that (3.3) may be solved to find an appropriate
value of, say ¢2". The procedure is to multiply the first of (3.3)

by a, the second by b, and the third by c, and equate the sum to ¢Q”.
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Hence

ap, + bo, + co = (atb+c)y, + (a-c)ize, !
¢ 2arc)ar’e," + Ha-c)ar’y," (3.4)

+ %Z(aw)m;d'%"" + ..

The right-hand side of (3.4) is set equal to ¢ ', whereby we require

Az (a -¢c)=0 (3.5)

Note that we have thus placed conditions on the first three coefficients
on the right of (3.4), because we had only three constants to evaluate.
If more terms are desired, more points, e.g., ¢j and ¢n’ must be
included in (3.3).

The solution to (3.5) is obviously

a= - % b =c = 1/ac° (3.6)
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So that (3.4) becomes

2
(b = 28, + /887 = 0" + T agle, ™ + ...

This is the well-known central difference formula for an ordinary
second derivative. Its error is indicated by the second term on the
right of (3.7) and has a magnitude largely determined by Agz.
Neglecting the error term gives the approximate relation desired.

In similar fashion other derivative formulae can be constructed.

First derivatives, for example, may be written as

8" = (- o+ 4¢ - 30,)/2r

b = (o - &)/2 (3.8)
' = -

5, ( 30, - 48y + 0,)/20¢

2 . .
all with errors of the order of Az . The expressions in (3.8) are
forward, central, and backward difference formulae, and are of use
at boundaries of a domain and its interior.

Interpolation Formulae: The same procedure may be used to

interpolate values of ¢ between specified points. Consider, for

example, the problem of finding ¢ at cx such that Cx - Cl = xAz.

Expanding about G We have
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= - v L o1-x2a%e v + 1 -x)3nr 34

¢m ¢x + (1 x)Ac¢x + 3 (1-x) Az ¢x g (1-x)"ac ¢x + ...
1 2 2 1 3 3

= - ) —_ "o - "y

¢£ = ¢x xAc¢x + 7 X At ¢x g X Az ¢x + ... (3.9)
1 2, .2 1 3.3

- - ] —_— " _ - LR}

¢j = ¢, - (A+x)Age ' + 7 (1+x)7Az%¢ g (I+x)7Ac7e "'+ L.,

In this case, we have

a¢m + b¢£ + c¢j = (a+b+c)¢x + [(1-x)a - xb

(1+x)claze ' + % [(1-XJ2a

+ xzb + (1+x)2c]Ac2¢x”
(3.10)
+ % [(1-x3% - x%
- (1+x)3c]A;3¢x"' ...
and the right-hand side of (3.10) must equal LN Hence
a+b+cc=1
(3.11)

(1-x)a - xb - (1+x)c = 0

(l—x)za + x2b + (1+x)2c =0
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giving

a = 5—x(1+x)
b=1-x2 (3.12)
c=- = x(1-x)

and (3.10) becomes

%x(1+x)¢m . (1-x2)¢2 - %—-x(l-x)qu = ¢, + éx(l-x)zAczd)x"' v ... (3.13)

which is seen to be a good approximation when the error term is
neglected. In (3.13), the sign of x determines on which side of
Zy that x is to be found. There does not appear to be any reason
that x be limited to the range -1 < x < 1, so that this relation
may be reasonably used for extrapolation, i.e., x > 1 or x < -1,
as well,

Further Results: Let us now apply the foregoing to a 3 x 3

grid of points, as sketched in Figure 3.2. We take

7 8 [4 9

+ $——9— Af" Figure 3.2 - Showing a

ik j i A 3 x 3 grid of points and
intermediate points on one

kX ,r,
‘% -;k 6._ 8’17 ‘ grid line only,

X0

[
™
_‘_
LA
._TU
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The function ¢ as known - or at least determinate - at the numbered
points, and inquire as to the value of ¢ and its first derivatives,

at the lettered points. Following the procedure outlined above,

we let x = 6E/0E, y = én/bn, taking care to observe the sign of x and
y as set by the coordinate direction and the position of a given
intermediate point relative to the one at center.

After some algebra we find

1 2 1

o = - 5 y(Q-y)é; + (1-y7)e, + 5 y(1+y)d,
;= - 2y(1y)e, + (1-yDe. + T y(1ey)e (3.14)
; 5 ¥ (1-y)¢, Yo + 5 y(1+y)ég ,
b = - > y(l-y)é, + (1-yD)o, + = y(1+y)é
X 7 YLY)e, Y i%g T 7 YUY I%g
by = - 3 X(L-0)0) + (-x)by + 7 x (1400

= - Lya-0e, + 0-xHe. + L x+00 (3.14b)
%= "2 4 5 * 2 6 :

2

b= - 3 X106, + (1-xDpg + 3 x(14X)0g
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2,/95 = {- 2 y(1-y) (-3p, + 49, - 4,)
¢ (1y?) (=36, + 405 - 8,)

+ FYQsY) (36, + dog - 450}/ (208)

+ 3 YY) (-6, + 89}/ (206)

2, /28 = {- 5 y(L-y) (6; - 48, + 3b5)
+ (1y%) (6, - 40 + 38)

24,/9 = {- (1-2x)¢ - 4xo, + (1+2)95}/(208)
384/9€ = {- (1-2x)¢, - 4xog + (1+2x)0g}/ (206) (3.15b)

30 /3¢ {- (1-2x)¢, - 4x¢g + (1+2x) 44}/ (288)
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20s/on = {- (1-2y)¢, - dyp, + (1+2y)¢,}/(28n)
20;/3n = {- (1-2y)9, - dysg + (1+2y)4g}/ (28m) (3.16 )
30/ = {~ (1-2y)¢5 - 4yo, + (1+2y)¢g}/(26n)
20,/20 = {- 3 X(1-X) (-3¢, + 4o, ~ 6.)
+ (1-x) (=30, + 4o, - 4g)
¢ 3 X(143) (=305 + 40, - )}/ (28m)
205/20 = {- 3 X(L-X) (=4,+6;) + (1-x7) (-0, +o)
(3.16b)
+ 7 X(143) (-05+69) }/ (26n)
2./ = {- 3 x(1-x) (6 - 46, + 36.)

+

2 ,
(1-x) (8, - 46 + 385)

+

3 X143 (b5 - 40 + 384)}/ (20n)

Examination of (3.15) and (3.16), in conjunction with (3.13) indicates

that the errors of the first derivative formulae are comparable to

those of (3.8).
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APPLICATION TO THE DIFFERENTIAL EQUATIONS

The differential equations (2.10) may be converted directly
to finite difference form by suitable use of formula such as (3.7)
and the second of (3.8). Slightly different procedures are employed
in finding the coefficients of (2.9), as noted below.

In order to make good use of McCormick's solution method,11
some care needs to be exercised in writing the finite difference
forms of (2.10) at each point. Accordingly, we write the equations at
each grid point in the ''coordinate plane'" in a systematic manner.
Starting at the lower left-hand corner in Figure 2.2, i.e., at (&,n) =
(o, no), we take the points in order from £ = 0 to £ = gu for n = N,
Next we take the points along n = no * An, from left to right, and
so on until reaching the upper right-hand corner in the top sketch of
Figure 2.2.

Several features are presumed in this scheme. First we must
have found the irregular right-hand boundary, i.e., the function
Eu(n). Second, for any point at or adjacent to a boundary, ficticious
exterior points are implied. These points are temporary, and reference
to them is removed when boundary conditions are imposed. Finally,
since both equations are written at each point or, in other words,
each point is considered but once, the order of appearance of the
displacement rates is in pairs, one for each point.

Thus, our ultimate aim is to generate a system of algebraic

equations whose matrix representation is

X1 {u} = {1} (3.17)
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where [ ] denotes a square matrix, { | denotes a column vector. 1In
the present scheme, the entries in {é} are 6(0, no), Q(O, no);
&(Ag,no), W(AE, n )5 -..; ulag,m/2), w(nbE,m/2). Here we have used
nAf to denote the grid point furthest right on the line n = n/2.

The structure of [K] is seen from the following observations.
When writing the finite difference equations at any point (&, n),
reference is made at most to the eight points surrounding it. For
example, the points shown in Figure 3.2 are sufficient to write the
finite difference equations at point 5 in the figure. This means that
non-zero entries in [K] will be found only within some determinate
distance from the main diagonal of the matrix. Such a matrix is
referred to as banded.

An immediate consequence of this matrix structure is that only
the band need be stored in the computer, thus allowing a much larger
number of grid points to be used for a given storage capacity. Further,
it becomes useful to refer to storage location relative to the main
diagonal itself rather than absolute values.

The procedure begins by writing the finite difference equations
at all points where the dependent variables are to be found, according
to the foregoing scheme. The preliminary step of finding the coefficients.
is, for the most part, straightforward and requires no comment. Care
is to be exercised, however, in finding the terms in (2.9) for points
at or next to a boundary. Use of the forward and backward formulae
of (3.8) is indicated in such cases.

Symmetry Conditions: The symmetry conditions in the first and

last of (2.16) are inserted next. Along £ = 0, for example, these

take the form
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u(+Ag, n) = - u(-Ag, n)

#

(3.18)

it

W(+AE, n) = + wW(-AE, n)

Hence, reference to ﬁ(-A&, n), i.e., at a temporarily ficticious paint,
is replaced by suitable reference to ﬁ(+A£, n). Thus the coefficient

of the former is subtracted from the coefficient of the latter, and

the entry in that location is set to zero. This step is straightforward;
one need only take care that further entries are not made in that

location subsequently.

Boundary Conditions on the Notch Surface: The second of

(2.16) are imposed next. Performing the steps noted above, we arrive

at the two simultaneous equations

alsau/ag + a343u/an + a34aw/a£ + assaw/an

(3.19)

al4au/8£ + a448u/an + a443w/a£ + a34aw/an

+ dlu + d2w =0

where C1s Cys dl’ d2 are abbreviations for more involved expressions

readily derivable as noted. Solution of (3.19) for the normal derivatives

gives
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3u/9n

-L, (3u/3g, W/2E, u, W)

(3.20)
aw/an

-LZ(a&/ag, aW/3E, u, W)

where Ll’ L2 are linear functions of their arguments. Putting,

for example, the first of (3.20) in finite difference form, we have
u(g, n_-4n) = u(g, n +An) + 2AnL, (3.21)

Hence reference in the matrix [K] to the ficticious G(E, no—An)

may be replaced, via (3.21), to reference to points on the boundary or
within the domain. Caution must be exercised in dealing with the
derivative arguments of L1 to use the appropriate formula of (3.8)

so as to stay within the matrix band. Finally, the original coefficient
of u(g, no-An) is zeroed out, a$ above. The same procedure is used for
the second of (3.20).

Remaining Boundary Conditions: While the entire motivation for

this procedure is to provide great accuracy in the vicinity of the
notch root, there is no reason to abandon accuracy near the free and
loaded surfaces. Accordingly, methods have been devised to apply the
remaining boundary conditions in a consistent manner even though the
contour is irregular with respect to the coordinate system.

A more useful form of (2.11) is
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N&r = alaﬁ/ai + a486/3n + a43&/ag + asaﬁ/an
+ Yl;l + YZ‘;
(3.22)
+ ?&ﬁ + ;5&
NTrz = Blau/BE + 848u/8n + 343w/3£ + BSQW/Bn

+ 616 + 62&

where (See page 33 for (3.23)).

It is seen that (3.22) are in substantially the same form as (3.19),
so that the remaining boundary conditions may be imposed in the same
manner as those along the notch surface.

The one procedural difference is that (3.22) are not written at
grid points, that is, the remaining boundary conditions pertain to
points on grid lines n = const and at values of £ greater than that
of the grid point furthest to the right in the '"coordinate plane'" of
Figure 2.2. As a result, the coefficients of (3.23) must be
evaluated at the boundary itself; (3.14) are employed for the required
extrapolation. Further, the derivatives in (3.22) are subjected to the

same process using (3.15) and (3.16).
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(1-2v)bH/ (2V21)

sinh2£sin2n/H2

(cosh2£cosZn-1)/H2

—

1

7 (a15%a;3) + 5 (a;5-2,5)C - 2,8
1 (a,.+a.,) - l—(a -a,,)C + a_ S
2 1i i3 2 11 "i3 i4
1

7'(ali'ais)s + a,,C

id4

aztanhg

+

(ussinhZE—a4sin2n)/H2

-aztann + (alsinZn —u4sinh2£)/H2

aétanhg + (ESsinhE —EﬁsinZn)/Hz

-E&tann + (Eisinzn -E;sinZQ)/Hz

+

8,tanhg (Bssinh26-84sin2n)/H2

g, tann + (elsinzn-e4sinh2g)/ﬂz

(3.23)
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The main result is that the values of ﬁ and Q at the temporary
ficticious points external to the domain may be evaluated in terms of
values internal to the domain. Thus the remaining boundary conditions
are satisfied, and the problem is fully specified in a set of linear,

algebraic, finite-difference equations.
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IV. PROCEDURE FOR A TYPICAL LOAD INCREMENT

Strictly speaking, the problem as formulated is directed to
solving for displacement rates at any instant of time, due to the
excitation of a corresponding loading rate. In the present procedure,
however, we make use of the fact that the displacement rates are nearly
proportional to the loading rate, and thereby consider slightly
different quantities. In effect, we look for the behavior over a

Ysmall" increment of time 3§t so that
t+st .
Su = J u dt ~, u 8t (4.1)

and so on for all dependent variables. We thus speak interchangeably
of rates and increments.

This procedure appears justified if the time increment is
"small" enough. A rigorous definition of smallness does not present
itself; certain features may nonetheless be distinguished. We would
expect, for example, that 8e/e < < 1 for the various strain components.
Looking at the types of stress-strain curve used in analysis (continously
turning tangent; monotonic), we would anticipate further that the
tangent modulus of the total strain curve, given by u/(i+u/ugz)), does
not change rapidly from one load increment to the next.

In an operational sense, meeting such conditions becomes
rather awkward. Allowance is thereby made for two modes of operation.

The first, following earlier work,4 requires load increments to be



-36-

specified by the analyst as part of the input to the program. This
mode requires some judgement but allows one to arrange for certain
specific loads to be generated. Thus, for example, if comparison were
to be made between theory and experiment at o = 13,950 lb/inz, say,
this load state could be achieved with no ambiguity.

The second mode sets the load increment internally. At first,
a unit load increment is applied; the solution is then generated.
Next, a load factor is determined such that the yielded zone grows
to include one more grid point in the quadrant than before. Use of
this mode is expected to provide information for better use of the
first mode.

Typical Load Increment: The computer program embodying the

procedures described in this report is written for a typical load
increment. Implied in this phrase is a knowledge of the stress and
strain fields at the start of the increment, which is sufficient to
establish the position each grid point has reached on the stress-
strain curve. Such information is adequate for finding the various
coefficients required by the governing equations, both in the field and
on the boundary.

A consequence of this view is that an elastic increment is
typical., That is, if the stress-strain curve is initially linear,
the entire procedure is applicable. Indeed we require this initial
linearity; the first load increment is adjusted such that the most
highly stressed (in terms of Teq or ¢) grid point has just exceeded

the proportional limit. The corresponding load increment is normally
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large relative to subsequent values, but this exception to the preceding
comments in permissible because of the linearity of the problem at
this point.

Writing the Matrix: As noted above, the matrix is banded, and

we allocate storage only for the band of non-zero elements in [K]
(cf. (3.17) et seq.). The number of columns in the matrix band is
always odd because it contains the main diagonal of [K] and an equal
number of diagonals to the right and left. The central column in the
matrix band corresponds to the main diagonal of [K]. The number of
rows is twice the number of grid points.

As a preliminary step, we evaluate the geometric data for the
problem in such a fashion as to insure that the storage allocation of
the matrix band is not exceeded, and that the ratio Af{/An is close
to unity.

Next, the differential equations (2.10), in finite difference
form, are written at each grid point so generated. This step is
preceded, of course, by evaluation of the pertinent coefficients in the
equations using the data at the beginning of the load increment.

Finally, the various symmetry and boundary condition are inserted
following the same order and procedure noted in the previous chapter.
It is worth commenting that the conditions oh r = R and z = H require
particular care; in large measure, this is the price paid for increased
accuracy and resolution in the vicinity of the notch or crack root.

Comment on Boundary Conditions: One aspect of the procedure

for imposing boundary conditions on r = R and z = H should be discussed.
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Starting at the axis £ = 0 and moving along a line £ = const for
increasing £, we test to determine whether, for any grid point, any
of the surrounding eight points falls outside the domain. If not,
no action is required.

If any of the surrounding points are external, i.e., temporary
and ficticious, several items of information must be established.
First, the number of points that fall exterior must be determined.
Second, we must find the intersections between the grid lines corresponding
to the point in question, as in Figure 3.2, and the boundary lines;
coordinates of these intersections and the associated values of x and y
(cf. (3.14) - (3.16)) are to be found.

It happens that the different numbers and different combinations
of points that can fall outside the domain number nearly forty cases.
Most of these are such that general rules can be formulated for their
disposition. A few exceptions occur and they require special attention.

Once the necessary information has been established, further
steps are required. From (2.11) (or (2.12)) in the form of (3.22),
it is seen that two boundary equations are to be written. These
equations should be evaluated on the same point(s) of the boundary so
that they may be put into a useable form.

As an example, consider the case that points 3 and 6 in
Figure 3.2 are outside the domain, all others being inside. The
boundary then cuts the grid lines at positions noted approximately
by p, q, and k. The precise location of each point must, of course,
be found. Let us state further that, for this case, &r and %rz of

(3.22) are each zero.
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Then, using (3.14) - (3.16), (3.22) are to be put in a form
such that each is a linear algebraic combination of u and w at points
numbered (temporarily) 1 through 9. As a preliminary step, the
coefficients Ups Opy eene, O,y must be found. A problem arises,
however, in that there are three points (p, q, k) where the boundary
intersects the grid lines, but only two ''grid" points exterior to the
domain. The arbitrariness thus allowed permits selection of those
points furthest apart, p and k for this case. Having made this
choice, we write (3.22) at p and k in the linear form noted.

This set of four equations may then be solved to give 63,
&3, &6’ and &6 each as a linear combination of the values of ﬁ and Q in
the interior. The matrix band is then altered as before. Specifically,
all reference to exterior points is replaced, via the rearranged
boundary equations, by reference to interior points, and the former
entries are zeroed.

Solution: Once the matrix band is in final form, the solution is
obtained using Professor McCormick's elimination procedure. The
result is the value of the displacement increments Su and dw at each
grid point. Experience with this procedure indicates that the solution
should be quite accurate although, with the reduced precision of the
IBM System 360, this feature remains to be established.

Answer: Of all the information to be obtained, the displacements
are perhaps the least important to the analyst. Accordingly we also
compute strains, stresses, and several invariants.

The displacements are taken as the running sum of the displacement

increments. By (2.2), the same procedure is employed for the strains.



-40-

The stresses, however, may not be found in the same manner, owing to
the complexity of (2.4) - (2.8). This set of equations is regarded as
differential equations in time, and they are integrated via standard
predictor-corrector methods.

. Thus (2.4) are used to predict the stress increments by using the
current strain increments and the beginning values of the coefficients
aij (i, j =1, 2, 3, 4). The stresses are tentatively evaluated as
the beginning values plus the increments. The various coefficients are
recomputed, and new values of the stress increments are determined. The
stresses are then corrected. The cycle is repeated either for a
prespecified number of times, or until convergence is achieved according
to a pertinent criterion.

Final Data: Having thus obtained the primary dependent variables,
we turn to computation of further data such as the plastic strains,
principal stresses and strains, and energy densities, plastic, elastic,
and total. These are found by standard formulae, and need not be
detailed here.

Repetition of this procedure for a series of load increments
produces the various stress and strain fields as functions of spatial
position and time. The procedure is capable of handling both loading
and unloading although, at present, the requisite coding is complete

only for the former.
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V. MANAGEMENT OF OUTPUT DATA

One of the problems attendant upon analyses of the sort
described in this report concerns the manner in which output is
handled. An estimate of the problem magnitude is obtained as
follows. Let us suppose that the domain contains about 200 grid
points, i.e., that the dependent variables are determined at each of these
locations. Further, presume that there are 50 load increments. Since
we compute some 25 variables* at each point in space and time, we are
left with a quarter million pieces of data at the end of a single
computation.

To confound matters further, the data in the form of numbers is
hardly useful when interpreting the results. Characteristically,
the analyst is more concerned with the functional dependence of the
results along certain lines, e.g., the line of crack prolongation,
or over a period of time.

As at least a partial solution to this difficulty, it is planned
to have the output available in two forms. One is the usual form, i.e.,
printed on regular computer paper; the other is on tape. The latter
form makes automatic review of the data relatively simple, particularly
because of the arrangement in which the data are stored. If, for
example, one were to decide to examine a particular feature of the
data, a short computer program could be written to scan the tape and
produce the information desired. Such features might include the

indicated stress and strain intensities and singularities.

* These include two displacements, four strains (total), four strains
(plastic components only), four stresses, three each principal strains
and stresses, the equivalent strain and stress, and three (elastic,
plastic, and total) energy densities.
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A second procedure, currently under development, is to be
noted. This involves graphical display of the data in familiar form,
on a cathode-ray tube face. Consider, for example, the matter of finding
the size and shape of the yielded zone, or plastic enclave. According
to the theory,6 the plastic enclave is defined as the zone enclosed
by points along which Teq = "o’ i.e., where Teq is equal to its
value at the proportional limit. Alternatively one might perfer3 to
examine contours along which Teq = CTg, where ¢ > 1.

In any case, the problem becomes that of finding iso- contours
of the data, either in its form as written on tape or in simple
combinations. To meet this requirement, one need only use (3.14) in
an inverted form. The vertical grid line corresponding to that through
points 2, 5, and 8 in Figure 3.2 is scanned until values of, say, Te
are found which bracket the desired value Tye Then we need only solve
the second of (3.14a) to find the appropriate value of y. That is,

starting with

T, = - %-y(l-y)reéz) + (l—yz)reés) + %—Y(l+y)Te§8) (5.1)
we find
) 1
) ©®)_ (. (2 _ (8 (5)qr. (1) . (5).. (8)1,°
y “eq 'eq ([Teq ~Teq v 8l -1 7 Mg 'ZTeg)”eEL /]
I O O O
eq eq eq

(5.2)

A similar formula may be computed for x from (3.14b).
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Hence we would scan the data along each family of coordinate
lines to establish a set of points along which Teq = T,- A smooth
curve fitted to these points becomes, in this case, the boundary of the
plastic enclave. Other cases might produce isochromatics, and so
forth.

The procedure required to generate iso-contours is fairly

simple. Its utility lies in repetitive application. Thus one might

where now c assumes

choose to examine the family of lines Teq = €T,

a sequence of values. This corresponds to a '"snapshot'" of behavior,
i.e., a map in space at a selected instant of time.

Alternatively, one might look at the same relation with ¢
fixed, but at a series of subsequent times, corresponding to a
"movie'" of the behavior. Combinations of the two types of usage are
easily visualized.

Carrying this procedure one step further, one might conceive
of using the graphical readout of the scope (CRT) as a means for seeing
the results of a theoretical experiment. An enormous amount of
numerical data may be scanned rapidly and efficiently, so that the
analyst may retrieve that which is most pertinent to his purpose.
Moreover, he is in a position to determine what constitutes pertinence,
for each solution may be studied thoroughly. Finally, by having each
solution permanently stored on tape, previous work may be re-examined

as needed as knowledge and understanding of this problem area grow.
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VI. CONCLUDING REMARKS

It is one thing to describe a numerical procedure, as is doné
in this report, and another to reduce it to practice. The latter
step is frequently made more difficult when a high speed digital
computer is involved. Such is the case with the present effort. It
is, at this writing, in the limbo between procedural formulation
and routine operation, commonly termed 'debugging.' We are nonetheless
confident of its feasibility, for a number of reasons. These include
earlier work in p1asticity,3’4’5 careful problem formulation,6 and
appropriateness of the curvilinear coordinates.9 What remains is the
resplution of several, detailed procedural problems associated with the
use of a digital computer, specifically, the IBM System 360.

There are other features of the present program for tension of
an axisymmetric, elasto-plastic, notched rod not discussed here. One
worth mentioning is a built-in éheck-point procedure. Should it be
desired to interrupt the calculation after a certain number of load
increments we may do so, and restart at some later time at the point
of interruption. This means that a given analysis may be extended
without duplicating its earlier portions, a feature of some advantage
should a given problem need to be extended.

In addition to the computer program for the axisymmetric geometry,
we have under concurrent development one for planar cases, i.e., plane
stress or plane strain. The procedures are precisely the same as
those discussed above, so that the remarks presented carry over to

planar problems. Perhaps the major difference between axisymmetric
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and planar problems is that the differential equations are somewhat
simpler for the latter case. The form is the same, however, and
we are able to work with both programs together.

The procedures appear to be equally useful in solving other
differential equations having the same mathematical character as
(2.10). While we have yet to study this matter in depth, it would
seem that the present method applies in general to elliptic, quasi-
linear, coupled, partial differential equations subject to mixed
boundary conditions. Although the present technique is presented in
the context of two spatial variables, it has carefully been formulated
so that extension to three spatial variables (and time) is permissible.
Hence, the procedure appears to be one of considerable utility in

mathematical physics.
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